Science.gov

Sample records for argon plasma coagulation

  1. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processes observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.

  2. Gastric explosion induced by argon plasma coagulation and prevention strategies.

    PubMed

    Freiman, John Saul; Hampe, Toni

    2014-12-01

    We describe the occurrence of an iatrogenic explosion induced by argon plasma coagulation in a 70-year-old man undergoing gastroscopy. Combustible gases in the stomach may have been released by bacterial overgrowth as a result of partial gastric outlet obstruction (caused by a gastric tumor) and reduced acidity (from proton pump inhibitor therapy). We propose a stepwise process during upper endoscopy to prevent this devastating complication, comprising aspiration, preinsufflation with CO2, and then coagulation. PMID:25041867

  3. Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract

    PubMed Central

    Garrido, Teresa; Baba, Elisa R; Wodak, Stephanie; Sakai, Paulo; Cecconello, Ivan; Maluf-Filho, Fauze

    2014-01-01

    AIM: To analyze the effect of bipolar electrocoagulation and argon plasma coagulation on fresh specimens of gastrointestinal tract. METHODS: An experimental evaluation was performed at Hospital das Clinicas of the University of São Paulo, on 31 fresh surgical specimens using argon plasma coagulation and bipolar electrocoagulation at different time intervals. The depth of tissue damage was histopathologically analyzed by single senior pathologist unaware of the coagulation method and power setting applied. To analyze the results, the mucosa was divided in superficial mucosa (epithelial layer of the esophagus and superficial portion of the glandular layer of the stomach and colon) intermediate mucosa (until the lamina propria of the esophagus and until the bottom of the glandular layer of the stomach and colon) and muscularis mucosa. Necrosis involvement of the layers was compared in several combinations of power and time interval. RESULTS: Involvement of the intermediate mucosa of the stomach and of the muscularis mucosa of the three organs was more frequent when higher amounts of energy were used with argon plasma. In the esophagus and in the colon, injury of the intermediate mucosa was frequent, even when small amounts of energy were used. The use of bipolar electrocoagulation resulted in more frequent involvement of the intermediate mucosa and of the muscularis mucosa of the esophagus and of the colon when higher amounts of energy were used. In the stomach, these involvements were rare. The risk of injury of the muscularis propria was significant only in the colon when argon plasma coagulation was employed. CONCLUSION: Tissue damage after argon plasma coagulation is deeper than bipolar electrocoagulation. Both of them depend on the amount of energy used. PMID:25031789

  4. Trimming a Metallic Biliary Stent Using an Argon Plasma Coagulator

    SciTech Connect

    Rerknimitr, Rungsun Naprasert, Pisit; Kongkam, Pradermchai; Kullavanijaya, Pinit

    2007-06-15

    Background. Distal migration is one of the common complications after insertion of a covered metallic stent. Stent repositioning or removal is not always possible in every patient. Therefore, trimming using an argon plasma coagulator (APC) may be a good alternative method to solve this problem. Methods. Metallic stent trimming by APC was performed in 2 patients with biliary Wallstent migration and in another patient with esophageal Ultraflex stent migration. The power setting was 60-100 watts with an argon flow of 0.8 l/min. Observations. The procedure was successfully performed and all distal parts of the stents were removed. No significant collateral damage to the nearby mucosa was observed. Conclusions. In a patient with a distally migrated metallic stent, trimming of the stent is possible by means of an APC. This new method may be applicable to other sites of metallic stent migration.

  5. A modified technique using the Yankauer sucker and argon plasma coagulation for anorectal procedures.

    PubMed

    Quah, H M; Hay, D J; Maw, A

    2004-03-01

    Argon plasma coagulation (APC) is a useful and effective treatment for some anorectal conditions. We describe a modification of the APC instrumentation that aids the application of APC in such cases. PMID:15057591

  6. Coagulation of dust grains in the plasma of an RF discharge in argon

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2009-03-15

    Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

  7. Argon Plasma Coagulation for Extraction of an Impacted Trapezoid Basket in the Pancreatic Duct

    PubMed Central

    Purohit, Treta; Garg, Mrinal; Kulkarni, Abhijit

    2015-01-01

    We performed endoscopic retrograde cholangiopancreatography (ERCP) with sphincterotomy for pancreatic stent placement on a 55-year-old woman with a dilated pancreatic duct, pancreatic duct stone, and chronic pancreatitis. During follow-up ERCP, the lithotripter traction wire fractured during electrohydraulic lithotripsy and mechanical lithotripsy. Multiple attempts using standard techniques to clear the lithotripter and stone failed. Argon plasma coagulation (APC) was used to ablate 2 of the lithotripter wires, and the lithotripter was disengaged from the stone and removed. PMID:26157943

  8. Argon plasma coagulation therapy for a hemorrhagic radiation-induced gastritis in patient with pancreatic cancer.

    PubMed

    Shukuwa, Kazutaka; Kume, Keiichiro; Yamasaki, Masahiro; Yoshikawa, Ichiro; Otsuki, Makoto

    2007-01-01

    Radiation-induced gastritis is a serious complication of radiation therapy for pancreatic cancer which is difficult to manage. A 79-year-old man had been diagnosed as having inoperable pancreatic cancer (stage IVa). We encountered this patient with hemorrhagic gastritis induced by external radiotherapy for pancreatic cancer that was well-treated using argon plasma coagulation (APC). After endoscopic treatment using APC, anemia associated with hemorrhagic radiation gastritis improved and required no further blood transfusion. PMID:17603236

  9. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy.

    PubMed

    Sachdeva, Ashutosh; Pickering, Edward M; Lee, Hans J

    2015-12-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  10. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy

    PubMed Central

    Pickering, Edward M.; Lee, Hans J.

    2015-01-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  11. Argon Plasma Coagulation Therapy Versus Topical Formalin for Intractable Rectal Bleeding and Anorectal Dysfunction After Radiation Therapy for Prostate Carcinoma

    SciTech Connect

    Yeoh, Eric; Tam, William; Schoeman, Mark; Moore, James; Thomas, Michelle; Botten, Rochelle; Di Matteo, Addolorata

    2013-12-01

    Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motor and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction.

  12. Tracheomediastinal fistula in a patient with lung adenocarcinoma and its treatment with argon plasma coagulation: a case report.

    PubMed

    Ucer, Mehtap; Ordu, Cetin; Pilanc, Kezban Nur; Dalar, Levent

    2014-11-01

    Tracheomediastinal fistula is a rare complication that occurs during the course of lung cancer. The fistula connects the airways to the mediastinum and is often associated with lymphoma. Clinical data on tracheomediastinal fistulas are limited to case reports. Tracheal stenting, pericardial and omental patch closure, and muscle flap closure can be performed to repair such fistulas. We herein report a case of tracheomediastinal fistula in a 47-year-old man.The main symptoms were shortness of breath and a feeling of fullness in the neck. Thoracic magnetic resonance imaging revealed an approximately 57  ×  16  ×  20 mm multiloculated cystic lesion with air density located in the upper mediastinum of the right paratracheal region and a fine fistula tract at this level. The main diagnosis was primary lung adenocarcinoma-related mediastinal lymphadenomegaly with a tracheomediastinal fistula.The patient underwent fistula opening on the trachea, which was then coagulated and sealed using argon plasma coagulation.The patient is currently asymptomatic and doing well 8 months after the intervention. PMID:25415672

  13. A Case of Recurrent Respiratory Papillomatosis Successfully Removed Via Endoscopic Argon Plasma Coagulation (APC) With No Evidence of Recurrence.

    PubMed

    Wong, J L; Tie, S T; Lee, J; Kannan, S K; Rashid Ali, M R; Ibrahim, A; Abdul Rahman, J A

    2014-08-01

    Recurrent respiratory papillomatosis (RRP) is a benign disease caused by the human papilloma virus (HPV), characterized by the formation of recurrent, epithelial neoplastic lesions in the airways. While benign, they can cause significant airway obstruction in some cases. Difficulties in treatment arise from the recurrent nature of the lesions despite repeated procedures. Other known procedures that result in deep tissue damage also cause unacceptable collateral damage to the underlying airway mucosa. We describe a case of recurrent papillomatosis that was successfully treated with argon plasma coagulation ( APC) when laser and electrocautery ablation had failed in the past. After the papillomatasis was treated with APC, there is no recurrence on repeat scope at 4 months and 9 months after the initial procedure. The procedure was done as a day case and there is no complication from the procedure. The property of the APC that allows it to cause only superficial thermal damage to the tissue makes it a suitable adjunct therapy to the treatment of papillomas, which are usually superficial lesions. PMID:25500852

  14. ENDOSCOPIC PLASMA ARGON COAGULATION IN TREATMENT OF WEIGHT REGAIN AFTER BARIATRIC SURGERY: WHAT DOES THE PATIENT THINK ABOUT THIS?

    PubMed Central

    MARCHESINI, Simone Dallegrave; BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; MARCHESINI, João Batista

    2014-01-01

    Background Bariatric surgery, especially Roux-en-Y gastric bypass is an effective treatment for refractory morbid obesity, causing the loss of 75% of initial excess weight. After the surgery, however, weight regain can occur in 10-20% of cases. To help, endoscopic argon plasma coagulation (APC) is used to reduce the anastomotic diameter. Many patients who undergo this treatment, are not always familiar with this procedure and its respective precautions. Aim The aim of this study was to determine how well the candidate for APC understands the procedure and absorbs the information provided by the multidisciplinary team. Method We prepared a questionnaire with 12 true/false questions to evaluate the knowledge of the patients about the procedure they were to undergo. The questionnaire was administered by the surgeon during consultation in the preoperative period. The patients were invited to fill out the questionnaire. Results We found out that the majority learned about the procedure through the internet. They knew it was an outpatient treatment, where the anesthesia was similar to that for endoscopy, and that they would have to follow a liquid diet. But none of them knew that the purpose of this diet was to improve local wound healing. Conclusion Bariatric patients who have a second chance to resume weight loss, need continuous guidance. The internet should be used by the multidisciplinary team to promote awareness that APC will not be sufficient for weight loss and weight-loss maintenance in the long term. Furthermore, there is a need to clarify again the harm of drinking alcohol in the process of weight loss, making its curse widely known. PMID:25409966

  15. POST-BARIATRIC SURGERY WEIGHT REGAIN: EVALUATION OF NUTRITIONAL PROFILE OF CANDIDATE PATIENTS FOR ENDOSCOPIC ARGON PLASMA COAGULATION

    PubMed Central

    CAMBI, Maria Paula Carlini; MARCHESINI, Simone Dallegrave; BARETTA, Giorgio Alfredo Pedroso

    2015-01-01

    Background Bariatric surgery is effective treatment for weight loss, but demand continuous nutritional care and physical activity. They regain weight happens with inadequate diets, physical inactivity and high alcohol consumption. Aim To investigate in patients undergoing Roux-Y-of gastroplasty weight regain, nutritional deficiencies, candidates for the treatment with endoscopic argon plasma, the diameter of the gastrojejunostomy and the size of the gastric pouch at the time of treatment with plasma. Methods A prospective 59 patients non-randomized study with no control group undergoing gastroplasty with recurrence of weight and candidates for the endoscopic procedure of argon plasma was realized. The surgical evaluation consisted of investigation of complications in the digestive system and verification of the increased diameter of the gastrojejunostomy. Nutritional evaluation was based on body mass index at the time of operation, in the minimum BMI achieved after and in which BMI was when making the procedure with plasma. The laboratory tests included hemoglobin, erythrocyte volume, ferritin, vitamin D, B12, iron, calcium, zinc and serum albumin. Clinical analysis was based on scheduled follow-up. Results Of the 59 selected, five were men and 51 women; were included 49 people (four men and 44 women) with all the complete data. The exclusion was due to the lack of some of the laboratory tests. Of this total 19 patients (38.7%) had a restrictive ring, while 30 (61.2%) did not. Iron deficiency anemia was common; 30 patients (61.2%) were below 30 with ferritin (unit); 35 (71.4%) with vitamin B12 were below 300 pg/ml; vitamin D3 deficiency occurred in more than 90%; there were no cases of deficiency of protein, calcium and zinc; glucose levels were above 99 mg/dl in three patients (6.12%). Clinically all had complaints of labile memory, irritability and poor concentration. All reported that they stopped treatment with the multidisciplinary team in the first year after

  16. The tissue effect of argon-plasma coagulation with prior submucosal injection (Hybrid-APC) versus standard APC: A randomized ex-vivo study

    PubMed Central

    Neugebauer, Alexander; Scharpf, Marcus; Braun, Kirsten; May, Andrea; Ell, Christian; Fend, Falko; Enderle, Markus D

    2014-01-01

    Background Thermal ablation for Barrett’s oesophagus has widely been established in gastrointestinal endoscopy during the last decade. The mainly used methods of radiofrequency ablation (RFA) and argon-plasma coagulation (APC) carry a relevant risk of stricture formation of up to 5–15%. Newer ablation techniques that are able to overcome this disadvantage would therefore be desirable. The aim of the present study was to compare the depth of tissue injury of the new method of Hybrid-APC versus standard APC within a randomized study in a porcine oesophagus model. Methods Using a total of eight explanted pig oesophagi, 48 oesophageal areas were ablated either by standard or Hybrid-APC (APC with prior submucosal fluid injection) using power settings of 50 and 70 W. The depth of tissue injury to the oesophageal wall was analysed macroscopically and histopathologically. Results Using 50 W, mean coagulation depth was 937 ± 469 µm during standard APC, and 477 ± 271 µm during Hybrid-APC (p = 0.064). Using 70 W, coagulation depth was 1096 ± 320 µm (standard APC) and 468 ± 136 µm (Hybrid-APC; p = 0.003). During all settings, damage to the muscularis mucosae was observed. Using standard APC, damage to the submucosal layer was observed in 4/6 (50 W) and 6/6 cases (70 W). During Hybrid-APC, coagulation of the submucosal layer occurred in 2/6 (50 W) and 1/6 cases (70 W). The proper muscle layer was only damaged during conventional APC (50 W: 1/6; 70 W: 3/6). Limitations Ex-vivo animal study with limited number of cases. Conclusions Hybrid-APC reduces coagulation depth by half in comparison with standard APC, with no thermal injury to the proper muscle layer. It may therefore lead to a lower rate of stricture formation during clinical application. PMID:25360316

  17. Argon beam coagulation in foot and ankle surgery.

    PubMed

    Adams, Melissa L; Steinberg, John S

    2011-01-01

    In this brief report, we introduce the principles, indications, advantages, disadvantages, and surgical techniques involved in the use of argon beam coagulation in foot and ankle surgery. PMID:21907597

  18. Randomized controlled study of endoscopic band ligation and argon plasma coagulation in the treatment of gastric antral and fundal vascular ectasia

    PubMed Central

    Mosaad, Samah; Alkhalawany, Walaa; Abo-Ali, Lobna; Enaba, Mohamed; Elsaka, Aymen; Elfert, Asem A

    2015-01-01

    Background Gastric antral vascular ectasia (GAVE) is characterized by mucosal and submucosal vascular ectasia causing recurrent hemorrhage and thus, chronic anemia, in patients with cirrhosis. Treatment with argon plasma coagulation (APC) is an effective and safe method, but requires multiple sessions of endoscopic therapy. Endoscopic band ligation (EBL) was found to be a good alternative for APC as a treatment for GAVE, especially in refractory cases. The aim of this prospective randomized controlled study was to evaluate the safety and efficacy of EBL, as compared to APC, in the treatment of GAVE and gastric fundal vascular ectasia (GFVE). Patients and methods A total of 88 cirrhotic patients with GAVE were prospectively randomized to endoscopic treatment with either EBL or APC, every 2 weeks until complete obliteration was accomplished; then they were followed up endoscopically after 6 months, plus they had monthly measurement of hemoglobin levels during that period. Results We describe the presence of mucosal and submucosal lesions in the gastric fundal area that were similar to those found in GAVE in 13 patients (29.5%) of the EBL group and 9 patients (20.5%) of the APC group; we named this GFVE. In these cases, we treated the fundal lesions with the same techniques we had used for treating GAVE, according to the randomization. We found that EBL significantly decreased the number of sessions required for complete obliteration of the lesions (2.98 sessions compared to 3.48 sessions in the APC group (p < 0.05)). Hemoglobin levels increased significantly after obliteration of the lesions in both groups, compared to pretreatment values (p < 0.05), but with no significant difference between the two groups (p > 0.05); however, the EBL group of patients required a significantly smaller number of units of blood transfusion than the APC group of patients (p < 0.05). There were no significant differences in adverse events nor complications between the

  19. Argon plasma coagulation for the endoscopic treatment of gastrointestinal tumor bleeding: A retrospective comparison with a non-treated historical cohort

    PubMed Central

    Wodak, Stephanie; Gusmon, Carla C; Safatle-Ribeiro, Adriana Vaz; Kawaguti, Fabio Shiguehissa; Baba, Elisa Ryoka; Pennacchi, Caterina MP; Lima, Marcelo Simas; Ribeiro, Ulysses; Maluf-Filho, Fauze

    2015-01-01

    Background The endoscopic use of argon plasma coagulation (APC) to achieve hemostasis for upper gastrointestinal tumor bleeding (UGITB) has not been adequately evaluated in controlled trials. This study aimed to evaluate the efficacy of APC for the treatment of upper gastrointestinal bleeding from malignant lesions. Methods Between January and September 2011, all patients with UGITB underwent high-potency APC therapy (up to 70 Watts). This group was compared with a historical cohort of patients admitted between January and December 2010, when the endoscopic treatment of bleeding malignancies was not routinely performed. Patients were stratified into two categories, grouping the Eastern Cooperative Oncology Group (ECOG) performance status scale: Category I (ECOG 0–2) patients with a good clinical status and Category II (ECOG 3–4) patients with a poor clinical status. Results Our study had 25 patients with UGITB whom underwent APC treatment and 28 patients whom received no endoscopic therapy. The clinical characteristics of the groups were similar, except for endoscopic active bleeding, which was more frequently detected in APC group. We had 15 patients in the APC group whom had active bleeding, and initial hemostasis was obtained in 11 of them (73.3%). In the control group, four patients had active bleeding. There were no differences in 30-day re-bleeding (33.3% in the APC group versus 14.3% in the control group; p = 0.104) and 30-day mortality rates (20.8% in the APC group, versus 42.9% in the control group; p = 0.091). When patients were categorized according to their ECOG status, we found that APC therapy had no impact in re-bleeding and mortality rates (Group I: APC versus no endoscopic treatment: re-bleeding p = 0.412, mortality p = 0.669; Group II: APC versus no endoscopic treatment: re-bleeding p = 0.505, mortality p = 0.580). Hematemesis and site of bleeding located at the esophagus or duodenum were associated with a higher 30-day

  20. Microwave Argon Plasma Torch

    NASA Astrophysics Data System (ADS)

    Felizardo, Edgar; Pencheva, Mariana; Benova, Evgenia; Dias, Fransisco; Tatarova, Elena

    2009-10-01

    A theoretical and experimental investigation of a microwave (2.45 GHz) Argon plasma torch driven by a surface wave is presented. The theoretical model couples in a self-consistent way the wave electrodynamics and the electron and heavy particle kinetics. The set of coupled equations includes: Maxwell's equations, the electron Boltzmann equation, including electron-electron collisions, and the particle balance equations for electrons, excited atoms (4s, 4p, 3d, 5s, 5p, 4d, 6s), and atomic (Ar^+) and molecular ions (Ar2^+). The input parameters of the model are: gas pressure (760 Torr), plasma radius (R = 0.75 cm), dielectric permittivity (ɛd = 4.0) and tube thickness (d = 0.15 cm) as well as the measured axial profile of the gas temperature (3500 K - 1500 K). The latter was determined from measurements of the rotational temperature of the OH molecular band in the range 306 - 315 nm. Phase and amplitude sensitive recording provides the data for the axial wavenumber and wave attenuation coefficient. The wavenumber decreases along the generated plasma torch. The electron density (Ne) axial profile as determined from measurements of Hβ Stark broadening is in agreement with the theoretical one.

  1. Transpupillary CW YAG laser coagulation. A comparison with argon green and krypton red lasers.

    PubMed

    Peyman, G A; Conway, M D; House, B

    1983-08-01

    The authors have developed a CW YAG laser for transpupillary coagulation. The effects of CW YAG coagulation on the retina, retinal vessels, and fovea were compared with those produced by the krypton red and argon green lasers. To produce threshold coagulative lesions in monkeys and rabbits, we needed five to ten times more energy with the CW YAG than with the krypton red or argon green lasers. Nerve fiber damage was observed only when coagulating retinal vessels with the argon green laser. At the parameters used, none of the lasers damaged the sensory retina of the fovea. The CW YAG may be used as a new mode of laser coagulation in the treatment of retinal diseases. PMID:6688868

  2. Modelling of RF Discharge in Argon Plasma

    SciTech Connect

    Jelinek, P.; Virostko, P.; Hubicka, Z.; Bartos, P.

    2007-12-26

    An one-dimensional hybrid model of RF discharge in low-temperature argon plasma is presented in our paper. The hybrid model consists of two parts--particle model which simulates fast electrons while fluid model simulates slow electrons and positive argon ions. In the particle model the positions and velocities of fast electrons are calculated by means of deterministic Verlet algorithm while the collision processes are treated by the stochastic way. For the solution of fluid equations, for slow electrons and positive argon ions, the Scharfetter-Gummel exponential algorithm was used. Typical results of our calculations presented in this paper are total RF current and RF voltage waveforms on the planar substrate immersed into argon plasma. The next results which can be found here are the ion, electron and displacement current waveforms on the substrate. Especially, the knowledge of waveform of the ion current is very important for experimental physicists during the deposition of thin films.

  3. Coagulation of dust particles in a plasma

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Goertz, C. K.

    1990-01-01

    The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.

  4. Coagulation Factor XIIIa Substrates in Human Plasma

    PubMed Central

    Nikolajsen, Camilla Lund; Dyrlund, Thomas F.; Poulsen, Ebbe Toftgaard; Enghild, Jan J.; Scavenius, Carsten

    2014-01-01

    Coagulation factor XIII (FXIII) is a transglutaminase with a well defined role in the final stages of blood coagulation. Active FXIII (FXIIIa) catalyzes the formation of ϵ-(γ-glutamyl)lysine isopeptide bonds between specific Gln and Lys residues. The primary physiological outcome of this catalytic activity is stabilization of the fibrin clot during coagulation. The stabilization is achieved through the introduction of cross-links between fibrin monomers and through cross-linking of proteins with anti-fibrinolytic activity to fibrin. FXIIIa additionally cross-links several proteins with other functionalities to the clot. Cross-linking of proteins to the clot is generally believed to modify clot characteristics such as proteolytic susceptibility and hereby affect the outcome of tissue damage. In the present study, we use a proteomic approach in combination with transglutaminase-specific labeling to identify FXIIIa plasma protein substrates and their reactive residues. The results revealed a total of 147 FXIIIa substrates, of which 132 have not previously been described. We confirm that 48 of the FXIIIa substrates were indeed incorporated into the insoluble fibrin clot during the coagulation of plasma. The identified substrates are involved in, among other activities, complement activation, coagulation, inflammatory and immune responses, and extracellular matrix organization. PMID:24443567

  5. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  6. Merging of high speed argon plasma jets

    SciTech Connect

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  7. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  8. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.

    1998-12-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.

  9. Perioperative coagulation management--fresh frozen plasma.

    PubMed

    Kor, Daryl J; Stubbs, James R; Gajic, Ognjen

    2010-03-01

    Clinical studies support the use of perioperative fresh frozen plasma (FFP) in patients who are actively bleeding with multiple coagulation factor deficiencies and for the prevention of dilutional coagulopathy in patients with major trauma and/or massive haemorrhage. In these settings, current FFP dosing recommendations may be inadequate. However, a substantial proportion of FFP is transfused in non-bleeding patients with mild elevations in coagulation screening tests. This practice is not supported by the literature, is unlikely to be of benefit and unnecessarily exposes patients to the risks of FFP. The role of FFP in reversing the effects of warfarin anticoagulation is dependent on the clinical context and availability of alternative agents. Although FFP is commonly transfused in patients with liver disease, this practice needs broad reconsideration. Adverse effects of FFP include febrile and allergic reactions, transfusion-associated circulatory overload and transfusion-related acute lung injury. The latter is the most serious complication, being less common with the preferential use of non-alloimmunised, male-donor predominant plasma. FP24 and thawed plasma are alternatives to FFP with similar indications for administration. Both provide an opportunity for increasing the safe plasma donor pool. Although prothrombin complex concentrates and factor VIIa may be used as alternatives to FFP in a variety of specific clinical contexts, additional study is needed. PMID:20402170

  10. Contact activation of blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an

  11. Use of neutral plasma coagulation in groin node dissection for vulvar malignancy: a novel technique

    PubMed Central

    Madhuri, Thumuluru Kavitha; Tailor, Anil; Butler-Manuel, Simon

    2011-01-01

    Vulvar cancer is an uncommon disease with approximately 1000 cases reported annually in the UK. Lymph node involvement is an important prognostic indicator. Vulvectomy and bilateral groin node dissection are the preferred surgical treatments for early disease and increase survival. However, significant morbidity with lymphocyst formation and wound breakdown has been reported in more than 50% of cases. We report the first case following use of the PlasmaJet® neutral argon coagulation system to reduce postoperative lymphocyst formation. PMID:21792333

  12. Contact Activation of Blood Plasma Coagulation

    PubMed Central

    Vogler, Erwin A.; Siedlecki, Christopher A.

    2009-01-01

    This opinion identifies inconsistencies in the generally-accepted surface biophysics involved in contact activation of blood-plasma coagulation, reviews recent experimental work aimed at resolving inconsistencies, and concludes that this standard paradigm requires substantial revision to accommodate new experimental observations. Foremost among these new findings is that surface-catalyzed conversion of the blood zymogen factor XII (FXII, Hageman factor) to the enzyme FXIIa ( FXII→surfaceFXIIa, a.k.a. autoactivation) is not specific for anionic surfaces, as proposed by the standard paradigm. Furthermore, it is found that surface activation is moderated by the protein composition of the fluid phase in which FXII autoactivation occurs by what appears to be a protein adsorption-competition effect. Both of these findings argue against the standard view that contact activation of plasma coagulation is potentiated by assembly of activation-complex proteins (FXII, FXI, prekallikrein, and high-molecular-weight kininogen) directly onto activating surfaces (procoagulants) through specific protein/surface interactions. These new findings supplement the observation that adsorption behavior of FXII and FXIIa is not remarkably different from a wide variety of other blood proteins surveyed. Similarity in adsorption properties further undermines the idea that FXII and/or FXIIa are distinguished from other blood proteins by unusual adsorption properties resulting in chemically-specific interactions with activating anionic surfaces. PMID:19168215

  13. Use of Neutral Argon Plasma in the Laparoscopic Treatment of Endometriosis

    PubMed Central

    Kho, Kimberly A.; Morozov, Vadim

    2009-01-01

    Background and Objectives: To report the feasibility and safety of the use of a novel energy source that uses an electrically neutral beam of pure argon plasma for the laparoscopic management of endometriosis. Methods: In this prospective pilot study, 20 patients undergoing laparoscopic treatment of endometriosis were included. Characteristic endometriotic lesions throughout the pelvis were vaporized or resected using neutral argon plasma. Specimens were evaluated for the presence of endometriosis and thermal effects on tissue. The bases of the treated lesions were biopsied to determine whether residual endometriosis was present. Results: Neutral argon plasma was used in 18 of the 20 patients for laparoscopic treatment of pelvic endometriosis. All biopsies confirmed complete vaporization or re-section with no residual endometriosis at the base. Endometriosis was identified on pathology in all lesions excised. Thermal effects did not interfere with histologic analysis in any of the lesions. No complications occurred. Conclusion: Neutral argon plasma can be utilized as a multi-functional device that has vaporization, coagulation, and superficial cutting capacities with minimal thermal spread and acceptable outcomes. The use of neutral argon plasma appears to be efficacious and safe for the complete treatment of endometriotic implants. PMID:20202387

  14. Confocal Laser Induced Fluorescence of Argon Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Soderholm, Mark

    2015-11-01

    Laser Induced Fluorescence (LIF) provides measurements of flow speed, temperature and when absolutely calibrated, density of ions or neutrals in a plasma. Traditionally, laser induced fluorescence requires two ports on a plasma device. One port is used for laser injection and the other is used for fluorescence emission collection. Traditional LIF is tedious and time consuming to align. These difficulties motivate the development of an optical configuration that requires a single port and remains fully aligned at all times; confocal LIF. Our confocal optical design employs a single two inch diameter lens to both inject the laser light and collect the stimulated emission from an argon plasma. A pair of axicon lenses create an annular beam path for the emission collection and the pump laser light is confined inside the annulus of the collection beam. The measurement location is scanned radially by manually adjusting the final focusing lens position. Here we present optical modeling of and initial results from the axicon based confocal optical system. The confocal measurements are compared to traditional, two-port, LIF measurements over the same radial range. This work is supported by US National Science Foundation grant number PHY-1360278.

  15. Characterization and literature review of bowel perforation injuring using argon beam coagulation

    NASA Astrophysics Data System (ADS)

    Barnes, Kelli S.; Merchel, Renée. A.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: Argon Beam Coagulation (ABC®) technology is used in conjunction with the ConMed ABCFlex® Probe to provide non-contact hemostasis, coagulation, and tissue devitalization during endoscopic procedures. ABC provides a superficial tissue effect; however, there is a risk of bowel perforation. To better understand the settings that lead to perforation, this study reviews the literature and provides an ex vivo characterization of the ABCFlex Probe tissue effect at different settings when used at small distances. METHODS: Depth of thermal tissue effect was characterized to determine the effect of three parameters: power (W), distance from probe tip to tissue (mm) and application duration (s). 3 ABCFlex Probes were used to create 15 samples on ex vivo porcine small intestine for each combination of parameters. The depth of tissue effect for each sample was measured using a light microscope. RESULTS: Depth of tissue effect increases as power and application time increases. An increase of distance from the probe tip to the tissue results in a decrease in depth of tissue effect from a near contact to 1mm distance. Depth of tissue effect doesn't significantly change from 1mm to 3mm distance. CONCLUSION: ABCFlex Probe can be used to achieve hemostasis in endoscopic procedures. Increasing power and application time increases the depth of thermal effect while increasing distance from the probe time to the surface of the tissue decreases the depth of tissue effect.

  16. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Nijdam, S.; Beckers, J.

    2016-07-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon-acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed "hiccup" and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  17. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  18. Modeling of Magnetron Argon Plasma Issuing into Ambient Air

    NASA Astrophysics Data System (ADS)

    Li, Lin-Cun; Xia, Wei-Dong

    2008-01-01

    A mathematical model is presented to describe the heat transfer and fluid flow in a magnetron plasma torch, by means of a commercial computational fluid dynamics (CFD) code fluent. Specific calculations are presented for a gas-mixing system (i.e., an argon plasma discharging into an air environment), operating in a laminar mode. Numerical results show that an external axial magnetic field (AMF) may have a significant effect on the behavior of an arc plasma, i.e., the AMF will impel the plasma to retract axially and expand radially. In addition, the use of an AMF induces a strong air indraft at the torch spout, and the air mixing with the argon gas results in a marked increase in arc voltage. An increment in the amount of the oncoming argon gas restrains the quantity of the air indraft, and this should be responsible for a lower arc voltage in such an AMF torch when a larger gas inflow is used.

  19. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  20. On the OES line-ratio technique in argon and argon-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2014-11-01

    Optical emission spectroscopy is used to investigate capacitively coupled argon and argon-hydrogen-silane plasmas. The argon collisional-radiative model (CRM) used to extract the electron density and temperature from the spectra is presented. The electron energy distribution function, which is an input parameter to the model, is discussed in detail. Its strong variation with pressure is found to significantly influence the results for the (effective) temperature. For the analysis of the spectra the common line-ratio technique is applied. Special attention is paid to the choice of lines and a pair of line-ratios for optimum accuracy is suggested. For the argon gas mixture at high partial pressure of the admixed molecular gases the CRM reduces to a corona-like model, extended by a quenching term. The line-ratio method is found to fail under these conditions due to the strong depopulation of the argon 1s states. As a consequence, individual line intensities have to be used and an absolute calibration is required. An easy calibration method, which relies on the results obtained by the line-ratio method in pure argon, is proposed and applied.

  1. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  2. Human plasma kallikrein releases neutrophil elastase during blood coagulation.

    PubMed Central

    Wachtfogel, Y T; Kucich, U; James, H L; Scott, C F; Schapira, M; Zimmerman, M; Cohen, A B; Colman, R W

    1983-01-01

    Elastase is released from human neutrophils during the early events of blood coagulation. Human plasma kallikrein has been shown to stimulate neutrophil chemotaxis, aggregation, and oxygen consumption. Therefore, the ability of kallikrein to release neutrophil elastase was investigated. Neutrophils were isolated by dextran sedimentation, and elastase release was measured by both an enzyme-linked immunosorbent assay, and an enzymatic assay using t-butoxy-carbonyl-Ala-Ala-Pro-Val-amino methyl coumarin as the substrate. Kallikrein, 0.1-1.0 U/ml, (0.045-0.45 microM), was incubated with neutrophils that were preincubated with cytochalasin B (5 micrograms/ml). The release of elastase was found to be proportional to the kallikrein concentration. Kallikrein released a maximum of 34% of the total elastase content, as measured by solubilizing the neutrophils in the nonionic detergent Triton X-100. A series of experiments was carried out to determine if kallikrein was a major enzyme involved in neutrophil elastase release during blood coagulation. When 10 million neutrophils were incubated in 1 ml of normal plasma in the presence of 30 mM CaCl2 for 90 min, 2.75 micrograms of elastase was released. In contrast, neutrophils incubated in prekallikrein-deficient or Factor XII-deficient plasma released less than half of the elastase, as compared with normal plasma. The addition of purified prekallikrein to prekallikrein-deficient plasma restored neutrophil elastase release to normal levels. Moreover, release of elastase was enhanced in plasma deficient in C1-inhibitor, the major plasma inhibitor of kallikrein. This release was not dependent upon further steps in the coagulation pathway, or on C5a, since levels of elastase, released in Factor XI- or C5-deficient plasma, were similar to that in normal plasma, and an antibody to C5 failed to inhibit elastase release. These data suggest that kallikrein may be a major enzyme responsible for the release of elastase during blood

  3. Tin LPP plasma control in the argon cusp source

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2016-03-01

    The argon cusp plasma has been introduced [1,2] for 500W class tin LPP exhaust control in view of its high power handling, predicted low tin back-scatter from a beam dump, and avoidance of hydrogen usage. The physics of tin ion control by a plasma is first discussed. Experimentally, cusp stability and exhaust disc geometry have previously been proved at full scale [2], the equivalent of 300W-500W usable EUV. Here we verify operation of the plasma barrier that maintains a high argon density next to the collector, for its protection, and a low density in the long path toward the intermediate focus, for efficiency. A pressure differential of 2Pa has been demonstrated in initial work. Other aspects of tin LPP plasma control by the cusp have now been demonstrated using tin ions from a low Hz 130mJ CO2 laser pulse onto a solid tin surface at the cusp center. Plasma is rejected at the <0.5% level at the collector mirror location using the cusp magnetic field alone. Plasma also is rejected using a low argon density (<1x1014cm-3). We have measured the tin ion flow pattern toward the large area annular beam dump. Scaling of the cusp design to match a specified exhaust power is discussed. In view of this work, argon cusp exhaust control appears to be very promising for 500W class tin LPP sources.

  4. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for

  5. Supersonic Argon Flow In An Arc Plasma Source

    SciTech Connect

    Izrar, B.; Dudeck, M.; Andre, P.; Elchinger, M. F.; Aubreton, J.

    2006-01-15

    The plasma properties inside a D.C. arc-jet operating with argon is analysed by means of a continuum description taking into account non equilibrium ionization processes and dissipative effects. The relaxation of the different physical processes inside the nozzle and the evolution of the Mach number are aanalysed.

  6. The influence of riboflavin photochemistry on plasma coagulation factors

    PubMed Central

    Larrea, Luis; Calabuig, María; Roldán, Vanesa; Rivera, José; Tsai, Han-Mou; Vicente, Vicente; Roig, Roberto

    2011-01-01

    Studies with riboflavin in the 1960s showed that it could be effective at inactivating pathogens when exposed to light. The principal mode of action is through electron transfer reactions, most importantly in nucleic acids. This suggested that it could act as a photosensitizer useful in the inactivation of pathogens found in blood products. Objective To study the influence of photo-inactivation with riboflavin on the coagulation factors of plasma. Methods The photo-inactivation procedure of riboflavin plus light was applied. Fifty isogroup pools of two plasmas were made from 100 U of plasma that were derived from whole blood products that had previously been held overnight. Pools were split into two bags. One of them was photo-inactivated, and post inactivation samples were obtained. The second bag was not photo-inactivated and samples were taken. Total protein, fibrinogen, FII, FV, FVII, FVIII, FIX, FX, FXI, FXIII, antithrombin III, PC, PS, α-2 antiplasmin and vWF:Ag, the multimeric structure of vWF and ADAMTS-13 were analyzed. Results In plasma, the proteins most sensitive to photo-inactivation were fibrinogen, FXI, FVIII, FV, and FIX (33%, 32%, 30%, 18% and 18% loss, respectively). Coagulation inhibitors, PS, antithrombin III and PC showed little decrease (all 2%). Retention of vWF and ADAMTS-13 were 99% and 88%, respectively. Conclusions As with other pathogen reduction procedures for plasma products, treatment with riboflavin and UV light resulted in reduction in the activity levels of several pro-coagulant factors. Coagulation inhibitors are well preserved. PMID:19782644

  7. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  8. Emission Rates in ASTRAL Argon Plasmas.

    NASA Astrophysics Data System (ADS)

    Kamar, Ola; Boivin, Robert; Loch, Stuart; Munoz, Jorge; Ballance, Connor

    2006-10-01

    Relative Emission rates measured in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source are compared to theoretical predictions. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 to 10^13 cm-3 and Te = 2 to 10 eV. A rf compensated Langmuir probe is used to measure Te and ne. In a first series of experiment Ar I, Ar II and Ar III transitions are monitored as a function of plasma density and this for constant electron temperature. In the second series of experiments, the same transitions are observed as a function of Te while ne is this time kept constant. Observations revealed that Te is by far the most significant parameter affecting the emission rate coefficients in the ASTRAL plasma. The spectroscopy measurements are compared with spectral modeling from the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. We use existing standard R-matrix electron-impact excitation data in our modeling, and assess this dataset against the results from a new R-matrix with pseudo-states calculation.

  9. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  10. XUV radiation from gaseous nitrogen and argon target laser plasmas

    NASA Astrophysics Data System (ADS)

    Vrba, P.; Vrbová, M.; Brůža, P.; Pánek, D.; Krejčí, F.; Kroupa, M.; Jakůbek, J.

    2012-06-01

    Laser plasma created in gaseous target is studied as a source of radiation in the "water window" wavelength range. Plasma is created by focusing an 800 mJ/7 ns Nd:YAG laser pulse into the gas-puff target. Using nitrogen gas results in emission of an intense quasi-monochromatic radiation with the wavelength 2.88 nm, corresponding to the quantum transition 1s2p → 1s2 of helium -like nitrogen ion. The emission spectrum with argon target covers all the water window range. Laboratory and computer experiments have been performed for both target gases. The spatial distributions of emitted energy in the water window spectral range were compared. The total emitted energy with argon was one order higher than with nitrogen.

  11. Nanopillar ITO electrodes via argon plasma etching

    SciTech Connect

    Van Dijken, Jaron G.; Brett, Michael J.

    2012-07-15

    The authors demonstrate the formation of vertically aligned indium tin oxide (ITO) nanopillars by exposing planar ITO films to Ar plasma, the conditions of which determine the size, spacing, and aspect ratio of the pillars. Annealing in air and forming gas is used to recover and optimize the optical transmittance and electrical conductivity of the nanopillar films. The final product is an ITO film whose superior optical transmittance and strong electrical conductivity combine with its robust columnar morphology and processing scalability to make it suitable for use in highly absorbing organic solar cells.

  12. The main properties of microwave argon plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Benova, E.; Pencheva, M.

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  13. Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    Girshick, Steven; Agarwal, Pulkit

    2012-10-01

    We have developed a 1-D numerical model of an RF argon-silane plasma in which dust particles nucleate and grow. This model self-consistently couples a plasma module, a chemistry module and an aerosol module. The plasma module solves population balance equations for electrons and ions, the electron energy equation under the assumption of a Maxwellian velocity distribution, and Poisson's equation for the electric field. The chemistry module treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The aerosol module uses a sectional method to model particle size and charge distributions. The nucleation rate is equated to the rates of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Aerosol effects considered include particle charging, coagulation, and particle transport by neutral drag, ion drag, electric force, gravity and Brownian diffusion. Simulation results are shown for the case of a 13.56 MHz plasma at a pressure of 13 Pa and applied RF voltage of 100 V (amplitude), with flow through a showerhead electrode. These results show the strong coupling between the plasma and the spatiotemporal evolution of the nanoparticle cloud.

  14. Diagnostics of Argon Inductively Coupled Plasma and Dielectric Barrier Discharge Plasma by Optical Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-liang; Yu, Shi-ji; Ma, Teng-cai; Deng, Xin-lu

    2001-08-01

    An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES from argon ICP and DBD plasmas in visible and near ultraviolet region were measured. For argon ICP, the higher RF power input (higher than 500 W for our machine), the higher degree of argon plasma ionization. But that doesn't mean a higher mean electron energy. With the increase in the power input, the mean electron energy increases slightly, whereas the density of electron increases apparently. Or, the contrary, argon DBD discharge behaves in the manner of a pulsed DC discharge on optical emission spectroscopy and V-I characteristics. DBD current is composed of a series of pulses equally spaced in temporal domain. The kinetics of DBD emission strength is mainly governed by the frequency of the current pulse.

  15. Plasma fibronectin concentrations in dogs with disseminated intravascular coagulation.

    PubMed

    Feldman, B F; Thomson, D B; O'Neill, S

    1985-05-01

    Plasma fibronectin concentrations were significantly (P less than 0.001) below the reference range in dogs with disseminated intravascular coagulation (DIC) secondary to nonlymphomatous neoplasia, acute necrotizing pancreatitis, sepsis, chronic active hepatitis, and heat stroke. There was no statistical evidence of a group effect. Decrease in fibronectin concentration was associated with severe DIC, although no attempt was made to correlate fibronectin concentration with prognosis. These findings parallel those reported for severely ill human beings with diseases associated with DIC. They exemplify the potential of spontaneous diseases in animals as models for the study of human disease. PMID:4003893

  16. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  17. Effect of taurine on platelets and the plasma coagulation system.

    PubMed

    Miglis, Mitchell; Wilder, Donna; Reid, Thomas; Bakaltcheva, Irina

    2002-02-01

    It is not yet clear what exact mechanisms are at work in hibernating animals that prevent clot formation and maintain tissue perfusion under conditions of very slow blood flow and increased blood viscosity brought about by the low temperatures. It has been shown that the total amino acid pool increases more then two fold in hibernating animals with taurine accounting for about 50% of this increase [Storey et al., Proc Natl Acad Sci USA 1988; 85(21): 8350-4]. This work investigates the effect of taurine on platelets and the plasma coagulation system. Taurine was added at different concentrations in the range between 5 and 25 mM to donor plasma. Using STA/STA Compact coagulation analyzer the following tests were performed: prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT). At the highest concentration tested (25 mM) taurine prolonged TT by 9%. The prolongation was statistically significant but not clinically significant retaining TT within normal limits (16.7-20.7 s). PT and APTT remained unchanged by taurine. The effect of taurine on platelets was assessed by platelet aggregation by thrombin, extent of platelet shape change (ESC) induced by ADP, and thrombelastography. Taurine at 5 mM final concentration inhibited platelet aggregation by 10%. Increasing taurine concentration to 25 mM did not result in a further augmentation of the inhibitory effect. ESC was unaffected by taurine. Clot strength determined by thrombelastography also remained unchanged by taurine. PMID:11918831

  18. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  19. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.

  20. Concerning Apparent Similarity of Structures of Fluoropolymer Surfaces Exposed to an Argon Plasma or Argon Ion Beam

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    X-ray photoelectron spectroscopy (XPS) C(sub 1s) spectra of fluoropolymers exposed to either an argon plasma or argon ion beam show remarkable similarity, implying that the surface-modification reactions for these two processes likely proceed through comparable mechanisms, revolving predominantly ion-surface interactions. The importance of working with a monochromatized x-ray source for XPS analysis of the surface-modified fluoropolymers is once again emphasized.

  1. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  2. CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS

    SciTech Connect

    Matthews, L. S.; Land, V.; Hyde, T. W.

    2012-01-01

    Combining a particle-particle, particle-cluster, and cluster-cluster agglomeration model with an aggregate charging model, the coagulation and charging of dust particles in plasma environments relevant for protoplanetary disks have been investigated, including the effect of electron depletion in high dust density environments. The results show that charged aggregates tend to grow by adding small particles and clusters to larger particles and clusters, and that cluster-cluster aggregation is significantly more effective than particle-cluster aggregation. Comparisons of the grain structure show that with increasing aggregate charge the compactness factor, {phi}{sub {sigma}}, decreases and has a narrower distribution, indicating a fluffier structure. Neutral aggregates are more compact, with larger {phi}{sub {sigma}}, and exhibit a larger variation in fluffiness. Overall, increased aggregate charge leads to larger, fluffier, and more massive aggregates.

  3. In situ X-ray Photoemission Spectroscopy Analysis of Aromatic Polyester Surface Treated with Argon Plasma

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuo; Okamoto, Nanami

    2013-10-01

    Effects of surface modification treatment by argon plasma processing of two types of aromatic polyester, poly(ethylene terephthalate) (PET) and poly(oxybenzonate-co-oxynaphthoate) (POCO), were investigated. This paper presents a description of our experiment and a discussion of the surface modification mechanism, which uses a simple and inexpensive procedure to conduct analysis without breaking vacuum after plasma processing. In situ analysis of the chemical composition of a polymer surface was attempted without exposing the sample to air after argon plasma processing. In particular, the respective actions of each active species were investigated for electrons and ions in argon plasma. Electrons and ions in argon plasma break some polymer bonds. Specifically, ester groups are broken and oxygen atoms are kicked out in PET and POCO. No oxygen functional group is formed after argon plasma processing, but such groups are formed if the sample is exposed to air.

  4. Nonthermal Argon Plasma Generator and Some Potential Applications

    NASA Astrophysics Data System (ADS)

    Bunoiu, M.; Jugunaru, I.; Bica, I.; Balasoiu, M.

    2015-12-01

    A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator's body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%), equipped with a OT-1000 (Tungsram) power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  5. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    SciTech Connect

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  6. Changes in Dietary Fat Content Rapidly Alters the Mouse Plasma Coagulation Profile without Affecting Relative Transcript Levels of Coagulation Factors

    PubMed Central

    van Diepen, Janna A.; Verhoef, Daniël; Voshol, Peter J.; Reitsma, Pieter H.; van Vlijmen, Bart J. M.

