Science.gov

Sample records for argon plasma coagulation

  1. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processes observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.

  2. Gastric explosion induced by argon plasma coagulation and prevention strategies.

    PubMed

    Freiman, John Saul; Hampe, Toni

    2014-12-01

    We describe the occurrence of an iatrogenic explosion induced by argon plasma coagulation in a 70-year-old man undergoing gastroscopy. Combustible gases in the stomach may have been released by bacterial overgrowth as a result of partial gastric outlet obstruction (caused by a gastric tumor) and reduced acidity (from proton pump inhibitor therapy). We propose a stepwise process during upper endoscopy to prevent this devastating complication, comprising aspiration, preinsufflation with CO2, and then coagulation. PMID:25041867

  3. Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract

    PubMed Central

    Garrido, Teresa; Baba, Elisa R; Wodak, Stephanie; Sakai, Paulo; Cecconello, Ivan; Maluf-Filho, Fauze

    2014-01-01

    AIM: To analyze the effect of bipolar electrocoagulation and argon plasma coagulation on fresh specimens of gastrointestinal tract. METHODS: An experimental evaluation was performed at Hospital das Clinicas of the University of São Paulo, on 31 fresh surgical specimens using argon plasma coagulation and bipolar electrocoagulation at different time intervals. The depth of tissue damage was histopathologically analyzed by single senior pathologist unaware of the coagulation method and power setting applied. To analyze the results, the mucosa was divided in superficial mucosa (epithelial layer of the esophagus and superficial portion of the glandular layer of the stomach and colon) intermediate mucosa (until the lamina propria of the esophagus and until the bottom of the glandular layer of the stomach and colon) and muscularis mucosa. Necrosis involvement of the layers was compared in several combinations of power and time interval. RESULTS: Involvement of the intermediate mucosa of the stomach and of the muscularis mucosa of the three organs was more frequent when higher amounts of energy were used with argon plasma. In the esophagus and in the colon, injury of the intermediate mucosa was frequent, even when small amounts of energy were used. The use of bipolar electrocoagulation resulted in more frequent involvement of the intermediate mucosa and of the muscularis mucosa of the esophagus and of the colon when higher amounts of energy were used. In the stomach, these involvements were rare. The risk of injury of the muscularis propria was significant only in the colon when argon plasma coagulation was employed. CONCLUSION: Tissue damage after argon plasma coagulation is deeper than bipolar electrocoagulation. Both of them depend on the amount of energy used. PMID:25031789

  4. [Anesthesia for argon plasma coagulation therapy through the tracheostomy site].

    PubMed

    Nakamura, Shinji; Nishiyama, Tomoki; Hanaoka, Kazuo

    2005-11-01

    We experienced a case of argon plasma coagulation (APC) therapy for bronchial obstruction. A 54-year-old man was scheduled for APC therapy for bronchial obstruction using bronchoscope via a tracheostoma. The patient had received left upper lobectomy four years before and laryngectomy and tracheotomy two years before. Anesthesia was induced with droperidol 2.5 mg, and gradual administration of fentanyl (total 125 microg) and midazolam (total 1 mg). Surgery was completed in 15 minutes under spontaneous breathing of air. In APC therapy, we cannot administer oxygen for fear of argon-ignited intratracheal combustion. Using small doses of droperidol, fentanyl, and midazolam, we could successfully anesthetize a patient for APC therapy through the tracheostomy site under spontaneous respiration with air. PMID:16296370

  5. Coagulation of dust grains in the plasma of an RF discharge in argon

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2009-03-15

    Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

  6. Use of endoscopic-assisted argon plasma coagulation for the treatment of colonic vascular ectasia (angiodysplasia) in an adult dog.

    PubMed

    Harris, Autumn N; Armentano, Robert A; Torres, Ahmira R; Gallagher, Alexander E

    2016-03-01

    CASE DESCRIPTION A 10-year-old neutered male mixed-breed dog was evaluated for a 5-year history of intermittent hematochezia and chronic anemia that were unresponsive to medical treatment. CLINICAL FINDINGS Colonoscopy revealed multifocal areas of coalescing tortuous mucosal blood vessels throughout the colon and rectum. Colonic vascular ectasia (angiodysplasia) was diagnosed on the basis of the endoscopic appearance of the lesions. TREATMENT AND OUTCOME The dog failed to respond to traditional medical treatments for colonic vascular ectasia and required multiple plasma and blood transfusions. The dog received 4 endoscopic-assisted argon plasma coagulation treatments, which resulted in long-term resolution of gastrointestinal hemorrhage. Colonic perforation occurred during the third argon plasma coagulation treatment. The perforation was surgically repaired. The dog remained free from clinical signs of colonic vascular ectasia for > 1 year after the third argon plasma coagulation treatment and was euthanized because of clinical deterioration associated with progressive heart disease. CLINICAL RELEVANCE Endoscopic-assisted argon plasma coagulation treatment is a novel treatment for dogs with colonic vascular ectasia and provided long-term resolution of clinical signs for the dog of this report. In human patients, complications associated with endoscopic-assisted argon plasma coagulation treatment include colonic perforation, which also occurred in the dog of this report. PMID:26885595

  7. Bifocal esophageal and rectal cancer palliatively treated with argon plasma coagulation.

    PubMed

    Solecki, R; Zajac, A; Richter, P; Szura, M

    2004-02-01

    Primary multiple neoplasms make a serious diagnostic and therapeutic problem. They occur infrequently; however, they must be considered in the diagnosis as the detection of simultaneous neoplastic foci requires change of therapeutic approach. We present a case of a patient with synchronous esophageal and rectal cancer treated at the Department of Surgery. Because of the advanced neoplastic process and concomitant diseases, the patient was qualified for minimally invasive procedures with recanalization using argon plasma coagulation to avoid injuring palliative procedures and to improve quality of life. The patient died of the primary disease without symptoms of gastrointestinal tract obstruction. PMID:15106621

  8. Usefulness of Rigid Bronchoscopic Intervention Using Argon Plasma Coagulation for Central Airway Tumors

    PubMed Central

    Lee, Bo-Ram; Oh, In-Jae; Lee, Ho-Sung; Ban, Hee-Jung; Kim, Kyu-Sik; Kim, Yu-Il; Lim, Sung-Chul; Kim, Young-Chul; Park, Yong-Wook

    2015-01-01

    Objectives Argon plasma coagulation (APC) is a noncontact form of electrocautery that utilizes ionized argon as the electrical current. A rigid bronchoscopic use of APC for the management of central airway obstruction could be safe and rapidly effective. This study evaluated the usefulness of rigid bronchoscopy with APC for the management of central airway obstructions due to benign or malignant tumors. Methods Twenty patients with obstructing central airway tumors were retrospectively reviewed from February 2008 to February 2013 at Chonnam National University Hospital. All patients received rigid bronchoscopic tumor removal under general anesthesia. APC was applied before and after tumor removal. Results The median age of patients was 59 years (interquartile range [IQR], 51 to 67 years) and 70% were female. The causes of airway obstruction included malignancy (n=8) and benign tumor (n=12). Airway tumors comprised intraluminal lesions (n=11, 55%) and mixed intraluminal/extraluminal lesions (n=9, 45%). The median tumor size was 15 mm (IQR, 10 to 18 mm). The median degree of airway obstruction was significantly reduced after intervention (90% [IQR, 88% to 96%] vs. 10% [IQR, 0% to 20%], P<0.001). The median American Thoracic Society dyspnea grade (3 [IQR, 1 to 4] vs. 1 [IQR, 0 to 1], P<0.001) and forced expiratory volume in one second (1.03 L [IQR, 0.52 to 1.36 L] vs. 1.98 L [IQR, 1.57 to 2.64 L], P=0.004) were significantly improved after intervention. There were no procedure-related acute complications and deaths. Conclusion Rigid bronchoscopy with APC is an effective and safe procedure to alleviate central airway obstruction caused by tumors. PMID:26622961

  9. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy

    PubMed Central

    Pickering, Edward M.; Lee, Hans J.

    2015-01-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  10. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy.

    PubMed

    Sachdeva, Ashutosh; Pickering, Edward M; Lee, Hans J

    2015-12-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  11. Argon Plasma Coagulation Therapy Versus Topical Formalin for Intractable Rectal Bleeding and Anorectal Dysfunction After Radiation Therapy for Prostate Carcinoma

    SciTech Connect

    Yeoh, Eric; Tam, William; Schoeman, Mark; Moore, James; Thomas, Michelle; Botten, Rochelle; Di Matteo, Addolorata

    2013-12-01

    Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motor and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction.

  12. Comparison of argon plasma coagulation in management of upper gastrointestinal angiodysplasia and gastric antral vascular ectasia hemorrhage

    PubMed Central

    2012-01-01

    Background Vascular ectasias, including gastric antral vascular ectasia (GAVE) and angiodysplasia, are increasingly recognized as important sources of gastrointestinal bleeding. This study investigated and compared the efficacies and outcomes of treatment of upper gastrointestinal (UGI) angiodysplasia and GAVE hemorrhage by endoscopic argon plasma coagulation (APC). Methods From January 2006 to December 2009, 46 patients diagnosed with upper GI bleeding caused by angiodysplasia or GAVE at a tertiary hospital were recruited into this study. They included 26 males and 20 females with an average age of 65.6 years (range, 45–90 years). All patients underwent APC for hemostasis during an endoscopic procedure. Parameters such as underlying co-morbidities, number of endoscopic treatment sessions, recurrent bleeding, and clinical outcomes during follow-up were analyzed. Results The 46 patients with UGI vascular ectasia hemorrhage included 27 patients with angiodysplasia and 19 with GAVE. The patients with angiodysplasia were older than those with GAVE (71.6 ± 10.2 years versus 61.8 ± 11.9 years, P = 0.005). More GAVE patients than angiodysplasia patients had co-existing liver cirrhosis (63.2% versus 25.9%, P = 0.012). The patients with GAVE had a higher rate of recurrent bleeding (78.9% versus 7.4%, P < 0.001) and required more treatment sessions to achieve complete hemostasis (2.4 ± 1.4 versus 1.1 ± 0.1, P < 0.001) than those with angiodysplasia. Univariate analysis demonstrated that age greater than 60 years (odds ratio (OR) = 8.929, P = 0.003), GAVE (OR = 0.021, P < 0.001), and previous radiation therapy (OR = 11.667, P = 0.032) were associated with higher rates of recurrent bleeding. Further multivariate analysis revealed that GAVE was the only independent risk factor for recurrent bleeding after APC treatment (OR = 0.027, P < 0.001). Conclusion Endoscopic hemostasis with APC is a safe treatment modality for both angiodysplasia and vascular ectasia bleeding. The efficacy of APC treatment is greater for angiodysplasia than for vascular ectasia bleeding. GAVE patients have a higher recurrent bleeding rate and may require multiple treatment sessions for sustained hemostasis. PMID:22681987

  13. POST-BARIATRIC SURGERY WEIGHT REGAIN: EVALUATION OF NUTRITIONAL PROFILE OF CANDIDATE PATIENTS FOR ENDOSCOPIC ARGON PLASMA COAGULATION

    PubMed Central

    CAMBI, Maria Paula Carlini; MARCHESINI, Simone Dallegrave; BARETTA, Giorgio Alfredo Pedroso

    2015-01-01

    Background Bariatric surgery is effective treatment for weight loss, but demand continuous nutritional care and physical activity. They regain weight happens with inadequate diets, physical inactivity and high alcohol consumption. Aim To investigate in patients undergoing Roux-Y-of gastroplasty weight regain, nutritional deficiencies, candidates for the treatment with endoscopic argon plasma, the diameter of the gastrojejunostomy and the size of the gastric pouch at the time of treatment with plasma. Methods A prospective 59 patients non-randomized study with no control group undergoing gastroplasty with recurrence of weight and candidates for the endoscopic procedure of argon plasma was realized. The surgical evaluation consisted of investigation of complications in the digestive system and verification of the increased diameter of the gastrojejunostomy. Nutritional evaluation was based on body mass index at the time of operation, in the minimum BMI achieved after and in which BMI was when making the procedure with plasma. The laboratory tests included hemoglobin, erythrocyte volume, ferritin, vitamin D, B12, iron, calcium, zinc and serum albumin. Clinical analysis was based on scheduled follow-up. Results Of the 59 selected, five were men and 51 women; were included 49 people (four men and 44 women) with all the complete data. The exclusion was due to the lack of some of the laboratory tests. Of this total 19 patients (38.7%) had a restrictive ring, while 30 (61.2%) did not. Iron deficiency anemia was common; 30 patients (61.2%) were below 30 with ferritin (unit); 35 (71.4%) with vitamin B12 were below 300 pg/ml; vitamin D3 deficiency occurred in more than 90%; there were no cases of deficiency of protein, calcium and zinc; glucose levels were above 99 mg/dl in three patients (6.12%). Clinically all had complaints of labile memory, irritability and poor concentration. All reported that they stopped treatment with the multidisciplinary team in the first year after the operation. Conclusions The profile of patients submitted to argon plasma procedure was: anastomosis in average with 27 mm; multiple nutritional deficiencies with predominance of iron deficiency anemia; ferritin below 30; vitamin B12 levels below 300 pg/ml; labile memory complaints, irritability and poor concentration. PMID:25861068

  14. The tissue effect of argon-plasma coagulation with prior submucosal injection (Hybrid-APC) versus standard APC: A randomized ex-vivo study

    PubMed Central

    Neugebauer, Alexander; Scharpf, Marcus; Braun, Kirsten; May, Andrea; Ell, Christian; Fend, Falko; Enderle, Markus D

    2014-01-01

    Background Thermal ablation for Barrett’s oesophagus has widely been established in gastrointestinal endoscopy during the last decade. The mainly used methods of radiofrequency ablation (RFA) and argon-plasma coagulation (APC) carry a relevant risk of stricture formation of up to 5–15%. Newer ablation techniques that are able to overcome this disadvantage would therefore be desirable. The aim of the present study was to compare the depth of tissue injury of the new method of Hybrid-APC versus standard APC within a randomized study in a porcine oesophagus model. Methods Using a total of eight explanted pig oesophagi, 48 oesophageal areas were ablated either by standard or Hybrid-APC (APC with prior submucosal fluid injection) using power settings of 50 and 70 W. The depth of tissue injury to the oesophageal wall was analysed macroscopically and histopathologically. Results Using 50 W, mean coagulation depth was 937 ± 469 µm during standard APC, and 477 ± 271 µm during Hybrid-APC (p = 0.064). Using 70 W, coagulation depth was 1096 ± 320 µm (standard APC) and 468 ± 136 µm (Hybrid-APC; p = 0.003). During all settings, damage to the muscularis mucosae was observed. Using standard APC, damage to the submucosal layer was observed in 4/6 (50 W) and 6/6 cases (70 W). During Hybrid-APC, coagulation of the submucosal layer occurred in 2/6 (50 W) and 1/6 cases (70 W). The proper muscle layer was only damaged during conventional APC (50 W: 1/6; 70 W: 3/6). Limitations Ex-vivo animal study with limited number of cases. Conclusions Hybrid-APC reduces coagulation depth by half in comparison with standard APC, with no thermal injury to the proper muscle layer. It may therefore lead to a lower rate of stricture formation during clinical application. PMID:25360316

  15. Improvement of Short-Term Outcomes for High-Risk Bleeding Peptic Ulcers With Addition of Argon Plasma Coagulation Following Endoscopic Injection Therapy: A Randomized Controlled Trial.

    PubMed

    Wang, Huay-Min; Tsai, Wei-Lun; Yu, Hsien-Chung; Chan, Hoi-Hung; Chen, Wen-Chi; Lin, Kung-Hung; Tsai, Tzung-Jiun; Kao, Sung-Shuo; Sun, Wei-Chih; Hsu, Ping-I

    2015-08-01

    A second endoscopic method together with injection therapy is recommended to treat high-risk bleeding peptic ulcers. This study investigated whether additional argon plasma coagulation (APC) treatment could influence hemostatic efficacy following endoscopic injection therapy to treat high-risk bleeding ulcers.From October 2010 to January 2012, eligible patients with high-risk bleeding ulcers were admitted to our hospital. They prospectively randomly underwent either APC therapy along with distilled water injection or distilled water injection alone. Episodes of rebleeding were retreated with endoscopic combination therapy. Patients in whom retreatment was ineffective underwent emergency surgery or transarterial embolization (TAE).A total of 116 enrolled patients were analyzed. The hemostatic efficacy in 58 patients treated with APC along with distilled water injection was compared with that in 58 patients treated with distilled water injection alone. The 2 treatment groups were similar with respect to all baseline characteristics. Initial hemostasis was accomplished in 56 patients treated with combined therapy, and 55 patients treated with distilled water injection therapy (97% vs 95%, P = 0.648). Bleeding recurred in 2 patients treated with combined therapy, and 9 patients treated with distilled water injection (3.6% vs 16%, P = 0.029). Treatment method was the only independent prognostic factor for recurrent bleeding (odds ratio 0.17; 95% confidence interval 0.03-0.84; P = 0.029). The 2 groups did not differ significantly in hospital stay, TAE, surgery, and mortality.Endoscopic therapy with APC following distilled water injection is more effective than distilled water injection alone for preventing rebleeding of peptic ulcer. PMID:26266385

  16. A randomised controlled trial of ablation of Barrett's oesophagus with multipolar electrocoagulation versus argon plasma coagulation in combination with acid suppression: long term results

    PubMed Central

    Sharma, P; Wani, S; Weston, A P; Bansal, A; Hall, M; Mathur, S; Prasad, A; Sampliner, R E

    2006-01-01

    Background Many modalities have been used to ablate Barrett's oesophagus (BO). However, long term results and comparative effectiveness are unknown. Aims Our aim was to compare the long term efficacy of achieving complete reversal (endoscopic and histological) between multipolar electrocoagulation (MPEC) and argon plasma coagulation (APC) in BO patients and assess factors influencing successful ablation. Methods Patients with BO, 2–6 cm long, underwent 24 hour pH testing on proton pump inhibitor (PPI) therapy. Patients were then randomised by BO length to undergo ablation with MPEC or APC every 4–8 weeks until endoscopic reversal or maximal of six treatment sessions. Results Thirty five BO patients have been followed for at least two years following endoscopic ablation, 16 treated with MPEC and 19 with APC. There was complete reversal of BO in 24 patients (69%); 75% with MPEC and 63% with APC (p = 0.49). There was no difference in the number of sessions required in the two groups. There was no difference in age, pH results, BO length, PPI dose, or hiatal hernia size between patients with and without complete reversal. One patient developed an oesophageal stricture but there were no major complications such as bleeding or perforation. Conclusions In BO patients treated with MPEC or APC in combination with acid suppression, at long term follow up, complete reversal of BO can be maintained in approximately 70% of patients, irrespective of the technique. There are no predictors associated with achieving complete reversal of BO. Continued surveillance is still indicated in the post ablative setting. As yet, these techniques are not ready for clinical application (other than for high grade dysplasia or early oesophageal adenocarcinoma) and cannot be offered outside the research arena. PMID:16905695

  17. Improvement of Short-Term Outcomes for High-Risk Bleeding Peptic Ulcers With Addition of Argon Plasma Coagulation Following Endoscopic Injection Therapy

    PubMed Central

    Wang, Huay-Min; Tsai, Wei-Lun; Yu, Hsien-Chung; Chan, Hoi-Hung; Chen, Wen-Chi; Lin, Kung-Hung; Tsai, Tzung-Jiun; Kao, Sung-Shuo; Sun, Wei-Chih; Hsu, Ping-I.

    2015-01-01

    Abstract A second endoscopic method together with injection therapy is recommended to treat high-risk bleeding peptic ulcers. This study investigated whether additional argon plasma coagulation (APC) treatment could influence hemostatic efficacy following endoscopic injection therapy to treat high-risk bleeding ulcers. From October 2010 to January 2012, eligible patients with high-risk bleeding ulcers were admitted to our hospital. They prospectively randomly underwent either APC therapy along with distilled water injection or distilled water injection alone. Episodes of rebleeding were retreated with endoscopic combination therapy. Patients in whom retreatment was ineffective underwent emergency surgery or transarterial embolization (TAE). A total of 116 enrolled patients were analyzed. The hemostatic efficacy in 58 patients treated with APC along with distilled water injection was compared with that in 58 patients treated with distilled water injection alone. The 2 treatment groups were similar with respect to all baseline characteristics. Initial hemostasis was accomplished in 56 patients treated with combined therapy, and 55 patients treated with distilled water injection therapy (97% vs 95%, P = 0.648). Bleeding recurred in 2 patients treated with combined therapy, and 9 patients treated with distilled water injection (3.6% vs 16%, P = 0.029). Treatment method was the only independent prognostic factor for recurrent bleeding (odds ratio 0.17; 95% confidence interval 0.03–0.84; P = 0.029). The 2 groups did not differ significantly in hospital stay, TAE, surgery, and mortality. Endoscopic therapy with APC following distilled water injection is more effective than distilled water injection alone for preventing rebleeding of peptic ulcer. PMID:26266385

  18. Argon plasma coagulation for the endoscopic treatment of gastrointestinal tumor bleeding: A retrospective comparison with a non-treated historical cohort

    PubMed Central

    Wodak, Stephanie; Gusmon, Carla C; Safatle-Ribeiro, Adriana Vaz; Kawaguti, Fabio Shiguehissa; Baba, Elisa Ryoka; Pennacchi, Caterina MP; Lima, Marcelo Simas; Ribeiro, Ulysses; Maluf-Filho, Fauze

    2015-01-01

    Background The endoscopic use of argon plasma coagulation (APC) to achieve hemostasis for upper gastrointestinal tumor bleeding (UGITB) has not been adequately evaluated in controlled trials. This study aimed to evaluate the efficacy of APC for the treatment of upper gastrointestinal bleeding from malignant lesions. Methods Between January and September 2011, all patients with UGITB underwent high-potency APC therapy (up to 70 Watts). This group was compared with a historical cohort of patients admitted between January and December 2010, when the endoscopic treatment of bleeding malignancies was not routinely performed. Patients were stratified into two categories, grouping the Eastern Cooperative Oncology Group (ECOG) performance status scale: Category I (ECOG 0–2) patients with a good clinical status and Category II (ECOG 3–4) patients with a poor clinical status. Results Our study had 25 patients with UGITB whom underwent APC treatment and 28 patients whom received no endoscopic therapy. The clinical characteristics of the groups were similar, except for endoscopic active bleeding, which was more frequently detected in APC group. We had 15 patients in the APC group whom had active bleeding, and initial hemostasis was obtained in 11 of them (73.3%). In the control group, four patients had active bleeding. There were no differences in 30-day re-bleeding (33.3% in the APC group versus 14.3% in the control group; p = 0.104) and 30-day mortality rates (20.8% in the APC group, versus 42.9% in the control group; p = 0.091). When patients were categorized according to their ECOG status, we found that APC therapy had no impact in re-bleeding and mortality rates (Group I: APC versus no endoscopic treatment: re-bleeding p = 0.412, mortality p = 0.669; Group II: APC versus no endoscopic treatment: re-bleeding p = 0.505, mortality p = 0.580). Hematemesis and site of bleeding located at the esophagus or duodenum were associated with a higher 30-day mortality. Conclusions Endoscopic hemostasis of UGITB with APC has no significant impact on 30-day re-bleeding and mortality rates, irrespective of patient performance status. PMID:26966522

  19. Microwave Argon Plasma Torch

    NASA Astrophysics Data System (ADS)

    Felizardo, Edgar; Pencheva, Mariana; Benova, Evgenia; Dias, Fransisco; Tatarova, Elena

    2009-10-01

    A theoretical and experimental investigation of a microwave (2.45 GHz) Argon plasma torch driven by a surface wave is presented. The theoretical model couples in a self-consistent way the wave electrodynamics and the electron and heavy particle kinetics. The set of coupled equations includes: Maxwell's equations, the electron Boltzmann equation, including electron-electron collisions, and the particle balance equations for electrons, excited atoms (4s, 4p, 3d, 5s, 5p, 4d, 6s), and atomic (Ar^+) and molecular ions (Ar2^+). The input parameters of the model are: gas pressure (760 Torr), plasma radius (R = 0.75 cm), dielectric permittivity (ɛd = 4.0) and tube thickness (d = 0.15 cm) as well as the measured axial profile of the gas temperature (3500 K - 1500 K). The latter was determined from measurements of the rotational temperature of the OH molecular band in the range 306 - 315 nm. Phase and amplitude sensitive recording provides the data for the axial wavenumber and wave attenuation coefficient. The wavenumber decreases along the generated plasma torch. The electron density (Ne) axial profile as determined from measurements of Hβ Stark broadening is in agreement with the theoretical one.

  20. Coagulation of dust particles in a plasma

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Goertz, C. K.

    1990-01-01

    The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.

  1. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  2. Plasma parameters in 40 MHz Argon discharge

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.; Cakir, S.; Bleej, D. A.

    Experimental data related to 40 MHz Argon plasma parameters in the RF power and pressure ranges of 25-200 W and 0.2-0.5 Torr are presented. Electron temperatures are obtained using both double probe and optical spectroscopy methods. Acceptable consistency between results is obtained. Double probe method is also used to obtain the plasma electron density. At any particular pressure value, the effect of increasing RF power seems to be restricted to increasing plasma electron density rather than affecting the plasma electron temperatures. Signature of the Paschen law effect is reflected on the relation between pressure and electron plasma density.

  3. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  4. Contact Activation of Blood Plasma Coagulation

    PubMed Central

    Vogler, Erwin A.; Siedlecki, Christopher A.

    2009-01-01

    This opinion identifies inconsistencies in the generally-accepted surface biophysics involved in contact activation of blood-plasma coagulation, reviews recent experimental work aimed at resolving inconsistencies, and concludes that this standard paradigm requires substantial revision to accommodate new experimental observations. Foremost among these new findings is that surface-catalyzed conversion of the blood zymogen factor XII (FXII, Hageman factor) to the enzyme FXIIa ( FXII→surfaceFXIIa, a.k.a. autoactivation) is not specific for anionic surfaces, as proposed by the standard paradigm. Furthermore, it is found that surface activation is moderated by the protein composition of the fluid phase in which FXII autoactivation occurs by what appears to be a protein adsorption-competition effect. Both of these findings argue against the standard view that contact activation of plasma coagulation is potentiated by assembly of activation-complex proteins (FXII, FXI, prekallikrein, and high-molecular-weight kininogen) directly onto activating surfaces (procoagulants) through specific protein/surface interactions. These new findings supplement the observation that adsorption behavior of FXII and FXIIa is not remarkably different from a wide variety of other blood proteins surveyed. Similarity in adsorption properties further undermines the idea that FXII and/or FXIIa are distinguished from other blood proteins by unusual adsorption properties resulting in chemically-specific interactions with activating anionic surfaces. PMID:19168215

  5. Use of neutral plasma coagulation in groin node dissection for vulvar malignancy: a novel technique

    PubMed Central

    Madhuri, Thumuluru Kavitha; Tailor, Anil; Butler-Manuel, Simon

    2011-01-01

    Vulvar cancer is an uncommon disease with approximately 1000 cases reported annually in the UK. Lymph node involvement is an important prognostic indicator. Vulvectomy and bilateral groin node dissection are the preferred surgical treatments for early disease and increase survival. However, significant morbidity with lymphocyst formation and wound breakdown has been reported in more than 50% of cases. We report the first case following use of the PlasmaJet® neutral argon coagulation system to reduce postoperative lymphocyst formation. PMID:21792333

  6. Use of neutral plasma coagulation in groin node dissection for vulvar malignancy: a novel technique.

    PubMed

    Madhuri, Thumuluru Kavitha; Tailor, Anil; Butler-Manuel, Simon

    2011-01-01

    Vulvar cancer is an uncommon disease with approximately 1000 cases reported annually in the UK. Lymph node involvement is an important prognostic indicator. Vulvectomy and bilateral groin node dissection are the preferred surgical treatments for early disease and increase survival. However, significant morbidity with lymphocyst formation and wound breakdown has been reported in more than 50% of cases. We report the first case following use of the PlasmaJet(®) neutral argon coagulation system to reduce postoperative lymphocyst formation. PMID:21792333

  7. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.

    1998-12-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.

  8. Role of electronic excitation on thermodynamic and transport properties of argon and argon-hydrogen plasmas

    SciTech Connect

    Singh, Kuldip; Singh, Gurpreet; Sharma, Rohit

    2010-07-15

    Thermodynamic and electron transport properties of the argon and argon-hydrogen plasmas have been calculated under the local thermodynamic equilibrium conditions in temperature range of 10 000-40 000 K over the wide range of pressures. Electronic excitation affects strongly these properties especially at high pressures. The inclusion of electronically excited states (EES) in relevant partition function influences the internal contribution to frozen and total specific heat for argon and argon-hydrogen plasma and it has been observed that although the total specific heat of argon plasma is less than that of hydrogen plasma, yet its internal contribution is more. Compensation between different contributions to total specific heat (by including and neglecting EES) occurring in hydrogen plasmas at low pressures has not been observed in argon and argon-hydrogen plasmas. As electron transport properties strongly depend upon the degree of ionization, therefore larger relative errors are found for these properties with and without EES, and in contrast to hydrogen plasma there exist a dominance of electron-atom cross section at low temperatures and EES dominance at intermediate temperatures.

  9. Characterization and literature review of bowel perforation injuring using argon beam coagulation

    NASA Astrophysics Data System (ADS)

    Barnes, Kelli S.; Merchel, Renée. A.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: Argon Beam Coagulation (ABC®) technology is used in conjunction with the ConMed ABCFlex® Probe to provide non-contact hemostasis, coagulation, and tissue devitalization during endoscopic procedures. ABC provides a superficial tissue effect; however, there is a risk of bowel perforation. To better understand the settings that lead to perforation, this study reviews the literature and provides an ex vivo characterization of the ABCFlex Probe tissue effect at different settings when used at small distances. METHODS: Depth of thermal tissue effect was characterized to determine the effect of three parameters: power (W), distance from probe tip to tissue (mm) and application duration (s). 3 ABCFlex Probes were used to create 15 samples on ex vivo porcine small intestine for each combination of parameters. The depth of tissue effect for each sample was measured using a light microscope. RESULTS: Depth of tissue effect increases as power and application time increases. An increase of distance from the probe tip to the tissue results in a decrease in depth of tissue effect from a near contact to 1mm distance. Depth of tissue effect doesn't significantly change from 1mm to 3mm distance. CONCLUSION: ABCFlex Probe can be used to achieve hemostasis in endoscopic procedures. Increasing power and application time increases the depth of thermal effect while increasing distance from the probe time to the surface of the tissue decreases the depth of tissue effect.

  10. Argon plasma endoscopic section of biliary metallic prostheses.

    PubMed

    Demarquay, J F; Dumas, R; Peten, E P; Rampal, P

    2001-03-01

    We report our recent experience of using argon plasma to endoscopically cut biliary Wallstent prostheses in these patients. The first patient had a bleeding duodenal ulceration caused by the impaction of the prosthesis meshes whereas the second patient had an ill-positioned biliary stent with impaction into the opposite duodenal wall. Both prostheses were shortened using argon plasma. In the third patient, the lower extremity of a obstructed biliary Wallstent was positioned in the third duodenum preventing its endoscopic catheterization. After shortening using argon plasma, a new plastic stent could be inserted to allow drainage. The outcomes in these cases demonstrate the feasibility of endoscopically shortening metallic Wallstents after release using argon plasma. PMID:11293767

  11. Transport properties in non-equilibrium argon, copper and argon copper thermal plasmas

    NASA Astrophysics Data System (ADS)

    Aubreton, Anne; Elchinger, Marie-Françoise

    2003-08-01

    We present calculated values of transport properties (viscosity, thermal and electrical conductivities) of argon, copper and argon-copper thermal plasmas at equilibrium and non-equilibrium. In addition, combined ordinary and thermal diffusion coefficients, as defined by Murphy, are also given. The calculations are performed in the temperature range 300-25 000 K and at atmospheric pressure. For all these calculations, we use a recent theory developed by Rat to determine the transport properties like, for example, viscosity or combined diffusion coefficients in non-equilibrium plasma (note that equilibrium is only a specific case). We also take great care in evaluating the collision integrals necessary to calculate the transport coefficients (especially the Cu-X interactions). At equilibrium, our results are compared with published values obtained theoretically and experimentally. Moreover, to our knowledge, there are no accessible data for these non-equilibrium argon-copper plasmas.

  12. Image processing of argon glow discharge plasma using interferometry

    NASA Astrophysics Data System (ADS)

    Hamed, A. M.; Saudy, M. A.

    2015-10-01

    > In this paper, a method of processing argon plasma images, obtained from the DC pseudo glow discharge technique, using two- and multiple-beam interference is suggested. This method is based on measuring the image fringe shift from the background interference fringes. Hence, this mapping of intensity shift is related to the electron density distribution of the argon plasma. Also, the refractive index of the plasma is computed from the electron density values. The contrast of the interferometer images in presence of plasma shift is investigated in both cases of two- and multiple-beam interference.

  13. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  14. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  15. On the OES line-ratio technique in argon and argon-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2014-11-01

    Optical emission spectroscopy is used to investigate capacitively coupled argon and argon-hydrogen-silane plasmas. The argon collisional-radiative model (CRM) used to extract the electron density and temperature from the spectra is presented. The electron energy distribution function, which is an input parameter to the model, is discussed in detail. Its strong variation with pressure is found to significantly influence the results for the (effective) temperature. For the analysis of the spectra the common line-ratio technique is applied. Special attention is paid to the choice of lines and a pair of line-ratios for optimum accuracy is suggested. For the argon gas mixture at high partial pressure of the admixed molecular gases the CRM reduces to a corona-like model, extended by a quenching term. The line-ratio method is found to fail under these conditions due to the strong depopulation of the argon 1s states. As a consequence, individual line intensities have to be used and an absolute calibration is required. An easy calibration method, which relies on the results obtained by the line-ratio method in pure argon, is proposed and applied.

  16. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  17. The influence of riboflavin photochemistry on plasma coagulation factors

    PubMed Central

    Larrea, Luis; Calabuig, María; Roldán, Vanesa; Rivera, José; Tsai, Han-Mou; Vicente, Vicente; Roig, Roberto

    2011-01-01

    Studies with riboflavin in the 1960s showed that it could be effective at inactivating pathogens when exposed to light. The principal mode of action is through electron transfer reactions, most importantly in nucleic acids. This suggested that it could act as a photosensitizer useful in the inactivation of pathogens found in blood products. Objective To study the influence of photo-inactivation with riboflavin on the coagulation factors of plasma. Methods The photo-inactivation procedure of riboflavin plus light was applied. Fifty isogroup pools of two plasmas were made from 100 U of plasma that were derived from whole blood products that had previously been held overnight. Pools were split into two bags. One of them was photo-inactivated, and post inactivation samples were obtained. The second bag was not photo-inactivated and samples were taken. Total protein, fibrinogen, FII, FV, FVII, FVIII, FIX, FX, FXI, FXIII, antithrombin III, PC, PS, α-2 antiplasmin and vWF:Ag, the multimeric structure of vWF and ADAMTS-13 were analyzed. Results In plasma, the proteins most sensitive to photo-inactivation were fibrinogen, FXI, FVIII, FV, and FIX (33%, 32%, 30%, 18% and 18% loss, respectively). Coagulation inhibitors, PS, antithrombin III and PC showed little decrease (all 2%). Retention of vWF and ADAMTS-13 were 99% and 88%, respectively. Conclusions As with other pathogen reduction procedures for plasma products, treatment with riboflavin and UV light resulted in reduction in the activity levels of several pro-coagulant factors. Coagulation inhibitors are well preserved. PMID:19782644

  18. Argon and Arcal.37 plasma characteristics in a TIG configuration

    NASA Astrophysics Data System (ADS)

    Mougenot, J.; Gonzalez, J. J.; Freton, P.; Cressault, Y.

    2013-12-01

    In a previous paper (Mougenot 2013 J. Phys. D: Appl. Phys. 46 135206), a 3D model based on the @Saturne software was presented in argon gas and the results compared with the literature results. This paper extends the analysis from pure argon and shows the influence of added helium on plasma and weld pool properties. The influence of vapours coming from the plasma interaction with the anode material is shown in Arcal.37 gas (composed of 30% argon and 70% helium), showing the necessity to consider their presence. The importance of the forces acting on the weld pool is illustrated and analysed. The Marangoni effect is the major force acting on the weld pool leading to plasma cooling, an increase in the width of the weld pool and a reduction in its depth.

  19. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density.

  20. Behavior of excited argon atoms in inductively driven plasmas

    SciTech Connect

    Hebner, G. A.; Miller, P. A.

    2000-06-15

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data are compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rf power and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rf powers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong function of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of 2 decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density. (c) 2000 American Institute of Physics.

  1. Supersonic Argon Flow In An Arc Plasma Source

    SciTech Connect

    Izrar, B.; Dudeck, M.; Andre, P.; Elchinger, M. F.; Aubreton, J.

    2006-01-15

    The plasma properties inside a D.C. arc-jet operating with argon is analysed by means of a continuum description taking into account non equilibrium ionization processes and dissipative effects. The relaxation of the different physical processes inside the nozzle and the evolution of the Mach number are aanalysed.

  2. Modeling of an argon cascaded arc plasma by ANSYS FLUENT

    NASA Astrophysics Data System (ADS)

    Wei, Guodong; Qi, Xin; Yang, Lei

    2014-04-01

    In this work, an argon cascaded arc plasma is simulated by the business software ANSYS FLUENT. In fact, thus plasma is a high temperature arc (plasma window) with an average temperature of 12000 °C, which can be used as a medium between high pressure and vacuum mainly due to its characteristics of high temperature. According to the simulating results, the temperature can reach as high as 11500 °C which is in great agreement with that of other reports about plasma window.

  3. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  4. Resonance broadening of argon lines in a micro-scaled atmospheric pressure plasma jet (argon ?APPJ)

    NASA Astrophysics Data System (ADS)

    Pipa, A. V.; Ionikh, Yu. Z.; Chekishev, V. M.; Dnnbier, M.; Reuter, S.

    2015-06-01

    Optical emission from atmospheric pressure micro-jet operating with pure argon (argon ?APPJ) flow has been detected with a moderate resolution spectrometer. Large broadening of the several argon (Ar) lines has been observed in the near infrared spectral region. This effect was attributed to resonance broadening of the s2 (Paschen notation) level in 3p54s configuration. In the present work, corresponding line profiles are suggested for plasma diagnostics. For this, a general case of resonance broadening coefficient of noble gases is discussed. As broadening reflects the Ar density, and the static gas pressure of the jet is in equilibrium with the ambient, the local gas temperature can be inferred. An estimation of gas temperature from the width of the 750 nm Ar line is in agreement with rotational temperature of OH radicals determined from the A2?+ ? X2? (0, 0) band. At low temperatures (300-600 K) and at partial Ar pressure near atmospheric, the resonance width of the suggested lines is very sensitive to small temperature variations. High temperature sensitivity and large width make the resonance broadened lines very attractive for diagnostics of low temperature discharges at elevated pressure, e.g., as they are used in plasma-medicine.

  5. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  6. Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture

    NASA Astrophysics Data System (ADS)

    Sarani, Abdollah; Nikiforov, Anton Yu; De Geyter, Nathalie; Morent, Rino; Leys, Christophe

    2011-08-01

    In this paper, an atmospheric pressure plasma jet sustained in pure argon and an argon/water vapour mixture has been used to modify the surface of polypropylene (PP) films. The gas temperature of the plasma jet was found to be 625 K in an active zone between the electrodes and was found to increase in the afterglow. Based on these results, the PP films are placed as close as possible to the edge of the capillary in order to avoid thermal damage to the polymer. XPS results on the untreated and modified PP samples revealed incorporation of a significant amount of oxygen on the polymer surface, however, this oxygen inclusion is more pronounced for the argon/water vapour jet due to the higher radicals density in the jet afterglow. One can therefore conclude that adding water vapour to an argon plasma jet can be a convenient way to increase the efficiency of plasma surface modification.

  7. Nanopillar ITO electrodes via argon plasma etching

    SciTech Connect

    Van Dijken, Jaron G.; Brett, Michael J.

    2012-07-15

    The authors demonstrate the formation of vertically aligned indium tin oxide (ITO) nanopillars by exposing planar ITO films to Ar plasma, the conditions of which determine the size, spacing, and aspect ratio of the pillars. Annealing in air and forming gas is used to recover and optimize the optical transmittance and electrical conductivity of the nanopillar films. The final product is an ITO film whose superior optical transmittance and strong electrical conductivity combine with its robust columnar morphology and processing scalability to make it suitable for use in highly absorbing organic solar cells.

  8. The main properties of microwave argon plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Benova, E.; Pencheva, M.

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  9. Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    Girshick, Steven; Agarwal, Pulkit

    2012-10-01

    We have developed a 1-D numerical model of an RF argon-silane plasma in which dust particles nucleate and grow. This model self-consistently couples a plasma module, a chemistry module and an aerosol module. The plasma module solves population balance equations for electrons and ions, the electron energy equation under the assumption of a Maxwellian velocity distribution, and Poisson's equation for the electric field. The chemistry module treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The aerosol module uses a sectional method to model particle size and charge distributions. The nucleation rate is equated to the rates of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Aerosol effects considered include particle charging, coagulation, and particle transport by neutral drag, ion drag, electric force, gravity and Brownian diffusion. Simulation results are shown for the case of a 13.56 MHz plasma at a pressure of 13 Pa and applied RF voltage of 100 V (amplitude), with flow through a showerhead electrode. These results show the strong coupling between the plasma and the spatiotemporal evolution of the nanoparticle cloud.

  10. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  11. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  12. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.

  13. Concerning Apparent Similarity of Structures of Fluoropolymer Surfaces Exposed to an Argon Plasma or Argon Ion Beam

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    X-ray photoelectron spectroscopy (XPS) C(sub 1s) spectra of fluoropolymers exposed to either an argon plasma or argon ion beam show remarkable similarity, implying that the surface-modification reactions for these two processes likely proceed through comparable mechanisms, revolving predominantly ion-surface interactions. The importance of working with a monochromatized x-ray source for XPS analysis of the surface-modified fluoropolymers is once again emphasized.

  14. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  15. Effect of the levitating microparticle cloud on radiofrequency argon plasma

    NASA Astrophysics Data System (ADS)

    Mitic, S.; Pustylnik, M. Y.; Klumov, B. A.; Morfill, G. E.

    2010-06-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  16. Changes in Dietary Fat Content Rapidly Alters the Mouse Plasma Coagulation Profile without Affecting Relative Transcript Levels of Coagulation Factors

    PubMed Central

    van Diepen, Janna A.; Verhoef, Daniël; Voshol, Peter J.; Reitsma, Pieter H.; van Vlijmen, Bart J. M.

    2015-01-01

    Background Obesity is associated with a hypercoagulable state and increased risk for thrombotic cardiovascular events. Objective Establish the onset and reversibility of the hypercoagulable state during the development and regression of nutritionally-induced obesity in mice, and its relation to transcriptional changes and clearance rates of coagulation factors as well as its relation to changes in metabolic and inflammatory parameters. Methods Male C57BL/6J mice were fed a low fat (10% kcal as fat; LFD) or high fat diet (45% kcal as fat; HFD) for 2, 4, 8 or 16 weeks. To study the effects of weight loss, mice were fed the HFD for 16 weeks and switched to the LFD for 1, 2 or 4 weeks. For each time point analyses of plasma and hepatic mRNA levels of coagulation factors were performed after overnight fasting, as well as measurements of circulating metabolic and inflammatory parameters. Furthermore, in vivo clearance rates of human factor (F) VII, FVIII and FIX proteins were determined after 2 weeks of HFD-feeding. Results HFD feeding gradually increased the body and liver weight, which was accompanied by a significant increase in plasma glucose levels from 8 weeks onwards, while insulin levels were affected after 16 weeks. Besides a transient rise in cytokine levels at 2 weeks after starting the HFD, no significant effect on inflammation markers was present. Increased plasma levels of fibrinogen, FII, FVII, FVIII, FIX, FXI and FXII were observed in mice on a HFD for 2 weeks, which in general persisted throughout the 16 weeks of HFD-feeding. Interestingly, with the exception of FXI the effects on plasma coagulation levels were not paralleled by changes in relative transcript levels in the liver, nor by decreased clearance rates. Switching from HFD to LFD reversed the HFD-induced procoagulant shift in plasma, again not coinciding with transcriptional modulation. Conclusions Changes in dietary fat content rapidly alter the mouse plasma coagulation profile, thereby preceding plasma metabolic changes, which cannot be explained by changes in relative expression of coagulation factors or decreased clearance rates. PMID:26176620

  17. In situ X-ray Photoemission Spectroscopy Analysis of Aromatic Polyester Surface Treated with Argon Plasma

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuo; Okamoto, Nanami

    2013-10-01

    Effects of surface modification treatment by argon plasma processing of two types of aromatic polyester, poly(ethylene terephthalate) (PET) and poly(oxybenzonate-co-oxynaphthoate) (POCO), were investigated. This paper presents a description of our experiment and a discussion of the surface modification mechanism, which uses a simple and inexpensive procedure to conduct analysis without breaking vacuum after plasma processing. In situ analysis of the chemical composition of a polymer surface was attempted without exposing the sample to air after argon plasma processing. In particular, the respective actions of each active species were investigated for electrons and ions in argon plasma. Electrons and ions in argon plasma break some polymer bonds. Specifically, ester groups are broken and oxygen atoms are kicked out in PET and POCO. No oxygen functional group is formed after argon plasma processing, but such groups are formed if the sample is exposed to air.

  18. Plasma transfusions prior to insertion of central lines for patients with abnormal coagulation

    PubMed Central

    Hall, David P; Estcourt, Lise J; Doree, Carolyn; Hopewell, Sally; Trivella, Marialena; Walsh, Timothy S

    2015-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the effect of different prophylactic plasma transfusion regimens prior to central line insertion in patients with abnormal coagulation.

  19. Nonthermal Argon Plasma Generator and Some Potential Applications

    NASA Astrophysics Data System (ADS)

    Bunoiu, M.; Jugunaru, I.; Bica, I.; Balasoiu, M.

    2015-12-01

    A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator's body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%), equipped with a OT-1000 (Tungsram) power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  20. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules.

    PubMed

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh

    2013-12-01

    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized. PMID:23982422

  1. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    SciTech Connect

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  2. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-01

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  3. Numerical modelling of the nonequilibrium expansion process of argon plasma flow through a nozzle

    NASA Astrophysics Data System (ADS)

    Wei, Fu-Zhi; Wang, Hai-Xing; Murphy, A. B.; Sun, Wei-Ping; Liu, Yu

    2013-12-01

    A two-temperature thermal and chemical nonequilibrium model is developed and applied to investigate the expansion processes of an argon plasma flow through a Laval nozzle. This model describes in a self-consistent manner the gas flow and heat transfer, the coupling of the electric energy deposited into the plasma, and the reaction kinetics including the contribution of excited species. It is found that the plasma is far from thermodynamic equilibrium in the entire argon plasma flow expansion process through a nozzle. Significant temperature discrepancies between electrons and heavy species are found in the cooler outer region. The dominant chemical kinetic processes in different plasma gas expansion regions are presented and discussed. It is noted that although the number density of excited argon atoms (Ar*) is much lower than that of other species in the argon plasma, Ar* play important roles in the ionization and recombination processes, and in arc attachment to the anode.

  4. Interaction of an argon plasma jet with a silicon wafer

    NASA Astrophysics Data System (ADS)

    Engelhardt, Max; Pothiraja, Ramasamy; Kartaschew, Konstantin; Bibinov, Nikita; Havenith, Martina; Awakowicz, Peter

    2016-04-01

    A filamentary discharge is ignited in an argon plasma jet under atmospheric pressure conditions. The gas discharge is characterized with voltage-current measurements, optical emission spectroscopy and an ICCD-camera with a high temporal resolution down to 10 ns. In the effluent of the plasma jet, filaments come into contact with the surface of a silicon wafer and modify it, namely etching traces are produced and microcrystals are deposited. These traces are studied with optical and electron microscopes. The material of the deposited microcrystals and the surface modifications of the silicon wafer are analyzed with Raman microspectroscopy. Amorphous silicon is found within the etching traces. The largest part of the deposited microcrystals are composed of nitratine (NaNO3) and some of them are calcite (CaCO3). Analyzing the possible reasons for the silicon wafer modifications we come to the conclusion that plasmoids, which are produced near the substrate surface by interaction with ionization waves, are a plausible explanation for the observed surface modifications of the silicon wafer.

  5. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gu, Ruxi; Yu, Junrong; Hu, Chengcheng; Chen, Lei; Zhu, Jing; Hu, Zuming

    2012-10-01

    This paper is focused on influence of argon dielectric barrier discharge (DBD) plasma on the adhesive performance and wettability of para-aramid fibers and three parameters including treated power, exposure time and argon flux were detected. The interfacial shear strength (IFSS) was greatly increased by 28% with 300 W, 60 s, 2 L min-1 argon flux plasma treatment. The content of oxygen atom and oxygen-containing polar functional groups were enhanced after the argon plasma treated, so as the surface roughness, which contributed to the improvement of surface wettability and the decrease of contact angle with water. However, long-time exposure, exorbitant power or overlarge argon flux could partly destroy the prior effects of the treatment and damage the mechanical properties of fibers to some degree.

  6. Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses

    SciTech Connect

    Walsh, J. L.; Kong, M. G.

    2007-11-26

    In this letter, an experimental study is presented to characterize a room-temperature plasma jet in atmospheric argon generated with submicrosecond voltage pulses at 4 kHz. Distinct from sinusoidally produced argon discharges that are prone to thermal runaway instabilities, the pulsed atmospheric argon plasma jet is stable and cold with an electron density 3.9 times greater than that in a comparable sinusoidal jet. Its optical emission is also much stronger. Electrical measurement suggests that the discharge event is preceded with a prebreakdown phase and its plasma stability is facilitated by the short voltage pulses.

  7. The nature of fluctuations in a double arc argon-nitrogen plasma jet

    SciTech Connect

    Tu Xin; Yan Jianhua; Yu Liang; Cen, Kefa; Cheron, Bruno

    2007-09-24

    The dynamic behavior of the double arc argon-nitrogen plasma jet is investigated by combined means of the fast Fourier transform, correlation function, and Wigner distribution. The restrike mode is identified as the fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which indicates that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the power supply undulation and both arc roots motion on the anode channels. It is further found that the double anode torch could inhibit and reduce the restrike phenomenon.

  8. Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air

    NASA Astrophysics Data System (ADS)

    Cullen, P. J.; Milosavljević, V.

    2015-06-01

    This study includes a detailed experimental investigation of the spatial and temporal spectroscopic emission of an argon plasma jet discharge. The study is carried out in ambient air and quenching by inflowing air species is considered. The optical emission spectroscopy of neutral atomic spectral lines and molecular bands, over a range of plasma process parameters, is investigated. Wavelength-resolved argon optical emission profiles are used to monitor the electron energy distribution function and the density of argon metastable atoms. The experimental data indicates that the argon flow rate, in a confined open-air plasma discharge, limits the impact of molecular oxygen in the creation of oxygen radicals. The absolute calibrated emission spectra facilitate the possibility of standardization of the so-called plasma dose.

  9. Electron Temperature Measurement of Argon Focussed Plasma Based on Non-local Thermodynamic Equilibrium Model

    NASA Astrophysics Data System (ADS)

    Akel, M.; Alsheikh Salo, S.; Wong, C. S.

    2013-06-01

    The expected emission spectra (full, Bremsstrahlung, recombination, and line) of argon focussed plasma have been studied for different conditions. The Ratio-BPX65.F code has been written in FORTRAN 77 for studying the soft X-ray emission of argon plasma using BPX65 PIN Diode X-ray Spectrometer technique. The X-ray ratio curves for various electron temperatures with probable electron and ion densities of the argon plasma produced have been computed with the assumption of non-LTE model for the distribution of the ionic species. The calculated X-ray ratio curves have been compared with experimental results and an estimate of the electron temperature of the argon plasma focus can be deduced.

  10. Argon plasma-assisted PDMS-LTCC bonding technique for microsystem applications

    NASA Astrophysics Data System (ADS)

    Malecha, Karol; Gancarz, Irena; Tylus, Włodzimierz

    2010-11-01

    A method for transparent polymer (polydimethylosiloxane, PDMS) to glass-covered low-temperature co-fired ceramics (LTCC) using microwave argon plasma is reported in this paper. Changes in the composition of both materials before and after plasma treatment are investigated with x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy-attenuated total reflection and contact angle measurements. The results obtained for PDMS and glass-covered LTCC modified with argon plasma are compared with previously reported results received for oxygen plasma. Moreover, a comparison of adhesion between PDMS and glass-covered LTCC bonded together using Ar and O2 plasma is made using a material testing machine.

  11. Radiating plasma species density distribution in EUV-induced plasma in argon: a spatiotemporal experimental study

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; van de Ven, T. H. M.; Banine, V. Y.

    2015-12-01

    In this contribution we experimentally study temporally and spatially resolved radiating plasma species density distribution in plasma induced by irradiating a low pressure argon gas with high energy photons with a wavelength of 13.5 nm, i.e. extreme ultraviolet (EUV). This is done by recording the optical emission spatially and temporally resolved by an iCCD camera as a function of the argon gas pressure. Our experimental results show that the emission intensity, i.e. density of radiating plasma species, depends quadratically on the gas pressure. The linear term is due to photoionization and simultaneous excitation by EUV photons, the quadratic term due to electron impact excitation by electrons generated by photoionization. The decay of radiating plasma species can be divided into two phases. At time scales shorter than 10 μs (first phase), the decay is governed by radiative decay of radiating plasma species. At longer time scales (second phase, >10 μs), the decay is dominated by diffusion and subsequent de-excitation at the wall. The experimental decay and expansion during this phase corresponds well with a simplified diffusion model. In order to gain more insight in this exotic type of plasma, we compare the electron density from previous measurements with the results obtained here.

  12. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements. PMID:23794223

  13. Dielectric properties in microwave remote plasma sustained in argon: Expanding plasma conditions

    SciTech Connect

    Jauberteau, J. L.; Jauberteau, I.

    2012-11-15

    This work is devoted to the study of the relative permittivity in argon expanding plasma produced below a microwave discharge sustained in a quartz tube and working at 2.45 GHz. We discuss results and explain the microwave propagation within the reactor, outside the quartz tube. It is shown that at low pressures (133 Pa) and at powers ranging from 100 W to 400 W, the wave frequency remains lower than the plasma frequency anywhere in the expanding plasma. Under these conditions, the real part of the relative permittivity is negative and the wave is reflected. Surprisingly, in these conditions, the plasma is produced inside and outside the quartz tube, below the wave launcher. This effect can be explained considering a surface wave propagating at the surface of the quartz tube then into the reactor, on the external surface of the expanding plasma below the quartz tube.

  14. Simulation of Plasma Characteristics for Inductively Coupled Argon Plasma Using Dual-Frequency Antennas

    NASA Astrophysics Data System (ADS)

    Li, Xue-Chun; Sun, Xiao-Yan; Wang, You-Nian

    2014-10-01

    A large-area wafer size is necessary for plasma processing in the micro-electronics industry. However, it is one of the most important issues to obtain uniform plasma over a large-area substrate in addition to high-density plasmas for the plasma processing. Recently, the experimental study on the dual-frequency inductively coupled plasma (ICP) has been reported as a mean of improving the plasma uniformity over the large-area substrate. In this work, we develop a self-consistent method combined with the electromagnetic theory and fluid model to simulate the plasma characteristics for dual-frequency inductively coupled argon plasma. In the model, the ICP source consists of two planar-spiral coils. We investigate the plasma uniformity problem by adjusting the parameters of the two coils, such as the RF current, the position of the coils and the RF frequency ratio. It was found that the uniformity of the ion density over the wafer is improved with dual-frequency antennas comparing with a single-frequency antenna. The plasma uniformity increases when the coils are located farther from the centre of the ICP source. It is consistent with the experimental study. This work was supported by the National Natural Science Foundation of China (No. 11175034, No. 11075029).

  15. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, Rohit; Singh, Kuldip

    2014-03-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Z?, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter ?(= Te/Th) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Z? with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  16. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  17. A pulse-modulated nonequilibrium atmospheric-pressure microwave argon plasma discharge preionized by a kilohertz excited plasma jet

    SciTech Connect

    Li Shouzhe; Xu Maochun; Zhang Xin; Zhang Jialiang

    2012-04-23

    A pulse-modulated nonequilibrium atmospheric-pressure microwave argon surface wave plasma is generated by means of a preionization discharge with a single-electrode plasma jet driven by a power supply of 50 kHz. It is found that the electron induced Saha-like balance dominates excitation process in the plasma discharge through the electron temperature varying with the microwave input power and the applied voltage of kilohertz power supply. The microwave pulse-modulating effect on nonequilibrium characteristics of dual-frequency exciting argon surface wave plasma is studied by spectroscopic measurement of the excitation temperature and gas temperature.

  18. The response of the inductively coupled argon plasma to solvent plasma load: spatially resolved maps of electron density obtained from the intensity of one argon line

    NASA Astrophysics Data System (ADS)

    Weir, D. G. J.; Blades, M. W.

    1994-12-01

    A survey of spatially resolved electron number density ( ne) in the tail cone of the inductively coupled argon plasma (ICAP) is presented: all of the results of the survey have been radially inverted by numerical, asymmetric Abel inversion. The survey extends over the entire volume of the plasma beyond the exit of the ICAP torch; It extends over distances of z = 5-25 mm downstream from the induction coil, and over radial distances of ± 8 mm from the discharge axis. The survey also explores a range of inner argon flow rates ( QIN), solvent plasma load ( Qspl) and r.f. power: moreover, it explores loading by water, methanol and chloroform. Throughout the survey, ne was determined from the intensity of one, optically thin argon line, by a method which assumes that the atomic state distribution function (ASDF) for argon lies close to local thermal equilibrium (LTE). The validity of this assumption is reviewed. Also examined are the discrepancies between ne from this method and ne from Stark broadening measurements. With the error taken into account, the results of the survey reveal how time averaged values of ne in the ICAP respond over an extensive, previously unexplored range of experimental parameters. Moreover, the spatial information lends insight into how the thermal conditions and the transport of energy respond. Overall, the response may be described in terms of energy consumption along the axial channel and thermal pinch within the induction region. The predominating effect depends on the solvent plasma load, the solvent composition, the robustness of the discharge, and the distribution of solvent material over the argon stream.

  19. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  20. Introduction of argon beam coagulation functionality to robotic procedures using the ABC D-Flex probe: equivalency to an existing laparoscopic instrument

    NASA Astrophysics Data System (ADS)

    Merchel, Renée. A.; Barnes, Kelli S.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: The ABC® D-Flex Probe utilizes argon beam coagulation (ABC) technology to achieve hemostasis during minimally invasive surgery. A handle on the probe allows for integration with robotic surgical systems and introduces ABC to the robotic toolbox. To better understand the utility of D-Flex, this study compares the performance of the D-Flex probe to an existing ABC laparoscopic probe through ex vivo tissue analysis. METHODS: Comparisons were performed to determine the effect of four parameters: ABC device, tissue type, activation duration, and distance from tissue. Ten ABC D-Flex probes were used to create 30 burn samples for each comparison. Ex vivo bovine liver and porcine muscle were used as tissue models. The area and depth of each burn was measured using a light microscope. The resulting dimensional data was used to correlate tissue effect with each variable. RESULTS: D-Flex created burns which were smaller in surface area than the laparoscopic probe at all power levels. Additionally, D-Flex achieved thermal penetration levels equivalent to the laparoscopic probe. CONCLUSION: D-Flex implements a small 7F geometry which creates a more focused beam. When used with robotic precision, quick localized superficial hemostasis can be achieved with minimal collateral damage. Additionally, D-Flex achieved equivalent thermal penetration levels at lower power and argon flow-rate settings than the laparoscopic probe.

  1. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas

    NASA Astrophysics Data System (ADS)

    F., Jan; W. Khan, A.; Saeed, A.; Zakaullah, M.

    2013-04-01

    Langmuir probe measurements of radio frequency (RF) magnetic pole enhanced inductively coupled (MaPE-ICP) argon plasma were accomplished to obtain the electron number densities and electron temperatures. The measurements were carried out with a fixed RF frequency of 13.56 MHz in a pressure range of 7.5 mTorr to 75 mTorr at an applied RF power of 10 W and 100 W. These results are compared with a global (volume average) model. The results show good agreement between theoretical and experimental measurements. The electron number density shows an increasing trend with both RF power and pressure while the electron temperature shows decreasing trend as the pressure increases. The difference in the plasma potential and floating potential as a function of electron temperature measured from the electrical probe and that obtained theoretically shows a linear relation with a small difference in the coefficient of proportionality. The intensity of the emission line at 750.4 nm due to 2p1 → 1s2 (Paschen's notation) transition closely follows the variation of ne with RF power and filling gas pressure. Measured electron energy probability function (EEPF) shows that electron occupation changes mostly in the high-energy tail, which highlights close similarity of 750.4 nm argon line to ne.

  2. Modeling and simulation of ion-filtered inductively coupled plasma using argon plasma

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Wang, Jian; Zhang, Weiwang; Luo, Yi

    2015-03-01

    An ion-filtered inductively coupled plasma (IF-ICP) is proposed to reduce ion bombardment and provide high metastable species density for chemical vapor deposition. Argon plasma, which has simple reaction mechanism, is simulated to show the effects of ion filter. Compared to typical ICP, the maximum density of ions of IF-ICP is lower while that of metastable species is higher. The filter can absorb ions effectively and relatively small amount of metastable species, with the absorption coefficient proportional to its surface area. A proper gap between filter and substrate can achieve more metastable species and less ions on the substrate. The pressure and RF power need to be optimized based on the tradeoff between deposition rate and ion damage. The density of ions on the substrate can be reduced by two orders of magnitude while that of metastable species are maintained in the order of 1017 m-3 under the optimized conditions.

  3. Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering

    SciTech Connect

    Zhang Zhili; Shneider, Mikhail N.

    2010-03-15

    This paper presents the experimental measurement and computational model of sodium plasma decay processes in mixture of sodium and argon by using radar resonance-enhanced multiphoton ionization (REMPI), coherent microwave Rayleigh scattering of REMPI. A single laser beam resonantly ionizes the sodium atoms by means of 2+1 REMPI process. The laser beam can only generate the ionization of the sodium atoms and have negligible ionization of argon. Coherent microwave scattering in situ measures the total electron number in the laser-induced plasma. Since the sodium ions decay by recombination with electrons, microwave scattering directly measures the plasma decay processes of the sodium ions. A theoretical plasma dynamic model, including REMPI of the sodium and electron avalanche ionization (EAI) of sodium and argon in the gas mixture, has been developed. It confirms that the EAI of argon is several orders of magnitude lower than the REMPI of sodium. The theoretical prediction made for the plasma decay process of sodium plasma in the mixture matches the experimental measurement.

  4. Shifts in plasmon resonance due to charging of a nanodisk array in argon plasma

    PubMed Central

    Ian Lapsley, Michael; Shahravan, Anaram; Hao, Qingzhen; Krishna Juluri, Bala; Giardinelli, Stephen; Lu, Mengqian; Zhao, Yanhui; Chiang, I-Kao; Matsoukas, Themis; Jun Huang, Tony

    2012-01-01

    A method for generating charge-induced plasmonic shifts, using argon plasma to charge nanoparticle arrays, is presented. Particles develop a negative charge, due to enhanced collisions with high-temperature electrons, in low-temperature plasmas. The negative charge generated causes a blue shift in the localized surface plasmon resonance. The dynamics of the shift were recorded and discussed. This effect could be used as a real-time method for studying the dynamics for charging in plasma. PMID:22454552

  5. Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Fang, Shidong; Xie, Hongbing; Lan, Yan; Ni, Guohua; Meng, Yuedong; Luo, Jiarong; Wang, Xiangke

    2012-03-01

    To determine an efficient sterilization mechanism, Bacillus subtilis spore samples were exposed to an atmospheric plasma jet. By using argon/oxygen mixture gas, the decimal reduction value was reduced from 60 s (using argon gas) to 10 s. More dramatically, after 5 min treatment, the colony-forming unit (CFU) was reduced by six orders. To understand the underlying mechanism of the efficient sterilization by plasma, the contributions from heat, UV radiation, charged particles, ozone, and reactive oxygen radicals were distinguished in this work, showing that charged particles and ozone were the main killing factors. The shape changes of the spores were also discussed.

  6. Comparison of functional aspects of the coagulation cascade in human and sea turtle plasmas.

    PubMed

    Soslau, Gerald; Wallace, Bryan; Vicente, Catherine; Goldenberg, Seth J; Tupis, Todd; Spotila, James; George, Robert; Paladino, Frank; Whitaker, Brent; Violetta, Gary; Piedra, Rotney

    2004-08-01

    Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased, to varying extents, in a linear fashion relative to reduced pH with the rate of change greatest in leatherbacks>green>loggerhead turtles. All studies were conducted with reagents developed for human samples which would impact on the quantitative results with the turtle samples, but are not likely to alter the qualitative results. These comparative studies of the coagulation pathway in sea turtles and humans could enhance our knowledge of structure/function relationships and evolution of coagulation factors. PMID:15325341

  7. Surface-mediated molecular events in material-induced blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Kaushik

    Coagulation and thrombosis persist as major impediments associated with the use of blood-contacting medical devices. We are investigating the molecular mechanism underlying material-induced blood-plasma coagulation focusing on the role of the surface as a step towards prospective development of improved hemocompatible biomaterials. A classic observation in hematology is that blood/blood-plasma in contact with clean glass surface clots faster than when in contact with many plastic surfaces. The traditional biochemical theory explaining the underlying molecular mechanism suggests that hydrophilic surfaces, like that of glass, are specific activators of the coagulation cascade because of the negatively-charged groups on the surface. Hydrophobic surfaces are poor procoagulants or essentially "benign" because they lack anionic groups. Further, these negatively-charged surfaces are believed to not only activate blood factor XII (FXII), the key protein in contact activation, but also play a cofactor role in the amplification and propagation reactions that ultimately lead to clot formation. In sharp contrast to the traditional theory, our investigations indicate a need for a paradigm shift in the proposed sequence of contact activation events to incorporate the role of protein adsorption at the material surfaces. These studies have lead to the central hypothesis for this work proposing that protein adsorption to hydrophobic surfaces attenuates the contact activation reactions so that poorly-adsorbent hydrophilic surfaces appear to be stronger procoagulants relative to hydrophobic surfaces. Our preliminary studies measuring the plasma coagulation response of activated FXII (FXIIa) on different model surfaces suggested that the material did not play a cofactor role in the processing of this enzyme dose through the coagulation pathway. Therefore, we focused our efforts on studying the mechanism of initial production of enzyme at the procoagulant surface. Calculations for the amounts of FXIIa generated at material surfaces in plasma using a mathematical model for measured coagulation responses indicate that the relative contributions of the individual pathways of enzyme generation are similar at both hydrophilic and hydrophobic surfaces, only the amounts of enzyme generated scale with surface energy and area of the activating surface. Further, from direct measurement of enzyme activation at test surfaces we observed that contact activation reactions are not specific to negatively-charged hydrophilic surfaces. Rather, the molecular interactions are attenuated at hydrophobic surfaces due to protein adsorption so that poorly-adsorbent hydrophilic surfaces exhibit an apparent specificity for contact activation reactions. Preliminary studies were preformed to assay the plasma coagulation response to low-fouling surfaces prepared by either grafting poly(ethylene glycol) chains or using zwitterions. Results indicate that poly(ethylene glycol)-modified surfaces are significantly weaker procoagulants than surfaces containing zwitterions underscoring a need to specifically evaluate the coagulation response despite similarities in observed protein adsorption to both surfaces. In summary, our studies demonstrate a need to incorporate protein-adsorption competition at procoagulant surfaces into the mechanism of contact activation to account for the observed moderation of FXII activation by blood proteins unrelated to the plasma coagulation cascade.

  8. Test of an argon cusp plasma for tin LPP power scaling

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2015-03-01

    Scaling the power of the tin droplet laser-produced-plasma (LPP) extreme ultraviolet (EUV) source to 500W has eluded the industry after a decade of effort. In 2014 we proposed [2] a solution: placing the laser-plasma interaction region within an argon plasma in a magnetic cusp. This would serve to ionize tin atoms and guide them to a large area annular beam dump. We have since demonstrated the feasibility of this approach. We present first results from a full-scale test plasma at power levels relevant to the generation of at least 200W, showing both that the argon cusp plasma is very stable, and that its geometrical properties are ideal for the transport of exhaust power and tin to the beam dump.

  9. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  10. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  11. INDUCTIVELY COUPLED ARGON PLASMA AS AN ION SOURCE FOR MASS SPECTROMETRIC DETERMINATION OF TRACE ELEMENTS

    EPA Science Inventory

    Solution aerosols are injected into an inductively coupled argon plasma (ICP) to generate a relatively high number density of positive ions derived from elemental constituents. A small fraction of these ions is extracted through a sampling orifice into a differentially pumped vac...

  12. Modelling of an inductively coupled plasma torch with argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Bahouh, Hanene; Rebiai, Saida; Rochette, David; Vacher, Damien; Dudeck, Michel

    2014-05-01

    A fluid dynamic model is used to simulate the electromagnetic field, fluid flow and heat transfer in an inductively coupled plasma torch working at atmospheric pressure for argon plasma. The numerical simulation is carried out by using the finite element method based on COMSOL software. The two-dimensional profiles of the electric field, temperature, velocity and charged particle densities are demonstrated inside the discharge region. These numerical results are obtained for a fixed flow rate, frequency and electric power.

  13. Coagulation factor content of cryoprecipitate prepared from methylene blue plus light virus-inactivated plasma.

    PubMed

    Hornsey, V S; Krailadsiri, P; MacDonald, S; Seghatchian, J; Williamson, L M; Prowse, C V

    2000-06-01

    Levels of factor VIII (FVIII) and fibrinogen were assessed in control cryoprecipitate and cryoprecipitate prepared in two centres from plasma subjected to methylene blue (MB) photochemical virus inactivation. The level of coagulation FVIII activity was reduced in plasma by approximately 30% after MB photoinactivation, with only 44% (centre A) and 31% (centre B) of units meeting the current UK specification of 0.7 iu/ml. A revised specification of 0.5 iu/ml is suggested. Losses of less than 11% were seen for von Willebrand factor (VWF)-related activities. Cryoprecipitate prepared from group O or group A MB-treated plasma contained 27-40% less FVIII than control units. This reflected the lower levels in MB-treated plasma. The concentrating power of the cryoprecipitation process was not reduced for FVIII or fibrinogen in MB-treated units. MB cryoprecipitate from centre A still met the UK guideline specification for FVIII and fibrinogen content, whereas at centre B only 62.5% of the group O cryoprecipitates contained > 70 iu FVIII/unit. This may reflect the lower product volume and lower FVIII content of group O plasma used at centre B and suggests that maintenance of total coagulation factor recovery in MB-treated cryoprecipitate will require the higher product volume. PMID:10886222

  14. Miniaturized Argon Plasma: Neutral Gas Characteristics in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Ashraf, Farahat

    2015-10-01

    Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force (EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.

  15. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation

    SciTech Connect

    Fraga, R. A. Costa; Kalinin, A.; Kuehnel, M.; Schottelius, A.; Hochhaus, D. C.; Neumayer, P.; Polz, J.; Kaluza, M. C.; Grisenti, R. E.

    2012-02-15

    We present a cryogenic source of periodic streams of micrometer-sized hydrogen and argon droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art high-power lasers in which a precise synchronization between the laser pulses and the droplets is mandatory. We show this by irradiating argon droplets with multi-terawatt pulses.

  16. GASES, PLASMAS, AND ELECTRIC DISCHARGES: Arc Root Motions in an Argon Hydrogen Direct-Current Plasma Torch at Reduced Pressure

    NASA Astrophysics Data System (ADS)

    Huang, He-Ji; Pan, Wen-Xia; Wu, Cheng-Kang

    2008-11-01

    Arc root motions in generating dc argon-hydrogen plasma as reduced pressure are optically observed using a high-spped video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the direction on the anode surface.

  17. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    SciTech Connect

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-15

    A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  18. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-01

    A nonequilibrium Ar /O2 plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar /O2 plasma jet at an exposure distance of 0.5-1.5cm ranges from 5 to 57s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  19. Plasma pentraxin-3 and coagulation and fibrinolysis variables during acute Puumala hantavirus infection and associated thrombocytopenia.

    PubMed

    Laine, Outi K; Koskela, Sirpa M; Outinen, Tuula K; Joutsi-Korhonen, Lotta; Huhtala, Heini; Vaheri, Antti; Hurme, Mikko A; Jylhävä, Juulia; Mäkelä, Satu M; Mustonen, Jukka T

    2014-09-01

    Thrombocytopenia and altered coagulation characterize all hantavirus infections. To further assess the newly discovered predictive biomarkers of disease severity during acute Puumala virus (PUUV) infection, we studied the associations between them and the variables reflecting coagulation, fibrinolysis and endothelial activation. Nineteen hospital-treated patients with serologically confirmed acute PUUV infection were included. Acutely, plasma levels of pentraxin-3 (PTX3), cell-free DNA (cf-DNA), complement components SC5b-9 and C3 and interleukin-6 (IL-6) were recorded as well as platelet ligands and markers of coagulation and fibrinolysis. High values of plasma PTX3 associated with thrombin formation (prothrombin fragments F1+2; r = 0.46, P = 0.05), consumption of platelet ligand fibrinogen (r = -0.70, P < 0.001) and natural anticoagulants antithrombin (AT) (r = -0.74, P < 0.001), protein C (r = -0.77, P < 0.001) and protein S free antigen (r = -0.81, P < 0.001) and a decreased endothelial marker ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 domain 13) (r = -0.48, P = 0.04). Plasma level of AT associated with C3 (r = 0.76, P < 0.001), IL-6 (r = -0.56, P = 0.01) and cf-DNA (r = -0.47, P = 0.04). High cf-DNA coincided with increased prothrombin fragments F1+2 (r = 0.47, P = 0.04). Low C3 levels reflecting the activation of complement system through the alternative route predicted loss of all natural anticoagulants (for protein C r = 0.53, P = 0.03 and for protein S free antigen r = 0.64, P = 0.004). Variables depicting altered coagulation follow the new predictive biomarkers of disease severity, especially PTX3, in acute PUUV infection. The findings are consistent with the previous observations of these biomarkers also being predictive for low platelet count and underline the cross-talk of inflammation and coagulation systems in acute PUUV infection. PMID:24751477

  20. Optimized H - extraction in an argon-magnesium seeded magnetized sheet plasma

    NASA Astrophysics Data System (ADS)

    Noguera, Virginia R.; Blantocas, Gene Q.; Ramos, Henry J.

    2008-06-01

    The enhancement and optimization of H- extraction through argon and magnesium seeding of hydrogen discharges in a magnetized sheet plasma source are reported. The paper first presents the modification of the production chamber into a hexapole multicusp configuration resulting in decreased power requirements, improved plasma confinement and longer filament lifetime. By this, a wider choice of discharge currents for sustained quiescent plasmas is made possible. Second, the method of adding argon to the hydrogen plasma similar to the scheme in Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689] was performed to find the optimum conditions for H- formation and extraction. Using an E × B probe, H- yields were investigated at varied argon-hydrogen admixtures, different discharge currents and spatial points relative to the core plasma. The optimum H- current density extracted at 3.0 cm from the plasma core using 3.0 A plasma current with 10% argon seeding increased by a factor of 2.42 (0.63 A/m2) compared to the measurement of Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689]. Third, the argon-hydrogen plasma at the extraction chamber is seeded with magnesium. Mg disk with an effective area of 22 cm2 is placed at the extraction region's anode biased 175 V with respect to the cathode. With Mg seeding, the optimum H- current density at the same site and discharge conditions increased by 4.9 times (3.09 A/m2). The enhancement effects were analyzed vis-à-vis information gathered from the usual Langmuir probe (electron temperature and density), electron energy distribution function (EEDF) and the ensuing dissociative attachment (DA) reaction rates at different spatial points for various plasma discharges and gas ratios. Investigations on the changes in the effective electron temperature and electron density indicate that the enhancement is due to increased density of low-energy electrons in the volume, conducive for DA reactions. With Mg, the density of electrons with electron temperature of about 3 eV increased 3 orders of magnitude from 2.76 × 1012 m-3 to 2.90 × 1015m-3.

  1. Heat flux characteristics in an atmospheric double arc argon plasma jet

    SciTech Connect

    Tu Xin; Yu Liang; Yan Jianhua; Cen Kefa; Cheron, Bruno

    2008-10-13

    In this study, the axial evolution of heat flux excited by a double arc argon plasma jet impinging on a flat plate is determined, while the nonstationary behavior of the heat flux is investigated by combined means of the fast Fourier transform, Wigner distribution, and short-time Fourier transform. Two frequency groups (<1 and 2-10 kHz) are identified in both the Fourier spectrum and the time-frequency distributions, which suggest that the nature of fluctuations in the heat flux is strongly associated with the dynamic behavior of the plasma arc and the engulfment of ambient air into different plasma jet regions.

  2. XPS Study of Plasma- and Argon Ion-Sputtered Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Kliss, Mark (Technical Monitor)

    1997-01-01

    The similarity of plasma-polymerized tetrafluoroethylene (PPTFE) and the fluoropolymer film deposited by rf (radio frequency) plasma sputtering (SPTFE) of polytetrafluoroethylene (PTFE), noted earlier in the literature, has been reconfirmed. FT-IR (Fourier Transform Infrared), XPS (X ray Photoelectron Spectroscopy) and UV (ultraviolet) spectroscopy has been employed in apparently the first study to involve preparation of PPTFE and SPTFE in the same reactor and under comparable low-power plasma conditions. Most of the work concerned the use of He or Ar as sputtering gas, but some runs were also carried out with the other rare gases Ne, Kr and Xe. The C1s XPS spectra of SPTFE films displayed a relatively higher content of CF2 groups, and yielded higher F/C (fluorine / carbon) ratios, than PPTFE films, while the SPTFE films were somewhat more transparent in the UV than PPTFE. The F/C ratios for SPTFE were essentially independent of the rare gas used for sputtering. Increasing rf power from 10 to 50 W for Xe plasma-sputtering of PTFE resulted in successively lower F/C ratios (1.55 to 1.21), accompanied by sputtering of the glass reactor occurring at 40 W and above. Some limited XPS, FT-IR and UV data are presented on Ar ion-sputtered PTFE.

  3. Acute gastric necrosis after routine oesophagogastroduodenoscopy with therapeutic argon plasma coagulation.

    PubMed

    Sahnan, K; Davis, B J H; Bagenal, J; Cullen, S; Appleton, S

    2013-09-01

    A 56-year-old woman presented to the accident and emergency department with peritonitis 2 days after a routine oesophagogastroduodenoscopy. She was taken to theatre with the finding of gastric necrosis. Blood and peritoneal cultures grew group A haemolytic Streptococcus. Histology revealed normal vasculature, no volvulus but marked neutrophilia in the submucosa with an intact mucosa. The stomach was resected and the patient recovered in the intensive care unit but overwhelming acidosis progressed to multiorgan failure and treatment was eventually withdrawn. Acute phlegmonous gastritis has been well described in the literature but mainly before the advent of antibiotics. The most common organism is group A haemolytic Streptococcus (commonly found in throat infections) and predisposing factors include instrumentation. Should antibiotics be given at the start of an oesophagogastroduodenoscopy and should routine procedures be delayed if active upper respiratory tract infections are present? PMID:24025279

  4. Development and Calibration of Electron Density Measurements in Argon Plasma Using Laser Collision-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Barnat, Ed; Weatherford, Brandon

    2015-09-01

    Laser collision-induced fluorescence (LCIF) is a powerful diagnostic which can be used for making temporally and spatially resolved measurements of electron densities in a plasma discharge. The technique, which involves the measurement of optical emission emanating from higher energy excited states due to the redistribution of the lower energy laser-excited state by collisions with energetic electrons, has been readily employed to study argon discharges. In this work, we report on recent efforts to extend the LCIF technique to argon based plasma systems. Discussion will be offered on the spectroscopic pathway used for the interrogation of argon and discussion will be given on the procedures used to calibration the LCIF diagnostic. Particular emphasis will be placed on the double-pulse excitation of a plasma column that enables near independent control of electron density and electron energy. Anticipated bounds on the range of application of the calibrated transitions will likewise be discussed. Finally, the utility of the LCIF diagnostic will be demonstrated by applying the technique to spatially and temporally varying plasma systems. This work was supported by the Department of Energy Office of Fusion Energy Science Contracts DE-AC04-94SL85000 and DE-SC0001939.

  5. [Investigation on the Spectral Characteristics of a Plasma Jet in Atmospheric Argon Glow Discharge].

    PubMed

    Li, Xue-chen; Zhang, Chun-yan; Li, Ji-yuan; Bao, Wen-ting

    2015-12-01

    Plasma jet is a kind of important plasma source at atmospheric pressure. In recent years, it becomes an important hot topic in the field of low temperature plasma. In this paper, using a tungsten needle and a tungsten wire mesh, a direct-current excited jet is developed to operate in argon at atmospheric pressure. In the atmospheric pressure argon, the plasma jet can produce a stable plasma plume. By using the method of emission spectroscopy, the parameters of the plasma plume are investigated. The discharge emits dazzling white light from the area between the tungsten needle electrode and the wire mesh electrode. A plasma plume with a flame shape appears outside the tungsten wire mesh electrode. For a constant value of voltage (U = 13.5 kV), the length of the plasma plume increases with the gas flow rate. For a constant value of the gas flow rate(10 L · min⁻¹), the length of the plasma plume increases with the voltage. The voltage is inversely proportional to the current under the constant gas flow rate. In other words, the voltage decreases with the discharge current, which indicates that a glow discharge is formed in the plasma jet. Optical emission spectrum in 300 to 800 nm is collected from the direct-current excited plasma jet. By Boltzmann plot method, the excited electron temperature of the plasma plume is investigated as a function of the applied voltage or the gas flow rate. Results show that the excited electron temperature increases with decreasing applied voltage under the constant gas flow. Moreover, it increases with decreasing the gas flow under the constant voltage. Based on the discharge theory, these experimental phenomena are explained qualitatively. These results are of great importance to the development of atmospheric pressure uniform discharge plasma source and its application in industrial field. PMID:26964199

  6. Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush

    PubMed Central

    Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong

    2010-01-01

    Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184

  7. Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow

    SciTech Connect

    Sperber, David; Eckel, Hans-Albert; Moessinger, Peter; Fasoulas, Stefanos

    2011-11-10

    Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocities of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.

  8. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  9. Risk assessment of a cold argon plasma jet in respect to its mutagenicity.

    PubMed

    Wende, K; Bekeschus, S; Schmidt, A; Jatsch, L; Hasse, S; Weltmann, K D; Masur, K; von Woedtke, T

    2016-03-01

    Cold atmospheric pressure plasmas represent a favorable option for the treatment of heat sensitive materials and human or animal tissue. Beneficial effects have been documented in a variety of medical conditions, e.g., in the treatment of chronic wounds. It is assumed that the main mechanism of the plasma's efficacy is mediated by a stimulating dissipation of energy via radiation and/or chemical energy. Although no evidence on undesired side effects of a plasma treatment has yet been presented, skepticism toward the safety of the exposure to plasma is present. However, only little data regarding the mutagenic potential of this new treatment option is available. Accordingly, we investigated the mutagenic potential of an argon plasma jet (kinpen) using different testing systems in accordance with ISO norms and multiple cell lines: a HPRT1 mutation assay, a micronucleus formation assay, and a colony formation assay. Moderate plasma treatment up to 180s did not increase genotoxicity in any assay or cell type investigated. We conclude that treatment with the argon plasma jet kinpen did not display a mutagenic potential under the test conditions applied and may from this perspective be regarded as safe for the use in biomedical applications. PMID:26994493

  10. [Influence of Argon Content on Plasma Temperature of Single Filament in Dielectric Barrier Discharge].

    PubMed

    Fu, Hong-yan; Dong, Li-fang; Zhao, Yang

    2015-03-01

    The single filament (also referred to as monofilament) which composed of two parts including the center spot and the outer halo is observed and researched for the first time in dielectric barrier discharge, which filled with gas-mixture of argon and air. The pictures taken from the experiment show that the diameter of the monofilament decreases with the increasing of the content of the argon in the argon-air mixture, and at the same time there is an obvious difference on brightness between the center spot and the outer halo. All of these phenomenons suggest that the center spot and the outer halo are probably in different plasma state. The micro character of the center spot and the outer halo is researched seriously in the experiment by the time-resolved measurement with optical method. Three plasma temperatures of the center spot and the outer halo in single filament in different argon content are studied in details by using optical emission spectra. The emission spectra of the N2 second positive band (C3 π(u) --> B3 πg) are measured, from which the molecule vibrational temperature of the center spot and the outer halo are calculated. Based on the relative intensity of the N2 line at 391.4 nm and the N2 line at 394. 1 nm, the changing relationship of the average electron energy of the center spot and the outer halo with argon content is investigated. The spectral lines of Ar I 763.2 nm (2P6 --> 1S5) and 772.077 nm (2P2 --> 1S3) are chosen to estimate electron excitation temperature of the center spot and the outer halo by the relative intensity ratio method. The results show that the optical signal corresponding to the first lasge pulse is the center spot, whose signal intensity is a litter weaker; and the optical signal containing the whole pulse is the outer halo, whose signal intensity is stronger. The three plasma temperatures including the molecule vibrational temperature, average electron energy and electron excitation temperature of the outer halo are higher than those of the spot at the same argon content without exception. In addition, the molecule vibrational temperature of the center spot and the outer halo decrease with the argon content increases from 30% to 50%, while on the other hand, electron excitation temperature and average electron energy are decrease gradually. PMID:26117860

  11. Comparison between experiment and simulation for argon inductively coupled plasma

    SciTech Connect

    Gao Fei; Zhao Shuxia; Li Xiaosong; Wang Younian

    2009-11-15

    In order to include the nonlocal characteristics of electrons and investigate the inductively coupled plasma (ICP) resources more completely, we have developed a hybrid Monte Carlo (MC)/fluid hybrid model and calculated the axial and radial distributions of electron density, electron temperature, plasma potential, and electron energy distribution functions (EEDFs) of Ar discharge in a planar ICP. Furthermore, to make the model more practical, we still incorporate the effects of metastable atoms, whose sets of rate coefficients and density are, respectively, calculated through the electron MC part and fluid module. Besides, the corresponding Langmuir probe measurements are used to compare these data to validate the simulated results. Under all the selected discharge powers and pressures, the theoretically simulated and experimentally measured quantity profiles agree reasonably with each other, embodied in the generally identical magnitude ranges and spatial distributions. Furthermore, the interpretations about their detailed differences are given, which are based on the designs of both experimental schematic and model configuration. The analysis implements that the inclusions of electron-electron collision and a neutral density distribution into the hybrid model are likely to improve the comparison between the model predictions and experiment diagnostics. Furthermore, the evolution of plasma parameters and EEDFs with discharge conditions is discussed.

  12. Ion Transport in Chlorine/Argon ECR Plasma*

    NASA Astrophysics Data System (ADS)

    Lampe, M.; Joyce, G.; Fernsler, R. F.; Manheimer, W. M.; Slinker, S. P.

    1999-11-01

    We have used the quasineutral particle simulation code QUASI-rz (which includes Monte Carlo and Langevin representations of the relevant charged-neutral and charged-charged collision processes) to study transport and distributions of various species in an axisymmetric ECR reactor, operating with pressures on the order of a few mTorr and plasma density up to the order of 10^12 cm-3. In this high-density electronegative plasma, ion-ion Coulomb collisions play an important role, since positive and negative ions are driven in opposite directions by the potential gradients, but are strongly coupled by collisions. The velocity distributions of both negative and positive ions are significantly isotropized as a result of ion-ion collisions, and negative ions also contribute to the heating of all heavy species. The kinetics of the plasma is spatially varying and is controlled by the interplay of species transport and a number of processes, including dissociative recombination of Cl_2^+ ions, recombination and collisional detachment of Cl^ ions, and wall recombination of atomic Cl. Densities and distribution functions of various species will be shown, at different locations in the reactor and for operating times up to 500 msec. *Work sponsored by the Office of Naval Research

  13. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  14. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  15. Contributions of contact activation pathways of coagulation factor XII in plasma.

    PubMed

    Chatterjee, Kaushik; Guo, Zhe; Vogler, Erwin A; Siedlecki, Christopher A

    2009-07-01

    Activation of human blood plasma coagulation by contact with hydrophilic or hydrophobic surfaces (procoagulants) is dominated by kallikrein (Kal)-mediated activation of the blood zymogen FXII (Hageman Factor). Mathematical modeling of prekallikrein (PK)-deficient platelet-poor plasma (d(PK)PPP) and PK-reconstituted d(PK)PPP (Rd(PK)PPP) coagulation shows that autoactivation of FXII (FXII-->[surface]FXII) produces no more than about 25% of the total FXIIa produced by the intrinsic pathway. Autoactivation and reciprocal-activation increase in the same proportion with procoagulant surface energy (water-wettability), whereas total amount of FXIIa produced per-unit-area procoagulant remains roughly constant for any particular procoagulant. These results suggest that procoagulant surfaces initiate the intrinsic cascade by producing a bolus of FXIIa in proportion to surface energy or surface area but play no additional role in subsequent molecular events in the cascade. Results further suggest that reciprocal-activation occurs in proportion to the amount of FXIIa produced by the initiating autoactivation step. PMID:18481791

  16. Atmospheric-pressure argon/oxygen plasma-discharge source with a stepped electrode

    SciTech Connect

    Lim, Jin-Pyo; Uhm, Han S.; Li Shouzhe

    2007-01-29

    The nonequilibrium glow discharge in argon mixed with oxygen at atmospheric pressure was generated in a parallel plate reactor with a stepped electrode powered by a 13.56 MHz radio-frequency power supplier. The stepped-electrode reactor consists of a narrow and wide gap structure. A strong electric field occurred at the narrow gap region preionizes Ar/O{sub 2} gas and assists to generate a large volumetric plasma in the wide gap region. Therefore, the stepped-electrode reactor makes it easy to operate Ar/O{sub 2} glow discharge, providing a stable, uniform, and broad plasma jet at atmospheric pressure.

  17. Electrical Aspects of Argon Micro-Cell Plasma with Applications in Bio-Medical Technology

    NASA Astrophysics Data System (ADS)

    Horiuchi, Yasuhiro; van Dijk, Jan; Makabe, Toshiaki

    2003-10-01

    Argon micro-cell plasma (MCP) is believed to be a viable tool for performing micro-surgery. The non-thermal nature of the discharge allows an effective treatment of pathological tissue without causing thermal damage to its surroundings. This bio-medical application imposes a number of design challenges on the plasma configuration which we will address by computer-aided source design. In this contribution we present a numerical study with the Relaxation ConTinuum model (RCT) [1-2] of the characteristics of an atmospheric argon MCP which is maintained by an RF source. The focus will be on the influence of the geometry and the externally applied RF amplitude and frequency on the plasma properties. In particular, attention will be paid to the effect of pulsed-mode operation on the gas temperature. In addition, the influence of the frequency and the field in the wall sheath on the losses of the plasma species to the cell walls by drift-diffusion processes will be considered. [1] K. Okazaki, T. Makabe and Y. Yamaguchi, Appl. Phys. Lett. (54), 1742 (1989) [2] T. Makabe, "Advances in Low Temperature RF Plasmas" Elsevier, (2002)

  18. Some spatial effects observed in the axially viewed filament argon microwave induced plasma with solution nebulization

    NASA Astrophysics Data System (ADS)

    Jankowski, Krzysztof

    2002-05-01

    Spatial profiles of analyte emission in an axially viewed argon filament microwave induced plasma sustained in the TE 101 rectangular cavity have been measured along a discharge tube cross-section for neutral atoms as well as ion lines of several elements. The filament diameter was approximately 1 mm. The analyte solution was introduced by means of an ultrasonic nebulizer without desolvation. The radial emission distribution depends on the operating parameters and is different for each of the analytes examined. Spatial distributions of excitation temperature (4000-6000 K) measured with Ar I lines by the Boltzmann plot method as well as electron temperature (6000-8000 K) by line to continuum emission ratio measurements at Ar I 430 nm and electron number density (1-1.5×10 15 cm -3) by the Stark broadening method of the H β line were determined to support the evidence of plasma processes. In the presence of excess sodium the enhancement of emission intensity and its shift to the plasma center appears to be the result of increased analyte penetration to the plasma. Changes in spatial emission profiles for Ca atoms and ions suggest that for this element ambipolar diffusion may be important as an additional interference mechanism. A possibility of minimizing spectral interferences from argon emission lines by choosing an off-axis plasma region for emission intensity measurements is indicated.

  19. First steps towards the reaction kinetics of HMDSO in an atmospheric pressure plasma jet in argon

    NASA Astrophysics Data System (ADS)

    Loffhagen, Detlef; Becker, Markus M.; Foest, Rüdiger; Schäfer, Jan; Sigeneger, Florian

    2014-10-01

    Hexamethyldisiloxane (HMDSO) is a silicon-organic compound which is often used as precursor for thin-film deposition by means of plasma polymerization because of its high deposition rate and low toxicity. To improve the physical understanding of the deposition processes, fundamental investigations have been performed to clarify the plasma-chemical reaction pathways of HMDSO and their effect on the composition and structure of the deposited film. The current contribution represents the main primary and secondary plasma-chemical processes and their reaction products in the effluent region of an argon plasma jet at atmospheric pressure. The importance of the different collision processes of electrons and heavy particles are discussed. Results of numerical modelling of the plasma jet and the Ar-HMDSO reaction kinetics indicate that the fragmentation of HMDSO is mainly initiated by collisions with molecular argon ions, while Penning ionization processes play a minor role for the reaction kinetics in the effluent region of the jet. The work has been supported by the German Research Foundation (DFG) under Grant LO 623/3-1.

  20. Kinetic simulations of argon dusty plasma afterglow including metastable atom kinetics

    SciTech Connect

    Alexandrov, A. L. Schweigert, I. V.; Ariskin, D. A.

    2013-04-15

    The afterglow of a dusty plasma of rf discharge in argon is simulated by the particle-in-cell-Monte Carlo collision (PIC-MCC) method. The experimental observation that heavy dust contamination of plasma leads to an anomalous increase in the electron density at the beginning of afterglow is explained by release of electrons from the dust surface. Under the assumption that the floating potential of particles is in equilibrium with plasma conditions, the fast cooling of electrons in afterglow plasma due to a rapid escape of hot electrons from the volume leads to a decrease in the magnitude of the floating potential and hence to a loss of charge by dust. The intensive desorption of electrons from nanoparticles is the origin of anomalous behavior of the electron density. At the next stage of afterglow, when the electrons become cool, the plasma decay is defined by ambipolar diffusion. The effect of metastable argon atoms is also considered. Additional ionization due to metastable atom collisions affects the electron temperature but does not change the behavior of the electron density qualitatively.

  1. Investigating the effect of Argon Pressure on DC and High Power Magnetron Plasmas

    NASA Astrophysics Data System (ADS)

    Bernales, Baysha; Bolat, Rustem; Anders, Andre; Slack, Jonathan; PAG Team; EETD Team

    2013-10-01

    Smart Glass is fabricated by depositing thin films of specialized material onto a transparent substrate. When a potential is applied across the surface of the Smart Glass, it changes its optical properties. Direct Current Magnetron Sputtering (DCMS) and High Power Impulse Magnetron Sputtering (HiPIMS) are two methods of PVD that are used to fabricate this material. In previous research, it has been noted that magnetron plasmas have localized ionization zones that rotate clockwise in DCMS and counterclockwise in HiPIMS. Not much is known about what causes the change in rotation. This research seeks to investigate what occurs during the first moments of plasma evolution. Both DC and high power magnetron plasmas were observed as Argon pressure was varied. It was found that pressure had a very pronounced effect on the floating-point potential signal that was received from the probes placed in the plasma. It was found that when a high-pressure jet of Argon was injected into the system, that the rotation pattern of the DC magnetron plasma was disrupted. It was also found that at certain pressures, the voltage signal was less indicative of azimuthal rotation and more indicative of z-direction breathing modes.

  2. Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Becker, M. M.; Iseni, S.; Bansemer, R.; Loffhagen, D.; Reuter, S.; Weltmann, K.-D.

    2015-12-01

    A megahertz-driven plasma jet at atmospheric pressure—the so-called micro-scaled atmospheric pressure plasma jet (μAPPJ)—operating in pure argon has been investigated experimentally and by numerical modelling. To ignite the discharge in argon within the jet geometry, a self-made plasma tuning unit was designed, which additionally enables measurements of the dissipated power in the plasma itself. Discharges in the α-mode up to their transition to the γ-mode were studied experimentally for varying frequencies. It was found that the voltage at the α–γ transition behaves inversely proportional to the applied frequency f and that the corresponding power scales with an f   3/2law. Both these findings agree well with the results of time-dependent, spatially one-dimensional fluid modelling of the discharge behaviour, where the f  3/2 scaling of the α–γ transition power is additionally verified by the established concept of a critical plasma density for sheath breakdown. Furthermore, phase resolved spectroscopy of the optical emission at 750.39 nm as well as at 810.37 nm and 811.53 nm was applied to analyse the excitation dynamics of the discharge at 27 MHz for different applied powers. The increase of the power leads to an additional maximum in the excitation structure of the 750.39 nm line emission at the α–γ transition point, whereas the emission structure around 811 nm does not change qualitatively. According to the fluid modelling results, this differing behaviour originates from the different population mechanisms of the corresponding energy levels of argon.

  3. A new air-cooled argon/helium-compatible inductively coupled plasma torch.

    PubMed

    Miyahara, Hidekazu; Iwai, Takahiro; Kaburaki, Yuki; Kozuma, Tomokazu; Shigeta, Kaori; Okino, Akitoshi

    2014-01-01

    A new inductively coupled plasma (ICP) torch with an air-cooling system has been designed and developed for both argon and helium plasma. The same torch and impedance-matching network could be used to generate stable Ar- and He-ICP. The torch consists of three concentric quartz tubes. The carrier gas, plasma gas, and cooling gas flow through the intervals between each tube. In an experiment, it was found that Ar-ICP could form a stable plasma under the following conditions: RF power of 1 kW, plasma gas flow rate of 11 L min(-1), and cooling gas flow rate of 20 L min(-1). For He-ICP, an input RF power of 2 kW, which is two-times higher than that of a conventional He-ICP, could be constantly applied to the plasma with plasma gas and cooling gas flow rates of 15 and 20 L min(-1), respectively. Using this torch, it is possible to realize lower plasma gas consumption for Ar- and He-ICP and a high-power drive for He-ICP. It has been found that the air-cooling gas stabilizes the shape of the plasma due to the pressure difference between the cooling gas and the plasma gas. PMID:24521909

  4. Normal and abnormal evolution of argon metastable density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.

  5. Study of non-thermal plasma jet with dielectric barrier configuration in nitrogen and argon

    NASA Astrophysics Data System (ADS)

    Choo, C. Y.; Chin, O. H.

    2014-03-01

    Dielectric barrier discharge (DBD) is advantageous in generating non-thermal plasma at atmospheric pressure, as it avoids transition to thermal arc and dispenses with costly vacuum system. It has found useful applications in treating heat-sensitive materials such as plastics and living tissue. In this work, the discharge formed between the Pyrex glass layer and the ground electrode is extruded through a nozzle to form the non-thermal plasma jet. The DBD characteristics were investigated in terms of charge transferred and mean power dissipated per cycle when operated in nitrogen and argon at various flow rates and applied voltages. These characteristics were then correlated to the dimension of the plasma jet. The mean power dissipated in the DBD was below 7 W giving an efficiency of 17 %. The length of the plasma jet was greatly limited to below 1 cm due to the configuration of the DBD system and nozzle.

  6. Cost-effective containment of unmagnetized argon plasma using a magnetic bucket and a helicon source

    NASA Astrophysics Data System (ADS)

    Henriquez, Miguel; Siddiqui, M. Umair; Scime, Earl

    2015-11-01

    We demonstrate highly-ionized and unmagnetized plasma production in the low-power Compact HElicon for Waves and Instabilities Experiment (CHEWIE) at West Virginia University. To achieve this, the argon helicon is injected plasma into a multidipole-confined expansion chamber. Using Langmuir probes and optical emission spectroscopy, we calculate ionization fractions in the unmagnetized volume as a function of input power and fill pressures. Finally, we investigate the ionization efficiency power scaling to determine if helicons are cost-efficient plasma sources for larger highly-ionized, unmagnetized plasma experiments. This work is supported by US National Science Foundation grant number PHY-1360278 and Miguel Henriquez was supported by West Virginia University.