    2015-01-01

    Background Obesity is associated with a hypercoagulable state and increased risk for thrombotic cardiovascular events. Objective Establish the onset and reversibility of the hypercoagulable state during the development and regression of nutritionally-induced obesity in mice, and its relation to transcriptional changes and clearance rates of coagulation factors as well as its relation to changes in metabolic and inflammatory parameters. Methods Male C57BL/6J mice were fed a low fat (10% kcal as fat; LFD) or high fat diet (45% kcal as fat; HFD) for 2, 4, 8 or 16 weeks. To study the effects of weight loss, mice were fed the HFD for 16 weeks and switched to the LFD for 1, 2 or 4 weeks. For each time point analyses of plasma and hepatic mRNA levels of coagulation factors were performed after overnight fasting, as well as measurements of circulating metabolic and inflammatory parameters. Furthermore, in vivo clearance rates of human factor (F) VII, FVIII and FIX proteins were determined after 2 weeks of HFD-feeding. Results HFD feeding gradually increased the body and liver weight, which was accompanied by a significant increase in plasma glucose levels from 8 weeks onwards, while insulin levels were affected after 16 weeks. Besides a transient rise in cytokine levels at 2 weeks after starting the HFD, no significant effect on inflammation markers was present. Increased plasma levels of fibrinogen, FII, FVII, FVIII, FIX, FXI and FXII were observed in mice on a HFD for 2 weeks, which in general persisted throughout the 16 weeks of HFD-feeding. Interestingly, with the exception of FXI the effects on plasma coagulation levels were not paralleled by changes in relative transcript levels in the liver, nor by decreased clearance rates. Switching from HFD to LFD reversed the HFD-induced procoagulant shift in plasma, again not coinciding with transcriptional modulation. Conclusions Changes in dietary fat content rapidly alter the mouse plasma coagulation profile, thereby

  7. Numerical modelling of the nonequilibrium expansion process of argon plasma flow through a nozzle

    NASA Astrophysics Data System (ADS)

    Wei, Fu-Zhi; Wang, Hai-Xing; Murphy, A. B.; Sun, Wei-Ping; Liu, Yu

    2013-12-01

    A two-temperature thermal and chemical nonequilibrium model is developed and applied to investigate the expansion processes of an argon plasma flow through a Laval nozzle. This model describes in a self-consistent manner the gas flow and heat transfer, the coupling of the electric energy deposited into the plasma, and the reaction kinetics including the contribution of excited species. It is found that the plasma is far from thermodynamic equilibrium in the entire argon plasma flow expansion process through a nozzle. Significant temperature discrepancies between electrons and heavy species are found in the cooler outer region. The dominant chemical kinetic processes in different plasma gas expansion regions are presented and discussed. It is noted that although the number density of excited argon atoms (Ar*) is much lower than that of other species in the argon plasma, Ar* play important roles in the ionization and recombination processes, and in arc attachment to the anode.

  8. Plasma transfusions prior to insertion of central lines for patients with abnormal coagulation

    PubMed Central

    Hall, David P; Estcourt, Lise J; Doree, Carolyn; Hopewell, Sally; Trivella, Marialena; Walsh, Timothy S

    2015-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the effect of different prophylactic plasma transfusion regimens prior to central line insertion in patients with abnormal coagulation. PMID:27057149

  9. Interaction of an argon plasma jet with a silicon wafer

    NASA Astrophysics Data System (ADS)

    Engelhardt, Max; Pothiraja, Ramasamy; Kartaschew, Konstantin; Bibinov, Nikita; Havenith, Martina; Awakowicz, Peter

    2016-04-01

    A filamentary discharge is ignited in an argon plasma jet under atmospheric pressure conditions. The gas discharge is characterized with voltage-current measurements, optical emission spectroscopy and an ICCD-camera with a high temporal resolution down to 10 ns. In the effluent of the plasma jet, filaments come into contact with the surface of a silicon wafer and modify it, namely etching traces are produced and microcrystals are deposited. These traces are studied with optical and electron microscopes. The material of the deposited microcrystals and the surface modifications of the silicon wafer are analyzed with Raman microspectroscopy. Amorphous silicon is found within the etching traces. The largest part of the deposited microcrystals are composed of nitratine (NaNO3) and some of them are calcite (CaCO3). Analyzing the possible reasons for the silicon wafer modifications we come to the conclusion that plasmoids, which are produced near the substrate surface by interaction with ionization waves, are a plausible explanation for the observed surface modifications of the silicon wafer.

  10. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gu, Ruxi; Yu, Junrong; Hu, Chengcheng; Chen, Lei; Zhu, Jing; Hu, Zuming

    2012-10-01

    This paper is focused on influence of argon dielectric barrier discharge (DBD) plasma on the adhesive performance and wettability of para-aramid fibers and three parameters including treated power, exposure time and argon flux were detected. The interfacial shear strength (IFSS) was greatly increased by 28% with 300 W, 60 s, 2 L min-1 argon flux plasma treatment. The content of oxygen atom and oxygen-containing polar functional groups were enhanced after the argon plasma treated, so as the surface roughness, which contributed to the improvement of surface wettability and the decrease of contact angle with water. However, long-time exposure, exorbitant power or overlarge argon flux could partly destroy the prior effects of the treatment and damage the mechanical properties of fibers to some degree.

  11. The nature of fluctuations in a double arc argon-nitrogen plasma jet

    SciTech Connect

    Tu Xin; Yan Jianhua; Yu Liang; Cen, Kefa; Cheron, Bruno

    2007-09-24

    The dynamic behavior of the double arc argon-nitrogen plasma jet is investigated by combined means of the fast Fourier transform, correlation function, and Wigner distribution. The restrike mode is identified as the fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which indicates that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the power supply undulation and both arc roots motion on the anode channels. It is further found that the double anode torch could inhibit and reduce the restrike phenomenon.

  12. Radiating plasma species density distribution in EUV-induced plasma in argon: a spatiotemporal experimental study

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; van de Ven, T. H. M.; Banine, V. Y.

    2015-12-01

    In this contribution we experimentally study temporally and spatially resolved radiating plasma species density distribution in plasma induced by irradiating a low pressure argon gas with high energy photons with a wavelength of 13.5 nm, i.e. extreme ultraviolet (EUV). This is done by recording the optical emission spatially and temporally resolved by an iCCD camera as a function of the argon gas pressure. Our experimental results show that the emission intensity, i.e. density of radiating plasma species, depends quadratically on the gas pressure. The linear term is due to photoionization and simultaneous excitation by EUV photons, the quadratic term due to electron impact excitation by electrons generated by photoionization. The decay of radiating plasma species can be divided into two phases. At time scales shorter than 10 μs (first phase), the decay is governed by radiative decay of radiating plasma species. At longer time scales (second phase, >10 μs), the decay is dominated by diffusion and subsequent de-excitation at the wall. The experimental decay and expansion during this phase corresponds well with a simplified diffusion model. In order to gain more insight in this exotic type of plasma, we compare the electron density from previous measurements with the results obtained here.

  13. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements. PMID:23794223

  14. Dielectric properties in microwave remote plasma sustained in argon: Expanding plasma conditions

    SciTech Connect

    Jauberteau, J. L.; Jauberteau, I.

    2012-11-15

    This work is devoted to the study of the relative permittivity in argon expanding plasma produced below a microwave discharge sustained in a quartz tube and working at 2.45 GHz. We discuss results and explain the microwave propagation within the reactor, outside the quartz tube. It is shown that at low pressures (133 Pa) and at powers ranging from 100 W to 400 W, the wave frequency remains lower than the plasma frequency anywhere in the expanding plasma. Under these conditions, the real part of the relative permittivity is negative and the wave is reflected. Surprisingly, in these conditions, the plasma is produced inside and outside the quartz tube, below the wave launcher. This effect can be explained considering a surface wave propagating at the surface of the quartz tube then into the reactor, on the external surface of the expanding plasma below the quartz tube.

  15. Coagulation of blood plasma of guinea pig by the bone matrix.

    PubMed

    Huggins, C B; Reddi, A H

    1973-03-01

    Optimal amounts of demineralized bone matrix possess the ability to coagulate platelet-free heparinized, citrated, and oxalated blood plasmas of guinea pigs. Clotting constituents become denatured in contact with the insoluble coagulant proteins. Quantities in excess of optimal modify plasma so that it does not gel when thrombin is added. The newly described coagulant effects are not restricted to the bone matrix, but are present also in the demineralized matrices of tooth and ivory, and in denatured tendon as well. They are regulated properties that were not demonstrated in mineralized bone or native tendon. The coagulant attributes of bone matrix are consistent with those of electropositive polymers of a specific sort. PMID:4515003

  16. Simulation of Plasma Characteristics for Inductively Coupled Argon Plasma Using Dual-Frequency Antennas

    NASA Astrophysics Data System (ADS)

    Li, Xue-Chun; Sun, Xiao-Yan; Wang, You-Nian

    2014-10-01

    A large-area wafer size is necessary for plasma processing in the micro-electronics industry. However, it is one of the most important issues to obtain uniform plasma over a large-area substrate in addition to high-density plasmas for the plasma processing. Recently, the experimental study on the dual-frequency inductively coupled plasma (ICP) has been reported as a mean of improving the plasma uniformity over the large-area substrate. In this work, we develop a self-consistent method combined with the electromagnetic theory and fluid model to simulate the plasma characteristics for dual-frequency inductively coupled argon plasma. In the model, the ICP source consists of two planar-spiral coils. We investigate the plasma uniformity problem by adjusting the parameters of the two coils, such as the RF current, the position of the coils and the RF frequency ratio. It was found that the uniformity of the ion density over the wafer is improved with dual-frequency antennas comparing with a single-frequency antenna. The plasma uniformity increases when the coils are located farther from the centre of the ICP source. It is consistent with the experimental study. This work was supported by the National Natural Science Foundation of China (No. 11175034, No. 11075029).

  17. Influence of oxygen traces on an atmospheric-pressure radio-frequency capacitive argon plasma discharge

    SciTech Connect

    Li Shouzhe; Wu Qi; Yan Wen; Wang Dezhen; Uhm, Han S.

    2011-10-15

    An atmospheric-pressure capacitive discharge source driven by radio-frequency power supply at 13.56 MHz has been developed experimentally that is capable of producing a homogeneous and cold glow discharge in O{sub 2}/Ar. With respect to the influence of oxygen component when diluted into argon plasma discharge on the discharge characteristics, the measurements of the electrical parameters (impedance, phase angle, resistance, and reactance) are made systematically and the densities of the metastable and resonant state of argon are determined by means of optical emission spectroscopy (OES). It is shown that the admixture of oxygen into argon plasma not only changes the electric characteristics but also alters the optical emission spectra greatly due to strong interaction between the oxygen content and the argon in the plasma environment.

  18. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  19. Spectroscopic Characterization of Post-Cluster Argon Plasmas During the Blast Wave Expansion

    SciTech Connect

    Ching, H,-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Cattolica, R.; Ditmire, T.; Lee, R.W.

    2002-05-30

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 10{sup 17}W/cm{sup 2} deposits {approx} 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II - Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma.

  20. The response of the inductively coupled argon plasma to solvent plasma load: spatially resolved maps of electron density obtained from the intensity of one argon line

    NASA Astrophysics Data System (ADS)

    Weir, D. G. J.; Blades, M. W.

    1994-12-01

    A survey of spatially resolved electron number density ( ne) in the tail cone of the inductively coupled argon plasma (ICAP) is presented: all of the results of the survey have been radially inverted by numerical, asymmetric Abel inversion. The survey extends over the entire volume of the plasma beyond the exit of the ICAP torch; It extends over distances of z = 5-25 mm downstream from the induction coil, and over radial distances of ± 8 mm from the discharge axis. The survey also explores a range of inner argon flow rates ( QIN), solvent plasma load ( Qspl) and r.f. power: moreover, it explores loading by water, methanol and chloroform. Throughout the survey, ne was determined from the intensity of one, optically thin argon line, by a method which assumes that the atomic state distribution function (ASDF) for argon lies close to local thermal equilibrium (LTE). The validity of this assumption is reviewed. Also examined are the discrepancies between ne from this method and ne from Stark broadening measurements. With the error taken into account, the results of the survey reveal how time averaged values of ne in the ICAP respond over an extensive, previously unexplored range of experimental parameters. Moreover, the spatial information lends insight into how the thermal conditions and the transport of energy respond. Overall, the response may be described in terms of energy consumption along the axial channel and thermal pinch within the induction region. The predominating effect depends on the solvent plasma load, the solvent composition, the robustness of the discharge, and the distribution of solvent material over the argon stream.

  1. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  2. Experimental characterization of an argon laminar plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Langlois-Bertrand, Emilie; de Izarra, Charles

    2011-10-01

    This paper deals with a dc laminar pure argon plasma jet operating at atmospheric pressure in ambient air that was experimentally studied in order to obtain temperature and velocity. Plasma jet temperature was evaluated by optical emission spectroscopy and the plasma jet velocity was determined by various methods using a pressure sensor. It is shown that the maximum plasma jet temperature is 15 000 K and the maximum plasma jet velocity is 250 m s-1 at the plasma jet centre. Finally, a study of the ambient air amount entrained into the plasma jet is presented.

  3. Numerical simulation of alumina spraying in argon-helium plasma jet

    NASA Astrophysics Data System (ADS)

    Chang, C. H.

    A numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions.

  4. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas

    NASA Astrophysics Data System (ADS)

    F., Jan; W. Khan, A.; Saeed, A.; Zakaullah, M.

    2013-04-01

    Langmuir probe measurements of radio frequency (RF) magnetic pole enhanced inductively coupled (MaPE-ICP) argon plasma were accomplished to obtain the electron number densities and electron temperatures. The measurements were carried out with a fixed RF frequency of 13.56 MHz in a pressure range of 7.5 mTorr to 75 mTorr at an applied RF power of 10 W and 100 W. These results are compared with a global (volume average) model. The results show good agreement between theoretical and experimental measurements. The electron number density shows an increasing trend with both RF power and pressure while the electron temperature shows decreasing trend as the pressure increases. The difference in the plasma potential and floating potential as a function of electron temperature measured from the electrical probe and that obtained theoretically shows a linear relation with a small difference in the coefficient of proportionality. The intensity of the emission line at 750.4 nm due to 2p1 → 1s2 (Paschen's notation) transition closely follows the variation of ne with RF power and filling gas pressure. Measured electron energy probability function (EEPF) shows that electron occupation changes mostly in the high-energy tail, which highlights close similarity of 750.4 nm argon line to ne.

  5. In situ investigation of silicon surface cleaning and damage by argon electron cyclotron resonance plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Y. Z.; Buaud, P. P.; Wang, Y.; Spanos, L.; Irene, E. A.

    1994-03-01

    An argon electron cyclotron resonance (ECR) plasma process has been optimized to successfully remove oxide films from a silicon surface at elevated temperatures leaving smooth Si surfaces devoid of an amorphized silicon damage layer. Etch rates of over 10 nm/min have been achieved at ion energies below 100 eV. The low ion energy (-50 V dc bias) and high ion fluxes (1×1016 ions/cm2 s) represent a significant improvement from conventional Ar ion sputter cleaning processes. In situ spectroscopic ellipsometry and ex situ atomic force microscopy were used to characterize the surface condition during and after cleaning to establish a 700 °C argon plasma cleaning process for silicon. Real-time single wavelength ellipsometry was used to study the cleaning kinetics, determine the optimal end point, and elucidate a controversy about the level of damage in the argon ECR plasma cleaning process.

  6. Modeling and simulation of ion-filtered inductively coupled plasma using argon plasma

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Wang, Jian; Zhang, Weiwang; Luo, Yi

    2015-03-01

    An ion-filtered inductively coupled plasma (IF-ICP) is proposed to reduce ion bombardment and provide high metastable species density for chemical vapor deposition. Argon plasma, which has simple reaction mechanism, is simulated to show the effects of ion filter. Compared to typical ICP, the maximum density of ions of IF-ICP is lower while that of metastable species is higher. The filter can absorb ions effectively and relatively small amount of metastable species, with the absorption coefficient proportional to its surface area. A proper gap between filter and substrate can achieve more metastable species and less ions on the substrate. The pressure and RF power need to be optimized based on the tradeoff between deposition rate and ion damage. The density of ions on the substrate can be reduced by two orders of magnitude while that of metastable species are maintained in the order of 1017 m-3 under the optimized conditions.

  7. Numerical simulation of atomic nitrogen formation in plasma of glow discharge in nitrogen-argon mixture

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Ryabtsev, A. V.; Didyk, E. G.; Zhovtyansky, V. A.; Nazarenko, V. G.

    2010-10-01

    We consider the problem of determining the content of atomic nitrogen as an active component responsible for the efficiency of metal surface modification in plasma of stationary low-pressure glow discharge in nitrogen-argon mixture (widely used in this technology). The influence of the gas mixture composition on the rate constant of molecular nitrogen dissociation, which determines the atomic nitrogen production, has been calculated, The parameters of plasma have been experimentally determined using the method of double probes. The electron energy distribution function is found by numerically integrating the Boltzmann equation in a two-term approximation for the molecular nitrogen-argon mixture.

  8. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Wang, Yingjun; Ren, Li; Zhao, Lianna; Kuang, Tongchun; Chen, Hao; Qu, Jia

    2008-11-01

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching.

  9. Test of an argon cusp plasma for tin LPP power scaling

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2015-03-01

    Scaling the power of the tin droplet laser-produced-plasma (LPP) extreme ultraviolet (EUV) source to 500W has eluded the industry after a decade of effort. In 2014 we proposed [2] a solution: placing the laser-plasma interaction region within an argon plasma in a magnetic cusp. This would serve to ionize tin atoms and guide them to a large area annular beam dump. We have since demonstrated the feasibility of this approach. We present first results from a full-scale test plasma at power levels relevant to the generation of at least 200W, showing both that the argon cusp plasma is very stable, and that its geometrical properties are ideal for the transport of exhaust power and tin to the beam dump.

  10. Introduction of argon beam coagulation functionality to robotic procedures using the ABC D-Flex probe: equivalency to an existing laparoscopic instrument

    NASA Astrophysics Data System (ADS)

    Merchel, Renée. A.; Barnes, Kelli S.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: The ABC® D-Flex Probe utilizes argon beam coagulation (ABC) technology to achieve hemostasis during minimally invasive surgery. A handle on the probe allows for integration with robotic surgical systems and introduces ABC to the robotic toolbox. To better understand the utility of D-Flex, this study compares the performance of the D-Flex probe to an existing ABC laparoscopic probe through ex vivo tissue analysis. METHODS: Comparisons were performed to determine the effect of four parameters: ABC device, tissue type, activation duration, and distance from tissue. Ten ABC D-Flex probes were used to create 30 burn samples for each comparison. Ex vivo bovine liver and porcine muscle were used as tissue models. The area and depth of each burn was measured using a light microscope. The resulting dimensional data was used to correlate tissue effect with each variable. RESULTS: D-Flex created burns which were smaller in surface area than the laparoscopic probe at all power levels. Additionally, D-Flex achieved thermal penetration levels equivalent to the laparoscopic probe. CONCLUSION: D-Flex implements a small 7F geometry which creates a more focused beam. When used with robotic precision, quick localized superficial hemostasis can be achieved with minimal collateral damage. Additionally, D-Flex achieved equivalent thermal penetration levels at lower power and argon flow-rate settings than the laparoscopic probe.

  11. The susceptibility of plasma coagulation factor XI to nitration and peroxynitrite action.

    PubMed

    Ponczek, Michał Błażej

    2016-10-01

    Coagulation factor XI is present in blood plasma as the zymogen, like other serine proteases of hemostatic system, but as the only coagulation factor forms 140-160kDa homodimers. Its activation is induced by thrombin, and a positive feedback increases the generation of the extra thrombin. Experimental and clinical observations confirm protective roles of factor XI deficiencies in certain types of thromboembolic disorders. Thromboembolism still causes serious problems for modern civilization. Diseases associated with the blood coagulation system are often associated with inflammation and oxidative stress. Peroxynitrite is produced from nitric oxide and superoxide in inflammatory diseases. The aim of the current study is to evaluate effects of nitrative stress triggered by peroxynitrite on coagulation factor XI in human plasma employing biochemical and bioinformatic methods. The amidolytic assay shows increase in factor XI activity triggered by peroxynitrite. Peroxynitrite interferes factor XI by nitration and fragmentation, which is demonstrated by immunoprecipitation followed by western blotting. Nitrated factor XI is even present in control blood plasma. The results suggest possible modifications of factor XI on the molecular level. Computer simulations show tyrosine residues as targets of peroxynitrite action. The modifications induced by peroxynitrite in factor XI might be important in thrombotic disorders. PMID:27268383

  12. Impact of an atmospheric argon plasma jet on a dielectric surface and desorption of organic molecules

    NASA Astrophysics Data System (ADS)

    Damany, Xavier; Pasquiers, Stéphane; Blin-Simiand, Nicole; Bauville, Gérard; Bournonville, Blandine; Fleury, Michel; Jeanney, Pascal; Santos Sousa, João

    2016-08-01

    The propagation of a DC-pulsed argon plasma jet through the surrounding ambient air, and its interaction with an ungrounded glass plate placed on the jet trajectory, was studied by means of fast imaging. The surface plays an important role in the spatio-temporal characteristics of the plasma. Indeed, for an argon jet propagating perpendicularly to the surface, the plasma jet structure changes from filamentary to diffuse when the distance between the nozzle of the capillary tube and the surface is short (≤10 mm). Changing the angle between the capillary tube and the glass plate, and varying the gas flow rate strongly affects the spatial extension of the plasma that develops on the surface. This surface plasma propagates while the plasma in the argon jet is maintained with the same luminous intensity. Finally, this plasma jet shows interesting characteristics for desorption of low volatile organic molecules such as bibenzyl. A maximum removal of bibenzyl is located at the intersection area between the jet axis and the glass surface, and some of the initially deposited molecules are found intact in gas phase. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  13. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  14. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  15. INDUCTIVELY COUPLED ARGON PLASMA AS AN ION SOURCE FOR MASS SPECTROMETRIC DETERMINATION OF TRACE ELEMENTS

    EPA Science Inventory

    Solution aerosols are injected into an inductively coupled argon plasma (ICP) to generate a relatively high number density of positive ions derived from elemental constituents. A small fraction of these ions is extracted through a sampling orifice into a differentially pumped vac...

  16. Modelling of an inductively coupled plasma torch with argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Bahouh, Hanene; Rebiai, Saida; Rochette, David; Vacher, Damien; Dudeck, Michel

    2014-05-01

    A fluid dynamic model is used to simulate the electromagnetic field, fluid flow and heat transfer in an inductively coupled plasma torch working at atmospheric pressure for argon plasma. The numerical simulation is carried out by using the finite element method based on COMSOL software. The two-dimensional profiles of the electric field, temperature, velocity and charged particle densities are demonstrated inside the discharge region. These numerical results are obtained for a fixed flow rate, frequency and electric power.

  17. A cartridge based sensor array platform for multiple coagulation measurements from plasma.

    PubMed

    Cakmak, O; Ermek, E; Kilinc, N; Bulut, S; Baris, I; Kavakli, I H; Yaralioglu, G G; Urey, Hakan

    2015-01-01

    This paper proposes a MEMS-based sensor array enabling multiple clot-time tests for plasma in one disposable microfluidic cartridge. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge. This enables simple and low-cost cartridge designs and avoids reliability problems associated with electrical connections. The cartridge consists of microfluidic channels and MEMS microcantilevers placed in each channel. The microcantilevers are made of electroplated nickel. They are actuated remotely using an external electro-coil and the read-out is also conducted remotely using a laser. The phase difference between the cantilever oscillation and the coil drive is monitored in real time. During coagulation, the viscosity of the blood plasma increases resulting in a change in the phase read-out. The proposed assay was tested on human and control plasma samples for PT and aPTT measurements. PT and aPTT measurements from control plasma samples are comparable with the manufacturer's datasheet and the commercial reference device. The measurement system has an overall 7.28% and 6.33% CV for PT and aPTT, respectively. For further implementation, the microfluidic channels of the cartridge were functionalized for PT and aPTT tests by drying specific reagents in each channel. Since simultaneous PT and aPTT measurements are needed in order to properly evaluate the coagulation system, one of the most prominent features of the proposed assay is enabling parallel measurement of different coagulation parameters. Additionally, the design of the cartridge and the read-out system as well as the obtained reproducible results with 10 μl of the plasma samples suggest an opportunity for a possible point-of-care application. PMID:25353144

  18. Miniaturized Argon Plasma: Neutral Gas Characteristics in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Ashraf, Farahat

    2015-10-01

    Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force (EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.

  19. Comparison of functional aspects of the coagulation cascade in human and sea turtle plasmas.

    PubMed

    Soslau, Gerald; Wallace, Bryan; Vicente, Catherine; Goldenberg, Seth J; Tupis, Todd; Spotila, James; George, Robert; Paladino, Frank; Whitaker, Brent; Violetta, Gary; Piedra, Rotney

    2004-08-01

    Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased

  20. Surface-mediated molecular events in material-induced blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Kaushik

    Coagulation and thrombosis persist as major impediments associated with the use of blood-contacting medical devices. We are investigating the molecular mechanism underlying material-induced blood-plasma coagulation focusing on the role of the surface as a step towards prospective development of improved hemocompatible biomaterials. A classic observation in hematology is that blood/blood-plasma in contact with clean glass surface clots faster than when in contact with many plastic surfaces. The traditional biochemical theory explaining the underlying molecular mechanism suggests that hydrophilic surfaces, like that of glass, are specific activators of the coagulation cascade because of the negatively-charged groups on the surface. Hydrophobic surfaces are poor procoagulants or essentially "benign" because they lack anionic groups. Further, these negatively-charged surfaces are believed to not only activate blood factor XII (FXII), the key protein in contact activation, but also play a cofactor role in the amplification and propagation reactions that ultimately lead to clot formation. In sharp contrast to the traditional theory, our investigations indicate a need for a paradigm shift in the proposed sequence of contact activation events to incorporate the role of protein adsorption at the material surfaces. These studies have lead to the central hypothesis for this work proposing that protein adsorption to hydrophobic surfaces attenuates the contact activation reactions so that poorly-adsorbent hydrophilic surfaces appear to be stronger procoagulants relative to hydrophobic surfaces. Our preliminary studies measuring the plasma coagulation response of activated FXII (FXIIa) on different model surfaces suggested that the material did not play a cofactor role in the processing of this enzyme dose through the coagulation pathway. Therefore, we focused our efforts on studying the mechanism of initial production of enzyme at the procoagulant surface. Calculations for the

  1. Colorimetric assay of blood coagulation factor XIII in plasma.

    PubMed

    Lee, K N; Birckbichler, P J; Patterson, M K

    1988-05-01

    In this new colorimetric assay for Factor XIII in plasma, 5-(biotinamido)pentylamine is used as the amine substrate. Factor XIII, a zymogen, is transformed by thrombin and Ca2+ to active Factor XIIIa, and the incorporation of 5-(biotinamido)pentylamine into N,N-dimethylcasein is used to measure catalytically active Factor XIIIa. The biotinylated enzymatic product is immobilized onto 96-well microtiter plates, complexed with streptavidin-beta-galactosidase, and the absorbance at 405 nm is monitored for production of p-nitrophenol from p-nitrophenyl-beta-D-galactopyranoside. Concentrations of N,N-dimethylcasein, 5-(biotinamido)pentylamine, Ca2+, and thrombin were chosen to allow near-maximum velocity of amine incorporation. A linear relationship was obtained between assay product and plasma volume, from 0.5 to 50 microL of plasma. Results correlated well (r greater than 0.924) with those from the most frequently utilized radiometric filter-paper assay for Factor XIII. The method appears to be ideal for routine diagnostic estimation of Factor XIII in plasma because of its simplicity, its lack of use of radioisotopes, and its potential for assay of large numbers of samples by use of microtiter plates and automated plate readers. PMID:2897256

  2. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    SciTech Connect

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-15

    A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  3. Inactivation of human immunodeficiency virus by gamma radiation and its effect on plasma and coagulation factors

    SciTech Connect

    Hiemstra, H.; Tersmette, M.; Vos, A.H.; Over, J.; van Berkel, M.P.; de Bree, H. )

    1991-01-01

    The inactivation of HIV by gamma-radiation was studied in frozen and liquid plasma; a reduction of the virus titer of 5 to 6 logs was achieved at doses of 5 to 10 Mrad at -80 degrees C and 2.5 Mrad at 15 degrees C. The effect of irradiation on the biologic activity of a number of coagulation factors in plasma and in lyophilized concentrates of factor VIII (FVIII) and prothrombin complex was examined. A recovery of 85 percent of the biologic activity of therapeutic components present in frozen plasma and in lyophilized coagulation factor concentrates was reached at radiation doses as low as 1.5 and 0.5 Mrad, respectively. As derived from the first-order radiation inactivation curves, the radiosensitive target size of HIV was estimated to be 1 to 3 MDa; the target size of FVIII was estimated to be 130 to 160 kDa. Gamma radiation must be disregarded as a method for the sterilization of plasma and plasma-derived products, because of the low reduction of virus infectivity at radiation doses that still give acceptable recovery of biologic activity of plasma components.

  4. Effect of therapeutic plasma exchange on coagulation parameters in patients on warfarin.

    PubMed

    Zantek, Nicole D; Morgan, Shanna; Zantek, Paul F; Mair, David C; Bowman, Robert J; Aysola, Agnes

    2014-04-01

    Therapeutic plasma exchange (TPE) without plasma replacement results in coagulation factor removal. Warfarin decreases the activity of vitamin K dependent coagulation factors. The combined effect of TPE and warfarin on the coagulation system has not been studied. A prospective, observational study was conducted in patients undergoing TPE while on warfarin. One plasma volume TPEs were performed on the COBE Spectra Apheresis System (Terumo BCT, Lakewood, CO) with 5% albumin. International normalized ratio (INR), fibrinogen, and factor II activity were obtained pre and post procedure. Eight patients underwent 121 TPEs that met study criteria with pre and post data. The average pre values were INR 2.09 ± 0.58, fibrinogen 263 ± 76 mg/dl, and factor II 29 ± 16% and the average post values were INR 4.12 ± 1.44, fibrinogen 105 ± 31 mg/dl, and factor II 13 ± 7%. The pre-INR was ≥2.00 for 55% of TPEs. The pre value (Y0 ) predicts the post value (Y) by the following equations Y = -0.54 + 2.21Y0 , Y =12.10 + 0.35Y0, and Y =1.83 + 0.39Y0 for INR, fibrinogen, and factor II respectively. In conclusion, pre procedure laboratory values can predict the post laboratory values for patients on warfarin receiving single plasma volume TPE with albumin replacement. The post-INR is approximately twice the pre-INR. At normal and mildly elevated pre-INR, the effect of TPE on the INR is less marked. A single plasma volume TPE decreases the plasma level by ∼65% for fibrinogen and 60% for factor II. PMID:24000079

  5. XPS Study of Plasma- and Argon Ion-Sputtered Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Kliss, Mark (Technical Monitor)

    1997-01-01

    The similarity of plasma-polymerized tetrafluoroethylene (PPTFE) and the fluoropolymer film deposited by rf (radio frequency) plasma sputtering (SPTFE) of polytetrafluoroethylene (PTFE), noted earlier in the literature, has been reconfirmed. FT-IR (Fourier Transform Infrared), XPS (X ray Photoelectron Spectroscopy) and UV (ultraviolet) spectroscopy has been employed in apparently the first study to involve preparation of PPTFE and SPTFE in the same reactor and under comparable low-power plasma conditions. Most of the work concerned the use of He or Ar as sputtering gas, but some runs were also carried out with the other rare gases Ne, Kr and Xe. The C1s XPS spectra of SPTFE films displayed a relatively higher content of CF2 groups, and yielded higher F/C (fluorine / carbon) ratios, than PPTFE films, while the SPTFE films were somewhat more transparent in the UV than PPTFE. The F/C ratios for SPTFE were essentially independent of the rare gas used for sputtering. Increasing rf power from 10 to 50 W for Xe plasma-sputtering of PTFE resulted in successively lower F/C ratios (1.55 to 1.21), accompanied by sputtering of the glass reactor occurring at 40 W and above. Some limited XPS, FT-IR and UV data are presented on Ar ion-sputtered PTFE.

  6. Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush

    PubMed Central

    Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong

    2010-01-01

    Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184

  7. Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow

    NASA Astrophysics Data System (ADS)

    Sperber, David; Eckel, Hans-Albert; Moessinger, Peter; Fasoulas, Stefanos

    2011-11-01

    Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO2-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocities of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.

  8. Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow

    SciTech Connect

    Sperber, David; Eckel, Hans-Albert; Moessinger, Peter; Fasoulas, Stefanos

    2011-11-10

    Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocities of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.

  9. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  10. Risk assessment of a cold argon plasma jet in respect to its mutagenicity.

    PubMed

    Wende, K; Bekeschus, S; Schmidt, A; Jatsch, L; Hasse, S; Weltmann, K D; Masur, K; von Woedtke, T

    2016-03-01

    Cold atmospheric pressure plasmas represent a favorable option for the treatment of heat sensitive materials and human or animal tissue. Beneficial effects have been documented in a variety of medical conditions, e.g., in the treatment of chronic wounds. It is assumed that the main mechanism of the plasma's efficacy is mediated by a stimulating dissipation of energy via radiation and/or chemical energy. Although no evidence on undesired side effects of a plasma treatment has yet been presented, skepticism toward the safety of the exposure to plasma is present. However, only little data regarding the mutagenic potential of this new treatment option is available. Accordingly, we investigated the mutagenic potential of an argon plasma jet (kinpen) using different testing systems in accordance with ISO norms and multiple cell lines: a HPRT1 mutation assay, a micronucleus formation assay, and a colony formation assay. Moderate plasma treatment up to 180 s did not increase genotoxicity in any assay or cell type investigated. We conclude that treatment with the argon plasma jet kinpen did not display a mutagenic potential under the test conditions applied and may from this perspective be regarded as safe for the use in biomedical applications. PMID:26994493

  11. Modeling of microwave-induced plasma in argon at atmospheric pressure.

    PubMed

    Baeva, M; Bösel, A; Ehlbeck, J; Loffhagen, D

    2012-05-01

    A two-dimensional model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. The model describes in a self-consistent manner the gas flow and heat transfer, the in-coupling of the microwave energy into the plasma, and the reaction kinetics relevant to high-pressure argon plasma including the contribution of molecular ion species. The model provides the gas and electron temperature distributions, the electron, ion, and excited state number densities, and the power deposited into the plasma for given gas flow rate and temperature at the inlet, and input power of the incoming TEM microwave. For flow rate and absorbed microwave power typical for analytical applications (200-400 ml/min and 20 W), the plasma is far from thermodynamic equilibrium. The gas temperature reaches values above 2000 K in the plasma region, while the electron temperature is about 1 eV. The electron density reaches a maximum value of about 4 × 10(21) m(-3). The balance of the charged particles is essentially controlled by the kinetics of the molecular ions. For temperatures above 1200 K, quasineutrality of the plasma is provided by the atomic ions, and below 1200 K the molecular ion density exceeds the atomic ion density and a contraction of the discharge is observed. Comparison with experimental data is presented which demonstrates good quantitative and qualitative agreement. PMID:23004876

  12. Comparison between experiment and simulation for argon inductively coupled plasma

    SciTech Connect

    Gao Fei; Zhao Shuxia; Li Xiaosong; Wang Younian

    2009-11-15

    In order to include the nonlocal characteristics of electrons and investigate the inductively coupled plasma (ICP) resources more completely, we have developed a hybrid Monte Carlo (MC)/fluid hybrid model and calculated the axial and radial distributions of electron density, electron temperature, plasma potential, and electron energy distribution functions (EEDFs) of Ar discharge in a planar ICP. Furthermore, to make the model more practical, we still incorporate the effects of metastable atoms, whose sets of rate coefficients and density are, respectively, calculated through the electron MC part and fluid module. Besides, the corresponding Langmuir probe measurements are used to compare these data to validate the simulated results. Under all the selected discharge powers and pressures, the theoretically simulated and experimentally measured quantity profiles agree reasonably with each other, embodied in the generally identical magnitude ranges and spatial distributions. Furthermore, the interpretations about their detailed differences are given, which are based on the designs of both experimental schematic and model configuration. The analysis implements that the inclusions of electron-electron collision and a neutral density distribution into the hybrid model are likely to improve the comparison between the model predictions and experiment diagnostics. Furthermore, the evolution of plasma parameters and EEDFs with discharge conditions is discussed.

  13. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  14. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  15. Fumonisin mycotoxicosis in broilers: plasma proteins and coagulation modifications.

    PubMed

    Espada, Y; Ruiz de Gopegui, R; Cuadradas, C; Cabañes, F J

    1997-01-01

    The effects of fumonisin B1 (FB1) intoxication in chickens were evaluated in three experiments. Two-day-old broiler chicks were fed a diet containing 10 mg pure FB1/kg feed for 6 days; some chicks were necropsied at this time, and others were allowed to recover for 5 wk before necropsy. In two other experiments, 2-day-old chicks were fed a broiler starter ration prepared with Fusarium moniliforme culture material containing FB1; one group received 30 mg/kg for 2 wk, and another received 300 mg FB1/kg for 8 days. Compared with controls, intoxicated chicks exhibited decreased prothrombin time, increased plasma fibrinogen (not included for the group receiving 30 mg/kg of culture material), and increased antithrombin III activity. Simultaneously decreased serum albumin concentration and increased serum globulins could be observed in groups intoxicated with F. moniliforme culture material containing FB1. The group allowed to recover for 5 wk did not exhibit modifications in hemostasis or serum proteins compared with controls. The results indicate that low doses of pure FB1 (10 mg/kg) and FB1 from F. moniliforme culture material (30 mg/kg) may alter hemostasis and serum proteins in young chicks. PMID:9087322

  16. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    PubMed Central

    2009-01-01

    Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures. PMID:20596290

  17. The Effect of SF6 dilution in an Argon plasma

    NASA Astrophysics Data System (ADS)

    Koirala, Sudip; Gordon, Matt

    2010-02-01

    Plasma etching is widely used in semiconductor industries. There have been extensive studies in the dilution of rare gases; however, limited studies are found in the dilution of electronegative gases. In this work, SF6 content is varied from 5% to 60% in an Ar plasma in a deep reactive ion etching system. A Langmuir probe is used to measure electron temperature (Te), electron density (ne), and electron energy distribution function (eedf). Te decreases monotonically with increasing SF6 at first, and then increases for SF6 content greater than 20%. This increase is attributed to the loss of low energy electrons in attachment and high energy electrons in excitation and ionization. As the content of SF6 is increased above 20%, the dissociation of SF6 increases and most of the low energy electrons are lost in attachment and hence the average electron temperature increases. ne decreases by an order of magnitude as the SF6 dilution is increased from 5% to 60%. eedf shows that the distribution shifts towards high energy with the increase of SF6 content, which is because of the depletion of low energy electrons. )

  18. Laser induced fluorescence of argon ion in plasma presheaths

    SciTech Connect

    Atta Khedr, M.; Hala, A.M.; Oksuz, L.; Hershkowitz, N.

    1999-07-01

    A turnable diode laser system has been used to measure ion velocity distribution functions of ArII in plasma presheaths using laser-induced fluorescence (LIF). The diode laser system can examine the velocity distribution function with marginally greater resolution than the dye laser owing to their smaller line width (0.001 nm). LIF of ArII requires excitation at 668.61 nm. the diode laser is centered at that wavelength with a tuning range of 0.15 nm and the optical amplifier (MOPA) is at 10 nm. LIF measurements of presheaths as a function of pressure (0.5--3 mTorr) were made in a DC hot-filament produced multidipole plasma discharge near a negatively biased plate. The ion velocity has range of 10{sup 3}cm/s--10{sup 5} cm/s for presheaths thickness 0.5 cm--5cm. These measurements are compared with results obtained by using a double sided Langmuir probe (Mach probe) and an emissive probe.

  19. [Spectroscopic investigation of the argon plasma discharge in quartz capillary at atmospheric pressure].

    PubMed

    Huang, Wen-Tong; Li, Shou-Zhe; Guo, Qing-Chao; Zhang, Jia-Liang; Wang, De-Zhen; Ma, Teng-Cai

    2010-05-01

    An arc plasma discharge with a long length of 20 cm was generated in a quartz capillary between two hollow needle electrodes in argon at atmospheric pressure with use of the sinusoidal power supply operating at 45 kHz, which was characterized by a very high electron density. The spectroscopic method of optical emission was employed to diagnose the characteristic parameters of the arc plasma discharge in the quartz capillary. The gas temperature was determined by simulating the OH A-X(0, 0) vibrational band around 300 nm and comparison with measured spectrum by means of optical emission spectroscopy. Furthermore, the electron density was measured by means of Stark broadening of the profile of Hbeta at 486.1 nm. The electron temperature was determined using a Boltzmann plot method. The experiment results show that in the argon arc plasma discharge generated in the quartz capillary at atmospheric pressure, the gas temperature of plasma is about (1 100 +/- 50)K, the electron density at the gas temperature of 1 100 K is approximately 10(14) cm(-3), and the corresponding electron temperature is (14 515 +/- 500)K. This work has accumulated some significant experimental parameters for the treatment of inner surface of large length-to-radius-ratio insulated dielectric tube using plasma, and the results are of great importance to the applications of this type of atmospheric-pressure plasma discharge. PMID:20672593

  20. Plasma pentraxin-3 and coagulation and fibrinolysis variables during acute Puumala hantavirus infection and associated thrombocytopenia.

    PubMed

    Laine, Outi K; Koskela, Sirpa M; Outinen, Tuula K; Joutsi-Korhonen, Lotta; Huhtala, Heini; Vaheri, Antti; Hurme, Mikko A; Jylhävä, Juulia; Mäkelä, Satu M; Mustonen, Jukka T

    2014-09-01

    Thrombocytopenia and altered coagulation characterize all hantavirus infections. To further assess the newly discovered predictive biomarkers of disease severity during acute Puumala virus (PUUV) infection, we studied the associations between them and the variables reflecting coagulation, fibrinolysis and endothelial activation. Nineteen hospital-treated patients with serologically confirmed acute PUUV infection were included. Acutely, plasma levels of pentraxin-3 (PTX3), cell-free DNA (cf-DNA), complement components SC5b-9 and C3 and interleukin-6 (IL-6) were recorded as well as platelet ligands and markers of coagulation and fibrinolysis. High values of plasma PTX3 associated with thrombin formation (prothrombin fragments F1+2; r = 0.46, P = 0.05), consumption of platelet ligand fibrinogen (r = -0.70, P < 0.001) and natural anticoagulants antithrombin (AT) (r = -0.74, P < 0.001), protein C (r = -0.77, P < 0.001) and protein S free antigen (r = -0.81, P < 0.001) and a decreased endothelial marker ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 domain 13) (r = -0.48, P = 0.04). Plasma level of AT associated with C3 (r = 0.76, P < 0.001), IL-6 (r = -0.56, P = 0.01) and cf-DNA (r = -0.47, P = 0.04). High cf-DNA coincided with increased prothrombin fragments F1+2 (r = 0.47, P = 0.04). Low C3 levels reflecting the activation of complement system through the alternative route predicted loss of all natural anticoagulants (for protein C r = 0.53, P = 0.03 and for protein S free antigen r = 0.64, P = 0.004). Variables depicting altered coagulation follow the new predictive biomarkers of disease severity, especially PTX3, in acute PUUV infection. The findings are consistent with the previous observations of these biomarkers also being predictive for low platelet count and underline the cross-talk of inflammation and coagulation systems in acute PUUV infection. PMID:24751477

  1. Investigating the effect of Argon Pressure on DC and High Power Magnetron Plasmas

    NASA Astrophysics Data System (ADS)

    Bernales, Baysha; Bolat, Rustem; Anders, Andre; Slack, Jonathan; PAG Team; EETD Team

    2013-10-01

    Smart Glass is fabricated by depositing thin films of specialized material onto a transparent substrate. When a potential is applied across the surface of the Smart Glass, it changes its optical properties. Direct Current Magnetron Sputtering (DCMS) and High Power Impulse Magnetron Sputtering (HiPIMS) are two methods of PVD that are used to fabricate this material. In previous research, it has been noted that magnetron plasmas have localized ionization zones that rotate clockwise in DCMS and counterclockwise in HiPIMS. Not much is known about what causes the change in rotation. This research seeks to investigate what occurs during the first moments of plasma evolution. Both DC and high power magnetron plasmas were observed as Argon pressure was varied. It was found that pressure had a very pronounced effect on the floating-point potential signal that was received from the probes placed in the plasma. It was found that when a high-pressure jet of Argon was injected into the system, that the rotation pattern of the DC magnetron plasma was disrupted. It was also found that at certain pressures, the voltage signal was less indicative of azimuthal rotation and more indicative of z-direction breathing modes.

  2. First steps towards the reaction kinetics of HMDSO in an atmospheric pressure plasma jet in argon

    NASA Astrophysics Data System (ADS)

    Loffhagen, Detlef; Becker, Markus M.; Foest, Rüdiger; Schäfer, Jan; Sigeneger, Florian

    2014-10-01

    Hexamethyldisiloxane (HMDSO) is a silicon-organic compound which is often used as precursor for thin-film deposition by means of plasma polymerization because of its high deposition rate and low toxicity. To improve the physical understanding of the deposition processes, fundamental investigations have been performed to clarify the plasma-chemical reaction pathways of HMDSO and their effect on the composition and structure of the deposited film. The current contribution represents the main primary and secondary plasma-chemical processes and their reaction products in the effluent region of an argon plasma jet at atmospheric pressure. The importance of the different collision processes of electrons and heavy particles are discussed. Results of numerical modelling of the plasma jet and the Ar-HMDSO reaction kinetics indicate that the fragmentation of HMDSO is mainly initiated by collisions with molecular argon ions, while Penning ionization processes play a minor role for the reaction kinetics in the effluent region of the jet. The work has been supported by the German Research Foundation (DFG) under Grant LO 623/3-1.

  3. Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Becker, M. M.; Iseni, S.; Bansemer, R.; Loffhagen, D.; Reuter, S.; Weltmann, K.-D.

    2015-12-01

    A megahertz-driven plasma jet at atmospheric pressure—the so-called micro-scaled atmospheric pressure plasma jet (μAPPJ)—operating in pure argon has been investigated experimentally and by numerical modelling. To ignite the discharge in argon within the jet geometry, a self-made plasma tuning unit was designed, which additionally enables measurements of the dissipated power in the plasma itself. Discharges in the α-mode up to their transition to the γ-mode were studied experimentally for varying frequencies. It was found that the voltage at the α-γ transition behaves inversely proportional to the applied frequency f and that the corresponding power scales with an f   3/2law. Both these findings agree well with the results of time-dependent, spatially one-dimensional fluid modelling of the discharge behaviour, where the f  3/2 scaling of the α-γ transition power is additionally verified by the established concept of a critical plasma density for sheath breakdown. Furthermore, phase resolved spectroscopy of the optical emission at 750.39 nm as well as at 810.37 nm and 811.53 nm was applied to analyse the excitation dynamics of the discharge at 27 MHz for different applied powers. The increase of the power leads to an additional maximum in the excitation structure of the 750.39 nm line emission at the α-γ transition point, whereas the emission structure around 811 nm does not change qualitatively. According to the fluid modelling results, this differing behaviour originates from the different population mechanisms of the corresponding energy levels of argon.

  4. Ancrod revisited: viscoelastic analyses of the effects of Calloselasma rhodostoma venom on plasma coagulation and fibrinolysis.