  7. Experimental measurements of the total energy loss in low pressure inductively coupled argon plasma

    NASA Astrophysics Data System (ADS)

    Lee, Young-Kwang; Lee, Min-Hyong; Chung, Chin-Wook

    2008-10-01

    Total energy lost per electron-ion pair lost (?T) was measured experimentally in a low pressure inductively coupled argon plasma. ?T represents not only the elastic and inelastic collision energy loss of electron-neutral but also the kinetic energy loss when the electron and ion escape to the wall. In order to determine ?T, the modified power balance of a global model (spatially-averaged) is properly derived using some assumptions. A floating-type probe working at very low bias voltage (1.0 V) was applied to obtain the electron temperature and plasma density at the plasma-sheath boundary. At 10 mTorr, the measurement shows that the measured ?T100 V gradually decreased with absorbed power and began to saturate. These ?T are consistent with the theoretical results by Lee et al [1]. [1] Min-Hyong Lee, Sung-Ho Jang and Chin-Wook Chung, Phys. Plasmas, 13, 053502 (2006)

  8. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  9. Reduction of a collisional-radiative mechanism for argon plasma based on principal component analysis

    SciTech Connect

    Bellemans, A.; Munafò, A.; Magin, T. E.; Degrez, G.; Parente, A.

    2015-06-15

    This article considers the development of reduced chemistry models for argon plasmas using Principal Component Analysis (PCA) based methods. Starting from an electronic specific Collisional-Radiative model, a reduction of the variable set (i.e., mass fractions and temperatures) is proposed by projecting the full set on a reduced basis made up of its principal components. Thus, the flow governing equations are only solved for the principal components. The proposed approach originates from the combustion community, where Manifold Generated Principal Component Analysis (MG-PCA) has been developed as a successful reduction technique. Applications consider ionizing shock waves in argon. The results obtained show that the use of the MG-PCA technique enables for a substantial reduction of the computational time.

  10. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  11. Modelling of indium(I) iodide-argon low pressure plasma

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Truong, W.; Kaiser, C.; Kling, R.; Heering, W.

    2014-07-01

    A new collisional-radiative model for a mercury-free low pressure plasma based on an indium(I) iodide-argon system is presented. The electron impact cross sections and rate coefficients for ionization, excitation and dissociation, as well as de-excitation, three-body recombination and dissociative recombination, of studied fillings have been calculated. Additionally, the coefficients for free and ambipolar diffusion were determined. The rate balance equations for individual generation and loss processes have been created. Densities of ions, electrons and neutral particles (ground or metastable state) are presented as a function of electron temperature for varied lamp parameters, such as argon buffer gas pressure and cold spot temperature (coldest point of discharge vessel). With the help of the presented model, the line emission coefficients of essential emission lines of indium for given electron temperatures and densities can be predicted.

  12. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  13. Use of Plasma for Acquired Coagulation Factor Deficiencies in Critical Care.

    PubMed

    Shah, Akshay; McKechnie, Stuart; Stanworth, Simon

    2016-03-01

    Coagulopathy in critically ill patients is common and often multifactorial. Fresh frozen plasma (FFP) is commonly used to correct this either prophylactically or therapeutically. FFP usage is mainly guided by laboratory tests of coagulation, which have been shown to have poor predictive values for bleeding. Viscoelastic tests are an attractive option to guide hemostatic therapy, but require rigorous evaluation. The past few years have seen a gradual reduction in national use of FFP potentially due to an increased awareness of risks such as transfusion-related acute lung injury, patient blood management strategies to reduce transfusion in general, and increased awareness of the lack of high-quality evidence available to support FFP use. Within critical care, FFP is administered before invasive procedures/surgery, to treat major traumatic and nontraumatic hemorrhage, disseminated intravascular coagulation, and for urgent warfarin reversal if first-line agents, such as prothrombin complex concentrate (PCC) are not available. Alternative agents such as fibrinogen concentrate and PCC need further evaluation through large-scale clinical trials. PMID:26716502

  14. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line. PMID:19277614

  15. Argon Micro-Cell Plasma with Applications in Bio-Medical Technology

    NASA Astrophysics Data System (ADS)

    van Dijk, Jan; Horiuchi, Yasuhiro; Makabe, Toshiaki

    2003-10-01

    In bio-medical technology, plasmas have recently been acknowledged as a viable instrument for performing micro-surgery. This in-vivo application obviously demands strict compatibility with the human tissue which is to be treated. That in turn imposes strict requirements on the pressure (1 atmosphere) and gas temperature (37 C) in which the plasma operates. In addition, the plasma source must be compact and reliable, while the plasma species should not poison the body fluids with which they are in contact. In this contribution we will discuss the plasma-physical and electrical properties of an RF-operated argon micro-cell plasma (MCP) configuration which is believed to be able to meet these design restrictions. Results of a numerical study with the help of the two-dimensional Relaxation ConTinuum (RCT) model [1-2] will be presented. We shall focus on the spatial variation of the feed gas temperature for various plasma operating conditions. Special attention will be paid to the volumetric and surface heating mechanisms. [1] T. Makabe, N. Nakano and Y. Yamaguchi, Phys. Rev. A (45), 2520 (1992) [2] T. Makabe, "Advances in Low Temperature RF Plasmas" Elsevier, (2002)

  16. Functionalization of carbon nanotubes by argon plasma-assisted ultraviolet grafting

    SciTech Connect

    Yan, Y.H.; Chan-Park, M.B.; Zhou, Q.; Li, C.M.; Yue, C.Y.

    2005-11-21

    We have demonstrated the functionalization of single-wall carbon nanotubes (SWNTs) by argon (Ar) plasma-assisted ultraviolet (UV) grafting of 1-vinylimidazole (VZ). The Ar plasma treatment generates defect sites at the tube ends and sidewalls, which act as the active sites for the subsequent UV grafting of VZ monomer. Atomic force microscopy analyses indicate that the original nanotube bundles exfoliate to individual tubes after the VZ grafting. By control of the deposited energy of Ar plasma treatment (200 W) and treatment time (5 min), no visible chopping of the functionalized SWNT was observed. This method may be extended to other vinyl monomers and offers another diverse way of sidewall functionalization of SWNT.

  17. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  18. Functionalization of carbon nanotubes by argon plasma-assisted ultraviolet grafting

    NASA Astrophysics Data System (ADS)

    Yan, Y. H.; Chan-Park, M. B.; Zhou, Q.; Li, C. M.; Yue, C. Y.

    2005-11-01

    We have demonstrated the functionalization of single-wall carbon nanotubes (SWNTs) by argon (Ar) plasma-assisted ultraviolet (UV) grafting of 1-vinylimidazole (VZ). The Ar plasma treatment generates defect sites at the tube ends and sidewalls, which act as the active sites for the subsequent UV grafting of VZ monomer. Atomic force microscopy analyses indicate that the original nanotube bundles exfoliate to individual tubes after the VZ grafting. By control of the deposited energy of Ar plasma treatment (200W) and treatment time (5min), no visible chopping of the functionalized SWNT was observed. This method may be extended to other vinyl monomers and offers another diverse way of sidewall functionalization of SWNT.

  19. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  20. Ozone-stimulated emission due to atomic oxygen population inversions in an argon microwave plasma torch

    SciTech Connect

    Lukina, N. A.; Sergeichev, K. F.

    2008-06-15

    It is shown that, in a microwave torch discharge in an argon jet injected into an oxygen atmosphere at normal pressure, quasi-resonant energy transfer from metastable argon atoms to molecules of oxygen and ozone generated in the torch shell and, then, to oxygen atoms produced via the dissociation of molecular oxygen and ozone leads to the inverse population of metastable levels of atomic oxygen. As a result, the excited atomic oxygen with population inversions becomes a gain medium for lasing at wavelengths of 844.6 and 777.3 nm (the 3{sup 3}P-3{sup 3}S and 3{sup 5}P-3{sup 5}S transitions). It is shown that an increase in the ozone density is accompanied by an increase in both the lasing efficiency at these wavelength and the emission intensity of the plasma-forming argon at a wavelength of 811.15 nm (the {sup 2}P{sup 0}4s-{sup 2}P{sup 0}4p transition). When the torch operates unstably, the production of singlet oxygen suppresses ozone generation; as a result, the lasing effect at these wavelengths disappears.

  1. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-01

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron—ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  2. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  3. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Culver, Cody; Wang, Shicong; Wendt, Amy E.; Radovanov, Svetlana; Persing, Harold

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  4. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    SciTech Connect

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  5. Influence of nanoparticle formation on discharge properties in argon-acetylene capacitively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Wegner, Th.; Hinz, A. M.; Faupel, F.; Strunskus, T.; Kersten, H.; Meichsner, J.

    2016-02-01

    This contribution presents experimental results regarding the influence of nanoparticle formation in capacitively coupled radio frequency (13.56 MHz) argon-acetylene plasmas. The discharge is studied using non-invasive 160 GHz Gaussian beam microwave interferometry and optical emission spectroscopy. Particularly, the temporal behavior of the electron density from microwave interferometry is analyzed and compared with the changing plasma emission and self-bias voltage caused by nanoparticle formation. The periodic particle formation with a cycle duration between 30 s and 140 s starts with an electron density drop over more than one order of magnitude below the detection limit (8 × 1014 m-3). The electron density reduction is the result of electron attachment processes due to negative ions and nanoparticle formation. The onset time constant of nanoparticle formation is five times faster compared to the expulsion of the particles from the plasma due to multi-disperse size distribution. Moreover, the intensity of the argon transition lines increases and implies a rising effective electron temperature. The cycle duration of the particle formation is affected by the total gas flow rate and exhibits an inverse proportionality to the square of the total gas flow rate. The variation in the total gas flow rate influences the force balance, which determines the confinement time of the nanoparticles. As a further result, the cycle duration is dependent on the axial position of the powered electrode, which also corresponds to different distances relative to the fixed optical axis of the microwave interferometer.

  6. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Jayapalan, K. K.; Wong, C. S.

    2014-08-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile.

  7. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  8. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  9. Study on hairpin-shaped argon plasma jets resonantly excited by microwave pulses at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Xia, Guangqing; Zou, Changlin; Li, Ping; Hu, Yelin; Ye, Qiubo; Eliseev, S.; Stepanova, O.; Saifutdinov, A. I.; Kudryavtsev, A. A.; Liu, Minghai

    2015-07-01

    In the present study, atmospheric pressure argon plasma jets driven by lower-power pulsed microwaves have been proposed with a type of hairpin resonator. The plasma jet plume demonstrates distinctive characteristics, like arched plasma pattern and local plasma bullets. In order to understand how the hairpin resonator works, electromagnetic simulation of the electric field distribution and self-consistent fluid simulation of the interaction between the enhanced electric field and the pulse plasma plume are studied. Simulated spatio-temporal distributions of the electric field, the electron temperature, the electron density, and the absorbed power density have been sampled, respectively. The experimental and simulated results together suggest that the driving mechanism of the hairpin resonator works in the multiple electromagnetic modes of transmission line and microwave resonator, while the local plasma bullets are resonantly generated by local enhanced electric field of surface plasmon polaritons. Moreover, it should be noticed that the radian of the arched plasma plume is mainly affected by the input power and gas flow rate, respectively.

  10. Photoionized argon plasmas induced with intense soft x-ray and extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, Ł.; Fiedorowicz, H.; Skrzeczanowski, W.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Dudzak, R.; Dostal, J.; Krousky, E.; Skala, J.; Ullschmied, J.; Hrebicek, J.; Medrik, T.

    2016-01-01

    In this work, photoionized plasmas were created by irradiation of gaseous argon with soft x-ray (SXR) and extreme ultraviolet (EUV) intense radiation pulses. Two different laser-produced plasma sources, employing a low energy Nd:YAG laser and a high energy iodine laser system (PALS), were used for creation of photoionized plasmas. In both cases the EUV or SXR beam irradiated the Ar stream, injected into a vacuum chamber synchronously with the radiation pulse. Emission spectra, measured for the Ar photoionized plasmas indicated strong differences in ionization degree for plasmas produced using low and high energy systems. In case of the the EUV driving pulses, emission lines corresponding to neutral atoms and singly charged ions were observed. In case of the SXR pulses utilized for the photoionized plasma creation, only Ar V-VIII emission lines were recorded. Additionally, electron density measurements were performed by laser interferometry employing a femtosecond laser system synchronized with the irradiating system. Maximum electron density for the Ar photoionized plasma, induced using the high energy system, reached 1.9 · 1018 cm-3. Interferometric measurements performed for the moment of maximum intensity of the main laser pulse (t  =  0) revealed no fringe shift. Detection limit for the interferometric measurements was estimated. It allowed to estimate the upper limit for electron density at t  =  0 as 5 · 1016 cm-3.

  11. Anion dynamics in the first 10 milliseconds of an argon-acetylene radio-frequency plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Beckers, J.; Kroesen, G. M. W.

    2012-12-01

    The time evolution of the smallest anions (C2H- and H2CC-), just after plasma ignition, is studied by means of microwave cavity resonance spectroscopy (MCRS) in concert with laser-induced photodetachment under varying gas pressure and temperature in an argon-acetylene radio-frequency (13.56 MHz) plasma. These anions act as an initiator for spontaneous dust particle formation in these plasmas. With an intense 355 nm Nd : YAG laser pulse directed through the discharge, electrons are detached only from these anions present in the laser path. This results in a sudden increase in the electron density in the plasma, which can accurately and with sub-microsecond time resolution be measured with MCRS. By adjusting the time after plasma ignition at which the laser is fired through the discharge, the time evolution of the anion density can be studied. We have operated in the linear regime: the photodetachment signal is proportional to the laser intensity. This allowed us to study the trends of the photodetachment signal as a function of the operational parameters of the plasma. The density of the smallest anions steadily increases in the first few milliseconds after plasma ignition, after which it reaches a steady state. While keeping the gas density constant, increasing the gas temperature in the range 30-120 °C limits the number of smallest anions and saturates at a temperature of about 90 °C. A reaction pathway is proposed to explain the observed trends.

  12. Thermalization of electrons in decaying extreme ultraviolet photons induced low pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Beckers, J.; van der Horst, R. M.; Osorio, E. A.; Kroesen, G. M. W.; Banine, V. Y.

    2016-06-01

    We monitored—in the pressure range: 0.5–15 Pa—the electron temperature in decaying plasmas induced in argon gas by pulsed irradiation with extreme ultraviolet (EUV) photons with wavelengths closely around 13.5 nm. For this purpose, temporal measurements of the space-averaged and electric field weighted electron density after pulsed EUV irradiation are combined with an ambipolar diffusion model of the plasma. Results demonstrate that electrons are thermalized to room temperature before the plasma has fully expanded to the chamber walls for pressures of 3 Pa and higher. At pressures below 3 Pa, the electron temperature was found to be up to 0.1 eV above room temperature which is explained by the fact that plasma expansion is too quick for the electrons to fully thermalize. The comparison between plasma expansion duration towards a surface, plasma decay at a surface and time needed for thermalization and cooling of electrons is essential for designers of EUV lithography tools and EUV sources since the temperature of electrons dictates many fundamental physical processes.

  13. Two discharge modes in an atmospheric pressure plasma jet array in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Ruan, Chen; Shao, Tao; Zhang, Cheng

    2016-02-01

    In this paper, the generation and discharge modes of 2D atmospheric pressure plasma jet arrays in economic argon feeding gas with a honeycomb configuration is first reported. Two coupling and collimated discharge modes are achieved with the same array structure. The discharge modes are shown to depend on the gas flow rate and center-to-center distances of jets in the array. Stronger plasmas with higher plasma density than single jet can be obtained in coupling mode array at close proximity of jets in the array and small gas flow rate, while plasmas with moderate plasma density and relative large area can be obtained in the collimated mode array at far proximity of jets in the array. The power density and emission spectra from the centered plasma jet for the coupling mode array are both larger than those of the collimated mode. The appearance of the two discharge modes may be due to the hydrodynamic interactions between the seven individual Ar channels emerging from individual tubes with the air surrounding them.

  14. Fluorine and Oxygen Monitoring in Plasma CVM Etching Process for Silicon Wafer by Argon Actinometry Technique

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi; Nagao, Akihiko; Yamamura, Kazuya; Oda, Akinori; Endo, Katsuyoshi

    2004-09-01

    Relative changes in the density of atomic fluorine and oxygen in plasma chemical vaporization machining (CVM) process is determined from the intensity ratios of the argon λ = 750 nm line, the atomic oxygen lines λ = 777 nm and 844 nm, and the atomic fluorine lines λ = 733 nm and 740 nm. The relative density change which depends on the position in the plasma is compared with an etched pattern on a silicon wafer surface. A rotational cylindrical electrode creates high speed shear flow of the plasma gas in a sub-millimeter gap between electrode and wafer. The plasma generation condition is controlled by changing VHF electric power and the rotation speed of electrode. The plasma gas composition is fixed at He/CF_4/O_2=99.89/0.1/0.01 and the total gas pressure is an atmosphere. The density profiles of fluorine and oxygen are different. In the basic experiment, the fluorine density profile has a maximum value around the narrowest plasma gap. On the other hand, the oxygen density profile has a peak up the gas flow. These results are compared with the etched pattern on the siliconsubstrate.

  15. Effect of Cryogenic Cooling for Gallium Nitride Film Placed in Argon Plasma

    NASA Astrophysics Data System (ADS)

    Ogawa, Daisuke; Nakano, Yoshitaka; Nakamura, Keiji

    2014-10-01

    There is no doubt for a gallium nitride (GaN) film to have plasma-induced damage (PID) when exposed in a plasma discharge. Our technique to make in-situ monitoring on a GaN film exposed in argon plasma is valuable toward to reveal the evolution of the damage. We evaluated the PID with photoluminescence (PL) that is excited with a ultra-violet light source. Our preliminary result showed that the PL intensity at the blue luminescence band (BL: 400--480 nm) increased while the intensity at yellow luminescence (YL: 480--700 nm) decreased as the plasma exposure time increased. Chen et al. previously found that PL spectrum changes due to both PID and substrate temperature. However, BL intensity is independent from the substrate temperature, while BL intensity is dependent on the degree of PID. In this experiment, we performed the plasma exposure to a GaN film under the situation when the substrate temperature was cooled with liquid nitrogen. The substrate temperature is set at -110 degC and exposed plasma in 15 minutes. In this condition, our BL stayed almost constant. This is an indication that we might be able to avoid the damage in the wavelength shorter than 480 nm. We will show more details from this results and further progresses in this presentation.

  16. Effect of secondary emission on the argon plasma afterglow with large dust density

    SciTech Connect

    Denysenko, I. B.; Azarenkov, N. A.; Burmaka, G. P.; Stefanović, I.

    2015-02-15

    A zero-dimensional, space-averaged model for argon plasma afterglow with large dust density is developed. In the model, three groups of electrons in the plasma afterglow are assumed: (i) thermal electrons with Maxwellian distribution, (ii) energetic electrons generated by metastable-metastable collisions (metastable pooling), and (iii) secondary electrons generated at collisions of ions with the electrodes, which have sufficiently large negative voltages in the afterglow. The model calculates the time-dependencies for electron densities in plasma afterglow based on experimental decay times for metastable density and electrode bias. The effect of secondary emission on electron density in the afterglow is estimated by varying secondary emission yields. It is found that this effect is less important than metastable pooling. The case of dust-free plasma afterglow is considered also, and it is found that in the afterglow the effect of secondary emission may be more important than metastable pooling. The secondary emission may increase thermal electron density n{sub e} in dust-free and dusty plasma afterglows on a few ten percentages. The calculated time dependencies for n{sub e} in dust-free and dusty plasma afterglows describe well the experimental results.

  17. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    NASA Astrophysics Data System (ADS)

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-01

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (Te) and electron number density (ne) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10-17 - 10-18 m-3 where the electron temperature is between 1.00-2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  18. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma.

    PubMed

    Wongsagonsup, Rungtiwa; Deeyai, Panakamol; Chaiwat, Weerawut; Horrungsiwat, Sawanee; Leejariensuk, Kesini; Suphantharika, Manop; Fuongfuchat, Asira; Dangtip, Somsak

    2014-02-15

    Non-chemical modification of tapioca starch was investigated using jet atmospheric argon plasma treatment. Two forms of starch slurry, i.e. granular starch (G) and cooked starch (C), were jet-treated by argon plasma generated by supplying input power of 50 W (denoted as G50 and C50 samples) and 100 W (denoted as G100 and C100 samples) for 5 min. Physical, rheological, and structural characteristics of the modified starch were investigated. The G50 and C100 samples had lower paste clarity but higher thermal stability and performed stronger gels (G50 only) compared to their control counterparts. On the other hand, the analyzed properties of the G100 and C50 samples showed the opposite trend. FTIR and (1)H NMR results revealed that the relative areas of COC and OH peaks were changed after the treatment. Cross-linking reaction seemed to predominantly take place for the G50 and C100 samples, whereas depolymerization predominated for the G100 and C50 samples. PMID:24507348

  19. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    SciTech Connect

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  20. Aluminium metallisation of argon and oxygen plasma-modified polycarbonate thin film surfaces

    NASA Astrophysics Data System (ADS)

    Rastomjee, C. S.; Keil, M.; Sotobayashi, H.; Bradshaw, A. M.; Lamont, C. L. A.; Gador, D.; Umbach, E.

    1998-12-01

    The influence of plasma treatment on the metallisation of polycarbonate surfaces was studied using X-ray absorption spectroscopy (XAFS) and core level X-ray photoelectron spectroscopy (XPS). Thin films of two different molecules were chosen: bis-phenol-A polycarbonate with phenol endgroups (P-PC) prepared ex situ by the spin-coating technique onto MoTe 2{0001}surfaces, and the model compound bis-phenol-A polycarbonate ( n=1) with tert-butyl phenyl endgroups (tBP-PC) evaporated in situ in UHV onto Cu{110}, Ag{100} and Ag{111} surfaces with film thicknesses of up to several monolayers. Surfaces of untreated samples and of samples which were pre-treated with either an inert argon or a reactive oxygen microwave plasma were metallised with Al (evaporated by electron beam heating) at film thicknesses ranging from the sub-monolayer region up to several monolayers. For the untreated surface, XAFS and XPS spectra suggest that the Al reacts with the carbonate groups leading to a breaking of the CO double bonds (and/or a reduction in bond order) as well as formation of Al oxide, Al hydroxide and Al-O-C linkages. A study of the time-dependent oxidation of the evaporated Al leads to the conclusion that Al slowly diffuses to the reactive sites in the first few subsurface layers of the polymer. Argon plasma treatment of samples leads to a reduction in the number of carbonyl groups in the near surface region. After metal deposition a higher ratio of metallic, non-reacted, Al was observed covering the polycarbonate surface and the diffusion rate into the polymer bulk seems to be higher than in the case of the untreated surface. Oxygen plasma treatment leads to the creation of additional CO containing species which also react with the Al in the subsequent metallisation process. Here, the ratio of oxidised Al on the polymer surface is higher than observed for untreated and argon plasma pre-treated polymer surfaces.

  1. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    SciTech Connect

    Saikia, P. Goswami, K. S.; Saikia, B. K.

    2014-03-15

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  2. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  3. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Goswami, K. S.; Saikia, B. K.

    2014-03-01

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar+ ion density while a reverse trend was observed for ArH+ and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  4. Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma

    NASA Astrophysics Data System (ADS)

    Mitic, S.; Y Pustylnik, M.; Morfill, G. E.

    2009-08-01

    Axial distributions of 1s excited states of argon were measured in a radiofrequency (RF) discharge by a self-absorption method. Experiments were performed in the PK-3+ chamber, designed for microgravity experiments in complex (dusty) plasmas on board the International Space Station. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. Distributions, measured at the same discharge conditions in a microparticle-free discharge and a discharge containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  5. Diagnostics of the influence of levitating microparticles on the radiofrequency argon plasma

    NASA Astrophysics Data System (ADS)

    Pustylnik, Mikhail Y.; Mitic, Slobodan; Klumov, Boris A.; Morfill, Gregor E.

    2010-11-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1 s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  6. A Pulsing Argon Plasma Plume Excited by a Direct-Current Voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Zhang, Chunyan; Li, Jiyuan

    2014-10-01

    In this study, by using a plasma jet driven by a direct-current voltage, a plasma plume can be generated in ambient air with argon used as the working gas. Through optical and electrical measurements, it is found that the plume discharge is pulsed despite the application of a direct-current voltage. The pulse frequency is investigated as a function of the sustaining voltage across the two electrodes and the gas flow rate. Differently from those of ordinary jets that usually operate in the bullet or continuous mode, the discharges of the direct-current jet almost volley at the same moment, while the quenching of the discharges propagates away from the jet nozzle.

  7. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    SciTech Connect

    Barbi, E.; Mahan, J.R.; O'brien, W.F.; Wagner, T.C.

    1989-04-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated. 10 references.

  8. Characterization of Argon Plasma by Use of Optical Emission Spectroscopy and Langmuir Probe Measurements

    NASA Astrophysics Data System (ADS)

    Qayyum, Abdul; Ikram, M.; Zakaullah, M.; Waheed, A.; Murtaza, G.; Ahmad, Riaz; Majeed, Asif; Khattak, N. A. D.; Mansoor, K.; Chaudhary, Khaliq A.

    Spectroscopic and Langmuir probe measurements are presented to characterize the argon glow discharge plasma generated by a cost-effective 50 Hz AC power source. Optical emission spectra (400 700 nm) are recorded for different gas flow rates and filling pressures at constant power level. The plasma parameters (electron temperature and density) are deduced from the relative intensities of Ar-I and Ar-II lines. The variation in the intensity ratio of the selected emission lines, electron temperature and density is studied as a function of gas flow rate and filling pressure. Slight increase in the intensity ratio I2(426.62 nm)/I1(404.44 nm) of the emission lines is observed whereas the electron temperature and density are found to decrease with increase in gas flow rate and filling pressure.

  9. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    NASA Technical Reports Server (NTRS)

    Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.

    1989-01-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.

  10. [The Characteristic Research of ·OH Induced by Water on an Argon Plasma Jet].

    PubMed

    Liu, Kun; Liao, Hua; Zheng, Pei-chao; Wang, Chen-ying; Liu, Hong-di; Danil, Dobrynin

    2015-07-01

    ·OH plays a crucial role in many fields, having aroused wide public concern in the world. Atmospheric Pressure Plasma Jet, which can be achieved by portable device due to working without the vacuum environment, has the advantages of high concentration of reactive species, high electron temperature and low gas temperature. It has become an important research topic in the field of gas discharge with a strong prospect. Especially, how to induce plasma jet to produce ·OH has become a new hotpot in the field of low-temperature plasma. It has been reported that mass ·OH can be induced successfully when water vapor is added to the working gas, but it will be unstable when the concentrate of water reaches a certain degree. Thus, a device of argon plasma jet with a Ring-to-Ring Electrode Configuration has been designed to interact with water in the surrounding air to generate ·OH under atmospheric pressure. In order to increase the production of ·OH, ultrasonic atomizing device is introduced to promote water concentration around the plasma plume. The generating rule of OH(A2J) induced by water has been extensively studied under different voltages and flow rate. ·OH output induced by the plasma has been tested by emission spectrometry, and at the meanwhile, Ar atomic spectral lines at 810.41 and 811.48 nm are also recorded in order to calculate the electron temperature in argon plasma plume. The results show that the water surrounding the plasma plume can be induced to produce ·OH, and OH(A2 ∑+) output increases with the electrode voltage rising from 20 to 28 kV. When the flow rate increases from 100 to 200 L x h(-1), the OH(A2∑+) output increases, but from 200 to 600 L x h(-1), it decreases. The production rules of OH(A2∑+) is the same as that of electron temperature. Therefore, the presumption is proved that ·OH output mainly affected by electron temperature. PMID:26717727

  11. Laser scattering diagnostics of an argon atmospheric-pressure plasma jet in contact with vaporized water

    NASA Astrophysics Data System (ADS)

    Seo, B. H.; Kim, J. H.; You, S. J.; Seong, D. J.

    2015-12-01

    The radial profiles of the electron density, electron temperature, and molecular rotational temperature are investigated in an argon atmospheric-pressure plasma jet in contact with vaporized water, which is driven by a 13.56 MHz radio frequency by means of the Thomson and Raman laser scattering methods. There is a distinct difference in the radial profiles of the plasma parameters between plasmas in contact with water and those without water contact. In the case of plasmas without vaporized water contact, all the parameters have a single-peak distribution with maximum values at the center of the discharge. In the case of plasmas in contact with vaporized water, all parameters have double-peak distributions; a neighboring peak appears beside the main peak. The new peak may have originated from the ripple of the water surface, which works as a cathode, and the peak of the ripple offers a sharp curvature point, playing the role of a pin. Our experimental results and the underlying physics are described in detail.

  12. Estimating and controlling the atomic oxygen content in an argon-oxygen plasma

    NASA Astrophysics Data System (ADS)

    Keville, Bernard; Monahan, Derek D.; Turner, Miles M.

    2008-10-01

    Oxygen rich plasmas have been applied in many plasma processing applications for decades. In most such applications, process yield could be improved significantly by applying closed loop control of atomic oxygen radical concentration. The design of effective, real time, closed loop control algorithms is facilitated by simple dynamical models of the relationship between inputs, or actuators in control terminology, and the process quantities to be controlled. In the case of an oxygen rich plasma process, one requires the relationship between the inputs - flow-rate set points, forward power from the RF supply and residence time, for example - and the oxygen radical density. With the aid of an argon-oxygen plasma simulation, this presentation describes how, with the aid of simplified dynamical models of the process, one would design model-based control algorithms for the real-time, closed loop control of oxygen radical density. A sine qua non of real time, closed loop control is an accurate estimate of the process quantities to be controlled. Although actinometry provides a non-invasive method for estimating species densities, atomic oxygen actinometry is complicated by the fact that photon emission can occur through dissociative as well as direct excitation, leading to potential ambiguity between the emission intensity and the actual radical concentration in the plasma. Optimal estimation of process states given indirect measurements corrupted by process and measurement noise is a classical topic in control theory and has yielded some spectacular results, notably the ubiquitous Kalman filter.

  13. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    SciTech Connect

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  14. Two-dimensional profile measurement of plasma parameters in radio frequency-driven argon atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Seo, B. H.; Kim, D. W.; Kim, J. H.; You, S. J.

    2015-09-01

    The two-dimensional profiles of the electron density, electron temperature, neutral translational temperature, and molecular rotational temperature are investigated in an argon atmospheric pressure plasma jet, which is driven by the radio frequency of 13.56 MHz by means of the laser scattering methods of Thomson, Rayleigh, and Raman. All measured parameters have maximum values at the center of the discharge and decrease toward the plasma edge. The results for the electron temperature profile are contrary to the results for the microwave-driven plasma. From our experimental results, the profiles of the plasma parameters arise from the radial contraction of plasmas and the time averaged profile of the electric field, which is obtained by a microwave simulation performed under identical conditions to the plasma jet. In the case of the neutral temperature, a higher translational temperature than the rotational temperature is measured, and its discrepancy is tentatively explained in terms of the low ion-neutral charge exchange rate and the additional degrees of freedom of the molecules. The description of our experimental results and the underlying physics are addressed in detail.

  15. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter, denser and hotter plasma is always observed in argon than in air as with lower ablation laser fluences. The observed different influences of the ambient gas on the plasma expansion behavior for different laser fluences are related to the different modes of laser-supported absorption waves, namely laser-supported combustion (LSC) wave and laser-supported detonation (LSD) wave.

  16. Simulation of DBD plasma actuators, and nanoparticle-plasma interactions in argon-hydrogen CCP RF discharges

    NASA Astrophysics Data System (ADS)

    Mamunuru, Meenakshi

    The focus of this work is modeling and simulation of low temperature plasma discharges (LTPs). The first part of the thesis consists of the study of dielectric barrier (DBD) plasma actuators. Use of DBD plasma actuators on airfoil surfaces is a promising method for increasing airfoil efficiency. Actuators produce a surface discharge that causes time averaged thrust in the neutral gas. The thrust modifies the boundary layer properties of the flow and prevents the occurrence of separation bubbles. In simulating the working of an actuator, the focus is on the spatial characteristics of the thrust produced by the discharge over very short time and space scales. The results provide an understanding of the causes of thrust, and the basic principles behind the actuator operation. The second part of this work focusses on low pressure plasma discharges used for silicon nanoparticle synthesis. When reactive semiconductor precursor gases are passed through capacitively coupled plasma (CCP) radio frequency (RF) reactors, nano sized particles are formed. When the reactors are operated at high enough powers, a very high fraction of the nanoparticles are crystallized in the chamber. Nanoparticle crystallization in plasma is a very complex process and not yet fully understood. It can be inferred from experiments that bulk and surface processes initiated due to energetic ion impaction of the nanoparticles are responsible for reordering of silicon atoms, causing crystallization. Therefore, study of plasma-particle interactions is the first step towards understanding how particles are crystallized. The specific focus of this work is to investigate the experimental evidence that hydrogen gas presence in argon discharges used for silicon nanocrystal synthesis, leads to a superior quality of nanocrystals. Influence of hydrogen gas on plasma composition and discharge characteristics is studied. Via Monte Carlo simulation, distribution of ion energy impacting particles surface is studied. It is seen that hydrogen ions cause a reduction in particle floating potential, thereby lowering the ion impaction energies. The hydrogen ion current is also effective in delivering increased number of atomic H radicals to the particle surface, which are known to promote particle crystallization. The work therefore sheds light on the ways in which trace amount of hydrogen gas participates in silicon nanoparticle crystallization in argon silane plasma.

  17. Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro.

    PubMed

    Blinc, Ales; Bozic, Mojca; Vengust, Rok; Stegnar, Mojca

    2004-01-01

    Leakage of viscous bone cement into venous blood possibly resulting in pulmonary embolism may occur during percutaneous vertebroplasty. Our aim was to study if bone cement surface or cement liquid component could induce platelet aggregation or plasma coagulation in vitro. Two types of commonly used methyl-methacrylate bone cement, Palacos (Heraeus Kulzer, Germany) and Vertebroplastic (DePuy, Acro Med, England), were smeared on thin glass slides that were inserted over the bottom of cuvettes immediately or after 24 h, and platelet aggregation was recorded over 10 min. Bone cement liquid component, containing methyl-methacrylate monomer and N,N-dimethyl-p-toluidine, was tested in 2% and 4% final concentration. Partial thromboplastin time (PTT) was determined by the hook method in the presence of bone cement-smeared glass slides or 6% bone cement liquid. Both types of bone cement, either fresh or aged, did not promote platelet aggregation, whereas collagen-coated glass slides induced substantial platelet aggregation (65 +/- 37%). On the other hand, bone cement liquids reduced platelet aggregation induced by collagen solution to an average of less than 15% (p < 0.01). Bone cement, fresh or aged, had no effect on PTT, but bone cement liquids significantly prolonged PTT: median and 1st-3rd interquartile range 149 (96-171) s for Vertebroplastic and 132 (99-194) s for Palacos, p = 0.03 for both comparisons with normal pool plasma without additives that had PTT of 69 (62-71) s. We conclude that the surface of fresh or aged bone cement is not thrombogenic in vitro. The bone cement liquid inhibits platelet aggregation and plasma clotting in relatively high concentrations that cannot be expected in vivo. PMID:15342214

  18. Improved properties of oxygen and argon RF plasma-activated polyester fabrics loaded with TiO2 nanoparticles.

    PubMed

    Mihailović, Darka; Saponjić, Zoran; Molina, Ricardo; Puac, Nevena; Jovancić, Petar; Nedeljković, Jovan; Radetić, Maja

    2010-06-01

    The potentials of low-pressure capacitively coupled RF oxygen and argon plasmas for the activation of polyester fibers surface that can enhance the deposition of colloidal TiO(2) nanoparticles were discussed. SEM and XPS analysis confirmed the plasma-induced morphological and chemical changes on the surface of polyester fibers. Oxygen and argon plasma pretreated polyester fabrics loaded with TiO(2) nanoparticles provided maximum reduction of Gram-negative bacteria E. coli and UV blocking. The self-cleaning effects tested on blueberry juice stains and photodegradation of methylene blue in aqueous solution proved excellent photocatalytic activity of TiO(2) nanoparticles deposited onto fiber surface. Although both plasmas significantly contributed to overall improvement of properties of such nanocomposite textile material, oxygen plasma treatment, in particular, enhanced the deposition of colloidal TiO(2) nanoparticles and thus ensured superior effects. PMID:20524631

  19. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  20. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    PubMed

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined. PMID:25184109

  1. The influence of the EUV spectrum on plasma induced by EUV radiation in argon and hydrogen gas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Osorio, E. A.; Banine, V. Y.; Beckers, J.

    2016-02-01

    Plasmas induced by EUV radiation are scarcely investigated, although they are unique since they are created without any discharge. These plasmas are also of interest from an applicational point of view, since they are related to the lifetime of optics in EUV lithography tools. In order to assess this impact, it is essential to characterize and understand EUV-induced plasma. In this contribution the influence of the background gas (argon and hydrogen) in the lithography tool and the spectrum of the illumination source on the electron density of EUV-induced plasma is investigated using microwave cavity resonance spectroscopy. The experimental results showed that out-of-band radiation (>20 nm) is the main contributor to EUV-induced plasma in both argon and hydrogen. In hydrogen, this contribution is relatively more important than in argon due to the stronger wavelength dependence of the photoionization cross section of hydrogen than of argon. Furthermore, the production of electrons by out-of-band radiation lasts longer than the production by in-band radiation (10-20 nm) due to the longer temporal width of out-of-band radiation. Finally, the obtained results correspond reasonably well with estimates from a simplified absorption model.

  2. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study.

    PubMed

    Canullo, L; Genova, T; Tallarico, M; Gautier, G; Mussano, F; Botticelli, D

    2016-05-01

    The aim of this in vitro study was to evaluate the early cell response and protein adsorption elicited by the argon plasma treatment of different commercially available titanium surfaces via a chair-side device. Sterile disks made of grade 4 titanium (n= 450, 4-mm diameter) with 3 surface topographies (machined, plasma sprayed, and zirconia blasted and acid etched) were allocated to receive 4 testing treatments (2% and 10% protein adsorption and cell adhesion with MC3T3-E1 and MG-63). Furthermore, the specimens were divided to undergo 1) argon plasma treatment (10 W, 1 bar for 12 min) in a plasma reactor, 2) ultraviolet (UV) light treatment for 2 h (positive control group), or 3) no treatment (control group). Pretreatment surface analyses based on a scanning electron microscope and profilometer images were also performed. Profilometric analysis demonstrated that the evaluated specimens perfectly suit the standard parameters. The use of argon plasma was capable of affecting the quantity of proteins adsorbed on the different surfaces, notwithstanding their roughness or topographic features at a low fetal bovine serum concentration (2%). UV light treatment for 2 h attained similar results. Moreover, both the plasma of argon and the UV light demonstrated a significant increase in the number of osteoblasts adherent at 10 min in all tested surfaces. Within its limitations, this in vitro study highlights the potential biological benefits of treating implant surfaces with plasma of argon or UV, irrespective of the roughness of the titanium surface. However, in vivo experiments are needed to confirm these preliminary data and settle the rationale of a treatment that might be clinically relevant in case of bone-reparative deficiencies. PMID:26848069

  3. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-01

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 1020 m-3 and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 1019 m-3. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of the discharge. In the steady state phase, however, the power in-coupling occurs close to the source walls where the electron density is significantly lower than on the discharge axis.

  4. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    SciTech Connect

    Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-14

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of the discharge. In the steady state phase, however, the power in-coupling occurs close to the source walls where the electron density is significantly lower than on the discharge axis.

  5. Sterilization using a microwave-induced argon plasma system at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Park, Bong Joo; Lee, D. H.; Park, J.-C.; Lee, I.-S.; Lee, K.-Y.; Hyun, S. O.; Chun, M.-S.; Chung, K.-H.

    2003-11-01

    The use of microwave plasma for sterilization is relatively new. The advantages of this method are the relatively low temperature, time-savings and its nontoxic nature, in contrast to traditional methods such as heat and gas treatment, and radiation. This study investigated the sterilization effects of microwave-induced argon plasma at atmospheric pressure on materials contaminated with various microorganisms, such as bacteria and fungi. A low-cost and reliable 2.45 GHz, waveguide-based applicator was designed to generate microwave plasma at atmospheric pressure. This system consisted of a 1 kW magnetron power supply, a WR-284 copper waveguide, an applicator including a tuning section, and a nozzle section. Six bacterial and fungal strains were used for the sterilization test. The results showed that regardless of the strain, all the bacteria used in this study were fully sterilized within 20 seconds and all the fungi were sterilized within 1 second. These results show that this sterilization method is easy to use, requires significantly less time than the other traditional methods and established plasma sterilization methods, and it is nontoxic. It can be used in the field of sterilization in medical and dental clinics as well as in laboratory settings.

  6. Generation of strongly coupled plasma using Argon-based capillary discharge lasers

    NASA Astrophysics Data System (ADS)

    Rossall, Andrew K.; Aslanyan, Valentin; Wilson, Sarah; Tallents, Gregory J.

    2015-09-01

    Argon based capillary discharge lasers operate in the extreme ultra violet (EUV) at 46.9 nm with an output of up to 0.5 mJ energy per pulse and up to a 10 Hz repetition rate. Focussed irradiances of up to 1012 W cm-2 are achievable and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionisation dependant electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1.2ns pulse duration can be used to generate strongly coupled plasma at close to solid density with temperatures of a few eV and energy densities up to 1×105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the equation-of-state properties of warm dense matter. One difficulty with this technique is the reduction of the strong temperature and density gradients which are produced during the interaction. Methods to inhibit and control these gradients will be examined.

  7. Laser light scattering from silicon particles generated in an argon diluted silane plasma

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Kortshagen, U. R.; Aydil, E. S.

    2016-03-01

    We conducted laser light scattering (LLS) measurements in a 13.56 MHz capacitively coupled dusty plasma maintained in silane and argon to study the spatial distribution of silicon nanoparticles and nanoparticle agglomerates. Specifically, we focused on the temporal evolution of their spatial distribution in the plasma as a function of pressure and power. We observed three distinct types of temporal evolution behavior of the nanoparticle dust cloud in the plasma and classified these into three regimes based on pressure and power. Each regime features a distinct pattern in laser light scattering measurements. At low pressures (˜80-100 mTorr) and high powers (˜40-60 W) we observed periodically repeating expansions and contractions of a continuous dust cloud for the first time. Dust voids, which have been reported before, were also observed at high pressures (˜100-150 mTorr) and low powers (˜20-40 W) in the center of the plasma. A mechanism is proposed to explain the observed dynamics of the nanoparticles. The balance between the ion drag force and electrostatic forces and their dependence on particle size are hypothesized to be the dominant factors that determine the nanoparticle cloud dynamics.

  8. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    NASA Astrophysics Data System (ADS)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-01

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  9. On the Role of Metastable Argon in Cold Atmospheric Pressure Plasma Jets with Shielding Gas Device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jorn; Sousa, Joao Santos; Puech, Vincent; Weltmann, Klaus-Dieter; Reuter, Stephan; ZIK plasmatis at the INP Greifswald e. V. Team; Laboratoire de Physique des Gaz et des Plasmas (LPGP), CNRS; Université Paris-Sud Team

    2014-10-01

    Shielding gas devices are a valuable tool for controlling the reactive species output of Cold Atmospheric Pressure Plasma (CAPP) Jets for biomedical applications. In this work we investigate the effect of different shielding gas compositions using a CAPP jet (kinpen) operated with argon. As shielding gas various mixtures of N2 and O2 are used. Metastable argon (Ar*) has been quantified using laser absorption spectroscopy and was identified as an important energy carrier in the CAPP jets effluent. The Ar* excitation dynamics was studied using phase resolve optical emission spectroscopy. Based on these findings a kinetic model for the gas phase chemistry has been developed that uses the Ar* density and dynamics as input and yields densities of O3, NO2, HNO2, HNO3, N2O5, H2O2 and N2O produced by the CAPP jet for different shielding gas compositions. The results are in good agreement with Fourier-Transform Infrared Spectroscopy measurements on these species. Authors gratefully acknowledge the funding by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12).

  10. Determination of neutral temperature using fiber Bragg grating sensor in capacitively coupled argon plasmas

    NASA Astrophysics Data System (ADS)

    Han, Dao-Man; Liu, Zi-Geng; Liu, Yong-Xin; Zhang, Xin-Pu; Gao, Fei; Peng, Wei; Wang, You-Nian

    2016-03-01

    Neutral temperature Tg in capacitively coupled argon plasmas was measured by using a fiber Bragg grating sensor. The measurement of Tg is based on the thermal equilibrium process between the sensor and neutral gases, which is found to become fast upon increasing pressure, due to enhanced heat conduction. Additionally, Tg was found to increase with increasing high frequency power due to enhancive collisions with charged particles. It is also observed that Tg exhibits a significant gradient in space, ranging from 10 to 120 °C higher than room temperature for the conditions investigated. In addition, the spatial profiles of Tg at different pressures generally resemble those of the Ar+ density ni, measured with a floating double probe. The neutral gas is mainly heated via elastic collisions with ions in the sheath region followed by heat conduction among neutrals.

  11. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.; Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  12. Effect of dielectric wall temperature on plasma plume in an argon atmospheric pressure discharge

    SciTech Connect

    Song, Jian; Huo, Yuxin; Wang, Youyin; Yu, Daren; Tang, Jingfeng; Wei, Liqiu

    2014-10-15

    In this letter, the effect of the dielectric wall temperature on the length and volume of an atmospheric pressure plasma jet (APPJ) is investigated using a single-electrode configuration driven with an AC power supply. To distinguish the APPJ status from the argon flow rate, the three modes, laminar, transition, and turbulent, are separated. When the dielectric wall is heated, the APPJ length and volume are enhanced. Also, the transition regions remarkably expand over a large range of flow rates. The results indicate that different factors contribute to the expansion of the transition region. The increase in the radial and axial velocities is the main cause of the expansion of the transition region to the low-velocity region. The expansion to the high-velocity region is dominantly induced by a change in the viscosity.

  13. Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Ren, Li; Wang, Yingjun

    2013-10-01

    For its biocompatibility and biodegradability, chitosan has had considerable attention for biomedical applications in recent years. In this paper, polymerization of poly (ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto chitosan membrane surface through argon plasma-induced graft polymerization. The surface properties after modification were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The results indicated that PEGMA can be grafted successfully onto chitosan membrane surface. The surface hydrophilicity and free energy were improved and the surface roughness increased after modification. The adhesion of a human corneal epithelial cell (HCEC) on chitosan membrane surface was enhanced due to improvement of surface free energy and roughness.

  14. Application of a hybrid collisional radiative model to recombining argon plasmas

    NASA Astrophysics Data System (ADS)

    Benoy, D. A.; van der Mullen, J. A. M.; van de Sanden, M. C. M.; van der Sijde, B.; Schram, D. C.

    1993-02-01

    A collisional radiative model, in which a hybrid cut-off technique is used, is applied to recombining plasmas to study the atomic state distribution (ASDF) and the recombination coefficient. Computations of the ASDF using semi-empirical rate coefficients of Vriens and Smeets (V-S) and Drawin (D) are compared with experimental values measured at various positions in a free expanding argon arc jet. Apart from the shock position, where the calculated results are too low, the model calculations are higher than the experimental results. The volumetric recombination coefficient has a Te exp -4 and a Te exp -4.8 dependence when semiempirical rate coefficients of, respectively, V-S and D are used. The differences between the models based on the rate coefficients of V-S and D indicate that the recombination flow is sensitive to the low temperature behavior of the rate coefficients.

  15. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled Argon Plasma Spectrometry.

    PubMed

    Nirdosh, I; Lakhani, S; Yunus, M Z

    1993-02-01

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains approximately 7 wt% pyrite, FeS(2) as the major mineral which oxidizes to generate sulphate during leaching with fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. PMID:18965613

  16. Effect of dielectric wall temperature on plasma plume in an argon atmospheric pressure discharge

    NASA Astrophysics Data System (ADS)

    Song, Jian; Tang, Jingfeng; Huo, Yuxin; Wei, Liqiu; Wang, Youyin; Yu, Daren

    2014-10-01

    In this letter, the effect of the dielectric wall temperature on the length and volume of an atmospheric pressure plasma jet (APPJ) is investigated using a single-electrode configuration driven with an AC power supply. To distinguish the APPJ status from the argon flow rate, the three modes, laminar, transition, and turbulent, are separated. When the dielectric wall is heated, the APPJ length and volume are enhanced. Also, the transition regions remarkably expand over a large range of flow rates. The results indicate that different factors contribute to the expansion of the transition region. The increase in the radial and axial velocities is the main cause of the expansion of the transition region to the low-velocity region. The expansion to the high-velocity region is dominantly induced by a change in the viscosity.

  17. Comparison of various NLTE codes in computing the charge-state populations of an argon plasma

    SciTech Connect

    Stone, S.R.; Weisheit, J.C.

    1984-11-01

    A comparison among nine computer codes shows surprisingly large differences where it had been believed that the theroy was well understood. Each code treats an argon plasma, optically thin and with no external photon flux; temperatures vary around 1 keV and ion densities vary from 6 x 10/sup 17/ cm/sup -3/ to 6 x 10/sup 21/ cm/sup -3/. At these conditions most ions have three or fewer bound electrons. The calculated populations of 0-, 1-, 2-, and 3-electron ions differ from code to code by typical factors of 2, in some cases by factors greater than 300. These differences depend as sensitively on how may Rydberg states a code allows as they do on variations among computed collision rates. 29 refs., 23 figs.

  18. Exploring the electron density in plasmas induced by extreme ultraviolet radiation in argon

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-07-01

    The new generation of lithography tools use high energy EUV radiation which ionizes the present background gas due to photoionization. To predict and understand the long term impact on the highly delicate mirrors, it is essential to characterize these kinds of EUV-induced plasmas. We measured the electron density evolution in argon gas during and just after irradiation by a short pulse of EUV light at 13.5?nm by applying microwave cavity resonance spectroscopy. Dependencies on EUV pulse energy and gas pressure have been explored over a range relevant for industrial applications. Our experimental results show that the maximum reached electron density depends linearly on pulse energy. A quadratic dependence caused by photoionization and subsequent electron impact ionization by free electrons is found from experiments where the gas pressure is varied. This is demonstrated by our theoretical estimates presented in this manuscript as well.

  19. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  20. Time- and space-resolved spectroscopic characterization of a laser carbon plasma plume in an argon background

    NASA Astrophysics Data System (ADS)

    Ruiz, H. M.; Guzmán, F.; Favre, M.; Bhuyan, H.; Chuaqui, H.; Wyndham, E. S.

    2012-06-01

    We present time- and space-resolved spectroscopic observations of a laser-produced carbon plasma, in an argon background. An Nd : YAG laser pulse, 370 mJ, 3.5 ns, at 1.06 µm, with a fluence of 6.9 J cm-2, is used to produce a plasma from a solid graphite target in a 0.5 to 415 mTorr argon background. The spectral emission in the visible is recorded with 15 ns time resolution. We use 20 ns time resolution plasma imaging, filtered at characteristic carbon species emission wavelengths, to study the dynamics of the expanding plasma. The carbon plasma emission is found to evolve from the characteristic of single ionized carbon, to a more complex one, where C2 and C3 molecular bands dominate. Several plasma fronts, with either ionic or molecular composition, are seen to detach from the laser target plasma. The temporal and spatial features of the molecular carbon species evolution are found to be dependent on the actual argon background pressure.

  1. Scanning-electron-microscopy study of argon-plasma-treated and untreated peel-test Kevlar 49/epoxy laminates

    SciTech Connect

    Ingraham, J.A.; Walton, J.; Pruneda, C.O.; Morgan, R.J.

    1982-10-01

    It is concluded that a 200-watt RF argon plasma treatment of Kevlar fibers for four minutes increases the fiber/epoxy interfacial bonding. However, as a consequence of this increase in fiber-matrix bonding, the fiber is readily fibrillated during laminate deformation and failure.

  2. ANALYSIS OF A WASTEWATER FOR SEVEN PRIORITY POLLUTANT ELEMENTS BY D.C. ARGON PLASMA EMISSION SPECTROSCOPY

    EPA Science Inventory

    This limited project was conducted to determine the usefulness of the D.C. argon plasma for the analysis of wastewater. Seven priority pollutant elements, arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), and thallium (Tl), were selected for use i...

  3. Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet

    SciTech Connect

    Srivastava, Nimisha; Wang Chuji

    2011-09-01

    Water vapor was added to the feeding gas of a continuous atmospheric argon (Ar) microwave plasma jet to study its influence on plasma shape, plasma gas temperature, and OH radical concentrations. The plasma jet was created by a 2.45 GHz microwave plasma source operating at constant power of 104 W with H{sub 2}O-Ar mixture flow rate of 1.7 standard liter per minute (slm). With an increase in the H{sub 2}O/Ar ratio from 0.0 to 1.9%, the plasma jet column length decreased from 11 mm to 4 mm, and the plasma jet became unstable when the ratio was higher than 1.9%; elevation of plasma gas temperature up to 330 K was observed in the plasma temperature range of 420-910 K. Optical emission spectroscopy showed that the dominant plasma emissions changed from N{sub 2} in the pure Ar plasma jet to OH with the addition of water vapor, and simulations of emission spectra suggested non-Boltzmann distribution of the rotational levels in the OH A-state (v'=0). Spatially resolved absolute OH number densities along the plasma jet axis were measured using UV cavity ringdown spectroscopy of the OH (A-X) (0-0) band in the H{sub 2}O/Ar ratio range of 0.0-1.9%. The highest OH number density is consistently located in the vicinity of the plasma jet tip, regardless of the H{sub 2}O/Ar ratio. OH number density in the post-tip region follows approximately an exponential decay along the jet axis with the fastest decay constant of 3.0 mm in the H{sub 2}O/Ar ratio of 1.5%. Given the low gas temperature of 420-910 K and low electron temperature of 0.5-5 eV along the jet axis, formation of the OH radical is predominantly due to electron impact induced dissociation of H{sub 2}O and dissociative recombination of H{sub 2}O{sup +} resulting from the Penning ionization process.

  4. Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet

    NASA Astrophysics Data System (ADS)

    Srivastava, Nimisha; Wang, Chuji

    2011-09-01

    Water vapor was added to the feeding gas of a continuous atmospheric argon (Ar) microwave plasma jet to study its influence on plasma shape, plasma gas temperature, and OH radical concentrations. The plasma jet was created by a 2.45 GHz microwave plasma source operating at constant power of 104 W with H2O-Ar mixture flow rate of 1.7 standard liter per minute (slm). With an increase in the H2O/Ar ratio from 0.0 to 1.9%, the plasma jet column length decreased from 11 mm to 4 mm, and the plasma jet became unstable when the ratio was higher than 1.9%; elevation of plasma gas temperature up to 330 K was observed in the plasma temperature range of 420-910 K. Optical emission spectroscopy showed that the dominant plasma emissions changed from N2 in the pure Ar plasma jet to OH with the addition of water vapor, and simulations of emission spectra suggested non-Boltzmann distribution of the rotational levels in the OH A-state (v '=0). Spatially resolved absolute OH number densities along the plasma jet axis were measured using UV cavity ringdown spectroscopy of the OH (A-X) (0-0) band in the H2O/Ar ratio range of 0.0-1.9%. The highest OH number density is consistently located in the vicinity of the plasma jet tip, regardless of the H2O/Ar ratio. OH number density in the post-tip region follows approximately an exponential decay along the jet axis with the fastest decay constant of 3.0 mm in the H2O/Ar ratio of 1.5%. Given the low gas temperature of 420-910 K and low electron temperature of 0.5-5 eV along the jet axis, formation of the OH radical is predominantly due to electron impact induced dissociation of H2O and dissociative recombination of H2O+ resulting from the Penning ionization process.

  5. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    SciTech Connect

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang; Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  6. Factor XII-independent activation of factor XI in plasma: effects of sulfatides on tissue factor-induced coagulation.

    PubMed

    Gailani, D; Broze, G J

    1993-08-01

    Factor XI (FXI) may be activated in a purified system by thrombin and by autoactivation in the presence of negatively charged substances such as dextran sulfate or sulfatides. The current studies were performed to determine if these processes occur during the coagulation of plasma. FXII--deficient plasma was supplemented with 125I-FXI and clot formation was induced with tissue factor and/or sulfatides. Cleavage of FXI was studied by standard polyacrylamide gel electrophoresis and autoradiography. Activated FXI (FXIa) was detected after 20 minutes of incubation with sulfatides alone and this process was markedly accelerated by the addition of tissue factor (TF). The enhancing effect of TF was blocked by hirudin, which indicated thrombin involvement in FXI activation. The contribution of FXIa to FIX activation in this system was studied using a 3H-FIX activation peptide release assay. Sulfatides increased FIX activation about twofold in plasma induced to clot with TF but had no effect if the plasma was immunodepleted of FXI. FIX activation was also increased in plasma induced to clot with FXa if sulfatides were present. The enhanced generation of FIXa was dependent on FXI and was blocked by hirudin. Some activation was seen in the reactions with sulfatides and hirudin and is likely solely caused by FXI autoactivation. The data indicate that during the coagulation of plasma in the presence of sulfatides, FXI is activated by a mechanism that is thrombin dependent and does not require FXII. PMID:8338946

  7. Characterization of self-assembled silver pattern forming in argon and ammonia mixed atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kihara, Naoya; Blanquet, Ella; Hiraoka, Yu; Sakai, Osamu

    2015-09-01

    Self-assembly fractal-like silver pattern was observed when the silver nitrate solution was dried with the gas flow of argon and ammonia mixed atmospheric plasma. This process can generate hydrazine, which is a powerful reductive agent, and silver particles are deposited from silver nitrate self-assembly and form fractal-like pattern in sub- μm order. This pattern shows abnormal optical response, so our self-assembly plasma process will be likely to bring a good method to make optical metamaterials because of its simplicity. In addition, we proposed that this process is applicable for widely sensitive metamaterials process, since we made sub- μm and several ten micrometers mingled microstructure through the plasma process with the use of micro particles. We diagnosed the characteristics of this typical pattern by Fourier transform infrared spectroscopy and numerical simulation, and confirmed that the pattern was widely sensitive from mid-infrared to far-infrared region. We aim at controlling the typical response phenomena and making widely sensitive optical metamaterials with changing deposition condition.

  8. Enhanced specificity of immunoblotting using radiolabeled antigen overlay: studies of blood coagulation factor XII and prekallikrein in plasma

    SciTech Connect

    Laemmle, B.; Berrettini, M.; Griffin, J.H.

    1986-01-01

    Immunoblotting of blood coagulation Factor XII and plasma prekallikrein in whole plasma was performed using radiolabeled antigen for detection. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis of plasma and transfer to nitrocellulose sheets, the blots were first reacted with polyclonal goat anti-Factor XII or anti-prekallikrein antisera and then with /sup 125/I-Factor XII or /sup 125/I-prekallikrein, respectively. A major advantage of using radiolabeled antigen rather than radiolabeled secondary antibody was enhanced specificity of immunodetection of these antigens in plasma. This procedure was sensitive to approx.0.3 ng of either Factor XII or prekallikrein antigen and was useful for detection of Factor XII cleavage fragments in contact activated plasma. Radiolabeled antigen overlay may improve the specificity of immunoblotting of trace antigens in any complex mixtures.

  9. Net emission coefficients of argon iron plasmas with electron Stark widths scaled to experiments

    NASA Astrophysics Data System (ADS)

    Wendt, M.

    2011-03-01

    The net emission coefficient of plasmas containing argon and iron at atmospheric pressure is calculated and analysed for the case of cylindrical geometry. Its values are obtained by integrating the monochromatic net emission coefficient taking into account continuous and line radiation. The width of the spectral lines is determined by Doppler broadening, natural, resonance, van der Waals, electron and ion Stark broadening. As Stark broadening is the most important broadening mechanism in the considered pressure and temperature range, the electron Stark widths are calculated following the semi-empirical Stark broadening theory. Additionally, the electron Stark widths of Ar, Ar+, Fe and Fe+ are multiplied by scaling factors in order to reproduce experimental electron Stark widths. The scaling factor is determined for each species separately. For small plasma radii the net emission coefficient determined here shows good agreement with literature values where spherical geometry is considered while they decrease faster with increasing plasma radius. This behaviour is caused by the increase of the irradiation of the symmetry axis when cylindrical instead of spherical geometry is considered. For radii and temperatures typical of the metal filled core of arcs occurring in gas metal arc welding processes, i.e. radii between 1 and 2 × 10-3 m and temperatures between 5000 and 10 000 K, the scaling of the Stark widths increases the net emission coefficient of iron plasmas by between 2% and 23%. In this parameter range the net emission coefficient of iron plasmas for cylindrical geometry is between 30% and 37% smaller than values calculated for spherical geometry.

  10. Effects of argon dilution on the translational and rotational temperatures of SiH in silane and disilane plasmas.

    PubMed

    Zhou, Jie; Zhang, Jianming; Fisher, Ellen R

    2005-11-24

    The effects of argon dilution on the translational and rotational temperatures of SiH in both silane and disilane plasmas have been investigated using the imaging of radicals interacting with surfaces (IRIS) technique. The average rotational temperature of SiH determined from the SiH excitation spectra is approximately 500 K in both SiH(4)/Ar and Si(2)H(6)/Ar plasmas, with no obvious dependence on the fraction of argon dilution. Modeling of kinetic data yields average SiH translational temperatures of approximately 1000 K, with no dependence on the fraction of argon in the SiH(4)/Ar plasmas within the studied range. In the Si(2)H(6)/Ar plasmas, however, the translational temperature decreases from approximately 1000 to approximately 550 K as the Ar fraction in the plasma increases. Thus, at the highest Ar fractions, the translational and rotational temperatures are nearly identical, indicating that the SiH radicals are thermally equilibrated. The underlying chemistry and mechanisms of SiH energy equilibration in Ar-diluted plasmas are discussed. PMID:16834307

  11. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  12. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of nanosecond-pulsed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Choe, Wonho; Kim, Holak; Park, Joo Young

    2015-06-01

    Electron diagnostics based on electron-neutral atom (e-a) bremsstrahlung in the UV and visible range emitted from atmospheric pressure plasmas is presented. Since the spectral emissivity of the e-a bremsstrahlung is determined by electron density (ne) and mean electron temperature (Te) representing the Maxwellian electron energy distribution, their diagnostics is possible. As an example, emission spectra measured from capacitive discharges are presented, which show good agreement with the theoretically calculated emissivity of the e-a bremsstrahlung. For a single pin electrode nanosecond-pulsed plasma jet (n-PPJ) in argon, we investigate the electron properties and the temporal behavior of the positive streamers. Streamers with many branches are clearly observed inside the dielectric tube, while a few main streamers propagate outside the tube along the jet axis. A two-dimensional (2D) measurement of the time-averaged Te distribution was developed using a commercial digital camera and optical band pass filters based on the emissivity ratio of two wavelengths of the e-a bremsstrahlung. The viable measurement range of Te is 0.5-7 eV for the choice of two wavelengths of 300s and 900s nm and 0.5-4 eV for two wavelengths of 400s and 900s nm, which are uncontaminated by the atomic and/or molecular spectra. The 2D Te distribution obtained using 514.5 and 632.8 nm emissions helps to reveal the role of electrons in streamer characteristics in the argon n-PPJ. Time-averaged Te of 2.0 eV and 1.0 eV inside and outside the tube, respectively, were measured. The streamer dynamics of the n-PPJ is shown to be dependent on Te.

  13. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  14. Spatially resolved measurement of hydroxyl radical (OH) concentration in an argon RF plasma jet by planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Voráč, J.; Obrusník, A.; Procházka, V.; Dvořák, P.; Talába, M.

    2014-04-01

    A spatially resolved two-dimensional quantitative measurement of OH concentration in an effluent of a radio-frequency-driven atmospheric pressure plasma jet ignited in argon is presented. The measurement is supported by a gas dynamics model which gives detailed information about the spatially resolved gas composition and temperature. The volume in which the OH radicals were found and partially also the total amount of OH radicals increase with the argon flow rate, up to a value for which the flow becomes turbulent. In the turbulent regime, both the emission from the jet and the OH concentration are confined to a smaller volume. The maximum concentration of about 5.4 × 1021 m-3 is reached at the tip of the visible discharge at the flow rate of 0.6 slm and high driving powers. An increase in hydroxyl concentration due to admixing of humid ambient air to the argon flow was observed.

  15. [A role of some intracellular signaling cascades in planarian regeneration activated under irradiation with low-temperature argon plasma].

    PubMed

    Ermakov, A M; Ermakova, O N; Maevskiĭ, E I

    2014-01-01

    Using inhibitory analysis the role of some intracellular signaling pathways in activation of planarian regeneration under the influence of low-temperature argon plasma (LTAP) has been investigated. Inactivation of specific inhibitors of intracellular signaling enzymes such as the receptor tyrosine kinase (EGFR), TGF β receptor, calmodulin, adenylate cyclase, phospholipase A2, phospholipase C, cyclin-dependent protein kinase, JAK2-protein kinase, JNK-protein kinase MEK-protein kinase led to inhibition of the head growth during its regeneration in planarians. Pretreatment with LTAP irradiation provided no inhibitory action of some cascades regulating proliferation. However, the inhibitors of the key regulators of regeneration: TGF β receptor, calmodulin and MEK-protein kinase completely suppressed the activating effect of plasma. Thus, by the example of regenerating planarians it is shown, that biological activity of low-temperature argon plasma LTAP is caused by modulation of a plurality of cellular signaling systems. PMID:25715600

  16. Measurements of the populations of metastable and resonance levels in the plasma of an RF capacitive discharge in argon

    SciTech Connect

    Vasilieva, A. N.; Voloshin, D. G.; Kovalev, A. S. Kurchikov, K. A.

    2015-05-15

    The behavior of the populations of two metastable and two lower resonance levels of argon atoms in the plasma of an RF capacitive discharge was studied. The populations were measured by two methods: the method of emission self-absorption and the method based on measurements of the intensity ratios of spectral lines. It is shown that the populations of resonance levels increase with increasing power deposited in the discharge, whereas the populations of metastable levels is independent of the RF power. The distribution of the populations over energy levels is not equilibrium under these conditions. The population kinetics of argon atomic levels in the discharge plasma is simulated numerically. The distribution function of plasma electrons recovered from the measured populations of atomic levels and numerical simulations is found to be non-Maxwellian.

  17. Clinical Outcomes of Percutaneous Plasma Disc Coagulation Therapy for Lumbar Herniated Disc Diseases

    PubMed Central

    Kim, Sung Chul; Cho, Ki Hong

    2012-01-01

    Objective This is prospective study of clinical outcomes of percutaneous plasma disc coagulation Therapy (PDCT) in patients with herniated lumbar disc disease (HLD) to evaluate the safety and efficacy in its clinical application and usefulness as a reliable alternative to microscopic discectomy. Methods Forty-six patients were enrolled in this study from April 2006 to June 2010. All patients had one-level HLD. Disc degeneration was graded on routine T2-weighted magnetic resonance Image (MRI) using the Pfirrmann's grading system and all index levels were grade 3 and grade 4. Indications for surgery were radiculopathy caused by disc protrusion with soft consistency. MRI was done at one month after the procedure in all patients to check post-PDCT change. The clinical outcomes were evaluated using Visual Analog Scales (VAS) score and MacNab's criteria. Results This study was approved by the Institutional Review Board of our institution. The age of the study population ranged from 16 to 59 years with a mean age of 37.2 years. There were 29 males and 17 females in this study. The mean period of clinical follow-up was 21 months. The average preoperative VAS score for radiculopathy was 7.4±1.4, while the final follow-up VAS score was 1.4±0.7 (p<0.001). In MacNab's criteria, 41 patients (89.1%) had achieved favorable improvement (excellent and good) until later follow-up. There were one patient from infection and two patients who needed to convert to open discectomy. Conclusion PDCT is a safe and efficient treatment modality in a selective patient with HLD. PMID:22396836

  18. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  19. Spatio-temporal evolution of the dust particle size distribution in dusty argon rf plasmas

    NASA Astrophysics Data System (ADS)

    Killer, Carsten; Mulsow, Matthias; Melzer, André

    2015-04-01

    An imaging Mie scattering technique has been developed to measure the spatially resolved size distribution of dust particles in extended dust clouds. For large dust clouds of micrometre-sized plastic particles confined in an radio frequency (rf) discharge, a segmentation of the dust cloud into populations of different sizes is observed, even though the size differences are very small. The dust size dispersion inside a population is much smaller than the difference between the populations. Furthermore, the dust size is found to be constantly decreasing over time while the particles are confined in an inert argon plasma. The processes responsible for the shrinking of the dust in the plasma have been addressed by mass spectrometry, ex situ microscopy of the dust size, dust resonance measurements, in situ determination of the dust surface temperature and Fourier transform infrared absorption (FT-IR). It is concluded that both a reduction of dust size and its mass density due to outgassing of water and other volatile constituents as well as chemical etching by oxygen impurities are responsible for the observations.

  20. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach

    PubMed Central

    Traba, Christian; Liang, Jun F.

    2014-01-01

    The direct application of low power argon plasma for the decontamination of pre-formed Staphylococcus aureus biofilms on various surfaces was examined. Distinct chemical/physical properties of reactive species found in argon plasmas generated at different wattages all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of results showed that: (1) the different reactive species produced in each plasma demonstrated specific antibacterial and/or anti-biofilm activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions. Under optimal experimental parameters, bacterial cells in S. aureus biofilms were killed (>99.9%) by plasmas within 10 min of exposure and no bacteria nor biofilm re-growth from argon discharge gas treated biofilms was observed for 150 h. The decontamination ability of plasmas for the treatment of biofilm related contaminations on various materials was confirmed and an entirely novel layer-by-layer decontamination approach was designed and examined. PMID:25569189

  1. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces:In vitro study

    PubMed Central

    Annunziata, Marco; Donnarumma, Giovanna; Caputo, Pina; Nastri, Livia; Guida, Luigi

    2016-01-01

    Background Surface treatment by argon plasma is widely used as the last step of the manufacturing process of titanium implant fixtures before their sterilization by gamma rays. The possibility of using such a technology in the daily clinical practice is particularly fascinating. The aim of the present study was to assess the effects of the argon plasma treatment on different titanium implant surfaces previously exposed In vitro to bacterial contamination. Material and Methods Sterile c.p. titanium implant discs with turned (T, Sa: 0.8 µm ), sandblasted/acid-etched (SAE, Sa: 1.3 µm) and titanium plasma sprayed (TPS, Sa: 3.0µm) surface were used in this study. A strain of Aggregatibacter actinomycetemcomitans ATCC3718 was grown at 37°C under anaerobic conditions for 24 h and then transferred on six discs for each of the three surface types. After 24 hours, a half of the contaminated discs (control group) were directly used to evaluate the colony forming units (CFUs). The other half of the contaminated discs (test group) were treated in an argon plasma chamber for 12 minutes at room temperature prior to be analyzed for CFU counting. All assays were performed using triplicate samples of each material in 3 different experiments. Results When the CFU counting was carried out on control discs, a total of 1.50x106±1.4x105, 1.55x106±7.07x104 and 3.15x106±2.12x105 CFU was respectively assessed for T, SAE and TPS discs, without statistically significant differences among the three surfaces. On the contrary, any trace of bacterial contamination was assessed for titanium discs treated in the argon plasma chamber prior to be analyzed, irrespectively to the implant surface tested. Conclusions Within the limit of this study, reported data suggested that the argon plasma technology could be efficiently used to decontaminate/sterilize previously infected titanium implant surfaces. Key words:Argon plasma, titanium implant surface, Aggregatibacter actinomycetemcomitans. PMID:26595834

  2. Correlations between plasma variables and the deposition process of Si films from chlorosilanes in low pressure RF plasma of argon and hydrogen

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Grill, A.; Manory, R.; Grossman, E.

    1984-01-01

    The dissociation of chlorosilanes to silicon and its deposition on a solid substrate in a RF plasma of mixtures of argon and hydrogen were investigated as a function of the macrovariables of the plasma. The dissociation mechanism of chlorosilanes and HCl as well as the formation of Si in the plasma state were studied by sampling the plasma with a quadrupole mass spectrometer. Macrovariables such as pressure, net RF power input and locations in the plasma reactor strongly influence the kinetics of dissociation. The deposition process of microcrystalline silicon films and its chlorine contamination were correlated to the dissociation mechanism of chlorosilanes and HCl.

  3. Determining the effect of freezing on coagulation testing: comparison of results between fresh and once frozen-thawed plasma.

    PubMed

    Gosselin, Robert C; Dwyre, Denis W

    2015-01-01

    The accuracy of the results from coagulation testing can be affected by numerous preanalytic and analytic variables including the stability of the citrated sample at room temperature. Samples not tested within 2-4?h of collection should be processed and frozen for later analysis. As limited data exist about the impact of freezing samples on coagulation testing, we sought to evaluate the effect of freezing on coagulation testing. Plasma samples into 3.2% sodium citrate tubes, centrifuged to yield platelet-poor plasma, were evaluated for prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen, D-dimer, antithrombin (AT) activity, factors V, VII, VIII, IX, lupus anticoagulant and anti-Xa measurements for both unfractionated and low-molecular-weight heparins. Samples were then frozen at -70C for at least 1 week and testing was repeated using the same lot of material. All tests strongly correlated (R?>?0.85) between fresh and frozen sample results. Using paired t test analysis, significant differences between fresh and frozen tested plasma existed for PT, APTT, factors V, VIII and AT. Significant differences existed between fresh and frozen lupus anticoagulant ratios (lupus anticoagulant screen but not lupus anticoagulant confirm), and single centrifugation process underestimated the presence of lupus anticoagulant as compared to double centrifugation processing. Freezing significantly affects the results for PT, APTT, factors V and VIII activity, and AT activity, although these differences were not considered to be clinically significant. Double centrifugation is required for accurate lupus anticoagulant testing, regardless of whether platelet-poor plasma is achieved with single centrifugation. PMID:25202883

  4. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas

    NASA Astrophysics Data System (ADS)

    Barriga-Carrasco, Manuel D.; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Qeq. This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Qeff is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Qeff is larger than the equilibrium charge state Qeq due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ˜42 -62.5 % and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ˜2.2 and 5.1 % , for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ˜38.8 -57.4 % , where higher values correspond to a fully ionized carbon plasma.

  5. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    SciTech Connect

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-06-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N{sub 2}-Ar and O{sub 2}-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N{sub 2}-Ar and O{sub 2}-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N{sub 2}-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O{sub 2} -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O{sub 2}-Ar discharges, the dissociation fraction of O{sub 2} molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  6. The study of FTO surface texturing fabrication using Argon plasma etching technique for DSSC applications

    NASA Astrophysics Data System (ADS)

    Jayanti, Lindha; Kusumandari; Sujitno, Tjipto; Suryana, Risa

    2016-02-01

    This paper is aimed to investigate the fabrication of the fluorine-doped tin oxide (FTO) texturing by using Argon (Ar) plasma etching. The pressure and temperature of Ar gas during plasma etching were 1.6 mbar and 240-285oC, respectively. The plasma etching time was varied from 3 and 10 min. We also prepared without etching samples as reference. UV-Vis spectrophotometer showed that the transmittances of etching samples are higher than the without etching samples. The root mean square roughness (Rq) of etching samples are lower than the without etching samples. It is considered that the Ar ions bombardment can modify the FTO surfaces. However, the etching time does not significantly affect the FTO surfaces for 3 min and 10 min. The Rq of the without etching sample, the etching sample for 3 min, and the etching sample for 10 min are 11.697 nm, 9.859 nm, and 9.777 nm, respectively. These results are good agreement with the four point probe measurement that indicated that the sheet resistance (RS) for each the without sample, the etching sample for 3 min, and the etching sample for 10 min are 16.817 Ωsq, 16.067 Ω/sq, and 15.990 Ω/sq. In addition, the optical transmittance of the etching sample for 3 min and the etching sample for 10 min at wavelengths of 350 - 850 nm are almost similar. This is evidence that the etching time below 10 min cannot significantly change the morphology, optical and electrical properties.

  7. X-ray Photoelectron Spectroscopy Study of Argon-Plasma-Treated Fluoropolymers

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1994-01-01

    Films of poly(tetrafluoroethylene) (PTFE) and of a tetrafluoroethylene-perfluoroalkyl vinyl ether (approximately 49:1) copolymer (PFA) were exposed to a radio-frequency argon plasma and then examined by X-ray photoelectron spectroscopy (XPS). The use of fluoropolymer films nearly free of surface hydrocarbon contamination as well as the use of a monochromatized X-ray source for XPS removed two factors contributing to conflicting reports on the effect of exposure time on the fluorine-to-carbon (F/C) and oxygen-to-carbon (O/C) ratios for several Ar-plasma-treated fluoropolymers. Contrary to literature indications, a common pattern was found for PTFE and PFA: a moderate decrease in F/C ratio (from 1.99 to 1.40, and from 1.97 to 1.57, respectively), together with a moderate increase in O/C ratio (from negligible to about 0.10, and from 0.012 to about O.10, respectively) at very short exposures, after which the F/C ratios remained essentially constant on prolonged exposures, while the O/C ratios for PTFE and PFA leveled off at 0.11 and 0.15, respectively. The XPS C(sub 1s), spectra for these polymers exposed to the Ar plasma for 20 min were similar and presented, besides a prominent peak at 292.0 eV (CF2,) and a minor peak at 294.0 or 294.1 eV (CF3), a composite band of four curve-resolved peaks (approximately 285-290 eV) representing various CH, CC, CO, CN, and CF functionalities.

  8. Surface modification of polypropylene (PP) using single and dual high radio frequency capacitive coupled argon plasma discharge

    NASA Astrophysics Data System (ADS)

    Akbar, D.

    2016-01-01

    Single (40.68 MHz) and dual (40.68/2.1 MHz) high radio frequency (RF) argon plasma discharge was employed as a source of a low-temperature treatment mechanism that was used to modify the surface of polypropylene (PP). The effects of argon plasma on the surface chemistry and the surface morphology of PP were studied using X-ray diffraction analyses. In this study, samples were treated under different plasma operation conditions for parameters such as RF power, gas pressure and treatment time. Furthermore, the crystallite size was calculated (using Scherrer equation) from the diffraction pattern of the β fraction (Full Width at Half maximum) for PP samples. The results reveal that the crystallite size strongly increases with RF power and treatment time, but decreases with gas pressure. From the analysis, it was found that the treated samples have higher crystallite sizes in compared to those of the single RF plasma discharge. This happens because the increase of plasma temperature leads to increases in the crystallization of PP sample, so that the crystallite size also increases. Furthermore, because of the advantageous features of the dual-RF plasma mode, the surface modification of PP sample can occur more quickly than is possible via the single-RF plasma discharge.

  9. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah; Severn, Greg; Baalrud, Scott D.

    2016-05-01

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar-Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.

  10. The Mechanisms of Coagulation.

    ERIC Educational Resources Information Center

    Kurtz, Richard; Jesty, Jolyon

    1994-01-01

    Several topics such as heart disease, strokes, biochemical reactions, blood components, and genetics can be related to blood clotting. Introduces a simple, safe and inexpensive hands-on demonstration using bovine (cattle) blood plasma of normal and abnormal coagulation. (ZWH)

  11. Temperature measurements in microwave argon plasma source by using overlapped molecular emission spectra

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, E.; Bazavan, M.; Shindo, H.

    2015-09-01

    The electron excitation temperature Texc, vibrational Tvib, and rotational Trot temperatures were measured in a high-pressure line-shaped microwave plasma source in argon over a wide range of gas pressure and microwave power, by using optical emission spectra. The selected ArI transition lines 5p-4s and 4p-4s were chosen to calculate electron excitation temperature using Boltzmann's plot method. Meanwhile, the emission spectra of hydroxyl OH molecular ( A 2 Σ + - X 2 Π i , Δ ν = 0 ) band and the nitrogen N2 second positive system ( C 3 Π u - B 3 Π g , Δ ν = + 1 ), both second diffraction order, were used to evaluate the vibrational Tvib and rotational Trot temperatures using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. The components of the overlapped spectrum are greatly influenced by the gas pressure; however, they are independent on microwave power. For temperatures, it was found that the Texc dramatically decreases from 2.5 to 0.75 eV, which qualitatively agrees with T e deduced from zero-global model. Both of Tvib and Trot significantly decrease with as gas pressure increase from 0.4 to 50 Torr. Yet, they behave differently with microwave power.

  12. Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet

    SciTech Connect

    Zhang Qian; Wang Ruixue; Sun Peng; Feng Hongqing; Liang Yongdong; Zhu Weidong; Becker, Kurt H.; Zhang Jue; Fang Jing

    2012-06-15

    Three types of gases, pure argon (99.999%), argon with 2% oxygen, and argon with 2% oxygen and 10% nitrogen were used as operating gases of a direct current atmospheric pressure cold plasma jet to inactivate Staphylococcus aureus (S. aureus) suspended in a liquid. The inactivation efficacies for the plasma jets operating in the three gases decrease from Ar/O{sub 2}(2%) to Ar/O{sub 2}(2%)/N{sub 2}(10%) to pure Ar. Optical emission spectroscopy, electron spin resonance spectroscopy, high performance liquid chromatography, and atomic absorption spectrophotometry were employed to identify and monitor the reactive species in the plasma-liquid system for the three operating gases and revealed the presence of O, {sup 1}O{sub 2}, OH, NO, H{sub 2}O{sub 2}, O{sub 3}, and NO{sub 3}{sup -}/NO{sub 2}{sup -} as well as Cu{sup +}/Cu{sup 2+}. The S. aureus inactivation results indicate that atomic oxygen (O) is the key inactivation agent, while other species play a lesser role in the inactivation progress studied here.

  13. Investigation of Plasma Uniformity in Pulsed 100 MHz Narrow Gap-Capacitively Coupled Argon Plasma

    NASA Astrophysics Data System (ADS)

    Jang, Yunchang; Choi, Myungsun; Rho, Hyun-Joon; Huh, Sung-Ryul; Yoon, Sung-Young; Ryu, Sangwon; Kim, Gon-Ho

    2015-09-01

    Capacitively coupled plasmas (CCPs) for industrial applications have a narrow gap between two electrodes and a large exhaust region between electrodes and lateral walls. In this study, uniformity of electron density (ne) distribution was investigated in a 300 mm Φ CCP with outer-electrode space 4 times larger than inter-electrode space. The 100 MHz RF power was applied to top electrode at a pulse repetition rate of 5 kHz. Experiments reveals that the non-uniformity of the ne decreases from 0.60 in the active-glow period to 0.39 in after-glow period. In order to account for this phenomenon in the after-glow, the effective diffusion length representing the ratio of plasma generation volume to effective loss area is introduced. When RF power is turned off, the ne of each space starts to decrease with the specific loss rate determined by each leff. The calculated leff of the outer-electrode space is about 3.7 times longer than that in the outer-electrode space. This implies that ne of the outer-electrode space decay more slowly, leading to improve the uniformity. The details on experimental results and analysis will be presented and discussed. This research was supported by BK21 Research Division of Seoul National University for Energy Resources, Ministry of Trade, Industry and Energy Republic of Korea and Consortium of Semiconductor Advanced Research.

  14. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  15. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  16. Discharge characteristics of an atmospheric-pressure argon plasma column generated with a single-electrode configuration

    SciTech Connect

    Li Shouzhe; Huang Wentong; Zhang Jialiang; Wang Dezhen

    2009-07-15

    An atmospheric-pressure argon discharge plasma column is generated by making use of a single-electrode configuration with the power supply operating at a frequency of 45 kHz. It is observed that corona, glowlike plume, and filamentary discharges evolve individually with increasing applied voltage. It is in the filamentary state with average electron density of order 10{sup 12} cm{sup -3} that plasma column grows up in the tube with increasing applied voltage. Its discharge characteristics are determined by measuring electrical parameters (voltage, conduction current, and average absorbed power) and optical emission spectroscopy.

  17. [Influence of pressure on plasma temperature in air/argon dielecteic barrier discharge].

    PubMed

    Dong, Li-Fang; Qi, Yu-Yan; Li, Li-Chun; Hao, Ya-Juan; Gao, Rui-Ling; Zhao, Zeng-Chao; Li, Xue-Chen

    2008-01-01

    Electron excitation temperature and molecule vibrational temperature in argon/air dielectric barrier discharge (DBD) at different gas pressure with water electrodes were studied by using optical emission spectra. The spectral lines of Ar I 763. 51 nm(2P6 --> 1S5) and Ar I 772.42 nm(2P2 --> 1S3) were chosen to calculate electron excitation temperature by the relative intensity ratio method. The emission spectra of nitrogen band of second positive system ( C3 pi(u) --> B3 pi(g)) were measured at the same time. The molecule vibration temperature was estimated by the emission intensities of different bands with delta(nu) = -1, delta(nu) = -2, and delta(nU) = -3 in nitrogen band of second positive system, using Boltzmann's plot method. In addition, the relative line intensities of nitrogen (0-0) band of first negative system at 391.4 nm and (0-0) band of second positive system at 337.1 nm were also measured to study the variation of electron energy. It was found that the electron excitation temperature decreased from 4 700 to 3 300 K and the molecule vibrational temperature decreased from 3 200 to 2 900 K with increasing gas pressure from 20 to 60 kPa. Besides, the ratio of I(N2+)/I(N2) also decreased with pressure increasing from 20 to 60 kPa, indicating that the average electron energy decreases with the gas pressure increasing. These results are of great importance to the study of plasma dynamics of dielectric barrier discharge and also to the underlying industrial applications. PMID:18422111

  18. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Lee, Mi Hee; Park, Bong Joo; Jin, Soo Chang; Kim, Dohyun; Han, Inho; Kim, Jungsung; Hyun, Soon O.; Chung, Kie-Hyung; Park, Jong-Chul

    2009-11-01

    Microbial biofilms are a functional matrix of microbial cells, enveloped in polysaccharides, enzymes and virulence factors secreted by them that can develop on indwelling medical devices and biomaterials. Plasma sterilization has been widely studied in recent years for biological applications. In this study, we evaluated the possibility of removal and anti-recovery of biofilms by microwave-induced argon plasma at atmospheric pressure. We observed that all bacterial biofilms formatted by Gram-negative and Gram-positive bacteria are removed in less than 20 s, and the growth inhibitions of planktonic bacteria within biofilms are also confirmed by plasma exposure for 5 s. These results suggest that our plasma system can be applied to medical and biological fields where the removal of biofilms and their debris is required.

  19. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    SciTech Connect

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-15

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.

  20. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    NASA Astrophysics Data System (ADS)

    Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.

  1. Use of plasma with high levels of ionised calcium in the production of model scale coagulation factor concentrates.

    PubMed

    Farrugia, A; Douglas, S; James, J; Whyte, G; Herrington, R

    1990-11-30

    We have attempted to exploit the Ca2(+)-dependent stability of factor VIII in producing factor VIII concentrates of higher yield. Plasma levels of ionised calcium were increased in two ways: (a) whole blood collection into half-strength citrate CPD anticoagulant, leading to free Ca2+ levels of ca 120 microM and (b) apheresis collection of plasma which was then recalcified to free Ca2+ levels of ca 300 microM under heparin cover. Coagulation factor concentrates were prepared using model versions of our industrial scale manufacturing methods. Factor VIII yield was increased through low citrate collection. This did not compromise factor IX yield or thrombogenic potential. Use of recalcified heparinised plasma did not lead to any improvement in factor VIII yield and resulted in a marked drop in factor IX recovery, possibly from interference by heparin of factor IX binding in ion-exchange chromatography. The benefits accruable through the use of half-strength citrate CPD anticoagulant support the continued evaluation of this preservative in large scale blood collection and fractionation. The deleterious effects of heparin in charge-mediated plasma fractionations may pose serious difficulties in harvesting vitamin K dependent factors. PMID:2128967

  2. Three-dimensional flow dynamics of an argon RF plasma with dc jet assistance: a numerical study

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya

    2013-01-01

    Time-dependent three-dimensional numerical simulation based on a large-eddy simulation approach is conducted to ascertain the complicated thermofluid dynamics of an argon radio-frequency (RF) inductively coupled plasma with a direct-current (dc) plasma jet assistance, considering non-uniform densities and properties in time and space as well as turbulence generation and suppression. Using a combination of numerical schemes suitable to capture vortices, the present simulation successfully shows unsteady behaviour of the plasma as well as wave-like interfaces between a high-temperature flow and a low-temperature flow as a result of the balance of fluid-dynamical instability and a viscous diffusion effect. Small cold vortices generated near a dc jet injector are entrained into and merged with vortices generated around the dc jet. Subsequently, they interact with large vortices in an RF induction coil region, which causes a much more complex vortex structure.

  3. Anomalous high-velocity outbursts ejected from the surface of tungsten microdroplets in a flow of argon-air plasma

    NASA Astrophysics Data System (ADS)

    Gulyaev, I. P.; Dolmatov, A. V.; Gulyaev, P. Yu; Iordan, V. I.; Kharlamov, M. Yu; Krivtsun, I. V.

    2016-02-01

    For the first time, a phenomenon of high-velocity outbursts ejected from the surface of liquid tungsten microparticles in a flow of argon-air plasma under atmospheric pressure was observed. As tungsten particles sized 50 to 200 μm moved in a plasma flow, stratified radiating spheres up to 9 mm in diameter formed around such particles. The spheres were sources of high-velocity outbursts whose ejection direction coincided with the direction of the plasma flow. The velocity of the anomalous outbursts amounted to 3-20 km/s. In the outburst images, the distribution of glow intensity along outburst tracks exhibited a wavy decaying behavior with a wavelength of 5-15 mm. Possible physical factors that could be the cause of the phenomenon are discussed.

  4. Application of a wall-stabilized argon plasma arc for the determination of some volatile hydride-forming elements

    NASA Astrophysics Data System (ADS)

    Eid, M. A.; Moustafa, H. R.; Al Ashkar, E. A.; Ali, S. S.

    2006-04-01

    Volatile hydrides of As, Se, Sb and Sn, produced by a continuous manifold hydride generator, have been swept with argon and injected into the plasma of home-made direct current wall-stabilized argon plasma arc via one of its stabilizing segments. The arc burns in argon with an arc current of 20 A and a cathode-anode voltage of 40 V. Measurements were carried out using a 1 m focal length computer-controlled monochromator (Jobin Yvon 1000R) equipped with a holographic grating having 2400 grooves mm - 1 . Optimal values of the experimental variables that give the highest value of intensity ratio of line-to-background were determined. These are: plasma gas flow rate 1.0 l min - 1 , carrier gas flow rate 0.35 l min - 1 for As and Sb and 0.6 l min - 1 for Se and Sn, concentration of nitric acid used for acidification of the sample 2 M for As and Sb, 0.5 M for Se and 0.1 M for Sn and sodium borohydride concentration: 1.5% for As and Se and 2% for Sb and Sn. Chemical interference of some transition elements that affect the hydride generation process and a trial to mask their interference effect were investigated. Calibration curves were linear and limits of detection calculated on the base of 3 σ of the background were found to be as low as 3.9, 6.8, 9.8 and 13.2 ng ml - 1 for As, Se, Sb and Sn, respectively. Finally, the analytical applicability of the arc device was tested by the determination of As in four lake sediment samples, LKSD 1, LKSD 2, LKSD 3 and LKSD 4, of the Centre for Mineral and Energy Technology, Ottawa, Ontario, Canada, which have been analyzed for As using atomic absorption spectrometry (AAS). The results were in good agreement with those obtained by AAS.

  5. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  6. Effects of EDTA on routine and specialized coagulation testing and an easy method to distinguish EDTA-treated from citrated plasma samples.

    PubMed

    Crist, Ronda A; Gibbs, Kathie; Rodgers, George M; Smock, Kristi J

    2009-01-01

    Coagulation testing is performed with citrate-treated plasma. Samples submitted in other anticoagulants, such as EDTA, should not be tested. We aimed to evaluate the effects of EDTA on routine and specialized coagulation tests and to establish sodium tetraphenylborate testing as a quick and reliable method to identify EDTA-treated plasma samples. We performed the following measurements on citrateand EDTA-treated plasma samples from 10 healthy volunteers: sodium tetraphenylborate testing, prothrombin time (PT), partial thromboplastin time (PTT), potassium concentration, and functional assays for factors II, V, VII, VIII, IX, X, XI, XII, proteins C and S, and antithrombin. Mean values for citrate- and EDTA-treated plasma were most different for PT, PTT, factors V and VIII, and proteins C and S. Sodium tetraphenylborate testing correctly classified 100% of citratetreated and EDTA-treated samples. We confirm that EDTA has effects on coagulation assays. Sodium tetraphenylborate testing is a quick, simple, and inexpensive method for coagulation laboratories to identify samples erroneously submitted in EDTA. PMID:19923105

  7. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.

  8. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    PubMed Central

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  9. Determination of dissolved boron in fresh, estuarine, and geothermal waters by d.c. argon-plasma emission spectrometry

    USGS Publications Warehouse

    Ball, J.W.; Thompson, J.M.; Jenne, E.A.

    1978-01-01

    A d.c. argon-plasma emission spectrometer is used to determine dissolved boron in natural (fresh and estuarine) water samples. Concentrations ranged from 0.02 to 250 mg l-1. The emission-concentration function is linear from 0.02 to 1000 mg l-1. Achievement of a relative standard deviation of ??? 3% requires frequent restandardization to offset sensitivity changes. Dilution may be necessary to overcome high and variable electron density caused by differences in alkali-metal content and to avoid quenching of the plasma by high solute concentrations of sodium and other easily ionized elements. The proposed method was tested against a reference method and found to be more sensitive, equally or more precise and accurate, less subject to interferences, with a wider linear analytical range than the carmine method. Analyses of standard reference samples yielded results in all cases within one standard deviation of the means. ?? 1978.

  10. Sensitivity improvement in laser ablation inductively coupled plasma mass spectrometry achieved using a methane/argon and methanol/water/argon mixed gas plasma.

    PubMed

    Fliegel, Daniel; Frei, Christian; Fontaine, Gisela; Hu, Zhaochu; Gao, Shan; Gnther, Detlef

    2011-12-01

    The influence of the addition of carbon using methane or methanol/water to an inductively coupled plasma (ICP) via the carrier gas flow on the sensitivity in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was studied. During the ablation of SRM NIST 610 with simultaneous addition of CH(4) (0.6-1.4 ml min(-1)), a sensitivity enhancement of more than one order of magnitude for selected analytes (e.g. (75)As(+)) was observed. In addition to the sensitivity enhancement for As, Te, I and Se, also all other measured elements showed a significantly enhanced sensitivity (minimum by a factor of 2). Potential mechanisms for the observed intensity enhancement include charge transfer reactions, a change in the ICP shape and a temperature increase in the plasma. Furthermore, the aspiration of a methanol-water mixture into a cooled spray chamber and the simultaneous addition to the laser ablated aerosol was investigated. This type of mixing leads to a sensitivity enhancement up to a factor of 20. To prevent clogging of the sampler cone and skimmer cone by carbon deposition, a fast cleaning procedure for the interface is tested during running ICP, which allows the application of such a set-up for specific applications. PMID:21881665

  11. Interferometric investigation of the influence of argon buffer gas on the characteristics of laser-induced aluminum plasmas.

    PubMed

    Oh, Seong Y; Singh, Jagdish P; Lim, Changhwan

    2014-06-10

    An interferometric analysis was performed to investigate the influence of argon (Ar) buffer gas on the characteristics of laser-induced aluminum (Al) plasma at atmospheric pressure. The plasma was produced by focusing a Q-switched Nd:YAG laser pulse (λ=1064  nm, pulse duration ∼5  ns, E=6.0  mJ) onto an Al target. The interference patterns were constructed using a Nomarski interferometer incorporated with a frequency-doubled, Q-switched Nd:YAG laser (λ=532  nm, pulse duration ∼10  ns) that generates an interferometric probe beam. The interferometric measurements were carried out as a function of the elapsed time after the onset of breakdown under the conditions of open air and an Ar gas jet flow (5  l/min). With the injection of an Ar buffer gas jet in the ablation process, an increase in electron density and a preferential axial plasma expansion of the plasma plume were observed during the early stages of plasma formation as a consequence of increased inverse-Bremsstrahlung (IB) absorption efficiency. PMID:24921120

  12. The study of a homogeneous column of argon plasma at a pressure of 0.5 torr, generated by means of the Beenakker's cavity

    NASA Astrophysics Data System (ADS)

    Epstein, Irene L.; Gavrilović, Marijana; Jovićević, Sonja; Konjević, Nikola; Lebedev, Yuri A.; Tatarinov, Alexey V.

    2014-11-01

    A homogeneous column of argon plasma at a pressure of 0.5 torr, generated by means of the Beenakker cavity, has been investigated by methods of emission spectroscopy, photography and self-consistent 3D modeling in a nonlocal approximation. It is shown that the plasma column, which spreads beyond the resonator, is spatially uniform and it represents the afterglow of the microwave discharge produced inside the cavity. The simulation data of the spatial distributions of the electron energy density and concentrations of electrons, ions and argon atoms in metastable and radiating states are presented. The results of calculations are in agreement with experimental data.

  13. Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Tarasenko, O.; Chang, J.; Popovic, S.; Chen, C. Y.; Fan, H. W.; Scott, A.; Lahiani, M.; Alusta, P.; Drake, J. D.; Nikolic, M.

    2009-11-01

    The effectiveness and mechanism of a low temperature air plasma torch in clotting blood are explored. Both blood droplets and smeared blood samples were used in the tests. The treated droplet samples reveal how blood clotting depends on the distance at which the torch operated, and for how long the droplets have been exposed to the torch. Microscopy and cell count of smeared blood samples shed light on dependencies of erythrocyte and platelet counts on torch distance and exposure time. With an increase of torch distance, the platelet count of treated blood samples increases but is less than that of the control. The flux of reactive atomic oxygen (RAO) and the degree of blood clotting decreased. With an increase of exposure time, platelet count of treated samples decreased, while the degree of clot increased. The correlation among these dependencies and published data support a blood clotting mechanism that RAO as well as other likely reactive oxygen species generated by the plasma torch activate erythrocyte-platelets interactions and induces blood coagulation.

  14. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma.

    PubMed

    Beutel, Bryan G; Danna, Natalie R; Gangolli, Riddhi; Granato, Rodrigo; Manne, Lakshmiprada; Tovar, Nick; Coelho, Paulo G

    2014-12-01

    Bone graft materials are utilized to stimulate healing of bone defects or enhance osseointegration of implants. In order to augment these capabilities, various surface modification techniques, including atmospheric pressure plasma (APP) surface treatment, have been developed. This in vivo study sought to assess the effect of APP surface treatment on degradation and osseointegration of Synthograft™, a beta-tricalcium phosphate (β-TCP) synthetic bone graft. The experimental (APP-treated) grafts were subjected to APP treatment with argon for a period of 60s. Physicochemical characterization was performed by environmental scanning electron microscopy, surface energy (SE), and x-ray photoelectron spectroscopy analyses both before and after APP treatment. Two APP-treated and two untreated grafts were surgically implanted into four critical-size calvarial defects in each of ten New Zealand white rabbits. The defect samples were explanted after four weeks, underwent histological analysis, and the percentages of bone, soft tissue, and remaining graft material were quantified by image thresholding. Material characterization showed no differences in particle surface morphology and that the APP-treated group presented significantly higher SE along with higher amounts of the base material chemical elements on it surface. Review of defect composition showed that APP treatment did not increase bone formation or reduce the amount of soft tissue filling the defect when compared to untreated material. Histologic cross-sections demonstrated osteoblastic cell lines, osteoid deposition, and neovascularization in both groups. Ultimately, argon-based APP treatment did not enhance the osseointegration or degradation of the β-TCP graft. Future investigations should evaluate the utility of gases other than argon to enhance osseointegration through APP treatment. PMID:25491854

  15. Direct solid atomic emission spectrometric analysis of metal samples by an argon microwave plasma torch coupled to spark ablation

    NASA Astrophysics Data System (ADS)

    Engel, U.; Kehden, A.; Voges, E.; Broekaert, J. A. C.

    1999-09-01

    Spark ablation has been combined to microwave plasma torch atomic emission spectrometry for the direct analysis of compact metallic samples. The material is ablated by a medium voltage spark (450 V, 370 Hz) in a point-to-plane configuration and swept into a 100-W, 2.45-GHz argon microwave discharge. The microwave plasma is observed end-on and the radiation analysed with a polychromator. The detection limits for Fe, Ni, Pb and Sn in brass, Cr, Cu, Ni, Mn, Mo, Si and V in steel and Cu, Fe, Mg, Mn, Si and Zn in aluminium with the microwave plasma torch in the case of measurements with a polychromator are in the μg/g range and by a factor of up to 20 higher than those obtained with spark ablation coupled to inductively coupled plasma atomic emission spectrometry using a high resolution sequential spectrometer. The stability of the emission signal depends on the element studied and relative standard deviations usually are between 0.5 and 3.5%. In the case of low-alloy steels, the linearity and the precision of the calibration could be improved by internal standardisation. Several elements (Cr, Cu, Ni, Si and V) could be determined in a steel sample (BAS SS 410/1) with high accuracy and precision.