    PubMed

    Nielsen, Vance G

    2016-08-01

    Fibrinogen depletion via catalysis by snake venom enzymes as a therapeutic strategy to prevent or treat thrombotic disorders was utilized for over four decades, with ancrod being the quintessential agent. However, ancrod eventually was found to not be of clinical utility in large scale stroke trial, resulting in the eventual discontinuation of the administration of the drug for any indication. It was hypothesized that ancrod, possessing thrombin-like activity, may have unappreciated robust coagulation kinetics. Using thrombelastographic methods, a comparison of equivalent tissue factor initiated thrombin generation and Calloselasma rhodostoma venom (rich in ancrod activity) on plasmatic coagulation kinetics was performed. The venom resulted in thrombi that formed nearly twice as fast compared to thrombin formed clots, and there was no difference in fibrinolytic kinetics initiated by tissue-type plasminogen activator. In plasma containing iron and carbon monoxide modified fibrinogen, which may be found in patients at risk of stroke, the coagulation kinetic differences observed with venom was still more vigorous than that seen with thrombin. These phenomena may provide insight into the clinical failure of ancrod, and may serve as an impetus to revisit the concept of fibrinogen depletion via fibrinogenolytic enzymes, not those with thrombin-like activity. PMID:26905070

  5. Normal and abnormal evolution of argon metastable density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.

  6. Red blood cell coagulation induced by low-temperature plasma treatment.

    PubMed

    Miyamoto, Kenji; Ikehara, Sanae; Takei, Hikaru; Akimoto, Yoshihiro; Sakakita, Hajime; Ishikawa, Kenji; Ueda, Masashi; Ikeda, Jun-Ichiro; Yamagishi, Masahiro; Kim, Jaeho; Yamaguchi, Takashi; Nakanishi, Hayao; Shimizu, Tetsuji; Shimizu, Nobuyuki; Hori, Masaru; Ikehara, Yuzuru

    2016-09-01

    Low-temperature plasma (LTP) treatment promotes blood clot formation by stimulation of the both platelet aggregation and coagulation factors. However, the appearance of a membrane-like structure in clots after the treatment is controversial. Based on our previous report that demonstrated characteristics of the form of coagulation of serum proteins induced by LTP treatment, we sought to determine whether treatment with two plasma instruments, namely BPC-HP1 and PN-110/120TPG, formed clots only from red blood cells (RBCs). LTP treatment with each device formed clots from whole blood, whereas LTP treatment with BPC-HP1 formed clots in phosphate-buffered saline (PBS) containing 2 × 10(9)/mL RBCs. Light microscopic analysis results showed that hemolysis formed clots consisting of materials with membrane-like structures from both whole blood and PBS-suspended RBCs. Moreover, electron microscopic analysis results showed a monotonous material with high electron density in the formed clots, presenting a membrane-like structure. Hemolysis disappeared with the decrease in the current through the targets contacting with the plasma flare and clot formation ceased. Taken together, our results and those of earlier studies present two types of blood clot formation, namely presence or absence of hemolysis capability depending on the current through the targets. PMID:27033148

  7. Study of non-thermal plasma jet with dielectric barrier configuration in nitrogen and argon

    NASA Astrophysics Data System (ADS)

    Choo, C. Y.; Chin, O. H.

    2014-03-01

    Dielectric barrier discharge (DBD) is advantageous in generating non-thermal plasma at atmospheric pressure, as it avoids transition to thermal arc and dispenses with costly vacuum system. It has found useful applications in treating heat-sensitive materials such as plastics and living tissue. In this work, the discharge formed between the Pyrex glass layer and the ground electrode is extruded through a nozzle to form the non-thermal plasma jet. The DBD characteristics were investigated in terms of charge transferred and mean power dissipated per cycle when operated in nitrogen and argon at various flow rates and applied voltages. These characteristics were then correlated to the dimension of the plasma jet. The mean power dissipated in the DBD was below 7 W giving an efficiency of 17 %. The length of the plasma jet was greatly limited to below 1 cm due to the configuration of the DBD system and nozzle.

  8. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  9. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  10. The Radiation Loss of a Cylindrical Methane-Argon Plasma Arc

    NASA Astrophysics Data System (ADS)

    Liani, B.; Benallal, R.; Lemerini, M.

    2010-04-01

    Calculation of the net radiation emitted by a CH4-Ar mixture, in a temperature range of 5,000~30,000 K with the assumption of local thermodynamic equilibrium (LTE), is conducted. Continuum and line emissions are taken into account. The radiative transfer of each line is calculated by means of an escape factor depending on the shape and broadening of the line. Assuming a cylindrical, homogeneous, and isothermal plasma, the net emission coefficient is calculated for different pressures between 1 atm and 10 atm and arc radia of 0 mm to 1 mm. Results show that the argon presence in the CH4-Ar mixture has a significant effect on the total radiation emitted for the temperature above 17,000 K and the results for pure argon agree with those of BAUDER and EVANS.

  11. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-01

    The total energy lost per electron-ion pair lost ɛT is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ɛT is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ɛT from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ɛT from the depleted EEDFs has a value that is similar to the measured ɛT.

  12. Reduction of a collisional-radiative mechanism for argon plasma based on principal component analysis

    SciTech Connect

    Bellemans, A.; Munafò, A.; Magin, T. E.; Degrez, G.; Parente, A.

    2015-06-15

    This article considers the development of reduced chemistry models for argon plasmas using Principal Component Analysis (PCA) based methods. Starting from an electronic specific Collisional-Radiative model, a reduction of the variable set (i.e., mass fractions and temperatures) is proposed by projecting the full set on a reduced basis made up of its principal components. Thus, the flow governing equations are only solved for the principal components. The proposed approach originates from the combustion community, where Manifold Generated Principal Component Analysis (MG-PCA) has been developed as a successful reduction technique. Applications consider ionizing shock waves in argon. The results obtained show that the use of the MG-PCA technique enables for a substantial reduction of the computational time.

  13. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  14. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line. PMID:19277614

  15. Frequency of cell treatment with cold microwave argon plasma is important for the final outcome

    NASA Astrophysics Data System (ADS)

    Sysolyatina, E.; Vasiliev, M.; Kurnaeva, M.; Kornienko, I.; Petrov, O.; Fortov, V.; Gintsburg, A.; Petersen, E.; Ermolaeva, S.

    2016-07-01

    The purpose of this work was to establish the influence of a regime of cold microwave argon plasma treatments on the physiological characteristics of human fibroblasts and keratinocytes. We used three regimes of plasma application: a single treatment, double treatment with a 48 h interval, and daily treatments for 3 d. Cell proliferation after plasma application was quantified in real time, and immunohistochemistry was used to establish the viability of the cells and determine changes in their physiology. It was established that the frequency of cell treatments is important for the outcome. In the samples treated with single plasma application and double plasma applications with a 48 h interval, a 42.6% and 32.0% increase was observed in the number of cells, respectively. In addition, there were no signs of deoxyribonucleic acid breaks immediately after plasma application. In contrast, plasma application increased the accumulation of cells in the active phases of the cell cycle. The activation of proliferation correlated with a decrease in the level of β-galactosidase, a senescence marker. This could be due to cell renovation after plasma application. Daily treatment decreased cell proliferation up to 29.1% in comparison with the control after 3 d.

  16. Contributions of contact activation pathways of coagulation factor XII in plasma.

    PubMed

    Chatterjee, Kaushik; Guo, Zhe; Vogler, Erwin A; Siedlecki, Christopher A

    2009-07-01

    Activation of human blood plasma coagulation by contact with hydrophilic or hydrophobic surfaces (procoagulants) is dominated by kallikrein (Kal)-mediated activation of the blood zymogen FXII (Hageman Factor). Mathematical modeling of prekallikrein (PK)-deficient platelet-poor plasma (d(PK)PPP) and PK-reconstituted d(PK)PPP (Rd(PK)PPP) coagulation shows that autoactivation of FXII (FXII-->[surface]FXII) produces no more than about 25% of the total FXIIa produced by the intrinsic pathway. Autoactivation and reciprocal-activation increase in the same proportion with procoagulant surface energy (water-wettability), whereas total amount of FXIIa produced per-unit-area procoagulant remains roughly constant for any particular procoagulant. These results suggest that procoagulant surfaces initiate the intrinsic cascade by producing a bolus of FXIIa in proportion to surface energy or surface area but play no additional role in subsequent molecular events in the cascade. Results further suggest that reciprocal-activation occurs in proportion to the amount of FXIIa produced by the initiating autoactivation step. PMID:18481791

  17. Functionalization of carbon nanotubes by argon plasma-assisted ultraviolet grafting

    NASA Astrophysics Data System (ADS)

    Yan, Y. H.; Chan-Park, M. B.; Zhou, Q.; Li, C. M.; Yue, C. Y.

    2005-11-01

    We have demonstrated the functionalization of single-wall carbon nanotubes (SWNTs) by argon (Ar) plasma-assisted ultraviolet (UV) grafting of 1-vinylimidazole (VZ). The Ar plasma treatment generates defect sites at the tube ends and sidewalls, which act as the active sites for the subsequent UV grafting of VZ monomer. Atomic force microscopy analyses indicate that the original nanotube bundles exfoliate to individual tubes after the VZ grafting. By control of the deposited energy of Ar plasma treatment (200W) and treatment time (5min), no visible chopping of the functionalized SWNT was observed. This method may be extended to other vinyl monomers and offers another diverse way of sidewall functionalization of SWNT.

  18. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  19. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  20. Ozone-stimulated emission due to atomic oxygen population inversions in an argon microwave plasma torch

    SciTech Connect

    Lukina, N. A.; Sergeichev, K. F.

    2008-06-15

    It is shown that, in a microwave torch discharge in an argon jet injected into an oxygen atmosphere at normal pressure, quasi-resonant energy transfer from metastable argon atoms to molecules of oxygen and ozone generated in the torch shell and, then, to oxygen atoms produced via the dissociation of molecular oxygen and ozone leads to the inverse population of metastable levels of atomic oxygen. As a result, the excited atomic oxygen with population inversions becomes a gain medium for lasing at wavelengths of 844.6 and 777.3 nm (the 3{sup 3}P-3{sup 3}S and 3{sup 5}P-3{sup 5}S transitions). It is shown that an increase in the ozone density is accompanied by an increase in both the lasing efficiency at these wavelength and the emission intensity of the plasma-forming argon at a wavelength of 811.15 nm (the {sup 2}P{sup 0}4s-{sup 2}P{sup 0}4p transition). When the torch operates unstably, the production of singlet oxygen suppresses ozone generation; as a result, the lasing effect at these wavelengths disappears.

  1. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  2. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-01

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron—ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  3. Influence of nanoparticle formation on discharge properties in argon-acetylene capacitively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Wegner, Th.; Hinz, A. M.; Faupel, F.; Strunskus, T.; Kersten, H.; Meichsner, J.

    2016-02-01

    This contribution presents experimental results regarding the influence of nanoparticle formation in capacitively coupled radio frequency (13.56 MHz) argon-acetylene plasmas. The discharge is studied using non-invasive 160 GHz Gaussian beam microwave interferometry and optical emission spectroscopy. Particularly, the temporal behavior of the electron density from microwave interferometry is analyzed and compared with the changing plasma emission and self-bias voltage caused by nanoparticle formation. The periodic particle formation with a cycle duration between 30 s and 140 s starts with an electron density drop over more than one order of magnitude below the detection limit (8 × 1014 m-3). The electron density reduction is the result of electron attachment processes due to negative ions and nanoparticle formation. The onset time constant of nanoparticle formation is five times faster compared to the expulsion of the particles from the plasma due to multi-disperse size distribution. Moreover, the intensity of the argon transition lines increases and implies a rising effective electron temperature. The cycle duration of the particle formation is affected by the total gas flow rate and exhibits an inverse proportionality to the square of the total gas flow rate. The variation in the total gas flow rate influences the force balance, which determines the confinement time of the nanoparticles. As a further result, the cycle duration is dependent on the axial position of the powered electrode, which also corresponds to different distances relative to the fixed optical axis of the microwave interferometer.

  4. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Culver, Cody; Wang, Shicong; Wendt, Amy E.; Radovanov, Svetlana; Persing, Harold

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  5. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    SciTech Connect

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  6. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  7. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  8. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  9. A study of chromic oxide decompostion in an RF argon plasma

    SciTech Connect

    Meubus, P.; Huczko, A.

    1986-06-01

    Vapor-phase thermal decomposition of chromic oxide in an rf argon plasma was studied using a new experimental system. Homogeneous and heterogeneous modes of reaction were compared, the overall process efficiency being substantially higher for the process carried out entirely in the vapor phase. Reaction products were collected along the reactor wall and studied by chemical methods as well as SEM, X-ray, and IR absorption. The collected powder was highly reactive, fine-grained, and of semiamorphous nature, the average particle size being well below 100 nm. Temperature profiles recorded below the coupling coil by spectroscopic methods were typical of an rf plasma, showing maxima slightly exceeding 5000 K, with the presence of off-axis peaks. Local Cr contents and concentration ratio micro (Cr)/micro (Cr/sub 2/0/sub 3/) in the plasma were determined from the deposition data obtained. A diffusion process was assumed for the wall-deposit buildup. The results obtained confirmed the advantages of using plasma vapor-phase systems, these being higher-efficiency processes and more reliable models than those obtained in the case of gas-solid plasma reactors, where solid particles are injected into the plasma. The thermal decomposition conversion of CR/sub 2/O/sub 3/ into Cr was about 8 times higher in the homogeneous gas phase than in the plasma solid phase, all other conditions being equal.

  10. Photoionized argon plasmas induced with intense soft x-ray and extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, Ł.; Fiedorowicz, H.; Skrzeczanowski, W.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Dudzak, R.; Dostal, J.; Krousky, E.; Skala, J.; Ullschmied, J.; Hrebicek, J.; Medrik, T.

    2016-01-01

    In this work, photoionized plasmas were created by irradiation of gaseous argon with soft x-ray (SXR) and extreme ultraviolet (EUV) intense radiation pulses. Two different laser-produced plasma sources, employing a low energy Nd:YAG laser and a high energy iodine laser system (PALS), were used for creation of photoionized plasmas. In both cases the EUV or SXR beam irradiated the Ar stream, injected into a vacuum chamber synchronously with the radiation pulse. Emission spectra, measured for the Ar photoionized plasmas indicated strong differences in ionization degree for plasmas produced using low and high energy systems. In case of the the EUV driving pulses, emission lines corresponding to neutral atoms and singly charged ions were observed. In case of the SXR pulses utilized for the photoionized plasma creation, only Ar V–VIII emission lines were recorded. Additionally, electron density measurements were performed by laser interferometry employing a femtosecond laser system synchronized with the irradiating system. Maximum electron density for the Ar photoionized plasma, induced using the high energy system, reached 1.9 · 1018 cm‑3. Interferometric measurements performed for the moment of maximum intensity of the main laser pulse (t  =  0) revealed no fringe shift. Detection limit for the interferometric measurements was estimated. It allowed to estimate the upper limit for electron density at t  =  0 as 5 · 1016 cm‑3.

  11. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.

    PubMed

    Aleksandrov, N L; Bodrov, S B; Tsarev, M V; Murzanev, A A; Sergeev, Yu A; Malkov, Yu A; Stepanov, A N

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ∼3% O_{2}), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures. PMID:27575227

  12. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  13. Theoretical investigation of thermophysical properties in two-temperature argon-helium thermal plasma

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip; Singh, Gurpreet

    2011-08-15

    The thermophysical properties of argon-helium thermal plasma have been studied in the temperature range from 5000 to 40 000 K at atmospheric pressure in local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions. Two cases of thermal plasma considered are (i) ground state plasma in which all the atoms and ions are assumed to be in the ground state and (ii) excited state plasma in which atoms and ions are distributed over various possible excited states. The influence of electronic excitation and non-equilibrium parameter {theta} = T{sub e}/T{sub h} on thermodynamic properties (composition, degree of ionization, Debye length, enthalpy, and total specific heat) and transport properties (electrical conductivity, electron thermal conductivity, and thermal diffusion ratio) have been studied. Within the framework of Chapman-Enskog method, the higher-order contributions to transport coefficient and their convergence are studied. The influence of different molar compositions of argon-helium plasma mixture on convergence of higher-orders is investigated. Furthermore, the effect of different definitions of Debye length has also been examined for electrical conductivity and it is observed that electrical conductivity with the definition of Debye length (in which only electrons participate in screening) is less than that of the another definition (in which both the electrons and ions participate in screening) and this deviation increases with electron temperature. Finally, the effect of lowering of ionization energy is examined on electron number density, Debye length, and higher-order contribution to electrical conductivity. It is observed that the lowering of the ionization energy affects the electron transport-properties and consequently their higher-order contributions depending upon the value of the non-equilibrium parameter {theta}.

  14. Thermalization of electrons in decaying extreme ultraviolet photons induced low pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Beckers, J.; van der Horst, R. M.; Osorio, E. A.; Kroesen, G. M. W.; Banine, V. Y.

    2016-06-01

    We monitored—in the pressure range: 0.5–15 Pa—the electron temperature in decaying plasmas induced in argon gas by pulsed irradiation with extreme ultraviolet (EUV) photons with wavelengths closely around 13.5 nm. For this purpose, temporal measurements of the space-averaged and electric field weighted electron density after pulsed EUV irradiation are combined with an ambipolar diffusion model of the plasma. Results demonstrate that electrons are thermalized to room temperature before the plasma has fully expanded to the chamber walls for pressures of 3 Pa and higher. At pressures below 3 Pa, the electron temperature was found to be up to 0.1 eV above room temperature which is explained by the fact that plasma expansion is too quick for the electrons to fully thermalize. The comparison between plasma expansion duration towards a surface, plasma decay at a surface and time needed for thermalization and cooling of electrons is essential for designers of EUV lithography tools and EUV sources since the temperature of electrons dictates many fundamental physical processes.

  15. Effect of secondary emission on the argon plasma afterglow with large dust density

    SciTech Connect

    Denysenko, I. B.; Azarenkov, N. A.; Burmaka, G. P.; Stefanović, I.

    2015-02-15

    A zero-dimensional, space-averaged model for argon plasma afterglow with large dust density is developed. In the model, three groups of electrons in the plasma afterglow are assumed: (i) thermal electrons with Maxwellian distribution, (ii) energetic electrons generated by metastable-metastable collisions (metastable pooling), and (iii) secondary electrons generated at collisions of ions with the electrodes, which have sufficiently large negative voltages in the afterglow. The model calculates the time-dependencies for electron densities in plasma afterglow based on experimental decay times for metastable density and electrode bias. The effect of secondary emission on electron density in the afterglow is estimated by varying secondary emission yields. It is found that this effect is less important than metastable pooling. The case of dust-free plasma afterglow is considered also, and it is found that in the afterglow the effect of secondary emission may be more important than metastable pooling. The secondary emission may increase thermal electron density n{sub e} in dust-free and dusty plasma afterglows on a few ten percentages. The calculated time dependencies for n{sub e} in dust-free and dusty plasma afterglows describe well the experimental results.

  16. Two discharge modes in an atmospheric pressure plasma jet array in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Ruan, Chen; Shao, Tao; Zhang, Cheng

    2016-02-01

    In this paper, the generation and discharge modes of 2D atmospheric pressure plasma jet arrays in economic argon feeding gas with a honeycomb configuration is first reported. Two coupling and collimated discharge modes are achieved with the same array structure. The discharge modes are shown to depend on the gas flow rate and center-to-center distances of jets in the array. Stronger plasmas with higher plasma density than single jet can be obtained in coupling mode array at close proximity of jets in the array and small gas flow rate, while plasmas with moderate plasma density and relative large area can be obtained in the collimated mode array at far proximity of jets in the array. The power density and emission spectra from the centered plasma jet for the coupling mode array are both larger than those of the collimated mode. The appearance of the two discharge modes may be due to the hydrodynamic interactions between the seven individual Ar channels emerging from individual tubes with the air surrounding them.

  17. Spectra of heliumlike carbon, aluminium and argon under strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Sil, A. N.; Anton, J.; Fritzsche, S.; Mukherjee, P. K.; Fricke, B.

    2009-12-01

    Spectral line positions for the highly stripped helium like carbon, aluminium and argon embedded in intense plasma environments have been calculated theoretically to compare with the existing data available from laser plasma experiments. The changes in the ionization potentials for such ions have been determined and the excitation energies, oscillator strengths and transition probabilities for the transitions 1s2 1S → 1snp 1P (n=2-5) have been evaluated for the diagnostic determination of such plasmas. The ion sphere (IS) model was used for estimating the effect of strongly coupled plasma on the ions within the non-relativistic as well as the relativistic framework. Time dependent perturbation theory has been applied for obtaining the linear response properties of the ions in the non-relativistic approximation. The effects of the plasma environment on such properties of the ions under the Debye screening model with suitable cut off radii have also been considered for comparing the data with those obtained from the IS model of the plasma.

  18. Atomic data generation and collisional radiative modeling of argon II, argon III, and neon I for laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Munoz Burgos, Jorge Manuel

    introduce RF power up to 2 kWatt. Two RF compensated Langmuir probes are used to measure T e and N e . In a series of experiment Ar II, Ar III, and Ne transitions are monitored as a function of T e , while Ne is kept nearly constant. Observations revealed that T e is by far the most significant parameter affecting the emission rate coefficients, thus confirming our predictions. The spectroscopy measurements are compared with those from our spectral modeling which in turn help us to compare the effectiveness of the new atomic data calculations with those from other calculations. We performed a new R -Matrix calculation for Ar 2+ . Emission from Ar 2+ is seen in planetary nebulae, in H II regions, and from laboratory plasmas. Our calculation improved upon existing electron-impact excitation data for the 3p 4 configuration of Ar 2+ and calculated new data for the excited levels. Electron-impact excitation collision strengths were calculated using the R - Matrix intermediate-coupling (IC) frame-transformation method and the R -Matrix Breit-Pauli method. Excitation cross-sections are calculated between all levels of the configurations 3s 2 3p 4 , 3s 3p 5 , 3p 6 , 3p 5 3d, and 3s 2 3p 3 nl (3d <= nl <= 5s). Maxwellian effective collision strengths are generated from the collision strength data. Good agreement is found in the collision strengths calculated using the two R -Matrix methods. The effects of the new data on line ratio diagnostics were studied. The collision strengths are compared with literature values for transitions within the 3s 2 3p 4 configuration. The new data has a small effect on T e values obtained from the I (l7135Å + l7751Å)/ I (l5192Å) line ratio, and a larger effect on the N e values obtained from the I (l7135Å)/ I (l9m m ) line ratio. The final effective collision strength data is archived online. Neon as well as Argon is a species of current interest in fusion TOKAMAK studies. It is used for radiative cooling of the divertor region and for disruption

  19. Atomic data generation and collisional radiative modeling of argon II, argon III, and neon I for laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Munoz Burgos, Jorge Manuel

    introduce RF power up to 2 kWatt. Two RF compensated Langmuir probes are used to measure T e and N e . In a series of experiment Ar II, Ar III, and Ne transitions are monitored as a function of T e , while Ne is kept nearly constant. Observations revealed that T e is by far the most significant parameter affecting the emission rate coefficients, thus confirming our predictions. The spectroscopy measurements are compared with those from our spectral modeling which in turn help us to compare the effectiveness of the new atomic data calculations with those from other calculations. We performed a new R -Matrix calculation for Ar 2+ . Emission from Ar 2+ is seen in planetary nebulae, in H II regions, and from laboratory plasmas. Our calculation improved upon existing electron-impact excitation data for the 3p 4 configuration of Ar 2+ and calculated new data for the excited levels. Electron-impact excitation collision strengths were calculated using the R - Matrix intermediate-coupling (IC) frame-transformation method and the R -Matrix Breit-Pauli method. Excitation cross-sections are calculated between all levels of the configurations 3s 2 3p 4 , 3s 3p 5 , 3p 6 , 3p 5 3d, and 3s 2 3p 3 nl (3d <= nl <= 5s). Maxwellian effective collision strengths are generated from the collision strength data. Good agreement is found in the collision strengths calculated using the two R -Matrix methods. The effects of the new data on line ratio diagnostics were studied. The collision strengths are compared with literature values for transitions within the 3s 2 3p 4 configuration. The new data has a small effect on T e values obtained from the I (l7135Å + l7751Å)/ I (l5192Å) line ratio, and a larger effect on the N e values obtained from the I (l7135Å)/ I (l9m m ) line ratio. The final effective collision strength data is archived online. Neon as well as Argon is a species of current interest in fusion TOKAMAK studies. It is used for radiative cooling of the divertor region and for disruption

  20. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    SciTech Connect

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  1. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    SciTech Connect

    Saikia, P. Goswami, K. S.; Saikia, B. K.

    2014-03-15

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  2. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Goswami, K. S.; Saikia, B. K.

    2014-03-01

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar+ ion density while a reverse trend was observed for ArH+ and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  3. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  4. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    NASA Technical Reports Server (NTRS)

    Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.

    1989-01-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.

  5. Energy loss of argon in a laser-generated carbon plasma

    SciTech Connect

    Frank, A.; Harres, K.; Hoffmann, D. H. H.; Knobloch-Maas, R.; Nuernberg, F.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schollmeier, M.; Schumacher, D.; Schuetrumpf, J.; Roth, M.; Blazevic, A.; Hessling, T.; Grande, P. L.; Kuznetsov, P. G.; Vatulin, V. V.; Vinokurov, O. A.; Schiwietz, G.

    2010-02-15

    The experimental data presented in this paper address the energy loss determination for argon at 4 MeV/u projectile energy in laser-generated carbon plasma covering a huge parameter range in density and temperature. Furthermore, a consistent theoretical description of the projectile charge state evolution via a Monte Carlo code is combined with an improved version of the CasP code that allows us to calculate the contributions to the stopping power of bound and free electrons for each projectile charge state. This approach gets rid of any effective charge description of the stopping power. Comparison of experimental data and theoretical results allows us to judge the influence of different plasma parameters.

  6. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    SciTech Connect

    Barbi, E.; Mahan, J.R.; O'brien, W.F.; Wagner, T.C.

    1989-04-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated. 10 references.

  7. Measuring the electron density, temperature, and electronegativity in electron beam-generated plasmas produced in argon/SF6 mixtures

    NASA Astrophysics Data System (ADS)

    Boris, D. R.; Fernsler, R. F.; Walton, S. G.

    2015-04-01

    This paper presents measurements of electron density (ne0), electron temperature (Te), and electronegativity (α) in electron beam-generated plasmas produced in mixtures of argon and SF6 using Langmuir probes and plasma resonance spectroscopy. Langmuir probe measurements are analyzed using a model capable of handling multi-component plasmas with both positive and negative ions. Verification of the model is provided through plasma frequency resonance measurements of ne0. The results suggest a simple approach to ascertaining α in negative-ion-containing plasmas using Langmuir probes alone. In addition, modest amounts of SF6 are shown to produce sharp increases in both Te and α in electron beam generated plasmas.

  8. [The Characteristic Research of ·OH Induced by Water on an Argon Plasma Jet].

    PubMed

    Liu, Kun; Liao, Hua; Zheng, Pei-chao; Wang, Chen-ying; Liu, Hong-di; Danil, Dobrynin

    2015-07-01

    ·OH plays a crucial role in many fields, having aroused wide public concern in the world. Atmospheric Pressure Plasma Jet, which can be achieved by portable device due to working without the vacuum environment, has the advantages of high concentration of reactive species, high electron temperature and low gas temperature. It has become an important research topic in the field of gas discharge with a strong prospect. Especially, how to induce plasma jet to produce ·OH has become a new hotpot in the field of low-temperature plasma. It has been reported that mass ·OH can be induced successfully when water vapor is added to the working gas, but it will be unstable when the concentrate of water reaches a certain degree. Thus, a device of argon plasma jet with a Ring-to-Ring Electrode Configuration has been designed to interact with water in the surrounding air to generate ·OH under atmospheric pressure. In order to increase the production of ·OH, ultrasonic atomizing device is introduced to promote water concentration around the plasma plume. The generating rule of OH(A2J) induced by water has been extensively studied under different voltages and flow rate. ·OH output induced by the plasma has been tested by emission spectrometry, and at the meanwhile, Ar atomic spectral lines at 810.41 and 811.48 nm are also recorded in order to calculate the electron temperature in argon plasma plume. The results show that the water surrounding the plasma plume can be induced to produce ·OH, and OH(A2 ∑+) output increases with the electrode voltage rising from 20 to 28 kV. When the flow rate increases from 100 to 200 L x h(-1), the OH(A2∑+) output increases, but from 200 to 600 L x h(-1), it decreases. The production rules of OH(A2∑+) is the same as that of electron temperature. Therefore, the presumption is proved that ·OH output mainly affected by electron temperature. PMID:26717727

  9. Laser scattering diagnostics of an argon atmospheric-pressure plasma jet in contact with vaporized water

    NASA Astrophysics Data System (ADS)

    Seo, B. H.; Kim, J. H.; You, S. J.; Seong, D. J.

    2015-12-01

    The radial profiles of the electron density, electron temperature, and molecular rotational temperature are investigated in an argon atmospheric-pressure plasma jet in contact with vaporized water, which is driven by a 13.56 MHz radio frequency by means of the Thomson and Raman laser scattering methods. There is a distinct difference in the radial profiles of the plasma parameters between plasmas in contact with water and those without water contact. In the case of plasmas without vaporized water contact, all the parameters have a single-peak distribution with maximum values at the center of the discharge. In the case of plasmas in contact with vaporized water, all parameters have double-peak distributions; a neighboring peak appears beside the main peak. The new peak may have originated from the ripple of the water surface, which works as a cathode, and the peak of the ripple offers a sharp curvature point, playing the role of a pin. Our experimental results and the underlying physics are described in detail.

  10. Comparison between modeled and experimental emission rates in ASTRAL argon plasmas.

    NASA Astrophysics Data System (ADS)

    Munoz, J.; Boivin, R.; Gardner, A.; Kamar, O.; Loch, S.; Ballance, C.

    2007-11-01

    Argon emission rate coefficients are measured in the ASTRAL helicon plasma source using a 0.33 m scanning monochromator and a CCD camera. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 - 10^13 cm-3 and Te = 2 - 10 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A rf compensated Langmuir probe is used to measure Te and ne. In this experiment Ar I, Ar II and Ar III transitions are monitored as a function of Te while ne is kept constant. Thus, experimental emission rates are obtained as a function of Te and compared to theoretical predictions. Using the ADAS suite of codes, we present spectral modeling of Ar plasmas produced in the ASTRAL helicon plasma source. Recent R-matrix electron-impact excitation data are combined with a new R-matrix calculation that includes pseudo-states contributions. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. Good to excellent agreement has been obtained by including Te and ne profiles in the modeling. The experiment-theory comparison confirms that Te is the dominant parameters in determining the emission rate coefficients in these plasmas.

  11. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    SciTech Connect

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  12. Two-dimensional profile measurement of plasma parameters in radio frequency-driven argon atmospheric pressure plasma jet

    SciTech Connect

    Seo, B. H.; Kim, J. H.; Kim, D. W.; You, S. J.

    2015-09-15

    The two-dimensional profiles of the electron density, electron temperature, neutral translational temperature, and molecular rotational temperature are investigated in an argon atmospheric pressure plasma jet, which is driven by the radio frequency of 13.56 MHz by means of the laser scattering methods of Thomson, Rayleigh, and Raman. All measured parameters have maximum values at the center of the discharge and decrease toward the plasma edge. The results for the electron temperature profile are contrary to the results for the microwave-driven plasma. From our experimental results, the profiles of the plasma parameters arise from the radial contraction of plasmas and the time averaged profile of the electric field, which is obtained by a microwave simulation performed under identical conditions to the plasma jet. In the case of the neutral temperature, a higher translational temperature than the rotational temperature is measured, and its discrepancy is tentatively explained in terms of the low ion-neutral charge exchange rate and the additional degrees of freedom of the molecules. The description of our experimental results and the underlying physics are addressed in detail.

  13. Simulation of DBD plasma actuators, and nanoparticle-plasma interactions in argon-hydrogen CCP RF discharges

    NASA Astrophysics Data System (ADS)

    Mamunuru, Meenakshi

    The focus of this work is modeling and simulation of low temperature plasma discharges (LTPs). The first part of the thesis consists of the study of dielectric barrier (DBD) plasma actuators. Use of DBD plasma actuators on airfoil surfaces is a promising method for increasing airfoil efficiency. Actuators produce a surface discharge that causes time averaged thrust in the neutral gas. The thrust modifies the boundary layer properties of the flow and prevents the occurrence of separation bubbles. In simulating the working of an actuator, the focus is on the spatial characteristics of the thrust produced by the discharge over very short time and space scales. The results provide an understanding of the causes of thrust, and the basic principles behind the actuator operation. The second part of this work focusses on low pressure plasma discharges used for silicon nanoparticle synthesis. When reactive semiconductor precursor gases are passed through capacitively coupled plasma (CCP) radio frequency (RF) reactors, nano sized particles are formed. When the reactors are operated at high enough powers, a very high fraction of the nanoparticles are crystallized in the chamber. Nanoparticle crystallization in plasma is a very complex process and not yet fully understood. It can be inferred from experiments that bulk and surface processes initiated due to energetic ion impaction of the nanoparticles are responsible for reordering of silicon atoms, causing crystallization. Therefore, study of plasma-particle interactions is the first step towards understanding how particles are crystallized. The specific focus of this work is to investigate the experimental evidence that hydrogen gas presence in argon discharges used for silicon nanocrystal synthesis, leads to a superior quality of nanocrystals. Influence of hydrogen gas on plasma composition and discharge characteristics is studied. Via Monte Carlo simulation, distribution of ion energy impacting particles surface is studied

  14. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter

  15. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  16. The influence of the EUV spectrum on plasma induced by EUV radiation in argon and hydrogen gas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Osorio, E. A.; Banine, V. Y.; Beckers, J.

    2016-02-01

    Plasmas induced by EUV radiation are scarcely investigated, although they are unique since they are created without any discharge. These plasmas are also of interest from an applicational point of view, since they are related to the lifetime of optics in EUV lithography tools. In order to assess this impact, it is essential to characterize and understand EUV-induced plasma. In this contribution the influence of the background gas (argon and hydrogen) in the lithography tool and the spectrum of the illumination source on the electron density of EUV-induced plasma is investigated using microwave cavity resonance spectroscopy. The experimental results showed that out-of-band radiation (>20 nm) is the main contributor to EUV-induced plasma in both argon and hydrogen. In hydrogen, this contribution is relatively more important than in argon due to the stronger wavelength dependence of the photoionization cross section of hydrogen than of argon. Furthermore, the production of electrons by out-of-band radiation lasts longer than the production by in-band radiation (10-20 nm) due to the longer temporal width of out-of-band radiation. Finally, the obtained results correspond reasonably well with estimates from a simplified absorption model.

  17. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    PubMed

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined. PMID:25184109

  18. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study.

    PubMed

    Canullo, L; Genova, T; Tallarico, M; Gautier, G; Mussano, F; Botticelli, D

    2016-05-01

    The aim of this in vitro study was to evaluate the early cell response and protein adsorption elicited by the argon plasma treatment of different commercially available titanium surfaces via a chair-side device. Sterile disks made of grade 4 titanium (n= 450, 4-mm diameter) with 3 surface topographies (machined, plasma sprayed, and zirconia blasted and acid etched) were allocated to receive 4 testing treatments (2% and 10% protein adsorption and cell adhesion with MC3T3-E1 and MG-63). Furthermore, the specimens were divided to undergo 1) argon plasma treatment (10 W, 1 bar for 12 min) in a plasma reactor, 2) ultraviolet (UV) light treatment for 2 h (positive control group), or 3) no treatment (control group). Pretreatment surface analyses based on a scanning electron microscope and profilometer images were also performed. Profilometric analysis demonstrated that the evaluated specimens perfectly suit the standard parameters. The use of argon plasma was capable of affecting the quantity of proteins adsorbed on the different surfaces, notwithstanding their roughness or topographic features at a low fetal bovine serum concentration (2%). UV light treatment for 2 h attained similar results. Moreover, both the plasma of argon and the UV light demonstrated a significant increase in the number of osteoblasts adherent at 10 min in all tested surfaces. Within its limitations, this in vitro study highlights the potential biological benefits of treating implant surfaces with plasma of argon or UV, irrespective of the roughness of the titanium surface. However, in vivo experiments are needed to confirm these preliminary data and settle the rationale of a treatment that might be clinically relevant in case of bone-reparative deficiencies. PMID:26848069

  19. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-01

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 1020 m-3 and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 1019 m-3. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of the discharge. In the steady state phase

  20. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    SciTech Connect

    Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-14

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of

  1. Laser light scattering from silicon particles generated in an argon diluted silane plasma

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Bilik, N.; Kortshagen, U. R.; Aydil, E. S.

    2016-03-01

    We conducted laser light scattering (LLS) measurements in a 13.56 MHz capacitively coupled dusty plasma maintained in silane and argon to study the spatial distribution of silicon nanoparticles and nanoparticle agglomerates. Specifically, we focused on the temporal evolution of their spatial distribution in the plasma as a function of pressure and power. We observed three distinct types of temporal evolution behavior of the nanoparticle dust cloud in the plasma and classified these into three regimes based on pressure and power. Each regime features a distinct pattern in laser light scattering measurements. At low pressures (∼80–100 mTorr) and high powers (∼40–60 W) we observed periodically repeating expansions and contractions of a continuous dust cloud for the first time. Dust voids, which have been reported before, were also observed at high pressures (∼100–150 mTorr) and low powers (∼20–40 W) in the center of the plasma. A mechanism is proposed to explain the observed dynamics of the nanoparticles. The balance between the ion drag force and electrostatic forces and their dependence on particle size are hypothesized to be the dominant factors that determine the nanoparticle cloud dynamics.

  2. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    SciTech Connect

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  3. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    NASA Astrophysics Data System (ADS)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-01

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  4. Effect of dielectric wall temperature on plasma plume in an argon atmospheric pressure discharge

    SciTech Connect

    Song, Jian; Huo, Yuxin; Wang, Youyin; Yu, Daren; Tang, Jingfeng; Wei, Liqiu

    2014-10-15

    In this letter, the effect of the dielectric wall temperature on the length and volume of an atmospheric pressure plasma jet (APPJ) is investigated using a single-electrode configuration driven with an AC power supply. To distinguish the APPJ status from the argon flow rate, the three modes, laminar, transition, and turbulent, are separated. When the dielectric wall is heated, the APPJ length and volume are enhanced. Also, the transition regions remarkably expand over a large range of flow rates. The results indicate that different factors contribute to the expansion of the transition region. The increase in the radial and axial velocities is the main cause of the expansion of the transition region to the low-velocity region. The expansion to the high-velocity region is dominantly induced by a change in the viscosity.

  5. Application of a hybrid collisional radiative model to recombining argon plasmas

    NASA Astrophysics Data System (ADS)

    Benoy, D. A.; van der Mullen, J. A. M.; van de Sanden, M. C. M.; van der Sijde, B.; Schram, D. C.

    1993-02-01

    A collisional radiative model, in which a hybrid cut-off technique is used, is applied to recombining plasmas to study the atomic state distribution (ASDF) and the recombination coefficient. Computations of the ASDF using semi-empirical rate coefficients of Vriens and Smeets (V-S) and Drawin (D) are compared with experimental values measured at various positions in a free expanding argon arc jet. Apart from the shock position, where the calculated results are too low, the model calculations are higher than the experimental results. The volumetric recombination coefficient has a Te exp -4 and a Te exp -4.8 dependence when semiempirical rate coefficients of, respectively, V-S and D are used. The differences between the models based on the rate coefficients of V-S and D indicate that the recombination flow is sensitive to the low temperature behavior of the rate coefficients.

  6. Ionization in inductively coupled argon plasmas studied by optical emission spectroscopy

    SciTech Connect

    Lee, Young-Kwang; Chung, Chin-Wook

    2011-01-01

    Contribution of stepwise ionization to total ionization was experimentally investigated in low-pressure inductively coupled argon plasmas. In the pressure range 3-50 mTorr, optical emission spectroscopy was employed to determine metastable fractions (metastable density relative to ground state density) by measuring the emission intensity of selected lines. The measured metastable fractions were in good agreement with the calculation, showing a dependence on the discharge pressure. The rate of stepwise ionization was estimated from the excited level densities (measurements and model predictions) and their ionization rate coefficients. It is observed that at relatively low discharge pressures (<10 mTorr) the ionization is mainly provided by the direct ionization, whereas at higher pressure the stepwise ionization is predominant with increasing absorbed power.

  7. Exploring the electron density in plasmas induced by extreme ultraviolet radiation in argon

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-07-01

    The new generation of lithography tools use high energy EUV radiation which ionizes the present background gas due to photoionization. To predict and understand the long term impact on the highly delicate mirrors, it is essential to characterize these kinds of EUV-induced plasmas. We measured the electron density evolution in argon gas during and just after irradiation by a short pulse of EUV light at 13.5 nm by applying microwave cavity resonance spectroscopy. Dependencies on EUV pulse energy and gas pressure have been explored over a range relevant for industrial applications. Our experimental results show that the maximum reached electron density depends linearly on pulse energy. A quadratic dependence caused by photoionization and subsequent electron impact ionization by free electrons is found from experiments where the gas pressure is varied. This is demonstrated by our theoretical estimates presented in this manuscript as well.

  8. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  9. Time- and space-resolved spectroscopic characterization of a laser carbon plasma plume in an argon background

    NASA Astrophysics Data System (ADS)

    Ruiz, H. M.; Guzmán, F.; Favre, M.; Bhuyan, H.; Chuaqui, H.; Wyndham, E. S.

    2012-06-01

    We present time- and space-resolved spectroscopic observations of a laser-produced carbon plasma, in an argon background. An Nd : YAG laser pulse, 370 mJ, 3.5 ns, at 1.06 µm, with a fluence of 6.9 J cm-2, is used to produce a plasma from a solid graphite target in a 0.5 to 415 mTorr argon background. The spectral emission in the visible is recorded with 15 ns time resolution. We use 20 ns time resolution plasma imaging, filtered at characteristic carbon species emission wavelengths, to study the dynamics of the expanding plasma. The carbon plasma emission is found to evolve from the characteristic of single ionized carbon, to a more complex one, where C2 and C3 molecular bands dominate. Several plasma fronts, with either ionic or molecular composition, are seen to detach from the laser target plasma. The temporal and spatial features of the molecular carbon species evolution are found to be dependent on the actual argon background pressure.

  10. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  11. ANALYSIS OF A WASTEWATER FOR SEVEN PRIORITY POLLUTANT ELEMENTS BY D.C. ARGON PLASMA EMISSION SPECTROSCOPY

    EPA Science Inventory

    This limited project was conducted to determine the usefulness of the D.C. argon plasma for the analysis of wastewater. Seven priority pollutant elements, arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), and thallium (Tl), were selected for use i...

  12. Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet

    SciTech Connect

    Srivastava, Nimisha; Wang Chuji

    2011-09-01

    Water vapor was added to the feeding gas of a continuous atmospheric argon (Ar) microwave plasma jet to study its influence on plasma shape, plasma gas temperature, and OH radical concentrations. The plasma jet was created by a 2.45 GHz microwave plasma source operating at constant power of 104 W with H{sub 2}O-Ar mixture flow rate of 1.7 standard liter per minute (slm). With an increase in the H{sub 2}O/Ar ratio from 0.0 to 1.9%, the plasma jet column length decreased from 11 mm to 4 mm, and the plasma jet became unstable when the ratio was higher than 1.9%; elevation of plasma gas temperature up to 330 K was observed in the plasma temperature range of 420-910 K. Optical emission spectroscopy showed that the dominant plasma emissions changed from N{sub 2} in the pure Ar plasma jet to OH with the addition of water vapor, and simulations of emission spectra suggested non-Boltzmann distribution of the rotational levels in the OH A-state (v'=0). Spatially resolved absolute OH number densities along the plasma jet axis were measured using UV cavity ringdown spectroscopy of the OH (A-X) (0-0) band in the H{sub 2}O/Ar ratio range of 0.0-1.9%. The highest OH number density is consistently located in the vicinity of the plasma jet tip, regardless of the H{sub 2}O/Ar ratio. OH number density in the post-tip region follows approximately an exponential decay along the jet axis with the fastest decay constant of 3.0 mm in the H{sub 2}O/Ar ratio of 1.5%. Given the low gas temperature of 420-910 K and low electron temperature of 0.5-5 eV along the jet axis, formation of the OH radical is predominantly due to electron impact induced dissociation of H{sub 2}O and dissociative recombination of H{sub 2}O{sup +} resulting from the Penning ionization process.

  13. Investigation of magnetic-pole-enhanced inductively coupled nitrogen-argon plasmas

    NASA Astrophysics Data System (ADS)

    Jan, F.; Khan, A. W.; Saeed, A.; Zakaullah, M.

    2012-09-01

    This article presented the features of the mixed mode and H mode in magnetic pole enhanced, inductively coupled Ar-N2 plasmas using RF-compensated Langmuir probe measurements. To fully characterize plasma parameters and electron energy probability functions (EEPFs), the gas pressure and argon content were varied. It was observed that with increasing the nitrogen content and gas pressure, the critical RF power to sustain H mode increases; this increase was more prominent for pure nitrogen discharge at higher pressure. The electron number density (ne) shows increasing trend with increasing RF power, while at higher gas pressures, the electron number density decreases at fixed RF power. Mostly, the EEPFs show a Maxwellian distribution even at low RF power (for higher argon content in the discharge) and at moderate RF power (for higher or pure nitrogen content in the discharge) for pressures of 15-60 mTorr. With increasing the nitrogen content in the mixture, the low energy part of the EEPF is more Druyvesteyn with a distorted high energy tail at low RF power. At fixed RF power, the slope of EEPF changes sharply with increasing pressure. It was observed that in hybrid mode, the EEPF at higher gas pressure (75 mTorr) in a pure nitrogen discharge shows a flat hole near the average electron energy of 3 eV and changes to Maxwellian distribution in H mode. The skin depth versus RF power shows that the skin depth is smaller than the critical dimension of the chamber, regardless of the gas type and the gas pressure.

  14. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    SciTech Connect

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  15. Laboratory experiments in the argon plasma perturbed by injections of the electronegative gases

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng; Zhang, Zhong-kai

    2016-07-01

    In this study, laboratory observations of the perturbations of the magnetic field are reported due to the injection of attachment chemicals (CF4, SF6, and CO2) into argon plasmas. Besides the well-known electron density reduction, we also observed magnetic field perturbation in the experiment. The measured induced voltage B ˙ , which is taken as a proxy of the time-changing electromagnetic field, fluctuates in the boundary layer between the ambient plasmas and negative ions plasmas. Perturbations of the magnetic field were investigated by changing the ambient pressure and ratio of attachment chemicals. The measured B ˙ keeps increasing in these lower pressures; but it no longer increases as the ambient pressure higher than a threshold, e.g., for CF4, SF6, and CO2, the transition pressure is 6Pa, 5Pa and 4Pa, respectively. The magnitude of the B ˙ increase with the change of the ratio of release flow until at higher ratios, e.g., 40%. We transformed these time-sampled data into the frequency domain and found coherent modes with fundamental frequencies lying in the lower hybrid range. In addition, these coherent frequencies show a frequency drift with the increase of the contents of the negative ions. These modes were suggested as the magnetic component of electron-ion hybrid mode. This work has an important application in the study of artificially-created ionospheric depletion which is usually generated by releasing of attachment chemicals in the upper atmosphere.

  16. Characterization of self-assembled silver pattern forming in argon and ammonia mixed atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kihara, Naoya; Blanquet, Ella; Hiraoka, Yu; Sakai, Osamu

    2015-09-01

    Self-assembly fractal-like silver pattern was observed when the silver nitrate solution was dried with the gas flow of argon and ammonia mixed atmospheric plasma. This process can generate hydrazine, which is a powerful reductive agent, and silver particles are deposited from silver nitrate self-assembly and form fractal-like pattern in sub- μm order. This pattern shows abnormal optical response, so our self-assembly plasma process will be likely to bring a good method to make optical metamaterials because of its simplicity. In addition, we proposed that this process is applicable for widely sensitive metamaterials process, since we made sub- μm and several ten micrometers mingled microstructure through the plasma process with the use of micro particles. We diagnosed the characteristics of this typical pattern by Fourier transform infrared spectroscopy and numerical simulation, and confirmed that the pattern was widely sensitive from mid-infrared to far-infrared region. We aim at controlling the typical response phenomena and making widely sensitive optical metamaterials with changing deposition condition.