  16. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argonthe working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the bluegreen spectral region (?max = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the bluegreen spectral region was observed in this experiment, is found to be 8.1 10-15 m3/s.

  17. The antibacterial activity of a microwave argon plasma jet at atmospheric pressure relies mainly on UV-C radiations

    NASA Astrophysics Data System (ADS)

    Judée, F.; Wattieaux, G.; Merbahi, N.; Mansour, M.; Castanié-Cornet, M. P.

    2014-10-01

    The main bactericidal sources produced by a microwave induced cold argon plasma jet in open air are identified and their relative proportion in the biocide efficiency of the jet is assessed on planktonic Gram-negative bacteria (wild-type strains and deletion mutants of Escherichia coli) diluted in water. In these conditions ultraviolet light (UV) most probably in the UV-C region of the electromagnetic spectrum, is responsible for 86.7 ± 3.2% of the observed bactericidal efficiency of the jet whereas hydrogen peroxide represents 9.9 ± 5.5% of it. The exposition level of the bacteria to UV-C radiations is estimated at 20 mJ cm-2 using a specific photodiode and the influence of the initial bacteria concentration on the apparent antibacterial efficiency of the jet is highlighted.

  18. Double layer-like structures in the core of an argon helicon plasma source with uniform magnetic fields

    SciTech Connect

    Umair Siddiqui, M. Hershkowitz, Noah

    2014-02-15

    A hot (T{sub e} ≈ 10 eV) electron population is observed in the core of a 3 mTorr argon helicon plasma source at 500 W RF power and 900 G uniform axial magnetic field strength, 12 cm from the edge of the helicon antenna. A double layer-like structure consisting of a localized axial electric field of approximately 8 V/cm over 1–2 cm is observed adjacent to the hot electron population. The potential step generated by the electric field is shown to be large enough to trap the hot electrons. To our knowledge this is the first observation of these structures in the core of a helicon discharge.

  19. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    SciTech Connect

    Crock, J.G.; Lichte, F.E.

    1982-07-01

    Inductively coupled argon plasma/optical emission spectrometry (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three spills of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  20. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  1. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    SciTech Connect

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-06-30

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, {approx}45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum {approx}130 ns. (laser applications and other topics in quantum electronics)

  2. Optical diagnostics of a low power—low gas flow rates atmospheric-pressure argon plasma created by a microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Srivastava, Nimisha; Scherrer, Susan; Jang, Ping-Rey; Dibble, Theodore S.; Duan, Yixiang

    2009-05-01

    We employ a suite of optical techniques, namely, visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy (CRDS), to characterize a low power, low gas flow rates, atmospheric-pressure argon microwave induced plasma. The plasma is created by a microwave plasma torch, which is excited by a 2.45 GHz microwave with powers ranging from 60 to 120 W. A series of plasma images captured in a time-resolution range of as fine as 10 µs shows that the converging point is actually a time-averaged visual effect and the converging point does not exist when the plasma is visualized under high time resolution, e.g. <2 ms. Simulations of the emission spectra of OH, N2 and N_{2}^{+} in the range 200-450 nm enable the plasma electronic excitation temperature (Texc) to be determined at 8000-9000 K, while the vibrational temperature (Tv), the rotational temperature (Tr) and the gas temperature (Tg) at different locations along the axis of the plasma column are all determined to be in the range 1800-2200 K. Thermal equilibrium properties of the plasma are discussed. OH radical concentrations along the plasma column axis are measured by CRDS and the concentrations are in the range 1.6 × 1013-3.0 × 1014 cm-3 with the highest density at the tail of the plasma column. The upper limit of electron density ne is estimated to be 5.0 × 1014 cm-3 from the Lorentzian component of the broadened lineshape obtained by ringdown spectral scans of the rovibrational line S21 of the OH A-X (0-0) band.

  3. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; Shen, Yuan; Zhang, Cheng; Yan, Ping; Shao, Tao

    2016-03-01

    In this paper, a plasma jet driven by an in-house developed microsecond pulse is used for polymethyl methacrylate (PMMA) surface modification. The hydrophilic modification effects of He and Ar plasma jets are compared under the same condition. The He and Ar plasma jets are characterized by optical emission spectrometer (OES). Water contact angle (WCA) measurement is used to evaluate the wettability of PMMA samples. The evolution on morphology and chemical composition of PMMA before and after plasma treatment are also analyzed. The OES results demonstrate that He plasma is composed with higher intensities of reactive species, like OH, O, N2 and N2+ than that of Ar plasma and show a better modification effect. In addition, it is observed that the surface roughness and oxygen-containing groups like Csbnd O/Csbnd OH and Odbnd Csbnd O increase on the PMMA surface after plasma treatment, which are responsible for the hydrophilic modification. During the storage, the WCA of each sample increases gradually for both He and Ar plasma treatments. The He plasma treated PMMA also shows a slower aging effect than that of Ar plasma treated PMMA.

  4. Workfunction tuning of zinc oxide films by argon sputtering and oxygen plasma: an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Kuo, Fang-Ling; Li, Yun; Solomon, Marvin; Du, Jincheng; Shepherd, Nigel D.

    2012-02-01

    Zinc oxide (ZnO) films were grown by radio frequency magnetron sputter deposition and the changes to its surface composition and workfunction induced by argon sputter cleaning and oxygen plasma treatments were characterized using x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and density functional theory modelling. Compared with a workfunction of 3.74 eV for the as-deposited ZnO films, a workfunction of 3.95 eV was obtained after Ar sputter cleaning and 4.21 eV after exposure to oxygen plasma. The data indicate that oxygen plasma treatment leads to a more negative ZnO surface. The dipole induced by this charge redistribution reinforces the original surface dipole, which results in an increase in the surface dipole moment and an increase in workfunction. The reverse is true for hydrocarbon contamination of ZnO surfaces. Excellent qualitative agreement between the experimental results and computational modelling was obtained. The results suggest that specific surface functionalization may be a viable method of controlling the workfunction of ZnO for use as the transparent conducting oxide in optoelectronic applications such as solar cells and organic light-emitting diodes.

  5. Temporal variations in the excitation temperature of a laser-induced argon plasma estimated with copper emission lines.

    PubMed

    Sasaki, Yo; Wagatsuma, Kazuaki

    2009-04-01

    A time-resolved spectrometric measurement was conducted to determine temporal variations in the excitation temperature within a single laser plume caused by a Nd:YAG laser plasma. The two-line method using copper atomic lines was employed to estimate the excitation temperature. Two line pairs of copper lines: Cu I 521.82/Cu I 510.55 and Cu I 515.32/Cu I 510.55, were measured by using an Echelle spectrograph equipped with an ICCD detector having a high-speed gating. The excitation temperature was gradually elevated with the progress of the plasma expansion. This result cannot be explained from a direct excitation model in which excited species are principally produced through collisions with energetic particles, but from an indirect excitation model in which second-kind collisions with argon metastables and subsequent step-wise de-excitations produce the excited species. In the latter case, high-lying states of copper atoms are more populated compared to the population expected from the Boltzmann distribution. Temporal variations in the emission intensities of copper atomic lines requiring large excitation energies were also measured, and their emissions remained even in the expansion stage of the laser-induced plasma. This result also implies the over-population of high-lying copper excited levels. PMID:19359786

  6. Effects of matching network on the hysteresis during E and H mode transitions in argon inductively coupled plasma

    SciTech Connect

    Gao Fei; Zhao Shuxia; Li Xiaosong; Wang Younian

    2010-10-15

    An experimental investigation of the hysteresis during the E (capacitive coupling) and H mode (inductive coupling) transitions at various matching situation in argon inductively coupled plasma is reported. At high pressure, the results show two hysteresis loops involved the plasma density, applied power, and forward power, as well as the electrical parameters in the discharge circuit, when the series capacitance is cycled. The measured electron density versus applied power shows that the hysteresis loop shrinks with the decrease of the matching capacitance, and the same trend is discovered on the input current, voltage, and phase angle. In addition, for the case of small capacitance, the current (or voltage) jumps to a low value when the discharge passes through the E to H mode transition regime. Contrarily, for the case of large capacitance, the current jumps to a high value while the voltage is almost constant. The evolution characteristics of the plasma and circuit parameters observed imply that the nonlinear behavior of the matching situation may be one of the determined factors for hysteresis.

  7. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    SciTech Connect

    Gessel, Bram van; Bruggeman, Peter; Brandenburg, Ronny; Leibniz Institute for Plasma Science and Technology , Felix-Hausdorff-Str. 2, D-17489 Greifswald

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  8. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    van Gessel, Bram; Brandenburg, Ronny; Bruggeman, Peter

    2013-08-01

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  9. Numerical Simulation of Flow in the Chamber of the Water-Argon Plasma Generator

    NASA Astrophysics Data System (ADS)

    Hlbočan, Peter; Varchola, Michal; Knížat, Branislav; Mlkvik, Marek; Olšiak, Róbert

    2012-12-01

    The paper describes the CFD simulation of the flow of gas and plasma in a plasma generator with a hybrid stabilization of the electric arc. The momentum equations of the model also take Lorentz forces into account. In the energy equation, Joule heat is introduced as an energy source. The introduction of boundary conditions is also explained, as along with plasma transport properties and a method of solution. The paper presents selected results of pressure and velocity fields in the chamber of the plasma generator.

  10. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.; Davis, J.; Clark, R. W.; Giuliani, J. L.; Terry, R. E.; Velikovich, A. L.; Commisso, R. J.; Whitney, K. G.; Frese, M. H.; Frese, S. D.; Levine, J. S.; Qi, N.; Sze, H.; Failor, B. H.; Banister, J. W.; Coleman, P. L.; Coverdale, C. A.; Jones, B.; Deeney, C.

    2007-06-01

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], that provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were ˜6MA and ˜230ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model toward projecting argon K-shell yield behavior for Sandia National Laboratories' ZR machine (˜25MA peak drive currents, ˜100ns implosion times) [D. McDaniel et al., Proceedings of the 5th International Conference on Dense Z-Pinches, Albuquerque, NM, 2002, edited by J. Davis, C. Deeney, and N. R. Pereira (American Institute of Physics, New York, 2002), Vol. 651, p. 23] for experiments that utilize the 12cm diameter central-jet nozzle configuration, it predicts over 1MJ of K-shell emission is attainable.

  11. Tissue effects of argon gas flow during electrosurgery

    NASA Astrophysics Data System (ADS)

    van Swol, Christiaan F. P.; van Vliet, Remco J.; Grimbergen, Matthijs C. M.; Verdaasdonck, Rudolf M.

    1998-04-01

    Argon gas-enhanced electrosurgery has recently been introduced for its potential beneficial effects on hemostasis during electrical cutting. In this study, the influence of argon gas on electrosurgery on tissue was investigated. A standard electrosurgery unit was used extended with a gas unit and accommodated handset, which enabled a flow of argon blown along the electrode in contact with tissue. The temperature distribution was visualized in polyacrylamide gel using a color-Schlieren technique. Bovine tissue was used to evaluate the macroscopic effect of the lesions. The electrode was moved over the tissue surface with different settings for speed, gas flow, gas-outlet positioning and depth of the electrode in the tissue. During cutting, coagulation was significantly increased using argon gas; coagulation on both sides of the track ranging from 1.0 mm without argon flow up to 4.5 mm with argon flow could be obtained. Changing the gas flow from laminar to affected neither the coagulation nor the cutting. The extent of the coagulation depended on the combination of power and distance of the gas-outlet to the tissue. The coagulation depth beyond the bottom of the tracks was not influenced by argon and remained less than 1 mm. Argon gas-enhanced electrode surgery is especially effective when just touching the tissue thus obtaining a superficial coagulation (and hemostasis) of the surrounding tissue.

  12. Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed plasma waveguide

    SciTech Connect

    Ho, Y.-C.; Hung, T.-S.; Chen, S.-Y.; Chou, M.-C.; Yen, C.-P.; Wang, J.; Chu, H.-H.; Lin, J.-Y.

    2011-06-15

    A systematic experimental study on injection of electrons in a gas-jet-based laser wakefield accelerator via ionization of dopant was conducted. The pump-pulse threshold energy for producing a quasi-monoenergetic electron beam was significantly reduced by doping the hydrogen gas jet with argon atoms, resulting in a much better spatial contrast of the electron beam. Furthermore, laser wakefield electron acceleration in an optically preformed plasma waveguide based on the axicon-ignitor-heater scheme was achieved. It was found that doping with argon atoms can also lower the pump-pulse threshold energy in this experimental configuration.

  13. Optical emission diagnostics for plasma parameters in pulse-modulated argon capacitively-coupled discharges

    NASA Astrophysics Data System (ADS)

    Wang, Shicong; Boffard, John B.; Lin, Chun C.; Wendt, Amy E.

    2014-10-01

    Pulsing of discharge power in low pressure rf plasmas is a means to improve materials processing outcomes. Plasma-surface interactions depend on the relative fluxes of ions, reactive neutrals and photons, which can be controlled by adjusting pulse frequency and duty cycle, due their effect on plasma properties, particularly the electron energy distribution. We report on an optical emission spectroscopy (OES) based plasma diagnostic to characterize the time evolution of plasma properties within the pulse cycle for two systems: a pulsed capacitively-coupled plasma (CCP), and a pulsed CCP in combination with a continuous-wave (cw) inductively coupled plasma (ICP); Typical conditions: 30 mTorr Ar, 13.56 MHz rf power (400 W peak CCP and 500 W ICP) and 1 kHz pulse frequency. We quantify the trade off between time resolution versus uncertainty in measured OES intensities. Because only a small fraction of CCP rf power contributes to electron heating, the method is limited by relatively low absolute OES intensities for the CCP-only case, and small incremental changes in intensity when the pulsed CCP is combined with the cw ICP. Nevertheless, with sufficient signal averaging, even subtle changes in parameters induced by the CCP in the latter case can be quantified. This work was supported in part by NSF Grant PHY-1068670.

  14. Effect of argon and hydrogen on deposition of silicon from tetrochlrosilane in cold plasmas

    NASA Technical Reports Server (NTRS)

    Manory, R. R.; d.

    1985-01-01

    The roles of Ar and H2 on the decomposition of SiCl4 in cold plasma were investigated by Langmuir probes and mass spectrometry. Decomposition of the reactant by Ar only has been found to be very slow. In presence of H2 in the plasma SiCl4 is decomposed by fast radical-molecule reactions which are further enhanced by Ar due to additional ion-molecule reactions in which more H radicals are produced. A model for the plasma-surface interactions during deposition of mu-Si in the Ar + H2 + SiCl4 system is presented.

  15. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    SciTech Connect

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H{sub {alpha}} and the H{sub {beta}} lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  16. Production of high quality syngas from argon/water plasma gasification of biomass and waste.

    PubMed

    Hlina, M; Hrabovsky, M; Kavka, T; Konrad, M

    2014-01-01

    Extremely hot thermal plasma was used for the gasification of biomass (spruce sawdust, wood pellets) and waste (waste plastics, pyrolysis oil). The plasma was produced by a plasma torch with DC electric arc using unique hybrid stabilization. The torch input power of 100-110 kW and the mass flow rate of the gasified materials of tens kg/h was set up during experiments. Produced synthetic gas featured very high content of hydrogen and carbon monoxide (together approximately 90%) that is in a good agreement with theory. High quality of the produced gas is given by extreme parameters of used plasma--composition, very high temperature and low mass flow rate. PMID:24148259

  17. Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics

    NASA Astrophysics Data System (ADS)

    Park, Manseok; Baek, Soojung; Kim, Sungdong; Kim, Sarah Eunkyung

    2015-01-01

    3D integration enhances RC delay mitigation, improves inter-die bandwidth, and has routing advantages for the next generation integrated circuit technology. To realize the advantages of 3D integration, metallic bonding between different dies or wafers is necessary. So, Cu-to-Cu metallic bonding is, without doubt, a key process needed for 3D integration. In this study, Ar plasma treatment on the Cu surface for Cu thermo-compression bonding temperature less than 400 °C was investigated. Ar plasma treatment on the Cu thin film was performed using a conventional DC sputtering technique. The effect of Cu surface modified by Ar plasma was studied for Cu-to-Cu bonding. Also, the influence of Ar plasma treatment on the Cu surface was evaluated structurally and electrically.

  18. Numerical simulation study on fluid dynamics of plasma window using argon

    SciTech Connect

    Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.

    2013-07-15

    In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.

  19. Emission characteristics of pulse-periodic barrier-discharge plasma in a mixture of krypton with argon and liquid freon vapor

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Minya, A. I.; Gritsak, R. V.; Gomoki, Z. T.

    2014-02-01

    Radiation of a nanosecond barrier discharge in a mixture of krypton, argon, and carbon-tetrachloride vapor is studied in the spectral range of 150-300 nm. The plasma radiation spectra and the dependences of the intensities of the 258 nm Cl2( D' → A'), 222 nm KrCl( B → X), and 175 nm ArCl( B → X) bands on the partial pressure of liquid freon vapor, argon, and krypton, as well as on the discharge excitation conditions, are studied. The optimal compositions of gas mixtures for creating a broadband UV-VUV emitter based on the band system of argon chloride, krypton chloride, and chlorine molecule are determined.

  20. Models of blood coagulation.

    PubMed

    Butenas, S; van 't Veer, C; Cawthern, K; Brummel, K E; Mann, K G

    2000-04-01

    We have used three models to study the process of tissue factor-initiated blood coagulation. These are: synthetic 'plasma' mixtures prepared with the proteins and membranes involved in the reaction and its regulation; mathematical models based on the reaction kinetics, binding constants and stoichiometries of individual procoagulant and inhibitor reactions, and contact pathway-inhibited coagulation of minimally altered whole blood in vitro. In all of these models, the procoagulant process may be divided into two phases: an initiation phase and a propagation phase. The initiation phase is characterized by the appearance of thrombin and other coagulation enzymes, and the activation of pro-cofactors V and VIII. The propagation phase is characterized by explosive and extensive prothrombin activation. During normal blood coagulation, the bulk of thrombin generation occurs after clot formation, while most release of fibrinopeptide A is observed just at the conclusion of the initiation phase. In the case of haemophilia A and B, the initiation phase is slightly extended, while thrombin generation during the propagation phase is significantly suppressed. The clot time, as well as fibrinopeptide release, is delayed in these patients. Data obtained in our laboratory, employing the above models, indicate that they are efficient tools for blood coagulation studies. PMID:10850557

  1. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    NASA Astrophysics Data System (ADS)

    Satoh, Kozue; Wagatsuma, Kazuaki

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d64p (3d54s4p) excited levels of iron ion broadly over an energy range of 7.6-9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels.

  2. Moderate-power argon microwave-induced plasma for the detection of metal ions in aqueous samples of complex matrix

    SciTech Connect

    Brown, P.G.; Haas, D.L.; Workman, J.M.; Caruso, J.A.; Fricke, F.L.

    1987-05-15

    Recent developments have shown microwave-induced plasma optical emission spectrometry (MIP-OES) to be compatible with direct solution introduction of aqueous samples. The present study was performed to further determine the effects of a complex sample matrix on the instrumental response of the moderate-power argon MIP. This was accomplished by examining the emission intensities of several metal ions, ranging in concentration from 10 ppb to 100 ppm, both in 2% HNO/sub 3/ solution and in synthetic ocean water (S.W.). To illustrate matrix effects, the sensitivity and linear dynamic range of each metal in 2% HNO/sub 3/ were compared with the same parameters in synthetic ocean water. Furthermore, to illustrate the application of this method to the analysis of real samples, NBS SRM bovine liver tissues were analyzed by moderate-power Ar MIP and by inductively coupled plasma (ICP) for comparison. It is shown here that the linear dynamic ranges obtained for many metals in complex solution matrices span 2 to 4 or more orders of magnitude and that the detection limits obtained with the MIP compare well with those of the more popular ICP. It is also shown that a complex sample matrix an lead to significant changes in sensitivity (enhancement and suppression). Finally, it is shown that both the MIP and the ICP performed well and were in agreement when used to analyze the NBS SRMs.

  3. In situ absolute air, O3 and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    van Ham, B. T. J.; Hofmann, S.; Brandenburg, R.; Bruggeman, P. J.

    2014-06-01

    A molecular beam mass spectrometer has been calibrated and used to measure the air entrainment, nitric oxide and ozone concentrations in the effluent of a cold atmospheric pressure argon RF driven plasma jet. The approaches for calibrating the mass spectrometer for different species are described in detail. Gas phase densities of ozone and nitric oxide up to 7.5 ppm and 4 ppm, respectively, have been measured in the far effluent of the argon plasma jet. The difference in air entrainment when the plasma is undisturbed or is close to a well, which is the case for e.g. in vitro plasma-cell interaction studies, is shown. In addition, an exponential decay of the positive ion flux as a function of distance in the effluent is obtained. Furthermore, the effect of plasma power, duty cycle and air and O2 admixtures introduced into the argon flow on the NO and O3 production is presented, including the possibility of independent control of the NO and O3 flux from the jet.

  4. Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet

    SciTech Connect

    Li Guo; Le Peisi; Li Heping; Bao Chengyu

    2010-05-15

    With unique features of low breakdown voltages, large and uniform discharge areas and high concentrations of chemically reactive species, radio-frequency, atmospheric-pressure glow discharge (rf APGD) plasma sources produced with bare-metallic electrodes have shown promising prospects in the field of materials processing. In this paper, the spatial distributions (i.e., the directly measured integrated axial distribution and the radial distribution by using the inverse Abel transform) of the emission intensities of the Ar I 696.5 nm line are studied for the argon rf APGD plasma jet under different operation conditions, including variations of the rf power input or the argon flow rate, the existence of the solid shielding cylinder or the substrate. The experimental results show that, with other parameters being unchanged, the emission intensities of the Ar I 696.5 nm line increase with increasing the rf power input or the argon flow rate; and the solid shielding cylinder has more significant influences on the characteristics of the plasma impinging jet by reducing the mass flow rate of the ambient air entrained into the plasma jet region than those for the cases without the existence of the substrate at the downstream of the plasma torch nozzle exit.

  5. Deuterium occupation of vacancy-type defects in argon-damaged tungsten exposed to high flux and low energy deuterium plasma

    NASA Astrophysics Data System (ADS)

    Zhu, Xiu-Li; Zhang, Ying; Cheng, Long; Yuan, Yue; De Temmerman, Gregory; Wang, Bao-Yi; Cao, Xing-Zhong; Lu, Guang-Hong

    2016-03-01

    Doppler broadening spectroscopy in the positron annihilation technique (DBS-PA) has been employed to investigate the defect properties in argon-damaged tungsten exposed to low-energy and high flux deuterium plasma. Argon ion irradiations with energy 500 keV are performed for tungsten samples with various levels of damage. The remarkable increment of the S parameter in DBS-PA indicates the introduction of vacancy-type defects in argon irradiated tungsten. An increase of ion fluence results in a continuous increase of the S parameter until saturation. Unexpectedly, a much higher fluence leads to a decrease of the S parameter in the near surface, and the (S,W) slope changes greatly. This should be associated with the formation of argon-vacancy complexes in the near surface produced by the excessive implanted argon ions. With deuterium plasma exposure, a significant decrease of the S parameter occurs in the pre-irradiated tungsten, suggesting the sharp reduction of the number and density of the vacancy-type defects. The thermal desorption spectroscopy results demonstrate that the argon-damaged tungsten, compared to the pristine one, exhibits an enhanced low-temperature desorption peak and an additional and broad high-temperature desorption peak, which indicates that deuterium atoms are trapped in both low-energy and high-energy sites. All these observations directly indicate the deuterium occupation of irradiation-induced vacancy defects in damaged tungsten, which is responsible for the remarkable increase of the deuterium retention in comparison with the pristine one.

  6. Effects of anti-aggregant, anti-inflammatory and anti-coagulant drug consumption on the preparation and therapeutic potential of plasma rich in growth factors (PRGF).

    PubMed

    Anitua, Eduardo; Troya, María; Zalduendo, Mar; Orive, Gorka

    2015-02-01

    The prevalence and incidence of trauma-related injuries, coronary heart disease and other chronic diseases increase dramatically with age. This population sector is therefore a regular consumer of different types of drugs that may affect platelet aggregation and the coagulation cascade. We have evaluated whether the consumption of acetylsalicylic acid, acenocoumarol, glucosamine sulfate and chondroitin sulfate, and therefore their presence in blood, could interfere with the preparation and biological outcomes of plasma rich in growth factors (PRGF). Clotting time, clot retraction and platelet activation of PRGF was evaluated. PRGF growth factor content and the release of different biomolecules by tendon fibroblasts were also quantified, as well as cell proliferation and cell migration. The preparation and biological potential of PRGF is not affected by the intake of the evaluated drugs, and solely its angiogenic potential and its capacity to induce HA and fibronectin synthesis, is reduced in patients taking anti-coagulants. PMID:25365465

  7. Coagulopathies in Naja naja karachiensis (black Pakistan cobra) bites and its effect on coagulation tests upon storage of platelet-poor plasma.

    PubMed

    Asad, Muhammad Hassham Hassan Bin; Razi, Muhammad Tahir; Khan, Taous; Najam-Us-saqib, Qazi; Murtaza, Ghulam; Hussain, Muhammad Shahzad; Hussain, Muhammad Sikandar; Karim, Sabiha; Hussain, Izhar

    2012-01-01

    The aim of this study was to evaluate the effect of venom from Naja naja karachiensis on platelet-poor plasma, activated partial thromboplastin time (aPTT), prothrombin time (PT) / international normalized ratio (INR), thrombin time (TT) and to evaluate its effect on clotting time upon storage of plasma for a specific time period with possible mechanism responsible for that. Prolongation of PT / INR, aPTT and TT was observed when different concentrations of venom were introduced due to degeneration of fibrinogen. Preservation of plasma for three months further prolong clotting time for coagulation tests, however, difference of PT and TT results were not very prominent as compared to aPTT. Minute concentrations of cobra venom and short as well as long storage of platelet-poor plasma badly affects the INR ratio. PMID:23285662

  8. Argon/Hexamethyldisiloxane Plasma Effects on Poly Propylene Film Surface Properties

    NASA Astrophysics Data System (ADS)

    Mortazavi, S. H.; Ghoranneviss, M.; Sari, A. H.

    2010-10-01

    In this work a DC plasma reactor was used for deposition of plasma polymerized coating from hexamethyldisiloxane-Ar (35/65%) mixture on polypropylene films. Surface energy parameter have been calculated using Owens-Wendt approaches with the sessile drop method are used to obtain the dispersive γD and polar γP component of surface free energy. The surface morphology of samples were investigated using scanning electron microscope. Also the chemical properties and wetability of prepared samples were tested using Fourier transform infrared spectroscopy and contact angle measurement, respectively.

  9. Attenuation of wall disturbances in an electron cyclotron resonance oxygen–argon plasma using real time control

    SciTech Connect

    Keville, Bernard Gaman, Cezar; Turner, Miles M.; Zhang, Yang; Daniels, Stephen; Holohan, Anthony M.

    2014-07-01

    Present practice in plasma-assisted semiconductor manufacturing specifies recipes in terms of inputs such as gas flow rates, power and pressure. However, ostensibly identical chambers running identical recipes may produce very different results. Extensive chamber matching, i.e., initial iterative, empirical tuning of the process recipe, which entails time-consuming, ex situ statistical analysis of process metrics such as etch depth, uniformity, anisotropy and selectivity, is required to ensure acceptable results. Once matched, chambers are run open loop and are thus sensitive to disturbances such as actuator drift, wall seasoning and substrate loading, which may impact negatively on process reproducibility. An alternative approach, which may obviate the need for chamber matching and reduce the sensitivity of process metrics to exogenous disturbances, would be to specify a recipe in terms of quantities such as active species densities, and to regulate these in real time by adjusting the inputs with a suitable control algorithm. In this work, real time control of an electron cyclotron resonance O{sub 2}/Ar plasma used for photoresist ashing has been implemented. The design of elementary, model-based algorithms for the control of the argon 750 and oxygen 844 line intensities measured by optical emission spectroscopy is described. Fluorination of the chamber walls by means of an SF{sub 6} plasma prior to ashing inhibits wall recombination of oxygen radicals resulting in an approximately 20% increase in ash rate in the open loop case. However, closed loop control almost completely attenuates the effect of fluorination, thus demonstrating the efficacy of the control algorithms in ensuring a reproducible ash rate in the face of a wall disturbance.

  10. Comparison of glow argon plasma-induced surface changes of thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Řezníčková, A.; Kolská, Z.; Hnatowicz, V.; Stopka, P.; Švorčík, V.

    2011-01-01

    Modification of high-density polyethylene (PE), polytetrafluoroethylene (PTFE), polystyrene (PS), polyethyleneterephthalate (PET) and polypropylene (PP) by Ar plasma was studied. The amount of the ablated material was determined by gravimetry. Wettability of polymers after the plasma treatment was determined from the contact angle measurement. The changes in the surface morphology of polymers were observed using atomic force microscopy (AFM). Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Surface changes were also studied by the determination of electrokinetic potential ( ζ-potential). It was found that under the plasma treatment the polymers are ablated and their surface morphology and roughness are changed dramatically. XPS measurements indicate an oxidation of the polymer surface. The plasma treatment results in a dramatic increase of the ζ-potential. EPR data show different radical amount present on the treated surface of all polymers. Most significant changes due to the degradation of polymer chains are observed on PTFE.

  11. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    NASA Astrophysics Data System (ADS)

    Mat?j?ek, J.; Kavka, T.; Bertolissi, G.; Ctibor, P.; Vilmov, M.; Mulek, R.; Nevrl, B.

    2013-06-01

    Tungsten-based coatings have potential application in the plasma-facing components in future nuclear fusion reactors. By the combination of refractory tungsten with highly thermal conducting copper, or steel as a construction material, functionally graded coatings can be easily obtained by plasma spraying, and may result in the development of a material with favorable properties. During plasma spraying of these materials in the open atmosphere, oxidation is an important issue, which could have adverse effects on their properties. Among the means to control it is the application of inert gas shrouding, which forms the subject of this study and represents a lower-cost alternative to vacuum or low-pressure plasma spraying, potentially applicable also for spraying of large surfaces or spacious components. It is a continuation of recent studies focused on the effects of various parameters of the hybrid water-argon torch on the in-flight behavior of copper and tungsten powders and the resultant coatings. In the current study, argon shrouding with various configurations of the shroud was applied. The effects of torch parameters, such as power and argon flow rate, and powder morphology were also investigated. Their influence on the particle in-flight behavior as well as the structure, composition and properties of the coatings were quantified. With the help of auxiliary calculations, the mass changes of the powder particles, associated with oxidation and evaporation, were assessed.

  12. X-ray Emission from Argon Plasma Focus Contaminated with Copper Impurities in AECS PF-2 Using Five Channel Diode Spectrometer

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sh.; Akel, M.; Wong, C. S.

    2011-12-01

    In this work, the X-ray ratio method using different thicknesses of Al foil absorbers was used to study the influence of copper impurities on the electron temperature determination of the focused plasma in AECS PF-2 with argon filling gas. Five channels of BPX 65 PIN diodes were employed to record the X-ray pulses generated by a low energy Mather type plasma focus device energized by a 25 μF, 15 kV (2.8 kJ) capacitor bank consisting of two capacitors each with 12.5 μF capacity connected in parallel. By comparing the ratio values experimentally obtained for a series of shots at various pressures with theoretically calculated ratios for argon plasma, the X-ray emission ratio was found to correspond to the Cu-Kα line radiation for most of the discharges and only about less than 10% of the measurements give the correct expected electron temperature of 1.5-2.5 keV for the focused argon plasma.

  13. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  14. Expansion dynamics of ultrafast laser produced plasmas in the presence of ambient argon

    NASA Astrophysics Data System (ADS)

    Diwakar, P. K.; Harilal, S. S.; Hassanein, A.; Phillips, M. C.

    2014-10-01

    We investigated the expansion dynamics of fs laser ablated brass plasma in Ar at various pressure levels ranging from 10-5 Torr to atmospheric conditions using time-resolved and spectrally resolved two-dimensional imaging. Significant changes in plume morphology were noticed at varying pressure levels which included free expansion, spherical to cylindrical geometry changes, sharpening, and confinement. The temporal evolution of excited Cu and Zn species in the plume were imaged using narrow band-pass interference filters, and their hydrodynamic expansion features were compared. 2D imaging coupled with monochromatic line selection showed velocity differences, uneven distribution, and aspect ratio differences among the plume species. Plume morphological changes were found to be significant at intermediate pressure levels (˜10 Torr) where plasma emissivity was found to be maximum. The expansion features of plume were compared with various models and found to be generally in good agreement.

  15. Expansion Dynamics of Ultrafast Laser Produced Plasmas in the Presence of Ambient Argon

    SciTech Connect

    Diwakar, P. K.; Harilal, Sivanandan S.; Hassanein, A.; Phillips, Mark C.

    2014-10-07

    In this paper, we report the emission features of fs laser ablated brass plasma plumes at various Ar background pressure levels ranging from vacuum to atmospheric conditions. Spectrally integrated 2D-imaging of plasma self-emission showed several interesting features at various pressure levels which consists of plume morphological changes, increase in persistence, confinement, and internal structures. Spatially resolved wavelength dispersed images of the plume were recorded for characterizing the spectral features at various pressure levels and also used for obtaining spatial distribution of Cu I and Zn I species in the plume, signal to noise ratios and fundamental parameters of the plasma; viz. temperature and density. The spatial evolution of excitation temperature and density showed significant changes at various ambient pressure levels and these results were correlated to morphological changes seen in the plume images. Optimum signal to background ratios for emission lines were observed in the moderate pressure range (~ 1-10 Torr). Optical time-of-flight profiles were used to study time evolution of various species in the plume and noticed oscillations at intermediate pressure levels. Possible mechanisms for observed changes in plume shape, optical emission intensity, and dual peak structures in time-of-flight profiles were discussed.

  16. Modelling on dynamics properties of a stationary argon cascaded arc plasma flows

    NASA Astrophysics Data System (ADS)

    Wei, G. D.; Qi, X.; Yang, L.

    2014-03-01

    The gas dynamics properties of a stationary arc plasma flows are studied through the numerical simulations. A two dimensional axis-symmetric turbulent magneto-hydrodynamic plasma model is developed with the commercial code ANSYS FLUENT. The reliable κ-ɛ model is used to account for turbulence. In this paper, the plasma is assumed to be a fluid following Navier-Stokes equations, respecting local thermodynamic equilibrium, and described by only one temperature. Distributions of the pressure, velocity, temperature, density, and electric potential inside of thus cascaded arc are obtained for an arc current density of 106 A/m2. The pressure inside the arc varies from 105 Pa to 100 Pa. The temperature at the arc axis can reach as high as 13 600 K. The electric potential drops uniformly along the axis with a magnitude of 160 V. In addition, distributions of the sonic velocity and Mach number are shown to describe supersonic behavior of thus cascaded arc, which have a good agreement with the analytical formula.

  17. Modelling on dynamics properties of a stationary argon cascaded arc plasma flows

    SciTech Connect

    Wei, G. D.; Qi, X.; Yang, L.

    2014-03-15

    The gas dynamics properties of a stationary arc plasma flows are studied through the numerical simulations. A two dimensional axis-symmetric turbulent magneto-hydrodynamic plasma model is developed with the commercial code ANSYS FLUENT. The reliable κ-ε model is used to account for turbulence. In this paper, the plasma is assumed to be a fluid following Navier–Stokes equations, respecting local thermodynamic equilibrium, and described by only one temperature. Distributions of the pressure, velocity, temperature, density, and electric potential inside of thus cascaded arc are obtained for an arc current density of 10{sup 6} A/m{sup 2}. The pressure inside the arc varies from 10{sup 5} Pa to 100 Pa. The temperature at the arc axis can reach as high as 13 600 K. The electric potential drops uniformly along the axis with a magnitude of 160 V. In addition, distributions of the sonic velocity and Mach number are shown to describe supersonic behavior of thus cascaded arc, which have a good agreement with the analytical formula.

  18. Absorption spectroscopy measurements of argon metastable and resonant atom density in atmospheric pressure Ar-He surface-wave plasmas using a low pressure lamp

    SciTech Connect

    Munoz, J.; Margot, J.; Calzada, M. D.

    2012-01-15

    The densities of metastable and resonant atom were measured in atmospheric pressure Ar-He surface-wave plasmas. Measurements were performed using an absorption spectroscopy method taking into account the Voigt profiles of the plasma lines. The density values of the argon {sup 3}P{sub 2}, {sup 3}P{sub 0} (metastable atoms) and {sup 3}P{sub 1} (resonant atoms) levels measured in pure argon discharges are in good agreement with those reported in the literature. A drastic decrease of metastable and resonant densities is observed when introducing helium in amounts as low as 2%. The influence of electron density and gas temperature on the population mechanisms (direct electron excitation from the ground state and dissociative recombination) of metastable and resonant atoms is discussed using a simplified theoretical model.

  19. Angular distribution of energetic argon ions emitted by a 90 kJ Filippov-type plasma focus

    SciTech Connect

    Pestehe, S. J.; Mohammadnejad, M.

    2015-02-15

    Characteristics of the energetic argon ions emitted by a 90 kJ Filippov-type plasma focus are studied by employing an array of Faraday cups. The Faraday cups are designed to minimize the secondary electron emission effects on their response. Angular distribution of the ions is measured, and the results indicate a highly anisotropic emission with a dip at the device axis and a local maximum at the angle of 7° with respect to the axis. It has been argued that this kind of anisotropic emission may be related to the surfatron acceleration mechanism and shown that this behavior is independent of the working gas pressure. It has been also demonstrated that this mechanism is responsible for the generation of MeV ions. Measuring the total ion number at different working gas pressures gives an optimum pressure of 0.3 Torr. In addition, the energy spectrum of ions is measured by taking into account of the ambient gas effects on the energy and charge of the ions. The current neutralization effect of electrons trapped in the ion beam as well as the effect of conducting boundaries surrounding the beam, on the detected signals are investigated.

  20. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  1. TOPICAL REVIEW: Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Pu, Yi-Kang

    2010-10-01

    This article reviews a variety of methods to obtain the electron temperature and density by the emission line ratios for low-temperature plasmas containing argon or nitrogen gas. Based on the collisional-radiative model of excited particles, the underlying principle of each of these methods is described, along with the criterion on how to select an appropriate line-ratio method according to the discharge conditions. Limitations on the application of each line-ratio technique are also discussed.

  2. Argon/UF6 plasma experiments: UF6 regeneration and product analysis

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1980-01-01

    An experimental and analytical investigation was conducted to aid in developing some of the technology necessary for designing a self-critical fissioning uranium plasma core reactors (PCR). This technology is applicable to gaseous uranium hexafluoride nuclear-pumped laser systems. The principal equipment used included 1.2 MW RF induction heater, a d.c. plasma torch, a uranium tetrafluoride feeder system, and batch-type fluorine/UF6 regeneration systems. Overall objectives were to continue to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure, gaseous UF6; and to continue development of complementary diagnostic instrumentation and measurement techniques to characterize the effluent exhaust gases and residue deposited on the test chamber and exhaust system components. Specific objectives include: a development of a batch-type UF6 regeneration system employing pure high-temperature fluorine; development of a ruggedized time-of-flight mass spectrometer and associated data acquisition system capable of making on-line concentration measurements of the volatile effluent exhaust gas species in a high RF environment and corrosive environment of UF6 and related halide compounds.

  3. Phenol decomposition by pulsed-plasma exposure in oxygen and argon atmosphere

    NASA Astrophysics Data System (ADS)

    Satoh, Kohki; Shiota, Haruki; Itabashi, Hideyuki; Itoh, Hidenori

    2011-10-01

    Phenol in an aqueous solution is decomposed by the exposure of pulsed-discharge plasma, and by-products are investigated by gas chromatograph mass spectrometry. When Ar is used as a background gas, catechol, hydroquinone and 4-hydroxy-2-cyclohexene-1-on are produced, and no O3 is produced; therefore, OH radicals generated in the plasma can initiate the decomposition of phenol, and 4-hydroxy-2-cyclohexene-1-on can be produced. Further, 4-hydroxy-2-cyclohexene-1-on can be converted into catechol and hydroquinone. When O2 is used as a background gas, catechol, hydroquinone, formic acid, maleic acid, succinic acid and 4,6-dihydroxy-2,4-hexadienoic acid are produced. Therefore, phenol is probably decomposed into 4,6-dihydroxy-2,4-hexadienoic acid by 1,3-dipolar addition reaction with O3, and 4,6-dihydroxy-2,4-hexadienoic acid can be decomposed into maleic acid and succinic acid by 1,3-dipolar addition reaction with O3. Oxalic acid is possibly another by-product from 4,6-dihydroxy-2,4-hexadienoic acid, since formic acid, which is produced from oxalic acid, is detected.

  4. Effects of the electrical excitation signal parameters on the geometry of an argon-based non-thermal atmospheric pressure plasma jet.

    PubMed

    Benabbas, Mohamed Tahar; Sahli, Salah; Benhamouda, Abdallah; Rebiai, Saida

    2014-12-01

    A non-thermal atmospheric pressure argon plasma jet for medical applications has been generated using a high-voltage pulse generator and a homemade dielectric barrier discharge (DBD) reactor with a cylindrical configuration. A plasma jet of about 6 cm of length has been created in argon gas at atmospheric pressure with an applied peak to peak voltage and a frequency of 10 kV and 50 kHz, respectively. The length and the shape of the created plasma jet were found to be strongly dependent on the electrode setup and the applied voltage and the signal frequency values. The length of the plasma jet increases when the applied voltage and/or its frequency increase, while the diameter at its end is significantly reduced when the applied signal frequency increases. For an applied voltage of 10 kV, the plasma jet diameter decreases from near 5 mm for a frequency of 10 kHz to less than 1 mm at a frequency of 50 kHz. This obtained size of the plasma jet diameter is very useful when the medical treatment must be processed in a reduced space. PACS 2008: 52.50.Dg; 52.70.-m; 52.80.-s. PMID:26088991

  5. Effects of the electrical excitation signal parameters on the geometry of an argon-based non-thermal atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Benabbas, Mohamed Tahar; Sahli, Salah; Benhamouda, Abdallah; Rebiai, Saida

    2014-12-01

    A non-thermal atmospheric pressure argon plasma jet for medical applications has been generated using a high-voltage pulse generator and a homemade dielectric barrier discharge (DBD) reactor with a cylindrical configuration. A plasma jet of about 6 cm of length has been created in argon gas at atmospheric pressure with an applied peak to peak voltage and a frequency of 10 kV and 50 kHz, respectively. The length and the shape of the created plasma jet were found to be strongly dependent on the electrode setup and the applied voltage and the signal frequency values. The length of the plasma jet increases when the applied voltage and/or its frequency increase, while the diameter at its end is significantly reduced when the applied signal frequency increases. For an applied voltage of 10 kV, the plasma jet diameter decreases from near 5 mm for a frequency of 10 kHz to less than 1 mm at a frequency of 50 kHz. This obtained size of the plasma jet diameter is very useful when the medical treatment must be processed in a reduced space.

  6. Friction and wear properties of smooth diamond films grown in fullerene-argon plasmas

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Bindal, C.; Zuiker, C.; Krauss, A.R.; Gruen, D.M.

    1995-08-01

    In this study, we describe the growth mechanism and the ultralow friction and wear properties of smooth (20-50 nm rms) diamond films grown in a microwave plasma consisting of Ar and fullerene (the carbon source). The sliding friction coefficients of these films against Si{sub 3}N{sub 4} balls are 0.04 and 0.1 in dry N{sub 2} and air, which are comparable to that of natural diamond sliding against the same pin material, but is lower by factors of 5 to 10 than that afforded by rough diamond films grown in conventional H{sub 2}-CH{sub 4} plasmas. Furthermore, the smooth diamond films produced in this work afforded wear rates to Si{sub 3}N{sub 4} balls that were two to three orders of magnitude lower than those of H{sub 2}-CH{sub 4} grown films. Mechanistically, the ultralow friction and wear properties of the fullerene-derived diamond films correlate well with their initially smooth surface finish and their ability to polish even further during sliding. The wear tracks reach an ultrasmooth (3-6 nm rms) surface finish that results in very little abrasion and ploughing. The nanocrystalline microstructure and exceptionally pure sp{sup 3} bonding in these smooth diamond films were verified by numerous surface and structure analytical methods, including x-ray diffraction, high-resolution AF-S, EELS, NEXAFS, SEM, and TEM. An AFM instrument was used to characterize the topography of the films and rubbing surfaces.

  7. A Prospective Randomized Experimental Study to Investigate the Eradication Rate of Endometriosis after Surgical Resection versus Aerosol Plasma Coagulation in a Rat Model

    PubMed Central

    Rothmund, Ralf; Scharpf, Marcus; Tsaousidis, Christos; Planck, Constanze; Enderle, Markus Dominik; Neugebauer, Alexander; Kroeker, Kristin; Nuessle, Daniela; Fend, Falko; Brucker, Sara; Kraemer, Bernhard

    2016-01-01

    Purpose To investigate the eradication rate of endometriosis after surgical resection (SR) vs. thermal ablation with aerosol plasma coagulation (AePC) in a rat model. Methods In this prospective, randomized, controlled, single-blinded animal study endometriosis was induced on the abdominal wall of 34 female Wistar rats. After 14 days endometriosis was either removed by SR or ablated by AePC. 14 days later the rats were euthanized to evaluate the eradication rate histopathologically. Intervention times were recorded. Results Eradication rate of endometriosis after 14 days did not significantly differ between AePC and SR (p=0.22). Intervention time per endometrial lesion was 22.1 s for AePC and 51.8 s for SR (p<0.0001). Conclusions This study compares the eradication rate of the new aerosol plasma coagulation device versus standard surgical resection of endometriosis in a rat model. Despite being a thermal method, AePC showed equality towards SR regarding eradication rate but with significantly shorter intervention time. PMID:26941579

  8. On the difference between breakdown and quench voltages of argon plasma and its relation to 4p–4s atomic state transitions

    SciTech Connect

    Forati, Ebrahim Piltan, Shiva; Sievenpiper, Dan

    2015-02-02

    Using a relaxation oscillator circuit, breakdown (V{sub BD}) and quench (V{sub Q}) voltages of a DC discharge microplasma between two needle probes are measured. High resolution modified Paschen curves are obtained for argon microplasmas including a quench voltage curve representing the voltage at which the plasma turns off. It is shown that for a point to point microgap (e.g., the microgap between two needle probes) which describes many realistic microdevices, neither Paschen's law applies nor field emission is noticeable. Although normally V{sub BD} > V{sub Q,} it is observed that depending on environmental parameters of argon, such as pressure and the driving circuitry, plasma can exist in a different state with equal V{sub BD} and V{sub Q.} Using emission line spectroscopy, it is shown that V{sub BD} and V{sub Q} are equal if the atomic excitation by the electric field dipole moment dominantly leads to one of the argon's metastable states (4P{sub 5} in our study)

  9. An investigation into the role of metastable argon atoms in the afterglow plasma of a low pressure discharge

    NASA Astrophysics Data System (ADS)

    Strauss, J. A.; Ferreira, N. P.; Human, H. G. C.

    An investigation into the behaviour of metastable argon atoms in a low pressure (250 Pa) pulsed electrical discharge was undertaken in an effort to find the cause of the persisting emission from sputtered metal atoms in the afterglow of an atomic fluorimeter. Results obtained by time-resolved emission and absorption measurements of several argon and copper spectral lines indicate that low energy electrons in the afterglow are converted to high energy electrons via the recombination of electrons with argon ions and the subsequent collisions of pairs of metastable argon atoms. The high energy electrons excite the sputtered metal atoms to give rise to a slow decaying emission tail in the afterglow. A probable change in the electron energy distribution in the afterglow may also have an effect on the observed emission. This phenomenon may be reduced by the use of a suitable quenching gas.

  10. Lead levels in fur of rats treated with inorganic lead measured by inductively coupled argon plasma mass spectrometry

    PubMed Central

    Lesage, François-Xavier; Deschamps, Frédèric; Millart, Hervé

    2010-01-01

    The aim of this study was to investigate the relationship between continuous lead exposure and the concentration of this metal in fur. The two main questions we wanted to answer were: 1) Are the fur lead concentrations different according to exposure level? 2) Is the kinetics of lead concentration linear in different compartments? For 12 weeks, 6 rats were force-fed with water containing lead acetate in the following quantities: 0.5 and 50 µg/day. Furs were sampled every two weeks. The lead content of the samples was measured by inductively coupled argon plasma mass spectrometry (ICP-MS). There was a statistical difference (p<0.0001) between fur lead concentration and the three groups (control, low level exposure and high level exposure), between fur lead concentration and time exposure (p<0.0001), and between fur lead concentration and each exposure group at different time exposure (p<0.0001). Thus the level exposure factor and the time exposure factor have an effect on fur lead concentration. Since the determination coefficients were weak for the two exposed groups (0.032 and 0.032), a linear correlation cannot be concluded. The kinetic curves of fur lead concentration are similar for all the exposition groups. Two peaks (at 2 and 8 weeks of exposure) were noted for the two exposed groups. This experimental study cannot conclude a linear relationship to exist between fur lead concentration and exposition duration. It highlights the lack of understanding of mechanisms involved in hair incorporation of metals and raises the question of a cyclic accumulation in hair. A better understanding of the kinetic incorporation of lead in body growths is required. PMID:21331176

  11. Numerical analysis of nitrogen-mixed argon plasma characteristics and injected particle behavior in an ICP torch for ultrafine powder synthesis

    SciTech Connect

    Park, J.H.; Hong, S.H.

    1995-08-01

    The ICP (inductively coupled plasma) torches have been extensively used for the synthesis of various ceramics and new materials as effective hot-temperature heat sources in the field of material processing. Here, a numerical model is presented for the analysis of plasma characteristics of an ICP torch and gas mixing effects on the plasma when a nitrogen gas is added into the argon plasma as a carrier or sheath gas at the torch inlet. The fluid equations describing the plasma flow and temperature fields and the diffusions between two different gases are solved along with a magnetic vector potential equation for electromagnetic fields. The trajectory and the temperature change with time for a particle injected into the plasma are also investigated by a plasma-particle interaction model to find out optimum injection conditions for the synthesis of ultra/fine nitride ceramic powders. It is found from the calculations that the nitrogen-mixed argon plasma with a nitrogen carrier gas for the reaction kinetics of nitride synthesis. It is also found that the radial injection through the holes of the tube wall is preferable to the axial injection at the torch inlet for the complete evaporation of injected particle and the effective chemical reaction of reactant vapor with nitrogen. For the radial injection in an ICP torch of 20 cm in axial length, the optimum injection locations and initial velocities of 50-{micro}m aluminum particles are found for synthesizing aluminum nitride are in the range of 6{approximately}12 cm apart from the torch inlet and over 15 m/s, respectively.

  12. Laser Optogalvanic Spectroscopy pf Neon and Argon in a Discharge Plasma and its Significance for Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Misra, Prabhakar; Haridass, C.; Major, H.

    1999-01-01

    A detailed study of combustion mechanisms in flames, employing laser-based diagnostics, has provided good knowledge and understanding of the physical phenomena, and led to better characterization of the dynamical and chemical combustion processes, both under low-gravity (in space) and normal gravity (in ground based facilities, e.g. drop towers). Laser induced fluorescence (LIF), laser-induced incandescence (LII) and LIF thermometry have been widely used to perform nonintrusive measurements and to better understand combustion phenomena. Laser optogalvanic (LOG) spectroscopy has well-established applications in ion mobility measurements, atomic and molecular spectroscopy, ionization rates, recombination rates, velocity measurements and as a combustion probe for trace element detection. Absorption spectra of atomic and molecular species in flames can be obtained via LOG spectroscopy by measuring the voltage and current changes induced by laser irradiation. There are different kinds of processes that contribute to a discharge current, namely: (1) electron impact ionization, (2) collisions among the excited atoms of the discharge species and (3) Penning ionization. In general, at higher discharge currents, the mechanism of electron impact ionization dominates over Penning ionization, whereby the latter is hardly noticeable. In a plasma, whenever the wavelength of a laser coincides with the absorption of an atomic or molecular species, the rate of ionization of the species momentarily increases or decreases due to laser-assisted acceleration of collisional ionization. Such a rate of change in the ionization is monitored as a variation in the transient current by inserting a high voltage electrode into the plasma. Optogalvanic spectroscopy in discharges has been useful for characterizing laser line-widths and for providing convenient calibration lines for tunable dye lasers in the ultraviolet, visible and infrared wavelength regions. Different kinds of quantitative information, such as the electron collisional ionization rate, can be extracted from the complex processes occurring within the discharge. In the optogalvanic effect (OGE), there is no problem of overlap from background emissions, and hence even weak signals can be detected with a high signal-to-noise ratio, which makes the optogalvanic effect sensitive enough to resolve vibrational changes in molecular bonds and differences in energy levels brought about by different electron spins. For calibration purposes, neon and argon gaseous discharges have been employed most extensively, because these gases are commonly used as buffer gases within hollow-cathode lamps and provide an acceptable density of calibration lines. In the present work, our main aim has been to understand the dominant physical processes responsible for the production of the OGE signal, based on the extensive time resolved optogalvanic waveforms recorded, and also to extract quantitative information on the rates of excited state collisional processes.

  13. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application

    NASA Astrophysics Data System (ADS)

    Ulliac, G.; Calero, V.; Ndao, A.; Baida, F. I.; Bernal, M.-P.

    2016-03-01

    Lithium Niobate (LN) exhibits unique physical properties such as remarkable electro-optical coefficients and it is thus an excellent material for a wide range of fields like optic communications, lasers, nonlinear optical applications, electric field optical sensors etc. In order to further enhance the optical device performance and to be competitive with silicon photonics, sub-micrometric thickness lithium niobate films are crucial. A big step has been achieved with the development of LN thin films by using smart cut technology and wafer bonding and these films are nowadays available in the market. However, it is a challenge to obtain the requirements of the high quality thin LN film waveguide. In this letter, we show smooth ridge waveguides fabricated on 700 nm thickness thin film lithium niobate (TFLN). The fabrication has been done by developing and optimizing three steps of the technological process, the mask fabrication, the plasma etching, and a final cleaning wet etching step in order to remove the lithium niobate redeposition on the side walls. We have obtained single mode propagation with light overall losses of only 5 dB/cm.

  14. PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES: Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Deng, Yong-Feng; Liu, Yue; Han, Xian-Wei

    2008-07-01

    A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100Torr is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Torr to 100 Torr. It is also shown that in the range of the gas pressure from 1 Torr to 100 Torr with the slower rate of varying gas pressure, higher density of plasma can be obtained.

  15. UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays

    PubMed Central

    Kuhn, Joachim; Gripp, Tatjana; Flieder, Tobias; Dittrich, Marcus; Hendig, Doris; Busse, Jessica; Knabbe, Cornelius; Birschmann, Ingvild

    2015-01-01

    Introduction The fast, precise, and accurate measurement of the new generation of oral anticoagulants such as dabigatran and rivaroxaban in patients’ plasma my provide important information in different clinical circumstances such as in the case of suspicion of overdose, when patients switch from existing oral anticoagulant, in patients with hepatic or renal impairment, by concomitant use of interaction drugs, or to assess anticoagulant concentration in patients’ blood before major surgery. Methods Here, we describe a quick and precise method to measure the coagulation inhibitors dabigatran and rivaroxaban using ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring (MRM) mode (UPLC-MRM MS). Internal standards (ISs) were added to the sample and after protein precipitation; the sample was separated on a reverse phase column. After ionization of the analytes the ions were detected using electrospray ionization-tandem mass spectrometry. Run time was 2.5 minutes per injection. Ion suppression was characterized by means of post-column infusion. Results The calibration curves of dabigatran and rivaroxaban were linear over the working range between 0.8 and 800 μg/L (r >0.99). Limits of detection (LOD) in the plasma matrix were 0.21 μg/L for dabigatran and 0.34 μg/L for rivaroxaban, and lower limits of quantification (LLOQ) in the plasma matrix were 0.46 μg/L for dabigatran and 0.54 μg/L for rivaroxaban. The intraassay coefficients of variation (CVs) for dabigatran and rivaroxaban were < 4% and 6%; respectively, the interassay CVs were < 6% for dabigatran and < 9% for rivaroxaban. Inaccuracy was < 5% for both substances. The mean recovery was 104.5% (range 83.8–113.0%) for dabigatran and 87.0% (range 73.6–105.4%) for rivaroxaban. No significant ion suppressions were detected at the elution times of dabigatran or rivaroxaban. Both coagulation inhibitors were stable in citrate plasma at -20°C, 4°C and even at RT for at least one week. A method comparison between our UPLC-MRM MS method, the commercially available automated Direct Thrombin Inhibitor assay (DTI assay) for dabigatran measurement from CoaChrom Diagnostica, as well as the automated anti-Xa assay for rivaroxaban measurement from Chromogenix both performed by ACL-TOP showed a high degree of correlation. However, UPLC-MRM MS measurement of dabigatran and rivaroxaban has a much better selectivity than classical functional assays measuring activities of various coagulation factors which are susceptible to interference by other coagulant drugs. Conclusions Overall, we developed and validated a sensitive and specific UPLC-MRM MS assay for the quick and specific measurement of dabigatran and rivaroxaban in human plasma. PMID:26699714

  16. Mechanisms of suppressing secondary nucleation for low-power and low-temperature microwave plasma self-bias-enhanced growth of diamond films in argon diluted methane

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-heng; Tzeng, Yonhua

    2011-12-01

    We report on mechanisms for suppressing diamond secondary nucleation in microwave plasma self-bias-enhanced growth (SBEG) of diamond films in methane diluted by argon. High-density plasma at a small distance from the substrate induces a floating potential which promotes high-flux, low-energy ion bombardment on diamond growing surfaces along with an equal flux of electrons. Increased atomic hydrogen generated by electron impact dissociation of methane and low-energy ion bombardment help remove hydrocarbon coatings on diamond grains in favor of continuous grain growth and, therefore, the suppression of secondary diamond nucleation. Energetic meta-stable excited argon, abundant C2 dimers, and enhanced effective surface temperature due to low-energy ion bombardment further promote the diamond grain growth resulting in the deposition of a diamond film with columnar diamond grains of much larger grain sizes and a much lower density of grain boundaries than ultrananocrystalline diamond (UNCD) films grown under similar conditions without optimized plasma-substrate interactions. SEM, XRD, PL, and Raman scattering help confirm the deposition of diamond films with columnar grains.

  17. Collisional-radiative model for non-Maxwellian inductively coupled argon plasmas using detailed fine-structure relativistic distorted-wave cross sections

    NASA Astrophysics Data System (ADS)

    Dipti, HASH(0x100f5750); Gangwar, Reetesh Kumar; Srivastava, Rajesh; Stauffer, Allan Daniel

    2013-10-01

    Our recently developed collisional-radiative model which included fine-structure cross sections calculated with a fully relativistic distorted-wave method [R.K. Gangwar, L. Sharma, R. Srivastava, A.D. Stauffer, J. Appl. Phys. 111, 053307 (2012)] has been extended to study non-Maxwellian inductively coupled argon plasmas. We have added more processes to our earlier collisional-radiative model by further incorporating relativistic distorted-wave electron impact cross sections from the 3 p 54 sJ = 0, 2 metastable states, (1 s 3, 1 s 5 in Paschen’s notation) to the 3 p 55 p (3 p i ) excited states. The population of various excited levels at different pressures in the range of 1-25 mTorr for an inductively coupled argon plasma have been calculated and compared with the recent optical absorption spectroscopy measurements as well as emission model results of Boffard et al. [Plasma Sources Sci. Technol. 19, 065001 (2010)]. We have also calculated the intensities of two emission lines, 420.1 nm (3 p 9 → 1 s 5) and 419.8 nm (3 p 5 → 1 s 4) and compared with measured intensities reported by Boffard et al. [J. Phys. D 45, 045201 (2012)]. Our results are in good agreement with the measurements.

  18. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Schmidt-Bleker, A.; Winter, J.; Wolfram, M.; Hippler, R.; Weltmann, K.-D.; Reuter, S.

    2013-10-01

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN_{2}^{+} ) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown.

  19. Systems Biology of Coagulation

    PubMed Central

    Diamond, Scott L.

    2013-01-01

    Accurate computer simulation of blood function can inform drug target selection, patient-specific dosing, clinical trial design, biomedical device design, as well as the scoring of patient-specific disease risk and severity. These large-scale simulations rely on hundreds of independently measured physical parameters and kinetic rate constants. However, the models can be validated against large scale, patient-specific laboratory measurements. By validation with high dimensional data, modelling becomes a powerful tool to predict clinically complex scenarios. Currently, it is possible to accurately predict the clotting rate of plasma or blood in a tube as it is activated with a dose of tissue factor, even as numerous coagulation factors are altered by exogenous attenuation or potentiation. Similarly, the dynamics of platelet activation, as indicated by calcium mobilisation or inside-out signalling, can now be numerically simulated with accuracy in cases where platelets are exposed to combinations of agonists. Multiscale models have emerged to combine platelet function and coagulation kinetics into complete physics-based descriptions of thrombosis under flow. Blood flow controls platelet fluxes, delivery and removal of coagulation factors, adhesive bonding, and von Willebrand factor conformation. The field of Blood Systems Biology has now reached a stage that anticipates the inclusion of contact, complement, and fibrinolytic pathways along with models of neutrophil and endothelial activation. Along with “-omics” data sets, such advanced models seek to predict the multifactorial range of healthy responses and diverse bleeding and clotting scenarios, ultimately to understand and improve patient outcomes. PMID:23809126

  20. High-performance liquid chromatographic separation of biologically important arsenic species utilizing on-line inductively coupled argon plasma atomic emission spectrometric detection

    SciTech Connect

    Spall, W.D.; Lynn, J.G.; Andersen, J.L.; Valdez, J.G.; Gurley, L.R.

    1986-06-01

    An anion exchange, high-performance liquid chromatography technique using a 15-min linear gradient from water to 0.5 M ammonium carbonate to separate arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid from neutral arsenic containing compounds was developed for application to a study of arsenic metabolism in cultured cell suspensions. Arsenic detection was accomplished by the direct coupling of the column effluent to an inductively coupled argon plasma atomic emission spectrometer (ICAP-AES) set to monitor the arsenic emission line at 197.19 nm. The analysis requires 20 min and is sensitive to as low as 60 ng of arsenic injected to the column.

  1. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.

  2. Feed gas humidity introduced into a MHz atmospheric pressure argon plasma jet affects plasma-generated species and plasma-treated human skin cells

    NASA Astrophysics Data System (ADS)

    Winter, Jörn; Wende, Kristian; Hammer, Malte U.; Tresp, Helena; Iseni, Sylvain; Dünnbier, Mario; Masur, Kai; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    It is known, that gas humidity is an important parameter in plasma treatment of biological systems under ambient conditions. However, humidity in the feed gas of an atmospheric pressure plasma jet is even more crucial than ambient humidity since humid working gas is transported through the active plasma zone and the water molecules become dissociated. The so produced oxygen/hydrogen species are significant for the active plasma component composition. In this work the effect of feed gas humidity on the plasma, on plasma-treated cell growth medium (RPMI) and subsequently on human skin cells is investigated. It is shown, that already small concentrations of humidity (<1000 ppm) induce changes in the optical emission spectrum of the effluent, increase H2O2 concentration in liquid cell growth medium and inhibit human skin cell proliferation.

  3. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    SciTech Connect

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-03-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  4. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    NASA Astrophysics Data System (ADS)

    Saikia, Partha; Saikia, Bipul Kumar; Bhuyan, Heman

    2016-04-01

    We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te), electron density (ne), ion density (ni), degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  5. Acetylene-argon plasmas measured at an rf-biased substrate electrode for diamond-like carbon deposition: II. Ion energy distributions

    NASA Astrophysics Data System (ADS)

    Baby, A.; Mahony, C. M. O.; Lemoine, P.; Maguire, P. D.

    2011-02-01

    Ion energy distributions (IEDs) have been determined at the radio frequency (rf)-biased electrode in an inductively coupled acetylene-argon plasma for various substrate bias voltages and frequencies under conditions suitable for diamond-like carbon (DLC) and polymer-like film deposition. These are compared with those obtained at a capacitively coupled plasma grounded wall. In the former, for pressures <25 mTorr, the IEDs exhibit bimodal structures with peak separation values that follow the expected voltage and frequency dependences. At higher pressures, 120 mTorr, the bimodal structure is replaced by a single peak. For all conditions the dominant ion is Ar+ or ArH+ despite the set flow ratio of C2H2 : Ar of 2 : 1 and this can be attributed to the high electron dissociation of the parent molecule. DLC films indicate a peak hardness at an ion energy of around 90 eV and a very sharp fall in hardness is noted beyond this value. This is similar to the observed sp3-bond formation in hydrogen-free tetrahedral amorphous carbon or bias-sputtered films. However, due to the lack of carbon-based ions, an alternative mechanism is likely based on argon knock-on implantation of surface adsorbed carbon species. The results have shown that the use of high-frequency bias or bias harmonics may lead to much narrower IEDs. .

  6. Continuous Wave Cavity Ring-Down Spectroscopy and Laser Induced Fluorescence Measurements of Argon Ion Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Scime, Earl

    2014-10-01

    LIF is an established and powerful technique, but suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. Cavity ring down spectroscopy (CRDS) is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the target specie velocity distribution function (VDFs), is measured. CW-CRDS is designed for measurements of ion and atom states inaccessible to conventional techniques such as LIF. However, being a line integrated technique, CW-CRDS lacks the spatial resolution of LIF. We present a comparison of CW-CRDS and spatially resolved LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II.

  7. Aptamer RA36 inhibits of human, rabbit, and rat plasma coagulation activated with thrombin or snake venom coagulases.

    PubMed

    Savchik, E Yu; Kalinina, T B; Drozd, N N; Makarov, V A; Zav'yalova, E G; Lapsheva, E N; Mudrik, N N; Babij, A V; Pavlova, G V; Golovin, A V; Kopylov, A M

    2013-11-01

    RA36 DNA aptamer is a direct anticoagulant prolonging clotting time of human, rabbit, and rat plasma in the thrombin time test. Anticoagulant activity of RA36 is lower than that of recombinant hirudin. During inhibition of human plasma clotting activated with echitox (coagulase from Echis multisquamatus venom), the aptamer presumably binds to meisothrombin exosite I. The sensitivity of human plasma to the aptamer 5-fold surpasses that of rat plasma. Analysis of RA36 binding to coagulase of Agkistrodon halys venom (ancistron) is required for proving the effect of aptamer on polymerization of human fibrinogen. PMID:24319726

  8. Comment on ‘Correlating metastable-atom density, reduced electric field, and electron energy distribution in the post-transient stage of a 1 Torr argon discharge’ (2015 Plasma Source Sci. Technol. 24 034009)

    NASA Astrophysics Data System (ADS)

    Sadeghi, N.

    2016-06-01

    Several important errors and misinterpretations present in a recent publication by Franek et al (2015 Plasma Source Sci. Technol. 24 034009) are pointed out and discussed. In particular, it is shown that the electron densities deduced by the resonance cavity frequency shift technique are highly underestimated. So the conclusion of authors on validity of the method for the estimate of argon metastable density from the 420.1/419.8 nm emission intensity ratio is not justified. In a recent publication, hereafter referred as (Franek et al 2015 Plasma Sources Sci. Technol. 24 034009), Franek et al have studied the correlation existing in argon plasma between 420.1/419.8 nm emission intensity ratio and combined metastable atoms density (Arm), electron density (n e) and reduced electric field (E/N). Experiments were carried out in a 1 Torr argon plasma afterglow, during which Arm was measured by Diode-Laser absorption and n e by frequency shift of a μ-wave resonance cavity into which the plasma tube was inserted. Authors concluded that in any argon plasma Arm can be deduced, without directly measuring it, from the 420.1/419.8 nm emission intensity ratio, provided that n e and E/N are known. The purpose of this comment is to point out several important errors present in that paper, dealing mostly with electron density measurement.

  9. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE PAGESBeta

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected tomore » collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  10. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    SciTech Connect

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.

  11. Detection of fast electrons in pulsed argon inductively-coupled plasmas using the 420.1419.8?nm emission line pair

    NASA Astrophysics Data System (ADS)

    Boffard, John B.; Wang, S.; Lin, Chun C.; Wendt, A. E.

    2015-12-01

    Pulsed rf plasmas exhibit many differences as compared to continuous wave plasmas with the same average power levels, including large temporal variations in the electron temperature, with a sharp spike when the power is applied and falling dramatically in the afterglow. We present a comparison of time-resolved measurements of the effective electron temperature in pulsed inductively-coupled plasmas by means of (i) optical emission spectroscopy (OES) using different sets of argon emission lines and (ii) Langmuir probe measurements. One OES diagnostic used six strong Ar(2{{\\text{p}}x}\\to 1{{\\text{s}}y} ) emission lines in the 700800?nm wavelength range, the second used only the Ar 420.1419.8?nm line pair. For pulsed plasmas with long afterglow periods, the line pair method reveals the presence of a significant number of hot electrons (E?slant 22 eV) at the start of the pulse. Under these conditions, the metastable atom density is very low, and the diagnostic using the Ar(2{{\\text{p}}x}\\to 1{{\\text{s}}y} ) emission lines is ineffective for determining the electron temperature. For later parts of the pulse and pulsed plasmas with short periods (i.e. 10 ?s), the metastable density is high and the two OES methods yield similar results which are also in agreement with probe measurements.

  12. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  13. Effects of radio-frequency driving power, gas pressure, and nitrogen seeding on the transition dynamics in argon inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko

    2004-11-01

    The influences of rf driving power, neutral gas pressure, and nitrogen seeding on the electrostatic-to-electromagnetic (E-H) mode transition dynamics in radio-frequency argon inductively coupled plasmas (ICPs) in a pressure range of 50-100kPa are investigated, both experimentally and theoretically. The E-H mode transition dynamics and its characteristic transition time scale are investigated by observing the high-speed imaging (13500fps) as well as the temporal change of plasma loading impedance. The experimental results reveal that the E-H mode transition time is not fixed at any operating conditions rather it depends on some important parameters such as the rf driving power, neutral gas pressure, gas type. It is found that the E-H mode transition time depends on the unique parameter Eθ/p; the so-called effective induced electric field, rather than the independent parameter: the rf power or neutral gas pressure. It is also found that longer E-H mode transition time is required to ignite the high-pressure Ar-N2 plasmas with a 2.5%-10% N2 seeding than that of pure Ar plasmas with the same operating conditions. The experimental results are compared with that of the recently developed theoretical models, and a good agreement is found between them.

  14. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    SciTech Connect

    Qi, Bing Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{sup 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.

  15. GaN Etch Rates Compared with Atomic Chlorine Density and Ion Flux in an Argon/Chlorine Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Mahony, C. M. O.; Rizvi, S. A.; Maguire, P. D.; Garcia, F.; Graham, W. G.

    2004-09-01

    We present GaN etch rates (maximum 700nm/min), atomic chlorine densities (via Laser Induced Fluorescence at 200W RF power), positive ion densities (Langmuir probe) and positive ion wall flux (capacitive planar probe) using an Inductively Coupled Plasma as a function of chlorine in argon gas fraction from 0% to 100% at maximum RF power and pressure of 400 W and 20 mTorr respectively. In general, with chlorine addition, etch rates rise initially then tend to saturate at fractions above 50% Cl_2. Wall flux and n^+ approximate the inverse of this behaviour. The atomic chlorine density at 200W RF power rises monotonically with a pronounced inflection near 50% Cl_2. The positive ion wall flux - atomic chlorine density product strongly correlates with etch rate suggesting physical etching dominates below 50% Cl2 and chemical processes above. This is reflected in changes of the Ga/N surface stoichiometry, determined by XPS analysis.

  16. Surface force measurements between titanium dioxide surfaces prepared by atomic layer deposition in electrolyte solutions reveal non-DLVO interactions: influence of water and argon plasma cleaning.

    PubMed

    Walsh, Rick B; Evans, Drew; Craig, Vincent S J

    2014-03-01

    Surface force measurements between titania surfaces in electrolyte solutions have previously revealed an unexplained long-range repulsive force at high pH, not described by Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Here, the surface forces between titania surfaces produced by atomic layer deposition (ALD) and cleaned using a variety of methods have been measured to determine the influence of the cleaning protocol on the measured forces and test the hypothesis that water plasma cleaning of the surface results in non-DLVO forces at high pH. For argon plasma and water plasma cleaned surfaces, a diffuse double layer repulsion and van der Waals attraction is observed near the isoelectric point. At high pH, the force remained repulsive up until contact, and no van der Waals attraction or adhesion was observed. Differences in the measured forces are explained by modification of the surface chemistry during cleaning, which alters the density of charged groups on the surface, but this cannot explain the observed disagreement with DLVO theory at high pH. PMID:24548170

  17. A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet

    NASA Astrophysics Data System (ADS)

    Boekema, B. K. H. L.; Vlig, M.; Guijt, D.; Hijnen, K.; Hofmann, S.; Smits, P.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P.; Middelkoop, E.

    2016-02-01

    Cold plasma has been shown to provide a promising alternative antimicrobial treatment for wound healing. We developed and tested a flexible surface dielectric barrier discharge (DBD) and compared it to an argon gas based plasma jet operated remotely with a distance between plasma plume and sample of 8 mm. Tests were conducted using different models: on cultured cells, on ex vivo human skin and on bacteria (Pseudomonas aeruginosa) (on agar, in suspension, in collagen/elastin matrix or on ex vivo human skin), allowing us to directly compare bactericidal with safety aspects under identical conditions. Both plasma devices were highly efficient when used on bacteria in non-buffered solutions, but DBD was faster in reaching the maximum bacterial reduction. Treatment of bacteria on intact skin with DBD resulted in up to 6 log reductions in 3 min. The jet was far less efficient on intact skin. Even after 8 min treatment no more than 2 log reductions were obtained with the jet. Treatment of bacteria in burn wound models with DBD for 6 min resulted in a 4.5 log reduction. Even when using DBD for 6 min on infected burn wound models with colonizing or biofilm phase bacteria, the log reductions were 3.8 or 3.2 respectively. DBD plasma treatment for 6 min did not affect fibroblast viability, whereas a treatment for 8 min was detrimental. Similarly, treatment with DBD or plasma jet for 6 min did also not affect the metabolic activity of skin biopsies. After treatment for 8 min with DBD or plasma jet, 78% or 60% of activity in skin biopsies remained, respectively. Multiple treatments of in vitro burn wound models with surface DBD for 6 min or with plasma jet for 8 min did not affect re-epithelialization. With the flexible surface DBD plasma strip we were able to quickly inactivate large numbers of bacteria on and in skin. Under the same conditions, viability of skin cells or re-epithelialization was not affected. The DBD source has potential for treating larger wound areas.

  18. Departure from Local Thermodynamic Equilibrium in argon plasmas sustained in a Torche à Injection Axiale sur Guide d'Ondes

    NASA Astrophysics Data System (ADS)

    Rincón, R.; Muñoz, J.; Calzada, M. D.

    2015-01-01

    Plasma torches are suitable plasma sources for a wide range of applications. The capability of these discharges to produce processes like sample excitation or decomposition of molecules inside them depends on the density of the plasma species and their energies (temperatures). The relation between these parameters determines the specific state of thermodynamic equilibrium in the discharge. Thus, the understanding of plasma possibilities for application purposes is related to the knowledge of the plasma thermodynamic equilibrium degree. In this paper a discussion about the equilibrium state for Ar plasmas generated by using a Torche à Injection Axiale sur Guide d'Ondes, TIAGO device, is presented. Emission spectroscopy techniques were used to measure gas temperature and electron density at the exit of the nozzle torch and along the dart. Boltzmann-plots as well as bp parameters were calculated to characterize the type and degree of departure from partial Local Saha Equilibrium (pLSE). This study indicates that the closer situation to Local Thermodynamic Equilibrium (LTE) of the plasma corresponds to larger Ar flows which highlights the importance of the nitrogen (atmosphere surrounding the plasma) in the kinetics of Ar-TIAGO discharges.

  19. Spectroscopic and analytical characteristics of an inductively coupled argon plasma combined with hydride generation with or without simultaneous introduction of the sample aerosol for optical emission spectrometry.

    PubMed

    Pohl, Pawel; Broekaert, Jose A C

    2010-09-01

    A radially viewed inductively coupled argon plasma was used for optical emission spectrometry of volatile species formed by reaction with NaBH(4) (hydride generation). The volatile hydrides were either introduced into the plasma alone or at the same time as a sample aerosol generated by pneumatic nebulization with a commercially available Concomitant Metals Analyzer. The effects of the forward power, the presence of pre-reducing agents [(NH(2))(2)SC, KI, KBr and hot HCl], the occurrence of easily ionized elements (Ca, K, Mg and Na) in the analyte solutions on the excitation temperature (as measured via Ar atomic lines) and the electron number density were investigated for both of the sample introduction modes applied. The detection limits and the signal-to-background intensity ratios for As, Bi, Sb, Se and Sn lines were also evaluated and were observed to deteriorate with increasing power. When simultaneous hydride generation and pneumatic nebulization was employed under optimized experimental conditions, detection limits of 3.5, 2.9, 4.3, 1.5 and 2.1 microg L(-1) for As, Bi, Sb, Se and Sn, respectively, were obtained, and the intensities of the analytical lines for elements that do not form volatile hydrides were found to be 40% (Cd), 30% (Ni), 20% (Co, Cr, Fe, Mn and Zn) and 10% (Cu, Mg, V) greater than those obtained when only pneumatic nebulization was used. PMID:20582404

  20. The influence of the Stark effect on the shape of He-like argon lines in a dense plasma

    SciTech Connect

    Baronova, E. O.; Sholin, G. V.; Vikhrev, V. V.; Jakubowski, L.

    2008-03-19

    We interpret the relative intensities and widths of ArXVII lines in a dense plasma including the Stark effect of electromagnetic fields. For many elements the wavelength of the forbidden line 2{sup 1}S{sub 0}-1{sup 1}S{sub 0} is almost equal to that of intercombination y-line (2{sup 3}P{sub 1}-1{sup 1}S{sub 0}). A strong enough electric field can cause the forbidden line intensity to become high enough to have a visible effect on the intensity of the intercombination line. This paper calculates the intensity of the resonance, intercombination, and forbidden lines versus the strength of the electric field, including the shift of the n = 2 levels in ArXVII. A collisonal-radiative model simulates the ArXVII lines in a dense plasma with a electric field, demonstrating that an electric field with E = 10{sup 10} V/cm has the same effect on line shape as plasma opacity. Good agreement is obtained with ArXVII spectra emitted by a Z-pinch, with peak current 500 kA. Since the intensities of intercombination and resonance lines are widely used to determine plasma parameters, the present study is relevant to the applicability range of existing methods, and may show the way to measure strong electric fields. We also discuss the reasons for the presence of strong macroscopic electric fields in a plasma.

  1. Observation of inactivation of Bacillus sbtilis spores under exposures of oxygen added argon atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Zhao, Ying; Xiao, Dezhi; Lan, Yan; Xie, Hongbing; Cheng, Junli; Meng, Yuedong; Li, Jiangang; Chu, Paul K.

    2014-11-01

    The inactivation of Bacillus subtilis spores by an Ar plasma jet mixed with different amounts of oxygen is reported. 5.8 × 106 B. subtilis spores are sterilized by an Ar/O2 (8.7%) plasma jet after exposure for 2 min. The densities of ozone and oxygen radicals in the Ar/O2 plasma jet increase with oxygen concentration and are estimated by optical spectroscopy diagnostic. The malondialdehyde (MDA) test shows that oxygen radicals participate in bacterial inactivation. Scanning electron microscopy (SEM) reveals the deformation of the spore shape due to etching by oxygen radicals and the dependence of the degree of deformation on the density of oxygen radicals.

  2. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  3. Time-resolved measurement of copper emission spectrum excited by a low-pressure argon laser-induced plasma.

    PubMed

    Ushirozawa, Yohei; Wagatsuma, Kazuaki

    2006-07-01

    A laser-induced plasma generated with a pulsed Nd:YAG laser under evacuated conditions has complicated structures both temporally and spatially. The time-resolved spectra of copper in three different wavelength regions were observed in detail for elucidating the excitation mechanisms of many atomic/ionic copper emission lines. The emission intensities of copper emission lines, measured in a time-resolved mode, were strongly dependent on the kind of copper lines: ionic or atomic lines, and their excitation energies. Generally, copper ionic lines were rapidly decayed and dominantly emitted from the initial breakdown zone, because the copper ions requiring larger excitation energies were produced mainly in the hot breakdown zone. On the other hand, the atomic lines were emitted during prolonged periods, implying that they could also be excited in the expanded plasma zone. The excitation phenomena occurring in the laser-induced plasma could be better understood by analyzing the time-resolved copper spectra. PMID:16837755

  4. Bustling argon: biological effect

    PubMed Central

    2013-01-01

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option. PMID:24088583

  5. Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2015-08-01

    The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon  +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.

  6. 2D collisional-radiative model for non-uniform argon plasmas: with or without ‘escape factor’

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Vaskov Tsankov, Tsanko; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2015-03-01

    Collisional-radiative models for excited rare-gas atoms in low-temperature plasmas are a widely investigated topic. When these plasmas are optically thick, an ‘escape factor’ is introduced into the models to account for the reabsorption of photons (so-called radiation trapping process). This factor is usually obtained assuming a uniform density profile of the excited species; however, such an assumption is often not satisfied in a bounded plasma. This article reports for the first time a self-consistent collisional-radiative model without using an ad hoc ‘escape factor’ for excited Ar atoms in the 2p states (in Paschen’s notation). Rather, the rate balance equations—i.e. the radiation transfer equations—of the 2p states are numerically solved to yield the actual density profiles. The predictions of this self-consistent model and a model based on the escape factor concept are compared with spatially-resolved emission measurements in a low-pressure inductive Ar plasma. The self-consistent model agrees well with the experiment but the ‘escape factor’ model shows considerable deviations. By the comparative analysis the limitations and shortcomings of the escape factor concept as adopted in a significant number of works are revealed.

  7. Measurement of the total energy lost per electron-ion lost in argon, helium and oxygen inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Ku, Ju-Hwan; Lee, Young-Kwang; Oh, Seung-Ju; Chung, Chin-Wook

    2009-10-01

    The total energy lost per electron-ion pair lost was measured at various gases (Ar, O2, He, Ar/O2, Ar/He) and in the pressure range of 5--50 mTorr in an inductively coupled plasma. A floating harmonics method [1] was used to measure the electron temperatures and ion fluxes at the chamber wall. The absorbed power was determined by measuring the antenna resistance and current. The total energy lost were determined from a power balance equation of a global model. The measured of the total energy lost per electron-ion pair ranged from 80 V to 250 V for Ar and from 70 V to 90 V for He, respectively. In molecular gas, it ranged from 250 V to 2300 V for O2 plasma due to additional collisional energy losses. The measured total energy lost decrease with absorbed power and increase with pressure. In mixture discharges, the total energy lost rapidly increase with mixing ratio of oxygen in Ar/O2 plasma while the total energy lost slightly decrease with mixing ratio of helium in Ar/He plasma. These experimental results were consistent with theoretical ones. [4pt] [1] M. H. Lee, S. H. Jang, C. W. Chung, J. Appl. Phys. 101, 033305 (2007).

  8. Enhanced ozone production in a pulsed dielectric barrier discharge plasma jet with addition of argon to a He-O2 flow gas

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Ganguly, Biswa; Scofield, James

    2013-09-01

    Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at <20 kHz pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and <3 W input power at a 12 kHz turnover frequency. A further increase in the repetition frequency results in increased discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.

  9. Irradiation influence on Mylar and Makrofol induced by argon ions in a plasma immersion ion implantation system

    NASA Astrophysics Data System (ADS)

    Hassan, A.; El-Saftawy, A. A.; Aal, S. A. Abd El; Ghazaly, M. El

    2015-08-01

    Mylar and Makrofol polycarbonate polymers were irradiated by Ar ions in a plasma immersion ion implantation (PIII) system. The surface wettability of both polymers was investigated by employing the contact angle method. The measured contact angles were found to depend on the surface layer properties. Good wetting surfaces were found to depend not only on surface roughness but also on its chemistry that analyzed by Fourier transform infrared (FTIR) spectroscopy. Surfaces topography and roughness was investigated and correlated to their surface energy which studied with the aid of acid-base model for evaluating the improvement of surface wettability after irradiation. PIII improves polymers surface properties efficiently in a controllable way.

  10. Density of atoms in Ar*(3p{sup 5}4s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    SciTech Connect

    Huebner, S.; Carbone, E. A. D.; Mullen, J. J. A. M. van der; Sadeghi, N.

    2013-04-14

    This study presents the absolute argon 1 s (in Paschens's notation) densities and the gas temperature, T{sub g}, obtained in a surfatron plasma in the pressure range 0.6510 mbar, for which the pressure broadening can no more be neglected. T{sub g} is in the range of 480-750 K, increasing with pressure and decreasing with the distance from the microwave launcher. Taking into account the line of sight effects of the absorption measurements, a good agreement is found with our previous measurements by Rayleigh scattering of T{sub g} at the tube center. In the studied pressure range, the Ar(4 s) atom densities are in the order of 10{sup 16}-10{sup 18} m{sup -3}, increasing towards the end of the plasma column, decreasing with the pressure. In the low pressure side, a broad minimum is found around 10

  11. Phenol Decomposition Process by Pulsed-discharge Plasma above a Water Surface in Oxygen and Argon Atmosphere

    NASA Astrophysics Data System (ADS)

    Shiota, Haruki; Itabashi, Hideyuki; Satoh, Kohki; Itoh, Hidenori

    By-products from phenol by the exposure of pulsed-discharge plasma above a phenol aqueous solution are investigated by gas chromatography mass spectrometry, and the decomposition process of phenol is deduced. When Ar is used as a background gas, catechol, hydroquinone and 4-hydroxy-2-cyclohexene-1-on are produced, and no O3 is detected; therefore, active species such as OH, O, HO2, H2O2, which are produced from H2O in the discharge, can convert phenol into those by-products. When O2 is used as a background gas, formic acid, maleic acid, succinic acid and 4,6-dihydroxy-2,4-hexadienoic acid are produced in addition to catechol and hydroquinone. O3 is produced in the discharge plasma, so that phenol is probably decomposed into 4,6-dihydroxy-2,4-hexadienoic acid by 1,3-dipolar addition reaction with O3, and then 4,6-dihydroxy-2,4-hexadienoic acid can be decomposed into formic acid, maleic acid and succinic acid by 1,3-dipolar addition reaction with O3.

  12. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    PubMed

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed. PMID:26318000

  13. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu

    PubMed Central

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed. PMID:26318000

  14. Blood folate status and expression of proteins involved in immune function, inflammation, and coagulation: biochemical and proteomic changes in the plasma of humans in response to long-term synthetic folic acid supplementation.

    PubMed

    Duthie, Susan J; Horgan, Graham; de Roos, Baukje; Rucklidge, Garry; Reid, Martin; Duncan, Gary; Pirie, Lynn; Basten, Graham P; Powers, Hilary J

    2010-04-01

    We used plasma proteomics to identify human proteins responsive to folate status. Plasma was collected from subjects treated with placebo or 1.2 mg of folic acid daily for 12 weeks in a randomized controlled trial. Homocysteine and folate were measured by immunoassay and uracil misincorporation by electrophoresis. The plasma proteome was assessed by 2-D gel electrophoresis, and proteins were identified by LC MS/MS. 5-methylTHF increased 5-fold (P = 0.000003) in response to intervention. Red cell folate doubled (P = 0.013), and lymphocyte folate increased 44% (P = 0.0001). Hcy and uracil dropped 22% (P = 0.0005) and 25% (P = 0.05), respectively. ApoE A-1, alpha-1-antichymotrypsin, antithrombin, and serum amyloid P were downregulated, while albumin, IgM C, and complement C3 were upregulated (P < 0.05). More than 60 proteins were significantly associated with folate pre- and postintervention (P < 0.01). These were categorized into metabolic pathways related to complement fixation (e.g., C1, C3, C4, Factor H, Factor 1, Factor B, clusterin), coagulation (e.g., antithrombin, alpha-1-antitrypsin, kininogen) and mineral transport (e.g., transthyretin, haptoglobin, ceruloplasmin). Low folate status pre- and post-treatment were associated with lower levels of proteins involved in activation and regulation of immune function and coagulation. Supplementation with synthetic folic acid increased expression of these proteins but did not substantially disrupt the balance of these pathways. PMID:20143872

  15. Use of a nitrogen-argon plasma to improve adherence of sputtered titanium carbide coatings on steel

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440-C steel surfaces that had been RF-sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that a small partial pressure of nitrogen (about 0.5%) markedly improves the adherence, friction, and wear properties when compared with coatings applied on sputter-etched oxidized surfaces or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  16. The effects of natural moisture and of argon addition on the plasma temperature and on the detection limits of an apparatus for online control of metal pollutants by air inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Almi, Abdenbi; Teulet, Philippe; Sarrette, Jean-Philippe

    1998-10-01

    New results are presented concerning an apparatus for continuous monitoring of metal pollutants in air by the atomic emission spectroscopy (AES) method using an air inductively coupled plasma (ICP). Problems connected with the important role of the accuracy of the calibration method and with the incidence on calibration of the parameters of the calibration device are discussed. The incidence on the plasma characteristics, of the water introduced in the discharge by the calibration process, of the water brought in with the ambient air for analysis and of alkali metal salts introduced in the discharge, is analysed. The effect on the discharge parameters, such as the local excitation temperature in the analytic zone and the thermal equilibrium of the plasma, was measured. A method to improve the detection limits (DL) is presented. This method is suitable for analytes simultaneously characterized by high toxicity (low threshold limit values (TLV)) and by atomic analytic lines with a high excitation energy (low sensitivity in low temperature air discharges). It has been shown that using a mixture of 50% air+50% argon (total flow rate 15 l min -1) gives a sufficient sample of air for analysis and appreciably lowers the DL.

  17. Optogalvanic spectra in the near ultraviolet and visible regions and the time-resolved laser optogalvanic waveforms of argon and neon and their usefulness in the analysis of direct current plasmas

    NASA Astrophysics Data System (ADS)

    Major, Helen E.

    The rate of ionization of an atomic or molecular species in a discharge plasma displays a momentary increase or decrease when it is irradiated with illumination resonant with a transition of that species. Such a rate of ionization change can be detected as a transitory current variation known as the optogalvanic effect (OGE). The optogalvanic (OG) spectra of neon and argon in the visible and near ultraviolet (UV) regions were recorded using a pulsed Nd:YAG-pumped tunable dye laser to irradiate either an iron-neon hollow cathode discharge lamp or an iron-neon-argon see-through hollow cathode discharge lamp. The wavelength of the atomic OG spectra was cross-calibrated using the rotationally-resolved laser-induced fluorescence (LIF) spectrum of the hydroxyl (OH) radical. Previously unreported OG transitions, especially for argon, were identified and assigned using the J-L coupling scheme. Time-resolved laser optogalvanic (LOG) waveforms of specific neon and argon transitions were analyzed using a promising model of collisional ionization based upon the population distribution of the atomic species in the discharge plasma of a hollow cathode lamp (HCL) found in the literature. With the aid of a non-linear least-squares fit program written in Fortran code, the waveform parameters were determined by fitting a theoretical model to the observed experimental data. Several of these parameters were found proportional to the electron collisional cross sections associated with the states involved in the transition. The data was consistent with the theory that collisional ionization is the dominant factor in producing the OGE signal in the low current region of 0.2-3.0 mA, although other processes were not ruled out. Such a detailed analysis of the physics of the time-resolved LOG waveforms yielded quantitative information on the rates of excited state collisional processes in the gas discharge plasma.

  18. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  19. Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Pala, Z.; Sedláček, J.; Štengl, V.; Píš, I.; Zahoranová, T.; Nehasil, V.

    2012-06-01

    Titanium dioxide coatings were sprayed by a water-stabilized plasma gun to form robust self-supporting bodies with a photocatalytically active surface. Agglomerated nanometric powder was used as a feedstock. In one case argon was used as a powder-feeding as well as coating-cooling gas whereas in the other case nitrogen was used. Stainless steel was used as a substrate and the coatings were released after the cooling. Over one millimeter thick self-supporting bodies were studied by XRD, HR-TEM, XPS, Raman spectroscopy, UV-VIS spectrophotometry and photocatalytic tests. Selected tests were done at the surface as well as at the bottom side representing the contact surface with the substrate during the spray process. Porosity was studied by image analysis on polished cross sections where also microhardness was measured. The dominant phase present in the sprayed samples was rutile, whereas anatase was only a minor component. The hydrogen content in the nitrogen-assisted coating was higher, but the character of the optical absorption edge remained the same for both samples. Photoelectron spectroscopy revealed differences in the character of the O1s peak between both samples. The photocatalytic activity was tested by decomposition of acetone at UV illumination, whereas also the end products—CO and CO2—were monitored. The nitrogen-assisted coating was revealed as a more efficient photocatalyst. Certain aspects of a thermal post-treatment on the coatings are discussed as well. Color and electrical conductivity are markedly changed at annealing at 760 °C, whereas only very small changes of the as-sprayed coating character correspond to annealing at 500 °C.

  20. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    PubMed

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells. PMID:27121589

  1. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    ... Jr, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 141. Thachil J, Toh CH. Current concepts in the management of disseminated intravascular coagulation. Thromb Res . 2012;129 ...

  2. [Thrombinography: towards a globalization of coagulation tests].

    PubMed

    Péters, P; Gothot, A

    2009-04-01

    Thrombin is the key enzyme of coagulation and thrombin generation is the central haemostatic process. Current clotting tests (PT, aPTT) measure the time at which the first fibrin filaments appear after activation of coagulation. Yet, more than 95% of thrombin is generated after clot detection, which underlies the poor sensitivity of usual clotting tests for the detection of many hemorrhagic or thrombotic diseases. Thrombinography measures the kinetics of thrombin generation and inactivation during ex vivo coagulation, in standardized conditions. Thrombin generation is reduced in hemophiliacs and in patients under anticoagulant treatment. Thrombin activity is raised in hypercoagulable states, such as antithrombin deficiency, protein C and S deficiency, factor V Leiden and in women under oral contraceptives. Thrombin generation is delayed but amplified in the presence of lupus anticoagulants. In platelet-rich plasma, thrombin generation detects thrombopathies and von Willebrand disease, and allows monitoring of antiplatelet drugs. Thrombinography allows for a global phenotype of the thrombosis-hemostasis system. PMID:19514539

  3. First principles transport coefficients and reaction rates of Ar{sub 2}{sup +} ions in argon for cold plasma jet modeling

    SciTech Connect

    Chicheportiche, Alexandre; Benhenni, Malika; Yousfi, Mohammed; Stachoň, Martin; Kalus, René; Gadéa, Florent Xavier

    2014-10-07

    Momentum-transfer collision cross-sections and integral collision cross-sections for the collision-induced dissociation are calculated for collisions of ionized argon dimers with argon atoms using a nonadiabatic semiclassical method with the electronic Hamiltonian calculated on the fly via a diatomics-in-molecules semiempirical model as well as inverse-method modeling based on simple isotropic rigid-core potential. The collision cross-sections are then used in an optimized Monte Carlo code for evaluations of the Ar{sub 2}{sup +} mobility in argon gas, longitudinal diffusion coefficient, and collision-induced dissociation rates. A thorough comparison of various theoretical calculations as well as with available experimental data on the Ar{sub 2}{sup +} mobility and collision cross-sections is performed. Good agreement is found between both theoretical approaches and the experiment. Analysis of the role of inelastic processes in Ar{sub 2}{sup +}/Ar collisions is also provided.

  4. Powder evolution at low powers in silane-argon discharge

    SciTech Connect

    Chaudhuri, P.; Gupta, N. Dutta; Bhaduri, A.; Longeaud, C.; Vignoli, S.; Marty, O.

    2005-08-15

    Powder formation in a 13.56-MHz radio frequency (rf) capacitive glow discharge plasma of silane-argon mixture has been studied by in situ laser light-scattering measurements. The rf power density (P{sub rf}) was varied from 18 to 53 mW/cm{sup 2}. At high P{sub rf} the light scattering occurs all along the discharge and extends even beyond the exit end of the electrodes toward the pumping system. With decreasing P{sub rf} the maximum intensity of the light scattering decreases and the scattering zone shrinks and moves toward the exit end. With P{sub rf}{approx_equal}20 mW/cm{sup 2} a very bright scattering zone only a few centimeters wide appears located at the electrodes outlet. The powders studied by transmission electron microscopy did not show a drastic decrease of their sizes with P{sub rf} though clear coagulation of small particles is observed at high P{sub rf}. In this paper we have tried to link the laser light-scattering evolution with P{sub rf} to various parameters such as the microstructure factor, the deposition rate, the electron mobilityxlifetime product, the density of states, and the minority-carriers diffusion length of the films in an attempt to link the effect the evolution of powder formation to the films properties.

  5. Argon/UF6 plasma exhaust gas reconstitution experiments using preheated fluorine and on-line diagnostics. [fissioning uranium plasma core reactor design

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.

  6. Disseminated intravascular coagulation.

    PubMed

    Venugopal, A

    2014-09-01

    Disseminated intravascular coagulation (DIC) is a reflection of an underlying systemic disorder which affects the coagulation system, simultaneously resulting in pro-coagulant activation, fibrinolytic activation, and consumption coagulopathy and finally may result in organ dysfunction and death. Though septicaemia is the most common cause of DIC, several other conditions can also lead to it. A diagnosis of DIC should be made only in the presence of a causative factor supported by repeated laboratory tests for coagulation profile and clotting factors. An effective scoring system helps to detect an overt DIC and a high score closely correlates with mortality. Treatment of DIC is aimed at combating the underlying disorder followed by supportive management. Low molecular weight heparin is advocated in special situations whereas anti-thrombin III and activated protein C are of doubtful value. Early diagnosis and prompt treatment backed by laboratory support can reduce the morbidity and mortality associated with it. The methodology of search for this review article involved hand search from text books and internet search using Medline (via PubMed) using key words DIC, thrombosis, fibrin degradation products, anti-thrombin and tissue factor for the last 25 years and also recent evidence-based reviews. PMID:25535423

  7. Coagulation abnormalities in sepsis.

    PubMed

    Tsao, Cheng-Ming; Ho, Shung-Tai; Wu, Chin-Chen

    2015-03-01

    Although the pathophysiology of sepsis has been elucidated with the passage of time, sepsis may be regarded as an uncontrolled inflammatory and procoagulant response to infection. The hemostatic changes in sepsis range from subclinical activation of blood coagulation to acute disseminated intravascular coagulation (DIC). DIC is characterized by widespread microvascular thrombosis, which contributes to multiple organ dysfunction/failure, and subsequent consumption of platelets and coagulation factors, eventually causing bleeding manifestations. The diagnosis of DIC can be made using routinely available laboratory tests, scoring algorithms, and thromboelastography. In this cascade of events, the inhibition of coagulation activation and platelet function is conjectured as a useful tool for attenuating inflammatory response and improving outcomes in sepsis. A number of clinical trials of anticoagulants were performed, but none of them have been recognized as a standard therapy because recombinant activated protein C was withdrawn from the market owing to its insufficient efficacy in a randomized controlled trial. However, these subgroup analyses of activated protein C, antithrombin, and thrombomodulin trials show that overt coagulation activation is strongly associated with the best therapeutic effect of the inhibitor. In addition, antiplatelet drugs, including acetylsalicylic acid, P2Y12 inhibitors, and glycoprotein IIb/IIIa antagonists, may reduce organ failure and mortality in the experimental model of sepsis without a concomitant increased bleeding risk, which should be supported by solid clinical data. For a state-of-the-art treatment of sepsis, the efficacy of anticoagulant and antiplatelet agents needs to be proved in further large-scale prospective, interventional, randomized validation trials. PMID:25544351

  8. Type of precursor and synthesis of silicon oxycarbide (SiO{sub x}C{sub y}H) thin films with a surfatron microwave oxygen/argon plasma

    SciTech Connect

    Walkiewicz-Pietrzykowska, Agnieszka; Espinos, J. P.; Gonzalez-Elipe, Agustin R.