  17. Effects of argon dilution on the translational and rotational temperatures of SiH in silane and disilane plasmas.

    PubMed

    Zhou, Jie; Zhang, Jianming; Fisher, Ellen R

    2005-11-24

    The effects of argon dilution on the translational and rotational temperatures of SiH in both silane and disilane plasmas have been investigated using the imaging of radicals interacting with surfaces (IRIS) technique. The average rotational temperature of SiH determined from the SiH excitation spectra is approximately 500 K in both SiH(4)/Ar and Si(2)H(6)/Ar plasmas, with no obvious dependence on the fraction of argon dilution. Modeling of kinetic data yields average SiH translational temperatures of approximately 1000 K, with no dependence on the fraction of argon in the SiH(4)/Ar plasmas within the studied range. In the Si(2)H(6)/Ar plasmas, however, the translational temperature decreases from approximately 1000 to approximately 550 K as the Ar fraction in the plasma increases. Thus, at the highest Ar fractions, the translational and rotational temperatures are nearly identical, indicating that the SiH radicals are thermally equilibrated. The underlying chemistry and mechanisms of SiH energy equilibration in Ar-diluted plasmas are discussed. PMID:16834307

  18. Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro.

    PubMed

    Blinc, Ales; Bozic, Mojca; Vengust, Rok; Stegnar, Mojca

    2004-01-01

    Leakage of viscous bone cement into venous blood possibly resulting in pulmonary embolism may occur during percutaneous vertebroplasty. Our aim was to study if bone cement surface or cement liquid component could induce platelet aggregation or plasma coagulation in vitro. Two types of commonly used methyl-methacrylate bone cement, Palacos (Heraeus Kulzer, Germany) and Vertebroplastic (DePuy, Acro Med, England), were smeared on thin glass slides that were inserted over the bottom of cuvettes immediately or after 24 h, and platelet aggregation was recorded over 10 min. Bone cement liquid component, containing methyl-methacrylate monomer and N,N-dimethyl-p-toluidine, was tested in 2% and 4% final concentration. Partial thromboplastin time (PTT) was determined by the hook method in the presence of bone cement-smeared glass slides or 6% bone cement liquid. Both types of bone cement, either fresh or aged, did not promote platelet aggregation, whereas collagen-coated glass slides induced substantial platelet aggregation (65 +/- 37%). On the other hand, bone cement liquids reduced platelet aggregation induced by collagen solution to an average of less than 15% (p < 0.01). Bone cement, fresh or aged, had no effect on PTT, but bone cement liquids significantly prolonged PTT: median and 1st-3rd interquartile range 149 (96-171) s for Vertebroplastic and 132 (99-194) s for Palacos, p = 0.03 for both comparisons with normal pool plasma without additives that had PTT of 69 (62-71) s. We conclude that the surface of fresh or aged bone cement is not thrombogenic in vitro. The bone cement liquid inhibits platelet aggregation and plasma clotting in relatively high concentrations that cannot be expected in vivo. PMID:15342214

  19. Continuum emission-based electron diagnostics for atmospheric pressure plasmas and characteristics of nanosecond-pulsed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Choe, Wonho; Kim, Holak; Park, Joo Young

    2015-06-01

    Electron diagnostics based on electron-neutral atom (e-a) bremsstrahlung in the UV and visible range emitted from atmospheric pressure plasmas is presented. Since the spectral emissivity of the e-a bremsstrahlung is determined by electron density (ne) and mean electron temperature (Te) representing the Maxwellian electron energy distribution, their diagnostics is possible. As an example, emission spectra measured from capacitive discharges are presented, which show good agreement with the theoretically calculated emissivity of the e-a bremsstrahlung. For a single pin electrode nanosecond-pulsed plasma jet (n-PPJ) in argon, we investigate the electron properties and the temporal behavior of the positive streamers. Streamers with many branches are clearly observed inside the dielectric tube, while a few main streamers propagate outside the tube along the jet axis. A two-dimensional (2D) measurement of the time-averaged Te distribution was developed using a commercial digital camera and optical band pass filters based on the emissivity ratio of two wavelengths of the e-a bremsstrahlung. The viable measurement range of Te is 0.5-7 eV for the choice of two wavelengths of 300s and 900s nm and 0.5-4 eV for two wavelengths of 400s and 900s nm, which are uncontaminated by the atomic and/or molecular spectra. The 2D Te distribution obtained using 514.5 and 632.8 nm emissions helps to reveal the role of electrons in streamer characteristics in the argon n-PPJ. Time-averaged Te of 2.0 eV and 1.0 eV inside and outside the tube, respectively, were measured. The streamer dynamics of the n-PPJ is shown to be dependent on Te.

  20. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  1. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Vasileska, I.; Korneeva, M. A.

    2016-07-01

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10-4 to 4 × 10-3 Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  2. Measurements of the populations of metastable and resonance levels in the plasma of an RF capacitive discharge in argon

    SciTech Connect

    Vasilieva, A. N.; Voloshin, D. G.; Kovalev, A. S. Kurchikov, K. A.

    2015-05-15

    The behavior of the populations of two metastable and two lower resonance levels of argon atoms in the plasma of an RF capacitive discharge was studied. The populations were measured by two methods: the method of emission self-absorption and the method based on measurements of the intensity ratios of spectral lines. It is shown that the populations of resonance levels increase with increasing power deposited in the discharge, whereas the populations of metastable levels is independent of the RF power. The distribution of the populations over energy levels is not equilibrium under these conditions. The population kinetics of argon atomic levels in the discharge plasma is simulated numerically. The distribution function of plasma electrons recovered from the measured populations of atomic levels and numerical simulations is found to be non-Maxwellian.

  3. Evidence of weak plasma series resonance heating in the H-mode of neon and neon/argon inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Boffard, John B.; Jung, R. O.; Lin, Chun C.; Aneskavich, L. E.; Wendt, A. E.

    2012-09-01

    Phase-resolved optical emission spectroscopy measurements in argon and neon inductively coupled plasmas (ICPs) have revealed a surplus of high-energy electrons in neon-containing plasmas. Differences between results of emission model analyses using neon and argon lines (as well as probe measurements) also indicate a high-energy enhancement in neon-containing plasmas. The abundance of these extra high-energy electrons is correlated with the sheath thickness near the rf antenna and can be reduced by either adding a Faraday shield (external shielding) or increasing the plasma density. A comparison of modelled and experimental values of the 13.56 MHz time modulation of select neon emission lines strongly suggests plasma series resonance heating adjacent to the ICP antenna as the source of the extra heating.

  4. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach

    PubMed Central

    Traba, Christian; Liang, Jun F.

    2014-01-01

    The direct application of low power argon plasma for the decontamination of pre-formed Staphylococcus aureus biofilms on various surfaces was examined. Distinct chemical/physical properties of reactive species found in argon plasmas generated at different wattages all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of results showed that: (1) the different reactive species produced in each plasma demonstrated specific antibacterial and/or anti-biofilm activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions. Under optimal experimental parameters, bacterial cells in S. aureus biofilms were killed (>99.9%) by plasmas within 10 min of exposure and no bacteria nor biofilm re-growth from argon discharge gas treated biofilms was observed for 150 h. The decontamination ability of plasmas for the treatment of biofilm related contaminations on various materials was confirmed and an entirely novel layer-by-layer decontamination approach was designed and examined. PMID:25569189

  5. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach.

    PubMed

    Traba, Christian; Liang, Jun F

    2015-01-01

    The direct application of low power argon plasma for the decontamination of pre-formed Staphylococcus aureus biofilms on various surfaces was examined. Distinct chemical/physical properties of reactive species found in argon plasmas generated at different wattages all demonstrated very potent but very different anti-biofilm mechanisms of action. An in-depth analysis of the results showed that: (1) the different reactive species produced in each plasma demonstrated specific antibacterial and/or anti-biofilm activity; and (2) the commonly associated etching effect could be manipulated and even controlled, depending on the experimental conditions. Under optimal experimental parameters, bacterial cells in S. aureus biofilms were killed (> 99.9%) by plasmas within 10 min of exposure and no bacteria nor biofilm regrowth from argon discharge gas treated biofilms was observed for 150 h. The decontamination ability of plasmas for the treatment of biofilm related contaminations on various materials was confirmed and an entirely novel layer-by-layer decontamination approach was designed and examined. PMID:25569189

  6. Spatio-temporal evolution of the dust particle size distribution in dusty argon rf plasmas

    NASA Astrophysics Data System (ADS)

    Killer, Carsten; Mulsow, Matthias; Melzer, André

    2015-04-01

    An imaging Mie scattering technique has been developed to measure the spatially resolved size distribution of dust particles in extended dust clouds. For large dust clouds of micrometre-sized plastic particles confined in an radio frequency (rf) discharge, a segmentation of the dust cloud into populations of different sizes is observed, even though the size differences are very small. The dust size dispersion inside a population is much smaller than the difference between the populations. Furthermore, the dust size is found to be constantly decreasing over time while the particles are confined in an inert argon plasma. The processes responsible for the shrinking of the dust in the plasma have been addressed by mass spectrometry, ex situ microscopy of the dust size, dust resonance measurements, in situ determination of the dust surface temperature and Fourier transform infrared absorption (FT-IR). It is concluded that both a reduction of dust size and its mass density due to outgassing of water and other volatile constituents as well as chemical etching by oxygen impurities are responsible for the observations.

  7. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  8. Argon plasma-induced modifications at the surface of polycarbonate thin films

    NASA Astrophysics Data System (ADS)

    Keil, M.; Rastomjee, C. S.; Rajagopal, A.; Sotobayashi, H.; Bradshaw, A. M.; Lamont, C. L. A.; Gador, D.; Buchberger, C.; Fink, R.; Umbach, E.

    1998-03-01

    The chemical modification of the surfaces of polycarbonate films by microwave-induced argon plasma treatment has been followed by X-ray absorption spectroscopy (XAFS) and core level photoemission spectroscopy (XPS). Measurements have been made on thin films of both ex-situ spin-coated bis-phenol-A polycarbonate with phenol endgroups and the model compound bis-phenol-A polycarbonate ( n = 1) with tert-butyl phenyl endgroups evaporated in-situ in UHV on single crystal surfaces. A preferential orientation of a monolayer of the model compound on a Ag{111} surface was determined from the angular dependence of the XAFS spectra. Spectral features were assigned to contributing transitions within different moieties. Relatively mild microwave Ar plasma activation of the surfaces of both types of films led to a decrease in intensity of carbonyl features in both XAFS and XPS. Combined with the observation of new spectral features in XPS the data can be interpreted in terms of a formation of ester and ether groups in the near-surface region with possible cross-linking after desorption of CO or CO 2.

  9. Comparison of the transport properties of two-temperature argon plasmas calculated using different methods

    NASA Astrophysics Data System (ADS)

    Zhang, X. N.; Li, H. P.; Murphy, A. B.; Xia, W. D.

    2015-06-01

    Two main methods have been used to calculate the transport properties of two-temperature (2-T) plasmas in local chemical equilibrium: the method of Devoto (method B), in which coupling between electrons and heavy species is neglected, and the method of Rat et al (method C), in which coupling is included at the cost of a considerable increase in complexity. A new method (method A) has recently been developed, based on the modified Chapman-Enskog solution of the species Boltzmann equations. This method retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. In this paper, the properties of 2-T argon plasmas calculated using the three methods are compared. The viscosity, electrical conductivity and translational thermal conductivity obtained using all three methods are very similar. method B does not allow a complete set of species diffusion coefficient to be obtained. It is shown that such a set can be calculated using method A without any significant loss of accuracy. Finally, it is important to note that, by using the physical fact that the mass of heavy particles is much larger than that of electrons (i.e. me << mh), the complexity of calculations using method A is not increased compared with method B; that is to say, the calculation procedure is much simpler than with method C.

  10. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces:In vitro study

    PubMed Central

    Annunziata, Marco; Donnarumma, Giovanna; Caputo, Pina; Nastri, Livia; Guida, Luigi

    2016-01-01

    Background Surface treatment by argon plasma is widely used as the last step of the manufacturing process of titanium implant fixtures before their sterilization by gamma rays. The possibility of using such a technology in the daily clinical practice is particularly fascinating. The aim of the present study was to assess the effects of the argon plasma treatment on different titanium implant surfaces previously exposed In vitro to bacterial contamination. Material and Methods Sterile c.p. titanium implant discs with turned (T, Sa: 0.8 µm ), sandblasted/acid-etched (SAE, Sa: 1.3 µm) and titanium plasma sprayed (TPS, Sa: 3.0µm) surface were used in this study. A strain of Aggregatibacter actinomycetemcomitans ATCC3718 was grown at 37°C under anaerobic conditions for 24 h and then transferred on six discs for each of the three surface types. After 24 hours, a half of the contaminated discs (control group) were directly used to evaluate the colony forming units (CFUs). The other half of the contaminated discs (test group) were treated in an argon plasma chamber for 12 minutes at room temperature prior to be analyzed for CFU counting. All assays were performed using triplicate samples of each material in 3 different experiments. Results When the CFU counting was carried out on control discs, a total of 1.50x106±1.4x105, 1.55x106±7.07x104 and 3.15x106±2.12x105 CFU was respectively assessed for T, SAE and TPS discs, without statistically significant differences among the three surfaces. On the contrary, any trace of bacterial contamination was assessed for titanium discs treated in the argon plasma chamber prior to be analyzed, irrespectively to the implant surface tested. Conclusions Within the limit of this study, reported data suggested that the argon plasma technology could be efficiently used to decontaminate/sterilize previously infected titanium implant surfaces. Key words:Argon plasma, titanium implant surface, Aggregatibacter actinomycetemcomitans. PMID

  11. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-06-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N2-Ar and O2-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N2-Ar and O2-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N2-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O2-Ar discharges, the dissociation fraction of O2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  12. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  13. Correlations between plasma variables and the deposition process of Si films from chlorosilanes in low pressure RF plasma of argon and hydrogen

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Grill, A.; Manory, R.; Grossman, E.

    1984-01-01

    The dissociation of chlorosilanes to silicon and its deposition on a solid substrate in a RF plasma of mixtures of argon and hydrogen were investigated as a function of the macrovariables of the plasma. The dissociation mechanism of chlorosilanes and HCl as well as the formation of Si in the plasma state were studied by sampling the plasma with a quadrupole mass spectrometer. Macrovariables such as pressure, net RF power input and locations in the plasma reactor strongly influence the kinetics of dissociation. The deposition process of microcrystalline silicon films and its chlorine contamination were correlated to the dissociation mechanism of chlorosilanes and HCl.

  14. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    PubMed

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma. PMID:27078472

  15. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas

    NASA Astrophysics Data System (ADS)

    Barriga-Carrasco, Manuel D.; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Qeq. This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Qeff is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Qeff is larger than the equilibrium charge state Qeq due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ˜42 -62.5 % and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ˜2.2 and 5.1 % , for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ˜38.8 -57.4 % , where higher values correspond to a fully ionized carbon plasma.

  16. Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen

    NASA Astrophysics Data System (ADS)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Lopaev, D. V.; van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Bijkerk, F.

    2016-07-01

    We used numerical modeling to study the evolution of EUV-induced plasmas in argon and hydrogen. The results of simulations were compared to the electron densities measured by microwave cavity resonance spectroscopy. It was found that the measured electron densities can be used to derive the integral amount of plasma in the cavity. However, in some regimes, the impact of the setup geometry, EUV spectrum, and EUV induced secondary emission should be taken into account. The influence of these parameters on the generated plasma and the measured electron density is discussed.

  17. Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Motto-Ros, Vincent; Bai, Xueshi; Yu, Jin

    2013-11-01

    We have investigated the structure and the dynamics of the plasma induced on a metallic target in 1-atm argon ambient by a nanosecond laser pulse with irradiance in the range of 10 GW/cm2. The structure is revealed to be sensitively dependent on the laser wavelength. A layered structure of different species characterizes the plasma induced by ultraviolet 355 nm pulse, while an effective mixing between the ablation vapor and the shocked ambient gas is observed with infrared 1064 nm pulse. The absorption property of the shocked gas is found to be crucial for determining the structure of the plasma.

  18. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    SciTech Connect

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-06-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N{sub 2}-Ar and O{sub 2}-Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N{sub 2}-Ar and O{sub 2}-Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N{sub 2}-Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O{sub 2} -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O{sub 2}-Ar discharges, the dissociation fraction of O{sub 2} molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  19. The study of FTO surface texturing fabrication using Argon plasma etching technique for DSSC applications

    NASA Astrophysics Data System (ADS)

    Jayanti, Lindha; Kusumandari; Sujitno, Tjipto; Suryana, Risa

    2016-02-01

    This paper is aimed to investigate the fabrication of the fluorine-doped tin oxide (FTO) texturing by using Argon (Ar) plasma etching. The pressure and temperature of Ar gas during plasma etching were 1.6 mbar and 240-285oC, respectively. The plasma etching time was varied from 3 and 10 min. We also prepared without etching samples as reference. UV-Vis spectrophotometer showed that the transmittances of etching samples are higher than the without etching samples. The root mean square roughness (Rq) of etching samples are lower than the without etching samples. It is considered that the Ar ions bombardment can modify the FTO surfaces. However, the etching time does not significantly affect the FTO surfaces for 3 min and 10 min. The Rq of the without etching sample, the etching sample for 3 min, and the etching sample for 10 min are 11.697 nm, 9.859 nm, and 9.777 nm, respectively. These results are good agreement with the four point probe measurement that indicated that the sheet resistance (RS) for each the without sample, the etching sample for 3 min, and the etching sample for 10 min are 16.817 Ωsq, 16.067 Ω/sq, and 15.990 Ω/sq. In addition, the optical transmittance of the etching sample for 3 min and the etching sample for 10 min at wavelengths of 350 - 850 nm are almost similar. This is evidence that the etching time below 10 min cannot significantly change the morphology, optical and electrical properties.

  20. Hot-filament discharge plasma in argon gas at 140 K

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Robertson, Scott

    2009-11-01

    A hot-filament discharge plasma has been created in a double-walled vacuum chamber with the inner wall cooled by liquid nitrogen vapor. The inner brass chamber (16 cm dia. x 30 cm) is wound with copper tubing for cooling. This chamber has two tungsten filaments 10 cm in length oriented axially about 2.5 cm from the wall. Plasma measurements are made using a Pt wire probe. At 300 K, 0.6 mTorr argon in the outer chamber, and 2 mA emission, the electron density is 1 x10^8 cm-3 and the electron temperature is 0.054 eV. At 140 K, the density is 1.6 x10^8 cm-3 and their temperature is 0.11 eV confirming that the electrons are not cooled by elastic collisions with the gas. The floating potential of the probe is -2.4 V at 300 K and -0.6 V at 140 K as a consequence of the ion current to the probe being about doubled at the lower temperature. The higher ion current may be a consequence of charge-exchange collisions producing cold ions that are more easily captured by the probe. These collisions decrease the ion losses to the wall by slowing ions accelerated by the plasma potential. Electron losses are reduced because of the requirement of quasineutrality, thus reduced evaporative cooling of electrons may be the cause of the increased electron temperature in 140 K gas.

  1. X-ray Photoelectron Spectroscopy Study of Argon-Plasma-Treated Fluoropolymers

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1994-01-01

    Films of poly(tetrafluoroethylene) (PTFE) and of a tetrafluoroethylene-perfluoroalkyl vinyl ether (approximately 49:1) copolymer (PFA) were exposed to a radio-frequency argon plasma and then examined by X-ray photoelectron spectroscopy (XPS). The use of fluoropolymer films nearly free of surface hydrocarbon contamination as well as the use of a monochromatized X-ray source for XPS removed two factors contributing to conflicting reports on the effect of exposure time on the fluorine-to-carbon (F/C) and oxygen-to-carbon (O/C) ratios for several Ar-plasma-treated fluoropolymers. Contrary to literature indications, a common pattern was found for PTFE and PFA: a moderate decrease in F/C ratio (from 1.99 to 1.40, and from 1.97 to 1.57, respectively), together with a moderate increase in O/C ratio (from negligible to about 0.10, and from 0.012 to about O.10, respectively) at very short exposures, after which the F/C ratios remained essentially constant on prolonged exposures, while the O/C ratios for PTFE and PFA leveled off at 0.11 and 0.15, respectively. The XPS C(sub 1s), spectra for these polymers exposed to the Ar plasma for 20 min were similar and presented, besides a prominent peak at 292.0 eV (CF2,) and a minor peak at 294.0 or 294.1 eV (CF3), a composite band of four curve-resolved peaks (approximately 285-290 eV) representing various CH, CC, CO, CN, and CF functionalities.

  2. Enhanced specificity of immunoblotting using radiolabeled antigen overlay: studies of blood coagulation factor XII and prekallikrein in plasma

    SciTech Connect

    Laemmle, B.; Berrettini, M.; Griffin, J.H.

    1986-01-01

    Immunoblotting of blood coagulation Factor XII and plasma prekallikrein in whole plasma was performed using radiolabeled antigen for detection. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis of plasma and transfer to nitrocellulose sheets, the blots were first reacted with polyclonal goat anti-Factor XII or anti-prekallikrein antisera and then with /sup 125/I-Factor XII or /sup 125/I-prekallikrein, respectively. A major advantage of using radiolabeled antigen rather than radiolabeled secondary antibody was enhanced specificity of immunodetection of these antigens in plasma. This procedure was sensitive to approx.0.3 ng of either Factor XII or prekallikrein antigen and was useful for detection of Factor XII cleavage fragments in contact activated plasma. Radiolabeled antigen overlay may improve the specificity of immunoblotting of trace antigens in any complex mixtures.

  3. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah; Severn, Greg; Baalrud, Scott D.

    2016-05-01

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar-Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.

  4. Surface modification of polypropylene (PP) using single and dual high radio frequency capacitive coupled argon plasma discharge

    NASA Astrophysics Data System (ADS)

    Akbar, D.

    2016-01-01

    Single (40.68 MHz) and dual (40.68/2.1 MHz) high radio frequency (RF) argon plasma discharge was employed as a source of a low-temperature treatment mechanism that was used to modify the surface of polypropylene (PP). The effects of argon plasma on the surface chemistry and the surface morphology of PP were studied using X-ray diffraction analyses. In this study, samples were treated under different plasma operation conditions for parameters such as RF power, gas pressure and treatment time. Furthermore, the crystallite size was calculated (using Scherrer equation) from the diffraction pattern of the β fraction (Full Width at Half maximum) for PP samples. The results reveal that the crystallite size strongly increases with RF power and treatment time, but decreases with gas pressure. From the analysis, it was found that the treated samples have higher crystallite sizes in compared to those of the single RF plasma discharge. This happens because the increase of plasma temperature leads to increases in the crystallization of PP sample, so that the crystallite size also increases. Furthermore, because of the advantageous features of the dual-RF plasma mode, the surface modification of PP sample can occur more quickly than is possible via the single-RF plasma discharge.

  5. Temperature measurements in microwave argon plasma source by using overlapped molecular emission spectra

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, E.; Bazavan, M.; Shindo, H.

    2015-09-01

    The electron excitation temperature Texc, vibrational Tvib, and rotational Trot temperatures were measured in a high-pressure line-shaped microwave plasma source in argon over a wide range of gas pressure and microwave power, by using optical emission spectra. The selected ArI transition lines 5p-4s and 4p-4s were chosen to calculate electron excitation temperature using Boltzmann's plot method. Meanwhile, the emission spectra of hydroxyl OH molecular ( A 2 Σ + - X 2 Π i , Δ ν = 0 ) band and the nitrogen N2 second positive system ( C 3 Π u - B 3 Π g , Δ ν = + 1 ), both second diffraction order, were used to evaluate the vibrational Tvib and rotational Trot temperatures using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. The components of the overlapped spectrum are greatly influenced by the gas pressure; however, they are independent on microwave power. For temperatures, it was found that the Texc dramatically decreases from 2.5 to 0.75 eV, which qualitatively agrees with T e deduced from zero-global model. Both of Tvib and Trot significantly decrease with as gas pressure increase from 0.4 to 50 Torr. Yet, they behave differently with microwave power.

  6. Aluminum, boron, and mercury measurement via ion-exchange direct current argon plasma (DCAP) spectrometry

    SciTech Connect

    Maxwell, S.L. III

    1985-01-01

    The accurate measurement of aluminum, boron, and mercury in process dissolver solutions at the Savannah River Plant (SRP) is important. Costs for the processing of non-SRP uranium fuels are based in part on the measured aluminum content of the fuel. Boron is a nuclear safety control in some dissolutions and mercury(II) is a catalyst in the dissolution of uranium-plutonium oxide fuels. In analyses, ion exchange is used for selective separations and for removing high activity constituents in dissolver solutions prior to measurement via direct current argon plasma (DCAP) spectrometry. Aluminum is separated via anion exchange using oxalate-hydrochloric acid mixtures, boron is separated via cation exchange using 0.05 M nitric acid, and mercury(II) is separated via cation exchange using 40% ethanol-0.2 M hydrochloric acid. The aluminum content is measured with a precision of better than +-1.0% (RSD) using gravimetric dilutions and sample measurements bracketted by standard measurements. Boron and mercury are measured with a precision of better than +-3.0% (RSD) using volumetric dilutions. 4 refs., 4 tabs.

  7. [Trimming with argon plasma of self-expanding metal stents: report of 7 cases].

    PubMed

    Jury, Gastón; Amieva, Leandro; López, Fagalde Rafael; Jury, Rubén

    2014-06-01

    The use of self-expandable enteral stents for palliation of malignant stenosis may present the complication of concealing the ampulla of Vater behind the metallic mesh. Anchoring in the duodenal wall (distal or partial migration) may also be a complication of biliary metallic stents and therefore may cause difficulty in gaining access to the biliary tract. In these cases of difficult access, a fenestration on the prosthesis ( biliary or enteral) can be created to allow reaching the obstructed biliary tract by means of argon plasma (AP). Were retrospectively analysed 7 cases. Under endoscopic vision, AP was directed to filgurate and cut 6 biliary prosthesis and a duodenal stent. Fulguration and cut of biliary stent was performed in 5 cases of distal partial migration and cholangitis. In one case of obstruction caused by distal migration inside the duodenal stent light, cutting of the biliary stent was performed. A window was created in the enteral prosthesis in order to access the ampulla of Vater and place a biliary tract prosthesis. All cases were resolved successfully and without complications. We conclude that the use of AP to fulgurate and cut nitinol prosthesis was effective and presented no complications in this series. PMID:25199306

  8. Presheath and Double Layer Structures in an Argon Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. Umair

    Ion velocities and temperatures, plasma density, potential, and electron temperatures are measured in a 13.56 MHz helicon produced argon plasma upstream from a grounded plate inside a 10 cm ID cylindrical Pyrex vacuum chamber. The plate is held at psi = 0° → 60° relative to the background axial magnetic field in the system. For the psi = 0° experiment, two distinct helicon discharge equilibria are observed at 500 W rf power, 900 G magnetic field, and a neutral pressure of 3 → 4 mTorr. Both modes exhibit a localized region of hot electrons (Th ≈ 10 eV, Tc ≈ 3.5 eV). For the first mode the hot electrons are confined by a localized potential structure and the density decreases monotonically towards the grounded plate. For the second mode the hot electrons cool off gradually in space due to heat conduction generating a downstream density peak and no major potential structures are observed. It is found that the type of discharge mode is determined by the location of the grounded plate, the length of the presheath, and the rf electron heating mechanism. For the psi = 16° → 60° plate positions, ion flow to the boundary where a 1 kG magnetic field is obliquely incident is measured at 1, 3, and 6.5 mTorr neutral pressure and 450 → 750 W rf power. The results are compared to the magnetic presheath models put forth by Chodura [Phys. Fluids 25, 1628 (1982)], Riemann [Phys. Plasmas 1, 552 (1994)], and Ahedo [Phys. Plasmas 4, 4419 (1997)]. The 1 mTorr dataset is used to benchmark a one-dimensional fluid model for the ion flow in the presheath. Definitions of the "magnetic presheath" are discussed. The fluid model in conjuction with the data show that the ion velocities in the E x B direction can be 10% → 40% percent of the sound speed for the angles investigated. Ion flow to fusion experiment boundaries and Hall thruster walls is discussed.

  9. Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet

    SciTech Connect

    Zhang Qian; Wang Ruixue; Sun Peng; Feng Hongqing; Liang Yongdong; Zhu Weidong; Becker, Kurt H.; Zhang Jue; Fang Jing

    2012-06-15

    Three types of gases, pure argon (99.999%), argon with 2% oxygen, and argon with 2% oxygen and 10% nitrogen were used as operating gases of a direct current atmospheric pressure cold plasma jet to inactivate Staphylococcus aureus (S. aureus) suspended in a liquid. The inactivation efficacies for the plasma jets operating in the three gases decrease from Ar/O{sub 2}(2%) to Ar/O{sub 2}(2%)/N{sub 2}(10%) to pure Ar. Optical emission spectroscopy, electron spin resonance spectroscopy, high performance liquid chromatography, and atomic absorption spectrophotometry were employed to identify and monitor the reactive species in the plasma-liquid system for the three operating gases and revealed the presence of O, {sup 1}O{sub 2}, OH, NO, H{sub 2}O{sub 2}, O{sub 3}, and NO{sub 3}{sup -}/NO{sub 2}{sup -} as well as Cu{sup +}/Cu{sup 2+}. The S. aureus inactivation results indicate that atomic oxygen (O) is the key inactivation agent, while other species play a lesser role in the inactivation progress studied here.

  10. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  11. Clinical Outcomes of Percutaneous Plasma Disc Coagulation Therapy for Lumbar Herniated Disc Diseases

    PubMed Central

    Kim, Sung Chul; Cho, Ki Hong

    2012-01-01

    Objective This is prospective study of clinical outcomes of percutaneous plasma disc coagulation Therapy (PDCT) in patients with herniated lumbar disc disease (HLD) to evaluate the safety and efficacy in its clinical application and usefulness as a reliable alternative to microscopic discectomy. Methods Forty-six patients were enrolled in this study from April 2006 to June 2010. All patients had one-level HLD. Disc degeneration was graded on routine T2-weighted magnetic resonance Image (MRI) using the Pfirrmann's grading system and all index levels were grade 3 and grade 4. Indications for surgery were radiculopathy caused by disc protrusion with soft consistency. MRI was done at one month after the procedure in all patients to check post-PDCT change. The clinical outcomes were evaluated using Visual Analog Scales (VAS) score and MacNab's criteria. Results This study was approved by the Institutional Review Board of our institution. The age of the study population ranged from 16 to 59 years with a mean age of 37.2 years. There were 29 males and 17 females in this study. The mean period of clinical follow-up was 21 months. The average preoperative VAS score for radiculopathy was 7.4±1.4, while the final follow-up VAS score was 1.4±0.7 (p<0.001). In MacNab's criteria, 41 patients (89.1%) had achieved favorable improvement (excellent and good) until later follow-up. There were one patient from infection and two patients who needed to convert to open discectomy. Conclusion PDCT is a safe and efficient treatment modality in a selective patient with HLD. PMID:22396836

  12. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  13. Galectin expression in healing wounded skin treated with low-temperature plasma: Comparison with treatment by electronical coagulation.

    PubMed

    Akimoto, Yoshihiro; Ikehara, Sanae; Yamaguchi, Takashi; Kim, Jaeho; Kawakami, Hayato; Shimizu, Nobuyuki; Hori, Masaru; Sakakita, Hajime; Ikehara, Yuzuru

    2016-09-01

    Low-temperature plasma is useful for the care of wounded skin. It accelerates wound healing. However, the mechanism of this effect has not been fully elucidated yet. Galectin-1 is reported to accelerate wound healing via the Smad signaling pathway. In the present study to clarify whether or not galectins were expressed during the process of wound healing in the plasma-treated skin, we examined the effect of low-temperature plasma on galectin expression in the healing skin. We compared the effects of low-temperature plasma on the expression of galectin-1, -2, and -3 in the healing skin with those of electrocoagulation conducted with a high-frequency electrical coagulator. Immediately after the start of low-temperature plasma treatment following the incision made in the skin, a membrane-like structure was formed on the surface of the wound. Immunoelectron microscopy showed that these galectins were localized in the membrane-like structure of the plasma-treated skin. The expressions of these galectins were increased by the low-temperature plasma treatment, whereas they were inhibited by the electrocoagulation. These results suggest that galectins were involved in the wound healing of low-temperature plasma-treated skin. Galectins will thus be good markers for further examination of the effects of low-temperature plasma on the healing of wounded skin. PMID:26827730

  14. Discharge characteristics of an atmospheric-pressure argon plasma column generated with a single-electrode configuration

    SciTech Connect

    Li Shouzhe; Huang Wentong; Zhang Jialiang; Wang Dezhen

    2009-07-15

    An atmospheric-pressure argon discharge plasma column is generated by making use of a single-electrode configuration with the power supply operating at a frequency of 45 kHz. It is observed that corona, glowlike plume, and filamentary discharges evolve individually with increasing applied voltage. It is in the filamentary state with average electron density of order 10{sup 12} cm{sup -3} that plasma column grows up in the tube with increasing applied voltage. Its discharge characteristics are determined by measuring electrical parameters (voltage, conduction current, and average absorbed power) and optical emission spectroscopy.

  15. Comparative Histology of Plasma Treated Tissue

    NASA Astrophysics Data System (ADS)

    Rick, Kyle

    2009-10-01

    Atmospheric plasmas applied in surgical settings have unique characteristics found in histological results from animal tissue studies. This is evident in both ex vivo bench tissue tests and in vivo fresh tissue. Examples of these histological features are presented as results of a comparative study between plasma treated, common medical argon coagulation, and electrosurgery.

  16. Effect of hydrogen addition on the deposition of titanium nitride thin films in nitrogen added argon magnetron plasma

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Diaz-Droguett, D. E.; Guzman, F.; Mändl, S.; Saikia, B. K.; Favre, M.; Maze, J. R.; Wyndham, E.

    2016-06-01

    The properties and performance of thin films deposited by plasma assisted processes are closely related to their manufacturing techniques and processes. The objective of the current study is to investigate the modification of plasma parameters occurring during hydrogen addition in N2  +  Ar magnetron plasma used for titanium nitride thin film deposition, and to correlate the measured properties of the deposited thin film with the bulk plasma parameters of the magnetron discharge. From the Langmuir probe measurements, it was observed that the addition of hydrogen led to a decrease of electron density from 8.6 to 6.2  ×  (1014 m‑3) and a corresponding increase of electron temperature from 6.30 to 6.74 eV. The optical emission spectroscopy study reveals that with addition of hydrogen, the density of argon ions decreases. The various positive ion species involving hydrogen are found to increase with increase of hydrogen partial pressure in the chamber. The thin films deposited were characterized using standard surface diagnostic tools such as x-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), x-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Although it was possible to deposit thin films of titanium nitride with hydrogen addition in nitrogen added argon magnetron plasma, the quality of the thin films deteriorates with higher hydrogen partial pressures.

  17. Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy

    SciTech Connect

    Song, M. A.; Lee, Y. W.; Chung, T. H.

    2011-02-15

    The properties of low-pressure inductively coupled nitrogen-argon plasmas were investigated by using a Langmuir probe combined with optical emission spectroscopy (OES) under the conditions of pressures in the range of 1-30 mTorr and applied rf powers of 200-600 W. In the experiments, the argon was introduced as an actinometer and as an adding gas. The effect of the argon content in the gas mixture was examined in the range of 5%-80%. The electron energy probability function (EEPF), the electron density, and the electron temperature were obtained by using an rf-compensated Langmuir probe. The dissociation fractions were obtained from the OES actinometry. The electron temperature was also obtained by OES corona model and compared with that measured by the probe. The second positive and first negative systems of spectral bands from nitrogen molecules were analyzed to estimate the vibrational and rotational temperatures. The effects of the control parameters on the plasma parameters and dissociation fraction were investigated. While the calculated nitrogen atom density increased with power, it exhibited a maximum value near the Ar content of 30%.

  18. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    SciTech Connect

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-15

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.

  19. The Mechanisms of Coagulation.

    ERIC Educational Resources Information Center

    Kurtz, Richard; Jesty, Jolyon

    1994-01-01

    Several topics such as heart disease, strokes, biochemical reactions, blood components, and genetics can be related to blood clotting. Introduces a simple, safe and inexpensive hands-on demonstration using bovine (cattle) blood plasma of normal and abnormal coagulation. (ZWH)

  20. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    NASA Astrophysics Data System (ADS)

    Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.

  1. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  2. Negative ion density in magnetically confined low-pressure argon-acetylene plasmas using laser-induced photodetachment

    NASA Astrophysics Data System (ADS)

    Margot, Joelle; Al Makdessi, Georges; Hamdan, Ahmad; Clergereaux, Richard

    2015-09-01

    In plasmas generated in reactive gases such as silane and acetylene, dust particles can spontaneously form provided the residence time of the precursors is large enough for allowing volume interactions to dominate over surface interactions. In discharges at intermediate pressure (e.g. 100 mTorr), anions are considered to be the most likely precursors to dust particles formation. In the present work, we examine the negative ion density in very low pressure conditions, namely 1-10 mTorr. For this purpose, we investigate magnetized dusty plasmas produced in argon-acetylene mixtures in which dust particles have been observed. The negative ion density is measured using a laser photodetachment technique. It is is observed to increase with the magnetic field intensity and to slightly decrease with increasing C2H2 percentage in argon. In addition, it decreases with increasing gas pressure. The photodetachment cross section deduced from the photodetachment signal as a function of laser energy is found to be significantly higher than the value expected for the C2H- ion, which may be explained by the presence in the plasma of negatively charged dust particles.

  3. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a

  4. Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma

    SciTech Connect

    Bruno, D.; Catalfamo, C.; Laricchiuta, A.; Giordano, D.; Capitelli, M.

    2006-07-15

    Convergence properties of the Chapman-Enskog method in the presence of a magnetic field for the calculation of the transport properties of nonequilibrium partially ionized argon have been studied emphasizing the role of the different collision integrals. In particular, the Ramsauer minimum of electron-argon cross sections affects the convergence of the Chapman-Enskog method at low temperature, while Coulomb collisions affect the results at higher temperatures. The presence of an applied magnetic field mitigates the slow convergence for the components affected by the field.

  5. Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation.

    PubMed

    Ke, Zhigang; Huang, Qing

    2016-01-01

    Although blood coagulation facilitated by non-thermal plasma has been reported several years ago, the insight to the involved mechanisms is still rather limited. In this work, we report our discovery of a new mechanism for the haem-promoted blood-coagulation caused by non-thermal plasma treatment. The reason for the haem role is due to that its oxidized form, namely, hematin, can promote the dityrosine cross-linking of fibrinogen, the most important coagulation protein, to form a membrane-like layer on the surface of the treated blood with plasma exposure. Both haem and non-thermal-plasma generated hydrogen peroxide are requisite for the cross-linking process. We confirmed that fibrinogen can coordinate with the haem iron to form a protein-haem complex which shows pseudo-peroxidase activity, and in the presence of hydrogen peroxide, the complex can induce the dityrosine formation between fibrinogen molecules, leading to the fibrin network necessary for the blood coagulation. Understanding of such an underlying mechanism can be useful to guide more efficient application of non-thermal plasma in the management of hemostasis, thrombosis and etc. PMID:27229173

  6. Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation

    PubMed Central

    Ke, Zhigang; Huang, Qing

    2016-01-01

    Although blood coagulation facilitated by non-thermal plasma has been reported several years ago, the insight to the involved mechanisms is still rather limited. In this work, we report our discovery of a new mechanism for the haem-promoted blood-coagulation caused by non-thermal plasma treatment. The reason for the haem role is due to that its oxidized form, namely, hematin, can promote the dityrosine cross-linking of fibrinogen, the most important coagulation protein, to form a membrane-like layer on the surface of the treated blood with plasma exposure. Both haem and non-thermal-plasma generated hydrogen peroxide are requisite for the cross-linking process. We confirmed that fibrinogen can coordinate with the haem iron to form a protein-haem complex which shows pseudo-peroxidase activity, and in the presence of hydrogen peroxide, the complex can induce the dityrosine formation between fibrinogen molecules, leading to the fibrin network necessary for the blood coagulation. Understanding of such an underlying mechanism can be useful to guide more efficient application of non-thermal plasma in the management of hemostasis, thrombosis and etc. PMID:27229173

  7. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon

    NASA Astrophysics Data System (ADS)

    Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian

    2016-08-01

    A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.

  8. Broadening of the Spectral Atomic Lines Analysis in High Density Argon Corona Plasma by Using Voigt Profile

    NASA Astrophysics Data System (ADS)

    Nur, M.; Bonifaci, N.; Denat, A.; Atrazhev, V. M.

    2015-06-01

    Studies of spectrum emission from high density argon plasma corona has been done. The analysis of the boardening of spectral atomic lines of Ar-I profile has been curried out by using an empirical approximation based on a Voigt profile. Full-width at half-maximum (FWHM) of the spectral-lines of 763.5 nm has been determined from atmospheric pressure until liquid state. The study liquid argon was curried out in a variation of temperature from K to 151.2 K and hydrostatics pressure from 2.1 MPa to 6.4 MPa. These pressure gives the densities N∞ (i.e. density very far from ionization zone) a variation from 1.08 1022 to 2.11 1022 cm-3. FWHM of Voigt approximation (Wv) of the line 763,5 nm of 'Ar I for: the emission lamp very low pressure (Wv = 0,160 nm) and our corona discharge at a pressure of MPa (Wv = 0,67 nm) and at a pressure of 9,5 MPa (Wv = 1,16 nm). In gas, corona plasma has been generated from 0.1 MPa to 9.5 MPa. We found that the broadening spectral line increase by increasing densities both for. the spectral-lines of 763.5 nm and 696.5 nm. We concluded that broadening of spectrum cause of Van der Waals force.

  9. Determination of dissolved boron in fresh, estuarine, and geothermal waters by d.c. argon-plasma emission spectrometry

    USGS Publications Warehouse

    Ball, J.W.; Thompson, J.M.; Jenne, E.A.

    1978-01-01

    A d.c. argon-plasma emission spectrometer is used to determine dissolved boron in natural (fresh and estuarine) water samples. Concentrations ranged from 0.02 to 250 mg l-1. The emission-concentration function is linear from 0.02 to 1000 mg l-1. Achievement of a relative standard deviation of ??? 3% requires frequent restandardization to offset sensitivity changes. Dilution may be necessary to overcome high and variable electron density caused by differences in alkali-metal content and to avoid quenching of the plasma by high solute concentrations of sodium and other easily ionized elements. The proposed method was tested against a reference method and found to be more sensitive, equally or more precise and accurate, less subject to interferences, with a wider linear analytical range than the carmine method. Analyses of standard reference samples yielded results in all cases within one standard deviation of the means. ?? 1978.

  10. Acetylene-argon plasmas measured at a biased substrate electrode for diamond-like carbon deposition: I. Mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baby, A.; Mahony, C. M. O.; Maguire, P. D.

    2011-02-01

    We report, for the first time, quadrupole mass spectrometry of neutral and positive ionic hydrocarbon species measured at the rf-biased substrate electrode of an inductively coupled plasma for acetylene rich C2H2 : Ar mixtures under various bias, frequency and pressure conditions. It has been observed that, irrespective of initial gas mixture, the resultant plasma is dominated by argon neutrals and ions. This is attributed to highly efficient conversion of acetylene to C2H due to the enhanced electron density compared with a standard capacitive plasma where the acetylene (neutral and ion) species remain dominant. This conversion may be crucial to film formation via inert rather than hydrocarbon ion bombardment. In addition, the transient formation of CH4 from acetylene has been discovered using IR absorption spectroscopy with time constants similar to observed pressure variations. Rate coefficients and rates for many of the reaction mechanisms, calculated using measured electron energy distribution functions and species densities, are given. These results have important application in plasma models and growth studies for hydrogenated amorphous or diamond-like carbon film deposition. Film growth under similar plasma conditions is reported in an associated paper along with ion energy distributions for important growth species. .

  11. The application of cold-plasma coagulation on the visceral pleura results in a predictable depth of necrosis without fistula generation.

    PubMed

    Hoffmann, Martin; Ulrich, Anita; Schloericke, Erik; Limmer, Stefan; Habermann, Jens Karsten; Wolken, Heike; Bruch, Hans-Peter; Kujath, Peter

    2012-03-01

    A technique for the safe transfer of electric energy to the pulmonary surface for the potential evaporation of malignant tumours is non-existent to date. By conducting the current study, we wanted to generate data on the potential beneficiary effects and complications of using cold-plasma coagulation on the pulmonary surface. Cold-plasma coagulation was applied to the pulmonary surface in eight female mini-pigs via a thoracoscopic access. After 12 days, we performed a re-thoracoscopy on the contralateral side. After a further 12 days, we performed a median sternotomy and did cold-plasma coagulation on previously untreated areas of either lung. No pulmonary fistulas were detected. In two of the eight pigs, we found a localized chronic pneumonia. None of the pigs died during the course of the study. Morbidity was also low with two pigs refusing food intake, one pig with dyspnoea after difficult intubation and one pig coughing. All events were self-limited and occurred only on post-operative Day 1. The treatment effect was almost linear and correlated to the generator energy applied. The differences between the effects reached statistical significance (P < 0.05). The application of cold-plasma coagulation to the pulmonary surface is safe in pigs. A potential clinical application of this technique is treatment of malignant pleural mesothelioma. PMID:22194274

  12. The effect of surface contact activation and temperature on plasma coagulation with an RNA aptamer directed against factor IXa.

    PubMed

    Krishnan, Anandi; Vogler, Erwin A; Sullenger, Bruce A; Becker, Richard C

    2013-01-01

    The anticoagulant properties of a novel RNA aptamer that binds FIXa depend collectively on the intensity of surface contact activation of human blood plasma, aptamer concentration, and its binding affinity for FIXa. Accordingly, anticoagulation efficiency of plasma containing any particular aptamer concentration is low when coagulation is strongly activated by hydrophilic surfaces compared to the anticoagulation efficiency in plasma that is weakly activated by hydrophobic surfaces. Anticoagulation efficiency is lower at hypothermic temperatures possibly because aptamer-FIXa binding decreases with decreasing temperatures. Experimental results demonstrating these trends are qualitatively interpreted in the context of a previously established model of anticoagulation efficiency of thrombin-binding DNA aptamers that exhibit anticoagulation properties similar to the FIXa aptamer. In principle, FIXa aptamer anticoagulants should be more efficient and therefore more clinically useful than thrombin-binding aptamers because aptamer binding to FIXa competes only with FX that is at much lower blood concentration than fibrinogen (FI) that competes with thrombin-binding aptamers. Our findings may have translatable relevance in the application of aptamer anticoagulants for clinical conditions in which blood is in direct contact with non-biological surfaces such as those encountered in cardiopulmonary bypass circuits. PMID:23054460

  13. Dynamics of self-compressed argon and helium plasma streams in the MPC facility

    NASA Astrophysics Data System (ADS)

    Ladygina, M. S.; Marchenko, A. K.; Solyakov, D. G.; Petrov, Yu V.; Makhlaj, V. A.; Yeliseyev, D. V.; Garkusha, I. E.; Cherednichenko, T. N.

    2016-07-01

    The results of experimental investigations on self-compressed plasma streams and compression zone formation are presented for varied mass flow rate and initial concentrations of particles of working gas that depend on initial pressure. Experiments were carried out in the Magnetoplasma Compressor (MPC) facility. Space–time distributions of the electric current and electron density in the plasma stream compression region were measured under different experimental conditions. High-speed images of plasma stream dynamics in the MPC accelerating channel with a high temporal resolution were also obtained for different initial pressures. The experimental results show a strong dependence of plasma stream parameters and compression zone location on the initial gas concentration. The maximum electron density is obtained in the range of Ne = (1 ÷ 5) × 1018 cm‑3. Plasma streams have a good radial symmetry under all experimental conditions. The distributions of plasma parameters along the plasma stream flows are discussed.

  14. Optical diagnostics of a low power—low gas flow rates atmospheric-pressure argon plasma created by a microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Srivastava, Nimisha; Scherrer, Susan; Jang, Ping-Rey; Dibble, Theodore S.; Duan, Yixiang

    2009-05-01

    We employ a suite of optical techniques, namely, visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy (CRDS), to characterize a low power, low gas flow rates, atmospheric-pressure argon microwave induced plasma. The plasma is created by a microwave plasma torch, which is excited by a 2.45 GHz microwave with powers ranging from 60 to 120 W. A series of plasma images captured in a time-resolution range of as fine as 10 µs shows that the converging point is actually a time-averaged visual effect and the converging point does not exist when the plasma is visualized under high time resolution, e.g. <2 ms. Simulations of the emission spectra of OH, N2 and N_{2}^{+} in the range 200-450 nm enable the plasma electronic excitation temperature (Texc) to be determined at 8000-9000 K, while the vibrational temperature (Tv), the rotational temperature (Tr) and the gas temperature (Tg) at different locations along the axis of the plasma column are all determined to be in the range 1800-2200 K. Thermal equilibrium properties of the plasma are discussed. OH radical concentrations along the plasma column axis are measured by CRDS and the concentrations are in the range 1.6 × 1013-3.0 × 1014 cm-3 with the highest density at the tail of the plasma column. The upper limit of electron density ne is estimated to be 5.0 × 1014 cm-3 from the Lorentzian component of the broadened lineshape obtained by ringdown spectral scans of the rovibrational line S21 of the OH A-X (0-0) band.

  15. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  16. Evidence of weak plasma series resonance heating in the H-mode of neon and neon/argon inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Wendt, A. E.; Boffard, John B.; Jung, R. O.; Lin, Chun C.; Aneskavich, L. E.

    2012-10-01

    The shape of the electron energy distribution function (EEDF) in low-temperature plasmas governs the relative rates of electron-impact processes that determine key discharge properties. Comparison of EEDFs measured with probes and optical emission [1] in argon and neon inductively coupled plasmas (ICP) has revealed a surplus of high-energy electrons in neon-containing plasmas. The abundance of these extra high energy electrons is correlated with the sheath thickness near the rf antenna and can be reduced by either adding a Faraday shield or increasing the plasma density. These trends suggest an association of the surplus high-energy electrons with stochastic heating of electrons in capacitively-coupled electric fields in the sheath adjacent to the antenna. Conventional stochastic heating, however, is found to be insufficient to account for the EEDF observations, and a comparison of modeled and experimental values of the 13.56 MHz time modulation of select neon emission lines strongly suggests plasma series resonance (PSR) heating adjacent to the ICP antenna as the source of the extra high-energy electrons. [4pt] [1] Plasma Sources Sci. Technol. 20, (2011) 055006.

  17. Determination of boron in silicon-bearing alloys, steel, and other alloys by pyrohydrolysis and inductively-coupled argon-plasma spectroscopy.

    PubMed

    Hamner, R M; De'aeth, L A

    1980-06-01

    Boron is quantitatively separated from silicon-bearing and other inorganic materials by pyrohydrolysis. Microgram amounts of boron are separated by passing oxygen-saturated steam over a sample mixed with vanadium oxide and copper oxide. The distillate is collected in dilute potassium hydroxide solution and determined by inductively-coupled argon-plasma spectroscopy. PMID:18962720

  18. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems.

    PubMed

    Longstaff, Colin; Hogwood, John; Gray, Elaine; Komorowicz, Erzsebet; Varjú, Imre; Varga, Zoltán; Kolev, Krasimir

    2016-03-01

    Neutrophil extracellular traps (NETs) composed primarily of DNA and histones are a link between infection, inflammation and coagulation. NETs promote coagulation and approaches to destabilise NETs have been explored to reduce thrombosis and treat sepsis. Heparinoids bind histones and we report quantitative studies in plasma and purified systems to better understand physiological consequences. Unfractionated heparin (UFH) was investigated by activated partial thromboplastin time (APTT) and alongside low-molecular-weight heparins (LMWH) in purified systems with thrombin or factor Xa (FXa) and antithrombin (AT) to measure the sensitivity of UFH or LMWH to histones. A method was developed to assess the effectiveness of DNA and non-anticoagulant heparinoids as anti-histones. Histones effectively neutralised UFH, the IC50 value for neutralisation of 0.2 IU/ml UFH was 1.8 µg/ml histones in APTT and 4.6 µg/ml against 0.6 IU/ml UFH in a purified system. Histones also inhibited the activities of LMWHs with thrombin (IC50 6.1 and 11.0 µg/ml histones, for different LMWHs) or FXa (IC50 7.8 and 7.0 µg/ml histones). Direct interactions of UFH and LMWH with DNA and histones were explored by surface plasmon resonance, while rheology studies showed complex effects of histones, UFH and LMWH on clot resilience. A conclusion from these studies is that anticoagulation by UFH and LMWH will be compromised by high affinity binding to circulating histones even in the presence of DNA. A complete understanding of the effects of histones, DNA and heparins on the haemostatic system must include an appreciation of direct effects on fibrin and clot structure. PMID:26632486

  19. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; Shen, Yuan; Zhang, Cheng; Yan, Ping; Shao, Tao

    2016-03-01

    In this paper, a plasma jet driven by an in-house developed microsecond pulse is used for polymethyl methacrylate (PMMA) surface modification. The hydrophilic modification effects of He and Ar plasma jets are compared under the same condition. The He and Ar plasma jets are characterized by optical emission spectrometer (OES). Water contact angle (WCA) measurement is used to evaluate the wettability of PMMA samples. The evolution on morphology and chemical composition of PMMA before and after plasma treatment are also analyzed. The OES results demonstrate that He plasma is composed with higher intensities of reactive species, like OH, O, N2 and N2+ than that of Ar plasma and show a better modification effect. In addition, it is observed that the surface roughness and oxygen-containing groups like Csbnd O/Csbnd OH and Odbnd Csbnd O increase on the PMMA surface after plasma treatment, which are responsible for the hydrophilic modification. During the storage, the WCA of each sample increases gradually for both He and Ar plasma treatments. The He plasma treated PMMA also shows a slower aging effect than that of Ar plasma treated PMMA.

  20. Effects of matching network on the hysteresis during E and H mode transitions in argon inductively coupled plasma

    SciTech Connect

    Gao Fei; Zhao Shuxia; Li Xiaosong; Wang Younian

    2010-10-15

    An experimental investigation of the hysteresis during the E (capacitive coupling) and H mode (inductive coupling) transitions at various matching situation in argon inductively coupled plasma is reported. At high pressure, the results show two hysteresis loops involved the plasma density, applied power, and forward power, as well as the electrical parameters in the discharge circuit, when the series capacitance is cycled. The measured electron density versus applied power shows that the hysteresis loop shrinks with the decrease of the matching capacitance, and the same trend is discovered on the input current, voltage, and phase angle. In addition, for the case of small capacitance, the current (or voltage) jumps to a low value when the discharge passes through the E to H mode transition regime. Contrarily, for the case of large capacitance, the current jumps to a high value while the voltage is almost constant. The evolution characteristics of the plasma and circuit parameters observed imply that the nonlinear behavior of the matching situation may be one of the determined factors for hysteresis.

  1. Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Tarasenko, O.; Chang, J.; Popovic, S.; Chen, C. Y.; Fan, H. W.; Scott, A.; Lahiani, M.; Alusta, P.; Drake, J. D.; Nikolic, M.

    2009-11-01

    The effectiveness and mechanism of a low temperature air plasma torch in clotting blood are explored. Both blood droplets and smeared blood samples were used in the tests. The treated droplet samples reveal how blood clotting depends on the distance at which the torch operated, and for how long the droplets have been exposed to the torch. Microscopy and cell count of smeared blood samples shed light on dependencies of erythrocyte and platelet counts on torch distance and exposure time. With an increase of torch distance, the platelet count of treated blood samples increases but is less than that of the control. The flux of reactive atomic oxygen (RAO) and the degree of blood clotting decreased. With an increase of exposure time, platelet count of treated samples decreased, while the degree of clot increased. The correlation among these dependencies and published data support a blood clotting mechanism that RAO as well as other likely reactive oxygen species generated by the plasma torch activate erythrocyte-platelets interactions and induces blood coagulation.

  2. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    SciTech Connect

    Gessel, Bram van; Bruggeman, Peter; Brandenburg, Ronny

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  3. Numerical Simulation of Flow in the Chamber of the Water-Argon Plasma Generator

    NASA Astrophysics Data System (ADS)

    Hlbočan, Peter; Varchola, Michal; Knížat, Branislav; Mlkvik, Marek; Olšiak, Róbert

    2012-12-01

    The paper describes the CFD simulation of the flow of gas and plasma in a plasma generator with a hybrid stabilization of the electric arc. The momentum equations of the model also take Lorentz forces into account. In the energy equation, Joule heat is introduced as an energy source. The introduction of boundary conditions is also explained, as along with plasma transport properties and a method of solution. The paper presents selected results of pressure and velocity fields in the chamber of the plasma generator.

  4. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.; Davis, J.; Clark, R. W.; Giuliani, J. L.; Terry, R. E.; Velikovich, A. L.; Commisso, R. J.; Whitney, K. G.; Frese, M. H.; Frese, S. D.; Levine, J. S.; Qi, N.; Sze, H.; Failor, B. H.; Banister, J. W.; Coleman, P. L.; Coverdale, C. A.; Jones, B.; Deeney, C.

    2007-06-01

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], that provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were ˜6MA and ˜230ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model toward projecting argon K

  5. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    SciTech Connect

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.; Davis, J.; Clark, R. W.; Giuliani, J. L. Jr.; Terry, R. E.; Velikovich, A. L.; Commisso, R. J.; Whitney, K. G.; Frese, M. H.; Frese, S. D.; Levine, J. S.; Qi, N.; Sze, H.; Failor, B. H.; Banister, J. W.; Coleman, P. L.; Coverdale, C. A.; Jones, B.

    2007-06-15

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], that provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12 cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were {approx}6 MA and {approx}230 ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model toward

  6. Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed plasma waveguide

    SciTech Connect

    Ho, Y.-C.; Hung, T.-S.; Chen, S.-Y.; Chou, M.-C.; Yen, C.-P.; Wang, J.; Chu, H.-H.; Lin, J.-Y.

    2011-06-15

    A systematic experimental study on injection of electrons in a gas-jet-based laser wakefield accelerator via ionization of dopant was conducted. The pump-pulse threshold energy for producing a quasi-monoenergetic electron beam was significantly reduced by doping the hydrogen gas jet with argon atoms, resulting in a much better spatial contrast of the electron beam. Furthermore, laser wakefield electron acceleration in an optically preformed plasma waveguide based on the axicon-ignitor-heater scheme was achieved. It was found that doping with argon atoms can also lower the pump-pulse threshold energy in this experimental configuration.

  7. Effect of argon and hydrogen on deposition of silicon from tetrochlrosilane in cold plasmas

    NASA Technical Reports Server (NTRS)

    Manory, R. R.; d.

    1985-01-01

    The roles of Ar and H2 on the decomposition of SiCl4 in cold plasma were investigated by Langmuir probes and mass spectrometry. Decomposition of the reactant by Ar only has been found to be very slow. In presence of H2 in the plasma SiCl4 is decomposed by fast radical-molecule reactions which are further enhanced by Ar due to additional ion-molecule reactions in which more H radicals are produced. A model for the plasma-surface interactions during deposition of mu-Si in the Ar + H2 + SiCl4 system is presented.

  8. Balmer-beta line asymmetry characteristics in a high pressure, microwave-produced argon plasma.

    PubMed

    Palomares, J M; Torres, J; Gigosos, M A; van der Mullen, J J A M; Gamero, A; Sola, A

    2009-11-01

    This paper presents a study on the asymmetry of the Balmer H(beta) profile in plasmas produced by microwaves at high pressure with the help of some functions of asymmetry for the whole profile, as well as by means of some specific parameters characterizing only its central dip. The study shows how this asymmetry--very low in our case--depends on the electron density and flux of gases and how the existence of inhomogeneities in the plasma can affect the shape and symmetry of this line. Also, limitations on the determination of the asymmetry are pointed out and the use of this profile for plasma diagnosis is discussed. PMID:19891830

  9. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    SciTech Connect

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H{sub {alpha}} and the H{sub {beta}} lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  10. Emission characteristics of pulse-periodic barrier-discharge plasma in a mixture of krypton with argon and liquid freon vapor

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Minya, A. I.; Gritsak, R. V.; Gomoki, Z. T.

    2014-02-01

    Radiation of a nanosecond barrier discharge in a mixture of krypton, argon, and carbon-tetrachloride vapor is studied in the spectral range of 150-300 nm. The plasma radiation spectra and the dependences of the intensities of the 258 nm Cl2( D' → A'), 222 nm KrCl( B → X), and 175 nm ArCl( B → X) bands on the partial pressure of liquid freon vapor, argon, and krypton, as well as on the discharge excitation conditions, are studied. The optimal compositions of gas mixtures for creating a broadband UV-VUV emitter based on the band system of argon chloride, krypton chloride, and chlorine molecule are determined.

  11. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    NASA Astrophysics Data System (ADS)

    Satoh, Kozue; Wagatsuma, Kazuaki

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d64p (3d54s4p) excited levels of iron ion broadly over an energy range of 7.6-9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels.

  12. Production of high quality syngas from argon/water plasma gasification of biomass and waste.

    PubMed

    Hlina, M; Hrabovsky, M; Kavka, T; Konrad, M

    2014-01-01

    Extremely hot thermal plasma was used for the gasification of biomass (spruce sawdust, wood pellets) and waste (waste plastics, pyrolysis oil). The plasma was produced by a plasma torch with DC electric arc using unique hybrid stabilization. The torch input power of 100-110 kW and the mass flow rate of the gasified materials of tens kg/h was set up during experiments. Produced synthetic gas featured very high content of hydrogen and carbon monoxide (together approximately 90%) that is in a good agreement with theory. High quality of the produced gas is given by extreme parameters of used plasma--composition, very high temperature and low mass flow rate. PMID:24148259

  13. Numerical simulation study on fluid dynamics of plasma window using argon

    SciTech Connect

    Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.

    2013-07-15

    In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.

  14. Numerical simulation study on fluid dynamics of plasma window using argon

    NASA Astrophysics Data System (ADS)

    Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.

    2013-07-01

    In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.

  15. Experimental and simulated argon spectra in the 2.3-3.4 nm region from tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Mattioli, M.; Fournier, K. B.; Carraro, L.; Coffey, I.; Giroud, C.; Lawson, K.; Monier-Garbet, P.; O'Mullane, M.; Ongena, J.; Puiatti, M. E.; Sattin, F.; Scarin, P.; Valisa, M.

    2001-01-01

    Experimental argon spectra in the 2.3-3.4 nm region from the Jet tokamak on a single null divertor configuration have been simulated. The spectra include lines from five ionization states, namely from Ar15+ Li-like to Ar11+ N-like ions. Collisional-radiative models have been constructed for these five Ar ions, considering electron collisional excitation and radiative decay as the populating processes of the excited states. These models give photon emission coefficients for the emitted lines at electron density and temperature values corresponding to the experimental situations. Impurity modelling is performed using a one-dimensional (1D) impurity transport code, calculating the steady-state radial distribution of the Ar ions. The Ar line brightnesses are evaluated in a post-processing subroutine and simulated spectra are obtained. The parts of the spectra corresponding to a single-ionization state do not depend on the experimental conditions and show good agreement except for the amplitude of the simulated 2s-3p Ar XVI line and the shape of the simulated 2.50 nm feature (composed of Ar XVI and Ar XV lines). On the other hand, the superposition of these spectra depends on the experimental conditions, as a consequence of the fact that the ion charge distribution depends not only on the radial profiles of the electron density and temperature, but also of the impurity transport coefficients. Simulations of the Ar spectra (including transport) give confidence in the atomic physics calculations; moreover, they allow the determination of the transport coefficients in the plasma region emitting the considered ionization states, i.e. at the interior of the last closed magnetic surface (LCMS). For a correct simulation of the amplitudes of the spectral features it is necessary to include a transport barrier inside the LCMS. As far as the atomic physics is concerned, we report improved wavelengths for Ar XV transitions and we benchmark photon emission coefficients for XUV

  16. Reduction and dephosphorization of molten iron oxide with hydrogen-argon plasma

    SciTech Connect

    Nakamura, Y.; Ishikawa, H.; Ito, M.

    1981-06-01

    A laboratory-scale test was made in which iron oxide contained in a water-cooled crucible was melted and reduced by using a 10-50% H/sub 2/-Ar transferred arc plasma. The degree of reduction was found to be proportional to the amount of hydrogen fed. The efficiency of hydrogen utilization for the reduction was 50-70%, which is much higher than equilibrium values below 3000 K. This high efficiency was attributable partially to the reactivity of the hydrogen atom in a plasma and partially to the continuous contact of the hydrogen plasma with the molten iron oxide layer floating over the liquid iron formed. During the plasma reduction, evaporative loss of phosphorus was observed. The degree of phosphorus removal depended on the weight ratio, CaO/(SiO/sub 2/+Al/sub 2/O/sub 3/). H/sub 2/-Ar plasma was shown to be far superior for the phosphorus removal, compared with Ar and Ar-N/sub 2/ plasma.

  17. Reduction of Argon Consumption to Less than 2 L min(-1) by Gas Recycling in Inductively Coupled Plasma Optical Emission Spectrometry.

    PubMed

    Tirk, Paul; Wolfgang, Matthias; Wiltsche, Helmar

    2016-07-19

    An innovative interface between the torch and the entrance optics for inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. This system is capable of collecting all argon which was initially supplied to the torch, cooling and cleaning it and feeding most of the argon back to the outer gas port of the torch. Thereby, the total argon consumption could be reduced from 14 to 1.4 L min(-1) using a standard torch and without restricting the rf power. The excitation- and rotational temperature of the plasma were identical when comparing the traditional setup with the enclosed plasma interface. However, the limits of detection (LOD) and limits of quantification (LOQ) of 27 elements investigated were degraded about 5-fold, though this fact can be expected to stem from a change of the observed zone in the plasma caused by the slight overpressure of 2000 Pa within the interface. Though the enclosed plasma interface was located close to the load coil, the rf power coupled to the interface was well below 1 W and no rf arcing was observed for two different rf generator designs. PMID:27306111

  18. Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet

    SciTech Connect

    Li Guo; Le Peisi; Li Heping; Bao Chengyu

    2010-05-15

    With unique features of low breakdown voltages, large and uniform discharge areas and high concentrations of chemically reactive species, radio-frequency, atmospheric-pressure glow discharge (rf APGD) plasma sources produced with bare-metallic electrodes have shown promising prospects in the field of materials processing. In this paper, the spatial distributions (i.e., the directly measured integrated axial distribution and the radial distribution by using the inverse Abel transform) of the emission intensities of the Ar I 696.5 nm line are studied for the argon rf APGD plasma jet under different operation conditions, including variations of the rf power input or the argon flow rate, the existence of the solid shielding cylinder or the substrate. The experimental results show that, with other parameters being unchanged, the emission intensities of the Ar I 696.5 nm line increase with increasing the rf power input or the argon flow rate; and the solid shielding cylinder has more significant influences on the characteristics of the plasma impinging jet by reducing the mass flow rate of the ambient air entrained into the plasma jet region than those for the cases without the existence of the substrate at the downstream of the plasma torch nozzle exit.

  19. Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet

    NASA Astrophysics Data System (ADS)

    Li, Guo; Le, Pei-Si; Li, He-Ping; Bao, Cheng-Yu

    2010-05-01

    With unique features of low breakdown voltages, large and uniform discharge areas and high concentrations of chemically reactive species, radio-frequency, atmospheric-pressure glow discharge (rf APGD) plasma sources produced with bare-metallic electrodes have shown promising prospects in the field of materials processing. In this paper, the spatial distributions (i.e., the directly measured integrated axial distribution and the radial distribution by using the inverse Abel transform) of the emission intensities of the Ar I 696.5 nm line are studied for the argon rf APGD plasma jet under different operation conditions, including variations of the rf power input or the argon flow rate, the existence of the solid shielding cylinder or the substrate. The experimental results show that, with other parameters being unchanged, the emission intensities of the Ar I 696.5 nm line increase with increasing the rf power input or the argon flow rate; and the solid shielding cylinder has more significant influences on the characteristics of the plasma impinging jet by reducing the mass flow rate of the ambient air entrained into the plasma jet region than those for the cases without the existence of the substrate at the downstream of the plasma torch nozzle exit.

  20. Deuterium occupation of vacancy-type defects in argon-damaged tungsten exposed to high flux and low energy deuterium plasma

    NASA Astrophysics Data System (ADS)

    Zhu, Xiu-Li; Zhang, Ying; Cheng, Long; Yuan, Yue; De Temmerman, Gregory; Wang, Bao-Yi; Cao, Xing-Zhong; Lu, Guang-Hong

    2016-03-01

    Doppler broadening spectroscopy in the positron annihilation technique (DBS-PA) has been employed to investigate the defect properties in argon-damaged tungsten exposed to low-energy and high flux deuterium plasma. Argon ion irradiations with energy 500 keV are performed for tungsten samples with various levels of damage. The remarkable increment of the S parameter in DBS-PA indicates the introduction of vacancy-type defects in argon irradiated tungsten. An increase of ion fluence results in a continuous increase of the S parameter until saturation. Unexpectedly, a much higher fluence leads to a decrease of the S parameter in the near surface, and the (S,W) slope changes greatly. This should be associated with the formation of argon-vacancy complexes in the near surface produced by the excessive implanted argon ions. With deuterium plasma exposure, a significant decrease of the S parameter occurs in the pre-irradiated tungsten, suggesting the sharp reduction of the number and density of the vacancy-type defects. The thermal desorption spectroscopy results demonstrate that the argon-damaged tungsten, compared to the pristine one, exhibits an enhanced low-temperature desorption peak and an additional and broad high-temperature desorption peak, which indicates that deuterium atoms are trapped in both low-energy and high-energy sites. All these observations directly indicate the deuterium occupation of irradiation-induced vacancy defects in damaged tungsten, which is responsible for the remarkable increase of the deuterium retention in comparison with the pristine one.

  1. Modeling Argon Plasma Excimer Characteristics near a Dielectric Surface in Miniaturized Volumes

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; Ramadan, Emad

    2014-10-01

    We computationally model plasma -neutral gas dynamics in a miniaturized microthruster encloses Ar and contains a dielectric material sandwiched between two metal plates using a two dimensional plasma model. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species. We find the microthruster properties to depend on small changes in the secondary electron emission coefficient that could result from dielectric erosion and aging. The changes also affect the electrohydrodynamic force produced when we use the microthruster to generate thrust for small spacecrafts. The electrohydrodynamic force is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The plasma-neutral gas momentum exchange is significant in affecting gas flow dynamics and in the formation of excimer species in addition to affecting the UV and visible emission characteristics of the device. The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project No. IN111026.

  2. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma

    NASA Astrophysics Data System (ADS)

    Gao, Ruilin; Yuan, Chengxun; Li, Hui; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Wu, Jian

    2016-08-01

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density ne, which varies from 1.2 × 1016 m-3 to 8.7 × 1016 m-3 under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure.

  3. Attenuation of wall disturbances in an electron cyclotron resonance oxygen–argon plasma using real time control

    SciTech Connect

    Keville, Bernard Gaman, Cezar; Turner, Miles M.; Zhang, Yang; Daniels, Stephen; Holohan, Anthony M.

    2014-07-01

    Present practice in plasma-assisted semiconductor manufacturing specifies recipes in terms of inputs such as gas flow rates, power and pressure. However, ostensibly identical chambers running identical recipes may produce very different results. Extensive chamber matching, i.e., initial iterative, empirical tuning of the process recipe, which entails time-consuming, ex situ statistical analysis of process metrics such as etch depth, uniformity, anisotropy and selectivity, is required to ensure acceptable results. Once matched, chambers are run open loop and are thus sensitive to disturbances such as actuator drift, wall seasoning and substrate loading, which may impact negatively on process reproducibility. An alternative approach, which may obviate the need for chamber matching and reduce the sensitivity of process metrics to exogenous disturbances, would be to specify a recipe in terms of quantities such as active species densities, and to regulate these in real time by adjusting the inputs with a suitable control algorithm. In this work, real time control of an electron cyclotron resonance O{sub 2}/Ar plasma used for photoresist ashing has been implemented. The design of elementary, model-based algorithms for the control of the argon 750 and oxygen 844 line intensities measured by optical emission spectroscopy is described. Fluorination of the chamber walls by means of an SF{sub 6} plasma prior to ashing inhibits wall recombination of oxygen radicals resulting in an approximately 20% increase in ash rate in the open loop case. However, closed loop control almost completely attenuates the effect of fluorination, thus demonstrating the efficacy of the control algorithms in ensuring a reproducible ash rate in the face of a wall disturbance.

  4. Comparison of glow argon plasma-induced surface changes of thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Řezníčková, A.; Kolská, Z.; Hnatowicz, V.; Stopka, P.; Švorčík, V.

    2011-01-01

    Modification of high-density polyethylene (PE), polytetrafluoroethylene (PTFE), polystyrene (PS), polyethyleneterephthalate (PET) and polypropylene (PP) by Ar plasma was studied. The amount of the ablated material was determined by gravimetry. Wettability of polymers after the plasma treatment was determined from the contact angle measurement. The changes in the surface morphology of polymers were observed using atomic force microscopy (AFM). Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Surface changes were also studied by the determination of electrokinetic potential ( ζ-potential). It was found that under the plasma treatment the polymers are ablated and their surface morphology and roughness are changed dramatically. XPS measurements indicate an oxidation of the polymer surface. The plasma treatment results in a dramatic increase of the ζ-potential. EPR data show different radical amount present on the treated surface of all polymers. Most significant changes due to the degradation of polymer chains are observed on PTFE.

  5. Surface structure of Si(001) treated by hydrogen and argon electron cyclotron resonance plasmas

    NASA Astrophysics Data System (ADS)

    Diani, M.; Bischoff, J. L.; Kubler, L.; Bolmont, D.

    Si(001) surfaces subjected to H 2 or Ar ECR plasma irradiation are studied, in situ, from the standpoints of both impurity removal and induced crystallographic damage. The atomic cleanliness is checked by XPS (X-ray photoelectron spectroscopy) and UPS (ultra-violet photoelectron spectroscopy), while surface crystallographic information given by LEED and XPD (X-ray photoelectron diffraction) experiments. As an H ion-source, the ECR plant appears to be a convenient hydrogenation source, with low damage, able to passivate the surface in the usual hydrogenated LEED phases (dihydride 1 × 1 or monohydride 2 × 1) depending on the employed substrate temperature T. It presents nevertheless poor etching properties concerning the dioxide overlayer in our low plasma pressure domain (<5×10 -4 mbar). On the other hand, as an Ar ion source, the ECR plasma is more efficient to etch physically and clean, particularly at low working pressure and aided by a DC negative bias voltage and Ts increase but suffers from more crystallographic perturbations checked by the LEED disappearance and quantified by the decrease of the anisotropy factor related to the XPD contrast. Finally, a procedure which combines exposures to the cleaning Ar ions followed by a refinement Si etching of the damaged overlayers using the H plasma allows the attainment of clean reconstructed 2 × 1 surfaces with processing temperatures limited at 500°C and suitable for subsequent epitaxial growths.

  6. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    NASA Astrophysics Data System (ADS)

    Matějíček, J.; Kavka, T.; Bertolissi, G.; Ctibor, P.; Vilémová, M.; Mušálek, R.; Nevrlá, B.

    2013-06-01

    Tungsten-based coatings have potential application in the plasma-facing components in future nuclear fusion reactors. By the combination of refractory tungsten with highly thermal conducting copper, or steel as a construction material, functionally graded coatings can be easily obtained by plasma spraying, and may result in the development of a material with favorable properties. During plasma spraying of these materials in the open atmosphere, oxidation is an important issue, which could have adverse effects on their properties. Among the means to control it is the application of inert gas shrouding, which forms the subject of this study and represents a lower-cost alternative to vacuum or low-pressure plasma spraying, potentially applicable also for spraying of large surfaces or spacious components. It is a continuation of recent studies focused on the effects of various parameters of the hybrid water-argon torch on the in-flight behavior of copper and tungsten powders and the resultant coatings. In the current study, argon shrouding with various configurations of the shroud was applied. The effects of torch parameters, such as power and argon flow rate, and powder morphology were also investigated. Their influence on the particle in-flight behavior as well as the structure, composition and properties of the coatings were quantified. With the help of auxiliary calculations, the mass changes of the powder particles, associated with oxidation and evaporation, were assessed.

  7. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  8. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady; Hassanein, Ahmed

    2014-04-01

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  9. Modelling on dynamics properties of a stationary argon cascaded arc plasma flows

    NASA Astrophysics Data System (ADS)

    Wei, G. D.; Qi, X.; Yang, L.

    2014-03-01

    The gas dynamics properties of a stationary arc plasma flows are studied through the numerical simulations. A two dimensional axis-symmetric turbulent magneto-hydrodynamic plasma model is developed with the commercial code ANSYS FLUENT. The reliable κ-ɛ model is used to account for turbulence. In this paper, the plasma is assumed to be a fluid following Navier-Stokes equations, respecting local thermodynamic equilibrium, and described by only one temperature. Distributions of the pressure, velocity, temperature, density, and electric potential inside of thus cascaded arc are obtained for an arc current density of 106 A/m2. The pressure inside the arc varies from 105 Pa to 100 Pa. The temperature at the arc axis can reach as high as 13 600 K. The electric potential drops uniformly along the axis with a magnitude of 160 V. In addition, distributions of the sonic velocity and Mach number are shown to describe supersonic behavior of thus cascaded arc, which have a good agreement with the analytical formula.

  10. Expansion Dynamics of Ultrafast Laser Produced Plasmas in the Presence of Ambient Argon

    SciTech Connect

    Diwakar, P. K.; Harilal, Sivanandan S.; Hassanein, A.; Phillips, Mark C.

    2014-10-07

    In this paper, we report the emission features of fs laser ablated brass plasma plumes at various Ar background pressure levels ranging from vacuum to atmospheric conditions. Spectrally integrated 2D-imaging of plasma self-emission showed several interesting features at various pressure levels which consists of plume morphological changes, increase in persistence, confinement, and internal structures. Spatially resolved wavelength dispersed images of the plume were recorded for characterizing the spectral features at various pressure levels and also used for obtaining spatial distribution of Cu I and Zn I species in the plume, signal to noise ratios and fundamental parameters of the plasma; viz. temperature and density. The spatial evolution of excitation temperature and density showed significant changes at various ambient pressure levels and these results were correlated to morphological changes seen in the plume images. Optimum signal to background ratios for emission lines were observed in the moderate pressure range (~ 1-10 Torr). Optical time-of-flight profiles were used to study time evolution of various species in the plume and noticed oscillations at intermediate pressure levels. Possible mechanisms for observed changes in plume shape, optical emission intensity, and dual peak structures in time-of-flight profiles were discussed.

  11. Modelling on dynamics properties of a stationary argon cascaded arc plasma flows

    SciTech Connect

    Wei, G. D.; Qi, X.; Yang, L.

    2014-03-15

    The gas dynamics properties of a stationary arc plasma flows are studied through the numerical simulations. A two dimensional axis-symmetric turbulent magneto-hydrodynamic plasma model is developed with the commercial code ANSYS FLUENT. The reliable κ-ε model is used to account for turbulence. In this paper, the plasma is assumed to be a fluid following Navier–Stokes equations, respecting local thermodynamic equilibrium, and described by only one temperature. Distributions of the pressure, velocity, temperature, density, and electric potential inside of thus cascaded arc are obtained for an arc current density of 10{sup 6} A/m{sup 2}. The pressure inside the arc varies from 10{sup 5} Pa to 100 Pa. The temperature at the arc axis can reach as high as 13 600 K. The electric potential drops uniformly along the axis with a magnitude of 160 V. In addition, distributions of the sonic velocity and Mach number are shown to describe supersonic behavior of thus cascaded arc, which have a good agreement with the analytical formula.

  12. Optimization of Amino Group Introduction onto Polyurethane Surface Using Ammonia and Argon Surface-Wave Plasma

    NASA Astrophysics Data System (ADS)

    Ogino, Akihisa; Noguchi, Suguru; Nagatsu, Masaaki

    2011-08-01

    Effects of hydrogen and NHx species produced by a surface-wave excited Ar/NH3 plasma on amino group introduction onto a polyurethane surface were studied by comparing the results of optical emission spectroscopy (OES) and primary amino group concentration. For increasing the introduced primary amino group concentration on the surface, the monitoring and control of the concentration of NHx species as a precursor and that of atomic hydrogen as an etchant are important. From the results of X-ray photoelectron spectroscopy (XPS) and OES analysis, the primary amino group concentration and the emission intensity of Hβ reached a minimum and a maximum, respectively, at around 25% NH3 gas mixture ratio. An excess of atomic hydrogen over nitrogen grafting species might reduce the amino group selectivity and N/C surface density. To increase the concentration of NHx species produced in a plasma, the enhancement of NHx generation by the Penning effect was examined by adding Ar gas. As a result, the primary amino group concentration increased with the increase in the emission intensity of NH. However, the amino group selectivity became lower than that in the case of pure NH3 plasma treatment since not only the primary amino group concentration but also the secondary and tertiary amino group concentrations increased with the enhanced decomposition of NH3 by Ar metastables.

  13. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma.

    PubMed

    Gao, Ruilin; Yuan, Chengxun; Li, Hui; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Wu, Jian

    2016-08-01

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density ne, which varies from 1.2 × 10(16) m(-3) to 8.7 × 10(16) m(-3) under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure. PMID:27587122

  14. Absorption spectroscopy measurements of argon metastable and resonant atom density in atmospheric pressure Ar-He surface-wave plasmas using a low pressure lamp

    SciTech Connect

    Munoz, J.; Margot, J.; Calzada, M. D.

    2012-01-15

    The densities of metastable and resonant atom were measured in atmospheric pressure Ar-He surface-wave plasmas. Measurements were performed using an absorption spectroscopy method taking into account the Voigt profiles of the plasma lines. The density values of the argon {sup 3}P{sub 2}, {sup 3}P{sub 0} (metastable atoms) and {sup 3}P{sub 1} (resonant atoms) levels measured in pure argon discharges are in good agreement with those reported in the literature. A drastic decrease of metastable and resonant densities is observed when introducing helium in amounts as low as 2%. The influence of electron density and gas temperature on the population mechanisms (direct electron excitation from the ground state and dissociative recombination) of metastable and resonant atoms is discussed using a simplified theoretical model.

  15. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  16. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  17. Angular distribution of energetic argon ions emitted by a 90 kJ Filippov-type plasma focus

    SciTech Connect

    Pestehe, S. J.; Mohammadnejad, M.

    2015-02-15

    Characteristics of the energetic argon ions emitted by a 90 kJ Filippov-type plasma focus are studied by employing an array of Faraday cups. The Faraday cups are designed to minimize the secondary electron emission effects on their response. Angular distribution of the ions is measured, and the results indicate a highly anisotropic emission with a dip at the device axis and a local maximum at the angle of 7° with respect to the axis. It has been argued that this kind of anisotropic emission may be related to the surfatron acceleration mechanism and shown that this behavior is independent of the working gas pressure. It has been also demonstrated that this mechanism is responsible for the generation of MeV ions. Measuring the total ion number at different working gas pressures gives an optimum pressure of 0.3 Torr. In addition, the energy spectrum of ions is measured by taking into account of the ambient gas effects on the energy and charge of the ions. The current neutralization effect of electrons trapped in the ion beam as well as the effect of conducting boundaries surrounding the beam, on the detected signals are investigated.

  18. Diamondoid synthesis in atmospheric pressure adamantane-argon-methane-hydrogen mixtures using a continuous flow plasma microreactor

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Ishii, Chikako; Pai, David Z.; Urabe, Keiichiro; Terashima, Kazuo

    2014-06-01

    Due to their small size, low-power consumption and potential for integration with other devices, microplasmas have been used increasingly for the synthesis of nanomaterials. Here, we have investigated the possibility of using dielectric barrier discharges generated in continuous flow glass microreactors for the synthesis of diamondoids, at temperatures of 300 and 320 K, and applied voltages of 3.2-4.3 kVp-p, at a frequency of 10 kHz. The microplasmas were generated in gas mixtures containing argon, methane, hydrogen and adamantane, which was used as a precursor and seed. The plasmas were monitored by optical emission spectroscopy measurements and the synthesized products were characterized by gas chromatography—mass spectrometry (GC-MS). Depending on the gas composition, the optical emission spectra contained CH and C2 bands of varying intensities. The GC-MS measurements revealed that diamantane can be synthesized by microplasmas generated at atmospheric pressure, and that the yields highly depend on the gas composition and the presence of carbon sources.

  19. Effects of argon laser on in vitro aggregation of platelets in platelet rich plasma and whole blood

    SciTech Connect

    Doerger, P.T.; Glueck, H.I.; McGill, M.

    1988-06-01

    The effects of an Argon laser on platelet aggregation were studied, since platelets may be exposed to laser energy when used intravascularly. Various preparations of platelets in platelet rich plasma (PRP) and whole blood, with or without aspirin, were tested with the aggregating agents ADP, collagen, thrombin, and epinephrine. Simultaneous release of ATP was also measured in PRP. At relatively low levels of irradiation, platelet aggregation was potentiated. Enhancement was evidenced by an increase in percent aggregation, earlier onset of the reaction, and reduction in the amount of aggregating agent required. In PRP, the mechanism of laser potentiation appeared to be the release of endogenous ATP from platelets. At relatively high levels of irradiation, platelets were destroyed and aggregation abolished. In whole blood, the mechanism was somewhat more complicated since release of ATP occurred from RBCs as well as platelets. Spontaneous aggregation following laser treatment occurred in isolated instances in PRP and in every trial in whole blood preparations. Aspirin ingestion inhibited the laser's effects in PRP but not in whole blood. These results may have important clinical implications for laser angioplasty, and the potentiated aggregation response may prove useful in laboratory studies of platelet function.

  20. TOPICAL REVIEW: Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Pu, Yi-Kang

    2010-10-01

    This article reviews a variety of methods to obtain the electron temperature and density by the emission line ratios for low-temperature plasmas containing argon or nitrogen gas. Based on the collisional-radiative model of excited particles, the underlying principle of each of these methods is described, along with the criterion on how to select an appropriate line-ratio method according to the discharge conditions. Limitations on the application of each line-ratio technique are also discussed.

  1. Formation of silicon hydride using hyperthermal negative hydrogen ions (H -) extracted from an argon-seeded hydrogen sheet plasma source

    NASA Astrophysics Data System (ADS)

    Fernandez, Marcedon S.; Blantocas, Gene Q.; Ramos, Henry J.

    2008-12-01

    An E × B probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H -) from a premixed 10% argon-seeded hydrogen sheet plasma. With a vacuum background of 1.0 × 10 -6 Torr, H - extraction ensues at a total gas feed of 1.8 mTorr, 0.5 A plasma discharge. The EXBII is positioned 3 cm distance from the sheet core as this is the region densely populated by cold electrons ( Te ˜ 2 eV, Ne ˜ 3.4 × 10 11 cm -3) best suited for H - formation. The extracted H - ions of flux density ˜0.26 A/m 2 are segregated, accelerated to hyperthermal range (<100 eV) and subsequently deposited into a palladium-coated 1.1 × 1.1 cm 2, n-type Si (1 0 0) substrate held at the rear end of the EXBII, placed in lieu of its Faraday cup. The palladium membrane plays the role of a catalyst initiating the reaction between Si atoms and H - ions simultaneously capping the sample from oxidation and other undesirable adsorbents. AFM and FTIR characterization tests confirm the formation of SiH 2. Absorbance peaks between 900-970 cm -1 (bending modes) and 2050-2260 cm -1 (stretching modes) are observed in the FTIR spectra of the processed samples. It is found that varying hydrogen exposure time results in the shifting of wavenumbers which may be interpreted as changes in the frequencies of vibration for SiH 2. These are manifestations of chemical changes accompanying alterations in the force constant of the molecule. The sample with longer exposure time exhibits an additional peak at 2036 cm -1 which are hydrides of nano-crystalline silicon.

  2. Argon/UF6 plasma experiments: UF6 regeneration and product analysis

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1980-01-01

    An experimental and analytical investigation was conducted to aid in developing some of the technology necessary for designing a self-critical fissioning uranium plasma core reactors (PCR). This technology is applicable to gaseous uranium hexafluoride nuclear-pumped laser systems. The principal equipment used included 1.2 MW RF induction heater, a d.c. plasma torch, a uranium tetrafluoride feeder system, and batch-type fluorine/UF6 regeneration systems. Overall objectives were to continue to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure, gaseous UF6; and to continue development of complementary diagnostic instrumentation and measurement techniques to characterize the effluent exhaust gases and residue deposited on the test chamber and exhaust system components. Specific objectives include: a development of a batch-type UF6 regeneration system employing pure high-temperature fluorine; development of a ruggedized time-of-flight mass spectrometer and associated data acquisition system capable of making on-line concentration measurements of the volatile effluent exhaust gas species in a high RF environment and corrosive environment of UF6 and related halide compounds.

  3. Argon-oxygen atmospheric pressure plasma treatment on carbon fiber reinforced polymer for improved bonding

    NASA Astrophysics Data System (ADS)

    Chartosias, Marios

    Acceptance of Carbon Fiber Reinforced Polymer (CFRP) structures requires a robust surface preparation method with improved process controls capable of ensuring high bond quality. Surface preparation in a production clean room environment prior to applying adhesive for bonding would minimize risk of contamination and reduce cost. Plasma treatment is a robust surface preparation process capable of being applied in a production clean room environment with process parameters that are easily controlled and documented. Repeatable and consistent processing is enabled through the development of a process parameter window utilizing techniques such as Design of Experiments (DOE) tailored to specific adhesive and substrate bonding applications. Insight from respective plasma treatment Original Equipment Manufacturers (OEMs) and screening tests determined critical process factors from non-factors and set the associated factor levels prior to execution of the DOE. Results from mode I Double Cantilever Beam (DCB) testing per ASTM D 5528 [1] standard and DOE statistical analysis software are used to produce a regression model and determine appropriate optimum settings for each factor.

  4. Argon/UF6 plasma experiments: UF6 regeneration and product analysis

    NASA Astrophysics Data System (ADS)

    Roman, W. C.

    1980-03-01

    An experimental and analytical investigation was conducted to aid in developing some of the technology necessary for designing a self-critical fissioning uranium plasma core reactors (PCR). This technology is applicable to gaseous uranium hexafluoride nuclear-pumped laser systems. The principal equipment used included 1.2 MW RF induction heater, a d.c. plasma torch, a uranium tetrafluoride feeder system, and batch-type fluorine/UF6 regeneration systems. Overall objectives were to continue to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure, gaseous UF6; and to continue development of complementary diagnostic instrumentation and measurement techniques to characterize the effluent exhaust gases and residue deposited on the test chamber and exhaust system components. Specific objectives include: a development of a batch-type UF6 regeneration system employing pure high-temperature fluorine; development of a ruggedized time-of-flight mass spectrometer and associated data acquisition system capable of making on-line concentration measurements of the volatile effluent exhaust gas species in a high RF environment and corrosive environment of UF6 and related halide compounds.

  5. Phenol decomposition by pulsed-plasma exposure in oxygen and argon atmosphere

    NASA Astrophysics Data System (ADS)

    Satoh, Kohki; Shiota, Haruki; Itabashi, Hideyuki; Itoh, Hidenori

    2011-10-01

    Phenol in an aqueous solution is decomposed by the exposure of pulsed-discharge plasma, and by-products are investigated by gas chromatograph mass spectrometry. When Ar is used as a background gas, catechol, hydroquinone and 4-hydroxy-2-cyclohexene-1-on are produced, and no O3 is produced; therefore, OH radicals generated in the plasma can initiate the decomposition of phenol, and 4-hydroxy-2-cyclohexene-1-on can be produced. Further, 4-hydroxy-2-cyclohexene-1-on can be converted into catechol and hydroquinone. When O2 is used as a background gas, catechol, hydroquinone, formic acid, maleic acid, succinic acid and 4,6-dihydroxy-2,4-hexadienoic acid are produced. Therefore, phenol is probably decomposed into 4,6-dihydroxy-2,4-hexadienoic acid by 1,3-dipolar addition reaction with O3, and 4,6-dihydroxy-2,4-hexadienoic acid can be decomposed into maleic acid and succinic acid by 1,3-dipolar addition reaction with O3. Oxalic acid is possibly another by-product from 4,6-dihydroxy-2,4-hexadienoic acid, since formic acid, which is produced from oxalic acid, is detected.

  6. Oxidation of GaAs Using Helicon-Wave Excited Nitrogen-Oxygen-Argon Plasma

    NASA Astrophysics Data System (ADS)

    Wada, Satoshi; Kasahara, Fumio; Hara, Akio; Ikoma, Hideaki

    1998-04-01

    GaAs (100) substrates were exposed to the helicon-wave excited N2 O2 Ar plasma without and with substrate heating at 200°C. The oxide dominantly composed of Ga2O3 and As2O3, was grown on the GaAs substrate using this technique. The chemical composition of this oxide was highly uniform along the thickness of the oxide film. Relatively good capacitance-voltage (C V) characteristics were obtained. X-ray photoelectron spectroscopic data indicated that gallium nitride (GaN) bonds were formed at the oxide/GaAs interface only with both substrate heating and post-thermal annealing at 200°C for 30 min in a nitrogen ambient. The formation of the GaN/GaAs interface improved the C V characteristics to some extent.

  7. Friction and wear properties of smooth diamond films grown in fullerene-argon plasmas

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Bindal, C.; Zuiker, C.; Krauss, A.R.; Gruen, D.M.

    1995-08-01

    In this study, we describe the growth mechanism and the ultralow friction and wear properties of smooth (20-50 nm rms) diamond films grown in a microwave plasma consisting of Ar and fullerene (the carbon source). The sliding friction coefficients of these films against Si{sub 3}N{sub 4} balls are 0.04 and 0.1 in dry N{sub 2} and air, which are comparable to that of natural diamond sliding against the same pin material, but is lower by factors of 5 to 10 than that afforded by rough diamond films grown in conventional H{sub 2}-CH{sub 4} plasmas. Furthermore, the smooth diamond films produced in this work afforded wear rates to Si{sub 3}N{sub 4} balls that were two to three orders of magnitude lower than those of H{sub 2}-CH{sub 4} grown films. Mechanistically, the ultralow friction and wear properties of the fullerene-derived diamond films correlate well with their initially smooth surface finish and their ability to polish even further during sliding. The wear tracks reach an ultrasmooth (3-6 nm rms) surface finish that results in very little abrasion and ploughing. The nanocrystalline microstructure and exceptionally pure sp{sup 3} bonding in these smooth diamond films were verified by numerous surface and structure analytical methods, including x-ray diffraction, high-resolution AF-S, EELS, NEXAFS, SEM, and TEM. An AFM instrument was used to characterize the topography of the films and rubbing surfaces.

  8. Investigation of local thermodynamic equilibrium of laser induced Al2O3-TiC plasma in argon by spatially resolved optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Alnama, K.; Alkhawwam, A.; Jazmati, A. K.

    2016-06-01

    Plasma plume of Al2O3-TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  9. On the difference between breakdown and quench voltages of argon plasma and its relation to 4p–4s atomic state transitions

    SciTech Connect

    Forati, Ebrahim Piltan, Shiva; Sievenpiper, Dan

    2015-02-02

    Using a relaxation oscillator circuit, breakdown (V{sub BD}) and quench (V{sub Q}) voltages of a DC discharge microplasma between two needle probes are measured. High resolution modified Paschen curves are obtained for argon microplasmas including a quench voltage curve representing the voltage at which the plasma turns off. It is shown that for a point to point microgap (e.g., the microgap between two needle probes) which describes many realistic microdevices, neither Paschen's law applies nor field emission is noticeable. Although normally V{sub BD} > V{sub Q,} it is observed that depending on environmental parameters of argon, such as pressure and the driving circuitry, plasma can exist in a different state with equal V{sub BD} and V{sub Q.} Using emission line spectroscopy, it is shown that V{sub BD} and V{sub Q} are equal if the atomic excitation by the electric field dipole moment dominantly leads to one of the argon's metastable states (4P{sub 5} in our study)

  10. Lead levels in fur of rats treated with inorganic lead measured by inductively coupled argon plasma mass spectrometry

    PubMed Central

    Lesage, François-Xavier; Deschamps, Frédèric; Millart, Hervé

    2010-01-01

    The aim of this study was to investigate the relationship between continuous lead exposure and the concentration of this metal in fur. The two main questions we wanted to answer were: 1) Are the fur lead concentrations different according to exposure level? 2) Is the kinetics of lead concentration linear in different compartments? For 12 weeks, 6 rats were force-fed with water containing lead acetate in the following quantities: 0.5 and 50 µg/day. Furs were sampled every two weeks. The lead content of the samples was measured by inductively coupled argon plasma mass spectrometry (ICP-MS). There was a statistical difference (p<0.0001) between fur lead concentration and the three groups (control, low level exposure and high level exposure), between fur lead concentration and time exposure (p<0.0001), and between fur lead concentration and each exposure group at different time exposure (p<0.0001). Thus the level exposure factor and the time exposure factor have an effect on fur lead concentration. Since the determination coefficients were weak for the two exposed groups (0.032 and 0.032), a linear correlation cannot be concluded. The kinetic curves of fur lead concentration are similar for all the exposition groups. Two peaks (at 2 and 8 weeks of exposure) were noted for the two exposed groups. This experimental study cannot conclude a linear relationship to exist between fur lead concentration and exposition duration. It highlights the lack of understanding of mechanisms involved in hair incorporation of metals and raises the question of a cyclic accumulation in hair. A better understanding of the kinetic incorporation of lead in body growths is required. PMID:21331176

  11. Estimation of Minimal Breakdown Point in a GaP Plasma Structure and Discharge Features in Air and Argon Media

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal; Tanrıverdi, Evrim

    2016-08-01

    We present gas discharge phenomena in argon and air media using a gallium phosphide (GaP) semiconductor and metal electrodes. The system has a large-diameter ( D) semiconductor and a microscaled adjustable interelectrode gap ( d). Both theoretical and experimental findings are discussed for a direct-current (dc) electric field ( E) applied to this structure with parallel-plate geometry. As one of the main parameters, the pressure p takes an adjustable value from 0.26 kPa to 101 kPa. After collection of experimental data, a new theoretical formula is developed to estimate the minimal breakdown point of the system as a function of p and d. It is proven that the minimal breakdown point in the semiconductor and metal electrode system differs dramatically from that in metal and metal electrode systems. In addition, the surface charge density σ and spatial electron distribution n e are calculated theoretically. Current-voltage characteristics (CVCs) demonstrate that there exist certain negative differential resistance (NDR) regions for small interelectrode separations (i.e., d = 50 μm) and low and moderate pressures between 3.7 kPa and 13 kPa in Ar medium. From the difference of currents in CVCs, the bifurcation of the discharge current is clarified for an applied voltage U. Since the current differences in NDRs have various values from 1 μA to 7.24 μA for different pressures, the GaP semiconductor plasma structure can be used in microwave diode systems due to its clear NDR region.

  12. Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Higashiguchi, T.; Yugami, N.; Bobrova, N.; Sentoku, Y.; Kodama, R.

    2013-11-01

    We have reported the argon plasma waveguide produced in an alumina (Al2O3) capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 1016 W/cm2. A one-dimensional magnetohydrodynamic (MHD) code was used to evaluate the average degree of ionization of Ar in the preformed plasma channel. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell (PIC) simulation under initial ion charge state of Ar3+ in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  13. Influence of the gas flow of Argon and the distance between substrate and plasma on properties of Al-doped zinc oxide films

    NASA Astrophysics Data System (ADS)

    Jiang, Y. J.; Zhang, D. X.; Cai, H. K.; Tao, K.; Xue, Y.; Sui, Y. P.; Wang, L. S.; Zhao, J. F.; Wang, J.

    2009-03-01

    Al-doped ZnO(ZAO) films were deposited by DC magnetron sputtering using facing zinc oxide targets at room temperature and in argon atmosphere. The effects of the gas flow of Argon and the distance between substrate and plasma on the properties of the ZAO thin films were characterized by several techniques. By optimizing the craft of preparation, the electrical resistivity as low as 3.3×10-4 Ω·cm and the optical transmittance over 80% in the visible range were obtained for these thin ZAO films. Therefore, the ZAO thin films were suitable for the window layers of n-i-p thin film solar cells or transparent conductive films.

  14. Numerical analysis of nitrogen-mixed argon plasma characteristics and injected particle behavior in an ICP torch for ultrafine powder synthesis

    SciTech Connect

    Park, J.H.; Hong, S.H.

    1995-08-01

    The ICP (inductively coupled plasma) torches have been extensively used for the synthesis of various ceramics and new materials as effective hot-temperature heat sources in the field of material processing. Here, a numerical model is presented for the analysis of plasma characteristics of an ICP torch and gas mixing effects on the plasma when a nitrogen gas is added into the argon plasma as a carrier or sheath gas at the torch inlet. The fluid equations describing the plasma flow and temperature fields and the diffusions between two different gases are solved along with a magnetic vector potential equation for electromagnetic fields. The trajectory and the temperature change with time for a particle injected into the plasma are also investigated by a plasma-particle interaction model to find out optimum injection conditions for the synthesis of ultra/fine nitride ceramic powders. It is found from the calculations that the nitrogen-mixed argon plasma with a nitrogen carrier gas for the reaction kinetics of nitride synthesis. It is also found that the radial injection through the holes of the tube wall is preferable to the axial injection at the torch inlet for the complete evaporation of injected particle and the effective chemical reaction of reactant vapor with nitrogen. For the radial injection in an ICP torch of 20 cm in axial length, the optimum injection locations and initial velocities of 50-{micro}m aluminum particles are found for synthesizing aluminum nitride are in the range of 6{approximately}12 cm apart from the torch inlet and over 15 m/s, respectively.

  15. Laser Optogalvanic Spectroscopy pf Neon and Argon in a Discharge Plasma and its Significance for Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Misra, Prabhakar; Haridass, C.; Major, H.

    1999-01-01

    A detailed study of combustion mechanisms in flames, employing laser-based diagnostics, has provided good knowledge and understanding of the physical phenomena, and led to better characterization of the dynamical and chemical combustion processes, both under low-gravity (in space) and normal gravity (in ground based facilities, e.g. drop towers). Laser induced fluorescence (LIF), laser-induced incandescence (LII) and LIF thermometry have been widely used to perform nonintrusive measurements and to better understand combustion phenomena. Laser optogalvanic (LOG) spectroscopy has well-established applications in ion mobility measurements, atomic and molecular spectroscopy, ionization rates, recombination rates, velocity measurements and as a combustion probe for trace element detection. Absorption spectra of atomic and molecular species in flames can be obtained via LOG spectroscopy by measuring the voltage and current changes induced by laser irradiation. There are different kinds of processes that contribute to a discharge current, namely: (1) electron impact ionization, (2) collisions among the excited atoms of the discharge species and (3) Penning ionization. In general, at higher discharge currents, the mechanism of electron impact ionization dominates over Penning ionization, whereby the latter is hardly noticeable. In a plasma, whenever the wavelength of a laser coincides with the absorption of an atomic or molecular species, the rate of ionization of the species momentarily increases or decreases due to laser-assisted acceleration of collisional ionization. Such a rate of change in the ionization is monitored as a variation in the transient current by inserting a high voltage electrode into the plasma. Optogalvanic spectroscopy in discharges has been useful for characterizing laser line-widths and for providing convenient calibration lines for tunable dye lasers in the ultraviolet, visible and infrared wavelength regions. Different kinds of quantitative

  16. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application

    NASA Astrophysics Data System (ADS)

    Ulliac, G.; Calero, V.; Ndao, A.; Baida, F. I.; Bernal, M.-P.

    2016-03-01

    Lithium Niobate (LN) exhibits unique physical properties such as remarkable electro-optical coefficients and it is thus an excellent material for a wide range of fields like optic communications, lasers, nonlinear optical applications, electric field optical sensors etc. In order to further enhance the optical device performance and to be competitive with silicon photonics, sub-micrometric thickness lithium niobate films are crucial. A big step has been achieved with the development of LN thin films by using smart cut technology and wafer bonding and these films are nowadays available in the market. However, it is a challenge to obtain the requirements of the high quality thin LN film waveguide. In this letter, we show smooth ridge waveguides fabricated on 700 nm thickness thin film lithium niobate (TFLN). The fabrication has been done by developing and optimizing three steps of the technological process, the mask fabrication, the plasma etching, and a final cleaning wet etching step in order to remove the lithium niobate redeposition on the side walls. We have obtained single mode propagation with light overall losses of only 5 dB/cm.

  17. A Prospective Randomized Experimental Study to Investigate the Eradication Rate of Endometriosis after Surgical Resection versus Aerosol Plasma Coagulation in a Rat Model

    PubMed Central

    Rothmund, Ralf; Scharpf, Marcus; Tsaousidis, Christos; Planck, Constanze; Enderle, Markus Dominik; Neugebauer, Alexander; Kroeker, Kristin; Nuessle, Daniela; Fend, Falko; Brucker, Sara; Kraemer, Bernhard

    2016-01-01

    Purpose To investigate the eradication rate of endometriosis after surgical resection (SR) vs. thermal ablation with aerosol plasma coagulation (AePC) in a rat model. Methods In this prospective, randomized, controlled, single-blinded animal study endometriosis was induced on the abdominal wall of 34 female Wistar rats. After 14 days endometriosis was either removed by SR or ablated by AePC. 14 days later the rats were euthanized to evaluate the eradication rate histopathologically. Intervention times were recorded. Results Eradication rate of endometriosis after 14 days did not significantly differ between AePC and SR (p=0.22). Intervention time per endometrial lesion was 22.1 s for AePC and 51.8 s for SR (p<0.0001). Conclusions This study compares the eradication rate of the new aerosol plasma coagulation device versus standard surgical resection of endometriosis in a rat model. Despite being a thermal method, AePC showed equality towards SR regarding eradication rate but with significantly shorter intervention time. PMID:26941579

  18. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.

  19. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    SciTech Connect

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-07-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function.

  20. [Samples in Coagulation Test].

    PubMed

    Komiyama, Yutaka

    2015-12-01

    An understanding and ability to develop a strategy to prevent pre-analytical errors of laboratory tests in the hemostasis area are two of the most important skills of medical technologists and related doctors. Recently, the working group for standardization of sampling in coagulation tests is working towards a consensus. This article reviews a summary of the consensus: (1) The anticoagulant for coagulation tests is 3.13-3.2% sodium citrate at a ratio of 1:9 to whole blood and the accuracy of the ratio is within 10%. (2) Blood sampling is achieved with the use of a 21-23G needle and coagulation. Blood sampling can be achieved by both a syringe and vacuum tube system. After taking blood, laboratory tests such as of the prothrombin time (PT) and activated partial thromboplastin time (APTT) should be completed within one hour and the storage temperature should be at room temperature, not ice-cold conditions. 3) To prepare a plasma sample, citrated blood is centrifuged at 1,500 x g for 15 min at room temperature to minimize the remaining platelets in plasma (below 10,000/microL at least). PMID:27089656

  1. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu, Jin; Lei, Wenqi; Bai, Xueshi; Zheng, Lijuan; Zeng, Heping

    2012-03-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  2. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    NASA Astrophysics Data System (ADS)

    Saikia, Partha; Saikia, Bipul Kumar; Bhuyan, Heman

    2016-04-01

    We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te), electron density (ne), ion density (ni), degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  3. Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure

    SciTech Connect

    Bai Xueshi; Ma Qianli; Motto-Ros, Vincent; Yu Jin; Sabourdy, David; Nguyen, Luc; Jalocha, Alain

    2013-01-07

    We studied the behavior of the plasma induced by a nanosecond infrared (1064 nm) laser pulse on a metallic target (Al) during its propagation into argon ambient gas at the atmospheric pressure and especially over the delay interval ranging from several hundred nanoseconds to several microseconds. In such interval, the plasma is particularly interesting as a spectroscopic emission source for laser-induced plasma spectroscopy (LIBS). We show a convoluted effect between laser fluence and pulse duration on the structure and the emission property of the plasma. With a relatively high fluence of about 160 J/cm{sup 2} where a strong plasma shielding effect is observed, a short pulse of about 4 ns duration is shown to be significantly more efficient to excite the optical emission from the ablation vapor than a long pulse of about 25 ns duration. While with a lower fluence of about 65 J/cm{sup 2}, a significantly more efficient excitation is observed with the long pulse. We interpret our observations by considering the post-ablation interaction between the generated plume and the tailing part of the laser pulse. We demonstrate that the ionization of the layer of ambient gas surrounding the ablation vapor plays an important role in plasma shielding. Such ionization is the consequence of laser-supported absorption wave and directly dependent on the laser fluence and the pulse duration. Further observations of the structure of the generated plume in its early stage of expansion support our explanations.

  4. UPLC-MRM Mass Spectrometry Method for Measurement of the Coagulation Inhibitors Dabigatran and Rivaroxaban in Human Plasma and Its Comparison with Functional Assays

    PubMed Central

    Kuhn, Joachim; Gripp, Tatjana; Flieder, Tobias; Dittrich, Marcus; Hendig, Doris; Busse, Jessica; Knabbe, Cornelius; Birschmann, Ingvild

    2015-01-01

    Introduction The fast, precise, and accurate measurement of the new generation of oral anticoagulants such as dabigatran and rivaroxaban in patients’ plasma my provide important information in different clinical circumstances such as in the case of suspicion of overdose, when patients switch from existing oral anticoagulant, in patients with hepatic or renal impairment, by concomitant use of interaction drugs, or to assess anticoagulant concentration in patients’ blood before major surgery. Methods Here, we describe a quick and precise method to measure the coagulation inhibitors dabigatran and rivaroxaban using ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring (MRM) mode (UPLC-MRM MS). Internal standards (ISs) were added to the sample and after protein precipitation; the sample was separated on a reverse phase column. After ionization of the analytes the ions were detected using electrospray ionization-tandem mass spectrometry. Run time was 2.5 minutes per injection. Ion suppression was characterized by means of post-column infusion. Results The calibration curves of dabigatran and rivaroxaban were linear over the working range between 0.8 and 800 μg/L (r >0.99). Limits of detection (LOD) in the plasma matrix were 0.21 μg/L for dabigatran and 0.34 μg/L for rivaroxaban, and lower limits of quantification (LLOQ) in the plasma matrix were 0.46 μg/L for dabigatran and 0.54 μg/L for rivaroxaban. The intraassay coefficients of variation (CVs) for dabigatran and rivaroxaban were < 4% and 6%; respectively, the interassay CVs were < 6% for dabigatran and < 9% for rivaroxaban. Inaccuracy was < 5% for both substances. The mean recovery was 104.5% (range 83.8–113.0%) for dabigatran and 87.0% (range 73.6–105.4%) for rivaroxaban. No significant ion suppressions were detected at the elution times of dabigatran or rivaroxaban. Both coagulation inhibitors were stable in citrate plasma at -20°C, 4

  5. An assessment of prominent lines in inductively-coupled argon plasmas with special reference to spectrographic general survey analysis

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.

    About 600 prominent lines for inductively-coupled plasma-atomic emission spectrometry (ICP-AES) using an argon ICP were studied with the triple objective of (1) compiling a library of prominent lines for spectrographic general survey analysis in this laboratory, (2) comparing the detection limits and sensitivities of the lines with literature data, in particular those in the author's Line Coincidence Tables for ICP-AES [Pergamon Press, Oxford (1980)], and (3) providing a list of lines with "universal" sensitivities that can be generally used for semiquantitative analysis. A 50 MHz ICP operated under compromise conditions and spectrographic detection were used. The latter limited the wavelength region of the prominent lines covered to a range between 235 and 446 nm. For 598 lines listed in the Line Coincidence Tables (LCT) the paper presents the visually estimated detection limits and an assessment of band interferences in regions of ±0.05nm about the prominent lines. Similar data are presented for 88 computer predicted, supplementary prominent lines [Spectrochim. Acta 36B, 169 (1981)] for which the predictions came true. For the 383 prominent lines located between 252 and 446 nm densitometrically determined detection limits and sensitivities are given. The sensitivities were converted to a "universal scale", independent of the spectral characteristics of the optics and the detector. The results of the visual and densitometric determinations are compared mutually and with the data given in the LCT, which are primarily based on the experimental work of Winge et al. [Appt. Specirosc. 33, 206 (1979)]; consequently the present paper also assesses the extent to which data for prominent lines can be transferred from the one ICP to the other, if both are operated under compromise conditions. The conversion of sensitivities on the "universal scale" to a scale applicable to a particular apparatus using the corresponding spectral distributions of the background intensity is

  6. Comment on ‘Correlating metastable-atom density, reduced electric field, and electron energy distribution in the post-transient stage of a 1 Torr argon discharge’ (2015 Plasma Source Sci. Technol. 24 034009)

    NASA Astrophysics Data System (ADS)

    Sadeghi, N.

    2016-06-01

    Several important errors and misinterpretations present in a recent publication by Franek et al (2015 Plasma Source Sci. Technol. 24 034009) are pointed out and discussed. In particular, it is shown that the electron densities deduced by the resonance cavity frequency shift technique are highly underestimated. So the conclusion of authors on validity of the method for the estimate of argon metastable density from the 420.1/419.8 nm emission intensity ratio is not justified. In a recent publication, hereafter referred as (Franek et al 2015 Plasma Sources Sci. Technol. 24 034009), Franek et al have studied the correlation existing in argon plasma between 420.1/419.8 nm emission intensity ratio and combined metastable atoms density (Arm), electron density (n e) and reduced electric field (E/N). Experiments were carried out in a 1 Torr argon plasma afterglow, during which Arm was measured by Diode-Laser absorption and n e by frequency shift of a μ-wave resonance cavity into which the plasma tube was inserted. Authors concluded that in any argon plasma Arm can be deduced, without directly measuring it, from the 420.1/419.8 nm emission intensity ratio, provided that n e and E/N are known. The purpose of this comment is to point out several important errors present in that paper, dealing mostly with electron density measurement.

  7. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  8. Detection of fast electrons in pulsed argon inductively-coupled plasmas using the 420.1-419.8 nm emission line pair

    NASA Astrophysics Data System (ADS)

    Boffard, John B.; Wang, S.; Lin, Chun C.; Wendt, A. E.

    2015-12-01

    Pulsed rf plasmas exhibit many differences as compared to continuous wave plasmas with the same average power levels, including large temporal variations in the electron temperature, with a sharp spike when the power is applied and falling dramatically in the afterglow. We present a comparison of time-resolved measurements of the effective electron temperature in pulsed inductively-coupled plasmas by means of (i) optical emission spectroscopy (OES) using different sets of argon emission lines and (ii) Langmuir probe measurements. One OES diagnostic used six strong Ar(2{{\\text{p}}x}\\to 1{{\\text{s}}y} ) emission lines in the 700-800 nm wavelength range, the second used only the Ar 420.1-419.8 nm line pair. For pulsed plasmas with long afterglow periods, the line pair method reveals the presence of a significant number of hot electrons (E≥slant 22 eV) at the start of the pulse. Under these conditions, the metastable atom density is very low, and the diagnostic using the Ar(2{{\\text{p}}x}\\to 1{{\\text{s}}y} ) emission lines is ineffective for determining the electron temperature. For later parts of the pulse and pulsed plasmas with short periods (i.e. 10 μs), the metastable density is high and the two OES methods yield similar results which are also in agreement with probe measurements.

  9. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS) - induced sepsis

    PubMed Central

    Kolte, D; Bryant, JW; Gibson, GW; Wang, J; Shariat-Madar, Z

    2016-01-01

    The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged aPPT without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both activated partial thromboplastin time (aPTT) and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases. PMID:22352684

  10. Enhancement of intensities in glow discharge mass spectrometry by using mixtures of argon and helium as plasma gases.

    PubMed

    Lange, Britta; Matschat, Ralf; Kipphardt, Heinrich

    2007-12-01

    Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas. PMID:17940753

  11. Nonstationary argon plasma, containing Ne-like and Na-like ions. ``fast compression'' and population inversion

    NASA Astrophysics Data System (ADS)

    Ivanov, L. N.; Knight, L. V.

    1995-05-01

    Evolution of levels populations in Ar plasma with varying parameters is under theoretical investigation. The model imitates fast compression and expansion of the capillary plasma column. The role of the HYDROGEN admixture is discussed.

  12. Two major proteins from locust plasma are involved in coagulation and are specifically precipitated by laminarin, a beta-1,3-glucan.

    PubMed

    Duvic, B; Brehélin, M

    1998-12-01

    Incubation of plasma of the locust Locusta migratoria, with laminarin induced the precipitation of two major proteins with molecular masses of about 260,000 (P260) and 85,000 Da (P85). This precipitation was not observed when other polysaccharides, such as curdlan, dextran, chitin, cellulose or mannan were used. P260 and P85 were purified to homogeneity by a single step on heparin-sepharose chromatography. Since all attempts to separate P260 from P85, other than the use of sodium dodecyl sulfate, were unsuccessful, it is likely that these two molecules form a complex non-covalently associated. Treatment of P260-P85 complex with N-glycosidase F showed that P260 did not appear to be glycosylated whereas 6% of P85 molecular mass was due to N-linked carbohydrates. On the other hand, no change in molecular masses of P260 or P85 was observed once the complex had been treated with lipase. SDS-PAGE and Western blots of plasma and serum stained with blue Coomassie for proteins or with highly specific polysera to P260 or P85, respectively, showed that P260 was only present in plasma and P85 remained in both samples. This indicates that P260 is likely to be one of the most abundant plasma proteins directly involved in the coagulation process in Locusta migratoria. The addition of plasma or P260-P85 complex to a hemocyte lysate supernatant prior to its activation by laminarin induced a lower protease as well as phenoloxidase activity compared with the control. This reduction of activities was not observed in the presence of serum or when P260-P85 complex was added to a fully activated proPO system. PMID:9887512

  13. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    SciTech Connect

    Qi, Bing Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{sup 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.

  14. GaN Etch Rates Compared with Atomic Chlorine Density and Ion Flux in an Argon/Chlorine Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Mahony, C. M. O.; Rizvi, S. A.; Maguire, P. D.; Garcia, F.; Graham, W. G.

    2004-09-01

    We present GaN etch rates (maximum 700nm/min), atomic chlorine densities (via Laser Induced Fluorescence at 200W RF power), positive ion densities (Langmuir probe) and positive ion wall flux (capacitive planar probe) using an Inductively Coupled Plasma as a function of chlorine in argon gas fraction from 0% to 100% at maximum RF power and pressure of 400 W and 20 mTorr respectively. In general, with chlorine addition, etch rates rise initially then tend to saturate at fractions above 50% Cl_2. Wall flux and n^+ approximate the inverse of this behaviour. The atomic chlorine density at 200W RF power rises monotonically with a pronounced inflection near 50% Cl_2. The positive ion wall flux - atomic chlorine density product strongly correlates with etch rate suggesting physical etching dominates below 50% Cl2 and chemical processes above. This is reflected in changes of the Ga/N surface stoichiometry, determined by XPS analysis.

  15. Temporally and spectrally resolved observation of a crossed-flow DBD plasma jet using pure helium and argon/acetone mixed gases

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Sands, Brian L.; Ganguly, Biswa N.; Sakai, Osamu

    2012-06-01

    A crossed gas flow dielectric barrier discharge plasma jet using vertical pure helium and tilted argon/acetone mixed gases is investigated in this study, mainly by an intensified charge-coupled device (ICCD) camera. We have observed ionization-front propagation and transient glow discharge formation following the rise of the applied voltage pulse. A secondary discharge with a reverse polarity was ignited during the falling slope of the applied voltage pulse. In order to analyze excited-species distribution inside the discharge, optical interference filters were placed in front of the ICCD camera with the center wavelengths set at the excited species' transition. The imaging results revealed detailed discharge structures around the crossing point of the two gas flows including bridging emission between the two flows that changed position with time. We also discuss the ignition mechanisms of the secondary discharge considering effects of accumulated charge during the primary discharge and changes in the channel conductivity following the primary discharge.

  16. Surface force measurements between titanium dioxide surfaces prepared by atomic layer deposition in electrolyte solutions reveal non-DLVO interactions: influence of water and argon plasma cleaning.

    PubMed

    Walsh, Rick B; Evans, Drew; Craig, Vincent S J

    2014-03-01

    Surface force measurements between titania surfaces in electrolyte solutions have previously revealed an unexplained long-range repulsive force at high pH, not described by Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Here, the surface forces between titania surfaces produced by atomic layer deposition (ALD) and cleaned using a variety of methods have been measured to determine the influence of the cleaning protocol on the measured forces and test the hypothesis that water plasma cleaning of the surface results in non-DLVO forces at high pH. For argon plasma and water plasma cleaned surfaces, a diffuse double layer repulsion and van der Waals attraction is observed near the isoelectric point. At high pH, the force remained repulsive up until contact, and no van der Waals attraction or adhesion was observed. Differences in the measured forces are explained by modification of the surface chemistry during cleaning, which alters the density of charged groups on the surface, but this cannot explain the observed disagreement with DLVO theory at high pH. PMID:24548170

  17. A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet

    NASA Astrophysics Data System (ADS)

    Boekema, B. K. H. L.; Vlig, M.; Guijt, D.; Hijnen, K.; Hofmann, S.; Smits, P.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P.; Middelkoop, E.

    2016-02-01

    Cold plasma has been shown to provide a promising alternative antimicrobial treatment for wound healing. We developed and tested a flexible surface dielectric barrier discharge (DBD) and compared it to an argon gas based plasma jet operated remotely with a distance between plasma plume and sample of 8 mm. Tests were conducted using different models: on cultured cells, on ex vivo human skin and on bacteria (Pseudomonas aeruginosa) (on agar, in suspension, in collagen/elastin matrix or on ex vivo human skin), allowing us to directly compare bactericidal with safety aspects under identical conditions. Both plasma devices were highly efficient when used on bacteria in non-buffered solutions, but DBD was faster in reaching the maximum bacterial reduction. Treatment of bacteria on intact skin with DBD resulted in up to 6 log reductions in 3 min. The jet was far less efficient on intact skin. Even after 8 min treatment no more than 2 log reductions were obtained with the jet. Treatment of bacteria in burn wound models with DBD for 6 min resulted in a 4.5 log reduction. Even when using DBD for 6 min on infected burn wound models with colonizing or biofilm phase bacteria, the log reductions were 3.8 or 3.2 respectively. DBD plasma treatment for 6 min did not affect fibroblast viability, whereas a treatment for 8 min was detrimental. Similarly, treatment with DBD or plasma jet for 6 min did also not affect the metabolic activity of skin biopsies. After treatment for 8 min with DBD or plasma jet, 78% or 60% of activity in skin biopsies remained, respectively. Multiple treatments of in vitro burn wound models with surface DBD for 6 min or with plasma jet for 8 min did not affect re-epithelialization. With the flexible surface DBD plasma strip we were able to quickly inactivate large numbers of bacteria on and in skin. Under the same conditions, viability of skin cells or re-epithelialization was not affected. The DBD source has potential for treating

  18. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  19. Observation of inactivation of Bacillus sbtilis spores under exposures of oxygen added argon atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Zhao, Ying; Xiao, Dezhi; Lan, Yan; Xie, Hongbing; Cheng, Junli; Meng, Yuedong; Li, Jiangang; Chu, Paul K.

    2014-11-01

    The inactivation of Bacillus subtilis spores by an Ar plasma jet mixed with different amounts of oxygen is reported. 5.8 × 106 B. subtilis spores are sterilized by an Ar/O2 (8.7%) plasma jet after exposure for 2 min. The densities of ozone and oxygen radicals in the Ar/O2 plasma jet increase with oxygen concentration and are estimated by optical spectroscopy diagnostic. The malondialdehyde (MDA) test shows that oxygen radicals participate in bacterial inactivation. Scanning electron microscopy (SEM) reveals the deformation of the spore shape due to etching by oxygen radicals and the dependence of the degree of deformation on the density of oxygen radicals.

  20. Bustling argon: biological effect

    PubMed Central

    2013-01-01

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option. PMID:24088583

  1. Modification and optimization of a 50 MHz inductively coupled argon plasma with special reference to analyses using organic solvents

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.; Lux-Steiner, M. Ch.

    The torch and nebulizer of an existing argon ICP system were modified and the system was (re-) optimized for aqueous and organic liquids. The paper describes the design considerations and construction of (1) a new, streamlined torch including a torch base used in this study, where a demountable rather than a prealigned version of the torch was preferred; (2) a cross-flow pneumatic nebulizer with adjustable teflon capillaries including a spray chamber with flow spoiler, concentric aerosol pick-up tube, and "U" tube with unequal legs to smooth the flow of wasted liquid to the drain. The (re)-optimization of the ICP system for analysis of aqueous solutions with inorganic matter or with both inorganic and organic matter is discussed in the light of earlier work in this laboratory regarding the selection of "compromise conditions" and the choice of representative spectral lines and measurement criteria for establishing such compromise conditions. In this context the authors consider the concepts of norm temperature and "hard" and "soft" lines, as well as recent results of measurements of spatial distributions in ICPs. The authors further describe experiments aimed at the optimization of the operating conditions of an "organic ICP" using methyl isobutyl ketone (MIBK) as organic solvent. Trends of net line and background signals and signal-to-background ratios with the ICP parameters (power; outer, intermediate and carrier gas flow; observation height; liquid feed rate) are reported, and a rational choice of compromise conditions for the ICP is argued. Performance characteristics of the modified ICP system, such as detection limits, precision and interference level, achieved under compromise conditions, have been communicated in a previous report [ Spectrochim. Acta36B, 1031 (1981)] to demonstrate the capabilities of the system for analysis of aqueous solutions. Detection limits in MIBK and oil diluted in MIBK are reported in the present work as an illustration of the

  2. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    ... medlineplus.gov/ency/article/000573.htm Disseminated intravascular coagulation (DIC) To use the sharing features on this page, please enable JavaScript. Disseminated intravascular coagulation is a serious disorder in which the proteins ...

  3. Impact of cold atmospheric pressure argon plasma on antibiotic sensitivity of methicillin-resistant Staphylococcus aureus strains in vitro

    PubMed Central

    Lührmann, Anne; Matthes, Rutger; Kramer, Axel

    2016-01-01

    Aim: The antimicrobial activity of cold atmospheric pressure plasma (CAP), also called tissue tolerable plasma (TTP), could be a promising option to eradicate methicillin-sensitive as well as methicillin-resistant Staphylococcus aureus strains, which often colonize chronic wounds. Currently, the influence of CAP on the susceptibility of S. aureus to antibiotics is scarcely known, but could be important for treatment of wounds. Therefore, the aim of this study was to investigate whether CAP has an impact on the susceptibility of different S. aureus strains to different antibiotics. Method: For assessment, the agar diffusion test with different antibiotic test disks (cefuroxime, gentamicin, oxacillin, vancomycin, ciprofloxacin, co-trimoxazole, clindamycin, erythromycin) was used. Test strains were spread on agar plates and CAP treated before the antibiotic disks were placed. After 24 hours cultivation, the inhibited growth zones were measured and differences statistically evaluated. Results: In most cases, CAP had a negligible influence on the susceptibility to antibiotics. For two strains, the susceptibility significantly decreased to β-lactam antibiotics. Conclusion: Because CAP can influence the antibiotic susceptibility of S. aureus, before conducting combined treatment with local plasma application on wounds and systemic antibiotics, their interaction must be analysed in vitro to exclude unwanted combination effects. PMID:27610332

  4. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  5. Enhanced ozone production in a pulsed dielectric barrier discharge plasma jet with addition of argon to a He-O2 flow gas

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Ganguly, Biswa; Scofield, James

    2013-09-01

    Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at <20 kHz pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and <3 W input power at a 12 kHz turnover frequency. A further increase in the repetition frequency results in increased discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.

  6. Density of atoms in Ar*(3p{sup 5}4s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    SciTech Connect

    Huebner, S.; Carbone, E. A. D.; Mullen, J. J. A. M. van der; Sadeghi, N.

    2013-04-14

    This study presents the absolute argon 1 s (in Paschens's notation) densities and the gas temperature, T{sub g}, obtained in a surfatron plasma in the pressure range 0.6510 mbar, for which the pressure broadening can no more be neglected. T{sub g} is in the range of 480-750 K, increasing with pressure and decreasing with the distance from the microwave launcher. Taking into account the line of sight effects of the absorption measurements, a good agreement is found with our previous measurements by Rayleigh scattering of T{sub g} at the tube center. In the studied pressure range, the Ar(4 s) atom densities are in the order of 10{sup 16}-10{sup 18} m{sup -3}, increasing towards the end of the plasma column, decreasing with the pressure. In the low pressure side, a broad minimum is found around 10

  7. Irradiation influence on Mylar and Makrofol induced by argon ions in a plasma immersion ion implantation system

    NASA Astrophysics Data System (ADS)

    Hassan, A.; El-Saftawy, A. A.; Aal, S. A. Abd El; Ghazaly, M. El

    2015-08-01

    Mylar and Makrofol polycarbonate polymers were irradiated by Ar ions in a plasma immersion ion implantation (PIII) system. The surface wettability of both polymers was investigated by employing the contact angle method. The measured contact angles were found to depend on the surface layer properties. Good wetting surfaces were found to depend not only on surface roughness but also on its chemistry that analyzed by Fourier transform infrared (FTIR) spectroscopy. Surfaces topography and roughness was investigated and correlated to their surface energy which studied with the aid of acid-base model for evaluating the improvement of surface wettability after irradiation. PIII improves polymers surface properties efficiently in a controllable way.

  8. Phenol Decomposition Process by Pulsed-discharge Plasma above a Water Surface in Oxygen and Argon Atmosphere

    NASA Astrophysics Data System (ADS)

    Shiota, Haruki; Itabashi, Hideyuki; Satoh, Kohki; Itoh, Hidenori

    By-products from phenol by the exposure of pulsed-discharge plasma above a phenol aqueous solution are investigated by gas chromatography mass spectrometry, and the decomposition process of phenol is deduced. When Ar is used as a background gas, catechol, hydroquinone and 4-hydroxy-2-cyclohexene-1-on are produced, and no O3 is detected; therefore, active species such as OH, O, HO2, H2O2, which are produced from H2O in the discharge, can convert phenol into those by-products. When O2 is used as a background gas, formic acid, maleic acid, succinic acid and 4,6-dihydroxy-2,4-hexadienoic acid are produced in addition to catechol and hydroquinone. O3 is produced in the discharge plasma, so that phenol is probably decomposed into 4,6-dihydroxy-2,4-hexadienoic acid by 1,3-dipolar addition reaction with O3, and then 4,6-dihydroxy-2,4-hexadienoic acid can be decomposed into formic acid, maleic acid and succinic acid by 1,3-dipolar addition reaction with O3.

  9. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    PubMed

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  10. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu

    PubMed Central

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  11. Use of a nitrogen-argon plasma to improve adherence of sputtered titanium carbide coatings on steel

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440-C steel surfaces that had been RF-sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that a small partial pressure of nitrogen (about 0.5%) markedly improves the adherence, friction, and wear properties when compared with coatings applied on sputter-etched oxidized surfaces or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  12. Experimental control of the solvent load of inductively coupled argon plasmas and effects of the chloroform plasma load on their analytical performance

    NASA Astrophysics Data System (ADS)

    Maessen, F. J. M. J.; Kreuning, G.; Balke, J.

    The solvent plasma load ( QSPL) of water, methanol and chloroform was established as a function of the liquid uptake rate ( QL) by using a continuous weighing method for recording the rate differences between the relevant liquid streams. The shape of the QL vs QSPL curves revealed that the liquid uptake rate is a parameter much too insensitive to serve as a criterion for assessing the stability of "organic" plasmas. The quantity "maximum tolerable solvent plasma load" is suggested as a more useful criterion. Effects of rf power, observation height and solvent plasma load on the properties of chloroform inductively coupled plasmas (ICPs) are reported. The measurement of the axial distribution of net line intensities of representative spectral lines showed that the behaviour of emission lines as to their "hardness" is essentially the same in ICPs loaded with chloroform or water. The chloroform plasma load was regulated by the use of a condenser of which the temperature was varied in a range between -50°C and +20°C. Analytical performance characteristics such as net line and background intensities, signal-to-background ratios, and relative standard deviations of the background signal are presented for ICPs with various chloroform loads. Two sets of experimental conditions were finally selected for simultaneous multielement analysis of chloroform solvent solutions, one with and one without aerosol cooling. In the case that aerosol cooling was applied, the detection limits were similar to those for aqueous plasmas. Without aerosol cooling the detection limits were up to an order of magnitude poorer. An attempt has been made to catagorize organic solvents on the basis of both volatility and their behaviour in ICP systems. For a better understanding of the consequences of solvent volatility in ICP-AES it is of importance to consider separately the properties that determine the volatility of liquids, viz. the evaporation rate and the saturation vapour pressure.

  13. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    PubMed

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells. PMID:27121589

  14. Characterization of the behavior of chemically reactive species in a nonequilibrium inductively coupled argon-hydrogen thermal plasma under pulse-modulated operation

    SciTech Connect

    Ye, Rubin; Ishigaki, Takamasa; Taguchi, Hiroyuki; Ito, Shigeru; Murphy, Anthony B.; Lange, Hubert

    2006-11-15

    The temporal and spatial dependence of species densities in a pulse-modulated inductively coupled plasma (PM-ICP) in an argon-hydrogen mixture was investigated by means of numerical modeling, taking into account time dependence, two temperatures, and chemical nonequilibrium, and also through spectroscopic measurements. Conservation equations for mass, momentum, electron energy, heavy-species energy, each species, and the electromagnetic field were developed and solved self-consistently. The transient behavior of the mass fraction of each species was determined by including chemical kinetics source terms in the species conservation equations. Fourteen chemical reactions involving seven species (e, Ar, Ar{sup +}, H{sub 2}, H{sub 2}{sup +}, H, and H{sup +}) were considered. The transport properties were evaluated based on the local species densities using the first-order approximation of the Chapman-Enskog method. Time-resolved electron density profiles were obtained from measurements of the Stark broadening of the H{sub {beta}} line (486.1 nm), performed using an optical system positioned using a stepper motor. The investigations were conducted for a maximum power level of 11.7 kW with a duty factor of 66.7% and at a pressure of 27 kPa. Reasonable agreement was found between the predicted and measured electron densities. The electron density in the discharge region varied considerably over a pulse cycle, while the hydrogen atom density remained high throughout the cycle, and peaked in a region that has been experimentally demonstrated to have optimal efficiency for hydrogen doping of materials. The main mechanisms responsible for the production of the relevant species in the PM-ICP are discussed.

  15. Assessment of Coagulation and Fibrinolysis in Pre-eclampsia

    PubMed Central

    Wood, S. M.; Burnett, D.; Picken, A. M.; Farrell, G. W.; Wolf, P.

    1974-01-01

    A method is described for distinguishing coagulation from fibrinolysis by three estimates of fibrinogen. This “fibrinogen series” together with plasma antithrombin and urinary urokinase have been compared in pregnant patients with venous thrombosis and pre-eclampsia. Evidence is presented for active coagulation during deterioration of the pre-eclampsia state and for enhanced fibrinolysis during improvement. PMID:4596483

  16. Polyphosphate, Platelets, and Coagulation

    PubMed Central

    Travers, Richard J.; Smith, Stephanie A.; Morrissey, James H.

    2015-01-01

    While we have understood the basic outline of the enzymes and reactions that make up the traditional blood coagulation cascade for many years, recently our appreciation of the complexity of these interactions has greatly increased. This has resulted in unofficial “revisions” of the coagulation cascade to include new amplification pathways and connections between the standard coagulation cascade enzymes, as well as the identification of extensive connections between the immune system and the coagulation cascade. The discovery that polyphosphate is stored in platelet dense granules and is secreted during platelet activation has resulted in a recent burst of interest in the role of this ancient molecule in human biology. Here we review the increasingly complex role of platelet polyphosphate in hemostasis, thrombosis, and inflammation that has been uncovered in recent years, as well as novel therapeutics centered on modulating polyphosphate’s roles in coagulation and inflammation. PMID:25976958

  17. First principles transport coefficients and reaction rates of Ar{sub 2}{sup +} ions in argon for cold plasma jet modeling

    SciTech Connect

    Chicheportiche, Alexandre; Benhenni, Malika; Yousfi, Mohammed; Stachoň, Martin; Kalus, René; Gadéa, Florent Xavier

    2014-10-07

    Momentum-transfer collision cross-sections and integral collision cross-sections for the collision-induced dissociation are calculated for collisions of ionized argon dimers with argon atoms using a nonadiabatic semiclassical method with the electronic Hamiltonian calculated on the fly via a diatomics-in-molecules semiempirical model as well as inverse-method modeling based on simple isotropic rigid-core potential. The collision cross-sections are then used in an optimized Monte Carlo code for evaluations of the Ar{sub 2}{sup +} mobility in argon gas, longitudinal diffusion coefficient, and collision-induced dissociation rates. A thorough comparison of various theoretical calculations as well as with available experimental data on the Ar{sub 2}{sup +} mobility and collision cross-sections is performed. Good agreement is found between both theoretical approaches and the experiment. Analysis of the role of inelastic processes in Ar{sub 2}{sup +}/Ar collisions is also provided.

  18. Argon/UF6 plasma exhaust gas reconstitution experiments using preheated fluorine and on-line diagnostics. [fissioning uranium plasma core reactor design

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.

  19. Powder evolution at low powers in silane-argon discharge

    SciTech Connect

    Chaudhuri, P.; Gupta, N. Dutta; Bhaduri, A.; Longeaud, C.; Vignoli, S.; Marty, O.

    2005-08-15

    Powder formation in a 13.56-MHz radio frequency (rf) capacitive glow discharge plasma of silane-argon mixture has been studied by in situ laser light-scattering measurements. The rf power density (P{sub rf}) was varied from 18 to 53 mW/cm{sup 2}. At high P{sub rf} the light scattering occurs all along the discharge and extends even beyond the exit end of the electrodes toward the pumping system. With decreasing P{sub rf} the maximum intensity of the light scattering decreases and the scattering zone shrinks and moves toward the exit end. With P{sub rf}{approx_equal}20 mW/cm{sup 2} a very bright scattering zone only a few centimeters wide appears located at the electrodes outlet. The powders studied by transmission electron microscopy did not show a drastic decrease of their sizes with P{sub rf} though clear coagulation of small particles is observed at high P{sub rf}. In this paper we have tried to link the laser light-scattering evolution with P{sub rf} to various parameters such as the microstructure factor, the deposition rate, the electron mobilityxlifetime product, the density of states, and the minority-carriers diffusion length of the films in an attempt to link the effect the evolution of powder formation to the films properties.

  20. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  1. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    ... Jr, Silberstein LE, et al, eds. Hematology: Basic Principles and Practice . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 141. Thachil J, Toh CH. Current concepts in the management of disseminated intravascular coagulation. Thromb Res . 2012;129 ...

  2. A sample introduction system for an inductively coupled plasma operating on an argon carrier gas flow of 0.1 l/min

    NASA Astrophysics Data System (ADS)

    Ripson, P. A. M.; de Galan, L.

    A sample introduction system is described for use with a water-cooled ICP torch described previously [ Anal. Chem.51, 2378 (1979)]. It consists of a narrow bore (100 μm) stainless steel Babington nebulizer operating on 0.05 to 0.2 l/min argon inserted into a small (10 ml) nebulizer chamber. The solvent is force-fed continuously by gas pressure or with a peristaltic pump. Liquid samples can be supplied continuously or in discrete quantities using a sample loop between the pump and the nebulizer. In the latter case only 25 s are required for sample change. The nebulization efficiency for water and organic solvents is comparable to that of conventional pneumatic nebulizers operating on 1 l/min argon.

  3. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  4. Disseminated intravascular coagulation and hepatocellular necrosis due to clove oil.

    PubMed

    Brown, S A; Biggerstaff, J; Savidge, G F

    1992-10-01

    We describe the case of a 2-year-old child who suffered from disseminated intravascular coagulation (DIC) and hepatocellular necrosis, following ingestion of clove oil. The patient was treated with heparin and fresh frozen plasma, and, following specific haemostasis assays, with appropriate coagulation factor and inhibitor concentrates. The case demonstrates how this approach can be successfully used in the management of DIC with coexisting liver failure. PMID:1450336

  5. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  6. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  7. Coagulation abnormalities in sepsis.

    PubMed

    Tsao, Cheng-Ming; Ho, Shung-Tai; Wu, Chin-Chen

    2015-03-01

    Although the pathophysiology of sepsis has been elucidated with the passage of time, sepsis may be regarded as an uncontrolled inflammatory and procoagulant response to infection. The hemostatic changes in sepsis range from subclinical activation of blood coagulation to acute disseminated intravascular coagulation (DIC). DIC is characterized by widespread microvascular thrombosis, which contributes to multiple organ dysfunction/failure, and subsequent consumption of platelets and coagulation factors, eventually causing bleeding manifestations. The diagnosis of DIC can be made using routinely available laboratory tests, scoring algorithms, and thromboelastography. In this cascade of events, the inhibition of coagulation activation and platelet function is conjectured as a useful tool for attenuating inflammatory response and improving outcomes in sepsis. A number of clinical trials of anticoagulants were performed, but none of them have been recognized as a standard therapy because recombinant activated protein C was withdrawn from the market owing to its insufficient efficacy in a randomized controlled trial. However, these subgroup analyses of activated protein C, antithrombin, and thrombomodulin trials show that overt coagulation activation is strongly associated with the best therapeutic effect of the inhibitor. In addition, antiplatelet drugs, including acetylsalicylic acid, P2Y12 inhibitors, and glycoprotein IIb/IIIa antagonists, may reduce organ failure and mortality in the experimental model of sepsis without a concomitant increased bleeding risk, which should be supported by solid clinical data. For a state-of-the-art treatment of sepsis, the efficacy of anticoagulant and antiplatelet agents needs to be proved in further large-scale prospective, interventional, randomized validation trials. PMID:25544351

  8. Change in blood coagulation indices as a function of the incubation period of plasma in a constant magnetic field. [considering heparin tolerance and recalcification

    NASA Technical Reports Server (NTRS)

    Yepishina, S. G.

    1974-01-01

    The influence of a constant magnetic field (CMF) with a strength of 250 and 2500 oersteds on the recalcification reaction and the tolerance of plasma to heparin was studied as a function of the exposure time of the plasma to the CMF. The maximum and reliable change in the activation of the coagulatory system of the blood was observed after a 20-hour incubation of the plasma in a CMF. As the exposure time increased, the recalcification reaction changed insigificantly; the difference between the mean arithmetic of the experiment and control values was not statistically reliable. The tolerance of the plasma to heparin as a function of the exposure time to the CMF of the plasma was considerably modified, an was statistically reliable.

  9. Bacteria under stress by complement and coagulation.

    PubMed

    Berends, Evelien T M; Kuipers, Annemarie; Ravesloot, Marietta M; Urbanus, Rolf T; Rooijakkers, Suzan H M

    2014-11-01

    The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria. PMID:25065463

  10. [Effects of Interaction of Ozonation and Coagulation on Coagulation Results].

    PubMed

    Liu, Hai-long; Guo, Xue-feng; Wang, Min-hui; Jiao, Ru-yuan; Shi, Jian

    2015-09-01

    Two strategies, ozonation-coagulation combination (OCC, ozone and coagulant dosed at meantime) and preozonation coagulation (PC, coagulant dosed after ozone died away) were used to treat synthesized water. Different effects of oxidation and coagulation, disinfection by-products formation potentials (DBPFP) in the same water were detected in order to study the influence of interaction of ozonation and coagulation (IOC) on treated water characteristics. Results show that there are remarkable differences between OCC and PC. IOC effects take place during OCC process, which results in variations of the distribution of hydrolyzed species of coagulant. And this is an important reason which impairs efficiency of coagulation. Turbidity after OCC was higher than that of PC. One of the main reasons is that ozone reduced the content of Alb species which was built during coagulant hydrolyzation. Cl-DBPFP in OCC outlet water were lower than those in PC because oxidized destruction of DBP precursors were enhanced by catalyzed ozonation by AlCl3 along with its other hydrolyzed species. Removals of MCAA and CF formation potentials by OCC were significantly higher than those by PC, MCAAFP were 5. 6 µg . L-1 and 16. 9 µg . L-1 respectively, and CFFP were 12. 5 µg . L-1 and 24. 1 µg . L-1 respectively. Coagulation results and DBP formations are significantly affected by interaction of ozonation and coagulation; and it should be a noticeable point of water safety if ozonation and coagulation are employed together. Thus times and spots between ozone and coagulant should be defined clearly in correlational researches and water treatment application. PMID:26717689

  11. Effect of oral administration of unfractionated heparin (UFH) on coagulation parameters in plasma and levels of urine and fecal heparin in dogs

    PubMed Central

    Erickson, Malathi; Hiebert, Linda M.; Carr, Anthony P.; Stickney, Jocelyn D.

    2014-01-01

    The effects of heparin administration, by the oral route, were evaluated in dogs. In single and multiple dose studies (single 7.5 mg/kg, multiple 3 × 7.5 mg/kg per 48 h), plasma, urine, and fecal samples were collected at various times up to 120 h after oral administration of unfractionated heparin. Changes in plasma and urine anti-Xa activity, plasma and urine anti-IIa activity, plasma activated partial thromboplastin time (APTT) and antithrombin (ATIII), and chemical heparin in urine and feces were examined with time. There was support for heparin absorption, with significant differences in APTT, heparin in plasma as determined by anti-Xa activity (Heptest) in the single dose study and plasma anti-Xa activity, anti-IIa activity and ATIII; and chemical heparin in urine in the multiple dose study. No clinical evidence of bleeding was detected in any dog during the studies. Oral heparin therapy may be applicable for thromboembolic disease in animals. Further studies are warranted to determine the effects of oral heparin at the endothelial level in the dog. PMID:24982550

  12. Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges

    NASA Astrophysics Data System (ADS)

    Xiang-Mei, Liu; Qi-Nan, Li; Rui, Li

    2016-06-01

    The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges, with the total input gas flow rate of 400 sccm. It co-exists with a homogeneous, secondary electron-dominated low temperature γ-mode glow discharges. The heat transfer equation and flow equation for neutral gas are taken into account. We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges, and discussed the influences of pressure, electrode spacing, and applied voltage on the plasma density and nanoparticle density profiles. The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges. First, the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges. Second, the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases, especially in the presheath. Finally, as the electrode spacing increases, the nanoparticle density decreased instead of increasing. Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. A2015011 and A2015010), the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (Grant No. LBH-Q14159), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014k-Z11), the National Natural Science Foundation of China (Grant No. 11404180), and the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095).

  13. Disseminated intravascular coagulation.

    PubMed

    Gando, Satoshi; Levi, Marcel; Toh, Cheng-Hock

    2016-01-01

    Disseminated intravascular coagulation (DIC) is an acquired syndrome characterized by widespread intravascular activation of coagulation that can be caused by infectious insults (such as sepsis) and non-infectious insults (such as trauma). The main pathophysiological mechanisms of DIC are inflammatory cytokine-initiated activation of tissue factor-dependent coagulation, insufficient control of anticoagulant pathways and plasminogen activator inhibitor 1-mediated suppression of fibrinolysis. Together, these changes give rise to endothelial dysfunction and microvascular thrombosis, which can cause organ dysfunction and seriously affect patient prognosis. Recent observations have pointed to an important role for extracellular DNA and DNA-binding proteins, such as histones, in the pathogenesis of DIC. The International Society on Thrombosis and Haemostasis (ISTH) established a DIC diagnostic scoring system consisting of global haemostatic test parameters. This scoring system has now been well validated in diverse clinical settings. The theoretical cornerstone of DIC management is the specific and vigorous treatment of the underlying conditions, and DIC should be simultaneously managed to improve patient outcomes. The ISTH guidance for the treatment of DIC recommends treatment strategies that are based on current evidence. In this Primer, we provide an updated overview of the pathophysiology, diagnosis and management of DIC and discuss the future directions of basic and clinical research in this field. PMID:27250996

  14. Thermophysical properties of argon

    SciTech Connect

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  15. Coagulant Activity of Leukocytes. TISSUE FACTOR ACTIVITY

    PubMed Central

    Niemetz, J.

    1972-01-01

    Peritoneal leukocytes harvested from rabbits which have received two spaced doses of endotoxin have significantly greater (10-fold) coagulant activity than leukocytes from control rabbits. The coagulant activity accelerates the clotting of normal plasma and activates factor X in the presence of factor VII and calcium and is therefore regarded as tissue factor. A total of 40-80 mg tissue factor activity was obtained from the peritoneal cavity of single endotoxin-treated rabbits. In leukocyte subcellular fractions, separated by centrifugation, the specific tissue factor activity sedimented mainly at 14,500 g and above. The procoagulant activity was destroyed after heating for 10 min at 65°C but was preserved at lower temperatures. Polymyxin B, when given with the first dose of endotoxin, reduced both the number of peritoneal leukocytes and their tissue factor activity by two-thirds. When given immediately before the second dose of endotoxin, polymyxin B had no inhibitory effect. PMID:4333021

  16. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  17. Influence of argon plasma on the deposition of Al2O3 film onto the PET surfaces by atomic layer deposition

    PubMed Central

    2013-01-01

    In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD. PMID:23413804

  18. Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow

    NASA Astrophysics Data System (ADS)

    Agarwal, Pulkit

    Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self

  19. [An experimental study of the coagulating properties of a laser beam applied to fix titanium prostheses of auditory ossicles with the use of platelet-rich plasma].

    PubMed

    Semenov, V F; Semenov, F V

    2013-01-01

    The displacement of prostheses of auditory ossicles at the concluding stage of surgery and in the early postoperative period is one of the factors influencing the functional outcome of stapedoplasty. The objective of the present experimental study was to estimate the effectiveness of the use of platelet-rich plasma as an alloy for the laser welding in order to improve fixation of titanium prostheses employed in ossiculoplastic surgery. The results of a series of experiments undertaken to assess the possibility of stabilization of titanium prostheses in the desired position with the help of laser welding indicate that this technique with the use of platelet-rich plasma as an alloy may be a reliable method for the fixation of the reconstructed chain of ossicles in the desired position. PMID:24300758

  20. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  1. Arsenic removal by coagulation

    SciTech Connect

    Scott, K.N.; Green, J.F.; Do, H.D.; McLean, S.J.

    1995-04-01

    This study evaluated the removal of naturally occurring arsenic in a full-scale (106-mgd) conventional treatment plant. When the source water was treated with 3--10 mg/L of ferric chloride or 6, 10, or 20 mg/L of alum, arsenic removal was 81--96% (ferric chloride) and 23--71% (alum). Metal concentrations in the sludge produced during this study were below the state`s current hazardous waste levels at all coagulant dosages. No operational difficulties were encountered.

  2. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  3. How Is Disseminated Intravascular Coagulation Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is Disseminated Intravascular Coagulation Treated? Treatment for disseminated intravascular coagulation (DIC) depends ... and treat the underlying cause. Acute Disseminated Intravascular Coagulation People who have acute DIC may have severe ...

  4. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    SciTech Connect

    Sun Wenting; Li Guo; Li Heping; Bao Chengyu; Wang Huabo; Zeng Shi; Gao Xing; Luo Huiying

    2007-06-15

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure {alpha}-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  5. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  6. Coagulant modulates the hypocholesterolemic effect of tofu (coagulated soymilk).

    PubMed

    Oboh, Ganiyu

    2007-06-01

    The recent increase in soymilk and tofu (coagulated soymilk) consumption, especially in Western countries, is due to the recognition of the health benefits of soy foods; consumption of soybean would prevent heart diseases. Since the amount and the type of coagulated biomolecules (such as isoflavones) will vary with the type of coagulant, this will inevitably alter their biological activity. This study sought to assess the effect of some coagulants (calcium chloride, alum, and steep water from pap production) commonly used in the production of tofu in Nigeria on the serum cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels in albino rats fed tofu for 14 days. The results of this study revealed that there was a significant difference (P < .05) in the total phenol [calcium chloride (0.9%), alum (0.8%), and steep water (1.2%)] content of all the tofu produced. Furthermore, feeding albino rats with tofu and water ad libitum for 14 days caused a significant decrease (P < .05) in serum cholesterol and LDL when compared with the control. Conversely, there was a significant increase (P < .05) in serum HDL when compared with the control. However, rats fed steep water-coagulated tofu had the lowest serum levels of cholesterol and LDL, followed by those fed alum- and calcium chloride-coagulated tofu, respectively, while those fed with alum-coagulated tofu had the highest serum HDL level, closely followed by those fed steep water-coagulated tofu. It was therefore concluded that of all the coagulants, steep water appeared to be the most promising coagulant with regard to the production of tofu with a high hypocholesterolemic effect based on the low serum cholesterol and LDL levels and high HDL level. PMID:17651081

  7. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method. PMID:14564441

  8. Argon Purification Reference and Recommendation

    SciTech Connect

    Wu, J.; /Fermilab

    1991-05-23

    This engineering note is a reference for future consideration on the purification of argon. The original concern was for the possibility of argon contamination from components in the cryostats over long-term storage. An argon purification system could also be useful for purifying the contents of the argon dewar. The general conclusion is that most of the systems researched are too expensive at this time, but the recommended choice would be Centorr Furnaces. There were three basic types of purification systems which were to be considered. The first was the molecular sieve. This method would have been the preferred one, because it was claimed that it could purify liquid argon, removing liquid oxygen from the argon. However, none of the commercial companies researched provided this type of purification for use with liquid argon. Most companies said that this type of purification was impossible, and tests at IB-4 confirmed this. The second system contained a copper oxide to remove gaseous oxygen from argon gas. The disadvantage of this system wass that the argon had to be heated to a gas, and then cooled back down to liquid. The third system was similar to the second, except that it used tungsten or another material like titanium. This system also needed to heat the argon to gas, however the advantage of this system was that it supposedly removed all contaminants, that is, everything except for inert gases. Of the three systems, the third is the type manufactured by Centorr Furnaces, which uses a titanium charge.

  9. A novel coagulation inhibitor from Schistosoma japonicum.

    PubMed

    Ranasinghe, Shiwanthi L; Fischer, Katja; Gobert, Geoffrey N; McManus, Donald P

    2015-12-01

    Little is known about the molecular mechanisms whereby the human blood fluke Schistosoma japonicum is able to survive in the host venous blood system. Protease inhibitors are likely released by the parasite enabling it to avoid attack by host proteolytic enzymes and coagulation factors. Interrogation of the S. japonicum genomic sequence identified a gene, SjKI-1, homologous to that encoding a single domain Kunitz protein (Sjp_0020270) which we expressed in recombinant form in Escherichia coli and purified. SjKI-1 is highly transcribed in adult worms and eggs but its expression was very low in cercariae and schistosomula. In situ immunolocalization with anti-SjKI-1 rabbit antibodies showed the protein was present in eggs trapped in the infected mouse intestinal wall. In functional assays, SjKI-1 inhibited trypsin in the picomolar range and chymotrypsin, neutrophil elastase, FXa and plasma kallikrein in the nanomolar range. Furthermore, SjKI-1, at a concentration of 7·5 µ m, prolonged 2-fold activated partial thromboplastin time of human blood coagulation. We also demonstrate that SjKI-1 has the ability to bind Ca(++). We present, therefore, characterization of the first Kunitz protein from S. japonicum which we show has an anti-coagulant properties. In addition, its inhibition of neutrophil elastase indicates SjKI-1 have an anti-inflammatory role. Having anti-thrombotic properties, SjKI-1 may point the way towards novel treatment for hemostatic disorders. PMID:26463744

  10. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    NASA Astrophysics Data System (ADS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  11. Argon ion pollution of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.

    1985-01-01

    Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.

  12. Global coagulation in myeloproliferative neoplasms.

    PubMed

    Tripodi, Armando; Chantarangkul, Veena; Gianniello, Francesca; Clerici, Marigrazia; Lemma, Laura; Padovan, Lidia; Gatti, Loredana; Mannucci, Pier Mannuccio; Peyvandi, Flora

    2013-12-01

    In spite of their recognized risk of thrombosis, patients with myeloproliferative neoplasms (MPN) show little or no abnormalities of traditional coagulation tests, perhaps because these are unable to represent the balance between pro- and anticoagulants nor the effect of platelets and blood cells. We investigated whether global tests such as thrombin generation in platelet-rich plasma (PRP) or thromboelastometry in whole blood were able to detect signs of procoagulant imbalance in MPN. The endogenous thrombin potential (ETP) of 111 patients and 89 controls was measured in PRP with platelet count adjusted to the original patient- or control-count. Testing was performed with and without thrombomodulin (the physiological protein C activator) and results were expressed as ETP ratios (with/without thrombomodulin). High ETP ratios reflect resistance to thrombomodulin and were taken as indexes of procoagulant imbalance. Patients were also investigated by thromboelastometry that provides such parameters as the clot formation time (CFT) and maximal clot firmness (MCF). Short CFT or high MCF were taken as indexes of procoagulant imbalance. ETP ratios were higher in patients than in controls and were directly correlated with platelet counts and inversely with the plasma levels of free protein S, protein C and antithrombin. Patients on hydroxyurea had lower ETP ratios than those on other treatments. CFT was shorter and MCF was greater in patients than controls; CFT and MCF were correlated with platelet counts. In conclusion, patients with MPN display a procoagulant imbalance detectable by thrombin generation and thromboelastometry. These tests might be useful in the frame of clinical trials to assess their association with the occurrence of thrombosis and with the effect of therapeutic strategies in MPN. PMID:23820940

  13. Nitrogen metastable (N2(A3 Σu + )) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition

    NASA Astrophysics Data System (ADS)

    Iseni, Sylvain; Bruggeman, Peter J.; Weltmann, Klaus-Dieter; Reuter, Stephan

    2016-05-01

    N 2 ( A 3 Σu + ) metastable species are detected and measured in a non-equilibrium atmospheric pressure plasma jet by laser induced fluorescence. A shielding device is used to change the ambient conditions additionally to the feeding gas composition. Varying the amount of N2 and air admixed to the feeding gas as well as changing the shielding gas from N2 to air reveals that the highest N 2 ( A 3 Σu + ) is achieved in the case of air admixtures in spite of the enhanced collisional quenching due to the presence of O2. The reasons for these observations are discussed in detail.

  14. Reexamination of recent experimental results in surface-wave-produced argon plasmas at 2.45 GHz: Comparison with the diffusion-recombination model results

    NASA Astrophysics Data System (ADS)

    Sola, A.; Gamero, A.; Cotrino, J.; Colomer, V.

    1988-10-01

    In this paper we comment on recently reported experimental data about some characteristic magnitudes of plasma columns produced and maintained by surface microwaves. We then compare them with theoretical values obtained from the diffusion-recombination model of Mateev, Zhelyazkov, and Atanassov [J. Appl. Phys. 54, 3049 (1988)] and Zhelyazkov, Benova, and Atanassov [J. Appl. Phys. 59, 1466 (1986)] for the same magnitudes, in a wide range of operating conditions. Such a comparison allows us to make conclusions about the results of the model and its hypothesis.

  15. Analysis of the limiting noise and identification of some factors that dictate the detection limits in a low-power inductively coupled argon plasma system

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.; McKenna, R. J.; Bosveld, M.

    conclusions drawn from experiments with pure aqueous solutions under less idealized analysis conditions and to provide some results obtained with a low-power argon ICP in the scope of the "ICP Detection Limits Program". These experiments included the measurement of the various quantities that may undergo an influence from the matrix, viz. background, net signal, SBR, and RSD of background signal. In this way it was possible not only to state the gross effect of the matrices on the detection limits, but also to give a quantitative account of the various sub-effects that were responsible for the gross effects. Since the calcium chloride matrix was included to assess the system for its stray light rejection characteristics, some experiments involving stray light elimination by a band rejection filter or a solar blind PMT were performed. A basic conclusion of this work is that the full exploitation of the important low ultraviolet wavelength region (190-250 nm) in ICP trace analysis requires the use of spectrometers with a high optical conductance, efficient entrance optics, and photomultipliers with high spectral sensitivity and low dark current noise. Only under such conditions can the "ideal" RSD of the background signal of 1% be realized, or at least approached, down to the lower end of the wavelength range, if one requires in addition that a reasonably high spectral resolution (e.g. 0.015 nm) be used to maximize the signal-to-background ratios and minimize spectral interferences.

  16. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  17. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  18. Coagulation products and their uses.

    PubMed

    Shord, S S; Lindley, C M

    2000-08-01

    The indications, pharmacokinetics, and therapeutic guidelines for available coagulation products are reviewed. Patients with hemophilia, von Willebrand's disease (VWD), or acquired inhibitors to antihemophilic factor (AHF) cannot spontaneously stop an acute hemorrhage. Coagulation products used to manage bleeding in patients with these disorders include AHF concentrates, factor IX concentrates, factor VIIa concentrate, factor IX complexes, anti-inhibitor coagulant complexes, and desmopressin acetate. Typically, these commercially available products are used to manage acute bleeding or to prevent excessive bleeding during surgery. The dosage of the coagulation products and the duration of therapy depend on many variables, including the severity of the hemorrhage, the pharmacokinetics of the coagulation products, and patient-specific factors. Product purity and viral attenuation are also important considerations in determining an appropriate dosage regimen. Recombinant versions of some coagulant factors are available and can eliminate the risk of viral transmission. A thorough understanding of each coagulation product can guide product selection, dosing, and treatment duration and can reduce the risk of viral transmission. PMID:10938981

  19. Endogenous plasma activated protein C levels and the effect of enoxaparin and drotrecogin alfa (activated) on markers of coagulation activation and fibrinolysis in pulmonary embolism

    PubMed Central

    2011-01-01

    Introduction There are no published data on the status of endogenous activated protein C (APC) in pulmonary embolism (PE), and no data on the effect of drotrecogin alfa (activated) (DAA) given in addition to therapeutic dose enoxaparin. Methods In this double-blind clinical trial, 47 patients with computed tomography (CT)-confirmed acute submassive PE treated with 1 mg/kg body weight of enoxaparin twice daily were randomized to groups receiving a 12-hour intravenous infusion of 6, 12, 18, or 24 μg/kg/hour of DAA or a placebo. Blood samples were drawn before starting DAA infusion, after 4, 8 and 12 hours (at the end of the infusion period), and on treatment days 2, 3, 4, 5 and 6. Results Initial endogenous plasma activated protein C (APC) levels were 0.36 ± 0.48 ng/ml (<0.10 to 1.72 ng/ml) and remained in the same range in the placebo group. APC levels in patients treated with DAA were 13.67 ± 3.57 ng/ml, 32.71 ± 8.76 ng/ml, 36.13 ± 7.60 ng/ml, and 51.79 ± 15.84 ng/ml in patients treated with 6, 12, 18, and 24 μg/kg/hour DAA, respectively. In patients with a D-dimer level >4 mg/L indicating a high level of acute fibrin formation and dissolution, DAA infusion resulted in a more rapid drop in soluble fibrin, D-dimer, and fibrinogen/fibrin degradation products (FDP) levels, compared to enoxaparin alone. There was a parallel decline of soluble fibrin, D-dimer, FDP, and plasmin-plasmin inhibitor complex (PPIC) in response to treatment with enoxaparin ± DAA, with no evidence of a systemic profibrinolytic effect of the treatment. Conclusions In patients with acute submassive PE endogenous APC levels are low. DAA infusion enhances the inhibition of fibrin formation. Trial registration ClinicalTrials.gov: NCT00191724 PMID:21241489

  20. Estimation Using an Enhancement Factor on Non Local Thermodynamic Equilibrium Behavior of High-lying Energy Levels of Neutral Atom in Argon Radio-Frequency Inductively-Coupled Plasma.

    PubMed

    Wagatsuma, Kazuaki; Satoh, Kozue

    2016-01-01

    This paper describes a plasma-diagnostic method using an enhancement factor on the Boltzmann distribution among emission lines of iron atom in an argon radio-frequency inductively-coupled plasma (ICP). It indicated that Boltzmann plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from a linear relationship. This observation could be explained by the fact that ICP is not in a complete thermodynamic equilibrium between direct excitation to energy levels of iron atom, ionization of iron atom, and radiative decay processes to the ground state. Especially, the recombination of iron ion with captured electron should accompany cascade de-excitations between closely-spaced excited levels just below the ionization limit, the rates of which become slower as a whole; as a result, these high-lying levels might be more populated than the low-lying levels as if a different LTE condition coexists on the high energy side. This overpopulation could be quantitatively estimated using an enhancement factor (EF), which was a ratio of the observed intensity to the expected value extrapolated from the normal distribution on the low energy side. The EFs were generally small (less than 3); therefore, the cascade de-excitation process would slightly contribute to the population of these excited levels. It could be considered from variations of the EF that the overpopulation proceeded to a larger extent at lower radio-frequency forward powers, at higher flow rates of the carrier gas, or at higher observation heights. The reason for this is that the kinetic energy of energetic particles, such as electrons, becomes reduced under all of these plasma conditions, thus enabling the high-lying levels to be more populated by cascade de-excitation processes from iron ion rather than by collisional excitation processes with the energetic particles. A similar Boltzmann analysis using the EF

  1. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  2. Cosmic dust synthesis by accretion and coagulation

    NASA Technical Reports Server (NTRS)

    Praburam, G.; Goree, J.

    1995-01-01

    The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.

  3. Populations of metastable and resonant argon atoms in radio frequency magnetron plasmas used for deposition of indium-zinc-oxide films

    SciTech Connect

    Maaloul, L.; Morel, S.; Stafford, L.

    2012-03-15

    This work reports optical absorption spectroscopy measurements of the number density of Ar atoms in resonant ({sup 3}P{sub 1}, {sup 1}P{sub 1}) and metastable ({sup 3}P{sub 2}, {sup 3}P{sub 0}) states in rf magnetron sputtering plasmas used for the deposition of ZnO-based thin films. While the density of Ar {sup 3}P{sub 2} and {sup 3}P{sub 0} was fairly independent of pressure in the range of experimental conditions investigated, the density of Ar {sup 3}P{sub 1} and {sup 1}P{sub 1} first sharply increased with pressure and then reached a plateau at values close to those of the {sup 3}P{sub 2} and {sup 3}P{sub 0} levels at pressures above about 50 mTorr. At such pressures, ultraviolet radiation from resonant states becomes trapped such that these levels behave as metastable states. For a self-bias voltage of -115 V and pressures in the 5-100 mTorr range, similar number densities of Ar resonant and metastable atoms were obtained for Zn, ZnO, and In{sub 2}O{sub 3} targets, suggesting that, over the range of experimental conditions investigated, collisions between these excited species and sputtered Zn, In, and O atoms played only a minor role on the discharge kinetics. The metastable-to-ground state number density ratios were also fitted to the predictions of a global model using the average electron temperature, T{sub e}, as the only adjustable parameter. For all targets examined, the values of T{sub e} deduced from this method were in excellent agreement with those obtained from Langmuir probe measurements.

  4. Numerical study of breakdown pattern induced by an intense microwave under nitrogen and argon gases

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-07-01

    Filamentary plasma induced by microwave beam irradiation was reproduced in nitrogen and argon by combining fluid or particle plasma models with electromagnetic wave propagation. Transport coefficients used in the fluid model are estimated from particle simulation to maintain consistency of the breakdown structure between the fluid and particle models. A discrete structure was obtained using the one-dimensional (1D) fluid model, because a standing wave is generated in front of the plasma when the incident microwave beam is reflected by the overcritical plasma, which agrees with the breakdown structure obtained using the 1D particle model. A 2D plasma filament was also reproduced using the fluid model in nitrogen and argon. Reflection of the incident microwave in argon becomes stronger than that in nitrogen because of the denser argon plasma. Change in filament shape is induced in argon because the electric field is deformed at the plasma tip owing to stronger wave reflection from the neighboring filament. The propagation speed of the plasma front becomes larger in argon breakdown because of the larger ionization frequency and the larger diffusion coefficient.

  5. Application of enzyme immunoassays to coagulation testing.

    PubMed

    Amiral, J; Adalbert, B; Adam, M

    1984-09-01

    Enzyme immunoassays are very useful for the detection of low concentrations of coagulation proteins and pathological markers in plasma. Analytes in the ng/mL range are measurable with good reproducibility with intra- and interassay CVs of less than 5% to 10%. "Sandwich" methods have been developed for von Willebrand factor (plasma concentration about 8 micrograms/mL, Factor IX (5 micrograms/mL), protein C (4 micrograms/mL), and Factor X (10 micrograms/mL). However, this technique is only suitable for macromolecules; for low-molecular-mass peptides such as fibrinopeptide A a competitive method is used. Normal concentrations of fibrinopeptide A are below 3 ng/mL, with greater values suggesting in vivo generation of thrombin; thus this test is quite useful in detecting thrombosis. Reagents for both the sandwich and competitive methods are commercially available and cost effective, and have a longer shelf-life than those for radioimmunoassays. PMID:6380814

  6. Photoionization of argon clusters

    SciTech Connect

    Dehmer, Patricia M.; Pratt, Stephen T.

    1982-01-01

    Argon clusters were produced in a free supersonic molecular beam expansion of pure argon at room temperature and the photoionization efficiency curves of the trimer through hexamer were measured in the wavelength regions from threshold to 700 Â. A study of the Ar⁺3 photoionization efficiency curve as a function of nozzle stagnation pressure shows that fragmentation of heavier clusters can dominate the spectrum, even near threshold, and even when the nozzle conditions are such that the Ar⁺4 intensity is only a small fraction of the Ar⁺3 intensity. The Ar⁺3 photoionization efficiency curve, obtained using nozzle stagnation conditions such that no heavier ions were detected, exhibits several broad peaks near threshold which show similarities to bands of the dimer. At high nozzle stagnation pressures, the photoionization efficiency curves for Ar⁺3 to Ar⁺6 are nearly identical due to the effects of fragmentation. These spectra exhibit two very broad features which are similar to features observed in the solid. The threshold regions for all the positive ions show extremely gradual onsets, making it difficult to determine the appearance potentials accurately. The appearance potentials for Ar⁺2 and Ar⁺3 are 855.0±1.5 and 865.0±1.5 Â, respectively, yielding a value of 0.18±0.05 eV for the dissociation energy of Ar⁺3. The appearance potentials for the heavier clusters Ar⁺4 through Ar⁺6 are all approximately 870±2 Â.

  7. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  8. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models. PMID:24559345

  9. Thermophysical properties of multi-shock compressed dense argon

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  10. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  11. Effects of argon, dye, and Nd:YAG lasers on epidermis, dermis, and venous vessels

    SciTech Connect

    Landthaler, M.; Haina, D.; Brunner, R.; Waidelich, W.; Braun-Falco, O.

    1986-01-01

    The aim of the present study, which was performed at the dorsal aspects of the ears of guinea pigs, was to compare effects of different lasers on epidermis, dermis, and small venous vessels. Irradiations were performed with argon, dye, and Nd:YAG lasers. In the first series tissue repair processes were studied after argon laser application. Laser defects were excised after 1, 4, 8, and 14 days and were prepared for routine histological examination. The breadth of epidermal defect and extent of dermal coagulation and occlusion of vessels by thrombus formation were examined histologically. In a second series parameters of irradiation (ie, exposure time, laser power) of the three different lasers were changed systematically. Laser-induced morphological tissue changes could be best observed 24 hours after irradiation. Each of the lasers led to occlusion of vessels by thrombus formation and also coagulated epidermis and dermis. The extent of dermal and epidermal coagulation was less pronounced after dye laser application. Using short exposure times it was possible to reduce the extent of epidermal damage caused by argon and Nd:YAG lasers. Only 50-msec dye laser pulses led to intravascular thrombus formation without epidermal and dermal damage.

  12. Using a Systems Pharmacology Model of the Blood Coagulation Network to Predict the Effects of Various Therapies on Biomarkers

    PubMed Central

    Nayak, S; Lee, D; Patel-Hett, S; Pittman, DD; Martin, SW; Heatherington, AC; Vicini, P; Hua, F

    2015-01-01

    A number of therapeutics have been developed or are under development aiming to modulate the coagulation network to treat various diseases. We used a systems model to better understand the effect of modulating various components on blood coagulation. A computational model of the coagulation network was built to match in-house in vitro thrombin generation and activated Partial Thromboplastin Time (aPTT) data with various concentrations of recombinant factor VIIa (FVIIa) or factor Xa added to normal human plasma or factor VIII-deficient plasma. Sensitivity analysis applied to the model revealed that lag time, peak thrombin concentration, area under the curve (AUC) of the thrombin generation profile, and aPTT show different sensitivity to changes in coagulation factors’ concentrations and type of plasma used (normal or factor VIII-deficient). We also used the model to explore how variability in concentrations of the proteins in coagulation network can impact the response to FVIIa treatment. PMID:26312163

  13. Platelets and coagulation in infection

    PubMed Central

    Davis, Rachelle P; Miller-Dorey, Sarah; Jenne, Craig N

    2016-01-01

    Disseminated intravascular coagulation (DIC) is a frequent complication in sepsis that is associated with worse outcomes and higher mortality in patients. In addition to the uncontrolled generation of thrombi throughout the patient's vasculature, DIC often consumes large quantities of clotting factors leaving the patient susceptible to hemorrhaging. Owing to these complications, patients often receive anticoagulants to treat the uncontrolled clotting, often with mixed outcomes. This lack of success with the current array of anticoagulants can be partly explained by the fact that during sepsis clotting is often initiated by the immune system. Systemic inflammation has the capacity to activate and amplify coagulation and, as such, potential therapies for the treatment of sepsis-associated DIC need to address the interaction between inflammation and coagulation. Recent studies have suggested that platelets and neutrophil extracellular traps (NETs) are the key mediators of infection-induced coagulation. This review explores current anticoagulant therapies and discusses the development of future therapies to target platelet and NET-mediated coagulation. PMID:27525062

  14. Ultrasonic measurement of milk coagulation time

    NASA Astrophysics Data System (ADS)

    Bakkali, F.; Moudden, A.; Faiz, B.; Amghar, A.; Maze, G.; Montero de Espinosa, F.; Akhnak, M.

    2001-12-01

    Using a pulse reflection technique an ultrasonic system has been developed to monitor in situ the coagulation process of rennetted milk. The velocity and attenuation of ultrasonic waves through coagulating milk were continuously monitored. The observed changes in ultrasonic velocity during coagulation were used to predict the coagulation time. The coagulation time is indicative of the transition from the enzymatic phase to the physicochemical phase. The determination of coagulation time has a decisive role in determining the qualities of the end product in cheesemaking.

  15. Study of fluid mechanical helium argon ion laser

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An approach to an argon ion laser based on gasdynamic techniques is presented. Improvement in efficiency and power output are achieved by eliminating high heat rejection problems and plasma confinement of the seal-off conventional lasers. The process of producing population inversion between the same energy levels, as in the conventional argon ion laser, has been divided into two phases by separating each other from the processes of ionization and subsequent excitation. Line drawings and graphs are included to amplify the theoretical presentation.

  16. The Liquid Argon Purity Demonstrator

    SciTech Connect

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  17. Tissue Factor in Coagulation: Which? Where? When?

    PubMed Central

    Butenas, Saulius; Orfeo, Thomas; Mann, Kenneth G.

    2009-01-01

    Tissue factor (TF) is an integral membrane protein, normally separated from the blood by the vascular endothelium, which plays a key role in the initiation of blood coagulation. With a perforating vascular injury, TF becomes exposed to blood and binds plasma factor VIIa. The resulting complex initiates a series of enzymatic reactions leading to clot formation and vascular sealing. In some pathologic states, circulating blood cells express TF as a result of exposure to an inflammatory stimulus leading to intravascular clotting, vessel occlusion and thrombotic pathology. Numerous controversies have arisen related to the influence of structural features of TF, its presentation and its function. There are contradictory reports about the synthesis and presentation of TF on blood cells and the presence (or absence) of functionally active TF circulating in normal blood either on microparticles or as a soluble protein. In this review we discuss TF structure-function relationships and the role of TF during various phases of the blood coagulation process. We also highlight controversies concerning the expression/presence of TF on various cells and in blood in normal and pathologic states. PMID:19592470

  18. Coagulation parameters in inflammatory bowel disease

    PubMed Central

    Dolapcioglu, Can; Soylu, Aliye; Kendir, Tulin; Ince, Ali Tuzun; Dolapcioglu, Hatice; Purisa, Sevim; Bolukbas, Cengiz; Sokmen, Haci Mehmet; Dalay, Remzi; Ovunc, Oya

    2014-01-01

    Thromboembolic events represent a major cause of morbidity and mortality in patients with inflammatory bowel disease and they may occur both at the gastrointestinal tract and at extraintestinal sites. This study aimed to examine the alterations in coagulation parameters involved at different steps of hemostasis in patients with Crohn’s disease and ulcerative colitis, in comparison with healthy individuals. Fifty-one patients with inflammatory bowel disease and 26 healthy controls were included in this study. Plasma levels of PT, APTT, AT III, plasminogen, fibrinogen, D-dimer, factor V, factor VIII, protein C, protein S, and APCR were measured and factor V Leiden mutation was examined in both patients and controls. Two patients with ulcerative colitis had a history of previous thromboembolic event. Inflammatory bowel disease was associated with significantly higher levels of fibrinogen, PT, factor V, factor VIII, plasminogen and thrombocyte. Protein S, fibrinogen, plasminogen and thrombocyte levels were associated with disease activity, depending on the type of the disease (Crohn’s disease or ulcerative colitis). The coagulation abnormalities detected in this study seems to be a secondary phenomena resulting from the disease process, which is more likely to be associated with a multitude of factors rather than a single abnormality. PMID:24995109

  19. Usefulness of human coagulation and fibrinolysis assays in domestic pigs.

    PubMed

    Münster, Anna-Marie Bloch; Olsen, Aage Kristian; Bladbjerg, Else-Marie

    2002-02-01

    Pigs are often used as animal models in research on blood coagulation and fibrinolysis. The usefulness of the assays applied within this field, and the knowledge of reference intervals are therefore essential and of utmost importance. In the study reported here, we investigated the applicability of commercial human coagulation and fibrinolysis assays for use with porcine plasma. In total, 22 functional and immunologic assays were applied to plasma obtained from domestic pigs, and the following blood coagulation and fibrinolysis variables were measured: prothrombin time, activated partial thromboplastin time, tissue factor, tissue factor pathway inhibitor, factor VII, protein C, protein S, prothrombin fragment 1+2, antithrombin, thrombin-antithrombin complexes, fibrinogen, soluble fibrin, urokinase-type plasminogen activator, plasmin inhibitor, plasminogen activator inhibitor 1, and D-dimer. We found that 11 of 12 functional assays, but only 3 of 10 immunoassays, were applicable to porcine plasma, and we determined the normal range of these variables. We conclude that human functional assays are useful in porcine plasma, whereas only a few immunologic assays can be used. However, precautions must be taken in interpretation of the results and in extrapolation toward human results because possible differences between porcine and human values can be due to species variations and/or methodologic errors. PMID:11900411

  20. Enhanced coagulation for arsenic removal

    SciTech Connect

    Cheng, R.C.; Liang, S.; Wang, H.C.; Beuhler, M.D. )

    1994-09-01

    The possible use of enhanced coagulation for arsenic removal was examined at the facilities of a California utility in 1992 and 1993. The tests were conducted at bench, pilot, and demonstration scales, with two source waters. Alum and ferric chloride, with cationic polymer, were investigated at various influence arsenic concentrations. The investigators concluded that for the source waters tested, enhanced coagulation could be effective for arsenic removal and that less ferric chloride than alum, on a weight basis, is needed to achieve the same removal.

  1. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  2. Radiative Properties of Argon Gas-Puff Implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, Nicholas; Qi, Niansheng; de Grouchy, Phil; Shelkovenko, Tatiana; Pikuz, Sergei; Giuliani, John; Dasgupta, Arati; Apruzese, John; Clark, Robert; Hammer, David; Kusse, Bruce

    2015-11-01

    Gas-puff Z-pinch experiments were performed on the 1 MA COBRA pulsed power generator at Cornell University. The gas puffs were injected into the load region from a triple nozzle. The load region had an anode-cathode gap of 2.5 cm. The standard diagnostics on COBRA include time-integrated pinhole cameras, a time-integrated axially resolved x-ray spectrometer, filtered photo-conducting detectors, and time-gated XUV cameras. We will focus mainly on results from pinhole images and x-ray spectra from argon gas puffs including some with a SO2 dopant. The x-ray time-integrated pinhole images feature a tight axially uniform plasma column with a diameter of approximately 1 mm for argon gas implosion. The x-ray spectrometer used mica crystals (2d =19.84 Å) and captured the argon K-shell radiation from different crystal reflections. A 1-D multi-zone argon and sulfur non-LTE kinetics code with radiation transport is used to model the K-shell emission for the purpose of inferring the plasma conditions and the interaction of gas from the inner annulus with the central jet. This work is supported by DOE/NNSA.

  3. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  4. Coagulation Changes During Graded Orhostatic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Cvirn, Gerhard; Schlagenhauf, Aaxel; Leschnik, Bettina; Koestenberger, Martin; Roessler, Andreas; Jantscher, Andreas; Waha, James Elvis; Wolf, Sabine; Vrecko, Karoline; Juergens, Guenther; Hinghofer-Szalkay, Helmut

    2013-02-01

    Background: Orthostatic stress has been introduced as a novel paradigm for activating the coagulation system. We examined whether graded orthostatic stress (using head up tilt, HUT + lower body negative pressure, LBNP) until presyncope leads to anti / pro-coagulatory changes and how rapidly they return to baseline during recovery. Methodology: Eight male subjects were enrolled in this study. Presyncopal runs were carried out using HUT + LBNP. At minute zero, the tilt table was brought from 0° (supine) to 70 ° head-up position for 4 min, after which pressure in the LBNP chamber was reduced to -15, -30, and -45 mm Hg every 4 min. At presyncope, the subjects were returned to supine position. Coagulatory responses and plasma mass density (for volume changes) were measured before, during and 20 min after the orthostatic stress. Whole blood coagulation was examined by means of thrombelastometry. Platelet aggregation in whole blood was examined by using impedance aggregometry. Thrombin generation parameters, prothrombin levels, and markers of endothelial activation were measured in plasma samples. Results: At presyncope, plasma volume was 20 % below the initial supine value. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential (ETP), and tissue factor pathway inhibitor (TFPI) levels increased during the protocol, commensurate with hemoconcentration. The markers of endothelial activation (tissue factor, TF, tissue plasminogen activator, t-PA) and the markers of thrombin generation (Prothrombin fragments 1 and 2, F1+2, and thrombin-antithrombin complex, TAT) increased significantly. During recovery, all the coagulation parameters returned to initial supine values except F1 +2 and TAT. Conclusion: Head-up tilt/LBNP leads to activation of the coagulation system. Some of the markers of thrombin formation are still at higher than supine levels during recovery.

  5. Electron densities and energies of a guided argon streamer in argon and air environments

    NASA Astrophysics Data System (ADS)

    Hübner, S.; Hofmann, S.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2013-12-01

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial ne-overshoot with a maximum of 7 × 1019 m-3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found.

  6. Acquired coagulant factor VIII deficiency induced by Bacillus anthracis lethal toxin in mice

    PubMed Central

    Sun, Der-Shan; Lee, Po-Chien; Kau, Jyh-Hwa; Shih, Yung-Luen; Huang, Hsin-Hsien; Li, Chen-Ru; Lee, Chin-Cheng; Wu, Yu-Ping; Chen, Kuo-Ching; Chang, Hsin-Hou

    2015-01-01

    Mice treated with anthrax lethal toxin (LT) exhibit hemorrhage caused by unknown mechanisms. Moreover, LT treatment in mice induced liver damage. In this study, we hypothesized that a suppressed coagulation function may be associated with liver damage, because the liver is the major producing source of coagulation factors. The hepatic expression of coagulant factors and the survival rates were analyzed after cultured cells or mice were exposed to LT. In agreement with our hypothesis, LT induces cytotoxicity against hepatic cells in vitro. In addition, suppressed expression of coagulation factor VIII (FVIII) in the liver is associated with a prolonged plasma clotting time in LT-treated mice, suggesting a suppressive role of LT in coagulation. Accordingly, we further hypothesized that a loss-of-function approach involving treatments of an anticoagulant should exacerbate LT-induced abnormalities, whereas a gain-of-function approach involving injections of recombinant FVIII to complement the coagulation deficiency should ameliorate the pathogenesis. As expected, a sublethal dose of LT caused mortality in the mice that were non-lethally pretreated with an anticoagulant (warfarin). By contrast, treatments of recombinant FVIII reduced the mortality from a lethal dose of LT in mice. Our results indicated that LT-induced deficiency of FVIII is involved in LT-mediated pathogenesis. Using recombinant FVIII to correct the coagulant defect may enable developing a new strategy to treat anthrax. PMID:25906166

  7. Acquired coagulant factor VIII deficiency induced by Bacillus anthracis lethal toxin in mice.

    PubMed

    Sun, Der-Shan; Lee, Po-Chien; Kau, Jyh-Hwa; Shih, Yung-Luen; Huang, Hsin-Hsien; Li, Chen-Ru; Lee, Chin-Cheng; Wu, Yu-Ping; Chen, Kuo-Ching; Chang, Hsin-Hou

    2015-01-01

    Mice treated with anthrax lethal toxin (LT) exhibit hemorrhage caused by unknown mechanisms. Moreover, LT treatment in mice induced liver damage. In this study, we hypothesized that a suppressed coagulation function may be associated with liver damage, because the liver is the major producing source of coagulation factors. The hepatic expression of coagulant factors and the survival rates were analyzed after cultured cells or mice were exposed to LT. In agreement with our hypothesis, LT induces cytotoxicity against hepatic cells in vitro. In addition, suppressed expression of coagulation factor VIII (FVIII) in the liver is associated with a prolonged plasma clotting time in LT-treated mice, suggesting a suppressive role of LT in coagulation. Accordingly, we further hypothesized that a loss-of-function approach involving treatments of an anticoagulant should exacerbate LT-induced abnormalities, whereas a gain-of-function approach involving injections of recombinant FVIII to complement the coagulation deficiency should ameliorate the pathogenesis. As expected, a sublethal dose of LT caused mortality in the mice that were non-lethally pretreated with an anticoagulant (warfarin). By contrast, treatments of recombinant FVIII reduced the mortality from a lethal dose of LT in mice. Our results indicated that LT-induced deficiency of FVIII is involved in LT-mediated pathogenesis. Using recombinant FVIII to correct the coagulant defect may enable developing a new strategy to treat anthrax. PMID:25906166

  8. Gene Therapy for Coagulation Disorders.

    PubMed

    Swystun, Laura L; Lillicrap, David

    2016-04-29

    Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright. PMID:27126652

  9. Argon gas concentration effects on nanostructured molybdenum nitride layer growth using 100 Hz pulsed dc glow discharge

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; Ahmad, R.; Saleem, S.; Shah, M. S.; Umm-i-Kalsoom; Khan, N.; Khalid, N.

    2012-08-01

    The effect of argon concentration (10%-40%) on the surface properties of molybdenum is studied in nitrogen-argon mixture using 100 Hz pulsed dc glow discharge. The analysis is carried out by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vickers microhardness tester to investigate surface properties of the nitrided samples. XRD results exhibit the formation of molybdenum nitrides. Crystallite size analysis and SEM morphology confirm the growth of nanostructured molybdenum nitride layers. Moreover, significant increase in surface hardness (by a factor of about two times) is found when the sample is treated for 30% argon in nitrogen-argon mixed plasma.

  10. Hemolymph coagulation and phenoloxidase activity in Uca tangeri induced by Escherichia coli endotoxin.

    PubMed

    Salawu, Musa O; Oloyede, Hussein O B; Oladiji, Temidayo A; Yakubu, Musa T; Amuzat, Aliyu O

    2016-05-01

    Uca tangeri is a marine fiddler crab found commonly in the West African coast and is often exposed to Gram-negative pathogens upon injury. The aim of this study was to document the patterns of endotoxin-induced protein coagulation and phenoloxidase (PO) activity in hemolymph fractions of Uca tangeri. Hemolymph from live crabs was obtained by carapace puncture, pooled. and then separated into plasma, hemocyte Lysate (HL), hemocyte lysate supernatant (HLS) and hemocyte lysate debris (HLD). The effect of Escherichia coli (O1111:B4) endotoxin and calcium ion (Ca(2+)) on protein coagulation in the presence/absence of endotoxin and the endotoxin dose-dependence of coagulation and PO activity were each studied in the plasma, HL, HLS and HLD. The results showed Ca(2+) was required to induce coagulation, and was endotoxin concentration-dependent in the plasma. PO activity was highest in the HLS but PO specific activity was highest in HLD. PO activity remained relatively constant with increased LPS concentration in the range studied 0-10 EU/ml. From the data we conclude that endotoxin-induced protein coagulation occurs in the plasma alone and might be mediated by trans-glutaminases, while PO activity is localized inside hemocytes and cell membranes in Uca tangeri. PMID:26524621

  11. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    SciTech Connect

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  12. Obstetric hemorrhage and coagulation: an update. Thromboelastography, thromboelastometry, and conventional coagulation tests in the diagnosis and prediction of postpartum hemorrhage.

    PubMed

    de Lange, Natascha M; Lancé, Marcus D; de Groot, Reneé; Beckers, Erik A M; Henskens, Yvonne M; Scheepers, Hubertina C J

    2012-07-01

    Globally, postpartum hemorrhage (PPH) is the leading cause of maternal morbidity and mortality. In the current treatment of severe PPH, first-line therapy includes transfusion of packed cells and fresh-frozen plasma in addition to uterotonic medical management and surgical interventions. In persistent PPH, tranexamic acid, fibrinogen, and coagulation factors are often administered. Secondary coagulopathy due to PPH or its treatment is often underestimated and therefore remains untreated, potentially causing progression to even more severe PPH. In most cases, medical and transfusion therapy is not based on the actual coagulation state because conventional laboratory test results are usually not available for 45 to 60 minutes. Thromboelastography and rotational thromboelastometry are point-of-care coagulation tests. A good correlation has been shown between thromboelastometric and conventional coagulation tests, and the use of these in massive bleeding in nonobstetric patients is widely practiced and it has been proven to be cost-effective. As with conventional laboratory tests, there is an influence of fluid dilution on coagulation test results, which is more pronounced with colloid fluids. Fibrinogen seems to play a major role in the course of PPH and can be an early predictor of the severity of PPH. The FIBTEM values (in thromboelastometry, reagent specific for the fibrin polymerization process) decline even more rapidly than fibrinogen levels and can be useful for early guidance of interventions. Data on thromboelastography and thromboelastometry in pregnant women are limited, particularly during the peripartum period and in women with PPH, so more research in this field is needed. PMID:22926249

  13. Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators.

    PubMed

    Bhat, Ravishankar; Ribes, Àngela; Mas, Núria; Aznar, Elena; Sancenón, Félix; Marcos, M Dolores; Murguía, Jose R; Venkataraman, Abbaraju; Martínez-Máñez, Ramón

    2016-02-01

    The possibility of achieving sophisticated actions in complex biological environments using gated nanoparticles is an exciting prospect with much potential. We herein describe new gated mesoporous silica nanoparticles (MSN) loaded with an anticoagulant drug and capped with a peptide containing a thrombin-specific cleavage site. When the coagulation cascade was triggered, active thrombin degraded the capping peptidic sequence and induced the release of anticoagulant drugs to delay the clotting process. The thrombin-dependent response was assessed and a significant increase in coagulation time in plasma from 2.6 min to 5 min was found. This work broadens the application of gated silica nanoparticles and demonstrates their ability to act as controllers in a complex scenario such as hemostasis. PMID:26794474

  14. Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants.

    PubMed

    Jarvis, Peter; Sharp, Emma; Pidou, Marc; Molinder, Roger; Parsons, Simon A; Jefferson, Bruce

    2012-09-01

    Coagulation in drinking water treatment has relied upon iron (Fe) and aluminium (Al) salts throughout the last century to provide the bulk removal of contaminants from source waters containing natural organic matter (NOM). However, there is now a need for improved treatment of these waters as their quality deteriorates and water quality standards become more difficult to achieve. Alternative coagulant chemicals offer a simple and inexpensive way of doing this. In this work a novel zirconium (Zr) coagulant was compared against traditional Fe and Al coagulants. The Zr coagulant was able to provide between 46 and 150% lower dissolved organic carbon (DOC) residual in comparison to the best traditional coagulant (Fe). In addition floc properties were significantly improved with larger and stronger flocs forming when the Zr coagulant was used with the median floc sizes being 930 μm for Zr; 710 μm for Fe and 450 μm for Al. In pilot scale experiments, a similar improved NOM and particle removal was observed. The results show that when optimised for combined DOC removal and low residual turbidity, the Zr coagulant out-performed the other coagulants tested at both bench and pilot scale. PMID:22627114

  15. Attainable superheat of argon-helium, argon-neon solutions.

    PubMed

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N

    2008-10-16

    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size. PMID:18798666

  16. [Cellular model of blood coagulation process].

    PubMed

    Bijak, Michał; Rzeźnicka, Paulina; Saluk, Joanna; Nowak, Paweł

    2015-07-01

    Blood coagulation is a process which main objective is the prevention of blood loss when the integrity of the blood vessel is damaged. Over the years, have been presented a number of concepts characterizing the mechanism of thrombus formation. Since the 60s of last century was current cascade model of the coagulation wherein forming of the fibrin clot is determined by two pathways called extrinsic and intrinsic pathways. In the nineties of the last century Monroe and Hoffman presented his concept of blood coagulation process which complement the currently valid model of cells participation especially of blood platelets which aim is to provide a negatively charged phospholipid surface and thereby allow the coagulation enzymatic complexes formation. Developed conception they called cellular model of coagulation. The aim of this work was to present in details of this blood coagulation, including descriptions of its various phases. PMID:26277170

  17. A `triangle' of interconnected coagulation models

    NASA Astrophysics Data System (ADS)

    Dubovski, P. B.

    1999-02-01

    A number of new coagulation models depending on a parameter is derived. The dependence is considered in two different ways. If the parameter takes its maximal value then in the first case we obtain a new discrete kinetic equation. We demonstrate that its continuous version is simply the Oort-Hulst's coagulation model. In the second case, the maximum of the corresponding parameter yields the Smoluchowski coagulation equation. At the minimal values of both parameters we arrive at another new kinetic equation. These three models form a `triangle' connecting the two known coagulation equations `situated' in its vertexes (Smoluchowski and Oort-Hulst equations) via an alteration of the parameters. Also, a comparative analysis of these three models is presented. As an advantage of the Oort-Hulst approach we compute the coagulation front and establish a connection between the infringement of the mass conservation law and convergence of the coagulation front to infinity.

  18. Thermochemical nonequilibrium modeling of a low-power argon arcjet wind tunnel

    NASA Astrophysics Data System (ADS)

    Katsurayama, Hiroshi; Abe, Takashi

    2013-02-01

    Non-transferred low-power arcjet wind tunnels with pure argon working gas are widely used as inexpensive laboratory plasma sources to simulate a weakly ionized supersonic flow around an atmospheric entry vehicle. Many experiments using argon arcjet wind tunnels have been conducted, but their numerical modeling is not yet complete. We develop an axisymmetric Navier-Stokes model with thermochemical nonequilibrium and arc discharge that simulates the entire flow field in a steady-operating argon arcjet wind tunnel, which consists of the inside of the arcjet and its arc plume entering a rarefied vacuum chamber. The computational method we develop makes it possible to reproduce the arc column behavior far from thermochemical equilibrium in the low-voltage discharge mode typical of argon arcjets. Furthermore, the results reveal that the plasma characteristic of being far from thermal equilibrium, which is particular to argon, causes the arcjet to operate in the low-voltage mode and its arc plume to be completely thermochemically frozen. Moreover, the arc plume has electroconductive non-uniformity with an electrically insulating boundary in the radial direction. Our computed values for the shock standoff distance in front of a blunt body and the drag exerted on it agree with measured values. As a result, the self-consistent computational model in this study is useful in investigating thermochemical nonequilibrium plasma flows in argon arcjet wind tunnels.

  19. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  20. Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.; Jacques, Steven L.; Flock, Stephen T.

    1990-06-01

    The effects of thermal coagulation on the macroscopic optical transport parameters that govern the distribution of light in tissues were studied. The optical absorption coefficients, pa, and the reduced scattering coefficients, j.ts (1-g), were deduced from measurements of total transmission and total reflectance of HeNe laser radiation ( = 633 and 594 nm) directed to thin slices of dog myocardium heated in vitro. The first optical changes were detected at 45°and, at temperatures above 65°, there was a 2-fold increase in absorption and a 7-fold increase in scattering. Transmission electron microscopy of laser-induced thermally coagulated lesions in rat myocardium (cw argon ion, = 514 nm) revealed ultrastructural alterations that were considered responsible for the increased scattering based on Mie theory. These microscopic alterations included disruption of mitochondria to form aggregates of electron dense granules and granular transformation of thermally coagulated proteins of the sarcomeres and cytoplasm. Our preliminary analyses suggest that the mitochondrial granules and the protein granules contribute to the increased scattering oflight in thermally coagulated myocardium.

  1. Effect of fibrinogen on blood coagulation detected by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Teng, Xiangshuai

    2015-05-01

    Our previous work demonstrated that an optical coherence tomography (OCT) technique and the parameter 1/e light penetration depth (d1/e) were able to characterize the whole blood coagulation process in contrast to existing optical tests that are performed on plasma samples. To evaluate the feasibility of the technique for quantifying the effect of fibrinogen (Fbg) on blood coagulation, a dynamic study of d1/e of blood in various Fbg concentrations was performed in static state. Two groups of blood samples of hematocrit (HCT) in 35, 45, and 55% were reconstituted of red blood cells with: 1) treated plasma with its intrinsic Fbg removed and commercial Fbg added (0-8 g L-1) and 2) native plasma with commercial Fbg added (0-8 g L-1). The results revealed a typical behavior due to coagulation induced by calcium ions and the clotting time is Fbg concentration-dependent. The clotting time was decreased by the increasing amount of Fbg in both groups. Besides, the blood of lower HCT with various levels of Fbg took shorter time to coagulate than that of higher HCT. Consequently, the OCT method is a useful and promising tool for the detection of blood-coagulation processes induced with different Fbg levels.

  2. Reply to comment on ‘Correlating metastable-atom density, reduced electric field, and electron energy distribution in the post-transient stage of a 1 Torr argon discharge’ 2015 Plasma Sources Sci. Technol. 24 034009

    NASA Astrophysics Data System (ADS)

    Franek, J. B.; Nogami, S. H.; Demidov, V. I.; Koepke, M. E.; Barnat, E. V.

    2016-06-01

    The attention to a detailed analysis by Sadeghi [1] of our paper [2], using Weatherford and Barnat [3] for reference information is appreciated and motivates us to clarify points in our paper referred to in the Comment [1]. In this Reply, we respond to the two remarks by Sadeghi [1] claiming to render as unjustified our original conclusion based on validity of the 420.1/419.8 nm emission intensity ratio method for the estimate of argon metastable density, and clear up other possible misinterpretations of the data presented in our paper [2].

  3. Microstructures and Argon age dating

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Fitz Gerald, John; Lister, Gordon

    2010-05-01

    Microstructures can be dated using 40Ar/39Ar geochronology, but certain conditions apply. In particular the nature of the physical processes that took place during development of need be identified, and the pattern of gas release (and/or retention) during their evolution in nature, and subsequently in the mass spectrometer, during the measurement process. Most researchers cite temperature as the sole variable of importance. There is a belief that there is a single "closure temperature" or a "closure interval" above which the mineral is incapable of retaining radiogenic argon. This is a false conception. Closure is practically relevant only in circumstances that see a rock cooled relatively rapidly from temperatures that were high enough to prevent significant accumulation of radiogenic argon, to temperatures below which there is insignificant loss of radiogenic argon through the remainder of the geological history. These conditions accurately apply only to a limited subset - for example to rocks that cool rapidly from a melt and thereafter remain at or close to the Earth's surface, without subsequent ingress of fluids that would cause alteration and modification of microstructure. Some minerals in metamorphic rocks might display such "cooling ages" but in principle these data are difficult to interpret since they depend on the rate of cooling, the pressures that applied, and the subsequent geological history. Whereas the science of "cooling ages" is relatively well understood, the science of the Argon Partial Retention Zone is in its infancy. In the Argon PRZ it is evident that ages should (and do) show a strong correlation with microstructure. The difficulty is that, since diffusion of Argon is simultaneously multi-path and multi-scale, it is difficult to directly interrogate the distinct reservoirs that store gas populations and thus the age information that can be recorded as to the multiple events during the history of an individual microstructure. Laser

  4. Hirudin as a molecular probe for thrombin in vitro and during systemic coagulation in the pig.

    PubMed Central

    Zoldhelyi, P; Chesebro, J H; Owen, W G

    1993-01-01

    The amount of thrombin active in vivo in the intravascular space (blood and endothelial surface), both basally and in experimental intravascular coagulation, is measured by way of the accessibility of thrombin to intravascular hirudin. Blood samples from pigs given intravenous 125I-labeled hirudin contain 125I-labeled hirudin-thrombin complex in concentrations indicative of a basal thrombin concentration in vivo of 0.5 nmol/liter. Intravenous infusion of Salmonella endotoxin elicits an increase in the circulating concentration of hirudin-thrombin complex that begins within 15 min and is 20-30 times basal after 4 hr. Induction of mild intravascular coagulation is evidenced by a modest reduction in plasma fibrinogen concentrations. It is concluded that there is a basal pool of hirudin-accessible thrombin in the intravascular space that, were it free in the plasma phase, would be sufficient in principle to sustain intravascular coagulation. Images Fig. 5 PMID:8446595

  5. Virus inactivation in aluminum and polyaluminum coagulation.

    PubMed

    Matsui, Yoshihiko; Matsushita, Taku; Sakuma, Satoru; Gojo, Takahito; Mamiya, Teppei; Suzuoki, Hiroshi; Inoue, Takanobu

    2003-11-15

    Inorganic aluminum salts, such as aluminum sulfate, are coagulants that cause small particles, such as bacteria and viruses as well as inorganic particles, to destabilize and combine into larger aggregates. In this investigation, batch coagulation treatments of water samples spiked with Qbeta, MS2, T4, and P1 viruses were conducted with four different aluminum coagulants. The total infectious virus concentration in the suspension of floc particles that eventually formed by dosing with coagulant was measured after the floc particles were dissolved by raising the pH with an alkaline beef extract solution. The virus concentrations were extremely reduced after the water samples were dosed with aluminum coagulants. Viruses mixed with and adsorbed onto preformed aluminum hydroxide floc were, however, completely recovered after the floc dissolution. These results indicated that the aluminum coagulation process inactivates viruses. Virucidal activity was most prominent with the prehydrolyzed aluminum salt coagulant, polyaluminum chloride (PACl). Virucidal activity was lower in river water than in ultrapure water--natural organic matter in the river water depressed the virucidal activity. Mechanisms and kinetics of the virus inactivation were discussed. Our results suggest that intermediate polymers formed during hydrolysis of the aluminum coagulants sorbed strongly to viruses, either rendering them inactive or preventing infectivity. PMID:14655704

  6. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices § 864.5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated...

  7. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices § 864.5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated...

  8. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices § 864.5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated...

  9. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices § 864.5400 Coagulation instrument. (a) Identification. A coagulation instrument is an automated...

  10. Dust grain coagulation modelling : From discrete to continuous

    NASA Astrophysics Data System (ADS)

    Paruta, P.; Hendrix, T.; Keppens, R.

    2016-07-01

    In molecular clouds, stars are formed from a mixture of gas, plasma and dust particles. The dynamics of this formation is still actively investigated and a study of dust coagulation can help to shed light on this process. Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its properties and its suitability for numerical validation. The crucial step is in our reinterpretation from its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski coagulation equation. This opens up the possibility of exploiting previous results in order to prove the existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution. Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is demonstrated that there is an exact numerical agreement with the initial discrete model, with improved accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.

  11. Silica Nanoparticles Effects on Blood Coagulation Proteins and Platelets

    PubMed Central

    Gryshchuk, Volodymyr; Galagan, Natalya

    2016-01-01

    Interaction of nanoparticles with the blood coagulation is important prior to their using as the drug carriers or therapeutic agents. The aim of present work was studying of the primary effects of silica nanoparticles (SiNPs) on haemostasis in vitro. We studied the effect of SiNPs on blood coagulation directly estimating the activation of prothrombin and factor X and to verify any possible effect of SiNPs on human platelets. It was shown that SiNPs shortened coagulation time in APTT and PT tests and increased the activation of factor X induced by RVV possibly due to the sorption of intrinsic pathway factors on their surface. SiNPs inhibited the aggregation of platelet rich plasma induced by ADP but in the same time partially activated platelets as it was shown using flow cytometry. The possibility of SiNPs usage in nanomedicine is strongly dependant on their final concentration in bloodstream and the size of the particles that are used. However SiNPs are extremely promising as the haemostatic agents for preventing the blood loss after damage. PMID:26881078

  12. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  13. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793

  14. Textile wastewater purification through natural coagulants

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Rodríguez-Sánchez, M. T.

    2011-09-01

    A new coagulant obtained through polymerization of Acacia mearnsii de Wild tannin extract has been characterized in the removal of two dangerous dye pollutants: Alizarin Violet 3R and Palatine Fast Black WAN. This coagulant is lab-synthesized according to the etherification of tannins with glycidyltrimethylammonium chloride and formaldehyde and its performance in dye removal in terms of efficiency was high. Reasonably low coagulant dosages (ca. 50 mg L-1) reaches high capacity levels (around 0.8 for Alizarin Violet 3R and 1.6 for Palatine Fast Black WAN mg dye mg-1 of coagulant) and pH and temperature are not extremely affecting variables. The systems coagulant dyes were successfully modeled by applying the Langmuir hypothesis. q max and b parameters were obtained with an adjusted correlation factor ( r 2) above 0.8.

  15. Histidine-rich glycoprotein inhibits contact activation of blood coagulation.

    PubMed

    Vestergaard, A B; Andersen, H F; Magnusson, S; Halkier, T

    1990-12-01

    Histidine-rich glycoprotein has been purified from bovine plasma employing two different purification procedures. The first procedure was one-step ion-exchange chromatography using phosphocellulose, while the second procedure involved fractionation using polyethyleneglycol 6000 followed by column chromatography employing CM-Sepharose and heparin-Sepharose. The effect of purified bovine histidine-rich glycoprotein on the contact activation of blood coagulation was studied in human plasma by using as activating surface either an ellagic acid-phospholipid suspension (Cephotest) or sulfatide. Contact activation was monitored by the generation of amidolytic activity towards a synthetic chromogenic substrate (S-2302) for factor XIIa and plasma kallikrein. Bovine histidine-rich glycoprotein inhibits the contact activation induced by both of these activating surfaces. PMID:2084959

  16. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R.; Takahashi, K.

    2013-06-01

    A low pressure (˜0.5 mTorr in xenon and ˜1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  17. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    SciTech Connect

    Charles, C.; Boswell, R.; Takahashi, K.

    2013-06-03

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  18. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  19. Abnormal factor VIII coagulant antigen in patients with renal dysfunction and in those with disseminated intravascular coagulation.

    PubMed Central

    Weinstein, M J; Chute, L E; Schmitt, G W; Hamburger, R H; Bauer, K A; Troll, J H; Janson, P; Deykin, D

    1985-01-01

    Factor VIII antigen (VIII:CAg) exhibits molecular weight heterogeneity in normal plasma. We have compared the relative quantities of VIII:CAg forms present in normal individuals (n = 22) with VIII:CAg forms in renal dysfunction patients (n = 19) and in patients with disseminated intravascular coagulation (DIC; n = 7). In normal plasma, the predominant VIII: CAg form, detectable by sodium dodecyl sulfate polyacrylamide gel electrophoresis, was of molecular weight 2.4 X 10(5), with minor forms ranging from 8 X 10(4) to 2.6 X 10(5) D. A high proportion of VIII:CAg in renal dysfunction patients, in contrast, was of 1 X 10(5) mol wt. The patients' high 1 X 10(5) mol wt VIII: CAg level correlated with increased concentrations of serum creatinine, F1+2 (a polypeptide released upon prothrombin activation), and with von Willebrand factor. Despite the high proportion of the 1 X 10(5) mol wt VIII:CAg form, which suggests VIII:CAg proteolysis, the ratio of Factor VIII coagulant activity to total VIII:CAg concentration was normal in renal dysfunction patients. These results could be simulated in vitro by thrombin treatment of normal plasma, which yielded similar VIII:CAg gel patterns and Factor VIII coagulant activity to antigen ratios. DIC patients with high F1+2 levels but no evidence of renal dysfunction had an VIII:CAg gel pattern distinct from renal dysfunction patients. DIC patients had elevated concentrations of both the 1 X 10(5) and 8 X 10(4) mol wt VIII:CAg forms. We conclude that an increase in a particular VIII:CAg form correlates with the severity of renal dysfunction. The antigen abnormality may be the result of VIII:CAg proteolysis by a thrombinlike enzyme and/or prolonged retention of proteolyzed VIII:CAg fragments. Images PMID:3932466

  20. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation. PMID:27114461

  1. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  2. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  3. Differential Kinetics of Coagulation Factors and Natural Anticoagulants in Patients with Liver Cirrhosis: Potential Clinical Implications

    PubMed Central

    Tischendorf, Michael; Miesbach, Wolfgang; Chattah, Umer; Chattah, Zenab; Maier, Sebastian; Welsch, Christoph; Zeuzem, Stefan; Lange, Christian M.

    2016-01-01

    Background Advanced liver diseases are associated with profound alterations of the coagulation system increasing the risk not only of bleeding, but also of thromboembolic complications. A recent milestone study has shown that prophylactic anticoagulation in liver cirrhosis patients results in a reduced frequency of hepatic decompensation. Yet, INR measurement, one of the most widely applied tests to assess liver function, only inaccurately predicts the risk of hepatic decompensation related to alterations of the coagulation system. To assess the relationship between selected coagulation factors / natural anticoagulants with INR, MELD score, and hepatic decompensation, we performed the present pilot study. A total number of 92 patients with various stages of liver cirrhosis were included and prospectively followed for at least 6 months. We found that important natural anticoagulants, namely antithrombin and protein C, as well as factor XI (which may also serve as an anticoagulant) decreased earlier and by a larger magnitude than one would expect from classical coagulation test results. The correlation between these factors and INR was only moderate. Importantly, reduced plasma activities of natural anticoagulants but not INR or MELD score were independent predictors of hepatic encephalopathy (P = 0.013 and 0.003 for antithrombin and protein C, respectively). Conclusion In patients with liver cirrhosis plasma activities of several natural anticoagulants are earlier and stronger affected than routine coagulation tests. Reduced activities of natural anticoagulants may be predictive for the development of hepatic encephalopathy. PMID:27171213

  4. Coagulation problems in human pregnancy.

    PubMed Central

    Redman, C. W.

    1979-01-01

    Coagulation problems in pregnancy are primarily associated with overactivity of the intrinsic clotting system. This accounts for the increased incidence of thrombo-embolism during pregnancy. Where specific obstetric complications cause clotting problems the common underlying feature is usually placental pathology as in abruptio placentae, pre-eclampsia or hydatidiform mole. Abnormal activation of the clotting system is an early, and occasionally the first detectable feature of pre-eclampsia, but there is no evidence that this is a primary change. Therefore the role of anticoagulant treatment in the management of pre-eclampsia remains questionable. A new test for estimating factor VIII consumption is proving to be a sensitive index of early activation of the clotting system and can be used for the diagnosis of early pre-eclampsia. PMID:382170

  5. Coagulant and anticoagulant activities of Bothrops lanceolatus (Fer de lance) venom.

    PubMed

    Lôbo de Araújo, A; Kamiguti, A; Bon, C

    2001-01-01

    Bothrops lanceolatus venom contains caseinolytic, phospholipase, esterase and haemorrhagic activities. We have investigated the coagulant and anticoagulant actions of B. lanceolatus venom on human citrated plasma and on purified plasma components. Although B. lanceolatus venom up to 50 microg/ml was unable to clot citrated plasma, at concentrations > or = 5 microg/ml the venom dose-dependently clotted purified human fibrinogen, indicating the presence of a thrombin-like enzyme. Human plasma (final concentration > or = 12.5%) dose-dependently inhibited the venom-induced fibrinogen clotting. This finding suggested that endogenous plasma protease inhibitors can affect the venom's action on fibrinogen. To investigate this possibility, B. lanceolatus venom was incubated with different plasma protease inhibitors and the activity on fibrinogen tested. alpha(2)-Macroglobulin and alpha(1)-antitrypsin did not interfere with the coagulant activity of the venom whereas the antithrombin-III/heparin complex partially inhibited this activity. A non-toxic, acidic phospholipase A(2) purified from B. lanceolatus venom prolonged the activated partial thromboplastin time in human plasma from 39.7+/-0.5 s (control with saline) to 60.2+/-0.9 s with 50 microg of PLA(2) (p<0.001), suggesting an anticoagulant activity associated with this enzyme. This anticoagulant activity may account for some of the effects of the venom on blood coagulation. PMID:10978756

  6. Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization.

    PubMed

    Yan, Mingquan; Wang, Dongsheng; Qu, Jiuhui; Ni, Jinren; Chow, Christopher W K

    2008-04-01

    Conventional coagulation is not an effective treatment option to remove natural organic matter (NOM) in water with high alkalinity/pH. For this type of water, enhanced coagulation is currently proposed as one of the available treatment options and is implemented by acidifying the raw water and applying increased doses of hydrolyzing coagulants. Both of these methods have some disadvantages such as increasing the corrosive tendency of water and increasing cost of treatment. In this paper, an improved version of enhanced coagulation through coagulant optimization to treat this kind of water is demonstrated. A novel coagulant, a composite polyaluminum chloride (HPAC), was developed with both the advantages of polyaluminum chloride (PACl) and the additive coagulant aids: PACl contains significant amounts of highly charged and stable polynuclear aluminum hydrolysis products, which is less affected by the pH of the raw water than traditional coagulants (alum and ferric salts); the additives can enhance both the charge neutralization and bridging abilities of PACl. HPAC exhibited 30% more efficiency than alum and ferric salts in dissolved organic carbon (DOC) removal and was very effective in turbidity removal. This result was confirmed by pilot-scale testing, where particles and organic matter were removed synergistically with HPAC as coagulant by sequential water treatment steps including pre-ozonation, coagulation, flotation and sand filtration. PMID:18206207

  7. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    Recent studies have resulted in the development of a novel agglomeration process for upgrading ultrafine coal. This process, which is known as selective hydrophobic coagulation (SHC), is based on the new finding that hydrophobic coal particles can be selectively coagulated in the presence of dispersed mineral matter. The driving force for the coagulation is believed to be due to the structural arrangement of water molecules near the coal surface. In most cases, simple pH control is all that is required to (1) induce the coagulation of the coal particles and (2) effectively disperse the particles of mineral matter. During the past quarter, several important aspects of the SHC process were examined. Direct measurements of the surface forces which control the selective coagulation process were conducted using a Mark 4 surface force apparatus. These preliminary measurements have provided irrefutable evidence for the existence of the hydrophobic force. Key expressions have been presented for a population balance model describing the hydrophobic coagulation process. In order to validate this model, experimental measurements of the size distributions of coal coagulation have been initiated. The liberation characteristics of samples obtained from the Elkhorn No. 3 and Pittsburgh No. 8 coal seams were determined using a SEM-IPS image processing system. Mixing studies were carried out to determine the effects of mixer-impeller configurations on the coagula size distributions. Bench-scale continuous testing has also been initiated during the past quarter using a rotating drum screen and sedimentation tank. 25 figs., 8 tabs.

  8. Transfusion and coagulation management in liver transplantation.

    PubMed

    Clevenger, Ben; Mallett, Susan V

    2014-05-28

    There is wide variation in the management of coagulation and blood transfusion practice in liver transplantation. The use of blood products intraoperatively is declining and transfusion free transplantations take place ever more frequently. Allogenic blood products have been shown to increase morbidity and mortality. Primary haemostasis, coagulation and fibrinolysis are altered by liver disease. This, combined with intraoperative disturbances of coagulation, increases the risk of bleeding. Meanwhile, the rebalancing of coagulation homeostasis can put patients at risk of hypercoagulability and thrombosis. The application of the principles of patient blood management to transplantation can reduce the risk of transfusion. This includes: preoperative recognition and treatment of anaemia, reduction of perioperative blood loss and the use of restrictive haemoglobin based transfusion triggers. The use of point of care coagulation monitoring using whole blood viscoelastic testing provides a picture of the complete coagulation process by which to guide and direct coagulation management. Pharmacological methods to reduce blood loss include the use of anti-fibrinolytic drugs to reduce fibrinolysis, and rarely, the use of recombinant factor VIIa. Factor concentrates are increasingly used; fibrinogen concentrates to improve clot strength and stability, and prothrombin complex concentrates to improve thrombin generation. Non-pharmacological methods to reduce blood loss include surgical utilisation of the piggyback technique and maintenance of a low central venous pressure. The use of intraoperative cell salvage and normovolaemic haemodilution reduces allogenic blood transfusion. Further research into methods of decreasing blood loss and alternatives to blood transfusion remains necessary to continue to improve outcomes after transplantation. PMID:24876736

  9. Resection of meningiomas with implantable microwave coagulation

    SciTech Connect

    Zhou, X.P.; Xie, Q.L.; Liu, J.M.; Yue, Z.J.; Cai, K.H.

    1996-05-01

    Implantable microwave coagulation was used to perform resection on 62 patients that had intracranial meningiomas. When 20--60 W microwave power was applied for 15 s, the temperature at the center of the tumor tissue was 43--63 C; 30 mm from the center, the temperature was under 40 C. Histological changes in the center of the tumor showed coagulative necrosis, diminished nuclei, and obliterated blood vessels. The changes at 10--20 mm from the center of the tumor showed coagulative necrosis and degeneration and, 30--50 mm from the center of the tumor, showed normal cell morphology after microwave coagulation. The thermal field in brain tumor has an effective diameter of about 40 mm. No side effects on the normal brain tissues were observed. The amount of blood loss during the operation was minimal while the meningioma was coagulated, especially when the meningioma was located at the skull base or in the parasagittal or cerebral convexity region. After microwave coagulation, the entire tumor could easily be removed. Among the 62 surgically treated cases, gross total tumor excision was 85%. No postoperative complications occurred after microwave coagulation, and there was no operative mortality in the series. The authors believe that this new technique has the advantage of simplicity, less blood loss, and smooth postoperative procedures. Hemostatic effects during the operation are satisfactory, and blood transfusion can be reduced by 50--60%.

  10. The singular coagulation equation with multiple fragmentation

    NASA Astrophysics Data System (ADS)

    Saha, Jitraj; Kumar, Jitendra

    2015-06-01

    In this paper, we prove the global existence and uniqueness of the solutions to the initial-value problem for the coagulation-fragmentation equation with singular coagulation kernel and multiple fragmentation kernel. The solution obtained in this case also satisfies the mass conservation law. The proof is based on strong convergence methods applied to suitably chosen unbounded coagulation kernels having singularities in both the coordinate axes and satisfying certain growth conditions, which can possibly reach up to a quadratic growth at infinity, and the fragmentation kernel covers a very large class of unbounded functions.

  11. Coagulation and fragmentation with discrete mass loss

    NASA Astrophysics Data System (ADS)

    Blair, Pamela N.; Lamb, Wilson; Stewart, Iain W.

    2007-05-01

    A nonlinear integro-differential equation that models a coagulation and multiple fragmentation process in which discrete fragmentation mass loss can occur is examined using the theory of strongly continuous semigroups of operators. Under the assumptions that the coagulation kernel is bounded and the fragmentation rate function a satisfies a linear growth condition, global existence and uniqueness of solutions that lose mass in accordance with the model are established. In the case when no coagulation is present and the fragmentation process is governed by power-law kernels, an explicit formula is given for the substochastic semigroup associated with the resulting mass-loss fragmentation equation.

  12. Acute Disseminated Intravascular Coagulation in Neuroendocrine Carcinoma

    PubMed Central

    Teh, Ru-Wen; Tsoi, Daphne T.

    2012-01-01

    Malignancy is a common cause of disseminated intravascular coagulation and usually presents as a chronic disorder in solid organ tumours. We present a rare case of recurrent acute disseminated intravascular coagulation in neuroendocrine carcinoma after manipulation, firstly, by core biopsy and, later, by cytotoxic therapy causing a release of procoagulants and cytokines from lysed tumour cells. This is reminiscent of tumour lysis syndrome where massive quantities of intracellular electrolytes and nucleic acid are released, causing acute metabolic imbalance and renal failure. This case highlights the potential complication of acute disseminated intravascular coagulation after trauma to malignant cells. PMID:23139666

  13. Neprilysin Inhibits Coagulation through Proteolytic Inactivation of Fibrinogen.

    PubMed

    Burrell, Matthew; Henderson, Simon J; Ravnefjord, Anna; Schweikart, Fritz; Fowler, Susan B; Witt, Susanne; Hansson, Kenny M; Webster, Carl I

    2016-01-01

    Neprilysin (NEP) is an endogenous protease that degrades a wide range of peptides including amyloid beta (Aβ), the main pathological component of Alzheimer's disease (AD). We have engineered NEP as a potential therapeutic for AD but found in pre-clinical safety testing that this variant increased prothrombin time (PT) and activated partial thromboplastin time (APTT). The objective of the current study was to investigate the effect of wild type NEP and the engineered variant on coagulation and define the mechanism by which this effect is mediated. PT and APTT were measured in cynomolgus monkeys and rats dosed with a human serum albumin fusion with an engineered variant of NEP (HSA-NEPv) as well as in control plasma spiked with wild type or variant enzyme. The coagulation factor targeted by NEP was determined using in vitro prothrombinase, calibrated automated thrombogram (CAT) and fibrin formation assays as well as N-terminal sequencing of fibrinogen treated with the enzyme. We demonstrate that HSA-NEP wild type and HSA-NEPv unexpectedly impaired coagulation, increasing PT and APTT in plasma samples and abolishing fibrin formation from fibrinogen. This effect was mediated through cleavage of the N-termini of the Aα- and Bβ-chains of fibrinogen thereby significantly impairing initiation of fibrin formation by thrombin. Fibrinogen has therefore been identified for the first time as a substrate for NEP wild type suggesting that the enzyme may have a role in regulating fibrin formation. Reductions in NEP levels observed in AD and cerebral amyloid angiopathy may contribute to neurovascular degeneration observed in these conditions. PMID:27437944

  14. Neprilysin Inhibits Coagulation through Proteolytic Inactivation of Fibrinogen

    PubMed Central

    Burrell, Matthew; Henderson, Simon J.; Ravnefjord, Anna; Schweikart, Fritz; Fowler, Susan B.; Witt, Susanne; Hansson, Kenny M.; Webster, Carl I.

    2016-01-01

    Neprilysin (NEP) is an endogenous protease that degrades a wide range of peptides including amyloid beta (Aβ), the main pathological component of Alzheimer’s disease (AD). We have engineered NEP as a potential therapeutic for AD but found in pre-clinical safety testing that this variant increased prothrombin time (PT) and activated partial thromboplastin time (APTT). The objective of the current study was to investigate the effect of wild type NEP and the engineered variant on coagulation and define the mechanism by which this effect is mediated. PT and APTT were measured in cynomolgus monkeys and rats dosed with a human serum albumin fusion with an engineered variant of NEP (HSA-NEPv) as well as in control plasma spiked with wild type or variant enzyme. The coagulation factor targeted by NEP was determined using in vitro prothrombinase, calibrated automated thrombogram (CAT) and fibrin formation assays as well as N-terminal sequencing of fibrinogen treated with the enzyme. We demonstrate that HSA-NEP wild type and HSA-NEPv unexpectedly impaired coagulation, increasing PT and APTT in plasma samples and abolishing fibrin formation from fibrinogen. This effect was mediated through cleavage of the N-termini of the Aα- and Bβ-chains of fibrinogen thereby significantly impairing initiation of fibrin formation by thrombin. Fibrinogen has therefore been identified for the first time as a substrate for NEP wild type suggesting that the enzyme may have a role in regulating fibrin formation. Reductions in NEP levels observed in AD and cerebral amyloid angiopathy may contribute to neurovascular degeneration observed in these conditions. PMID:27437944

  15. Modelling of Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Akdim, Mohamed Reda

    2003-09-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is

  16. Collisionless "thermalization" in the sheath of an argon discharge

    NASA Astrophysics Data System (ADS)

    Coulette, David; Manfredi, Giovanni

    2015-04-01

    We performed kinetic Vlasov simulations of the plasma-wall transition for a low-pressure argon discharge without external magnetic fields, using the same plasma parameters as in the experiments of Claire et al. [Phys. Plasmas 13, 062103 (2006)]. Experimentally, it was found that the ion velocity distribution function is highly asymmetric in the presheath, but, surprisingly, becomes again close to Maxwellian inside the sheath. Here, we show that this "thermalization" can be explained by purely collisionless effects that are akin to the velocity bunching phenomenon observed in charged particles beams. Such collisionless thermalization is also observed in the presheath region close to the sheath entrance, although it is much weaker there and in practice probably swamped by collisional processes (standard or enhanced by instabilities).

  17. Argon purge gas cooled by chill box

    NASA Technical Reports Server (NTRS)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  18. Liquid argon calorimetry for the SSC

    SciTech Connect

    Gordon, H.A.

    1990-01-01

    Liquid argon calorimetry is a mature technique. However, adapting it to the challenging environment of the SSC requires a large amount of R D. The advantages of the liquid argon approach are summarized and the issues being addressed by the R D program are described. 18 refs.

  19. 2D laser-collision induced fluorescence in low-pressure argon discharges

    SciTech Connect

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

  20. 2D laser-collision induced fluorescence in low-pressure argon discharges

    DOE PAGESBeta

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Tdmore » to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less

  1. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  2. Model of a stationary microwave argon discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  3. Effect of argon ion bombardment on amorphous silicon carbonitride films

    NASA Astrophysics Data System (ADS)

    Batocki, R. G. S.; Mota, R. P.; Honda, R. Y.; Santos, D. C. R.

    2014-04-01

    Amorphous silicon carbonitride (a-SiCN:H) films were synthesized by radiofrequency (RF) Plasma Enhanced Vapor Chemical Deposition (PECVD) using hexamethyldisilazane (HMDSN) as precursor compound. Then, the films were post-treated by Plasma Immersion Ion Implantation (PIII) in argon atmosphere from 15 to 60 min. The hardness of the film enhanced after ion implantation, and the sample treated at 45 min process showed hardness greater than sixfold that of the untreated sample. This result is explained by the crosslinking and densification of the structure. Films were exposed to oxygen plasma for determining of the etching rate. It decreased monotonically from 33 Å/min to 19 Å/min for the range of process time, confirming structural alterations. Hydrophobic character of the a-SiCN:H films were modified immediately after ion bombardment, due to incorporation of polar groups. However, the high wettability of the films acquired by the ion implantation was diminished after aging in air. Therefore, argon PIII made a-SiCN:H films mechanically more resistant and altered their hydrophobic character.

  4. Leech bites: massive bleeding, coagulation profile disorders, and severe anemia.

    PubMed

    Kose, Ataman; Zengin, Suat; Kose, Beril; Gunay, Nurullah; Yildirim, Cuma; Kilinc, Hasan; Togun, Ismail

    2008-11-01

    Leeches have been in use for centuries, especially in plastic and reconstructive surgery wound and flap healing, in venous insufficiencies, and in the treatment of many disorders such as hemorrhoids and varicosity. With this study, we aimed to discuss coagulation disorder due to uncontrolled leech bites, consequent excessive skin hemorrhage, and anemia requiring blood transfusion. A 65-year-old male patient was referred to the emergency department because of excessive intractable bleeding that had occurred after leech bites. On physical examination, a total of 130 bites were detected on various regions of the body. In the laboratory findings of the patient, hemoglobin and hematocrit levels were extremely low, and prothrombin time, international normalized ratio, and partial thromboplastin time were markedly increased. The patient received a total of 8 units of fresh frozen plasma and 6 units of erythrocyte suspension. Bleeding stopped by decreasing after the transfusion of fresh frozen plasma. Although the complications due to leech injuries are rare, they may be an important cause of morbidity and mortality when an injury or prolonged bleeding in an internal region occurs. Prolonged skin hemorrhages rarely cause anemia, and deaths are caused by intractable hemorrhages. However, a coagulation disorder and consequent intractable hemorrhage have not been reported previously in the literature. In conclusion, it should be known that uncontrolled, blind, and excessive leech use causes severe hemorrhage and excessive blood loss, causing significant morbidity and mortality. Therefore, the awareness of either physicians or people using or recommending alternative medicine should be raised on this subject. PMID:19091286

  5. Effects of Al-coagulant sludge characteristics on the efficiency of coagulants recovery by acidification.

    PubMed

    Chen, Yi-Jui; Wang, Wen-May; Wei, Ming-Jun; Chen, Jiann-Long; He, Ju-Liang; Chiang, Kung-Yuh; Wu, Chih-Chao

    2012-12-01

    This study evaluated the effects of Al-coagulant sludge characteristics on the efficiency ofcoagulant recovery by acidification with H2SO4. Two sludge characteristics were studied: types of coagulant and textures of the suspended solid in raw water. The coagulant types are aluminium sulphate and polyaluminium chloride (PACl); the textures of the suspended solid are sand-based and clay-based. Efficiency of aluminium recovery at a pH of 2 was compared for different sludges obtained from water treatment plants in Taiwan. The results showed that efficiency of aluminium recovery from sludge containing clayey particles was higher than that from sludge containing sandy particles. As for the effect of coagulant types, the aluminium recovery efficiency for sludge using PACl ranged between 77% and 100%, whereas it ranged between 65% and 72% for sludge using aluminium sulphate as the coagulant. This means using PACl as the coagulant could result in higher recovery efficiency of coagulant and be beneficial for water treatment plants where renewable materials and waste reduction as the factors for making decisions regarding plant operations. However, other metals, such as manganese, could be released with aluminium during the acidification process and limit the use of the recovered coagulants. It is suggested that the recovered coagulants be used in wastewater treatment processes. PMID:23437650

  6. Disseminated intravascular coagulation after multiple honeybee stings.

    PubMed

    V, Dharma Rao; Bodepudi, Sravan Kumar; Krishna, Murali

    2014-01-01

    Honeybee venom contains apitoxin which can cause anaphylaxis, cardiovascular collapse and death. Disseminated intravascular coagulation is rare following honeybee stings. We describe the case of a farmer who developed this complication. PMID:25668084

  7. ARSENIC REMOVAL BY SOFTENING AND COAGULATION

    EPA Science Inventory

    Drinking water regulations for arsenic (As) and disinfection by-product precursor materials (measured as TOC) are becoming increasingly stringent. Among the modifications to conventional treatment that can improve removal of As and TOC, precipitative softening and coagulation are...

  8. Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc-iron-phosphate coagulant.

    PubMed

    Zhu, Guocheng; Wang, Qian; Yin, Jun; Li, Zhongwu; Zhang, Peng; Ren, Bozhi; Fan, Gongduan; Wan, Peng

    2016-09-01

    The increase of agricultural related activities and the lack of effective waste control has led to an increase of organic nitrogen in water. The development of coagulants to effectively remove dissolved organic nitrogen (DON) is a high priority in the water treatment industry. We developed a polymeric zinc-iron-phosphate (ZnFeP) coagulant and investigated its coagulation effect on DON removal. Optimum coagulant for coagulation for DON and TDN removals was characterized by the dense convex-concave packing structure differing from other zinc-based coagulant, polycrystalline structure and high content colloidal species, which could account up to 87% of the total colloidal species. Coagulation experiments showed the DON removal rate to vary greatly depending on principal components and their interaction with metals, phosphate and hydroxyl. DON removal efficiency increased with the increase of colloidal species. The coagulation was also dependent on coagulant dosage and water quality parameters: Coagulation efficiency increased with coagulant dosage in the investigated range of 1-16 mg/l, and a pH of 6 was found to be superior for the coagulation. DON removal efficiency was also higher than and linearly correlated with total dissolved nitrogen (TDN) removal, which implies that an effective coagulation for TDN is also effective for DON. The findings in this study indicate that coagulation of DON is largely influenced by coagulant composition and species. We also found the removal of DON by our newly developed polymeric ZnFeP coagulant to be effective. PMID:27192355

  9. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  10. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  11. Perioperatively acquired disorders of coagulation

    PubMed Central

    Grottke, Oliver; Fries, Dietmar; Nascimento, Bartolomeu

    2015-01-01

    Purpose of review To provide an overview of acquired coagulopathies that can occur in various perioperative clinical settings. Also described are coagulation disturbances linked to antithrombotic medications and currently available strategies to reverse their antithrombotic effects in situations of severe hemorrhage. Recent findings Recent studies highlight the link between low fibrinogen and decreased fibrin polymerization in the development of acquired coagulopathy. Particularly, fibrin(ogen) deficits are observable after cardiopulmonary bypass in cardiac surgery, on arrival at the emergency room in trauma patients, and with ongoing bleeding after child birth. Regarding antithrombotic therapy, although new oral anticoagulants offer the possibility of efficacy and relative safety compared with vitamin K antagonists, reversal of their anticoagulant effect with nonspecific agents, including prothrombin complex concentrate, has provided conflicting results. Specific antidotes, currently being developed, are not yet licensed for clinical use, but initial results are promising. Summary Targeted hemostatic therapy aims to correct coagulopathies in specific clinical settings, and reduce the need for allogeneic transfusions, thus preventing massive transfusion and its deleterious outcomes. Although there are specific guidelines for reversing anticoagulation in patients treated with antiplatelet agents or warfarin, there is currently little evidence to advocate comprehensive recommendations to treat drug-induced coagulopathy associated with new oral anticoagulants. PMID:25734869

  12. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  13. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    PubMed Central

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  14. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells.

    PubMed

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F; Breuer, Johanna; Herold, Martin; Gross, Catharina C; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  15. Argon-39 Background in DUNE Photon Detectors

    NASA Astrophysics Data System (ADS)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  16. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    SciTech Connect

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André; Matyash, Konstantin

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  17. Endosulfan activates the extrinsic coagulation pathway by inducing endothelial cell injury in rats.

    PubMed

    Zhang, Lianshuang; Wei, Jialiu; Guo, Fangzi; Duan, Junchao; Li, Yanbo; Shi, Zhixiong; Yang, Yumei; Zhou, Xianqing; Sun, Zhiwei

    2015-10-01

    Endosulfan, a persistent organic pollutant, is widely used in agriculture as a pesticide. The aim of the present study was to evaluate the blood toxicity of different doses of endosulfan in Wistar rats. The experimental sample was composed of four groups, a control group that did not receive endosulfan and three endosulfan-exposed groups that respectively received 1, 5, or 10 mg/kg/day (doses below LD50), of endosulfan for 21 days. The results showed that endosulfan significantly decreased the prothrombin time (PT) and upregulated the activated coagulation factors VIIa, Xa, and XIIIa; thrombin-antithrombin complex (TAT); and P-selectin. Plasma levels of tissue factor (TF) and malondialdehyde (MDA) were increased in the endosulfan groups. The activated partial thromboplastin time (APTT) and the level of activated coagulation factor IXa showed no obvious changes. Immunohistochemical results showed increased expression of von Willebrand factor (vWF) and the inflammatory cytokine interleukin (IL)-1β in the groups exposed to endosulfan. The pathology and electron microscopy results showed impaired vascular tissue accompanied by the exfoliation of endothelial cells and mitochondrial damage in the endosulfan-exposed groups. In summary, our results suggest that endosulfan damages endothelial cells via oxidative stress and the inflammatory response, leading to the release of TF and vWF into the blood. The TF and vWF in the blood may activate extrinsic coagulation factors and platelets, thus triggering the extrinsic coagulation pathway. There were no obvious effects on the intrinsic coagulation pathway. PMID:26028348

  18. Extracellular protein disulfide isomerase regulates coagulation on endothelial cells through modulation of phosphatidylserine exposure

    PubMed Central

    Popescu, Narcis I.; Lupu, Cristina

    2010-01-01

    Tissue factor (TF) is the cellular receptor for plasma protease factor VIIa (FVIIa), and the TF-FVIIa complex initiates coagulation in both hemostasis and thrombosis. Cell surface-exposed TF is mainly cryptic and requires activation to fully exhibit the procoagulant potential. Recently, the protein disulfide isomerase (PDI) has been hypothesized to regulate TF decryption through the redox switch of an exposed disulfide in TF extracellular domain. In this study, we analyzed PDI contribution to coagulation using an in vitro endothelial cell model. In this model, extracellular PDI is detected by imaging and flow cytometry. Inhibition of cell surface PDI induces a marked increase in TF procoagulant function, whereas exogenous addition of PDI inhibits TF decryption. The coagulant effects of PDI inhibition were sensitive to annexin V treatment, suggesting exposure of phosphatidylserine (PS), which was confirmed by prothrombinase assays and direct labeling. In contrast, exogenous PDI addition enhanced PS internalization. Analysis of fluorescent PS revealed that PDI affects both the apparent flippase and floppase activities on endothelial cells. In conclusion, we identified a new mechanism for PDI contribution to coagulation on endothelial cells, namely, the regulation of PS exposure, where PDI acts as a negative regulator of coagulation. PMID:20448108

  19. Modification of a commercial thromboelastography instrument to measure coagulation dynamics with three-dimensional biomaterials.

    PubMed

    Hawker, Morgan J; Olver, Christine S; Fisher, Ellen R

    2016-06-01

    Three-dimensional synthetic constructs with complex geometries have immense potential for use in a multitude of blood-contacting applications. Understanding coagulation phenomena is arguably the most critical aspect for applications involving synthetic biomaterials; however, real-time evaluation of the clot formation while interfacing with these materials is difficult to achieve in a reproducible and robust manner. Here, work representing first steps toward addressing this deficit is presented, wherein modified consumables for a clinical instrument (a Thromboelastograph(®)) have been fabricated. Thromboelastography (TEG) measures viscoelastic properties throughout clot formation and therefore provides clinically relevant coagulation measurements in real time (i.e., kinetics and strength of clot formation). Through our modification, TEG consumables can readily accommodate three-dimensional materials (e.g., those for regenerative tissue applications). The authors performed proof-of-concept experiments using polymer scaffolds with a range of surface properties and demonstrated that variations in surface properties resulted in differences in blood plasma coagulation dynamics. For example, the maximum rate of thrombus generation ranged from 22.2 ± 2.2 (dyn/cm(2))/s for fluorocarbon coated scaffolds to 8.7 ± 1.0 (dyn/cm(2))/s for nitrogen-containing scaffolds. Through this work, the ability to make real-time coagulation activity measurements during constant coagulation factor interface with biomedically relevant materials is demonstrated. PMID:27126596

  20. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    NASA Astrophysics Data System (ADS)

    Poterya, V.; Lengyel, J.; Pysanenko, A.; Svrčková, P.; Fárník, M.

    2014-08-01

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, bar{N}≈ 102-103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl.(H2O)N is trapped in the ice nanoparticle.