    2006-07-15

    Siliconelike thin films (i.e., SiO{sub x}C{sub y}H{sub z}) were prepared in a microwave plasma enhanced chemical vapor deposition reactor from structurally different organosilicon precursors [i.e., hexamethyldisiloxane (HMDSO), dimethylsilane (DMS), and tetramethylsilane (TMS)]. The films were deposited at room temperature by using different oxygen/argon ratios in the plasma gas. By changing the type of precursor and the relative concentration of oxygen in the plasma, thin films with different compositions (i.e., O/C ratio) and properties are obtained. In general, raising the oxygen concentration in the plasma produces the progressive removal of the organic moieties from the films whose composition and structure then approach those of silicon dioxide. The deposition rate was highly dependent on the type of precursor, following the order HMDSO>>DMS>TMS. The polarizabilities, optical band gaps, and surface free energy of the films also depended on the thin film composition and structure. It is proposed that the Si-O bonds existing in HMDSO is the main factor controlling the distinct reactivity of this precursor and is also responsible for the different compositions and properties of the SiO{sub x}C{sub y}H{sub z} thin films prepared with very low or no oxygen in the plasma gas.

  9. [Effects of Interaction of Ozonation and Coagulation on Coagulation Results].

    PubMed

    Liu, Hai-long; Guo, Xue-feng; Wang, Min-hui; Jiao, Ru-yuan; Shi, Jian

    2015-09-01

    Two strategies, ozonation-coagulation combination (OCC, ozone and coagulant dosed at meantime) and preozonation coagulation (PC, coagulant dosed after ozone died away) were used to treat synthesized water. Different effects of oxidation and coagulation, disinfection by-products formation potentials (DBPFP) in the same water were detected in order to study the influence of interaction of ozonation and coagulation (IOC) on treated water characteristics. Results show that there are remarkable differences between OCC and PC. IOC effects take place during OCC process, which results in variations of the distribution of hydrolyzed species of coagulant. And this is an important reason which impairs efficiency of coagulation. Turbidity after OCC was higher than that of PC. One of the main reasons is that ozone reduced the content of Alb species which was built during coagulant hydrolyzation. Cl-DBPFP in OCC outlet water were lower than those in PC because oxidized destruction of DBP precursors were enhanced by catalyzed ozonation by AlCl3 along with its other hydrolyzed species. Removals of MCAA and CF formation potentials by OCC were significantly higher than those by PC, MCAAFP were 5. 6 µg . L-1 and 16. 9 µg . L-1 respectively, and CFFP were 12. 5 µg . L-1 and 24. 1 µg . L-1 respectively. Coagulation results and DBP formations are significantly affected by interaction of ozonation and coagulation; and it should be a noticeable point of water safety if ozonation and coagulation are employed together. Thus times and spots between ozone and coagulant should be defined clearly in correlational researches and water treatment application. PMID:26717689

  10. Change in blood coagulation indices as a function of the incubation period of plasma in a constant magnetic field. [considering heparin tolerance and recalcification

    NASA Technical Reports Server (NTRS)

    Yepishina, S. G.

    1974-01-01

    The influence of a constant magnetic field (CMF) with a strength of 250 and 2500 oersteds on the recalcification reaction and the tolerance of plasma to heparin was studied as a function of the exposure time of the plasma to the CMF. The maximum and reliable change in the activation of the coagulatory system of the blood was observed after a 20-hour incubation of the plasma in a CMF. As the exposure time increased, the recalcification reaction changed insigificantly; the difference between the mean arithmetic of the experiment and control values was not statistically reliable. The tolerance of the plasma to heparin as a function of the exposure time to the CMF of the plasma was considerably modified, an was statistically reliable.

  11. Asthma and coagulation.

    PubMed

    de Boer, J Daan; Majoor, Christof J; van 't Veer, Cornelis; Bel, Elisabeth H D; van der Poll, Tom

    2012-04-01

    Asthma is a chronic airway disease characterized by paroxysmal airflow obstruction evoked by irritative stimuli on a background of allergic lung inflammation. Currently, there is no cure for asthma, only symptomatic treatment. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and platelets in the pathophysiology of asthma has increased considerably. Asthma is associated with a procoagulant state in the bronchoalveolar space, further aggravated by impaired local activities of the anticoagulant protein C system and fibrinolysis. Protease-activated receptors have been implicated as the molecular link between coagulation and allergic inflammation in asthma. This review summarizes current knowledge of the impact of the disturbed hemostatic balance in the lungs on asthma severity and manifestations and identifies new possible targets for asthma treatment. PMID:22262775

  12. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.

  13. [Selected blood coagulation problems in newborn infants].

    PubMed

    Gallistl, S

    2002-01-01

    The paper deals with specific features of the neonatal coagulation system. The plasma concentration of the majority of coagulation factors is lower in neonates than in adults, whereby near-adult values are achieved for most components by 6 months of life. Bleeding episodes in haemophilic newborns are rare but may be of a profound nature, thus a proper communication between all involved physicians may aid in the management of such patients. On the other hand thromboembolic episodes might complicate neonatal intensive care, in particular in patients with an indwelling central line. Also inherited thrombophilia might contribute to the development of neonatal thrombosis. Prophylaxis and therapy of vitamin K deficiency bleeding are discussed. PMID:11862680

  14. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  15. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z[sup 0] decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z[sup 0] events) is discussed.

  16. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.; SLD Collaboration

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z{sup 0} decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z{sup 0} events) is discussed.

  17. Coagulation equations with gelation

    SciTech Connect

    Hendriks, E.M.; Ernst, M.H.; Ziff, R.M.

    1983-06-01

    Smoluchowski's equation for rapid coagulation is used to describe the kinetics of gelation, in which the coagulation kernel K/sub i/j models the bonding mechanism. For different classes of kernels we derive criteria for the occurrences of gelation, and obtain critical exponents in the pre- and postgelation stage in terms of the model parameters; we calculate bounds on the time of gelation t/sub c/, and give an exact postgelation solution for the model K/sub i/j = (ij)/sup ..omega../ (..omega..>1/2) and K/sub i/j = ..cap alpha../sup i/+j (..cap alpha..>1). For the model K/sub i/j = i/sup ..omega../+j/sup ..omega../ (..omega..<1, without gelation) initial solutions are given. It is argued that the kernel K/sub i/japprox. (ij)/sup ..omega../ with ..omega..approx. =1-1/d (d is dimensionality) effectively models the sol-gel transformation is polymerizing systems and approximately accounts for the effects of cross-linking and steric hindrance neglected in the classical theory of Flory and Stockmayer (..omega.. = 1). For all ..omega.. the exponents, tau = ..omega..+3/2 and sigma = ..omega..-1/2, ..gamma.. = (3/2-..omega..)/(..omega..-1/2) and ..beta.. = 1, characterize the size distribution, at the slightly below the gel point, under the assumption that scaling is valid.

  18. Coagulant modulates the hypocholesterolemic effect of tofu (coagulated soymilk).

    PubMed

    Oboh, Ganiyu

    2007-06-01

    The recent increase in soymilk and tofu (coagulated soymilk) consumption, especially in Western countries, is due to the recognition of the health benefits of soy foods; consumption of soybean would prevent heart diseases. Since the amount and the type of coagulated biomolecules (such as isoflavones) will vary with the type of coagulant, this will inevitably alter their biological activity. This study sought to assess the effect of some coagulants (calcium chloride, alum, and steep water from pap production) commonly used in the production of tofu in Nigeria on the serum cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels in albino rats fed tofu for 14 days. The results of this study revealed that there was a significant difference (P < .05) in the total phenol [calcium chloride (0.9%), alum (0.8%), and steep water (1.2%)] content of all the tofu produced. Furthermore, feeding albino rats with tofu and water ad libitum for 14 days caused a significant decrease (P < .05) in serum cholesterol and LDL when compared with the control. Conversely, there was a significant increase (P < .05) in serum HDL when compared with the control. However, rats fed steep water-coagulated tofu had the lowest serum levels of cholesterol and LDL, followed by those fed alum- and calcium chloride-coagulated tofu, respectively, while those fed with alum-coagulated tofu had the highest serum HDL level, closely followed by those fed steep water-coagulated tofu. It was therefore concluded that of all the coagulants, steep water appeared to be the most promising coagulant with regard to the production of tofu with a high hypocholesterolemic effect based on the low serum cholesterol and LDL levels and high HDL level. PMID:17651081

  19. Blood Coagulation, Inflammation and Malaria

    PubMed Central

    Francischetti, Ivo M. B.; Seydel, Karl B.; Monteiro, Robson Q.

    2010-01-01

    I. ABSTRACT Malaria remains a highly prevalent disease in more than 90 countries and accounts for at least 1 million deaths every year. Plasmodium falciparum infection is often associated with a procoagulant tonus characterized by thrombocytopenia and activation of the coagulation cascade and fibrinolytic system; however, bleeding and hemorrhage are uncommon events, suggesting that a compensated state of blood coagulation activation occurs in malaria. This article i) reviews the literature related to blood coagulation and malaria in a historic perspective, ii) describes basic mechanisms of coagulation, anticoagulation, and fibrinolysis, iii) explains the laboratory changes in acute and compensated disseminated intravascular coagulation (DIC), iv) discusses the implications of tissue factor (TF) expression in the endothelium of P. falciparum-infected patients, and v) emphasizes the pro-coagulant role of parasitized erythrocytes (pRBC) and activated platelets in the pathogenesis of malaria. This article also presents the ‘Tissue Factor Model’ (TFM) for malaria pathogenesis, which places TF as the interface between sequestration, endothelial cell activation, blood coagulation disorder and inflammation often associated with the disease. The relevance of the coagulation-inflammation cycle for the multiorgan dysfunction and coma is discussed in the context of malaria pathogenesis. PMID:18260002

  20. Thermophysical properties of argon

    SciTech Connect

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  1. A stable argon compound

    NASA Astrophysics Data System (ADS)

    Khriachtchev, Leonid; Pettersson, Mika; Runeberg, Nino; Lundell, Jan; Räsänen, Markku

    2000-08-01

    The noble gases have a particularly stable electronic configuration, comprising fully filled s and p valence orbitals. This makes these elements relatively non-reactive, and they exist at room temperature as monatomic gases. Pauling predicted in 1933 that the heavier noble gases, whose valence electrons are screened by core electrons and thus less strongly bound, could form stable molecules. This prediction was verified in 1962 by the preparation of xenon hexafluoroplatinate, XePtF6, the first compound to contain a noble-gas atom. Since then, a range of different compounds containing radon, xenon and krypton have been theoretically anticipated and prepared. Although the lighter noble gases neon, helium and argon are also expected to be reactive under suitable conditions, they remain the last three long-lived elements of the periodic table for which no stable compound is known. Here we report that the photolysis of hydrogen fluoride in a solid argon matrix leads to the formation of argon fluorohydride (HArF), which we have identified by probing the shift in the position of vibrational bands on isotopic substitution using infrared spectroscopy. Extensive ab initio calculations indicate that HArF is intrinsically stable, owing to significant ionic and covalent contributions to its bonding, thus confirming computational predictions that argon should form a stable hydride species with properties similar to those of the analogous xenon and krypton compounds reported before.

  2. Roles of argon seeding in energy confinement and pedestal structure in JT-60U

    NASA Astrophysics Data System (ADS)

    Urano, H.; Nakata, M.; Aiba, N.; Kubo, H.; Honda, M.; Hayashi, N.; Yoshida, M.; Kamada, Y.; the JT-60 Team

    2015-03-01

    The mechanism of improving energy confinement with argon seeding at high density has been investigated in JT-60U. Better confinement is sustained at high density by argon seeding accompanied by higher core and pedestal temperatures. The electron density profiles become flatter with increasing density in conventional H-mode plasmas, whereas peaked density profiles are maintained with argon seeding. Density peaking and dilution effects lower the pedestal density at a given averaged density. The pedestal density in the argon seeded plasmas, which is lower than that in plasmas with deuterium puff, enables the pedestal temperature to be higher, whereas the increase in the pedestal pressure with argon seeding is small. High pedestal temperature is a boundary condition for high core temperature through profile stiffness, which leads to better confinement with argon seeding. The density peaking is a key factor of sustaining better confinement in argon seeded H-mode plasmas. The radiative loss power density is predominantly enhanced in the edge region by argon puff. The role of argon seeding in the pedestal characteristics has also been examined. The pedestal width becomes larger continuously with edge collisionality, but is nearly independent of the presence of argon seeding.

  3. Global coagulation in myeloproliferative neoplasms.

    PubMed

    Tripodi, Armando; Chantarangkul, Veena; Gianniello, Francesca; Clerici, Marigrazia; Lemma, Laura; Padovan, Lidia; Gatti, Loredana; Mannucci, Pier Mannuccio; Peyvandi, Flora

    2013-12-01

    In spite of their recognized risk of thrombosis, patients with myeloproliferative neoplasms (MPN) show little or no abnormalities of traditional coagulation tests, perhaps because these are unable to represent the balance between pro- and anticoagulants nor the effect of platelets and blood cells. We investigated whether global tests such as thrombin generation in platelet-rich plasma (PRP) or thromboelastometry in whole blood were able to detect signs of procoagulant imbalance in MPN. The endogenous thrombin potential (ETP) of 111 patients and 89 controls was measured in PRP with platelet count adjusted to the original patient- or control-count. Testing was performed with and without thrombomodulin (the physiological protein C activator) and results were expressed as ETP ratios (with/without thrombomodulin). High ETP ratios reflect resistance to thrombomodulin and were taken as indexes of procoagulant imbalance. Patients were also investigated by thromboelastometry that provides such parameters as the clot formation time (CFT) and maximal clot firmness (MCF). Short CFT or high MCF were taken as indexes of procoagulant imbalance. ETP ratios were higher in patients than in controls and were directly correlated with platelet counts and inversely with the plasma levels of free protein S, protein C and antithrombin. Patients on hydroxyurea had lower ETP ratios than those on other treatments. CFT was shorter and MCF was greater in patients than controls; CFT and MCF were correlated with platelet counts. In conclusion, patients with MPN display a procoagulant imbalance detectable by thrombin generation and thromboelastometry. These tests might be useful in the frame of clinical trials to assess their association with the occurrence of thrombosis and with the effect of therapeutic strategies in MPN. PMID:23820940

  4. One-step argon/nitrogen binary plasma jet irradiation of Li4Ti5O12 for stable high-rate lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Lan, Chun-Kai; Chuang, Shang-I.; Bao, Qi; Liao, Yen-Ting; Duh, Jenq-Gong

    2015-02-01

    Atmospheric pressure Ar/N2 binary plasma jet irradiation has been introduced into the manufacturing process of lithium ions batteries as a facile, green and scalable post-fabrication treatment approach, which enhanced significantly the high-rate anode performance of lithium titanate (Li4Ti5O12). Main emission lines in Ar/N2 plasma measured by optical emission spectroscopy reveal that the dominant excited high-energy species in Ar/N2 plasma are N2*, N2+, N∗ and Ar∗. Sufficient oxygen vacancies have been evidenced by high resolution X-ray photoelectron spectroscopy analysis and Raman spectra. Nitrogen doping has been achieved simultaneously by the surface reaction between pristine Li4Ti5O12 particles and chemically reactive plasma species such as N∗ and N2+. The variety of Li4Ti5O12 particles on the surface of electrodes after different plasma processing time has been examined by grazing incident X-Ray diffraction. Electrochemical impedance spectra (EIS) confirm that the Ar/N2 atmospheric plasma treatment facilitates Li+ ions diffusion and reduces the internal charge-transfer resistance. The as-prepared Li4Ti5O12 anodes exhibit a superior capacity (132 mAh g-1) and excellent stability with almost no capacity decay over 100 cycles under a high C rate (10C).

  5. Microfluidics and Coagulation Biology

    PubMed Central

    Colace, Thomas V.; Tormoen, Garth W.

    2014-01-01

    The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices facilitate measurements of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, pharmacology, and clinical diagnostics. An experimental session can accommodate 100s to 1000s of unique clotting events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor under constant flow rate or constant pressure drop conditions. Distinct shear rates can be created on a device with a single perfusion pump. Microfluidic devices facilitated the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidics are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to the mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics. PMID:23642241

  6. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use will be discussed.

  7. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    NASA Astrophysics Data System (ADS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored significantly by the successful grafting and immobilization which is confirmed by AFM and CA analysis. Owing to the physico-chemical changes on the surface of PP films induced by CAPP assisted polymerization, the anti-thrombogenic properties of PP films were enhanced as confirmed by in vitro analysis.

  8. Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow

    NASA Astrophysics Data System (ADS)

    Agarwal, Pulkit

    Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self consistently simulate the dynamics and charging of particles during afterglow. It was found that dusty plasma afterglow is dominated by different time scales for electron and ion dynamics. Particle size and charge distribution changes significantly during the afterglow. Finally, a simplified chemistry model was included in dusty plasma numerical model to simulate the dynamics of argon-silane dusty plasma. The chemistry model treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The nucleation rate is equated to rate of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Evolution of particle size and concentration is explained and the importance of variable surface growth rate and nucleation rate is discussed.

  9. Factor VIII assay mimicking in vivo coagulation conditions.

    PubMed

    Kusch, M; Grundmann, C; Keitel, S; König, H

    2014-03-01

    Under certain circumstances, the determination of coagulation factor VIII (FVIII) is hampered by assay discrepancies between clotting and chromogenic approaches. These are observed in certain patients' plasma as well as in certain concentrates. We intended to develop a novel assay for the quantification of coagulation FVIII which reflects the physiological situation better than the established assays. It is based on plasma without chelation of divalent cations and simultaneously minimizes the generation of activated factors which could function as uncontrolled triggers of coagulation. FVIII deficient plasma is prepared with the aid of biotinylated antibodies against FVIII from normal plasma in presence of inhibitors of contact activation. To start the assay only tiny amounts of activated FIX serve as trigger. The FVIII determination is performed in a kinetic experiment and is based on the cleavage of a fluorogenic substrate for activated FX. FVIII concentrations between 0.01 and 1 IU mL(-1) are easily determined. Plasma-derived and recombinant FVIII concentrates were compared. All plasma-derived concentrates were found to contain FVIII activities within the specification of the manufacturer. Recombinant concentrates yielded only 35-50% of the claimed potency. The novel in vivo-like assay avoids the undue advantage or disadvantage of certain product characteristics by eliminating unphysiological assay conditions. Its usefulness could turn out in future experiments with plasma from haemophilia A patients. PMID:24286249

  10. Argon frost continuous cryopump for fusion applications

    SciTech Connect

    Foster, C.A.; McCurdy, H.C.

    1993-12-01

    A cryopumping system based on the snail continuous cryopump concept is being developed for fusion applications under a DOE SBIR grant. The primary pump is a liquid helium cooled compound pump designed to continuously pump and fractionate deuterium/tritium and helium. The D/T pumping stage is a 500 mm bore cryocondensation pump with a nominal pumping speed of 45,000 L/s. It will be continuously regenerated by a snail regeneration by head every 12 minutes. Continuous regeneration will dramatically reduce the vulnerable tritium inventory in a fusion reactor. Operating at an inlet pressure of 1 millitorr, eight of these pumps could pump the projected D/T flow in the ITER CDA design while reducing the inventory of tritium in the pumping system from 630 to 43 grams. The helium fraction will be pumped in a compound argon frost stage. This stage will also operate continuously with a snail regeneration head. In addition the argon spray head will be enclosed inside the snail, thereby removing gaseous argon from the process chamber. Since the cryocondensation stage will intercept over 90% of the D/T/H steam, a purified stream from this stage could be directly reinjected into the plasma as gas or pellets, thereby bypassing the isotope separation system and further simplifying the fuel cycle. Experiments were undertaken in Phase I which demonstrated continuous cryosorption pumping of hydrogen on CO{sub 2} and argon frosts. The pumping system and its relevance to fusion reactor pumping will be discussed.

  11. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  12. REMOVING TRIHALOMETHANE PRECURSORS BY COAGULATION

    EPA Science Inventory

    The removal of trihalomethane precursors by coagulation was studied with low turbidity, low alkalinity waters containing high levels of aquatic humic matter. Jar tests were conducted with synthetic and natural waters using alum, high-molecular-weight polymers, cationic polymers, ...

  13. Disorders of coagulation in pregnancy.

    PubMed

    Katz, D; Beilin, Y

    2015-12-01

    The process of haemostasis is complex and is further complicated in the parturient because of the physiological changes of pregnancy. Understanding these changes and the impact that they have on the safety profile of the anaesthetic options for labour and delivery is crucial to any anaesthetist caring for the parturient. This article analyses current theories on coagulation and reviews the physiological changes to coagulation that occur during pregnancy and the best methods with which to evaluate coagulation. Finally, we examine some of the more common disorders of coagulation that occur during pregnancy, including von Willebrand disease, common factor deficiencies, platelet disorders, the parturient on anticoagulants, and the more rare acute fatty liver of pregnancy, with a focus on their implications for neuraxial anaesthesia. PMID:26658204

  14. Cosmic dust synthesis by accretion and coagulation

    NASA Technical Reports Server (NTRS)

    Praburam, G.; Goree, J.

    1995-01-01

    The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.

  15. The relationship between factor XI coagulant and factor XI antigenic activity in cattle.

    PubMed Central

    Gentry, P A

    1984-01-01

    Factor XI protein, isolated from normal bovine plasma, was used to raise antiserum in rabbits. The antisera was partially purified and used in a neutralization-inhibition assay to investigate the relationship between factor XI coagulant activity and antigenic material in the plasma of normal cattle and cattle homozygous and heterozygous for factor XI deficiency. Factor XI antigen was reduced in both the homozygous and heterozygous animals to levels comparable to the factor XI coagulant activity. The reduction of immunologically cross-reactive material to normal factor XI suggests that the factor XI coagulation defect is associated with the absence of a normal protein. PMID:6713258

  16. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  17. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    SciTech Connect

    Sun Wenting; Li Guo; Li Heping; Bao Chengyu; Wang Huabo; Zeng Shi; Gao Xing; Luo Huiying

    2007-06-15

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure {alpha}-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  18. Coagulation of dielectric dust grains due to variable asymmetric charging

    SciTech Connect

    Manweiler, Jerry W.; Armstrong, Thomas P.; Cravens, Thomas E.

    1998-10-21

    Observational evidence of electrical forces acting significantly on small solids is present for both the modern solar system in Saturn's rings and the ancient solar system in chondritic meteorites. It is likely that grain-grain coagulation rates are affected by the distribution of charges on small grains. Plasma particle impacts and photoelectric effects can provide the charges. It appears that some charging is inevitable and that plasma grain interactions need to be evaluated to determine the size of the effect on coagulation rates. We apply the results of our previous charging work to models of the protoplanetary nebula. It is expected that the protoplanetary nebula is weakly ionized except in certain instances and locations such as: solar flares in the interior, ultraviolet radiation at the outer boundary, and during enhanced luminosity of the star. Since the grains we study are non-conducting and show strong dipole moments in flowing plasma, we modify the geometric cross sections to include the effects of flowing plasma on non-conducting grains with plasma mediated shielding. This paper provides results showing how plasma flow affects the processes involved in charging the grains--total charge and charge distribution. We calculate the modifications to the cross sections and subsequent changes in the coagulation rates.

  19. Argon Purification Reference and Recommendation

    SciTech Connect

    Wu, J.; /Fermilab

    1991-05-23

    This engineering note is a reference for future consideration on the purification of argon. The original concern was for the possibility of argon contamination from components in the cryostats over long-term storage. An argon purification system could also be useful for purifying the contents of the argon dewar. The general conclusion is that most of the systems researched are too expensive at this time, but the recommended choice would be Centorr Furnaces. There were three basic types of purification systems which were to be considered. The first was the molecular sieve. This method would have been the preferred one, because it was claimed that it could purify liquid argon, removing liquid oxygen from the argon. However, none of the commercial companies researched provided this type of purification for use with liquid argon. Most companies said that this type of purification was impossible, and tests at IB-4 confirmed this. The second system contained a copper oxide to remove gaseous oxygen from argon gas. The disadvantage of this system wass that the argon had to be heated to a gas, and then cooled back down to liquid. The third system was similar to the second, except that it used tungsten or another material like titanium. This system also needed to heat the argon to gas, however the advantage of this system was that it supposedly removed all contaminants, that is, everything except for inert gases. Of the three systems, the third is the type manufactured by Centorr Furnaces, which uses a titanium charge.

  20. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method. PMID:14564441

  1. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  2. Effects of argon gas flow rate on the microstructure and micromechanical properties of supersonic plasma sprayed nanostructured Al2O3-13 wt.%TiO2 coatings

    NASA Astrophysics Data System (ADS)

    Li, Guo-lu; Ma, Jian-long; Wang, Hai-dou; Kang, Jia-jie; Xu, Bin-shi

    2014-08-01

    Nanostructured Al2O3-13 wt.%TiO2 (n-AT13) ceramic coatings were fabricated by supersonic plasma spray (SPS) using agglomerated powders. Effects of the argon gas flow rate (AGFR) on microstructure and micromechanical properties of n-AT13 ceramic coatings, which have been widely used to improve the wear and corrosion resistance, were investigated. The microstructure, porosity, micro-hardness, elastic modulus and fracture toughness of coatings were experimentally determined and characterized. The results showed that the measured data of micro-hardness, elastic modulus, fracture toughness and porosity followed Weibull distribution and had a large scattering. Micro-hardness, elastic modulus and fracture toughness exhibit a characteristic of bimodal distribution because of a bimodal distributional microstructure, which was composed of fully molten regions (FM) and partially molten regions (PM). With the increasing AGFR, the mean values and characteristic values of micro-hardness as well as elastic modulus increased and reached a local maximum and then decreased. However, the mean values and characteristic values for porosity as well as fracture toughness had opposite trends. Characteristic values and mean values of fracture toughness increased with the increase in values of porosity, but those of micro-hardness and elastic modulus were opposite.

  3. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  4. Nitrogen metastable (N2(A3 Σu + )) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition

    NASA Astrophysics Data System (ADS)

    Iseni, Sylvain; Bruggeman, Peter J.; Weltmann, Klaus-Dieter; Reuter, Stephan

    2016-05-01

    N 2 ( A 3 Σu + ) metastable species are detected and measured in a non-equilibrium atmospheric pressure plasma jet by laser induced fluorescence. A shielding device is used to change the ambient conditions additionally to the feeding gas composition. Varying the amount of N2 and air admixed to the feeding gas as well as changing the shielding gas from N2 to air reveals that the highest N 2 ( A 3 Σu + ) is achieved in the case of air admixtures in spite of the enhanced collisional quenching due to the presence of O2. The reasons for these observations are discussed in detail.

  5. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  6. Carbon monoxide and iron modulate plasmatic coagulation in Alzheimer's disease.

    PubMed

    Nielsen, Vance G; Pretorius, Etheresia; Bester, Janette; Jacobsen, Wayne K; Boyle, Patrick K; Reinhard, Joao P

    2015-01-01

    Alzheimer's disease (AD) is a significant source of morbidity and mortality for millions of people worldwide, and multiple potential etiologies have been postulated to contribute to AD. Among these, spontaneous cerebral emboli and increased cerebral and circulating heme oxygenase (Hmox) activity in AD patients are of particular interest, as two of the products of Hmox activity, carbon monoxide (CO) and iron enhance plasmatic coagulation and modify the ultrastructure of thrombi. We hypothesized that patients afflicted with AD would have coagulation kinetics modulated by CO and iron. Using viscoelastic assessments of coagulation, it was determined with a small cohort (n=11) of AD patients that all had enhancement of coagulation by CO, iron, or both. In a complementary fashion, it was determined that a separate cohort (n=12) of AD patients had thrombi with ultrastructural features consistent with iron and CO exposure as assessed with scanning electron microscopy. Further, when stratified by normal or abnormally increased serum ferritin concentrations (which can be increased by Hmox), the AD patients with abnormal ferritin concentrations had significantly thinner fibrin fiber diameters, not unlike that noted when normal plasma is mixed with iron or CO. In sum, AD patients were noted to have plasmatic coagulation kinetic and thrombus ultrastructural changes consistent with exposure to CO and iron. Future investigation of CO and iron in the pathogenesis of Alzheimer's disease is warranted. PMID:25557378

  7. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  8. Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A.

    2015-03-01

    In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure {{N}2}, {{O}2} and {{N}2} + {{O}2}. Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone ({{O}3}) and nitrogen dioxide (N{{O}2}) species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the {{O}3} and the N{{O}2} generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.

  9. Simultaneous inductively coupled argon plasma emission spectrometer as a multi-element-specific detector for high pressure liquid chromatography: the determination of arsenic, selenium, and phosphorus compounds

    NASA Astrophysics Data System (ADS)

    Irgolic, Kurt J.; Stockton, R. A.; Chakraborti, D.; Beyer, W.

    A Bausch & Lomb-ARL Model 34000 simultaneous inductively coupled plasma (ICP) emission spectrometer was interfaced with a high pressure liquid chromatograph to serve as a multi-element-specific detector. The standard ARL software was modified and a new program written to allow the chromatogram to be displayed graphically on-line. The HPLC-ICP system performance was demonstrated by the separation of arsenite, arsenate, methylarsonic acid, dimethylarsinic acid, phenylarsonic acid, selenite, and phosphate on a reverse-phase column. The detection limit for arsenic is 130 μg l -1 at 100 μl injection volumes. The arsenic signals are not dependent on the nature of the arsenic compounds. This HPLC-ICP system allows the quantitative determination of compounds with similar retention times provided they contain different elements determinable by ICP-AES.

  10. Ultrasonic measurement of milk coagulation time

    NASA Astrophysics Data System (ADS)

    Bakkali, F.; Moudden, A.; Faiz, B.; Amghar, A.; Maze, G.; Montero de Espinosa, F.; Akhnak, M.

    2001-12-01

    Using a pulse reflection technique an ultrasonic system has been developed to monitor in situ the coagulation process of rennetted milk. The velocity and attenuation of ultrasonic waves through coagulating milk were continuously monitored. The observed changes in ultrasonic velocity during coagulation were used to predict the coagulation time. The coagulation time is indicative of the transition from the enzymatic phase to the physicochemical phase. The determination of coagulation time has a decisive role in determining the qualities of the end product in cheesemaking.

  11. Using a Systems Pharmacology Model of the Blood Coagulation Network to Predict the Effects of Various Therapies on Biomarkers

    PubMed Central

    Nayak, S; Lee, D; Patel-Hett, S; Pittman, DD; Martin, SW; Heatherington, AC; Vicini, P; Hua, F

    2015-01-01

    A number of therapeutics have been developed or are under development aiming to modulate the coagulation network to treat various diseases. We used a systems model to better understand the effect of modulating various components on blood coagulation. A computational model of the coagulation network was built to match in-house in vitro thrombin generation and activated Partial Thromboplastin Time (aPTT) data with various concentrations of recombinant factor VIIa (FVIIa) or factor Xa added to normal human plasma or factor VIII-deficient plasma. Sensitivity analysis applied to the model revealed that lag time, peak thrombin concentration, area under the curve (AUC) of the thrombin generation profile, and aPTT show different sensitivity to changes in coagulation factors’ concentrations and type of plasma used (normal or factor VIII-deficient). We also used the model to explore how variability in concentrations of the proteins in coagulation network can impact the response to FVIIa treatment. PMID:26312163

  12. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  13. [Efficacy of soft coagulation in thoracic surgery].

    PubMed

    Sato, Yukio

    2014-07-01

    The soft coagulation is a novel mode of electrosurgical device which automatically regulates its output voltage to stay below 190 Volts, causing pure coagulation without carbonization. The soft coagulation is available with bipolar and monopolar devices in thoracic surgery. Bipolar scissors can be applied for dissection of pulmonary vessels safely and efficiently without the damage to vessel wall. Monopolar soft coagulation can be applied to shrink bullous change of lung, cease air leakage from lung parenchyme or bleeding from pulmonary vessels. PMID:25138947

  14. Blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice.

    PubMed

    Ohkura, Naoki; Oishi, Katsutaka; Atsumi, Gen-ichi

    2015-07-01

    Obese and diabetic states in humans are associated with an increased incidence of thrombotic diseases caused by various coagulation abnormalities. Genetically obese ob/ob mice produce metabolic abnormalities similar to those associated with type 2 diabetes. However, little is known about their coagulation features or sex differences. The present study aimed to determine the effects of obese and diabetic complications on blood coagulation and vascular diseases by exploring correlations between blood coagulation and metabolic profiles in middle-aged male and female ob/ob mice. Plasma levels of plasminogen activator inhibitor 1 (PAI-1) were significantly increased, whereas those that of platelet factor-4 (PF-4) was slightly, but significantly increased in male and female ob/ob mice compared with lean counterparts. Prothrombin time (PT) was significantly shortened in female ob/ob mice and activated partial thrombin time (APTT) significantly differed between male and female ob/ob mice. Plasma levels of antithrombin (AT) were significantly increased in male and female ob/ob mice. None of the other coagulation and fibrinolytic factors examined significantly differed between ob/ob mice and lean counterparts. On the contrary, factors such as body weight and cholesterol levels significantly differed between ob/ob and lean mice, whereas glucose, fructosamine and insulin levels significantly differed only in one sex of each strain. These results provided fundamental information about blood coagulation and metabolic features for exploring the function of altered blood coagulation states in ob/ob mice. PMID:25692523

  15. Thermophysical properties of multi-shock compressed dense argon

    NASA Astrophysics Data System (ADS)

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-01

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  16. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models. PMID:24559345

  17. Thermophysical properties of multi-shock compressed dense argon

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  18. [Coagulation and fibrinolytic activity of blood from the corpus cavernosum].

    PubMed

    Rolle, L; Bazzan, M; Bellina, M; Fontana, D

    1991-12-01

    Thrombosis in cavernous bodies during erection-induced blood stasis is a exceptional phenomenon. This observation, induced the Authors to study coagulative and fibrinolytic activities of blood in cavernous bodies during pharmacologically induced erection. The results of the tests performed show that the blood of cavernous bodies has a fibrinolytic activity 3 times higher than peripheral blood (FPLA = 277 +- 83 mm2) and did not decrease when plasma was incubated with anti t-PA. During middle length erections, this activity is not expressed and the absence of thrombi formation seems to be due to a slowing of blood coagulation processes. On the other hand, during long-lasting erections, fibrinolysis is induced resulting in a local consumption like coagulopathy. Fibrinolysis in this district is not related to high t-PA plasma levels. PMID:1838834

  19. CONTROLLING COAGULATION DYSREGULATION IN XENOTRANSPLANTATION

    PubMed Central

    Cowan, Peter J.; Robson, Simon C.; d’Apice, Anthony J.F.

    2011-01-01

    Purpose of review Deletion of the α1,3-galactosyltransferase (GalT) gene in pigs has removed a major xenoantigen but has not eliminated the problem of dysregulated coagulation and vascular injury. Rejecting GalT KO organ xenografts almost invariably show evidence of thrombosis and platelet sequestration, and primate recipients frequently develop consumptive coagulopathy (CC). This review examines recent findings that illuminate potential mechanisms of this current barrier to successful xenotransplantation. Recent findings The coagulation response to xenotransplantation differs depending on the type of organ and quite likely the distinct vasculatures. Renal xenografts appear more likely to initiate CC than cardiac xenografts, possibly reflecting differential transcriptional responses. Liver xenografts induce rapid and profound thrombocytopenia resulting in recipient death within days due to bleeding; ex vivo data suggest that liver endothelial cells and hepatocytes are responsible for platelet consumption by a coagulation-independent process. It has been proposed that expression of recipient tissue factor on platelets and monocytes is an important trigger of CC. Finally, pigs transgenic for human anticoagulants and antithrombotics are slowly but surely coming on line, but have not yet been rigorously tested to date. Summary Successful control of coagulation dysregulation in xenotransplantation may require different combinatorial pharmacological and genetic strategies for different organs. PMID:21415824

  20. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  1. Laser acceleration in argon clusters and gas media

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Hafz, Nasr A. M.; Li, Song; Gao, Kai; Li, Guangyu; ul-Ain, Qurat-; Zhang, Jie

    2016-03-01

    We experimentally investigated the generation of high-energy electron beams from laser-driven wakefield acceleration in argon gas jets by using tens of terawatt 30 fs ultrafast laser pulses that were focused to a relatively large-spot size, unmatched with the laser-plasma parameters. In this interaction, and depending on the Ar gas jet density, we could distinguish two different regimes for electron acceleration in the argon medium. In the high-density argon gas jet where argon clusters are formed, upon interaction with the laser electron beams having as high a charge as 3nC are generated. However, the energy spectra of those electron beams were continuous. On the other hand, high-quality quasi-mono-energetic electron beams with a modest charge of tens of pC are observed at much lower argon gas jet densities. The generation of such a high-quality electron beam is attributed to the ionization injection mechanism in which the electron injection takes place over only a few hundred micrometers of the laser-plasma interaction length, leading to the generation of high-quality electron beams.

  2. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  3. [Aneurysm of the abdominal aorta and preoperative disseminated intravascular coagulation].

    PubMed

    Chauvet, V; Bussac, J J; Jullian, H; Juhan-Vague, I; Branchereau, A

    1991-01-01

    A case of abdominal aortic aneurysm associated with preoperative signs of disseminated intravascular coagulation is reported. The 69-year-old female patient presented with spontaneously appearing petechiae and bruising. She had 0.95 g.l-1 fibrinogen, 105 G.l-1 platelets, and 100 micrograms.ml-1 fibrin and fibrinogen degradation products. Investigations revealed an 80 mm diameter aneurysm of the abdominal aorta, extending from the coeliac trunk to the iliac arteries. Heparin 7,000 IU.day-1 resulted in a biological improvement for a week only. At that time, levels of coagulation factors were: 92% factor II, 88% factor V, 100% factors VII and X, 100% antithrombin III. Surgical cure of the aneurysm was nevertheless carried out. Twenty standard units of platelets, 8 g fibrinogen, four units of fresh frozen plasma, five homologous and two autologous red cell units were transfused during the procedure. No coagulation factors were necessary during the postoperative course, which was uneventful. The management of coagulation factor infusions, before or after aortic cross-clamping, is discussed. PMID:2058833

  4. Electrical conductivity of compressed argon

    SciTech Connect

    Bauer, R.; Windl, W.; Collins, L.; Kress, J.; Kwon, I.

    1997-10-01

    The authors report calculations of the electrical conductivity of solid argon as a function of compression within the density functional local density approximation formulation for a norm-conserving pseudopotential using both electron-phonon coupling and molecular dynamics techniques.

  5. The Liquid Argon Purity Demonstrator

    NASA Astrophysics Data System (ADS)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  6. Study of fluid mechanical helium argon ion laser

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An approach to an argon ion laser based on gasdynamic techniques is presented. Improvement in efficiency and power output are achieved by eliminating high heat rejection problems and plasma confinement of the seal-off conventional lasers. The process of producing population inversion between the same energy levels, as in the conventional argon ion laser, has been divided into two phases by separating each other from the processes of ionization and subsequent excitation. Line drawings and graphs are included to amplify the theoretical presentation.

  7. [Activation of coagulation and fibrinolysis in patients with abdominal true aortic aneurysm associated with disseminated intravascular coagulation].

    PubMed

    Akaike, M; Yokoi, K; Wada, M; Sebe, T; Shigekiyo, T; Kawai, H; Saito, S

    1993-03-01

    Two cases of abdominal true aortic aneurysm (AAA) associated with disseminated intravascular coagulation (DIC) were reported. Case 1 was an 81-year-old male who was admitted because of hematoma on the left leg and in whom was found by MRI an aortic aneurysm of 14 cm in diameter. Coagulation studies indicated DIC by revealing thrombocytopenia, hypofibrinogenemia and increased level of FDP. DIC was well controlled by surgical repair of the aneurysm after the administration of a small dose of heparin. Case 2 was a 60-year-old male who was admitted because of lumbago and hematoemesis and in whom was found by CT and echography an aortic aneurysm of 5.5 cm in diameter. Coagulation studies indicated DIC by revealing thrombocytopenia and an increased level of FDP. On the 2nd hospital day, he suddenly died due to the rupture of the aortic aneurysm. In most of 9 cases with AAA without DIC, plasma levels of thrombin-antithrombin III complex, plasmin-alpha 2 plasmin inhibitor complex and FDP-D dimer were also elevated. These findings indicate that the coagulation and fibrinolysis systems were generally activated in patients with AAA, and that DIC tends to occur in patients with a giant aortic aneurysm or an impending ruptured aneurysm. PMID:8469833

  8. Coagulation Changes During Graded Orhostatic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Cvirn, Gerhard; Schlagenhauf, Aaxel; Leschnik, Bettina; Koestenberger, Martin; Roessler, Andreas; Jantscher, Andreas; Waha, James Elvis; Wolf, Sabine; Vrecko, Karoline; Juergens, Guenther; Hinghofer-Szalkay, Helmut

    2013-02-01

    Background: Orthostatic stress has been introduced as a novel paradigm for activating the coagulation system. We examined whether graded orthostatic stress (using head up tilt, HUT + lower body negative pressure, LBNP) until presyncope leads to anti / pro-coagulatory changes and how rapidly they return to baseline during recovery. Methodology: Eight male subjects were enrolled in this study. Presyncopal runs were carried out using HUT + LBNP. At minute zero, the tilt table was brought from 0° (supine) to 70 ° head-up position for 4 min, after which pressure in the LBNP chamber was reduced to -15, -30, and -45 mm Hg every 4 min. At presyncope, the subjects were returned to supine position. Coagulatory responses and plasma mass density (for volume changes) were measured before, during and 20 min after the orthostatic stress. Whole blood coagulation was examined by means of thrombelastometry. Platelet aggregation in whole blood was examined by using impedance aggregometry. Thrombin generation parameters, prothrombin levels, and markers of endothelial activation were measured in plasma samples. Results: At presyncope, plasma volume was 20 % below the initial supine value. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential (ETP), and tissue factor pathway inhibitor (TFPI) levels increased during the protocol, commensurate with hemoconcentration. The markers of endothelial activation (tissue factor, TF, tissue plasminogen activator, t-PA) and the markers of thrombin generation (Prothrombin fragments 1 and 2, F1+2, and thrombin-antithrombin complex, TAT) increased significantly. During recovery, all the coagulation parameters returned to initial supine values except F1 +2 and TAT. Conclusion: Head-up tilt/LBNP leads to activation of the coagulation system. Some of the markers of thrombin formation are still at higher than supine levels during recovery.

  9. Gene Therapy for Coagulation Disorders.

    PubMed

    Swystun, Laura L; Lillicrap, David

    2016-04-29

    Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright. PMID:27126652

  10. Acquired coagulant factor VIII deficiency induced by Bacillus anthracis lethal toxin in mice

    PubMed Central

    Sun, Der-Shan; Lee, Po-Chien; Kau, Jyh-Hwa; Shih, Yung-Luen; Huang, Hsin-Hsien; Li, Chen-Ru; Lee, Chin-Cheng; Wu, Yu-Ping; Chen, Kuo-Ching; Chang, Hsin-Hou

    2015-01-01

    Mice treated with anthrax lethal toxin (LT) exhibit hemorrhage caused by unknown mechanisms. Moreover, LT treatment in mice induced liver damage. In this study, we hypothesized that a suppressed coagulation function may be associated with liver damage, because the liver is the major producing source of coagulation factors. The hepatic expression of coagulant factors and the survival rates were analyzed after cultured cells or mice were exposed to LT. In agreement with our hypothesis, LT induces cytotoxicity against hepatic cells in vitro. In addition, suppressed expression of coagulation factor VIII (FVIII) in the liver is associated with a prolonged plasma clotting time in LT-treated mice, suggesting a suppressive role of LT in coagulation. Accordingly, we further hypothesized that a loss-of-function approach involving treatments of an anticoagulant should exacerbate LT-induced abnormalities, whereas a gain-of-function approach involving injections of recombinant FVIII to complement the coagulation deficiency should ameliorate the pathogenesis. As expected, a sublethal dose of LT caused mortality in the mice that were non-lethally pretreated with an anticoagulant (warfarin). By contrast, treatments of recombinant FVIII reduced the mortality from a lethal dose of LT in mice. Our results indicated that LT-induced deficiency of FVIII is involved in LT-mediated pathogenesis. Using recombinant FVIII to correct the coagulant defect may enable developing a new strategy to treat anthrax. PMID:25906166

  11. Void dynamics in low-pressure acetylene RF plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdinandus Martinus Jozef Henricus; Nijdam, Sander; Beckers, Job; Kroesen, Gerardus Maria Wilhelmus

    2013-09-01

    In low-pressure acetylene plasmas, dust particles spontaneously form under certain conditions. This process occurs in a matter of seconds to minutes after igniting the plasma and results in a cloud of particulates up to micrometer sizes levitated in the plasma. We studied a capacitively coupled radio-frequency plasma under normal gravity conditions and constant flow of feed gas (argon and acetylene). After the dust cloud has been formed, an ellipsoid-shaped dust-free zone - called a void - develops and grows as a function of time. Concurrently, the dust particles grow in size. Peculiar dynamics of the void have been observed, where during its expansions it suddenly stops growing and even shrinks, to shortly thereafter resume its expansion. We infer this is induced by coagulation of a new batch of dust particles inside the void. The whole dust growth and void expansion/contraction is periodical and highly reproducible. Several techniques are used to gain information about the plasma dynamics. Microwave cavity resonance spectroscopy is used to determine the global electron density. Scattering of a vertical laser sheet is used to visualize the dust particle density. The electrical characteristics of the plasma are determined using a commercially available plasma impedance monitor. This work is supported by NanoNextNL, a micro and nanotechnology programme of the Dutch Government and 130 partners.

  12. Argon-40-argon-39 dating of Apollo sample 15555.

    NASA Technical Reports Server (NTRS)

    Alexander, E. C., Jr.; Davis, P. K.; Lewis, R. S.

    1972-01-01

    An age of 3.33 (plus or minus 0.05) b.y. was obtained for Apollo 15 sample 15555 by argon-40-argon-39 dating. The age of rock 15555, a basalt from the rim of Hadley Rille, establishes an upper limit to the age of the rille. The basalt flows filling the Hadley Rille section of the Imbrium basin postdate the formation of the basin - as measured by the Apollo 14 samples of the Fra Mauro formation - by at least 500 m.y. Therefore, the mare basalts cannot be simple impact melts but rather must result from some igneous activity on the moon.

  13. Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators.

    PubMed

    Bhat, Ravishankar; Ribes, Àngela; Mas, Núria; Aznar, Elena; Sancenón, Félix; Marcos, M Dolores; Murguía, Jose R; Venkataraman, Abbaraju; Martínez-Máñez, Ramón

    2016-02-01

    The possibility of achieving sophisticated actions in complex biological environments using gated nanoparticles is an exciting prospect with much potential. We herein describe new gated mesoporous silica nanoparticles (MSN) loaded with an anticoagulant drug and capped with a peptide containing a thrombin-specific cleavage site. When the coagulation cascade was triggered, active thrombin degraded the capping peptidic sequence and induced the release of anticoagulant drugs to delay the clotting process. The thrombin-dependent response was assessed and a significant increase in coagulation time in plasma from 2.6 min to 5 min was found. This work broadens the application of gated silica nanoparticles and demonstrates their ability to act as controllers in a complex scenario such as hemostasis. PMID:26794474

  14. Radiative Properties of Argon Gas-Puff Implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, Nicholas; Qi, Niansheng; de Grouchy, Phil; Shelkovenko, Tatiana; Pikuz, Sergei; Giuliani, John; Dasgupta, Arati; Apruzese, John; Clark, Robert; Hammer, David; Kusse, Bruce

    2015-11-01

    Gas-puff Z-pinch experiments were performed on the 1 MA COBRA pulsed power generator at Cornell University. The gas puffs were injected into the load region from a triple nozzle. The load region had an anode-cathode gap of 2.5 cm. The standard diagnostics on COBRA include time-integrated pinhole cameras, a time-integrated axially resolved x-ray spectrometer, filtered photo-conducting detectors, and time-gated XUV cameras. We will focus mainly on results from pinhole images and x-ray spectra from argon gas puffs including some with a SO2 dopant. The x-ray time-integrated pinhole images feature a tight axially uniform plasma column with a diameter of approximately 1 mm for argon gas implosion. The x-ray spectrometer used mica crystals (2d =19.84 Å) and captured the argon K-shell radiation from different crystal reflections. A 1-D multi-zone argon and sulfur non-LTE kinetics code with radiation transport is used to model the K-shell emission for the purpose of inferring the plasma conditions and the interaction of gas from the inner annulus with the central jet. This work is supported by DOE/NNSA.

  15. Axial evolution of radial heat flux profiles transmitted by atmospheric pressure nitrogen and argon arcs

    NASA Astrophysics Data System (ADS)

    Meher, K. C.; Tiwari, N.; Ghorui, S.; Sahasrabudhe, S. N.; Das, A. K.

    2014-12-01

    Axial evolutions of radial heat flux profiles in argon and nitrogen plasma jets from an atmospheric pressure dc non-transferred arc plasma torch are determined using a double calorimetric technique. Results are presented for power levels suitable for the processing of high temperature ceramic oxides, where the heat flux data reported in the literature is rare. Variations of the profile widths and profile maxima are presented as a function of axial distance as well as power. Relatively uniform profile width over prolonged axial distance for nitrogen plasma compared to argon is an important observation which has the potential to offer a much longer dwell time of the injected particles inside the plasma, avoiding the problem of unmelts, especially for ceramics. A comparative study of the heat flux profiles for argon and nitrogen plasma is presented. The obtained results are compared with the data reported in literature.

  16. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  17. Effect of fibrinogen on blood coagulation detected by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Teng, Xiangshuai

    2015-05-01

    Our previous work demonstrated that an optical coherence tomography (OCT) technique and the parameter 1/e light penetration depth (d1/e) were able to characterize the whole blood coagulation process in contrast to existing optical tests that are performed on plasma samples. To evaluate the feasibility of the technique for quantifying the effect of fibrinogen (Fbg) on blood coagulation, a dynamic study of d1/e of blood in various Fbg concentrations was performed in static state. Two groups of blood samples of hematocrit (HCT) in 35, 45, and 55% were reconstituted of red blood cells with: 1) treated plasma with its intrinsic Fbg removed and commercial Fbg added (0-8 g L-1) and 2) native plasma with commercial Fbg added (0-8 g L-1). The results revealed a typical behavior due to coagulation induced by calcium ions and the clotting time is Fbg concentration-dependent. The clotting time was decreased by the increasing amount of Fbg in both groups. Besides, the blood of lower HCT with various levels of Fbg took shorter time to coagulate than that of higher HCT. Consequently, the OCT method is a useful and promising tool for the detection of blood-coagulation processes induced with different Fbg levels.

  18. Textile wastewater purification through natural coagulants

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Rodríguez-Sánchez, M. T.

    2011-09-01

    A new coagulant obtained through polymerization of Acacia mearnsii de Wild tannin extract has been characterized in the removal of two dangerous dye pollutants: Alizarin Violet 3R and Palatine Fast Black WAN. This coagulant is lab-synthesized according to the etherification of tannins with glycidyltrimethylammonium chloride and formaldehyde and its performance in dye removal in terms of efficiency was high. Reasonably low coagulant dosages (ca. 50 mg L-1) reaches high capacity levels (around 0.8 for Alizarin Violet 3R and 1.6 for Palatine Fast Black WAN mg dye mg-1 of coagulant) and pH and temperature are not extremely affecting variables. The systems coagulant dyes were successfully modeled by applying the Langmuir hypothesis. q max and b parameters were obtained with an adjusted correlation factor ( r 2) above 0.8.

  19. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  20. Silica Nanoparticles Effects on Blood Coagulation Proteins and Platelets

    PubMed Central

    Gryshchuk, Volodymyr; Galagan, Natalya

    2016-01-01

    Interaction of nanoparticles with the blood coagulation is important prior to their using as the drug carriers or therapeutic agents. The aim of present work was studying of the primary effects of silica nanoparticles (SiNPs) on haemostasis in vitro. We studied the effect of SiNPs on blood coagulation directly estimating the activation of prothrombin and factor X and to verify any possible effect of SiNPs on human platelets. It was shown that SiNPs shortened coagulation time in APTT and PT tests and increased the activation of factor X induced by RVV possibly due to the sorption of intrinsic pathway factors on their surface. SiNPs inhibited the aggregation of platelet rich plasma induced by ADP but in the same time partially activated platelets as it was shown using flow cytometry. The possibility of SiNPs usage in nanomedicine is strongly dependant on their final concentration in bloodstream and the size of the particles that are used. However SiNPs are extremely promising as the haemostatic agents for preventing the blood loss after damage. PMID:26881078

  1. [The centennial of blood coagulation doctrine].

    PubMed

    Izaguirre Avila, Raúl

    2005-01-01

    For centuries, the mystery surrounding blood coagulation stimulated the curiosity of researchers. The knowledge about this function has increased notably in the last century and has permitted to understand numerous physiopatho logical phenomena in several hemorrhagic and thrombotic diseases, and has made it possible to develop diverse drugs of proved efficacy for prevention and therapy. All this was initiated in 1905, when Paul Morawitz published an extensive monograph on the four factors of blood coagulation known until then (fibrinogen, thrombin, thrombokinase, and calcium). In that work, he proposed a blood coagulation model in two stages: thrombin generation and fibrinogen coagulation. In the 1940s a true golden age in coagulation was started with the results of Quick's prothrombin time test, described in 1936, and since then the most employed coagulation test. Besides numerous factors involved in this function were discovered and classified. The discovery and introduction of heparin and coumarin in the anticoagulant therapeutics opened a measureless panorama for the arrival of new antithrombotic drugs. By the middle of the XX century, the mechanism of coagulation had been practically deciphered and diverse models based on sequential enzymatic function were proposed, called first chain reactions and in cascade reactions later. In the second half of the XX century, numerous regulatory mechanisms of coagulation were identified and diverse laboratory tests appeared that have allowed highly precise diagnoses of a variety of diseases. Blood separation techniques have permitted to produce factor concentrates for clinical use. With the identification of the genes that encode the synthesis of coagulation factors, it has been possible to produce them by means of molecular biology techniques, being the most significant the production of factors VIII, IX, and VII. The present model of coagulation is based on tissular factor activation and the participation of cells, concepts that were already implicit in the classical theory of Morawitz. PMID:16366177

  2. Argon-40/ argon-39 dating of lunar rock samples.

    PubMed

    Turner, G

    1970-01-30

    Seven crystalline rock samples returned by Apollo 11 have been analyzed in detail by means of the (40)Ar-(-39)Ar dating technique. The extent of radiogenic argon loss in these samples ranges from 7 percent to >/= 48 percent. Potassium-argon ages, corrected for the effects of this loss, cluster relatively closely around the value of 3.7 x 10(9) years. Most of the vulcanism associated with the formation of the Mare Tranquillitatis presumably occurred around 3.7 x 10(9) years ago. A major cause of the escape of gas from lunar rock is probably the impact event which ejected the rock from its place of origin to its place of discovery. Upper limits for the times at which these impact events occurred have been estimated. PMID:17781454

  3. Rare coagulation factor deficiencies: a countrywide screening data from India.

    PubMed

    Shetty, S; Shelar, T; Mirgal, D; Nawadkar, V; Pinto, P; Shabhag, S; Mukaddam, A; Kulkarni, B; Ghosh, K

    2014-07-01

    As compared to haemophilia, although the clinical features and the management strategies for rare coagulation factor deficiencies are discussed, little is known about them. This study was undertaken to assess the distribution, clinical presentation and treatment of patients with rare coagulation factor deficiency disorders in a cross-sectional population of India. Blood samples and other clinical details from patients suspected of rare coagulation factor deficiencies were collected by the Haemophilia Treatment Centers across India and were diagnosed at National Institute of Immunohaematology, Mumbai. A total of 321 cases of rare clotting factor deficiencies were diagnosed, of which 88% were severe, 10% moderate and 2% mild. Commonest deficiency encountered was factor XIII (FXIII) (30%) followed by FX (15.6%), FVII (15%), fibrinogen (12.1%), FXI (9%), combined V and VIII deficiency (5.6%) and congenital multiple vitamin K-dependent coagulation factor deficiency (MCFD, 2.1%). Major representation of these deficiencies was from Southern and Western India (82%). Mucocutaneous bleeding was the commonest clinical presentation (59%); intracranial (IC) haemorrhage was seen in 18% of the patients; menorrhagia was an important clinical pointer in women in the reproductive age group (78%); 8% of the severe cases had no history of bleeding and 73% of the FXIII deficiency cases had umbilical stump bleeding. The major therapeutic products used was fresh frozen plasma (64%), cryoprecipitate (15%), whole blood (15%), antifibrinolytics (5%) and recombinant FVIIa (1%). A distinct pattern in the distribution of rare clotting factor deficiencies was observed which was based on multiple factors that include ethnicity and the available diagnostic facilities in different regions of this vast country. PMID:24581247

  4. Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride: coagulation performance and floc characteristics.

    PubMed

    Zhao, Y X; Phuntsho, S; Gao, B Y; Yang, Y Z; Kim, J-H; Shon, H K

    2015-01-01

    Polymerized inorganic coagulants are increasingly being used in the water supply and wastewater treatment process, yet there is limited research on the development of polytitanium coagulants. The aim of this study is to synthesize polytitanium chloride (PTC) coagulants and investigate their coagulation behavior and floc characteristics for humic acid removal in comparison to polyaluminum chloride (PAC). The PTC samples with different B (molar ratios of OH/Ti) values were prepared using an instantaneous base-feeding method, employing sodium carbonate as the basification agent. The coagulation efficiency was significantly influenced by different B values. The results suggest that the humic acid removal increased with the increasing B value for PAC, while the inverse trend was observed for PTC. The optimum B value was chosen at 1.0 and 2.0 for PTC and PAC, respectively. Under the optimum coagulant dose and initial solution pH conditions, the PTC coagulant performed better than the PAC coagulant and the floc properties were significantly improved in terms of floc growth rate and floc size. However, the PAC coagulants produced flocs with better floc recoverability than the PTC coagulants. PMID:25291677

  5. Differential Kinetics of Coagulation Factors and Natural Anticoagulants in Patients with Liver Cirrhosis: Potential Clinical Implications

    PubMed Central

    Tischendorf, Michael; Miesbach, Wolfgang; Chattah, Umer; Chattah, Zenab; Maier, Sebastian; Welsch, Christoph; Zeuzem, Stefan; Lange, Christian M.

    2016-01-01

    Background Advanced liver diseases are associated with profound alterations of the coagulation system increasing the risk not only of bleeding, but also of thromboembolic complications. A recent milestone study has shown that prophylactic anticoagulation in liver cirrhosis patients results in a reduced frequency of hepatic decompensation. Yet, INR measurement, one of the most widely applied tests to assess liver function, only inaccurately predicts the risk of hepatic decompensation related to alterations of the coagulation system. To assess the relationship between selected coagulation factors / natural anticoagulants with INR, MELD score, and hepatic decompensation, we performed the present pilot study. A total number of 92 patients with various stages of liver cirrhosis were included and prospectively followed for at least 6 months. We found that important natural anticoagulants, namely antithrombin and protein C, as well as factor XI (which may also serve as an anticoagulant) decreased earlier and by a larger magnitude than one would expect from classical coagulation test results. The correlation between these factors and INR was only moderate. Importantly, reduced plasma activities of natural anticoagulants but not INR or MELD score were independent predictors of hepatic encephalopathy (P = 0.013 and 0.003 for antithrombin and protein C, respectively). Conclusion In patients with liver cirrhosis plasma activities of several natural anticoagulants are earlier and stronger affected than routine coagulation tests. Reduced activities of natural anticoagulants may be predictive for the development of hepatic encephalopathy. PMID:27171213

  6. Transfusion and coagulation management in liver transplantation

    PubMed Central

    Clevenger, Ben; Mallett, Susan V

    2014-01-01

    There is wide variation in the management of coagulation and blood transfusion practice in liver transplantation. The use of blood products intraoperatively is declining and transfusion free transplantations take place ever more frequently. Allogenic blood products have been shown to increase morbidity and mortality. Primary haemostasis, coagulation and fibrinolysis are altered by liver disease. This, combined with intraoperative disturbances of coagulation, increases the risk of bleeding. Meanwhile, the rebalancing of coagulation homeostasis can put patients at risk of hypercoagulability and thrombosis. The application of the principles of patient blood management to transplantation can reduce the risk of transfusion. This includes: preoperative recognition and treatment of anaemia, reduction of perioperative blood loss and the use of restrictive haemoglobin based transfusion triggers. The use of point of care coagulation monitoring using whole blood viscoelastic testing provides a picture of the complete coagulation process by which to guide and direct coagulation management. Pharmacological methods to reduce blood loss include the use of anti-fibrinolytic drugs to reduce fibrinolysis, and rarely, the use of recombinant factor VIIa. Factor concentrates are increasingly used; fibrinogen concentrates to improve clot strength and stability, and prothrombin complex concentrates to improve thrombin generation. Non-pharmacological methods to reduce blood loss include surgical utilisation of the piggyback technique and maintenance of a low central venous pressure. The use of intraoperative cell salvage and normovolaemic haemodilution reduces allogenic blood transfusion. Further research into methods of decreasing blood loss and alternatives to blood transfusion remains necessary to continue to improve outcomes after transplantation. PMID:24876736

  7. Reply to comment on ‘Correlating metastable-atom density, reduced electric field, and electron energy distribution in the post-transient stage of a 1 Torr argon discharge’ 2015 Plasma Sources Sci. Technol. 24 034009

    NASA Astrophysics Data System (ADS)

    Franek, J. B.; Nogami, S. H.; Demidov, V. I.; Koepke, M. E.; Barnat, E. V.

    2016-06-01

    The attention to a detailed analysis by Sadeghi [1] of our paper [2], using Weatherford and Barnat [3] for reference information is appreciated and motivates us to clarify points in our paper referred to in the Comment [1]. In this Reply, we respond to the two remarks by Sadeghi [1] claiming to render as unjustified our original conclusion based on validity of the 420.1/419.8 nm emission intensity ratio method for the estimate of argon metastable density, and clear up other possible misinterpretations of the data presented in our paper [2].

  8. Coagulation factor IX regulates cell migration and adhesion in vitro.

    PubMed

    Kitano, Hisataka; Mamiya, Atsushi; Tomomi, Ishikawa; Shinichiro, Kokubun; Chiaki, Hidai

    2015-10-01

    Coagulation factor IX is thought to circulate in the blood as an inactive zymogen before being activated in the coagulation process. The effect of coagulation factor IX on cells is poorly understood. This study aimed to evaluate the effects of intact coagulation factor IX and its cleavage fragments on cell behavior. A431 cells (derived from human squamous cell carcinoma), Pro5 cells (derived from mouse embryonic endothelial cells), Cos7 cells, and human umbilical vein endothelial cells were utilized in this study. The effects of coagulation factor IX and its cleavage fragments on cell behavior were investigated in several types of experiments, including wound-healing assays and modified Boyden chamber assays. The effect of coagulation factor IX depended on its processing; full-length coagulation factor IX suppressed cell migration, increased adhesion to matrix, and enhanced intercellular adhesion. In contrast, activated coagulation factor IX enhanced cell migration, suppressed adhesion to matrix, and inhibited intercellular adhesion. An activation peptide that is removed during the coagulation process was found to be responsible for the activity of full-length coagulation factor IX, and the activity of activated coagulation factor IX was localized to an EGF domain of the coagulation factor IX light chain. Full-length coagulation factor IX has a sedative effect on cells, which is counteracted by activated coagulation factor IX in vitro. Thus, coagulation factor IX may play roles before, during, and after the coagulation process. PMID:25976981

  9. Microstructures and Argon age dating

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Fitz Gerald, John; Lister, Gordon

    2010-05-01

    Microstructures can be dated using 40Ar/39Ar geochronology, but certain conditions apply. In particular the nature of the physical processes that took place during development of need be identified, and the pattern of gas release (and/or retention) during their evolution in nature, and subsequently in the mass spectrometer, during the measurement process. Most researchers cite temperature as the sole variable of importance. There is a belief that there is a single "closure temperature" or a "closure interval" above which the mineral is incapable of retaining radiogenic argon. This is a false conception. Closure is practically relevant only in circumstances that see a rock cooled relatively rapidly from temperatures that were high enough to prevent significant accumulation of radiogenic argon, to temperatures below which there is insignificant loss of radiogenic argon through the remainder of the geological history. These conditions accurately apply only to a limited subset - for example to rocks that cool rapidly from a melt and thereafter remain at or close to the Earth's surface, without subsequent ingress of fluids that would cause alteration and modification of microstructure. Some minerals in metamorphic rocks might display such "cooling ages" but in principle these data are difficult to interpret since they depend on the rate of cooling, the pressures that applied, and the subsequent geological history. Whereas the science of "cooling ages" is relatively well understood, the science of the Argon Partial Retention Zone is in its infancy. In the Argon PRZ it is evident that ages should (and do) show a strong correlation with microstructure. The difficulty is that, since diffusion of Argon is simultaneously multi-path and multi-scale, it is difficult to directly interrogate the distinct reservoirs that store gas populations and thus the age information that can be recorded as to the multiple events during the history of an individual microstructure. Laser methods invariably record mixing ages, since the spot sizes are large. Carefully designed furnace step-heating experiments on the other hand seem well capable of sequentially extracting ages from different microstructural reservoirs, and this can be tested by comparing samples with different proportions of these microstructures. Here we examine the role of microstructure in Argon ‘age dating' by comparing and contrasting observed measurements with theoretical predictions developed on the basis of modelling and simulation of the effects of multi-path and multi-scale diffusion. We analyse these results in the context of microstructures observed in white micas and K-feldspar, at both the scale of the optical microscope as well as utilising electron microscopy. Examples from three different tectonic settings will be provided to illustrate the effect of the different variables that apply: a) the extensional South Cyclades Shear Zone, Greece; b) granitoids exhumed from ultra-high-pressures in the Dora Maira, Italy; and c) leucogranites shed from the Ladakh Batholith into the Indus Formation, NW India.

  10. Argon and argon-oxygen glow discharge cleaning of the Main Ring beam pipe

    SciTech Connect

    Trbojevic, D.; Pastore, N.

    1989-02-15

    This report presents the experimental results from the argon and argon-oxygen gas mixture glow discharge in the Main Ring beam pipe and is a follow-up to the proposal for vacuum improvements of the Main Ring magnets and straight sections and the warm Tevatron straight sections. Glow discharge was used in the experiment in order to clean the vacuum system instead of bakeout which could only be performed with great difficulty or not at all. It is a relatively simple and very effective method. The glow discharge occurs under specific gas pressures (10--120 mTorr) and current flows (10/sup /minus/5/ /minus/ 10/sup /minus/1/ A) through gas excitation and formation of plasma conditions. Deexcitation of the gas molecules produces visible light. Several mechanisms have been proposed to explain the glow discharge cleaning process. Ions can sputter adsorbed molecules or atoms at the cathode surface and even produce lattice damage extending several monolayers below the surface. The glow discharge has already been extensively used for vacuum improvements in accelerators. 9 refs.

  11. Determination of the rate coefficient of the electron-impact excitation from the argon resonance states (1s2 and 1s4) to 2p states by the emission line ratio in an afterglow plasma

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi-Wen; Zhu, Xi-Ming; Liu, Fei-Xiang; Pu, Yi-Kang

    2015-04-01

    The rate coefficients of electron-impact excitation from argon 1s2 and 1s4 (resonance states) to 2p states are determined in the electron temperature (Te) range of 0.5-1.1 eV. This is achieved by using a population model for Ar(2p) and measured parameters in the afterglow of an rf (60 MHz) pulsed capacitive discharge. These parameters include the densities of the 2p states (optical emission spectroscopy), the densities of the four argon 1s states (diode laser absorption), and Te (a Langmuir probe and a line-ratio technique), for discharges with two gas mixtures: Ar(60 mTorr)/O2(2 mTorr) and Ar(60 mTorr)/Xe(1.8 mTorr). It is found that the rate coefficients obtained in this work agree well with those from the cross sections by a large-scale R-matrix calculation reported recently by Zatsarinny et al (2004 J. Phys. B: At. Mol. Opt. Phys. 37 4693, 2014 Phys. Rev. A 89 022706).

  12. Vacuum ultraviolet argon excimer laser excited by optical-field-induced ionized electrons produced in an argon-filled hollow fiber

    NASA Astrophysics Data System (ADS)

    Kubodera, Shoichi; Kaku, Masanori; Katto, Masahito

    2011-10-01

    Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Part of this work has been supported by Hamamatsu Photonics K. K., Japan.

  13. ARSENIC REMOVAL BY SOFTENING AND COAGULATION

    EPA Science Inventory

    Drinking water regulations for arsenic (As) and disinfection by-product precursor materials (measured as TOC) are becoming increasingly stringent. Among the modifications to conventional treatment that can improve removal of As and TOC, precipitative softening and coagulation are...

  14. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  15. Removal of silver nanoparticles by coagulation processes.

    PubMed

    Sun, Qian; Li, Yan; Tang, Ting; Yuan, Zhihua; Yu, Chang-Ping

    2013-10-15

    Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca(2+) and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions. PMID:23973474

  16. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  17. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    SciTech Connect

    Charles, C.; Boswell, R.; Takahashi, K.; Department of Electrical Engineering, Tohoku University, Sendai 980-9579

    2013-06-03

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  18. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  19. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  20. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  1. Argon Kα measurement on DIII-D by Ross filters technique (abstract)

    NASA Astrophysics Data System (ADS)

    Snider, R. T.; Bogatu, I. N.; Brooks, N. H.; Wade, M. R.

    1999-01-01

    Techniques to reduce the heat flux to the divertor plates in tokamak power plants and the consequent erosion of, and subsequent damage to the divertor target plates include the injection of impurities such as argon, that can dissipate the energy (through radiative or collisional processes) before it reaches the target plates. An important issue with this type of scheme is poisoning of the plasma core by the impurities introduced in the divertor region. Subsequently, there is a desire to measure the profiles of the injected impurities in the core. X-ray Ross filters with an effective narrow band pass centered on the argon Kα line at 3.2 keV, have been installed on two of the existing x-ray arrays on DIII-D in order to help determine the argon concentration profiles. Emissivity profiles of the Kα lines and the emissivity profiles for the argon enhanced continuum can be inferred from the inverted filtered x-ray brightness signals if Te, ne, and Ar18+ profiles are known. The MISTReference 1 code is used to couple the filtered x-ray signals to the time dependent measurements of Te and ne. Further, the Ar16+ profiles measured by charge transfer spectroscopy, are used as a constraint on the MIST code runs to calculate Ar18+ profiles and unfold the argon emissivity profiles. A discussion of the Ross filters, the DIII-D argon data, and the data analysis scheme for inferring argon emissivity profiles will be discussed. Estimates of the total argon concentration in the core determined from this technique in DIII-D argon puff experiments will be presented.

  2. Tissue factor-dependent coagulation contributes to α-naphthylisothiocyanate-induced cholestatic liver injury in mice

    PubMed Central

    Luyendyk, James P.; Cantor, Glenn H.; Kirchhofer, Daniel; Mackman, Nigel; Copple, Bryan L.; Wang, Ruipeng

    2009-01-01

    Separation of concentrated bile acids from hepatic parenchymal cells is a key function of the bile duct epithelial cells (BDECs) that form intrahepatic bile ducts. Using coimmunostaining, we found that tissue factor (TF), the principal activator of coagulation, colocalized with cytokeratin 19, a marker of BDECs in the adult mouse liver. BDEC injury induced by xenobiotics such as α-naphthylisothiocyanate (ANIT) causes cholestasis, inflammation, and hepatocellular injury. We tested the hypothesis that acute ANIT-induced cholestatic hepatitis is associated with TF-dependent activation of coagulation and determined the role of TF in ANIT hepatotoxicity. Treatment of mice with ANIT (60 mg/kg) caused multifocal hepatic necrosis and significantly increased serum biomarkers of cholestasis and hepatic parenchymal cell injury. ANIT treatment also significantly increased liver TF expression and activity. ANIT-induced activation of the coagulation cascade was shown by increased plasma thrombin-antithrombin levels and significant deposition of fibrin within the necrotic foci. ANIT-induced coagulation and liver injury were reduced in low-TF mice, which express 1% of normal TF levels. The results indicate that ANIT-induced liver injury is accompanied by TF-dependent activation of the coagulation cascade and that TF contributes to the progression of injury during acute cholestatic hepatitis. PMID:19179621

  3. Modification of a commercial thromboelastography instrument to measure coagulation dynamics with three-dimensional biomaterials.

    PubMed

    Hawker, Morgan J; Olver, Christine S; Fisher, Ellen R

    2016-06-01

    Three-dimensional synthetic constructs with complex geometries have immense potential for use in a multitude of blood-contacting applications. Understanding coagulation phenomena is arguably the most critical aspect for applications involving synthetic biomaterials; however, real-time evaluation of the clot formation while interfacing with these materials is difficult to achieve in a reproducible and robust manner. Here, work representing first steps toward addressing this deficit is presented, wherein modified consumables for a clinical instrument (a Thromboelastograph(®)) have been fabricated. Thromboelastography (TEG) measures viscoelastic properties throughout clot formation and therefore provides clinically relevant coagulation measurements in real time (i.e., kinetics and strength of clot formation). Through our modification, TEG consumables can readily accommodate three-dimensional materials (e.g., those for regenerative tissue applications). The authors performed proof-of-concept experiments using polymer scaffolds with a range of surface properties and demonstrated that variations in surface properties resulted in differences in blood plasma coagulation dynamics. For example, the maximum rate of thrombus generation ranged from 22.2 ± 2.2 (dyn/cm(2))/s for fluorocarbon coated scaffolds to 8.7 ± 1.0 (dyn/cm(2))/s for nitrogen-containing scaffolds. Through this work, the ability to make real-time coagulation activity measurements during constant coagulation factor interface with biomedically relevant materials is demonstrated. PMID:27126596

  4. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells.

    PubMed

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F; Breuer, Johanna; Herold, Martin; Gross, Catharina C; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  5. Magnetic particle imaging of blood coagulation

    SciTech Connect

    Murase, Kenya Song, Ruixiao; Hiratsuka, Samu

    2014-06-23

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  6. Magnetic particle imaging of blood coagulation

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Song, Ruixiao; Hiratsuka, Samu

    2014-06-01

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl2 to whole sheep blood mixed with magnetic nanoparticles (MNPs). The "MPI value" was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  7. Collisionless "thermalization" in the sheath of an argon discharge

    NASA Astrophysics Data System (ADS)

    Coulette, David; Manfredi, Giovanni

    2015-04-01

    We performed kinetic Vlasov simulations of the plasma-wall transition for a low-pressure argon discharge without external magnetic fields, using the same plasma parameters as in the experiments of Claire et al. [Phys. Plasmas 13, 062103 (2006)]. Experimentally, it was found that the ion velocity distribution function is highly asymmetric in the presheath, but, surprisingly, becomes again close to Maxwellian inside the sheath. Here, we show that this "thermalization" can be explained by purely collisionless effects that are akin to the velocity bunching phenomenon observed in charged particles beams. Such collisionless thermalization is also observed in the presheath region close to the sheath entrance, although it is much weaker there and in practice probably swamped by collisional processes (standard or enhanced by instabilities).

  8. Modelling of Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Akdim, Mohamed Reda

    2003-09-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is not included. Results are presented for situations in which the dust signi_cantly changes the discharge characteristics, both by a strong reduction of the electron density and by altering the electric field by its charge. Simulations for dust with a radius of 2 mu-m show that the stationary solution of the dust density and the average electric field depend on the total amount of the dust. The presence of dust enhances the deposition rate of amorphous silicon 2 at the electrodes because of the rise in the average electron energy associated with the decrease of the electron density and the constraint of a constant power input. This increase of deposition rate has also been observed in experiments by others. To study the behavior of dust in a less complicated environment, experiments in non-reactive plasmas have been carried out by a number of research groups. In these experiments the dust particles are injected through the electrodes in an argon discharge. These experiments have shown very interesting phenomena. Dust particles start to interact with each other in the discharge and form two-dimensional Coulomb clusters. These experiments often show an appearance of a void, a dustfree region in the discharge. Similar experiments have also been carried out under microgravity. These experiments have shown three-dimensional Coulomb clusters of dust particles also with the appearance of a void. Also rotating dust clouds (vortices) near the edges of the electrodes have been observed, that tend to rotate as long as the plasmas is on. To understand the behavior of the particles, we have developed a two-dimensional fluid model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently to study the behavior of dust particles. Simulations for dust with a radius of 7.5 mu-m show that a double space charge layer is created around the sharp boundary of the dust crystal. The inter-particle interaction is taken into account by means of an equation of state for the dust. A central dust-free region (void) is created by the ion drag force. The contribution of the thermophoretic force, driven by the temperature gradient induced by gas heating from ion-neutral collisions and heating of the dust particle material by the recombining ions and electrons, can be neglected in the quasi-neutral center of the plasma. Inside this void a strong increase of the production of argon meta-stables is found. This phenomenon is in agreement with experimental observations, where an enhanced light emission is seen inside the void.

  9. Argon purge gas cooled by chill box

    NASA Technical Reports Server (NTRS)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  10. 2D laser-collision induced fluorescence in low-pressure argon discharges

    DOE PAGESBeta

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Tdmore » to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less

  11. 2D laser-collision induced fluorescence in low-pressure argon discharges

    SciTech Connect

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

  12. Spectroscopic Measurements of Electron Temperature on the University of Texas at Austin Argon Helicon Experiment

    NASA Astrophysics Data System (ADS)

    Sciamma, Ella M.; Bengtson, Roger D.; Rowan, W. L.; Keesee, Amy M.; Lee, Charles A.; Berisford, Dan

    2007-11-01

    Absolutely calibrated spectroscopic measurements of the argon plasma in the helicon experiment at UT were used to estimate the electron temperature in the plasma core under the antenna. The helicon antenna was operated at 13.56 MHz with 1 kW absorbed power. Langmuir probe measurements of the electron density were used in a collisional-radiative model simulation^[1] to estimate the electron temperature from argon ion (Ar II) line intensities. An electron temperature of 3.3 eV was obtained, agreeing with the Langmuir probe measurements. Argon neutral (Ar I) lines were then used with a second collisional-radiative model^[2] to estimate the neutral density. [1] http://adas.phys.strath.ac.uk [2] Amy. M. Keesee and Earl E. Scime. Rev. Sci. Instrum. 77, 10F304 (2006)

  13. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis.

    PubMed

    Mackman, Nigel; Tilley, Rachel E; Key, Nigel S

    2007-08-01

    Hemostasis requires both platelets and the coagulation system. At sites of vessel injury, bleeding is minimized by the formation of a hemostatic plug consisting of platelets and fibrin. The traditional view of the regulation of blood coagulation is that the initiation phase is triggered by the extrinsic pathway, whereas amplification requires the intrinsic pathway. The extrinsic pathway consists of the transmembrane receptor tissue factor (TF) and plasma factor VII/VIIa (FVII/FVIIa), and the intrinsic pathway consists of plasma FXI, FIX, and FVIII. Under physiological conditions, TF is constitutively expressed by adventitial cells surrounding blood vessels and initiates clotting. In addition so-called blood-borne TF in the form of cell-derived microparticles (MPs) and TF expression within platelets suggests that TF may play a role in the amplification phase of the coagulation cascade. Under pathologic conditions, TF is expressed by monocytes, neutrophils, endothelial cells, and platelets, which results in an elevation of the levels of circulating TF-positive MPs. TF expression within the vasculature likely contributes to thrombosis in a variety of diseases. Understanding how the extrinsic pathway of blood coagulation contributes to hemostasis and thrombosis may lead to the development of safe and effective hemostatic agents and antithrombotic drugs. PMID:17556654

  14. Effect of argon ion bombardment on amorphous silicon carbonitride films

    NASA Astrophysics Data System (ADS)

    Batocki, R. G. S.; Mota, R. P.; Honda, R. Y.; Santos, D. C. R.

    2014-04-01

    Amorphous silicon carbonitride (a-SiCN:H) films were synthesized by radiofrequency (RF) Plasma Enhanced Vapor Chemical Deposition (PECVD) using hexamethyldisilazane (HMDSN) as precursor compound. Then, the films were post-treated by Plasma Immersion Ion Implantation (PIII) in argon atmosphere from 15 to 60 min. The hardness of the film enhanced after ion implantation, and the sample treated at 45 min process showed hardness greater than sixfold that of the untreated sample. This result is explained by the crosslinking and densification of the structure. Films were exposed to oxygen plasma for determining of the etching rate. It decreased monotonically from 33 Å/min to 19 Å/min for the range of process time, confirming structural alterations. Hydrophobic character of the a-SiCN:H films were modified immediately after ion bombardment, due to incorporation of polar groups. However, the high wettability of the films acquired by the ion implantation was diminished after aging in air. Therefore, argon PIII made a-SiCN:H films mechanically more resistant and altered their hydrophobic character.

  15. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  16. Model of a stationary microwave argon discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  17. Blood coagulation screening using a paper-based microfluidic lateral flow device.

    PubMed

    Li, H; Han, D; Pauletti, G M; Steckl, A J

    2014-10-21

    A simple approach to the evaluation of blood coagulation using a microfluidic paper-based lateral flow assay (LFA) device for point-of-care (POC) and self-monitoring screening is reported. The device utilizes whole blood, without the need for prior separation of plasma from red blood cells (RBC). Experiments were performed using animal (rabbit) blood treated with trisodium citrate to prevent coagulation. CaCl2 solutions of varying concentrations are added to citrated blood, producing Ca(2+) ions to re-establish the coagulation cascade and mimic different blood coagulation abilities in vitro. Blood samples are dispensed into a paper-based LFA device consisting of sample pad, analytical membrane and wicking pad. The porous nature of the cellulose membrane separates the aqueous plasma component from the large blood cells. Since the viscosity of blood changes with its coagulation ability, the distance RBCs travel in the membrane in a given time can be related to the blood clotting time. The distance of the RBC front is found to decrease linearly with increasing CaCl2 concentration, with a travel rate decreasing from 3.25 mm min(-1) for no added CaCl2 to 2.2 mm min(-1) for 500 mM solution. Compared to conventional plasma clotting analyzers, the LFA device is much simpler and it provides a significantly larger linear range of measurement. Using the red colour of RBCs as a visible marker, this approach can be utilized to produce a simple and clear indicator of whether the blood condition is within the appropriate range for the patient's condition. PMID:25144164

  18. Thermal damage parameters from laser coagulation experiments

    NASA Astrophysics Data System (ADS)

    Pearce, John A.; Thomsen, Sharon L.

    2003-06-01

    Estimating effective thermal damage process coefficients for the first order model of damage processes is not difficult when the temperature is held constant for a substantial period. Laser coagulation experiments, however, are of short duration and, because of non uniform beam profiles, exhibit important heat transfer effects: the thermal histories are transient by nature. We obtain the activation energy, E, and collision frequency factor, A, directly from the transient history at the boundary of the zones of white coagulation and red hemorrhagic coagulation in liver in the rat, as identified in histologic studies. The estimates are obtained by testing a large number of coefficients and determining the "best fit" from a cost function. Useful values may obtained from a single experiment if the transient history used has a very high confidence level N i.e. a few excellent curves are preferable to single curves at a large number of durations of exposure.

  19. Alterations in coagulation following major liver resection.

    PubMed

    Mallett, S V; Sugavanam, A; Krzanicki, D A; Patel, S; Broomhead, R H; Davidson, B R; Riddell, A; Gatt, A; Chowdary, P

    2016-06-01

    The international normalised ratio is frequently raised in patients who have undergone major liver resection, and is assumed to represent a potential bleeding risk. However, these patients have an increased risk of venous thromboembolic events, despite conventional coagulation tests indicating hypocoagulability. This prospective, observational study of patients undergoing major hepatic resection analysed the serial changes in coagulation in the early postoperative period. Thrombin generation parameters and viscoelastic tests of coagulation (thromboelastometry) remained within normal ranges throughout the study period. Levels of the procoagulant factors II, V, VII and X initially fell, but V and X returned to or exceeded normal range by postoperative day five. Levels of factor VIII and Von Willebrand factor were significantly elevated from postoperative day one (p < 0.01). Levels of the anticoagulants, protein C and antithrombin remained significantly depressed on postoperative day five (p = 0.01). Overall, the imbalance between pro- and anticoagulant factors suggested a prothrombotic environment in the early postoperative period. PMID:27030945

  20. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  1. Coagulation-membrane filtration of Chlorella vulgaris.

    PubMed

    Lee, Duu-Jong; Liao, Guan-Yu; Chang, Yin-Ru; Chang, Jo-Shu

    2012-03-01

    Filtration-based separation of Chlorella vulgaris, a species with excellent potential for CO(2) capture and lipid production, was investigated using a surface-modified hydrophilic polytetrafluoroethylene (PTFE) membrane. Coagulation using polyaluminum chloride (PACl) attained maximum turbidity removal at 200 mg L(-1) as Al(2)O(3). The membrane filtration flux at 1 bar increased as the PACl dose increased, regardless of overdosing in the coagulation stage. The filtered cake at the end of filtration tests peaked in solid content at 10 mg L(-1) as Al(2)O(3), reaching 34% w/w, roughly two times that of the original suspension. Differential scanning calorimetry (DSC) tests demonstrate that the cake with minimum water-solid binding strength produced the driest filter cake. Coagulation using 10 mg L(-1) PACl as Al(2)O(3), followed by PTFE membrane filtration at 1 bar, is an effective process for harvesting C. vulgaris from algal froth. PMID:22261659

  2. Calculation of the shifts of argon spectral lines

    SciTech Connect

    Christova, M.; Andreev, N.; Christov, L.; Dimitrijevic, M. S.

    2008-10-22

    Shifts due to collisions with charged particles (Stark broadening ) and neutral atoms, were determined for nine argon spectral lines corresponding to the transitions 3p{sup 5}nd-3p{sup 5}4p for n = 4-7, 3p{sup 5}6s-3p{sup 5}4d and 3p{sup 5}4p'-3p{sup 5}4s in order to estimate their usability for the research and diagnostics of a plasma in a surface-wave discharge at atmospheric pressure.

  3. Advances in the treatment of inherited coagulation disorders.

    PubMed

    Escobar, M A

    2013-09-01

    Inherited coagulation disorders constitute a broad spectrum of coagulation factor deficiencies that include X-linked factor (F)VIII or FIX deficiency that causes haemophilia, and autosomal recessive disorders producing heterogeneous deficiencies in fibrinogen (FI), prothrombin (FII), FV, FVII, FX, FXI, FXIII and combined FV+FVIII. Significant advances in treatments for patients with congenital haemophilia A (FVIII deficiency) and B (FIX deficiency) over the last two decades have resulted from improvements in the production, availability and patient access to factor replacement products. Translation of advances in biotechnology, namely recombinant protein technology, targeted protein modifications to improve function and potentially reduce immunogenicity, and advanced formulations to optimize bioavailability and sustain activity offer promisingly new treatments for haemophilia as well as recessively inherited bleeding disorders in patients who otherwise have few therapeutic options. Though a theoretical risk remains for blood-borne viral infections with pooled plasma-derived products, this concern has diminished with breakthroughs in purification and viral inactivation methods. Development of inhibitory antibodies is still the most daunting problem for patients with inherited bleeding disorders, complicating treatment approaches to control and prevent bleeding, and posing risks for allergic and anaphylactic reactions in susceptible patients. The objectives of this review are to (i) highlight emerging advances in hemostatic therapies that are bioengineered to improve pharmacokinetic properties and bioavailability, sustain functional activity, and possibly eliminate immunogenicity of recombinant factor proteins; and (ii) present an overview of key clinical trials of novel factor products currently in the development pipeline. PMID:23600951

  4. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon electrosurgical system was studied using an Intensified Charge-Coupled Device (ICCD) and the MEDD. The plasma density was measured and found to be in the range of (7.5-9.5) x 1015 cm-3 for applied powers of 15-60 Watts. The discharge can be classified as a glow discharge of alternating current with a contracted positive column. The discharge ignites every half-wave of the driving voltage when voltage increases above the breakdown threshold of about 300 Volts and is interrupted at the end of each half-wave when the voltage approaches zero. Additionally, it was shown that the plasma discharges on the target object during the positive half-wave of the voltage. The power distribution was also analyzed. It was found that 60-70% of the input power is delivered into the tissue and the remaining 30-40% is consumed by the plasma column between the electrosurgical probe and tissue. The application of the MEDD to a helium CAP revealed the temporal dynamics of the discharge. It was observed that streamer development associated with the measured plasma density peak is developing on the decaying part of the main inter-electrode discharge. The third part of the dissertation focuses on the simulation of a helium CAP. A one-dimensional model of a helium CAP was used to simulate twenty-one oxygen, helium, and nitrogen species. One hundred and forty reactions were successfully used. The predicted maximum and average densities of the species were tabulated. Graphs of the species densities were presented showing the change in densities with respect to the radius of the CAP. The plasma bullets can be seen via these graphs, with most species displaying maximum densities at a radius which is not the center of the CAP. This shows that the plasma bullets are a disk-like structure at the moment of time presented. Values of E/p were varied from 20 -- 30 volts/cm Torr. Based on experimental results of moments in time with which the maximum plasma density occurs, this data can be used to predict the actual E/p values for future experiments.

  5. Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment.

    PubMed

    Al-Hamadani, Yasir A J; Yusoff, Mohd Suffian; Umar, Muhammad; Bashir, Mohammed J K; Adlan, Mohd Nordin

    2011-06-15

    Landfill leachate is a heavily polluted and a likely hazardous liquid that is produced as a result of water infiltration through solid wastes generated industrially and domestically. This study investigates the potential of using psyllium husk as coagulant and coagulant aid for the treatment of landfill leachate. Psyllium husk has been tested as primary coagulant and as coagulant aid with poly-aluminum chloride (PACl) and aluminum sulfate (alum). As primary coagulant, the optimum dosage and pH for PACl were 7.2 and 7.5 g/L, respectively, with removal efficiencies of 55, 80 and 95% for COD, color and TSS, respectively. For alum, the optimum conditions were 11 g/L alum dosage and pH 6.5 with removal efficiencies of 58, 79 and 78% for COD, color and TSS, respectively. The maximum removal efficiencies of COD, color and TSS were 64, 90 and 96%, respectively, when psyllium husk was used as coagulant aid with PACl. Based on the results, psyllium husk was found to be more effective as coagulant aid with PACl in the removal of COD, color and TSS as compared to alum. Zeta potential test was carried out for leachate, PACl, alum and psyllium husk before and after running the jar test to enhance the results of the jar test experiments. PMID:21507572

  6. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts.

    PubMed

    Zhao, Y X; Gao, B Y; Shon, H K; Cao, B C; Kim, J-H

    2011-01-30

    In this study, the performance of titanium tetrachloride (TiCl(4)) coagulation and flocculation is compared with commonly used coagulants such as aluminum sulfate (Al(2)(SO(4))(3)), polyaluminum chloride (PACl), iron chloride (FeCl(3)), and polyferric sulfate (PFS) in terms of water quality parameters and floc properties. TiCl(4) flocculation achieved higher removal of UV(254) (98%), dissolved organic carbon (DOC) (84%) and turbidity (93%) than other conventional coagulants. Charge neutralization and physical entrapment of colloids within coagulant precipitates and adsorption, seemed to play a significant role during TiCl(4) flocculation, while the main mechanism for conventional coagulants was bridge-aggregation and adsorption. The aggregated flocs after TiCl(4) flocculation showed the fastest growth rate compared to the other coagulants, with the largest floc size (801 μm) occurring within 8 min. The floc strength factor of PACl, Al(2)(SO(4))(3), PFS, FeCl(3) and TiCl(4) was 34, 30, 29, 26 and 29, respectively, while the floc recovery factor of the TiCl(4) coagulant was the lowest. Based on the results of the above study, it is concluded that the TiCl(4) flocculation can reduce the hydraulic retention time of slow and rapid mixing, however, careful handling of sludge is required due to the low recoverability of the aggregated floc. PMID:21075521

  7. Determination of the rate coefficients of the electron-impact excitation from the metastable states to 2p states of argon by the emission line ratios in an afterglow plasma

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi-Wen; Zhu, Xi-Ming; Liu, Fei-Xiang; Pu, Yi-Kang

    2014-07-01

    The rate coefficients of electron-impact excitation from the argon metastable to 2p states are measured in the afterglow of an rf pulsed capacitive discharge. In the afterglow, the 2p state densities are measured by optical emission spectroscopy, the time-resolved 1s state densities are measured by laser absorption, the time-resolved electron temperature (Te) and electron density are measured by a Langmuir probe. By employing these measured parameters, the electron-impact excitation rate coefficients are obtained from the rate balance equations of 2p states in the Te range from 0.7 to 1.2 eV. The measured rate coefficients are in good agreement with those obtained from the cross sections measured by Boffard et al. In addition, we obtain rate coefficients of the transitions from the metastable states to 2p1,7,10, whose measured values have not been reported before. These rate coefficients are also compared with the calculated ones (Zatsarinny et al with the R-matrix method, Srivastava et al with the Distorted wave method).

  8. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    The aim of this project is to develop an economical method for producing low-sulfur and low-ash coals using the selective hydrophobic coagulation (SHC) process. This work has been divided into three tasks: (1) project planning and sample acquisition; (2) studies of the fundamental mechanism(s) of the selective coagulation process and the parameters that affect the process of separating coal from both the ash-forming minerals and pyritic sulfur; and (3) bench-scale process development test work to establish the best possible method(s) of separating the hydrophobic and coagula from the dispersed mineral matter.

  9. Effects Of Continuous Argon Laser Irradiation On Canine And Autopsied Human Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Ben-Shachar, Giora; Sivakoff, Mark; Bernard, Steven L.; Dahms, Beverly B.; Riemenschneider, Thomas A.

    1984-10-01

    In eight human formalin preserved cardiac specimens, various cardiac and vascular obstructions were relieved by argon laser irradiation. Interatrial communication was also produced by a transar'rial approach in a live dog. In-vivo fresh canine cardiac tissues required power density of at feast 80, 90, and 110 watts/cm2 for vaporization of myocardial, vascular and valvular tissues respectively. The fiber tip to tissue distance (effective irradiation distance) for effective vaporization was less than I mm for vascular and valvular tissues and less than 4 mm for myocardium. Light microscopy showed four zones of histological damage common to all tissues - central crater surrounded by layers of charring, vacuolization and coagulation necorsis. Myocardium showed additionally a layer of normal appearing muscle cells (skip area) surrounded by a peripheral coagulation halo. Laser irradiation effects on valvular tissue showed the most lateral extension of coagulation necrosis. It is concluded that palliation and treatment of certain congenital heart defects by laser irradiation is anatomi-cally feasible and may be safe for in vivo application when low power output and short exposure time are used from a very short irradiation distance.

  10. Hydrofluorocarbon ion density of argon- or krypton-diluted CH2F2 plasmas: generation of CH2F+ and CHF2+ by dissociative-ionization in charge exchange collisions

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Miyawaki, Yudai; Ishikawa, Kenji; Hayashi, Toshio; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-02-01

    Ion densities of CH2F+ and CHF2+ were determined by dissociative ionization pathways in channels of charge exchange collisions, i.e. CH2F2 + M+ → CH2F+ + F + M* and CHF2+ + H +M* [M = Ar, Kr] in CH2F2 plasmas diluted by a rare gas [M]. These channels simultaneously generated counter fragments of charge-neutral H and F atoms of interest for plasma etching processes. In Ar-diluted plasmas, CH2F+ ions predominated due to dissociative ionization between Ar+ [ca. 15.8 eV] and C-F appearance [dissociative ionization] energy [ca. 16 eV] to form CH2F+. In contrast, for Kr-diluted plasmas, C-H appearance energy [ca. 13.8 eV] predominated to produce a larger amount of CHF2+ ions due to a similar channel for charge exchange collisions between Kr+ [ca. 14 eV] and CH2F2. Thus, adding the ratio of Ar and Kr gas to CH2F2 plasmas provided control over the fraction of CH2F+ and CHF2+ ion densities.

  11. Computer-assisted interstitial laser coagulation for BPH

    NASA Astrophysics Data System (ADS)

    Ho, Gideon; Barrett, Adrian R. W.; Ng, Wan S.; Lim, Liam G.; Cheng, Wai S.

    2001-06-01

    Interstitial laser thermotherapy is a minimally invasive surgical procedure that utilizes laser to coagulate and treat benign prostatic hyperplasia. This study explores the use of a computer-assisted interstitial laser coagulation system to aid surgeons in performing this procedure.

  12. The effects of argon pressurization on melt rate and arc distribution during vacuum arc remelting of Alloy 718

    SciTech Connect

    Williamson, R.L.; Zanner, F.J. ); Harrison, R. ); Thompson, R. )

    1992-01-01

    The effects of argon addition to the vacuum arc remelting (VAR) process were studied in both laboratory and industrial experiments while remelting Alloy 718. The results demonstrate that argon can be added to an industrial VAR furnace to relatively high partial pressures without decreasing the melt rate, drip-short frequency, or constricting the arc plasma to a local region of the electrode surface. Laboratory experiments illustrate that this result is dependent on electrode chemistry, possibly related to magnesium content.

  13. The effects of argon pressurization on melt rate and arc distribution during vacuum arc remelting of Alloy 718

    SciTech Connect

    Williamson, R.L.; Zanner, F.J.; Harrison, R.; Thompson, R.

    1992-03-01

    The effects of argon addition to the vacuum arc remelting (VAR) process were studied in both laboratory and industrial experiments while remelting Alloy 718. The results demonstrate that argon can be added to an industrial VAR furnace to relatively high partial pressures without decreasing the melt rate, drip-short frequency, or constricting the arc plasma to a local region of the electrode surface. Laboratory experiments illustrate that this result is dependent on electrode chemistry, possibly related to magnesium content.

  14. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    NASA Astrophysics Data System (ADS)

    Poterya, V.; Lengyel, J.; Pysanenko, A.; Svrčková, P.; Fárník, M.

    2014-08-01

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, bar{N}≈ 102-103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl.(H2O)N is trapped in the ice nanoparticle.

  15. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    SciTech Connect

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André; Matyash, Konstantin

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  16. Alterations in Blood Coagulation and Viscosity Among Young Male Cigarette Smokers of Al-Jouf Region in Saudi Arabia.

    PubMed

    Almarshad, Hassan A; Hassan, Fathelrahman M

    2016-05-01

    Hemorheology, a measure of rheological properties of blood, is often correlated with cerebral blood flow and cardiac output; an increased blood viscosity may increase the risk of thrombosis or thromboembolic events. Previous studies have reported a large variation in hemorheological properties of blood among smokers. This prompted us to conduct coagulation experiments to evaluate the effect of cigarette smoking on hematological parameters, like cell counts, and coagulation parameters among young males in Al-Jouf region, Saudi Arabia. The hematological and coagulation parameters were used to relate the changes in viscosity and coagulation to smoking. A total of 321 male participants (126 nonsmokers and 195 smokers) were enrolled into the study as randomized sample. Complete blood count was measured by hematology analyzer, and coagulation tests were performed by coagulation analyzer. Thettest analysis was performed to compare the relationships of variables between the 2 groups. The results confirmed that smoking alters some hematology parameters leading to significant deterioration in blood flow properties. Smoking also increased the hematocrit (HCT), whole blood viscosity (WBV), and plasma viscosity (PV) but decreased the international normalized ratio (INR). The decrease in INR was found to be associated with the increase in WBV, PV, and HCT. Further investigations are necessary to assess the reversibility of such changes in cessation of smoking or other elements of influence. PMID:25505013

  17. Luminosity limits for liquid argon calorimetry

    NASA Astrophysics Data System (ADS)

    J, Rutherfoord; B, Walker R.

    2012-12-01

    We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.

  18. Development of the Selective Hydrophobic Coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-01-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy (Contracts AC22-86PC91221 and AC22-90PC90174). The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (1) induce the coagulation of coal particles and (2) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. During the quarter, the Anutech Mark IV surface force apparatus was used to generate surface force-distance data for the mica/dodecylamine hydrochloride system (Task 2.1.1). Work to characterize the hydrophobicity of this system and the mica/DDOA[sup [minus

  19. Chronic Rhinosinusitis and the Coagulation System

    PubMed Central

    Kim, Dong-Young; Cho, Seong H.; Takabayashi, Tetsuji

    2015-01-01

    Chronic rhinosinusitis (CRS) is one of the most common chronic diseases in adults and severely affects quality of life in patients. Although various etiologic and pathogenic mechanisms of CRS have been proposed, the causes of CRS remain uncertain. Abnormalities in the coagulation cascade may play an etiologic role in many diseases, such as asthma and other inflammatory conditions. While studies on the relationship between asthma and dysregulated coagulation have been reported, the role of the coagulation system in the pathogenesis of CRS has only been considered following recent reports. Excessive fibrin deposition is seen in nasal polyp (NP) tissue from patients with chronic rhinosinusitis with nasal polyp (CRSwNP) and is associated with activation of thrombin, reduction of tissue plasminogen activator (t-PA) and upregulation of coagulation factor XIII-A (FXIII-A), all events that can contribute to fibrin deposition and crosslinking. These findings were reproduced in a murine model of NP that was recently established. Elucidation of the mechanisms of fibrin deposition may enhance our understanding of tissue remodeling in the pathophysiology of NP and provide new targets for the treatment of CRSwNP. PMID:26122502

  20. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coagulation instrument. 864.5400 Section 864.5400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices §...