Science.gov

Sample records for armed replicating adenoviruses

  1. Vaccine Design: Replication-Defective Adenovirus Vectors.

    PubMed

    Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J

    2016-01-01

    Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies. PMID:27076309

  2. The Dual Nature of Nek9 in Adenovirus Replication

    PubMed Central

    Jung, Richard; Radko, Sandi

    2015-01-01

    ABSTRACT To successfully replicate in an infected host cell, a virus must overcome sophisticated host defense mechanisms. Viruses, therefore, have evolved a multitude of devices designed to circumvent cellular defenses that would lead to abortive infection. Previous studies have identified Nek9, a cellular kinase, as a binding partner of adenovirus E1A, but the biology behind this association remains a mystery. Here we show that Nek9 is a transcriptional repressor that functions together with E1A to silence the expression of p53-inducible GADD45A gene in the infected cell. Depletion of Nek9 in infected cells reduces virus growth but unexpectedly enhances viral gene expression from the E2 transcription unit, whereas the opposite occurs when Nek9 is overexpressed. Nek9 localizes with viral replication centers, and its depletion reduces viral genome replication, while overexpression enhances viral genome numbers in infected cells. Additionally, Nek9 was found to colocalize with the viral E4 orf3 protein, a repressor of cellular stress response. Significantly, Nek9 was also shown to associate with viral and cellular promoters and appears to function as a transcriptional repressor, representing the first instance of Nek9 playing a role in gene regulation. Overall, these results highlight the complexity of virus-host interactions and identify a new role for the cellular protein Nek9 during infection, suggesting a role for Nek9 in regulating p53 target gene expression. IMPORTANCE In the arms race that exists between a pathogen and its host, each has continually evolved mechanisms to either promote or prevent infection. In order to successfully replicate and spread, a virus must overcome every mechanism that a cell can assemble to block infection. On the other hand, to counter viral spread, cells must have multiple mechanisms to stifle viral replication. In the present study, we add to our understanding of how the human adenovirus is able to circumvent cellular roadblocks

  3. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  4. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells.

    PubMed

    Li, Yang; Li, Yi-Fei; Si, Chong-Zhan; Zhu, Yu-Hui; Jin, Yan; Zhu, Tong-Tong; Liu, Ming-Yuan; Liu, Guang-Yao

    2016-07-15

    Multigene-armed oncolytic adenoviruses are capable of efficiently generating a productive antitumor immune response. The chemokine (C-C motif) ligand 21 (CCL21) binds to CCR7 on naïve T cells and dendritic cells (DCs) to promote their chemoattraction to the tumor and resultant antitumor activity. Interleukin 21 (IL21) promotes survival of naïve T cells while maintaining their CCR7 surface expression, which increases their capacity to transmigrate in response to CCL21 chemoattraction. IL21 is also involved in NK cell differentiation and B cell activation and proliferation. The generation of effective antitumor immune responses is a complex process dependent upon coordinated interactions of various subsets of effector cells. Using the AdEasy system, we aimed to construct an oncolytic adenovirus co-expressing CCL21 and IL21 that could selectively replicate in TERTp-positive tumor cells (Ad-CCL21-IL21 virus). The E1A promoter of these oncolytic adenoviruses was replaced by telomerase reverse transcriptase promoter (TERTp). Ad-CCL21-IL21 was constructed from three plasmids, pGTE-IL21, pShuttle-CMV-CCL21 and AdEasy-1 and was homologously recombined and propagated in the Escherichia coli strain BJ5183 and the packaging cell line HEK-293, respectively. Our results showed that our targeted and armed oncolytic adenoviruses Ad-CCL21-IL21 can induce apoptosis in TERTp-positive tumor cells to give rise to viral propagation, in a dose-dependent manner. Importantly, we confirm that these modified oncolytic adenoviruses do not replicate efficiently in normal cells even under high viral loads. Additionally, we investigate the role of Ad-CCL21-IL21 in inducing antitumor activity and tumor specific cytotoxicity of CTLs in vitro. This study suggests that Ad-CCL21-IL21 is a promising targeted tumor-specific oncolytic adenovirus. PMID:27157859

  5. Oncolytic Replication of E1b-Deleted Adenoviruses

    PubMed Central

    Cheng, Pei-Hsin; Wechman, Stephen L.; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viral mRNA export, and cell cycle disruption. PMID:26561828

  6. Oncolytic Replication of E1b-Deleted Adenoviruses.

    PubMed

    Cheng, Pei-Hsin; Wechman, Stephen L; McMasters, Kelly M; Zhou, Heshan Sam

    2015-11-01

    Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption. PMID:26561828

  7. Going viral: a review of replication-selective oncolytic adenoviruses

    PubMed Central

    Larson, Christopher; Oronsky, Bryan; Scicinski, Jan; Fanger, Gary R.; Stirn, Meaghan; Oronsky, Arnold; Reid, Tony R.

    2015-01-01

    Oncolytic viruses have had a tumultuous course, from the initial anecdotal reports of patients having antineoplastic effects after natural viral infections a century ago to the development of current cutting-edge therapies in clinical trials. Adenoviruses have long been the workhorse of virotherapy, and we review both the scientific and the not-so-scientific forces that have shaped the development of these therapeutics from wild-type viral pathogens, turning an old foe into a new friend. After a brief review of the mechanics of viral replication and how it has been modified to engineer tumor selectivity, we give particular attention to ONYX-015, the forerunner of virotherapy with extensive clinical testing that pioneered the field. The findings from those as well as other oncolytic trials have shaped how we now view these viruses, which our immune system has evolved to vigorously attack, as promising immunotherapy agents. PMID:26280277

  8. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    SciTech Connect

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam; Abu-Asab, Mones S.; Wildner, Oliver; Miles, Brian K.; Yim, Kevin C.; Ramanan, Vijay; Prince, Gregory A.; Morris, John C.

    2007-12-05

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the study of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.

  9. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated protection conferred by mucosal vaccination with replication competent adenovirus (RCA)-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene (AdTW68.H5ck). Commercial layer-type chicken groups were singly vaccinated ocularly at 5 days of age, or singly v...

  10. Protection of chickens against avian influenza with non-replicating adenovirus-vectored vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding a H7 hemagglutinin gene from a low pathogenic North American isolate (AdChNY94.H7). Chickens vaccinate...

  11. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single dose in ovo vaccination with a replication competent adenovirus (RCA) -free human adenovirus vector (Ad5) encoding an avian AI virus H5 hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5...

  12. A Replicating Adenovirus Capsid Display Recombinant Elicits Antibodies against Plasmodium falciparum Sporozoites in Aotus nancymaae Monkeys

    PubMed Central

    Karen, Kasey A.; Deal, Cailin; Adams, Robert J.; Nielsen, Carolyn; Ward, Cameron; Espinosa, Diego A.; Xie, Jane; Zavala, Fidel

    2014-01-01

    Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization. PMID:25368113

  13. Adenovirus DNA template for late transcription is not a replicative intermediate.

    PubMed Central

    Brison, O; Kédinger, C; Chambon, P

    1979-01-01

    The relationship between adenovirus replication and late transcription has been investigated using viral replication and transcription complexes isolated from infected HeLa cell nuclei. These two types of complexes extracted from adenovirus type 2-infected cell nuclei did not sediment at the same rate on sucrose gradients. Viral replicative intermediates were quantitatively precipitated by immunoglobulins raised against purified 72,000-dalton DNA-binding protein, whereas viral transcription complexes remained in the supernatant. These results show that late transcription does not occur on active replication complexes or on 72,000-dalton DNA-binding protein-containing replicative intermediates inactive in DNA synthesis. Additional evidence is presented indicating that it is very unlikely that replicative intermediates lacking the 72,000-dalton DNA-binding protein could be the template for late transcription. PMID:232191

  14. Oncolytic Adenoviruses Armed with Thymidine Kinase Can Be Traced by PET Imaging and Show Potent Antitumoural Effects by Ganciclovir Dosing

    PubMed Central

    Abate-Daga, Daniel; Andreu, Nuria; Camacho-Sánchez, Juan; Alemany, Ramon; Herance, Raúl; Millán, Olga; Fillat, Cristina

    2011-01-01

    Replication-competent adenoviruses armed with thymidine kinase (TK) combine the concepts of virotherapy and suicide gene therapy. Moreover TK-activity can be detected by noninvasive positron emission-computed tomography (PET) imaging, what could potentially facilitate virus monitoring in vivo. Here, we report the generation of a novel oncolytic adenovirus that incorporates the Tat8-TK gene under the control of the Major Late Promoter in a highly selective backbone thus providing selectivity by targeting the retinoblastoma pathway. The selective oncolytic TK virus, termed ICOVIR5-TK-L, showed reduced potency compared to a non-selective counterpart. However the combination of ICOVIR5-TK-L with ganciclovir (GCV) induced a potent antitumoural effect similar to that of wild type adenovirus in a preclinical model of pancreatic cancer. Although the treatment with GCV provoked a reduction in the viral yield, both in vitro and in vivo, a two-cycle treatment of virus and GCV resulted in an enhanced antitumoral response that correlated with high TK-activity, based on microPET measurements. Thus, TK-expressing oncolytic adenoviruses can be traced by PET imaging providing real time information on the activity of the virus and its antitumoral potency can be optimized by GCV dosing. PMID:22028820

  15. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector.

    PubMed

    Toro, Haroldo; Tang, De-chu C; Suarez, David L; Sylte, Matt J; Pfeiffer, Jennifer; Van Kampen, Kent R

    2007-04-12

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. This vaccine can be mass-administered using available robotic in ovo injectors which provide a major advantage over current vaccination regimens. In addition, this class of adenovirus-vectored vaccines can be produced rapidly with improved safety since they do not contain any replication-competent adenoviruses. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  16. Adenovirus origin of DNA replication: sequence requirements for replication in vitro.

    PubMed Central

    Wides, R J; Challberg, M D; Rawlins, D R; Kelly, T J

    1987-01-01

    The initiation of adenovirus DNA takes place at the termini of the viral genome and requires the presence of specific nucleotide sequence elements. To define the sequence organization of the viral origin, we tested a large number of deletion, insertion, and base substitution mutants for their ability to support initiation and replication in vitro. The data demonstrate that the origin consists of at least three functionally distinct domains, A, B, and C. Domain A (nucleotides 1 to 18) contains the minimal sequence sufficient for origin function. Domains B (nucleotides 19 to 40) and C (nucleotides 41 to 51) contain accessory sequences that significantly increase the activity of the minimal origin. The presence of domain B increases the efficiency of initiation by more than 10-fold in vitro, and the presence of domains B and C increases the efficiency of initiation by more than 30-fold. Mutations that alter the distance between the minimal origin and the accessory domains by one or two base pairs dramatically decrease initiation efficiency. This critical spacing requirement suggests that there are specific interactions between the factors that recognize the two regions. Images PMID:3821730

  17. Specific binding of the adenovirus terminal protein precursor-DNA polymerase complex to the origin of DNA replication.

    PubMed Central

    Rijnders, A W; van Bergen, B G; van der Vliet, P C; Sussenbach, J S

    1983-01-01

    Initiation of adenovirus DNA replication is dependent on a complex of the precursor of the terminal protein and the adenovirus-coded DNA polymerase (pTP-pol complex). This complex catalyzes the formation of a covalent linkage between dCMP and pTP in the presence of a functional origin of DNA replication residing in the terminal nucleotide sequence of adenovirus DNA. We have purified the pTP-pol complex of adenovirus type 5 and studied its binding to double-stranded DNA. Using DNA-cellulose chromatography it could be shown that the pTP-pol complex has a higher affinity for adenovirus DNA than for calf thymus or pBR322 DNA. From the differential binding of the pTP-pol complex to plasmids containing adenovirus terminal sequences with different deletions, it has been concluded that a sequence of 14 nucleotide pairs at positions 9-22 plays a crucial role in the binding of pTP-pol to adenovirus DNA. This region is conserved in the DNA's of all human adenovirus serotypes and is obviously an important structural element of the adenovirus origin of DNA replication. Comparative binding studies with adenovirus DNA polymerase and pTP-pol indicated that pTP is responsible for the binding. The nature of the binding of pTP-pol to the conserved sequence will be discussed. Images PMID:6672772

  18. Avian influenza vaccination in chickens and pigs with replication-competent adenovirus-free human recombinant adenovirus 5.

    PubMed

    Toro, Haroldo; van Ginkel, Frederik W; Tang, De-Chu C; Schemera, Bettina; Rodning, Soren; Newton, Joseph

    2010-03-01

    Protective immunity to avian influenza (AI) virus can be elicited in chickens by in ovo or intramuscular vaccination with replication-competent adenovirus (RCA)-free human recombinant adenovirus serotype 5 (Ad5) encoding AI virus H5 (AdTW68.H5) or H7 (AdCN94.H7) hemagglutinins. We evaluated bivalent in ovo vaccination with AdTW68.H5 and AdCN94.H7 and determined that vaccinated chickens developed robust hemagglutination inhibition (HI) antibody levels to both H5 and H7 AI strains. Additionally, we evaluated immune responses of 1-day-old chickens vaccinated via spray with AdCN94.H7. These birds showed increased immunoglobulin A responses in lachrymal fluids and increased interleukin-6 expression in Harderian gland-derived lymphocytes. However, specific HI antibodies were not detected in the sera of these birds. Because pigs might play a role as a "mixing vessel" for the generation of pandemic influenza viruses we explored the use of RCA-free adenovirus technology to immunize pigs against AI virus. Weanling piglets vaccinated intramuscularly with a single dose of RCA-free AdTW68.H5 developed strong systemic antibody responses 3 wk postvaccination. Intranasal application of AdTW68.H5 in piglets resulted in reduced vaccine coverage, i.e., 33% of pigs (2/6) developed an antibody response, but serum antibody levels in those successfully immunized animals were similar to intramuscularly vaccinated animals. PMID:20521636

  19. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: Vaccine potency, antibody persistence, and maternal antibody transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibo...

  20. Amplified and Persistent Immune Responses Generated by Single-Cycle Replicating Adenovirus Vaccines

    PubMed Central

    Crosby, Catherine M.; Nehete, Pramod; Sastry, K. Jagannadha

    2014-01-01

    ABSTRACT Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered “single-cycle” adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. IMPORTANCE This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase

  1. Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein.

    PubMed Central

    van Bergen, B G; van der Ley, P A; van Driel, W; van Mansfeld, A D; van der Vliet, P C

    1983-01-01

    Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication. Images PMID:6300787

  2. Replication-competent human adenovirus 11p vectors can propagate in Vero cells.

    PubMed

    Gokumakulapalle, Madhuri; Mei, Ya-Fang

    2016-08-01

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. PMID:27176913

  3. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    PubMed Central

    Krömmelbein, Natascha; Wiebusch, Lüder; Schiedner, Gudrun; Büscher, Nicole; Sauer, Caroline; Florin, Luise; Sehn, Elisabeth; Wolfrum, Uwe; Plachter, Bodo

    2016-01-01

    The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production. PMID:26848680

  4. Enhanced Transduction and Replication of RGD-Fiber Modified Adenovirus in Primary T Cells

    PubMed Central

    Sengupta, Sadhak; Ulasov, Ilya V.; Thaci, Bart; Ahmed, Atique U.; Lesniak, Maciej S.

    2011-01-01

    Background Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR). T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD). Methodology/Principal Finding A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35–45% of splenic T cells were transduced by Ad-RGD. Conclusions Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin. PMID:21464908

  5. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Ran-yi; Zhou, Ling; Zhang, Yan-ling; Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min; Li, Li-xia; Fu, Xiang; Wu, Jiang-xue; Huang, Wenlin

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  6. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media.

    PubMed

    Murrah, Kyle A; Turner, Roberta L; Pang, Bing; Perez, Antonia C; Reimche, Jennifer L; King, Lauren B; Wren, John; Gandhi, Uma; Swords, W Edward; Ornelles, David A

    2015-03-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. PMID:25251686

  7. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    SciTech Connect

    Mathew, Shomita S.; Bridge, Eileen

    2007-09-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci.

  8. Application of conditionally replicating adenoviruses in tumor early diagnosis technology, gene-radiation therapy and chemotherapy.

    PubMed

    Li, Shun; Ou, Mengting; Wang, Guixue; Tang, Liling

    2016-10-01

    Conditionally replicating adenoviruses (CRAds), or known as replication-selective adenoviruses, were discovered as oncolytic gene vectors several years ago. They have a strong ability of scavenging tumor and lesser toxicity to normal tissue. CRAds not only have a tumor-killing ability but also can combine with gene therapy, radiotherapy, and chemotherapy to induce tumor cell apoptosis. In this paper, we review the structure of CRAds and CRAd vectors and summarize the current application of CRAds in tumor detection as well as in radiotherapy and suicide gene-mediating chemotherapy. We also propose further research strategies that can improve the application value of CRAds, including enhancing tumor destruction effect, further reducing toxic effect, reducing immunogenicity, constructing CRAds that can target tumor stem cells, and trying to use mesenchymal stem cells (MSCs) as the carriers for oncolytic adenoviruses. As their importance to cancer diagnosis, gene-radiation, and chemotherapy, CRAds may play a considerable role in clinical diagnosis and various cancer treatments in the future. PMID:27557721

  9. The adenovirus terminal protein influences binding of replication proteins and changes the origin structure.

    PubMed Central

    Pronk, R; van der Vliet, P C

    1993-01-01

    The adenovirus terminal protein (TP) is covalently linked to the 5' ends of the adenovirus genome and enhances DNA replication in vitro by increasing template activity. To study the effect of TP in more detail we isolated short origin fragments containing functional TP using anion exchange chromatography. These fragments were highly active as templates for DNA replication in a reconstituted system. Employing band-shift assays we found that the affinity of the precursor terminal protein-DNA polymerase complex for the TP-containing origin was increased 2 to 3-fold. Binding affinities of two other replication stimulating proteins, NFI and Oct-1, were not influenced by the terminal protein. Upon DNaseI footprinting we observed, unexpectedly, that the breakdown pattern had changed at various positions in the origin, notably in the area 3-6 and 41-51 by the presence of TP. Some differences in the footprint pattern of NFI and Oct-1 were also found. Our results indicate that TP induces subtle changes in the origin structure that influence the interaction of other replication proteins. Images PMID:8506126

  10. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization

    PubMed Central

    Maxfield, Lori F.; Abbink, Peter; Stephenson, Kathryn E.; Borducchi, Erica N.; Ng'ang'a, David; Kirilova, Marinela M.; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank

    2015-01-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. PMID:26376928

  11. NF-κB promotes leaky expression of adenovirus genes in a replication-incompetent adenovirus vector

    PubMed Central

    Machitani, M.; Sakurai, F.; Wakabayashi, K.; Nakatani, K.; Shimizu, K.; Tachibana, M.; Mizuguchi, H.

    2016-01-01

    The replication-incompetent adenovirus (Ad) vector is one of the most promising vectors for gene therapy; however, systemic administration of Ad vectors results in severe hepatotoxicities, partly due to the leaky expression of Ad genes in the liver. Here we show that nuclear factor-kappa B (NF-κB) mediates the leaky expression of Ad genes from the Ad vector genome, and that the inhibition of NF-κB leads to the suppression of Ad gene expression and hepatotoxicities following transduction with Ad vectors. Activation of NF-κB by recombinant tumor necrosis factor (TNF)-α significantly enhanced the leaky expression of Ad genes. More than 50% suppression of the Ad gene expression was found by inhibitors of NF-κB signaling and siRNA-mediated knockdown of NF-κB. Similar results were found when cells were infected with wild-type Ad. Compared with a conventional Ad vector, an Ad vector expressing a dominant-negative IκBα (Adv-CADNIκBα), which is a negative regulator of NF-κB, mediated approximately 70% suppression of the leaky expression of Ad genes in the liver. Adv-CADNIκBα did not induce apparent hepatotoxicities. These results indicate that inhibition of NF-κB leads to suppression of Ad vector-mediated tissue damages via not only suppression of inflammatory responses but also reduction in the leaky expression of Ad genes. PMID:26814140

  12. Development of replication-competent adenovirus for bladder cancer by controlling adenovirus E1a and E4 gene expression with the survivin promoter

    PubMed Central

    Seo, Ho Kyung; Seo, Jeong Bin; Nam, Jae-Kook; Jeong, Kyung-Chae; Shin, Seung-Pil; Kim, In-Hoo; Lee, Sang Don; Lee, Sang-Jin

    2014-01-01

    Survivin is a member of the inhibitors of apoptosis protein family. Here, we examined survivin expression and confirmed abundant survivin expression in bladder cancer cells. This expression pattern indicated that the transcriptional regulatory elements that control survivin expression could be utilized to discriminate cancer from normal cells. We therefore generated a novel adenovirus termed Ad5/35E1apsurvivinE4 with the following characteristics: 1) E1A and E4 protein expression was dependent on survivin promoter activity; 2) the green fluorescence protein gene was inserted into the genome under the control of the CMV promoter; 3) most of the E3 sequences were deleted, but the construct was still capable of expressing the adenovirus death protein with potent cytotoxic effects; and 4) the fiber knob was from serotype 35 adenovirus. As expected from the abundant survivin expression observed in bladder cancer cells, Ad5/35E1apsurvivinE4 replicated better in cancer cells than in normal cells by a factor of 106 to 102. Likewise, Ad5/35E1apsurvivinE4 exerted greater cytotoxic effects on all bladder cancer cell lines tested. Importantly, Ad5/35E1apsurvivinE4 inhibited the growth of Ku7-Luc orthotopic xenografts in nude mice. Taken together, Ad5/35E1apsurvivinE4 indicates that the survivin promoter may be utilized for the development of a replication-competent adenovirus to target bladder cancers. PMID:25015402

  13. Infection by retroviral vectors outside of their host range in the presence of replication-defective adenovirus.

    PubMed Central

    Adams, R M; Wang, M; Steffen, D; Ledley, F D

    1995-01-01

    Retrovirus infection is normally limited to cells within a specific host range which express a cognate receptor that is recognized by the product of the env gene. We describe retrovirus infection of cells outside of their normal host range when the infection is performed in the presence of a replication-defective adenovirus (dl312). In the presence of adenovirus, several different ecotropic vectors are shown to infect human cell lines (HeLa and PLC/PRF), and a xenotropic vector is shown to infect murine cells (NIH 3T3). Infectivity is demonstrated by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) staining, selection with G418 for neomycin resistance, and PCR identification of the provirus in infected cells. Infectivity is quantitatively dependent upon both the concentration of adenovirus (10(6) to 10(8) PFU/ml) and the concentration of retrovirus. Infection requires the simultaneous presence of adenovirus in the retrovirus infection medium and is not stimulated by preincubation and removal of adenovirus from the cells before retrovirus infection. The presence of adenovirus is shown to enhance the uptake of fluorescently labeled retrovirus particles into cells outside of their normal host range, demonstrating that the adenovirus enhances viral entry into cells in the absence of the recognized cognate receptor. This observation suggests new opportunities for developing safe retroviral vectors for gene therapy and new mechanisms for the pathogenesis of retroviral disease. PMID:7853530

  14. Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus

    PubMed Central

    Yang, Yu; Xu, Haineng; Huang, Weidan; Ding, Miao; Xiao, Jing; Yang, Dongmei; Li, Huaguang; Liu, Xin-Yuan; Chu, Liang

    2015-01-01

    Lung cancer stem cell (LCSC) is critical in cancer initiation, progression, drug resistance and relapse. Disadvantages showed in conventional lung cancer therapy probably because of its existence. In this study, lung cancer cell line A549 cells propagated as spheroid bodies (named as A549 sphere cells) in growth factors-defined serum-free medium. A549 sphere cells displayed CSC properties, including chemo-resistance, increased proportion of G0/G1 cells, slower proliferation rate, ability of differentiation and enhanced tumour formation ability in vivo. Oncolytic adenovirus ZD55 carrying EGFP gene, ZD55-EGFP, infected A549 sphere cells and inhibited cell growth. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) armed oncolytic adenovirus, ZD55-TRAIL, exhibited enhanced cytotoxicity and induced A549 sphere cells apoptosis through mitochondrial pathway. Moreover, small molecules embelin, LY294002 and resveratrol improved the cytotoxicity of ZD55-TRAIL. In the A549 sphere cells xenograft models, ZD55-TRAIL significantly inhibited tumour growth and improved survival status of mice. These results suggested that gene armed oncolytic adenovirus is a potential approach for lung cancer therapy through targeting LCSCs. PMID:25683371

  15. Unique conditionally replication competent bipartite adenoviruses-cancer terminator viruses (CTV): efficacious reagents for cancer gene therapy.

    PubMed

    Sarkar, Devanand; Su, Zao-Zhong; Fisher, Paul B

    2006-07-01

    The frequent resistance of aggressive cancers to currently available therapies, such as radiotherapy and chemotherapy, mandates development of targeted, nontoxic and more efficacious treatment protocols. Conditionally replication competent adenoviruses (CRCAs) that induce oncolysis by cancer-specific replication are currently being evaluated in clinical trials. However, a single modality approach may not be sufficient to completely eradicate cancer in a patient, because most cancers arise from abnormalities in multiple genetic and signal transduction pathways. The promoter region of rodent progression elevated gene-3 (PEG-3), cloned and characterized in our laboratory, embodies the unique property of increased activity in a broad range of tumor cells, both rodent and human, when compared to normal counterparts. Bipartite adenoviruses were engineered to express the E1A gene, necessary for viral replication, under control of the PEG-3 promoter (PEG-Prom) and simultaneously express a second transgene in the E3 region that encodes an apoptosis-inducing and immunomodulatory cytokine, either immune interferon (IFN-gamma) or melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24). These conditionally replication competent bipartite adenoviruses, referred to as cancer terminator viruses (CTVs), facilitated cancer-selective adenovirus replication, robust transgene expression and apoptosis induction with complete eradication of both primary and distant (metastatic) human cancers xenotransplanted in athymic nude mice. These findings suggest that CTVs might prove efficacious for the therapy of primary and advanced neoplastic diseases. PMID:16861924

  16. Immunotherapeutic effects of cytokine-induced killer cells combined with CCL21/IL15 armed oncolytic adenovirus in TERT-positive tumor cells.

    PubMed

    Ye, Jun-Feng; Lin, Yuan-Qiang; Yu, Xiu-Hua; Liu, Ming-Yuan; Li, Yang

    2016-09-01

    The effective antitumor immune responses are dependent on coordinate interaction of various effector cells. Thus, the combination of adoptive immunotherapy and target gene therapy is capable of efficiently generating a productive antitumor immune response. We investigated whether combination of cytokine-induced killer (CIK) cells adoptive immunotherapy and CCL21/IL15 armed oncolytic adenovirus could induce the enhanced antitumor activity. The CCL21/IL15 co-expression oncolytic adenoviruses were constructed by using the AdEasy system, which uses homologous recombination with shuttle plasmids and full length Ad backbones. This conditionally replicating adenoviruses CRAd-CCL21-IL15 could induce apoptosis in TERTp-positive tumor cells for viral propagation, but do not replicate efficiently in normal cells, because the E1A promoter was replaced by telomerase reverse transcriptase promoter (TERTp). Our results showed that the combination of CIK cells and CRAd-CCL21-IL15 could induce higher antitumor activity than either CIK cells or CRAd-CCL21-IL15 alone. This combined treatment could induce the tumor specific cytotoxicity of CTLs (cytotoxic T lymphocytes) in vitro. Moreover, the treatment of established tumors with the combined therapy of CIK cells and CRAd-CCL21-IL15 resulted in tumor regression. This study suggests that the combined treatment by adoptive immunotherapy and gene therapy is a promising strategy for the therapy of tumor. PMID:27380620

  17. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FM...

  18. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies

    PubMed Central

    Komatsu, Tetsuro; Nagata, Kyosuke

    2015-01-01

    ABSTRACT Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. IMPORTANCE The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral

  19. Unabated Adenovirus Replication following Activation of the cGAS/STING-Dependent Antiviral Response in Human Cells

    PubMed Central

    Lam, Eric

    2014-01-01

    ABSTRACT The cGAS/STING DNA sensing complex has recently been established as a predominant pathogen recognition receptor (PRR) for DNA-directed type I interferon (IFN) innate immune activation. Using replication-defective adenovirus vectors and replication-competent wild-type adenovirus, we have modeled the influence of the cGAS/STING cascade in permissive human cell lines (A549, HeLa, ARPE19, and THP1). Wild-type adenovirus induced efficient early activation of the cGAS/STING cascade in a cell-specific manner. In all responsive cell lines, cGAS/STING short hairpin RNA (shRNA) knockdown resulted in a loss of TBK1 and interferon response factor 3 (IRF3) activation, a lack of beta interferon transcript induction, loss of interferon-dependent STAT1 activation, and diminished induction of interferon-stimulated genes (ISGs). Adenoviruses that infect through the coxsackievirus-adenovirus receptor (CAR) (Ad2 and Ad5) and the CD46 (Ad35) and desmoglein-2 (Ad7) viral receptors all induce the cGAS/STING/TBK1/IRF3 cascade. The magnitude of the IRF3/IFN/ISG antiviral response was strongly influenced by serotype, with Ad35>Ad7>Ad2. For each serotype, no enhancement of viral DNA replication or virus production occurred in cGAS or STING shRNA-targeted cell line pools. We found no replication advantage in permissive cell lines that do not trigger the cGAS/STING cascade following infection. The cGAS/STING/TBK1/IRF3 cascade was not a direct target of viral antihost strategies, and we found no evidence that Ad stimulation of the cGAS/STING DNA response had an impact on viral replication efficiency. IMPORTANCE This study shows for the first time that the cGAS DNA sensor directs a dominant IRF3/IFN/ISG antiviral response to adenovirus in human cell lines. Activation of cGAS occurs with viruses that infect through different high-affinity receptors (CAR, CD46, and desmoglein-2), and the magnitude of the cGAS/STING DNA response cascade is influenced by serotype-specific functions

  20. Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro.

    PubMed Central

    Pettit, S C; Horwitz, M S; Engler, J A

    1988-01-01

    Replication of the DNA genome of human adenovirus serotype 2 requires three virus-encoded proteins. Two of these proteins, the preterminal protein (pTP) and the adenovirus DNA polymerase, are transcribed from a single promoter at early times after virus infection. The mRNAs for these proteins share several exons, including one encoded near adenovirus genome coordinate 39. By using plasmids containing DNA fragments postulated to encode the various exons of pTP mRNA, the contributions of each exon to the synthesis of an active pTP have been measured. Only plasmids that contain both the open reading frame for pTP (genome coordinates 29.4 to 23.9) and the HindIII J fragment that contains the exon at genome coordinate 39 can express functional pTP. Images PMID:3336069

  1. Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses for pan-carcinoma application

    PubMed Central

    Takayama, K; Reynolds, PN; Adachi, Y; Kaliberova, L; Uchino, J; Nakanishi, Y; Curiel, DT

    2007-01-01

    Treatment of advanced lung cancer is one of the major challenges in current medicine because of the high morbidity and mortality of the disease. Advanced stage lung cancer is refractory to conventional therapies and has an extremely poor prognosis. Thus, new therapeutic approaches are needed. Lung tumor formation depends on angiogenesis in which the vascular endothelial growth factor (VEGF) produced by cancer cells plays a pivotal role. Neutralizing VEGF with a soluble VEGF receptor suppresses tumor growth; however, the anticancer effect with this therapy is weakened after the intratumoral vascular network is completed. In this study, we turned the expression of VEGF by tumors to therapeutic advantage using a conditionally replication-competent adenovirus (CRAd) in which the expression of E1 is controlled by the human VEGF promoter. This virus achieved good levels of viral replication in lung cancer cells and induced a substantial anticancer effect in vitro and in vivo. As a further enhancement, the cancer cell killing effect was improved with tropism modification of the virus to express the knob domain of Ad3, which improved infectivity for cancer cells. These VEGF promoter-based CRAds also showed a significant cell killing effect for various types of cancer lines other than lung cancer. Conversely, the VEGF promoter has low activity in normal tissues, and the CRAd caused no damage to normal bronchial epithelial cells. Since tumor-associated angiogenesis via VEGF signalling is common in many types of cancers, these CRAds may be applicable to a wide range of tumors. We concluded that VEGF promoter-based CRAds have the potential to be an effective strategy for cancer treatment. PMID:17024232

  2. Eliminating established tumor in nu/nu nude mice by a TRAIL-armed oncolytic adenovirus

    PubMed Central

    Dong, Fengqin; Wang, Li; Davis, John J.; Hu, Wenxian; Zhang, Lidong; Guo, Wei; Teraishi, Fuminori; Ji, Lin; Fang, Bingliang

    2006-01-01

    Purpose The tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) and oncolytic viruses have recently been investigated extensively for cancer therapy. However, preclinical and clinical studies have revealed that their clinical application is hampered by either weak anticancer activity or systemic toxicity. We examined whether the weaknesses of the two strategies can be overcome by integrating the TRAIL gene into an oncolytic vector. Experimental Design We constructed a TRAIL-expressing oncolytic adenovector designated Ad/TRAIL-E1. The expression of both the TRAIL and viral E1A genes is under the control of a synthetic promoter consisting of sequences from the human telomerase reverse transcriptase promoter and a minimal cytomegalovirus early promoter. The transgene expression, apoptosis induction, viral replication, antitumor activity and toxicity of Ad/TRAIL-E1 were determined in vitro and in vivo in comparison with control vectors. Results Ad/TRAIL-E1 elicited enhanced viral replication and/or stronger oncolytic effect in vitro in various human cancer cell lines than a TRAIL-expressing replication-defective adenovector or an oncolytic adenovector expressing green fluorescent protein. Intralesional administration of Ad/TRAIL-E1 eliminated all subcutaneous xenograft tumors established from a human non-small cell lung cancer cell line, H1299, on nu/nu nude mice, resulting in long-term tumor-free survival. Furthermore, we found no treatment-related toxicity. Conclusions Viral replication and antitumor activity of oncolytic adenovirus can be enhanced by the TRAIL gene and Ad/TRAIL-E1 could become a potent therapeutic agent for cancer therapy. PMID:16951242

  3. Augmenting the antitumor effect of TRAIL by SOCS3 with double-regulated replicating oncolytic adenovirus in hepatocellular carcinoma.

    PubMed

    Wei, Rui-Cheng; Cao, Xin; Gui, Jing-Hua; Zhou, Xiu-Mei; Zhong, Dan; Yan, Qiao-Lin; Huang, Wei-Dan; Qian, Qi-Jun; Zhao, Feng-Li; Liu, Xin-Yuan

    2011-09-01

    Aberrant JAK/STAT3 pathway has been reported to be related to hepatocellular carcinoma (HCC) in many cell lines. In this study, a double-regulated oncolytic adenovirus vector that can replicate and induce a cytopathic effect in alpha-fetoprotein (AFP)-positive HCC cell lines with p53 dysfunction was successfully constructed. Two therapeutic genes, suppressor of cytokine signaling 3 (SOCS3) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were chosen and incorporated into this vector system, respectively. The combined treatment of AFP-D55-SOCS3 and AFP-D55-TRAIL (2:3 ratio) exhibited potent antitumor activity in AFP-positive HCC cell lines compared with any other treatment both in vitro and in vivo. Specific replication and low progeny yield in AFP-positive HCC cell lines rendered these double-regulated oncolytic adenoviruses remarkably safe. Our data demonstrated that restoration of SOCS3, which inhibits the JAK/STAT3 pathway, by AFP-D55-SOCS3 not only could antagonize HCC therapeutic resistance to TRAIL and adenoviruses, but could also induce cell cycle arrest in HCC cell lines. SOCS3 could down-regulate Cyclin D1 and anti-apoptotic proteins such as XIAP, Survivin, Bcl-xL, and Mcl-1, which are responsible for the synergistic inhibitory effects of AFP-D55-SOCS3 and AFP-D55-TRAIL. Dual gene and double-regulated oncolytic adenoviruses may provide safety and excellent antitumor effects for liver cancer, which is the advantage of a cancer-targeting gene virotherapy strategy. PMID:21361790

  4. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control.

    PubMed

    Toth, Karoly; Lee, Sang R; Ying, Baoling; Spencer, Jacqueline F; Tollefson, Ann E; Sagartz, John E; Kong, Il-Keun; Wang, Zhongde; Wold, William S M

    2015-08-01

    Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models. PMID

  5. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control

    PubMed Central

    Spencer, Jacqueline F.; Tollefson, Ann E.; Sagartz, John E.; Kong, Il-Keun; Wang, Zhongde; Wold, William S. M.

    2015-01-01

    Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models. PMID

  6. SUPPRESSION OF VIRAL REPLICATION BY GUANIDINE: A COMPARISON OF HUMAN ADENOVIRUSES AND ENTEROVIRUSES (JOURNAL VERSION)

    EPA Science Inventory

    A comparison was made of the relative sensitivities of laboratory strain human adenoviruses and enteroviruses, and recently isolated human enteroviruses, to the presence of guanidine hydrochloride in cell culture media. The concentration of guanidine hydrochloride used was 100 mi...

  7. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir.

    PubMed

    Pozzuto, Tanja; Röger, Carsten; Kurreck, Jens; Fechner, Henry

    2015-08-01

    Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs. PMID:26026665

  8. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    PubMed

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-01-01

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo. PMID:24326926

  9. Replication of ONYX-015, a Potential Anticancer Adenovirus, Is Independent of p53 Status in Tumor Cells

    PubMed Central

    Rothmann, Thomas; Hengstermann, Arnd; Whitaker, Noel J.; Scheffner, Martin; zur Hausen, Harald

    1998-01-01

    The 55-kDa E1B protein of adenovirus, which binds to and inactivates the tumor suppressor protein p53, is not expressed in the adenoviral mutant termed ONYX-015 (i.e., dl1520). It was reported that the mutant virus due to a deletion in E1B is able to replicate only in cells deficient for wild-type p53. Accordingly, dl1520 is currently being evaluated as a potential tool in the therapy of p53 deficient cancers. In contrast, we report here that dl1520 replicates independently of the p53 status in various tumor cell lines (U87, RKO, A549, H1299, and U373). In addition, the inhibition of p53-mediated transcriptional activation in wild-type p53 containing U2OS cells, by overexpression of a transdominant negative p53 mutant, did not render the cells permissive for dl1520 replication. Finally, we show that, depending on the multiplicity of infection, the deleted virus is able to replicate in and to kill primary human cells. Thus, the molecular basis for the growth differences of dl1520 within different cell types remains to be determined. PMID:9811680

  10. Nbs1-dependent binding of Mre11 to adenovirus E4 mutant viral DNA is important for inhibiting DNA replication

    SciTech Connect

    Mathew, Shomita S.; Bridge, Eileen

    2008-04-25

    Adenovirus (Ad) infections stimulate the activation of cellular DNA damage response and repair pathways. Ad early regulatory proteins prevent activation of DNA damage responses by targeting the MRN complex, composed of the Mre11, Rad50 and Nbs1 proteins, for relocalization and degradation. In the absence of these viral proteins, Mre11 colocalizes with viral DNA replication foci. Mre11 foci formation at DNA damage induced by ionizing radiation depends on the Nbs1 component of the MRN complex and is stabilized by the mediator of DNA damage checkpoint protein 1 (Mdc1). We find that Nbs1 is required for Mre11 localization at DNA replication foci in Ad E4 mutant infections. Mre11 is important for Mdc1 foci formation in infected cells, consistent with its role as a sensor of DNA damage. Chromatin immunoprecipitation assays indicate that both Mre11 and Mdc1 are physically bound to viral DNA, which could account for their localization in viral DNA containing foci. Efficient binding of Mre11 to E4 mutant DNA depends on the presence of Nbs1, and is correlated with a significant E4 mutant DNA replication defect. Our results are consistent with a model in which physical interaction of Mre11 with viral DNA is mediated by Nbs1, and interferes with viral DNA replication.

  11. Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer.

    PubMed

    Freytag, Svend O; Barton, Kenneth N; Brown, Stephen L; Narra, Vinod; Zhang, Yingshu; Tyson, Don; Nall, Colleen; Lu, Mei; Ajlouni, Munther; Movsas, Benjamin; Kim, Jae Ho

    2007-09-01

    In preparation for a Phase I trial, we evaluated the efficacy and toxicity of replication-competent adenovirus-mediated suicide gene therapy in combination with radiation in a preclinical model of pancreatic cancer. Human MiaPaCa-2 and PANC-1 pancreatic adenocarcinoma cells were found to be sensitive to the oncolytic effects of the Ad5-yCD/mutTK(SR39)rep-ADP adenovirus and also to the cytotoxic effects of the yeast cytosine deaminase (yCD) and herpes simplex virus thymidine kinase (HSV-1 TK(SR39)) genes in vitro. Combining Ad5-yCD/mutTK(SR39)rep-ADP-mediated suicide gene therapy with radiation significantly increased tumor control beyond that of either modality alone. Injection of Ad5-yCD/mutTK(SR39)rep-ADP in the dog pancreas at doses (10(12) virus particle (vp)) to be used in humans resulted in mild pancreatitis but not peritonitis or hepatotoxicity. Following administration of 9-(4-[(18)F]-fluoro-3-hydroxymethylbutyl)guanine ([(18)F]-FHBG), a positron-emitting substrate of HSV-1 TK, Ad5-yCD/mutTK(SR39)rep-ADP activity could be monitored non-invasively by positron emission tomography (PET). [(18)F]-FHBG uptake was readily detected in the pancreas but not in other major abdominal organs, indicating that little of the injected adenovirus disseminates to collateral tissues. These results demonstrate that Ad5-yCD/mutTK(SR39)rep-ADP-mediated suicide gene therapy has the potential to augment the effectiveness of pancreatic radiotherapy without resulting in excessive toxicity. Hence they provide the scientific basis for an ongoing Phase I trial in pancreatic cancer. PMID:17551507

  12. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome.

    PubMed

    Shimizu, Kahori; Sakurai, Fuminori; Tomita, Kyoko; Nagamoto, Yasuhito; Nakamura, Shin-Ichiro; Katayama, Kazufumi; Tachibana, Masashi; Kawabata, Kenji; Mizuguchi, Hiroyuki

    2014-01-01

    Leaky expression of adenovirus (Ad) genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3'-untranslated region (UTR) of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a-targeted sequences into the 3'-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a-mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses. PMID:26015975

  13. Molecular characterization of replication-competent variants of adenovirus vectors and genome modifications to prevent their occurrence.

    PubMed Central

    Hehir, K M; Armentano, D; Cardoza, L M; Choquette, T L; Berthelette, P B; White, G A; Couture, L A; Everton, M B; Keegan, J; Martin, J M; Pratt, D A; Smith, M P; Smith, A E; Wadsworth, S C

    1996-01-01

    Adenovirus (Ad) vectors for gene therapy are made replication defective by deletion of E1 region genes. For isolation, propagation, and large-scale production of such vectors, E1 functions are supplied in trans from a stable cell line. Virtually all Ad vectors used for clinical studies are produced in the 293 cell, a human embryonic kidney cell line expressing E1 functions from an integrated segment of the left end of the Ad type 5 (Ad5) genome. Replication-competent vector variants that have regained E1 sequences have been observed within populations of Ad vectors grown on 293 cells. These replication-competent variants presumably result from recombination between vector and 293 cell Ad5 sequences. We have developed Ad2-based vectors and have characterized at the molecular level examples of replication-competent variants. All such variants analyzed are Ad2-Ad5 chimeras in which the 293 cell Ad5 E1 sequences have become incorporated into the viral genome by legitimate recombination events. A map of Ad5 sequences within the 293 cell genome developed in parallel is consistent with the proposed recombination events. To provide a convenient vector production system that circumvents the generation of replication-competent variants, we have modified the Ad2 vector backbone by deleting or rearranging the protein IX coding region normally present downstream from the E1 region such that the frequency of recombination between vector and 293 cell Ad5 sequences is greatly reduced. Twelve serial passages of an Ad2 vector lacking the protein IX gene were carried out without generating replication-competent variants. In the course of producing and testing more than 30 large-scale preparations of vectors lacking the protein IX gene or having a rearranged protein IX gene, only three examples of replication-competent variants were observed. Use of these genome modifications allows use of conventional 293 cells for production of large-scale preparations of Ad-based vectors lacking

  14. Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication.

    PubMed Central

    Mul, Y M; Verrijzer, C P; van der Vliet, P C

    1990-01-01

    Initiation of adenovirus DNA replication is strongly enhanced by two transcription factors, nuclear factor I (NFI) and nuclear factor III (NFIII/oct-1). These proteins bind to two closely spaced recognition sequences in the origin. We produced NFI and NFIII/oct-1, as well as their biologically active, replication-competent DNA-binding domains (NFI-BD and the POU domain), in a vaccinia virus expression system and purified these polypeptides to apparent homogeneity. By DNase I footprinting and gel retardation, we show that the two proteins, as well as their purified DNA-binding domains, bind independently and without cooperative effects to their recognition sequences. By using a reconstituted system consisting of the purified viral proteins (precursor terminal protein-DNA polymerase complex (pTP-pol) and DNA-binding protein, we show that NFIII/oct-1 or the POU domain stimulates DNA replication in the absence of NFI or NFI-BD and vice versa. When added together, the enhancing effect of the two transcription factors was independent and nonsynergistic. Interestingly, stimulation by NFI or NFI-BD was strongly dependent on the concentration of the pTP-pol complex. At low pTP-pol concentrations, NFI or NFI-BD stimulated up to 50-fold, while at high concentrations, the stimulation was less than twofold, indicating that the need for NFI can be overcome by high pTP-pol concentrations. In contrast, stimulation by NFIII/oct-1 or the POU domain was much less dependent on the pTP-pol concentration. These data support a model in which NFI enhances initiation through an interaction with pTP-pol. Glutaraldehyde cross-linking experiments indicate contacts between pTP-pol and NFI but not NFIII/oct-1. The site of interaction is located in the NFI-BD domain. Images PMID:2214023

  15. Conserved Arginines of Bovine Adenovirus-3 33K Protein Are Important for Transportin-3 Mediated Transport and Virus Replication

    PubMed Central

    Islam, Azharul; Tikoo, Suresh K.

    2014-01-01

    The L6 region of bovine adenovirus (BAdV)-3 encodes a spliced protein designated 33K. The 33K specific sera detected five major proteins and three minor proteins in transfected or virus infected cells, which could arise by internal initiation of translation and alternative splicing. The 33K protein is predominantly localized to the nucleus of BAdV-3 infected cells. The 33K nuclear transport utilizes both classical importin-α/-β and importin-β dependent nuclear import pathways and preferentially binds to importin-α5 and transportin-3 receptors, respectively. Analysis of mutant 33K proteins demonstrated that amino acids 201–240 of the conserved C-terminus of 33K containing RS repeat are required for nuclear localization and, binding to both importin-α5 and transportin-3 receptors. Interestingly, the arginine residues of conserved RS repeat are required for binding to transportin-3 receptor but not to importin-α5 receptor. Moreover, mutation of arginines residues of RS repeat proved lethal for production of progeny virus. Our results suggest that arginines of RS repeat are required for efficient nuclear transport of 33K mediated by transportin-3, which appears to be essential for replication and production of infectious virion. PMID:25019945

  16. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine.

    PubMed

    Diaz-San Segundo, Fayna; Dias, Camila C; Moraes, Mauro P; Weiss, Marcelo; Perez-Martin, Eva; Salazar, Andres M; Grubman, Marvin J; de los Santos, Teresa

    2014-11-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FMDV challenge by 7 days post-vaccination. However, since relatively large amounts of Ad5-CI-A24-2B are required to induce protection this strategy could be costly for livestock production. Poly ICLC is a synthetic double stranded RNA that activates multiple innate and adaptive immune pathways. In this study, we have tested for the first time, the adjuvant effect of poly ICLC in combination with Ad5-CI-A24-2B in swine. We found that the combination resulted in a reduction of the vaccine protective dose by 80-fold. Interestingly, the lowest dose of Ad5-CI-A24-2B plus 1mg of poly ICLC protected animals against challenge even in the absence of detectable FMDV-specific neutralizing antibodies at the time of challenge. PMID:25216089

  17. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: vaccine potency, antibody persistence, and maternal antibody transfer.

    PubMed

    Mesonero, Alexander; Suarez, David L; van Santen, Edzard; Tang, De-Chu C; Toro, Haroldo

    2011-06-01

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibody persistence, transfer of maternal antibodies (MtAb), and interference between MtAb and active in ovo or mucosal immunization with RCA-free recombinant Ad expressing a codon-optimized AIV H5 HA gene from A/turkey/WI/68 (AdTW68.H5(ck)). Vaccine coverage and intrapotency test repeatability were based on anti-H5 hemagglutination inhibition (HI) antibody levels detected in in ovo vaccinated chickens. Even though egg inoculation of each replicate was performed by individuals with varying expertise and with different vaccine batches, the average vaccine coverage of three replicates was 85%. The intrapotency test repeatability, which considers both positive as well as negative values, varied between 0.69 and 0.71, indicating effective vaccination. Highly pathogenic (HP) AIV challenge of chicken groups vaccinated with increasing vaccine doses showed 90% protection in chickens receiving > or = 10(8) ifu (infectious units)/bird. The protective dose 50% (PD50) was determined to be 10(6.5) ifu. Even vaccinated chickens that did not develop detectable antibody levels were effectively protected against HP AIV challenge. This result is consistent with previous findings ofAd-vector eliciting T lymphocyte responses. Higher vaccine doses significantly reduced viral shedding as determined by AIV RNA concentration in oropharyngeal swabs. Assessment of antibody persistence showed that antibody levels of in ovo immunized chickens continued to increase until 12 wk and started to decline after 18 wk of age. Intramuscular (IM) booster vaccination with the same vaccine at 16 wk of age significantly increased the antibody responses in breeder hens, and these responses were maintained at high

  18. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  19. Purification of a cellular, double-stranded DNA-binding protein required for initiation of adenovirus DNA replication by using a rapid filter-binding assay.

    PubMed Central

    Diffley, J F; Stillman, B

    1986-01-01

    A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide

  20. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection

    SciTech Connect

    Subramanian, T.; Zhao, Ling-jun; Chinnadurai, G.

    2013-09-01

    Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP–E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP–E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells. - Highlights: • Adenovirus E1A C-terminal region suppresses E1A/Ras co-transformation. • This E1A region binds with FOXK, DYRK1/HAN11 and CtBP cellular protein complexes. • We found that E1A–CtBP interaction suppresses immortalization and transformation. • The interaction enhances viral replication in human cells.

  1. Biosafety studies of carrier cells infected with a replication-competent adenovirus introduced by IAI.3B promoter

    PubMed Central

    Hamada, Katsuyuki; Shirakawa, Toshiro; Terao, Shuji; Gotoh, Akinobu; Tani, Kenzaburo; Huang, Wenlin

    2014-01-01

    The use of carrier cells infected with oncolytic viruses in cancer gene therapy is an attractive method because it can overcome viral immunogenicity and induce tumor immunity and significant antitumor activity. To enable human clinical trials of this treatment, acute and chronic toxicity tests must first be performed to ensure safety. IAI.3B promoter, oncolytic adenovirus AdE3-IAI.3B introduced by IAI.3B promoter, and A549 carrier cells infected with AdE3-IAI.3B were highly active in cancer cells but not in normal cells. Freeze-thawing increased the antitumor effect of A549 carrier cells by promoting the translocation of oncolytic adenovirus particles from the nucleus to the cytoplasm following the rupture of the nuclear membranes. No deaths or abnormal blood test data resulted from acute toxicity tests conducted in nude mice after a single dose. In chronic toxicity tests in rabbits, there were no serious side effects after eight doses of 1.25 × 107 cells/kg or less for 4 weeks; a significant immune response is known to elicit increased numbers of antiadenovirus antibodies and enlarge the spleen. From these results, it could be concluded that cancer gene therapy of recurrent solid tumors using carrier cells can be safely trialed in humans. PMID:26015963

  2. Innate Immunity to Adenovirus

    PubMed Central

    Hendrickx, Rodinde; Stichling, Nicole; Koelen, Jorien; Kuryk, Lukasz; Lipiec, Agnieszka

    2014-01-01

    Abstract Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate–adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features. PMID:24512150

  3. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    PubMed

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines. PMID:26143474

  4. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus

    PubMed Central

    Sakurai, Fuminori; Narii, Nobuhiro; Tomita, Kyoko; Togo, Shinsaku; Takahashi, Kazuhisa; Machitani, Mitsuhiro; Tachibana, Masashi; Ouchi, Masaaki; Katagiri, Nobuyoshi; Urata, Yasuo; Fujiwara, Toshiyoshi; Mizuguchi, Hiroyuki

    2016-01-01

    Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)–expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus–adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell–specific microRNA, miR-142-3p, were incorporated into the 3′-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells. PMID:26966699

  5. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  6. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus.

    PubMed

    Sakurai, Fuminori; Narii, Nobuhiro; Tomita, Kyoko; Togo, Shinsaku; Takahashi, Kazuhisa; Machitani, Mitsuhiro; Tachibana, Masashi; Ouchi, Masaaki; Katagiri, Nobuyoshi; Urata, Yasuo; Fujiwara, Toshiyoshi; Mizuguchi, Hiroyuki

    2016-01-01

    Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)-expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus-adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell-specific microRNA, miR-142-3p, were incorporated into the 3'-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells. PMID:26966699

  7. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  8. Temperature-sensitive initiation and elongation of adenovirus DNA replication in vitro with nuclear extracts from H5ts36-, H5ts149-, and H5ts125-infected HeLa cells.

    PubMed Central

    van Bergen, B G; van der Vliet, P C

    1983-01-01

    Adenovirus DNA replication was studied in vitro in nuclear extracts prepared from HeLa cells infected at the permissive temperature with H5ts125, H5ts36, or H5ts149, three DNA-negative mutants belonging to two different complementation groups. At the restrictive temperature, H5ts125 extracts, containing a thermolabile 72-kilodalton DNA-binding protein, enable the formation of an initiation complex between the 82-kilodalton terminal protein precursor (pTP) and dCTP, but further elongation of this complex is inhibited. Wild-type DNA-binding protein or a 47-kilodalton chymotryptic DNA-binding fragment can complement the mutant protein in the elongation reaction. No difference in heat inactivation was observed between wild-type extracts and H5ts36 or H5ts149 extracts when the replication of terminal XbaI fragments of adenovirus type 5 DNA-terminal protein complex was studied. In contrast, the formation of a pTP-dCMP initiation complex, as well as the partial elongation reaction up to nucleotide 26, were consistently more temperature sensitive in mutant extracts. The results suggest that the H5ts36/H5ts149 gene product is required for initiation of adenovirus type 5 DNA replication and that the 72-kilodalton DNA-binding protein functions early in elongation. Images PMID:6302326

  9. High-level production of replication-defective human immunodeficiency type 1 virus vector particles using helper-dependent adenovirus vectors

    PubMed Central

    Hu, Yani; O’Boyle, Kaitlin; Palmer, Donna; Ng, Philip; Sutton, Richard E

    2015-01-01

    Gene transfer vectors based upon human immunodeficiency virus type 1 (HIV) are widely used in bench research applications and increasingly in clinical investigations, both to introduce novel genes but also to reduce expression of unwanted genes of the host and pathogen. At present, the vast majority of HIV-based vector supernatants are produced in 293T cells by cotransfection of up to five DNA plasmids, which is subject to variability and difficult to scale. Here we report the development of a HIV-based vector production system that utilizes helper-dependent adenovirus (HDAd). All necessary HIV vector components were inserted into one or more HDAds, which were then amplified to very high titers of ~1013 vp/ml. These were then used to transduce 293-based cells to produce HIV-based vector supernatants, and resultant VSV G-pseudotyped lentiviral vector (LV) titers and total IU were 10- to 30-fold higher, compared to plasmid transfection. Optimization of HIV-based vector production depended upon maximizing expression of all HIV vector components from HDAd. Supernatants contained trace amounts of HDAd but were free of replication-competent lentivirus. This production method should be applicable to other retroviral vector systems. Scalable production of HIV-based vectors using this two-step procedure should facilitate their clinical advancement. PMID:26029715

  10. [Construction and experimental immunity of recombinant replication-competent canine adenovirus type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus].

    PubMed

    Gao, Yu-Wei; Xia, Xian-Zhu; Wang, Li-Gang; Liu, Dan; Huang, Geng

    2006-04-01

    H5N1 highly pathogenic avian influenza virus was highly pathogenic and sometimes even fatal for tigers and cats. To develop a new type of vaccine for Felidae influenza prevention, recombinant replication-competent canine adenovirus Type 2 expressing hemagglutinin gene of H5N1 subtype tiger influenza virus was constructed. A/tiger/Harbin/01/2003 (HSN1) HA gene was cloned into PVAX1. The HA expression cassette which included CMV and HA and PolyA was ligated into the E3 deletion region of pVAXdeltaE. The recombinant plasmid was named pdeltaEHA. The pdelta EHA and the pPoly2-CAV2 were digested with Nru I /Sal I, respectively. The purified Nru I/Sal I DNA fragment containing the HA expression cassette was cloned into pPoly2-CAV2 to generate the recombinant plasmid pCAV-2/HA. The recombinant genome was released from pCAV-2/HA, and was transfected into MDCK cells by Lipofectamine. The recombinant virus named CAV2/HA was gained. Anti-H5N1 influenza virus HI antibody (1:8 - 1:16) was detected in the cat immunized with CAV-2/HA. PMID:16736595

  11. Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector

    PubMed Central

    Damjanovic, Daniela; Zhang, Xizhong; Mu, Jingyu; Fe Medina, Maria; Xing, Zhou

    2008-01-01

    It is believed that respiratory mucosal immunization triggers more effective immune protection than parenteral immunization against respiratory infection caused by viruses and intracellular bacteria. Such understanding has led to the successful implementation of intranasal immunization in humans with a live cold-adapted flu virus vaccine. Furthermore there has been an interest in developing effective mucosal-deliverable genetic vaccines against other infectious diseases. However, there is a concern that intranasally delivered recombinant viral-based vaccines may disseminate to the CNS via the olfactory tissue. Initial experimental evidence suggests that intranasally delivered recombinant adenoviral gene transfer vector may transport to the olfactory bulb. However, there is a lack of quantitative studies to compare the relative amounts of transgene products in the respiratory tract, lung, olfactory bulb and brain after intranasal mucosal delivery of viral gene transfer vector. To address this issue, we have used fluorescence macroscopic imaging, luciferase quantification and PCR approaches to compare the relative distribution of transgene products or adenoviral gene sequences in the respiratory tract, lung, draining lymph nodes, olfactory bulb, brain and spleen. Intranasal mucosal delivery of replication-defective recombinant adenoviral vector results in gene transfer predominantly in the respiratory system including the lung while it does lead to a moderate level of gene transfer in the olfactory bulb. However, intranasal inoculation of adenoviral vector leads to little or no viral dissemination to the major region of the CNS, the brain. These experimental findings support the efficaciousness of intranasal adenoviral-mediated gene transfer for the purpose of mucosal immunization and suggest that it may not be of significant safety concern. PMID:18261231

  12. Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C

    PubMed Central

    Alexander, Jeff; Mendy, Jason; Vang, Lo; Avanzini, Jenny B.; Garduno, Fermin; Manayani, Darly J.; Ishioka, Glenn; Farness, Peggy; Ping, Li-Hua; Swanstrom, Ronald; Parks, Robert; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; LaBranche, Celia; Smith, Jonathan; Gurwith, Marc; Mayall, Tim

    2013-01-01

    Background There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. Methods The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. Results Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. Conclusions The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical

  13. Replication-competent adenoviruses with the type 35-derived fiber-knob region achieve reactive oxygen species-dependent cytotoxicity and produce greater toxicity than those with the type 5-derived region in pancreatic carcinoma.

    PubMed

    Yamauchi, Suguru; Kawamura, Kiyoko; Okamoto, Shinya; Morinaga, Takao; Jiang, Yuanyuan; Shingyoji, Masato; Sekine, Ikuo; Kubo, Shuji; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi

    2015-12-01

    Pancreatic carcinoma is relatively resistant to chemotherapy and cell death induced by replication of adenoviruses (Ad) can be one of the therapeutic options. Transduction efficacy of conventional type 5 Ad (Ad5) is however low and the cytotoxic mechanism by replication-competent Ad was not well understood. We constructed replication-competent Ad5 of which the E1A promoter region was replaced with a transcriptional regulatory region of the midkine, the survivin or the cyclooxygenase-2 gene, all of which were expressed at a high level in human tumors. We also prepared replication-competent Ad5 that were activated with the same region but had the type 35 Ad-derived fiber-knob region (AdF35) to convert the major cellular receptor for Ad infection from the coxsackie adenovirus receptor to CD46 molecules. Replication-competent AdF35 that were activated with the exogenous region produced cytotoxic effects on human pancreatic carcinoma cells greater than the corresponding Ad5 bearing with the same regulatory region. Cells infected with the AdF35 showed cytopathic effects and increased sub-G1 fractions. Caspase-9, less significantly caspase-8 and poly (ADP-ribose) polymerase, but not caspase-3 was cleaved and expression of molecules involved in autophagy and caspase-independent cell death pathways remained unchanged. Nevertheless, H2A histone family member X molecules were phosphorylated, and N-acetyl-L-cystein, an inhibitor for reactive oxygen species, suppressed the AdF35-mediated cytotoxicity. These data indicated a novel mechanism of Ad-mediated cell death and suggest a possible clinical application of the fiber-knob modified Ad. PMID:26373551

  14. Nuclear actin and myosins in adenovirus infection.

    PubMed

    Fuchsova, Beata; Serebryannyy, Leonid A; de Lanerolle, Primal

    2015-11-01

    Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host's transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus. PMID:26226218

  15. Adenovirus-Mediated Expression of Interferon-Alpha Delays Viral Replication and Reduces Disease Signs in Swine Challenged with Porcine Reproductive and Respiratory Syndrome Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, pigs were injected with a nonreplicating human adenovirus type 5 vector expressing porcine interferon-alpha (Ad5-pIFNa) and then challenged with porcine reproductive and respiratory syndrome virus (PRRSV) to determine whether the presence of increased levels of IFNa would decrease vir...

  16. Canine adenovirus based rabies vaccines.

    PubMed

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control. PMID:18634509

  17. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors. PMID:27467954

  18. Vaccination with replication-deficient recombinant adenoviruses encoding the main surface antigens of toxoplasma gondii induces immune response and protection against infection in mice.

    PubMed

    Caetano, Bráulia C; Bruña-Romero, Oscar; Fux, Blima; Mendes, Erica A; Penido, Marcus L O; Gazzinelli, Ricardo T

    2006-04-01

    We have generated recombinant adenoviruses encoding three genetically modified surface antigens (SAGs) of the parasite Toxoplasma gondii, that is, AdSAG1, AdSAG2, and AdSAG3. Modifications included the removal of their glycosylphosphatidylinositol (GPI) anchoring motifs and, in some cases, the exchange of the native signal peptide for influenza virus hemagglutinin signal sequence. Adenovirus immunization of BALB/c mice elicited potent antibody responses against each protein, displaying a significant bias toward a helper T cell type 1 (Th1) profile in animals vaccinated with AdSAG1. Furthermore, the presence of parasite-specific IFN-gamma-producing T cells was analyzed by proliferation assays and enzyme-linked immunospot assays in the same animals. Splenocytes from immunized mice secreted IFN-gamma after in vitro stimulation with tachyzoite lysate antigen or with a fraction enriched for membrane-purified GPI-anchored proteins (F3) from the T. gondii tachyzoite surface. Epitopes recognized by CD8+ T cells were identified in SAG1 and SAG3, but not SAG2, sequences, although this protein also induced a specific response. We also tested the capacity of the immune responses detected to protect mice against a challenge with live T. gondii parasites. Although no protection was observed against tachyzoites of the highly virulent RH strain, a significant reduction in cyst loads in the brain was observed in animals challenged with the P-Br strain. Thus, up to 80% of the cysts were eliminated from animals vaccinated with a mixture of the three recombinant viruses. Because adenoviruses seemed capable of inducing Th1-biased protective immune responses against T. gondii antigens, other parasite antigens should be tested alone or in combination with those described here to further develop a protective vaccine against toxoplasmosis. PMID:16610929

  19. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  20. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  1. The HDAC Inhibitor FK228 Enhances Adenoviral Transgene Expression by a Transduction-Independent Mechanism but Does Not Increase Adenovirus Replication

    PubMed Central

    Danielsson, Angelika; Dzojic, Helena; Rashkova, Victoria; Cheng, Wing-Shing; Essand, Magnus

    2011-01-01

    The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected. PMID:21379379

  2. Intranasal vaccination with replication-defective adenovirus type 5 encoding influenza virus hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs.

    PubMed

    Braucher, Douglas R; Henningson, Jamie N; Loving, Crystal L; Vincent, Amy L; Kim, Eun; Steitz, Julia; Gambotto, Andrea A; Kehrli, Marcus E

    2012-11-01

    Influenza A virus (IAV) is widely circulating in the swine population and causes significant economic losses. To combat IAV infection, the swine industry utilizes adjuvanted whole inactivated virus (WIV) vaccines, using a prime-boost strategy. These vaccines can provide sterilizing immunity toward homologous virus but often have limited efficacy against a heterologous infection. There is a need for vaccine platforms that induce mucosal and cell-mediated immunity that is cross-reactive to heterologous viruses and can be produced in a short time frame. Nonreplicating adenovirus 5 vector (Ad5) vaccines are one option, as they can be produced rapidly and given intranasally to induce local immunity. Thus, we compared the immunogenicity and efficacy of a single intranasal dose of an Ad5-vectored hemagglutinin (Ad5-HA) vaccine to those of a traditional intramuscular administration of WIV vaccine. Ad5-HA vaccination induced a mucosal IgA response toward homologous IAV and primed an antigen-specific gamma interferon (IFN-γ) response against both challenge viruses. The Ad5-HA vaccine provided protective immunity to homologous challenge and partial protection against heterologous challenge, unlike the WIV vaccine. Nasal shedding was significantly reduced and virus was cleared from the lung by day 5 postinfection following heterologous challenge of Ad5-HA-vaccinated pigs. However, the WIV-vaccinated pigs displayed vaccine-associated enhanced respiratory disease (VAERD) following heterologous challenge, characterized by enhanced macroscopic lung lesions. This study demonstrates that a single intranasal vaccination with an Ad5-HA construct can provide complete protection from homologous challenge and partial protection from heterologous challenge, as opposed to VAERD, which can occur with adjuvanted WIV vaccines. PMID:22933397

  3. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    PubMed Central

    Wold, William S.M.; Toth, Karoly

    2015-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vectors are engineered to replicate preferentially in cancer cells and to destroy cancer cells through the natural process of lytic virus replication. Many clinical trials indicate that replication-defective and replication-competent adenovirus vectors are safe and have therapeutic activity. PMID:24279313

  4. Replicating Adenovirus-Simian Immunodeficiency Virus (SIV) Recombinant Priming and Envelope Protein Boosting Elicits Localized, Mucosal IgA Immunity in Rhesus Macaques Correlated with Delayed Acquisition following a Repeated Low-Dose Rectal SIVmac251 Challenge

    PubMed Central

    Xiao, Peng; Patterson, L. Jean; Kuate, Seraphin; Brocca-Cofano, Egidio; Thomas, Michael A.; Venzon, David; Zhao, Jun; DiPasquale, Janet; Fenizia, Claudio; Lee, Eun Mi; Kalisz, Irene; Kalyanaraman, Vaniambadi S.; Pal, Ranajit; Montefiori, David; Keele, Brandon F.

    2012-01-01

    We have shown that sequential replicating adenovirus type 5 host range mutant human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) recombinant priming delivered first intranasally (i.n.) plus orally and then intratracheally (i.t.), followed by envelope protein boosting, elicits broad cellular immunity and functional, envelope-specific serum and mucosal antibodies that correlate with protection from high-dose SIV and simian/human immunodeficiency virus (SHIV) challenges in rhesus macaques. Here we extended these studies to compare the standard i.n./i.t. regimen with additional mucosal administration routes, including sublingual, rectal, and vaginal routes. Similar systemic cellular and humoral immunity was elicited by all immunization routes. Central and effector memory T cell responses were also elicited by the four immunization routes in bronchoalveolar lavage fluid and jejunal, rectal, and vaginal tissue samples. Cellular responses in vaginal tissue were more compartmentalized, being induced primarily by intravaginal administration. In contrast, all immunization routes elicited secretory IgA (sIgA) responses at multiple mucosal sites. Following a repeated low-dose intrarectal (i.r.) challenge with SIVmac251 at a dose transmitting one or two variants, protection against acquisition was not achieved except in one macaque in the i.r. immunized group. All immunized macaques exhibited reduced peak viremia compared to that of controls, correlated inversely with prechallenge serum antienvelope avidity, antibody-dependent cellular cytotoxicity (ADCC) titers, and percent antibody-dependent cell-mediated viral inhibition. Both antibody avidity and ADCC titers were correlated with the number of exposures required for infection. Notably, we show for the first time a significant correlation of vaccine-induced sIgA titers in rectal secretions with delayed acquisition. Further investigation of the characteristics and properties of the sIgA should elucidate the

  5. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    PubMed

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-01

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. PMID:20472025

  6. Core labeling of adenovirus with EGFP

    SciTech Connect

    Le, Long P.; Le, Helen N.; Nelson, Amy R.; Matthews, David A.; Yamamoto, Masato; Curiel, David T. . E-mail: curiel@uab.edu

    2006-08-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.

  7. Characteristics of Noncultivable Adenoviruses Associated with Diarrhea in Infants: A New Subgroup of Human Adenoviruses

    PubMed Central

    Gary, G. William; Hierholzer, John C.; Black, Robert E.

    1979-01-01

    Virus particles morphologically resembling adenovirus were found in fecal specimens from infants and were examined for cultivability with standard cell culture techniques and for characteristics of human adenoviruses. Specimens from 13 of 15 infants could not be cultivated in cell cultures. The two adenoviruses that were cultivated, types 1 and 31, reacted in the expected manner in all tests. Counterimmunoelectrophoresis with group-specific anti-hexon serum confirmed that the observed particles in the 15 specimens were human adenoviruses. The buoyant density in sucrose of five of the noncultivable adenoviruses in original stool suspensions averaged 1.335 g/cm3 and that of the two cultivable ones averaged 1.332 g/cm3; both groups had typical adenovirus morphology by electron microscopy. Treatment of the specimens and of a variety of tissue culture cells with proteolytic and other enzymes did not improve cultivability. Examination of partially purified virus by immunoelectron microscopy did not reveal evidence of immunoglobulin A, G, or M coating on the particles, an indication that coproantibody inhibition was not the cause of noncultivability. Fluorescent-antibody studies with an antihexon conjugate and counterimmunoelectrophoresis studies of serially passaged noncultivable viruses indicated that the viruses are infecting cells but are not undergoing effective replication. Antisera to three of the noncultivable viruses demonstrated homologous reactions in counterimmunoelectrophoresis with the respective immunizing antigens but showed only low levels of hemagglutination-inhibiting and neutralizing activity to a few of the known human adenoviruses. We concluded that the noncultivable viruses in these infant diarrhea cases were indeed human adenoviruses, were not defective particles, were not bound to coproantibody, were infectious but incapable of effective relication in conventional cell cultures, were serologically related to types 11, 17, 32, and 33, and should be

  8. Rapid generation of fowl adenovirus 9 vectors.

    PubMed

    Pei, Yanlong; Griffin, Bryan; de Jong, Jondavid; Krell, Peter J; Nagy, Éva

    2015-10-01

    Fowl adenoviruses (FAdV) have the largest genomes of any fully sequenced adenovirus genome, and are widely considered as excellent platforms for vaccine development and gene therapy. As such, there is a strong need for stream-lined protocols/strategies for the generation of recombinant adenovirus genomes. Current genome engineering strategies rely upon plasmid based homologous recombination in Escherichia coli BJ5183. This process is time-consuming, involves multiple cloning steps, and low efficiency recombination. This report describes a novel system for the more rapid generation of recombinant fowl adenovirus genomes using the lambda Red recombinase system in E. coli DH10B. In this strategy, PCR based amplicons with around 50 nt long homologous arms, a unique SwaI site and a chloramphenicol resistance gene fragment (CAT cassette), are introduced into the FAdV-9 genome in a highly efficient and site-specific manner. To demonstrate the efficacy of this system we generated FAdV-9 ORF2, and FAdV-9 ORF11 deleted, CAT marked and unmarked FAdV-9 infectious clones (FAdmids), and replaced either ORF2 or ORF11, with an EGFP expression cassette or replaced ORF2 with an EGFP coding sequence via the unique SwaI sites, in approximately one month. All recombinant FAdmids expressed EGFP and were fully infectious in CH-SAH cells. PMID:26238923

  9. Retargeted oncolytic adenovirus displaying a single variable domain of camelid heavy-chain-only antibody in a fiber protein

    PubMed Central

    van Erp, Elisabeth A; Kaliberova, Lyudmila N; Kaliberov, Sergey A; Curiel, David T

    2015-01-01

    Conditionally replicative adenoviruses are promising agents for oncolytic virotherapy. Various approaches have been attempted to retarget adenoviruses to tumor-specific antigens to circumvent deficiency of receptor for adenoviral binding and to provide an additional level of tumor specificity. Functional incorporation of highly specific targeting molecules into the viral capsid can potentially retarget adenoviral infection. However, conventional antibodies are not compatible with the cytoplasmic adenovirus capsid synthesis. The goal of this study was to evaluate the utility of single variable domains derived from heavy chain camelid antibodies for retargeting of adenovirus infection. We have combined transcriptional targeting using a tumor-specific promoter with transductional targeting through viral capsid incorporation of antihuman carcinoembryonic antigen single variable domains. Obtained data demonstrated that employment of a single variable domain genetically incorporated into an adenovirus fiber increased specificity of infection and efficacy of replication of single variable domain-targeted oncolytic adenovirus. The double targeting, both transcriptional through the C-X-C chemokine receptor type 4 promoter and transductional using the single variable domain, is a promising means to improve the therapeutic index for these advanced generation conditionally replicative adenoviruses. A successful strategy to transductional retargeting of oncolytic adenovirus infection has not been shown before and therefore we believe this is the first employment of transductional targeting using single variable domains derived from heavy chain camelid antibodies to enhance specificity of conditionally replicative adenoviruses. PMID:27119101

  10. An Infection-enhanced Oncolytic Adenovirus Secreting H. pylori Neutrophil-activating Protein with Therapeutic Effects on Neuroendocrine Tumors

    PubMed Central

    Ramachandran, Mohanraj; Yu, Di; Wanders, Alkwin; Essand, Magnus; Eriksson, Fredrik

    2013-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is a major virulence factor involved in H. pylori infection. HP-NAP can mediate antitumor effects by recruiting neutrophils and inducing Th1-type differentiation in the tumor microenvironment. It therefore holds strong potential as a therapeutic gene. Here, we armed a replication-selective, infection-enhanced adenovirus with secretory HP-NAP, Ad5PTDf35-[Δ24-sNAP], and evaluated its therapeutic efficacy against neuroendocrine tumors. We observed that it could specifically infect and eradicate a wide range of tumor cells lines from different origin in vitro. Insertion of secretory HP-NAP did not affect the stability or replicative capacity of the virus and infected tumor cells could efficiently secrete HP-NAP. Intratumoral administration of the virus in nude mice xenografted with neuroendocrine tumors improved median survival. Evidence of biological HP-NAP activity was observed 24 hours after treatment with neutrophil infiltration in tumors and an increase of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and MIP2-α in the systemic circulation. Furthermore, evidence of Th1-type immune polarization was observed as a result of increase in IL-12/23 p40 cytokine concentrations 72 hours postvirus administration. Our observations suggest that HP-NAP can serve as a potent immunomodulator in promoting antitumor immune response in the tumor microenvironment and enhance the therapeutic effect of oncolytic adenovirus. PMID:23817216

  11. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    PubMed

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  12. Structure of human adenovirus

    SciTech Connect

    Nemerow, Glen R.; Stewart, Phoebe L.; Reddy, Vijay S.

    2012-07-11

    A detailed structural analysis of the entire human adenovirus capsid has been stymied by the complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady improvements in viral genome manipulation concomitant with advances in crystallographic techniques and data processing software has allowed structure determination of this virus by X-ray diffraction at 3.5 {angstrom} resolution. The virus structure revealed the location, folds, and interactions of major and minor (cement proteins) on the inner and outer capsid surface. This new structural information sheds further light on the process of adenovirus capsid assembly and virus-host cell interactions.

  13. Neural stem cell-mediated delivery of oncolytic adenovirus.

    PubMed

    Kim, Julius W; Kane, J Robert; Young, Jacob S; Chang, Alan L; Kanojia, Deepak; Qian, Shuo; Spencer, Drew A; Ahmed, Atique U; Lesniak, Maciej S

    2015-01-01

    The use of stem cells (SCs) as carriers for therapeutic agents has now progressed to early clinical trials. These clinical trials exploring SC-mediated delivery of oncolytic adenoviruses will commence in the near future, hopefully yielding meritorious results that can provoke further scientific inquiry. Preclinical animal studies have demonstrated that SCs can be successfully loaded with conditionally-replicative adenoviruses and delivered to the tumor, whereupon they may evoke pronounced therapeutic efficacy. In this protocol, we describe the maintenance of SCs, provide an analysis of optimal adenoviral titers for SC loading, and evaluate the optimized viral loading on SCs. PMID:25827347

  14. Characterization of a novel adenovirus isolated from a skunk.

    PubMed

    Kozak, Robert A; Ackford, James G; Slaine, Patrick; Li, Aimin; Carman, Susy; Campbell, Doug; Welch, M Katherine; Kropinski, Andrew M; Nagy, Éva

    2015-11-01

    Adenoviruses are a ubiquitous group of viruses that have been found in a wide range of hosts. A novel adenovirus from a skunk suffering from acute hepatitis was isolated and its DNA genome sequenced. The analysis revealed this virus to be a new member of the genus Mastadenovirus, with a genome of 31,848 bp in length containing 30 genes predicted to encode proteins, and with a G+C content of 49.0%. Global genomic organization indicated SkAdV-1 was similar in organization to bat and canine adenoviruses, and phylogenetic comparison suggested these viruses shared a common ancestor. SkAdV-1 demonstrated an ability to replicate in several mammalian liver cell lines suggesting a potential tropism for this virus. PMID:26189043

  15. Interactions of minute virus of mice and adenovirus with host nucleoli.

    PubMed Central

    Walton, T H; Moen, P T; Fox, E; Bodnar, J W

    1989-01-01

    Biochemical evidence is presented that both minute virus of mice (MVM) and adenovirus interact with the nucleolus during lytic growth and that MVM can also target specific changes involving nucleolar components in adenovirus-infected cells. These virus-nucleolus interactions were studied by analysis of intranuclear compartmentalization of both viral DNAs and host nucleolar proteins: (i) MVM in mouse cells (its normal host) replicates its DNA in the host nucleoli; (ii) specific nucleolar proteins as well as small nuclear ribonucleoprotein antigens are recompartmentalized to multiple intranuclear foci in adenovirus-infected HeLa cells; and (iii) when adenovirus helps MVM DNA replication in a nonpermissive human cell (HeLa), the MVM DNA is also recompartmentalized for synthesis. The data suggest mechanisms for disruption of nucleolar function common to oncogenic or oncolytic virus lytic growth and cell transformation. Images PMID:2760977

  16. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  17. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  18. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    PubMed Central

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  19. Subgenomic viral DNA species synthesized in simian cells by human and simian adenoviruses.

    PubMed Central

    Daniell, E

    1981-01-01

    DNA synthesized after infection of simian tissue culture cells (BSC-1 or CV-1) with human adenovirus type 2 or 5 or with simian adenovirus 7 was characterized. It was demonstrated that as much as 40% of the virus-specific DNA in nuclei of infected monkey cells consists of subgenomic pieces. No subgenomic viral DNA species were detected in the nuclei of human (HeLa) cells infected with these adenovirus types. Restriction analysis showed that these short viral DNA molecules contain normal amounts of the sequences from the ends of the viral genome, whereas internal regions are underrepresented. The production of subgenomic DNAs is not correlated with semipermissive infection. Although adenovirus types 2 and 5 are restricted in monkey cells, these cells are fully permissive for simian adenovirus 7. HR404, an adenovirus type 5 mutant which is not restricted in monkey cells, produced the same percentage of subgenomic DNAs as did its wild type (restricted) parent, and coinfection of monkey cells with adenovirus type 5 DNAs. The array of predominant size classes among the heterogeneously sized short DNAs is serotype specific. Extensive plaque purification and comparison of wild-type adenovirus type 5 with several viral mutants indicated that the distribution of aberrant sizes of DNA is characteristic of the virus and not a result of random replicative errors and then enrichment of particular species. Images PMID:6261009

  20. Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements.

    PubMed

    Hwang, Ji-Eun; Joung, Jae Young; Shin, Seung-Phil; Choi, Moon-Kyung; Kim, Jeong Eun; Kim, Yon Hui; Park, Weon Seo; Lee, Sang-Jin; Lee, Kang Hyun

    2016-03-01

    Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker. PMID:26723876

  1. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  2. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    PubMed

    Gao, Dong-Sheng; Li, Xiao-Jing; Wan, Wen-Yan; Li, Hong-Jie; Wang, Xiao-Xue; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry. PMID:26850542

  3. Oncolytic poxvirus armed with Fas ligand leads to induction of cellular Fas receptor and selective viral replication in FasR-negative cancer.

    PubMed

    Sathaiah, M; Thirunavukkarasu, P; O'Malley, M E; Kavanagh, M A; Ravindranathan, R; Austin, F; Guo, Z S; Bartlett, D L

    2012-03-01

    Tumor necrosis factor superfamily members, including Fas ligand and TRAIL, have been studied extensively for cancer therapy, including as components of gene therapy. We examined the use of FasL expression to achieve tumor-selective replication of an oncolytic poxvirus (vFasL), and explored its biology and therapeutic efficacy for FasR- and FasR+ cancers. Infection of FasR+ normal and MC38 cancer cells by vFasL led to abortive viral replication owing to acute apoptosis and subsequently showed both reduced pathogenicity in non-tumor-bearing mice and reduced efficacy in FasR+ tumor-bearing mice. Infection of FasR- B16 cancer cells by vFasL led to efficient viral replication, followed by late induction of FasR and subsequent apoptosis. Treatment with vFasL as compared with its parental virus (vJS6) led to increased tumor regression and prolonged survival of mice with FasR- cancer (B16) but not with FasR+ cancer (MC38). The delayed induction of FasR by viral infection in FasR- cells provides for potential increased efficacy beyond the limit of the direct oncolytic effect. FasR induction provides one mechanism for tumor-selective replication of oncolytic poxviruses in FasR- cancers with enhanced safety. The overall result is both a safer and more effective oncolytic virus for FasR- cancer. PMID:22116377

  4. Interaction of Adenovirus Type 5 E4orf4 with the Nuclear Pore Subunit Nup205 Is Required for Proper Viral Gene Expression

    PubMed Central

    Lu, YiQing; Kucharski, Thomas J.; Gamache, Isabelle; Blanchette, Paola; Branton, Philip E.

    2014-01-01

    ABSTRACT Adenovirus type 5 E4orf4 is a multifunctional protein that regulates viral gene expression. The activities of E4orf4 are mainly mediated through binding to protein phosphatase 2A (PP2A). E4orf4 recruits target phosphoproteins into complexes with PP2A, resulting in dephosphorylation of host factors, such as SR splicing factors. In the current study, we utilized immunoprecipitation followed by mass spectrometry to identify novel E4orf4-interacting proteins. In this manner we identified Nup205, a component of the nuclear pore complex (NPC) as an E4orf4 interacting partner. The arginine-rich motif (ARM) of E4orf4 was required for interaction with Nup205 and for nuclear localization of E4orf4. ARMs are commonly found on viral nuclear proteins, and we observed that Nup205 interacts with three different nuclear viral proteins containing ARMs. E4orf4 formed a trimolecular complex containing both Nup205 and PP2A. Furthermore, Nup205 complexed with E4orf4 was hypophosphorylated, suggesting that the protein is specifically targeted for dephosphorylation. An adenovirus mutant that does not express E4orf4 (Orf4−) displayed elevated early and reduced late gene expression relative to that of the wild type. We observed that knockdown of Nup205 resulted in the same phenotype as that of the Orf4− virus, suggesting that the proteins function as a complex to regulate viral gene expression. Furthermore, knockdown of Nup205 resulted in a more than a 4-fold reduction in the replication of wild-type adenovirus. Our data show for first time that Ad5 E4orf4 interacts with and modifies the NPC and that Nup205-E4orf4 binding is required for normal regulation of viral gene expression and viral replication. IMPORTANCE Nuclear pore complexes (NPCs) are highly regulated conduits in the nuclear membrane that control transport of macromolecules between the nucleus and cytoplasm. Viruses that replicate in the nucleus must negotiate the NPC during nuclear entry, and viral DNA, mRNA, and

  5. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  6. Adenovirus type 2 expresses fiber in monkey-human hybrids and reconstructed cells

    SciTech Connect

    Zorn, G.A.; Anderson, C.W.

    1981-02-01

    Adenovirus type 2 protein expression was measured by indirect immunofluorescence in monkey-human hybrids and in cells reconstructed from monkey and human cell karyoplasts and cytoplasts. Monkey-human hybrid clones infected with adenovirus type 2 expressed fiber protein, whereas infected monkey cells alone did not. Hybrids constructed after the parental monkey cells were infected with adenovirus type 2 demonstrated that fiber synthesis in these cells could be rescued by fusion to uninfected human cells. Thus, human cells contain a dominant factor that acts in trans and overcomes the inability of monkey cells to synthesize fiber. These results are consistent with the hypothesis that the block to adenovirus replication in monkey cells involves a nuclear event that prevents the formation of functional mRNA for some late viral proteins including fiber polypeptide.

  7. Oral Priming with Replicating Adenovirus Serotype 4 Followed by Subunit H5N1 Vaccine Boost Promotes Antibody Affinity Maturation and Expands H5N1 Cross-Clade Neutralization

    PubMed Central

    Khurana, Surender; Coyle, Elizabeth M.; Manischewitz, Jody; King, Lisa R.; Ishioka, Glenn; Alexander, Jeff; Smith, Jon; Gurwith, Marc; Golding, Hana

    2015-01-01

    A Phase I trial conducted in 2009–2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions. PMID:25629161

  8. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.

    PubMed

    Khurana, Surender; Coyle, Elizabeth M; Manischewitz, Jody; King, Lisa R; Ishioka, Glenn; Alexander, Jeff; Smith, Jon; Gurwith, Marc; Golding, Hana

    2015-01-01

    A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions. PMID:25629161

  9. Premature termination by human RNA polymerase II occurs temporally in the adenovirus major late transcriptional unit.

    PubMed Central

    Mok, M; Maderious, A; Chen-Kiang, S

    1984-01-01

    We have recently demonstrated pausing and premature termination of transcription by eucaryotic RNA polymerase II at specific sites in the major late transcriptional unit of adenovirus type 2 in vivo and in vitro. In further developing this as a system for studying eucaryotic termination control, we found that prematurely terminated transcripts of 175 and 120 nucleotides also occur in adenovirus type 5-infected cells. In both cases, premature termination occurs temporally, being found only during late times of infection, not at early times before DNA replication or immediately after the onset of DNA replication when late gene expression has begun (intermediate times). To examine the phenomenon of premature termination further, a temperature-sensitive mutant virus, adenovirus type 5 ts107, was used to uncouple DNA replication and transcription. DNA replication is defective in this mutant at restrictive temperatures. We found that premature termination is inducible at intermediate times by shifting from a permissive temperature to a restrictive temperature, allowing continuous transcription in the absence of continuous DNA replication. No premature termination occurs when the temperature is shifted up at early times before DNA replication. Our data suggest that premature termination of transcription is dependent on both prior synthesis of new templates and cumulative late gene transcription but does not require continuous DNA replication. Images PMID:6209554

  10. Neural stem cell-mediated delivery of oncolytic adenovirus

    PubMed Central

    Kim, Julius W.; Kane, J. Robert; Young, Jacob S.; Chang, Alan L.; Kanojia, Deepak; Qian, Shuo; Spencer, Drew A.; Ahmed, Atique U.; Lesniak, Maciej S.

    2015-01-01

    The use of stem cells (SCs) as carriers for therapeutic agents has by now progressed to early clinical trials. These clinical trials exploring SC-mediated delivery of oncolytic adenoviruses will commence in the near future, hopefully yielding meritorious results that could provoke further scientific inquiry. Preclinical animal studies have demonstrated that SCs can be successfully loaded with conditionally-replicative adenoviruses and, then, delivered to the tumor, upon which they may evoke pronounced therapeutic efficacy in the animal (Ahmed et al., 2011; Ahmed et al., 2012; Thaci et al., 2012; Tobias et al., 2013). Here in this protocol, we describe the maintenance of SCs, provide an analysis of optimal adenoviral titers for SC loading, and evaluate the optimized viral loading on SCs. PMID:25827347

  11. Synthesis of type 2 Adenovirus DNA in the Presence of Cycloheximide

    PubMed Central

    Horwitz, Marshall S.; Brayton, Carol; Baum, Stephen G.

    1973-01-01

    Adenovirus type 2 DNA synthesis, either in permissive human cells or nonpermissive monkey cells, becomes independent of protein synthesis after the appearance of progeny viral DNA. In the presence of cycloheximide, semiconservative replication and initiation of progeny molecules can occur. PMID:4349494

  12. Adenovirus serotype 5 vectored foot-and-mouth disease subunit vaccines: the first decade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we present the results of the first decade of development of a replication-defective human adenovirus (Ad5) containing the capsid and 3C protease coding regions of foot-and-mouth disease virus (FMDV) as a vaccine candidate. In proof-of concept studies we demonstrated that a single inoculation w...

  13. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma

    PubMed Central

    Wang, Yigang; Zhao, Hongfang; Zhang, Rong; Ma, Buyun; Chen, Kan; Huang, Fang; Zhou, Xiumei; Cui, Caixia; Liu, Xinyuan

    2015-01-01

    Golgi apparatus is the organelle mainly functioning as protein processing and secretion. GOLPH2 is a resident Golgi glycoprotein, usually called GP73. Recent data displayed that GOLPH2 is a superb hepatocellular carcinoma (HCC) marker candidate, and even its specificity is better than liver cancer marker AFP. Oncolytic adenoviruses are broadly used for targeting cancer therapy due to their selective tumor-killing effect. However, it was reported that traditionally oncolytic adenovirus lack the HCC specificity. In this study, a novel dual-regulated oncolytic adenovirus GD55 targeting HCC was first constructed based on our cancer targeted gene-viral therapeutic strategy. To verify the targeting and effectiveness of GOLPH2-regulated oncolytic adenovirus GD55 in HCC, the anticancer capacity was investigated in HCC cell lines and animal model. The results proved that the novel GOLPH2-regulated GD55 conferred higher adenovirus replication and infectivity for liver cancer cells than oncolytic adenovirus ZD55. The GOLPH2-regulated GD55 exerted a significant grow-suppressing effect on HCC cells in vitro but little damage to normal liver cells. In animal experiment, antitumor effect of GD55 was more effective in HCC xenograft of nude mice than that of ZD55. Thus GOLPH2-regulated GD55 may be a promising oncolytic virus agent for future liver cancer treatment. PMID:25980438

  14. Host cell autophagy modulates early stages of adenovirus infections in airway epithelial cells.

    PubMed

    Zeng, Xuehuo; Carlin, Cathleen R

    2013-02-01

    Human adenoviruses typically cause mild infections in the upper or lower respiratory tract, gastrointestinal tract, or ocular epithelium. However, adenoviruses may be life-threatening in patients with impaired immunity and some serotypes cause epidemic outbreaks. Attachment to host cell receptors activates cell signaling and virus uptake by endocytosis. At present, it is unclear how vital cellular homeostatic mechanisms affect these early steps in the adenovirus life cycle. Autophagy is a lysosomal degradation pathway for recycling intracellular components that is upregulated during periods of cell stress. Autophagic cargo is sequestered in double-membrane structures called autophagosomes that fuse with endosomes to form amphisomes which then deliver their content to lysosomes. Autophagy is an important adaptive response in airway epithelial cells targeted by many common adenovirus serotypes. Using two established tissue culture models, we demonstrate here that adaptive autophagy enhances expression of the early region 1 adenovirus protein, induction of mitogen-activated protein kinase signaling, and production of new viral progeny in airway epithelial cells infected with adenovirus type 2. We have also discovered that adenovirus infections are tightly regulated by endosome maturation, a process characterized by abrupt exchange of Rab5 and Rab7 GTPases, associated with early and late endosomes, respectively. Moreover, endosome maturation appears to control a pool of early endosomes capable of fusing with autophagosomes which enhance adenovirus infection. Many viruses have evolved mechanisms to induce autophagy in order to aid their own replication. Our studies reveal a novel role for host cell autophagy that could have a significant impact on the outcome of respiratory infections. PMID:23236070

  15. Etoposide enhances antitumor efficacy of MDR1-driven oncolytic adenovirus through autoupregulation of the MDR1 promoter activity.

    PubMed

    Su, Bing-Hua; Shieh, Gia-Shing; Tseng, Yau-Lin; Shiau, Ai-Li; Wu, Chao-Liang

    2015-11-10

    Conditionally replicating adenoviruses (CRAds), or oncolytic adenoviruses, such as E1B55K-deleted adenovirus, are attractive anticancer agents. However, the therapeutic efficacy of E1B55K-deleted adenovirus for refractory solid tumors has been limited. Environmental stress conditions may induce nuclear accumulation of YB-1, which occurs in multidrug-resistant and adenovirus-infected cancer cells. Overexpression and nuclear localization of YB-1 are associated with poor prognosis and tumor recurrence in various cancers. Nuclear YB-1 transactivates the multidrug resistance 1 (MDR1) genes through the Y-box. Here, we developed a novel E1B55K-deleted adenovirus driven by the MDR1 promoter, designed Ad5GS3. We tested the feasibility of using YB-1 to transcriptionally regulate Ad5GS3 replication in cancer cells and thereby to enhance antitumor efficacy. We evaluated synergistic antitumor effects of oncolytic virotherapy in combination with chemotherapy. Our results show that adenovirus E1A induced E2F-1 activity to augment YB-1 expression, which shut down host protein synthesis in cancer cells during adenovirus replication. In cancer cells infected with Ad5WS1, an E1B55K-deleted adenovirus driven by the E1 promoter, E1A enhanced YB-1 expression, and then further phosphorylated Akt, which, in turn, triggered nuclear translocation of YB-1. Ad5GS3 in combination with chemotherapeutic agents facilitated nuclear localization of YB-1 and, in turn, upregulated the MDR1 promoter activity and enhanced Ad5GS3 replication in cancer cells. Thus, E1A, YB-1, and the MDR1 promoter form a positive feedback loop to promote Ad5GS3 replication in cancer cells, and this regulation can be further augmented when chemotherapeutic agents are added. In the in vivo study, Ad5GS3 in combination with etoposide synergistically suppressed tumor growth and prolonged survival in NOD/SCID mice bearing human lung tumor xenografts. More importantly, Ad5GS3 exerted potent oncolytic activity against clinical

  16. Adenoviruses in the immunocompromised host.

    PubMed Central

    Hierholzer, J C

    1992-01-01

    Adenoviruses are among the many pathogens and opportunistic agents that cause serious infection in the congenitally immunocompromised, in patients undergoing immunosuppressive treatment for organ and tissue transplants and for cancers, and in human immunodeficiency virus-infected patients. Adenovirus infections in these patients tend to become disseminated and severe, and the serotypes involved are clustered according to the age of the patient and the nature of the immunosuppression. Over 300 adenovirus infections in immunocompromised patients, with an overall case fatality rate of 48%, are reviewed in this paper. Children with severe combined immunodeficiency syndrome and other primary immunodeficiencies are exposed to the serotypes of subgroups B and C that commonly infect young children, and thus their infections are due to types 1 to 7 and 31 of subgenus A. Children with bone marrow and liver transplants often have lung and liver adenovirus infections that are due to an expanded set of subgenus A, B, C, and E serotypes. Adults with kidney transplants have viruses of subgenus B, mostly types 11, 34, and 35, which cause cystitis. This review indicates that 11% of transplant recipients become infected with adenoviruses, with case fatality rates from 60% for bone marrow transplant patients to 18% for renal transplant patients. Patients with AIDS become infected with a diversity of serotypes of all subgenera because their adult age and life-style expose them to many adenoviruses, possibly resulting in antigenically intermediate strains that are not found elsewhere. Interestingly, isolates from the urine of AIDS patients are generally of subgenus B and comprise types 11, 21, 34, 35, and intermediate strains of these types, whereas isolates from stool are of subgenus D and comprise many rare, new, and intermediate strains that are untypeable for practical purposes. It has been estimated that adenoviruses cause active infection in 12% of AIDS patients and that 45% of

  17. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors.

    PubMed

    Boviatsis, E J; Chase, M; Wei, M X; Tamiya, T; Hurford, R K; Kowall, N W; Tepper, R I; Breakefield, X O; Chiocca, E A

    1994-02-01

    Three vectors derived from retrovirus, herpes simplex virus type 1 (HSV), and adenovirus were compared in cultured rat 9L gliosarcoma cells for gene transfer efficiency and in a 9L rat brain tumor model for histologic pattern and distribution of foreign gene delivery, as well as for associated tumor necrosis and inflammation. At a multiplicity of infection of 1, in vitro transfer of a foreign gene (lacZ from Escherichia coli) into cells was more efficient with either the replication-defective retrovirus vector or the replication-conditional thymidine kinase (TK)-deficient HSV vector than with the replication-defective adenovirus vector. In vivo, stereotactic injections of each vector into rat brain tumors revealed three main histopathologic findings: (i) retrovirus and HSV vector-mediated gene transfer was relatively selective for cells within the tumor, whereas adenovirus vector-mediated gene transfer occurred into several types of endogenous neural cells, as well as into cells within the tumor; (ii) gene transfer to multiple infiltrating tumor deposits without apparent gene transfer to intervening normal brain tissue occurred uniquely in one animal inoculated with the HSV vector, and (iii) extensive necrosis and selective inflammation in the tumor were evident with the HSV vector, whereas there was minimal evidence of tumor necrosis and inflammation with either the retrovirus or adenovirus vectors. PMID:8186298

  18. Comparison of human and monkey cells for the ability to attenuate transcripts that begin at the adenovirus major late promoter

    SciTech Connect

    Seiberg, M.; Aloni, Y. ); Levine, A.J. )

    1989-09-01

    Late transcription from the adenovirus major late promoter can terminate prematurely at a site 182 to 188 nucleotides downstream. Experiments have been designed, with run-on transcription in nuclei in vitro or riboprobe protection of RNA obtained both in vivo and in vitro, that demonstrate that the ratio of attenuator RNA to readthrough RNA is greater in monkey cells (CV-1) than in human cells (HeLa). This may explain, in part, why the human adenoviruses replicate more poorly in CV-1 cells than in HeLa cells. A mutant adenovirus that replicates better than wild-type virus in monkey cells produces less of the attenuator RNA than wild-type adenovirus does in monkey cells. Monkey cell extracts have been shown to contain a factor that, when added to human cell extracts transcribing adenovirus DNA in vitro, increases the production of attenuator RNA in these reactions. These observations help to explain a portion of the block to the production of infectious adenoviruses in monkey cells.

  19. The Challenge for Gene Therapy: Innate Immune Response to Adenoviruses

    PubMed Central

    Thaci, Bart; Ulasov, Ilya V.; Wainwright, Derek A.; Lesniak, Maciej S.

    2011-01-01

    Adenoviruses are the most commonly used vectors for gene therapy. Despite the promising safety profile demonstrated in clinical trials, the efficacy of using adenoviruses for gene therapy is poor. A major hurdle to adenoviral-mediated gene therapy is the innate immune system. Cell-mediated recognition of viruses via capsid components or nucleic acids has received significant attention, principally thought to be regulated by the toll-like receptors (TLRs). Antiviral innate immune responses are initiated by the infected cell, which activates the interferon (IFN) response to block viral replication, while simultaneously releasing chemokines to attract neutrophils, mononuclear- and natural killer-cells. While the IFN and cellular recruitment pathways are activated and regulated independently of each other, both are required to overcome immune escape mechanisms by adenoviruses. Recent work has shown that the generation of adenoviral vectors lacking specific transcriptionally-active regions decreases immune system activation and increases the chance for immune escape. In this review, we elucidate how adenoviral vector modifications alter the IFN and innate inflammatory pathway response and propose future targets with clinically-translational relevance. PMID:21399236

  20. In vitro transcription of adenovirus.

    PubMed Central

    Fire, A; Baker, C C; Manley, J L; Ziff, E B; Sharp, P A

    1981-01-01

    A series of recombinants of adenovirus DNA fragments and pBR322 was used to test the transcriptional activity of the nine known adenovirus promoters in a cell-free extract. Specific initiation was seen at all five early promoters as well as at the major late promotor and at the intermediate promoter for polypeptide IX. The system failed to recognize the two other adenovirus promoters, which were prominent in vivo only at intermediate and late stages in infection. Microheterogeneity of 5' termini at several adenovirus promoters, previously shown in vivo, was reproduced in the in vitro reaction and indeed appeared to result from heterogeneous initiation rather than 5' processing. To test for the presence of soluble factors involved in regulation of nRNA synthesis, the activity of extracts prepared from early and late stages of infection was compared on an assortment of viral promoter sites. Although mock and early extracts showed identical transcription patterns, extracts prepared from late stages gave 5- to 10-fold relative enhancement of the late and polypeptide IX promoters as compared with early promoters. Images PMID:7321101

  1. Mechanism of adenovirus-mediated endosome lysis: role of the intact adenovirus capsid structure.

    PubMed

    Seth, P

    1994-12-15

    Adenoviruses have been previously shown to enhance the delivery of many ligands including proteins and plasmid DNAs to the cells. The key biochemical step during this process is the ability of adenovirus to disrupt (lyse) the endosome membrane releasing the co-internalized virus and the other ligands into the cytosol (Seth et al, 1986, In: Adenovirus attachment and entry into cells, pp 191-195, American Society for Microbiology, Washington, D.C.). To understand the role of the adenovirus proteins involved in the endosome lysis, it is further shown here that empty capsids of adenovirus also possess this membrane vesicle lytic activity; though the activity is about 5-times lower than the adenovirus. Incubation of adenovirus with low concentration of ionic detergent or brief exposure to 45 degrees C destroyed this lytic activity without affecting the adenovirus binding to cell surface receptor, suggesting the lytic activity of adenovirus to be of enzymatic nature. However, exposing adenovirus to conditions that can disrupt adenovirus capsid structure such as heating at 65 degrees C, treating with 0.5% SDS, treating with different proteases, dialyzing against no glycerol buffer, treating with 6 M urea or with 10% pyridine, and sonication destroyed the adenovirus-associated lytic activity. Results suggest the requirement of an intact capsid structure for adenovirus-mediated lysis of the endosome. PMID:7802664

  2. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA

    PubMed Central

    Machitani, Mitsuhiro; Sakurai, Fuminori; Wakabayashi, Keisaku; Tomita, Kyoko; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-01

    In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells. PMID:27273616

  3. A CD46-binding chimpanzee adenovirus vector as a vaccine carrier.

    PubMed

    Tatsis, Nia; Blejer, Ariella; Lasaro, Marcio O; Hensley, Scott E; Cun, Ann; Tesema, Lello; Li, Yan; Gao, Guang-Ping; Xiang, Zhi Q; Zhou, Dongming; Wilson, James M; Ertl, Hildegund C J

    2007-03-01

    A replication-defective chimeric vector based on the chimpanzee adenovirus serotype C1 was developed and tested as a vaccine carrier in mice. The AdC1 virus is closely related to human adenoviruses of subgroup B2 and uses CD46 for cell attachment. To overcome poor growth of E1-deleted AdC1 vectors on cell lines that provide the E1 of adenovirus of the human serotype 5 (AdHu5) virus in trans, the inverted terminal repeats and some of the early genes of AdC1 were replaced with those from AdC5, a chimpanzee origin adenovirus of subfamily E. The chimeric AdC1/C5 vector efficiently transduces CD46-expressing mouse dendritic cells (DCs) in vitro and initiates their maturation. Transduction of DCs in vivo is inefficient in CD46 transgenic mice. The AdC1/C5 vector induces transgene product-specific B- and CD8(+) T-cell responses in mice. Responses are slightly higher in wild-type mice than in CD46 transgenic mice. Transgene product-specific T-cell responses elicited by the AdC1/C5 vector can be increased by priming or boosting with a heterologous adenovirus vector. Pre-existing immunity to adenovirus of the common human serotype 5 does not affect induction of cell-mediated immune responses by the AdC1/C5 vector. This vector provides an additional tool in a repertoire of adenovirus-based vaccine vectors. PMID:17228314

  4. Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth

    PubMed Central

    Guedan, Sonia; Rojas, Juan José; Gros, Alena; Mercade, Elena; Cascallo, Manel; Alemany, Ramon

    2010-01-01

    Successful virotherapy requires efficient virus spread within tumors. We tested whether the expression of hyaluronidase, an enzyme which dissociates the extracellular matrix (ECM), could enhance the intratumoral distribution of an oncolytic adenovirus and improve its therapeutic activity. As a proof of concept, we demonstrated that intratumoral coadministration of hyaluronidase in mice-bearing tumor xenografts improves the antitumor activity of an oncolytic adenovirus. Next, we constructed a replication-competent adenovirus expressing a soluble form of the human sperm hyaluronidase (PH20) under the control of the major late promoter (MLP) (AdwtRGD-PH20). Intratumoral treatment of human melanoma xenografts with AdwtRGD-PH20 resulted in degradation of hyaluronan (HA), enhanced viral distribution, and induced tumor regression in all treated tumors. Finally, the PH20 cDNA was inserted in an oncolytic adenovirus that selectively kills pRb pathway-defective tumor cells. The antitumoral activity of the novel oncolytic adenovirus expressing PH20 (ICOVIR17) was compared to that of the parental virus ICOVIR15. ICOVIR17 showed more antitumor efficacy following intratumoral and systemic administration in mice with prestablished tumors, along with an improved spread of the virus within the tumor. Importantly, a single intravenous dose of ICOVIR17 induced tumor regression in 60% of treated tumors. These results indicate that ICOVIR17 is a promising candidate for clinical testing. PMID:20442708

  5. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery.

    PubMed

    Rojas, Luis Alfonso; Condezo, Gabriela N; Moreno, Rafael; Fajardo, Carlos Alberto; Arias-Badia, Marcel; San Martín, Carmen; Alemany, Ramon

    2016-09-10

    Recombinant adenoviruses are used as vaccines, gene therapy vectors, and oncolytic viruses. However, the efficacy of such therapies is limited by pre-existing neutralizing antibodies (NAbs), especially when the virus is administered systemically for a wider biodistribution or to reach multiple metastases. To protect adenovirus against NAbs we inserted an albumin-binding domain (ABD) in the main adenovirus capsid protein, the hexon. This domain binds serum albumin to shield the virus upon systemic administration. The ABD-modified adenoviruses bind human and mouse albumin and maintain the infectivity and replication capacity in presence of NAbs. In pre-immunized mice non-modified viruses are completely neutralized, whereas ABD-modified viruses preserve the ability to transduce target organs, induce oncolysis, or generate immune responses to expressed proteins. Our results indicate that albumin coating of the virus capsid represents an effective approach to evade pre-existing NAbs. This strategy has translational relevance in the use of adenovirus for gene therapy, cancer virotherapy, and vaccination. PMID:27388756

  6. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines

    PubMed Central

    Tang, De-chu C; Zhang, Jianfeng; Toro, Haroldo; Shi, Zhongkai; Van Kampen, Kent R

    2009-01-01

    A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many of the hurdles may be eliminated by developing new avian influenza vaccines that do not require the propagation of an influenza virus during vaccine production. Replication-competent adenovirus-free adenovirus vectors hold promise as a carrier for influenza virus-free avian influenza vaccines owing to their safety profile and rapid manufacture using cultured suspension cells in a serum-free medium. Simple and efficient mass-immunization protocols, including nasal spray for people and automated in ovo vaccination for poultry, convey another advantage for this class of vaccines. In contrast to parenteral injection of adenovirus vector, the potency of adenovirus-vectored nasal vaccine is not appreciably interfered by pre-existing immunity to adenovirus. PMID:19348562

  7. Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever

    PubMed Central

    Warimwe, George M.; Gesharisha, Joseph; Carr, B. Veronica; Otieno, Simeon; Otingah, Kennedy; Wright, Danny; Charleston, Bryan; Okoth, Edward; Elena, Lopez-Gil; Lorenzo, Gema; Ayman, El-Behiry; Alharbi, Naif K.; Al-dubaib, Musaad A.; Brun, Alejandro; Gilbert, Sarah C.; Nene, Vishvanath; Hill, Adrian V. S.

    2016-01-01

    Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A ‘One Health’ vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs. PMID:26847478

  8. Canine adenovirus downstream processing protocol.

    PubMed

    Puig, Meritxell; Piedra, Jose; Miravet, Susana; Segura, María Mercedes

    2014-01-01

    Adenovirus vectors are efficient gene delivery tools. A major caveat with vectors derived from common human adenovirus serotypes is that most adults are likely to have been exposed to the wild-type virus and exhibit active immunity against the vectors. This preexisting immunity limits their clinical success. Strategies to circumvent this problem include the use of nonhuman adenovirus vectors. Vectors derived from canine adenovirus type 2 (CAV-2) are among the best-studied representatives. CAV-2 vectors are particularly attractive for the treatment of neurodegenerative disorders. In addition, CAV-2 vectors have shown great promise as oncolytic agents in virotherapy approaches and as vectors for recombinant vaccines. The rising interest in CAV-2 vectors calls for the development of scalable GMP compliant production and purification strategies. A detailed protocol describing a complete scalable downstream processing strategy for CAV-2 vectors is reported here. Clarification of CAV-2 particles is achieved by microfiltration. CAV-2 particles are subsequently concentrated and partially purified by ultrafiltration-diafiltration. A Benzonase(®) digestion step is carried out between ultrafiltration and diafiltration operations to eliminate contaminating nucleic acids. Chromatography purification is accomplished in two consecutive steps. CAV-2 particles are first captured and concentrated on a propyl hydrophobic interaction chromatography column followed by a polishing step using DEAE anion exchange monoliths. Using this protocol, high-quality CAV-2 vector preparations containing low levels of contamination with empty viral capsids and other inactive vector forms are typically obtained. The complete process yield was estimated to be 38-45 %. PMID:24132487

  9. A chimeric adenovirus with an Ad 3 fiber knob modification augments glioma virotherapy

    PubMed Central

    Nandi, Suvobroto; Ulasov, Ilya V.; Rolle, Cleo E.; Han, Yu; Lesniak, Maciej S.

    2009-01-01

    Background Malignant gliomas remain refractory to treatment despite advances in chemotherapy and surgical techniques. Viral vectors developed to treat gliomas have had low transduction capabilities, limiting their use. Gliomas over-express CD46, CD80, and CD86, all of which bind adenovirus serotype 3. Methods To increase the infectivity and replication of oncolytic vectors in malignant brain tumors, we created a conditionally replicating adenovirus, CRAd-Survivin-5/3, which contains a survivin promoter-driving E1A and a chimeric fiber consisting of adenovirus serotype 3 knob. Results In vitro, this modified CRAd showed ten- to 100-fold increased cytotoxicity against glioma cells. Ex vivo analysis of primary glioblastoma multiforme samples infected with CRAd-Survivin-5/3 showed an increase in cytotoxicity of 20–30% compared to adenovirus wild-type (AdWT). Innormal human astrocytes and normal brain tissues, CRAd-Survivin-5/3 exhibited 30–40% and 10–15% lower cytotoxicity than AdWT, respectively. In an intracranial xenograft model of glioma, this oncolytic virus increased tumor-free survival and overall lifespan by 50% compared to controls (p < 0.05). Conclusions CRAd-Survivin-5/3 represents an attractive alternative to existing vectors and should be tested further in the pre-clinical setting. PMID:19688792

  10. Evaluation of fiber-modified adenovirus vector-vaccine against foot-and-mouth diseaes in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel vaccination approaches against foot-and-mouth-disease (FMD) include the use of a replication-defective human adenovirus type 5 vector (Ad5) that contains the capsid encoding regions of FMD virus (FMDV). An Ad5.A24 has proven effective as a vaccine against FMD in swine and cattle. However, ther...

  11. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  12. [The construction of recombinant adenovirus expressing bifunctional fusion protein sCAR-EGF and the detection of its activity].

    PubMed

    Ren, Peng-Kang; Wang, Feng; Li, Hui-Ming; Li, Zong-Hai; Huang, Qian

    2006-09-01

    To improve the targeting of adenovirus vector for gene therapy, a fusion gene sCAR-EGF, in which epidermal growth factor gene was fused to the 3' end of extracellular Coxsackie virus-adenovirus receptor gene, was constructed and cloned into shuttle plasmid pDC315 to obtain a recombinant plasmid pDC315-sCAR-EGF. With the AdMax system, AD-293 cells were co-transfected with pDC315-sCAR-EGF and adenovirus genomic plasmid pBHGloxdeltaE13cre. Through high efficiency site specific recombination, a replication-defective adenovirus Ad5-CMV-sCAR-EGF was constructed. The recombinant adenovirus was analyzed by PCR and Western blotting, the results indicated that Ad5-CMV-sCAR-EGF contained the fusion gene sCAR-EGF, and the adenovirus infected cells was induced to produce and secrete the fusion protein into the supernatant. We have demonstrated that the fusion protein sCAR-EGF is helpful for elevating the infection efficiency of Ad5-CMV-luc with the reporter gene in vitro, which providing a new approach to the gene therapy for tumors overexpressing EGFR. PMID:17037191

  13. Combination of oncolytic adenovirus and endostatin inhibits human retinoblastoma in an in vivo mouse model.

    PubMed

    Wang, Huiping; Wei, Fang; Li, Huiming; Ji, Xunda; Li, Shuxia; Chen, Xiafang

    2013-02-01

    There is a critical need for new paradigms in retinoblastoma (RB) treatment that would more efficiently inhibit tumor growth while sparing the vision of patients. Oncolytic adenoviruses with the ability to selectively replicate and kill tumor cells are a promising strategy for cancer gene therapy. Exploration of a novel targeting strategy for RB utilizing combined oncolytic adenovirus and anti-angiogenesis therapy was applied over the course of the current study with positive results. The oncolytic adenoviruses Ad-E2F1 p-E1A and Ad-TERT p-E1 were constructed. The E1 region was regulated by the E2F-1 promoter or the human telomerase reverse transcriptase (hTERT) promoter, respectively. Effects on both replication and promotion of enhanced green fluorescent protein (EGFP) expression were observed in the replication-defective adenovirus Ad-EGFP in diverse cancer cell lines, HXO-RB44, Y79, Hep3B, NCIH460, MCF-7 and HLF. The cancer cell death induced by these agents was also explored. The in situ RB model demonstrated that mice with tumors treated with the oncolytic adenovirus and replication-defective adenovirus Ad-endostatin exhibited notable cancer cell death. This anticancer effect was further examined by stereo microscope, and the survival rate of experimental mice was determined. Both Ad-E2F1 p-E1A and Ad-TERT p-E1 replicated specifically in cancer cells in vitro and promoted EGFP expression in Ad-EGFP, although Ad-E2F1 p-E1A demonstrated superior EGFP promotion activity than Ad-TERT p-E1. In Hep3B, NCIH460 and MCF-7 cells, the number of Ad-TERT p-E1 copies was observed to exceed of the number of Ad-E2F1 p-E1A copies by a minimum of 10-fold. Furthermore, Ad-TERT p-E1 demonstrated significantly superior oncolytic effects in the RB mouse model, and Ad-endostatin effectively suppressed tumor growth and extended the overall lifespan of subjects; however, the Ad-E2F1 p-E1A was clearly less effective in attaining these goals. Most notably, the antitumor effect and

  14. Safety evaluation of adenovirus type 4 and type 7 vaccine live, oral in military recruits.

    PubMed

    Choudhry, Azhar; Mathena, Julie; Albano, Jessica D; Yacovone, Margaret; Collins, Limone

    2016-08-31

    Before the widespread adoption of vaccination, adenovirus type 4 and type 7 were long associated with respiratory illnesses among military recruits. When supplies were depleted and vaccination was suspended in 1999 for approximately a decade, respiratory illnesses due to adenovirus infections resurged. In March 2011, a new live, oral adenovirus vaccine was licensed by the US Food and Drug Administration and was first universally administered to military recruits in October 2011, leading to rapid, dramatic elimination of the disease within a few months. As part of licensure, a postmarketing study (Sentinel Surveillance Plan) was performed to detect potential safety signals within 42days after immunization of military recruits. This study retrospectively evaluated possible adverse events related to vaccination using data from the Armed Forces Health Surveillance Branch Defense Medical Surveillance System (DMSS) database. Among 100,000 recruits who received the adenovirus vaccine, no statistically significant greater risk of prespecified medical events was observed within 42days after vaccination when compared with a historical cohort of 100,000 unvaccinated recruits. In an initial statistical analysis of International Classification of Disease, 9th Revision, Clinical Modification codes, a statistically significant higher risk for 19 other (not prespecified) medical events occurring in 5 or more recruits was observed among vaccinated compared with unvaccinated groups. After case record data abstraction for attribution and validation, two events (psoriasis [21 vs 7 cases] and serum reactions [12 vs 4 cases]) occurred more frequently in the vaccinated cohort. A causal relation of these rare events with adenovirus vaccination could not be established given confounding factors in the DMSS, such as coadministration of other vaccines and incomplete or inaccurate medical information, for some recruits. Prospective surveillance assessing these uncommon, but potentially

  15. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley Fever vaccine in mice

    PubMed Central

    2013-01-01

    Background Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Methods Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. Results A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Conclusions Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials. PMID:24304565

  16. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    DOE PAGESBeta

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; et al

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved tomore » have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.« less

  17. Construction and Evaluation of Novel Rhesus Monkey Adenovirus Vaccine Vectors

    SciTech Connect

    Abbink, Peter; Maxfield, Lori F.; Ng'ang'a, David; Borducchi, Erica N.; Iampietro, M. Justin; Bricault, Christine A.; Teigler, Jeffrey E.; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A.; Zhao, Guoyan; Virgin, Herbert W.; Korber, Bette; Barouch, Dan H.

    2014-11-19

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. Furthermore, the phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. We describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors.

  18. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans.

    PubMed

    Bramante, Simona; Kaufmann, Johanna K; Veckman, Ville; Liikanen, Ilkka; Nettelbeck, Dirk M; Hemminki, Otto; Vassilev, Lotta; Cerullo, Vincenzo; Oksanen, Minna; Heiskanen, Raita; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Matikainen, Sampsa; Vähä-Koskela, Markus; Koski, Anniina; Hemminki, Akseli

    2015-10-01

    Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma. PMID:25821063

  19. RAD51 and BRCA2 enhance oncolytic adenovirus type 5 activity in ovarian cancer

    PubMed Central

    Tookman, Laura A.; Browne, Ashley K.; Connell, Claire M.; Bridge, Gemma; Ingemarsdotter, Carin K.; Dowson, Suzanne; Shibata, Atsushi; Lockley, Michelle; Martin, Sarah A.; McNeish, Iain A.

    2015-01-01

    Homologous Recombination (HR) function is critically important in High Grade Serous Ovarian Cancer (HGSOC). HGSOC with intact HR has a worse prognosis and is less likely to respond to platinum chemotherapy and PARP inhibitors. Oncolytic adenovirus, a novel therapy for human malignancies, stimulates a potent DNA damage response that influences overall anti-tumor activity. Here, the importance of HR was investigated by determining the efficacy of adenovirus type 5 (Ad5) vectors in ovarian cancer. Using matched BRCA2 mutant and wild-type HGSOC cells, it was demonstrated that intact HR function promotes viral DNA replication and augments overall efficacy, without influencing viral DNA processing. These data were confirmed in a wider panel of HR competent and defective ovarian cancer lines. Mechanistically, both BRCA2 and RAD51 localize to viral replication centers within the infected cell nucleus and that RAD51 localization occurs independently of BRCA2. In addition, a direct interaction was identified between RAD51 and adenovirus E2 DNA binding protein. Finally, using functional assays of HR competence, despite inducing degradation of MRE11, Ad5 infection does not alter cellular ability to repair DNA double strand break damage via HR. These data reveal that Ad5 redistributes critical HR components to viral replication centers and enhances cytotoxicity. Implications Oncolytic adenoviral therapy may be most clinically relevant in tumors with intact HR function. PMID:26452665

  20. Use of macrophages to target therapeutic adenovirus to human prostate tumors.

    PubMed

    Muthana, Munitta; Giannoudis, Athina; Scott, Simon D; Fang, Hsin-Yu; Coffelt, Seth B; Morrow, Fiona J; Murdoch, Craig; Burton, Julian; Cross, Neil; Burke, Bernard; Mistry, Roshna; Hamdy, Freddie; Brown, Nicola J; Georgopoulos, Lindsay; Hoskin, Peter; Essand, Magnus; Lewis, Claire E; Maitland, Norman J

    2011-03-01

    New therapies are required to target hypoxic areas of tumors as these sites are highly resistant to conventional cancer therapies. Monocytes continuously extravasate from the bloodstream into tumors where they differentiate into macrophages and accumulate in hypoxic areas, thereby opening up the possibility of using these cells as vehicles to deliver gene therapy to these otherwise inaccessible sites. We describe a new cell-based method that selectively targets an oncolytic adenovirus to hypoxic areas of prostate tumors. In this approach, macrophages were cotransduced with a hypoxia-regulated E1A/B construct and an E1A-dependent oncolytic adenovirus, whose proliferation is restricted to prostate tumor cells using prostate-specific promoter elements from the TARP, PSA, and PMSA genes. When such cotransduced cells reach an area of extreme hypoxia, the E1A/B proteins are expressed, thereby activating replication of the adenovirus. The virus is subsequently released by the host macrophage and infects neighboring tumor cells. Following systemic injection into mice bearing subcutaneous or orthotopic prostate tumors, cotransduced macrophages migrated into hypoxic tumor areas, upregulated E1A protein, and released multiple copies of adenovirus. The virus then infected neighboring cells but only proliferated and was cytotoxic in prostate tumor cells, resulting in the marked inhibition of tumor growth and reduction of pulmonary metastases. This novel delivery system employs 3 levels of tumor specificity: the natural "homing" of macrophages to hypoxic tumor areas, hypoxia-induced proliferation of the therapeutic adenovirus in host macrophages, and targeted replication of oncolytic virus in prostate tumor cells. PMID:21233334

  1. Replicating vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early work on fish immunology and disease resistance demonstrated fish (like animals and humans) that survived infection were typically resistant to re-infection with the same pathogen. The concepts of resistance upon reinfection lead to the research and development of replicating (live) vaccines in...

  2. [Quality control of recombinant oncolytic adenovirus/p53].

    PubMed

    Gao, Kai; Bi, Hua; Ding, You-Xue; Li, Yong-Hong; Han, Chun-Mei; Guo, Ying; Rao, Chun-Ming

    2011-12-01

    To establish a detection method of oncolytic adenovirus/p53 and standard of quality control, human telomerase reverse transcriptase (hTERT) promoter, CMV fusion promoter containing hypoxia reaction element (HRE) and p53 gene were identified by vector DNA restriction enzyme digestion and PCR analysis. The result conformed that all modified regions were in consistent with theoretical ones. Particle number was 2.0 x 10(11) mL(-1) determined by UV (A260). Infectious titer was 5.0 x 10(10) IU mL(-1) analyzed by TCID50. In vitro p53 gene expression in human lung cancer cell H1299 was determined by ELISA, and A450 ratio of nucleoprotein in virus infection group to control group was 5.2. Antitumor potency was evaluated by cytotoxicity assay using human lung cancer cell A549, and the MOI(IC50) of this gene therapy preparation was 1.0. The tumor cells targeted replication ability of recombinant virus was determined by TCID50 titer ratio of filial generation virus between human lung cancer cell A549 and human diploid epidermal fibrolast BJ cells after infected by virus with same MOI. TCID50 titer ratio of tumor cell infection group to normal cell infection control group was 398. The IE-HPLC purity of virus was 99.5%. There was less than 1 copy of wild type adenovirus within 1 x 10(7) VP recombinant virus. Other quality control items were complied with corresponding requirements in the guidance for human somatic cell therapy and gene therapy and Chinese pharmacopeia volume III. The detection method of oncolytic adenovirus/p53 was successfully established for quality control standard. The study also provided reference for quality control of other oncolytic viral vector products. PMID:22375422

  3. Modeling adenovirus latency in human lymphocyte cell lines.

    PubMed

    Zhang, Yange; Huang, Wen; Ornelles, David A; Gooding, Linda R

    2010-09-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection. PMID:20573817

  4. Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: an oncolytic virus superior to dl1520 (ONYX-015) for human head and neck cancer.

    PubMed

    Tysome, James R; Wang, Pengju; Alusi, Ghassan; Briat, Arnaud; Gangeswaran, Rathi; Wang, Jiwei; Bhakta, Vipul; Fodor, Istvan; Lemoine, Nick R; Wang, Yaohe

    2011-09-01

    Oncolytic viral therapy represents a promising strategy for the treatment of head and neck squamous cell carcinoma (HNSCC), with dl1520 (ONYX-015) the most widely used oncolytic adenovirus in clinical trials. This study aimed to determine the effectiveness of the Lister vaccine strain of vaccinia virus as well as a vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapy for HNSCC and to compare them with dl1520. The potency and replication of the Lister strain and VVhEA and the expression and function of the fusion protein were determined in human HNSCC cells in vitro and in vivo. Finally, the efficacy of VVhEA was compared with dl1520 in vivo in a human HNSCC model. The Lister vaccine strain of vaccinia virus was more effective than the adenovirus against all HNSCC cell lines tested in vitro. Although the potency of VVhEA was attenuated in vitro, the expression and function of the endostatin-angiostatin fusion protein was confirmed in HNSCC models both in vitro and in vivo. This novel vaccinia virus (VVhEA) demonstrated superior antitumor potency in vivo compared with both dl1520 and the control vaccinia virus. This study suggests that the Lister strain vaccinia virus armed with an endostatin-angiostatin fusion gene may be a potential therapeutic agent for HNSCC. PMID:21361787

  5. Phylogenetic analysis of adenovirus sequences.

    PubMed

    Harrach, Balázs; Benko, Mária

    2007-01-01

    Members of the family Adenoviridae have been isolated from a large variety of hosts, including representatives from every major vertebrate class from fish to mammals. The high prevalence, together with the fairly conserved organization of the central part of their genomes, make the adenoviruses one of (if not the) best models for studying viral evolution on a larger time scale. Phylogenetic calculation can infer the evolutionary distance among adenovirus strains on serotype, species, and genus levels, thus helping the establishment of a correct taxonomy on the one hand, and speeding up the process of typing new isolates on the other. Initially, four major lineages corresponding to four genera were recognized. Later, the demarcation criteria of lower taxon levels, such as species or types, could also be defined with phylogenetic calculations. A limited number of possible host switches have been hypothesized and convincingly supported. Application of the web-based BLAST and MultAlin programs and the freely available PHYLIP package, along with the TreeView program, enables everyone to make correct calculations. In addition to step-by-step instruction on how to perform phylogenetic analysis, critical points where typical mistakes or misinterpretation of the results might occur will be identified and hints for their avoidance will be provided. PMID:17656792

  6. Anti-Viral Drugs for Human Adenoviruses

    PubMed Central

    Waye, Mary Miu Yee; Sing, Chor Wing

    2010-01-01

    There are many stages in the development of a new drug for viral infection and such processes are even further complicated for adenovirus by the fact that there are at least 51 serotypes, forming six distinct groups (A–F), with different degree of infectivity. This review attempts to address the importance of developing pharmaceuticals for adenovirus and also review recent development in drug discovery for adenovirus, including newer strategies such as microRNA approaches. Different drug screening strategies will also be discussed.

  7. Adenovirus Virus-Associated RNA Is Processed to Functional Interfering RNAs Involved in Virus Production

    PubMed Central

    Aparicio, Oscar; Razquin, Nerea; Zaratiegui, Mikel; Narvaiza, Iñigo; Fortes, Puri

    2006-01-01

    Posttranscriptional gene silencing allows sequence-specific control of gene expression. Specificity is guaranteed by small antisense RNAs such as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Functional miRNAs derive from longer double-stranded RNA (dsRNA) molecules that are cleaved to pre-miRNAs in the nucleus and are transported by exportin 5 (Exp 5) to the cytoplasm. Adenovirus-infected cells express virus-associated (VA) RNAs, which are dsRNA molecules similar in structure to pre-miRNAs. VA RNAs are also transported by Exp 5 to the cytoplasm, where they accumulate. Here we show that small RNAs derived from VA RNAs (svaRNAs), similar to miRNAs, can be found in adenovirus-infected cells. VA RNA processing to svaRNAs requires neither viral replication nor viral protein expression, as evidenced by the fact that svaRNA accumulation can be detected in cells transfected with VA sequences. svaRNAs are efficiently bound by Argonaute 2, the endonuclease of the RNA-induced silencing complex, and behave as functional siRNAs, in that they inhibit the expression of reporter genes with complementary sequences. Blocking svaRNA-mediated inhibition affects efficient adenovirus production, indicating that svaRNAs are required for virus viability. Thus, svaRNA-mediated silencing could represent a novel mechanism used by adenoviruses to control cellular or viral gene expression. PMID:16415015

  8. An outbreak of adenovirus keratoconjunctivitis in bristol.

    PubMed Central

    Tullo, A B; Higgins, P G

    1979-01-01

    Nineteen cases of keratoconjunctivitis caused by an adenovirus serologically related to types 10 and 19 are described. Seventeen of the patients presented over a period of 7 weeks and included 4 who were involved in a minor outbreak at a factory. The presentation and clinical features closely resembled those caused by adenoviruses types 8 and 19. Mild to severe follicular conjunctivitis, superficial punctate keratitis, discrete subepithelial opacities, membrane formation, and conjunctival scarring were all observed. Images PMID:226115

  9. Antitumor Effects of Oncolytic Adenovirus-Carrying siRNA Targeting Potential Oncogene EphA3

    PubMed Central

    Zhao, Yali; Li, Hailiang; Wu, Ruiqin; Li, Shanhu; Wang, Peng; Wang, Hongtao; Wang, Jian; Zhou, Jianguang

    2015-01-01

    Conditionally replicating adenoviruses (CRAds) armed with antitumor transgenes hold promise for cancer treatment. In previous studies, we showed that the 1504-siRNA targeting potential oncogene EphA3 was an efficient therapeutic transgene and that the telomerase reverse transcriptase promoter (TERTp) driving the CRAd was a more advanced generation of CRAd. Therefore, we combined Ad-TERTp-E1A-1504 by inserting 1504-siRNA into the CRAd to study its antitumor effects and mechanism of action, using Ad-TERTp-E1A-NC and nonreplicating adenovirus carrying 1504-siRNA as controls. Cell viability assays and ED50 studies of growth inhibition confirmed that Ad-TERTp-E1A-1504 has 3.5- and 1,400-fold greater ability to kill EphA3- and TERT-expressing tumor cells compared to Ad-TERTp-E1A-NC and Ad-ΔE1A-1504, respectively. Also, Ad-TERTp-E1A-1504 had little effect on cells that modestly expressed EphA3 and TERT such as 2BS. The antitumor efficacy of Ad-TERTp-E1A-1504 was also validated in vivo. Furthermore, the virus yield of Ad-TERTp-E1A-1504 in C4-2B was ~1,000 times greater than that in 2BS. No obvious differences were observed between Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC. Both acridine orange staining and Beclin1 protein measurements indicated that autophagy with Ad-TERTp-E1A-1504 at 5 and 10 MOI was higher than that of Ad-TERTp-E1A-NC. Finally, the classical negatively regulated autophagy signaling pathway, PI3K/AKT/mTOR, was suppressed (reduced phosphorylated form) in contrast to NC, and that this was mediated by 1504-siRNA. Thus, Ad- TERTp-E1A-1504 does not harm normal cells but has dual inhibiting and killing effects on TERT- and EphA3-positive tumor cells, and this effect is mediated by the AKT/mTOR signaling pathway via induction of autophagy. These data may offer a foundation for novel antitumor therapies targeting this mechanism. PMID:25978371

  10. High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus.

    PubMed Central

    Stunnenberg, H G; Lange, H; Philipson, L; van Miltenburg, R T; van der Vliet, P C

    1988-01-01

    Initiation of Adenovirus (Ad) DNA replication occurs by a protein-priming mechanism in which the viral precursor terminal protein (pTP) and DNA polymerase (pol) as well as two nuclear DNA-binding proteins from uninfected HeLa cells are required. Biochemical studies on the pTP and DNA polymerase proteins separately have been hampered due to their low abundance and their presence as a pTP-pol complex in Ad infected cells. We have constructed a genomic sequence containing the large open reading frame from the Ad5 pol gene to which 9 basepairs from a putative exon were ligated. When inserted behind a modified late promoter of vaccinia virus the resulting recombinant virus produced enzymatically active 140 kDa Ad DNA polymerase. The same strategy was applied to express the 80 kDa pTP gene in a functional form. Both proteins were overexpressed at least 30-fold compared to extracts from Adenovirus infected cells and, when combined, were fully active for initiation in an in vitro Adenovirus DNA replication system. Images PMID:3362670

  11. E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor

    SciTech Connect

    Turner, Roberta L.; Wilkinson, John C.; Ornelles, David A.

    2014-05-15

    Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4ORF3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4ORF3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins. - Highlights: • E1B-55K or E4orf3 prevents nuclear fragmentation. • Nuclear fragmentation requires AIF and PARP-1 activity. • Adenovirus DNA replication activates PARP-1. • E1B-55K or E4orf3 proteins alter the distribution of PAR.

  12. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults.

    PubMed

    Creech, C Buddy; Dekker, Cornelia L; Ho, Dora; Phillips, Shanda; Mackey, Sally; Murray-Krezan, Cristina; Grazia Pau, Maria; Hendriks, Jenny; Brown, Valerie; Dally, Leonard G; Versteege, Isabella; Edwards, Kathryn M

    2013-12-01

    Malaria results in over 650,000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 10 (8), 10 (9), 10 (10), or 10 (11) vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (10 (10) and 10 (11) vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 10 (11) vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (10 (10) and 10 (11) vp/mL). Reactogenicity findings were more common after the 10 (11) vp/mL dose, although most were mild or moderate in nature and resolved without therapy. PMID:23955431

  13. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults

    PubMed Central

    Creech, C Buddy; Dekker, Cornelia L; Ho, Dora; Phillips, Shanda; Mackey, Sally; Murray-Krezan, Cristina; Grazia Pau, Maria; Hendriks, Jenny; Brown, Valerie; Dally, Leonard G; Versteege, Isabella; Edwards, Kathryn M

    2013-01-01

    Malaria results in over 650 000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 108, 109, 1010, or 1011 vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (1010 and 1011 vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 1011 vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (1010 and 1011 vp/mL). Reactogenicity findings were more common after the 1011 vp/mL dose, although most were mild or moderate in nature and resolved without therapy. PMID:23955431

  14. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge.

    PubMed

    Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J

    2014-10-01

    Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge. PMID:25194571

  15. Accumulation of infectious mutants in stocks during the propagation of fiber-modified recombinant adenoviruses

    SciTech Connect

    Ugai, Hideyo; Inabe, Kumiko; Yamasaki, Takahito; Murata, Takehide; Obata, Yuichi; Hamada, Hirofumi; Yokoyama, Kazunari K. . E-mail: kazu@brc.riken.jp

    2005-11-25

    In infected cells, replication errors during viral proliferation generate mutations in adenoviruses (Ads), and the mutant Ads proliferate and evolve in the intracellular environment. Genetically fiber-modified recombinant Ads (rAd variants) were generated, by modification of the fiber gene, for therapeutic applications in host cells that lack or express reduced levels of the Coxsackievirus and adenovirus receptor. To assess the genetic modifications of rAd variants that might induce the instability of Ad virions, we examined the frequencies of mutants that accumulated in propagated stocks. Seven of 41 lines of Ad variants generated mutants in the stocks and all mutants were infectious. Moreover, all the mutations occurred in the modified region that had been added at the 3' end of the fiber gene. Our results show that some genetic modifications at the carboxyl terminus of Ad fiber protein lead to the instability of Ad virions.

  16. human adenoviruses role in ophthalmic pterygium formation

    PubMed Central

    Kelishadi, Mishar; Kelishadi, Mandana; Moradi, Abdolvahab; Javid, Naeme; Bazouri, Masoud; Tabarraei, Alijan

    2015-01-01

    Background: Ophthalmic pterygium is a common benign lesion of unknown origin and the pathogenesis might be vision-threatening. This problem is often associated with exposure to solar light. Recent evidence suggests that potentially oncogenic viruses such as human papillomavirus and Epstein-Barr virus may be involved in the pathogenesis of pterygia. Expression of specific adenovirus genes such as E1A and E1B, which potentially have many functions, may contribute to their oncogenic activity as well as relevance to cellular immortalization. Objectives: For the first time, we aimed to investigate involvement of adenoviruses in pterygium formation. Patients and Methods: Fifty tissue specimens of pterygium from patients undergoing pterygium surgery (as cases), 50 conjunctival swab samples from the same patients and 10 conjunctival biopsy specimens from individuals without pterygium such as patients undergoing cataract surgery (as controls) were analyzed for evidence of adenovirus infection with polymerase chain reaction using specific primers chosen from the moderately conserved region of the hexon gene. Furthermore, β-globin primers were used to access the quality of extracted DNA. Data was analyzed using SPSS (version 16) software. Results: Of 50 patients, 20 were men and 30 women with mean age of 61.1 ± 16.9 years ranged between 22 and 85 years. All samples of pterygia had positive results for adenoviruses DNA with polymerase chain reaction, but none of the negative control groups displayed adenoviruses. The pterygium group and the control groups were β-globin positive. Direct sequencing of PCR products confirmed Adenovirus infection. Conclusions: Adenoviruses might act as a possible cause of pterygium formation and other factors could play a synergistic role in the development. However, further larger studies are required to confirm this hypothesis. PMID:26034543

  17. Simian adenovirus type 35 has a recombinant genome comprising human and simian adenovirus sequences, which predicts its potential emergence as a human respiratory pathogen

    PubMed Central

    Dehghan, Shoaleh; Seto, Jason; Jones, Morris S.; Dyer, David W.; Chodosh, James; Seto, Donald

    2013-01-01

    Emergent human and simian adenoviruses (HAdVs) may arise from genome recombination. Computational analysis of SAdV type 35 reveals a genome comprising a chassis with elements mostly from two simian adenoviruses, SAdV-B21 and -B27, and regions of high sequence similarity shared with HAdV-B21 and HAdV-B16. Although recombination direction cannot be determined, the presence of these regions suggests prior infections of humans by an ancestor of SAdV-B35, and/or vice versa. Absence of this virus in humans may reflect non-optimal conditions for zoonosis. The presence of both a critical viral replication element found in HAdV genomes and genes that are highly similar to ones in HAdVs suggest the potential to establish in a human host. This allows a prediction that this virus may be a nascent human respiratory pathogen. The recombination potential of human and simian adenovirus genomes should be considered in the use of SAdVs as vectors for gene delivery in humans. PMID:24210123

  18. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using direct homologous challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...

  19. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  20. A novel psittacine adenovirus identified during an outbreak of avian chlamydiosis and human psittacosis: zoonosis associated with virus-bacterium coinfection in birds.

    PubMed

    To, Kelvin K W; Tse, Herman; Chan, Wan-Mui; Choi, Garnet K Y; Zhang, Anna J X; Sridhar, Siddharth; Wong, Sally C Y; Chan, Jasper F W; Chan, Andy S F; Woo, Patrick C Y; Lau, Susanna K P; Lo, Janice Y C; Chan, Kwok-Hung; Cheng, Vincent C C; Yuen, Kwok-Yung

    2014-12-01

    Chlamydophila psittaci is found worldwide, but is particularly common among psittacine birds in tropical and subtropical regions. While investigating a human psittacosis outbreak that was associated with avian chlamydiosis in Hong Kong, we identified a novel adenovirus in epidemiologically linked Mealy Parrots, which was not present in healthy birds unrelated to the outbreak or in other animals. The novel adenovirus (tentatively named Psittacine adenovirus HKU1) was most closely related to Duck adenovirus A in the Atadenovirus genus. Sequencing showed that the Psittacine adenovirus HKU1 genome consists of 31,735 nucleotides. Comparative genome analysis showed that the Psittacine adenovirus HKU1 genome contains 23 open reading frames (ORFs) with sequence similarity to known adenoviral genes, and six additional ORFs at the 3' end of the genome. Similar to Duck adenovirus A, the novel adenovirus lacks LH1, LH2 and LH3, which distinguishes it from other viruses in the Atadenovirus genus. Notably, fiber-2 protein, which is present in Aviadenovirus but not Atadenovirus, is also present in Psittacine adenovirus HKU1. Psittacine adenovirus HKU1 had pairwise amino acid sequence identities of 50.3-54.0% for the DNA polymerase, 64.6-70.7% for the penton protein, and 66.1-74.0% for the hexon protein with other Atadenovirus. The C. psittaci bacterial load was positively correlated with adenovirus viral load in the lung. Immunostaining for fiber protein expression was positive in lung and liver tissue cells of affected parrots, confirming active viral replication. No other viruses were found. This is the first documentation of an adenovirus-C. psittaci co-infection in an avian species that was associated with a human outbreak of psittacosis. Viral-bacterial co-infection often increases disease severity in both humans and animals. The role of viral-bacterial co-infection in animal-to-human transmission of infectious agents has not received sufficient attention and should be

  1. A Novel Psittacine Adenovirus Identified During an Outbreak of Avian Chlamydiosis and Human Psittacosis: Zoonosis Associated with Virus-Bacterium Coinfection in Birds

    PubMed Central

    Chan, Wan-Mui; Choi, Garnet K. Y.; Zhang, Anna J. X.; Sridhar, Siddharth; Wong, Sally C. Y.; Chan, Jasper F. W.; Chan, Andy S. F.; Woo, Patrick C. Y.; Lau, Susanna K. P.; Lo, Janice Y. C.; Chan, Kwok-Hung; Cheng, Vincent C. C.; Yuen, Kwok-Yung

    2014-01-01

    Chlamydophila psittaci is found worldwide, but is particularly common among psittacine birds in tropical and subtropical regions. While investigating a human psittacosis outbreak that was associated with avian chlamydiosis in Hong Kong, we identified a novel adenovirus in epidemiologically linked Mealy Parrots, which was not present in healthy birds unrelated to the outbreak or in other animals. The novel adenovirus (tentatively named Psittacine adenovirus HKU1) was most closely related to Duck adenovirus A in the Atadenovirus genus. Sequencing showed that the Psittacine adenovirus HKU1 genome consists of 31,735 nucleotides. Comparative genome analysis showed that the Psittacine adenovirus HKU1 genome contains 23 open reading frames (ORFs) with sequence similarity to known adenoviral genes, and six additional ORFs at the 3′ end of the genome. Similar to Duck adenovirus A, the novel adenovirus lacks LH1, LH2 and LH3, which distinguishes it from other viruses in the Atadenovirus genus. Notably, fiber-2 protein, which is present in Aviadenovirus but not Atadenovirus, is also present in Psittacine adenovirus HKU1. Psittacine adenovirus HKU1 had pairwise amino acid sequence identities of 50.3–54.0% for the DNA polymerase, 64.6–70.7% for the penton protein, and 66.1–74.0% for the hexon protein with other Atadenovirus. The C. psittaci bacterial load was positively correlated with adenovirus viral load in the lung. Immunostaining for fiber protein expression was positive in lung and liver tissue cells of affected parrots, confirming active viral replication. No other viruses were found. This is the first documentation of an adenovirus-C. psittaci co-infection in an avian species that was associated with a human outbreak of psittacosis. Viral-bacterial co-infection often increases disease severity in both humans and animals. The role of viral-bacterial co-infection in animal-to-human transmission of infectious agents has not received sufficient attention and should

  2. Robotic arm

    SciTech Connect

    Kwech, H.

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs.

  3. Robotic arm

    SciTech Connect

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  4. Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.

    PubMed

    Silva, Ana Carina; P Teixeira, Ana; M Alves, Paula

    2016-08-10

    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization. PMID:27215342

  5. Chimpanzee Adenovirus Vector Ebola Vaccine - Preliminary Report.

    PubMed

    Ledgerwood, Julie E; DeZure, Adam D; Stanley, Daphne A; Novik, Laura; Enama, Mary E; Berkowitz, Nina M; Hu, Zonghui; Joshi, Gyan; Ploquin, Aurélie; Sitar, Sandra; Gordon, Ingelise J; Plummer, Sarah A; Holman, LaSonji A; Hendel, Cynthia S; Yamshchikov, Galina; Roman, Francois; Nicosia, Alfredo; Colloca, Stefano; Cortese, Riccardo; Bailer, Robert T; Schwartz, Richard M; Roederer, Mario; Mascola, John R; Koup, Richard A; Sullivan, Nancy J; Graham, Barney S

    2014-11-26

    Background The unprecedented 2014 epidemic of Ebola virus disease (EVD) has prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. Methods We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10(10) particle units or 2×10(11) particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 4 weeks after vaccination. Results In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10(11) particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10(11) particle-unit dose than in the group that received the 2×10(10) particle-unit dose (geometric mean titer against the Zaire antigen, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2x10(11) particle-unit dose than among those who received the 2×10(10) particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07). Conclusions Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×10(11) particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates. Clinical trials

  6. HUMAN ADENOVIRUS TYPE 37 AND THE BALB/C MOUSE: PROGRESS TOWARD A RESTRICTED ADENOVIRUS KERATITIS MODEL (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Chodosh, James

    2006-01-01

    Purpose To establish a mouse model of adenovirus keratitis in order to study innate immune mechanisms in the adenovirus-infected cornea. Methods Balb/c 3T3 fibroblasts were inoculated with human adenovirus (HAdV) serotypes 8, 19, or 37 and observed for cytopathic effect. Viral growth titers were performed, and apoptosis was measured by TUNEL assay. Viral and host cytokine gene expression was assessed by RT-PCR in cultured Balb/c 3T3 fibroblasts and in the corneas of virus-injected Balb/c mice. Western blot analysis was performed to detect cell signaling in the virus-infected cornea. Results Only HAdV37 induced cytopathic effect in mouse cells. Viral gene expression was limited, and viral replication was not detected. Apoptotic cell death in HAdV37-infected Balb/c cells was evident 48 and 72 hours postinfection (P < .01). MCP-1, IL-6, KC, and IP-10 mRNA levels were increased maximally by 8.4, 9.6, 10.5, and 20.0-fold, respectively, at 30 to 90 minutes after HAdV37 infection. Similar cytokine elevations were observed in the corneas of Balb/c mice 4 hours after stromal injection of HAdV37, when viral gene expression for the viral capsid protein IIIa was not detected. Western blot showed increased phosphorylation of ERK1/2 at 4 and 24 hours after corneal infection. Conclusions Despite limited viral gene expression, HAdV37 infection of Balb/c 3T3 fibroblasts results in increased proinflammatory gene expression. A similar pattern of cytokine expression in the corneas of HAdV37-infected Balb/c mice suggests the mouse adenoviral keratitis model may be useful for the study of early innate immune responses in the adenovirus-infected corneal stroma. PMID:17471351

  7. Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells.

    PubMed

    Liu, Youhong; Chen, Lin; Gong, Zhicheng; Shen, Liangfang; Kao, Chinghai; Hock, Janet M; Sun, Lunquan; Li, Xiong

    2015-02-20

    Oncolytic adenovirus and apoptosis inducer TRAIL are promising cancer therapies. Their antitumor efficacy, when used as single agents, is limited. Oncolytic adenoviruses have low infection activity, and cancer cells develop resistance to TRAIL-induced apoptosis. Here, we explored combining prostate-restricted replication competent adenovirus-mediated TRAIL (PRRA-TRAIL) with lovastatin, a commonly used cholesterol-lowering drug, as a potential therapy for advanced prostate cancer (PCa). Lovastatin significantly enhanced the efficacy of PRRA-TRAIL by promoting the in vivo tumor suppression, and the in vitro cell killing and apoptosis induction, via integration of multiple molecular mechanisms. Lovastatin enhanced PRRA replication and virus-delivered transgene expression by increasing the expression levels of CAR and integrins, which are critical for adenovirus 5 binding and internalization. Lovastatin enhanced TRAIL-induced apoptosis by increasing death receptor DR4 expression. These multiple effects of lovastatin on CAR, integrins and DR4 expression were closely associated with cholesterol-depletion in lipid rafts. These studies, for the first time, show correlations between cholesterol/lipid rafts, oncolytic adenovirus infection efficiency and the antitumor efficacy of TRAIL at the cellular level. This work enhances our understanding of the molecular mechanisms that support use of lovastatin, in combination with PRRA-TRAIL, as a candidate strategy to treat human refractory prostate cancer in the future. PMID:25605010

  8. Efficient gene delivery to the inflamed colon by local administration of recombinant adenoviruses with normal or modified fibre structure

    PubMed Central

    Wirtz, S; Galle, P; Neurath, M

    1999-01-01

    BACKGROUND/AIMS—Replication deficient recombinant adenoviruses represent an efficient means of transferring genes in vivo into a wide variety of dividing and quiescent cells from many different organs. Although the gastrointestinal tract is a potentially attractive target for gene therapy approaches, only a few studies on the use of viral gene transfer vehicles in the gut have been reported. The prospects of using recombinant adenoviruses for gene delivery into epithelial and subepithelial cells of the normal and inflamed colon are here analysed.
METHODS—An E1/E3 deleted recombinant adenovirus (denoted AdCMVβGal) and an adenovirus with modified fibre structure (denoted AdZ.F(pk7)) both expressing the bacterial lacZ gene under the control of a human cytomegalovirus promoter were used for reporter gene expression in vitro and in vivo. β-Galactosidase activity was determined by specific chemiluminescent reporter gene assay.
RESULTS—Intravenous or intraperitoneal injection of AdCMVβGal into healthy Balb/c mice caused strong reporter gene expression in the liver and spleen but not in the colon. In contrast, local administration of AdCMVβGal resulted in high reporter gene expression in colonic epithelial cells and lamina propria mononuclear cells. A local route of adenovirus administration in mice with experimental colitis induced by the hapten reagent trinitrobenzenesulphonic acid was next evaluated. Interestingly, rectal administration of AdCMVβGal caused a higher β-galactosidase activity in isolated lamina propria cells from infected mice with experimental colitis than in those from controls. Furthermore, isolated lamina propria cells from mice with colitis infected in vitro showed a significant increase in reporter gene activity compared with controls. Finally, AdZ.F(pk7) adenoviruses with modified fibre structure produced 10- to 40-fold higher reporter gene activity in spleen T cells and lamina propria mononuclear cells of colitic mice compared with

  9. Molecular replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1986-01-01

    The object of our research program is to understand how polynucleotide replication originated on the primitive Earth. This is a central issue in studies of the origins of life, since a process similar to modern DNA and RNA synthesis is likely to have formed the basis for the most primitive system of genetic information transfer. The major conclusion of studies so far is that a preformed polynucleotide template under many different experimental conditions will facilitate the synthesis of a new oligonucleotide with a sequence complementary to that of the template. It has been shown, for example, that poly(C) facilitates the synthesis of long oligo(G)s and that the short template CCGCC facilities the synthesis of its complement GGCGG. Very recently we have shown that template-directed synthesis is not limited to the standard oligonucleotide substrates. Nucleic acid-like molecules with a pyrophosphate group replacing the phosphate of the standard nucleic acid backbone are readily synthesized from deoxynucleotide 3'-5'-diphosphates on appropriate templates.

  10. Viral and Cellular Components of AAV2 Replication Compartments.

    PubMed

    Vogel, Rebecca; Seyffert, Michael; Pereira, Bruna de Andrade; Fraefel, Cornel

    2013-01-01

    Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection. PMID:24222808

  11. Characterisation of the Equine adenovirus 2 genome.

    PubMed

    Giles, Carla; Vanniasinkam, Thiru; Barton, Mary; Mahony, Timothy J

    2015-09-30

    Equine adenovirus 2 (EAdV-2) is one of two serotypes of adenoviruses known to infect equines. Initial studies did not associate EAdV-2 infections with any specific clinical syndromes, although more recent evidence suggests that EAdV-2 may be associated with clinical and subclinical gastrointestinal infections of foals and adults respectively. In contrast, Equine adenovirus 1 is well recognised as a pathogen associated with upper respiratory tract infections of horses. In this study the complete genome sequence of EAdV-2 is reported. As expected, genes common to the adenoviruses were identified. Phylogenetic reconstructions using selected EAdV-2 genes confirmed the classification of this virus within the Mastadenovirus genus, and supported the hypothesis that EAdV-2 and EAdV-1 have evolved from separate lineages within the adenoviruses. One spliced open reading frame was identified that encoded for a polypeptide with high similarity to the pIX and E1b_55K adenovirus homologues and was designated pIX_E1b_55K. In addition to this fused version of E1b_55K, a separate E1b_55K encoding gene was also identified. These polypeptides do not appear to have evolved from a gene duplication event as the fused and unfused E1b_55K were most similar to E1b_55K homologues from the Atadenovirus and Mastadenovirus genera respectively. The results of this study suggest that EAdV-2 has an unusual evolutionary history that warrants further investigation. PMID:26220513

  12. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy

    PubMed Central

    Wang, Weiguo; Ji, Weidan; Hu, Huanzhang; Ma, Juming; Li, Xiaoya; Mei, Weiqun; Xu, Yang; Hu, Huizhen; Yan, Yan; Song, Qizhe; Li, Zhigang; Su, Changqing

    2014-01-01

    Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers. PMID:24473833

  13. Identification of FAM111A as an SV40 Host Range Restriction and Adenovirus Helper Factor

    PubMed Central

    Padi, Megha; Korkhin, Anna; James, Robert L.; Adelmant, Guillaume; Yoon, Rosa; Guo, Luxuan; Berrios, Christian; Zhang, Ying; Calderwood, Michael A.; Velmurgan, Soundarapandian; Cheng, Jingwei; Marto, Jarrod A.; Hill, David E.; Cusick, Michael E.; Vidal, Marc; Florens, Laurence; Washburn, Michael P.; Litovchick, Larisa; DeCaprio, James A.

    2012-01-01

    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. PMID:23093934

  14. Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo

    PubMed Central

    Tyler, MA; Ulasov, IV; Sonabend, AM; Nandi, S; Han, Y; Marler, S; Roth, J; Lesniak, MS

    2008-01-01

    Adenoviral oncolytic virotherapy represents an attractive treatment modality for central nervous system (CNS) neoplasms. However, successful application of virotherapy in clinical trials has been hampered by inadequate distribution of oncolytic vectors. Neural stem cells (NSCs) have been shown as suitable vehicles for gene delivery because they track tumor foci. In this study, we evaluated the capability of NSCs to deliver a conditionally replicating adenovirus (CRAd) to glioma. We examined NSC specificity with respect to viral transduction, migration and capacity to deliver a CRAd to tumor cells. Fluorescence-activated cell sorter (FACS) analysis of NSC shows that these cells express a variety of surface receptors that make them amenable to entry by recombinant adenoviruses. Luciferase assays with replication-deficient vectors possessing a variety of transductional modifications targeted to these receptors confirm these results. Real-time PCR analysis of the replication profiles of different CRAds in NSCs and a representative glioma cell line, U87MG, identified the CRAd-Survivin (S)-pk7 virus as optimal vector for further delivery studies. Using in vitro and in vivo migration studies, we show that NSCs infected with CRAd-S-pk7 virus migrate and preferentially deliver CRAd to U87MG glioma. These results suggest that NSCs mediate an enhanced intratumoral distribution of an oncolytic vector in malignant glioma when compared with virus injection alone. PMID:19078993

  15. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor.

    PubMed

    Fine, Debrah A; Rozenblatt-Rosen, Orit; Padi, Megha; Korkhin, Anna; James, Robert L; Adelmant, Guillaume; Yoon, Rosa; Guo, Luxuan; Berrios, Christian; Zhang, Ying; Calderwood, Michael A; Velmurgan, Soundarapandian; Cheng, Jingwei; Marto, Jarrod A; Hill, David E; Cusick, Michael E; Vidal, Marc; Florens, Laurence; Washburn, Michael P; Litovchick, Larisa; DeCaprio, James A

    2012-01-01

    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. PMID:23093934

  16. Systemic Delivery of an Oncolytic Adenovirus Expressing Decorin for the Treatment of Breast Cancer Bone Metastases.

    PubMed

    Yang, Yuefeng; Xu, Weidong; Neill, Thomas; Hu, Zebin; Wang, Chi-Hsiung; Xiao, Xianghui; Stock, Stuart R; Guise, Theresa; Yun, Chae-Ok; Brendler, Charles B; Iozzo, Renato V; Seth, Prem

    2015-12-01

    The development of novel therapies for breast cancer bone metastasis is a major unmet medical need. Toward that end, we have constructed an oncolytic adenovirus, Ad.dcn, and a nonreplicating adenovirus, Ad(E1-).dcn, both containing the human decorin gene. Our in vitro studies showed that Ad.dcn produced high levels of viral replication and the decorin protein in the breast tumor cells. Ad(E1-).dcn-mediated decorin expression in MDA-MB-231 cells downregulated the expression of Met, β-catenin, and vascular endothelial growth factor A, all of which are recognized decorin targets and play pivotal roles in the progression of breast tumor growth and metastasis. Adenoviral-mediated decorin expression inhibited cell migration and induced mitochondrial autophagy in MDA-MB-231 cells. Mice bearing MDA-MB-231-luc skeletal metastases were systemically administered with the viral vectors, and skeletal tumor growth was monitored over time. The results of bioluminescence imaging and X-ray radiography indicated that Ad.dcn and Ad(E1-).dcn significantly inhibited the progression of bone metastases. At the terminal time point, histomorphometric analysis, micro-computed tomography, and bone destruction biomarkers showed that Ad.dcn and Ad(E1-).dcn reduced tumor burden and inhibited bone destruction. A nonreplicating adenovirus Ad(E1-).luc expressing the luciferase 2 gene had no significant effect on inhibiting bone metastases, and in several assays, Ad.dcn and Ad(E1-).dcn were better than Ad.luc, a replicating virus expressing the luciferase 2 gene. Our data suggest that adenoviral replication coupled with decorin expression could produce effective antitumor responses in a MDA-MB-231 bone metastasis model of breast cancer. Thus, Ad.dcn could potentially be developed as a candidate gene therapy vector for treating breast cancer bone metastases. PMID:26467629

  17. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    PubMed Central

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  18. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice.

    PubMed

    Xie, Yinli; Gao, Peng; Li, Zhiyong

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  19. Development of recombinant canine adenovirus type-2 expressing the Gn glycoprotein of Seoul virus.

    PubMed

    Yuan, Ziguo; Zhang, Xiuxiang; Zhang, Shoufeng; Liu, Ye; Gao, Shengyan; Zhang, Fei; Xu, Huijuan; Wang, Xiaohu; Hu, Rongliang

    2008-05-01

    Seoul virus glycoprotein Gn is a major structural protein and candidate antigen of hantavirus that induces a highly immunogenic response for hantavirus vaccine. In this study, a replication-competent recombinant canine adenovirus type-2 expressing Gn was constructed by the in vitro ligation method. The Gn expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the SV40 early mRNA polyadenylation signal, was cloned into the SspI site of the E3 region which is not essential for proliferation of CAV-2. Expression of Gn was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. PMID:18249007

  20. Viral Capsid Is a Pathogen-Associated Molecular Pattern in Adenovirus Keratitis

    PubMed Central

    Chintakuntlawar, Ashish V.; Zhou, Xiaohong; Rajaiya, Jaya; Chodosh, James

    2010-01-01

    Human adenovirus (HAdV) infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9) signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9−/− mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD). These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins. PMID:20419141

  1. Inactivation of Influenza A virus, Adenovirus, and Cytomegalovirus with PAXgene tissue fixative and formalin.

    PubMed

    Kap, Marcel; Arron, Georgina I; Loibner, M; Hausleitner, Anja; Siaulyte, Gintare; Zatloukal, Kurt; Murk, Jean-Luc; Riegman, Peter

    2013-08-01

    Formalin fixation is known to inactivate most viruses in a vaccine production context, but nothing is published about virus activity in tissues treated with alternative, non-crosslinking fixatives. We used a model assay based on cell culture to test formalin and PAXgene Tissue fixative for their virus-inactivating abilities. MDCK, A549, and MRC-5 cells were infected with Influenza A virus, Adenovirus, and Cytomegalovirus, respectively. When 75% of the cells showed a cytopathic effect (CPE), the cells were harvested and incubated for 15 min, or 1, 3, 6, or 24 hours, with PBS (positive control), 4% formalin, or PAXgene Tissue Fix. The cells were disrupted and the released virus was used to infect fresh MDCK, A549, and MRC-5 cells cultured on cover slips in 24-well plates. The viral cultures were monitored for CPE and by immunocytochemistry (ICC) to record viral replication and infectivity. Inactivation of Adenovirus by formalin occurred after 3 h, while Influenza A virus as well as Cytomegalovirus were inactivated by formalin after 15 min. All three virus strains were inactivated by PAXgene Tissue fixative after 15 min. We conclude that PAXgene Tissue fixative is at least as effective as formalin in inactivating infectivity of Influenza A virus, Adenovirus, and Cytomegalovirus. PMID:24845590

  2. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  3. Construction of an adenovirus type 7a E1A- vector.

    PubMed Central

    Abrahamsen, K; Kong, H L; Mastrangeli, A; Brough, D; Lizonova, A; Crystal, R G; Falck-Pedersen, E

    1997-01-01

    A strategy for constructing replication-defective adenovirus vectors from non-subgroup C viruses has been successfully demonstrated with adenovirus type 7 strain a (Ad7a) as the prototype. An E1A-deleted Ad7a reporter virus expressing the chloramphenicol acetyltransferase (CAT) gene from the cytomegalovirus promoter enhancer was constructed with DNA fragments isolated from Ad7a, an Ad7a recombination reporter plasmid, and the 293 cell line. The Ad7a-CAT virus particle transduces A549 cells as efficiently as Ad5-based vectors. Intravenous infections in a murine model indicate that the Ad7a-CAT virus infects a variety of tissues, with maximal levels of CAT gene expression found in the liver. The duration of Ad7a-CAT transgene expression in the liver was maximally maintained 2 weeks postinfection, with a decline to baseline activity by the week 4 postinfection. Ad7a-CAT represents the first example of a non-subgroup C E1A- adenovirus gene transfer vector. PMID:9343264

  4. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients.

    PubMed

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari L M; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-06-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  5. Structure and Uncoating of Immature Adenovirus

    SciTech Connect

    Perez-Berna, A.J.; Mangel, W.; Marabini, R.; Scheres, S. H. W., Menendez-Conejero, R.; Dmitriev, I. P.; Curiel, D. T.; Flint, S. J.; San Martin, C.

    2009-09-18

    Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particles as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.

  6. Fluorescent antibody responses to adenoviruses in humans.

    PubMed Central

    Ariyawansa, J P; Tobin, J O

    1976-01-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  7. Fluorescent antibody responses to adenoviruses in humans.

    PubMed

    Ariyawansa, J P; Tobin, J O

    1976-05-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  8. Labeling of Adenovirus Particles with PARACEST Agents

    PubMed Central

    Vasalatiy, Olga; Gerard, Robert D; Zhao, Piyu; Sun, Xiankai; Sherry, A. Dean

    2009-01-01

    Recombinant adenovirus type 5 particles (AdCMVLuc) were labeled with two different bifunctional ligands capable of forming stable complexes with paramagnetic lanthanide ions. The number of covalently attached ligands varied between 630 and 1960 per adenovirus particle depending upon the chemical reactivity of the bifunctional ligand (NHS ester versus isothiocyanide), the amount of excess ligand added, and the reaction time. The bioactivity of each labeled adenovirus derivative, as measured by the ability of the virus to infect cells and express luciferase, was shown to be highly dependent upon the number of covalently attached ligands. This indicates that certain amino groups, likely on the surface of the adenovirus fiber protein where cell binding is known to occur, are critical for viral attachment and infection. Addition of 177Lu3+ to chemically modified versus control viruses demonstrated a significant amount of nonspecific binding of 177Lu3+ to the virus particles that could not be sequestered by addition of excess DTPA. Thus, it became necessary to implement a prelabeling strategy for conjugation of preformed lanthanide ligand chelates to adenovirus particles. Using preformed Tm3+-L2, a large number of chelates having chemical exchange saturation transfer (CEST) properties were attached to the surface residues of AdCMVLuc without nonspecific binding of metal ions elsewhere on the virus particle. The potential of such conjugates to act as PARACEST imaging agents was tested using an on-resonance WALTZ sequence for CEST activation. A 12% decrease in bulk water signal intensity was observed relative to controls. This demonstrates that viral particles labeled with PARACEST-type imaging agents can potentially serve as targeted agents for molecular imaging. PMID:18254605

  9. Computational analysis of four human adenovirus type 4 genomes reveals molecular evolution through two interspecies recombination events

    PubMed Central

    Dehghan, Shoaleh; Seto, Jason; Liu, Elizabeth B.; Walsh, Michael P.; Dyer, David W.; Chodosh, James; Seto, Donald

    2013-01-01

    Computational analysis of human adenovirus type 4 (HAdV-E4), a pathogen that is the only HAdV member of species E, provides insights into its zoonotic origin and molecular adaptation. Its genome encodes a domain of the major capsid protein, hexon, from HAdV-B16 recombined into the genome chassis of a simian adenovirus. Genomes of two recent field strains provide a clue to its adaptation to the new host: recombination of a NF-I binding site motif, which is required for efficient viral replication, from another HAdV genome. This motif is absent in the chimpanzee adenoviruses and the HAdV-E4 prototype, but is conserved amongst other HAdVs. This is the first report of an interspecies recombination event for HAdVs, and the first documentation of a lateral partial gene transfer from a chimpanzee AdV. The potential for such recombination events are important when considering chimpanzee adenoviruses as candidate gene delivery vectors for human patients. PMID:23763770

  10. Pharmacological inhibition of β3 integrin reduces the inflammatory toxicities caused by oncolytic adenovirus without compromising anticancer activity

    PubMed Central

    Browne, Ashley; Tookman, Laura A.; Ingemarsdotter, Carin K.; Bouwman, Russell D.; Pirlo, Katrina; Wang, Yaohe; McNeish, Iain A.; Lockley, Michelle

    2015-01-01

    Adenoviruses have been clinically tested as anti-cancer therapies but their utility has been severely limited by rapid, systemic cytokine release and consequent inflammatory toxicity. Here we describe a new approach to tackling these dangerous side effects. Using human ovarian cancer cell lines as well as malignant epithelial cells harvested from the ascites of women with ovarian cancer, we show that tumour cells do not produce cytokines in the first 24 hours following in vitro infection with the oncolytic adenovirus dl922-947. In contrast, dl922-947 does induce inflammatory cytokines at early time points following intraperitoneal (IP) delivery in mice with human ovarian cancer IP xenografts. In these animals, cytokines originate predominantly in murine tissues, especially in macrophage-rich organs such as the spleen. We use a non-replicating adenovirus to confirm that early cytokine production is independent of adenoviral replication. Using β3 integrin knockout mice injected intraperitoneally with dl922-947 and β3 null murine peritoneal macrophages we confirm a role for macrophage cell surface β3 integrin in this dl922-947-induced inflammation. We present new evidence that co-administration of a cyclic RGD-mimetic specific inhibitor of β3 integrin significantly attenuates the cytokine release and inflammatory hepatic toxicity induced by dl922-947 in an IP murine model of ovarian cancer. Importantly, we find no evidence that β3 inhibition compromises viral infectivity and oncolysis in vitro or anticancer efficacy in vivo. By enabling safe, systemic delivery of replicating adenoviruses, this novel approach could have a major impact on the future development of these effective anti-cancer agents. PMID:25977332

  11. Multiple proteins bind to VA RNA genes of adenovirus type 2.

    PubMed Central

    Van Dyke, M W; Roeder, R G

    1987-01-01

    Using fractionated HeLa cell nuclear extracts and both nuclease (DNase I) cleavage and chemical cleavage (methidiumpropyl-EDTA X Fe(II) protection methodologies, we demonstrated the presence of three proteins which interacted specifically, yet differentially, with the two VA genes of adenovirus type 2. One, previously identified as transcription initiation factor TFIIIC, bound to a site centered on the transcriptionally essential B-block concensus element of the VAI gene and, with a lower affinity, to the analogous site in the VAII gene. Another, identified as the cellular protein involved in adenovirus replication, nuclear factor I, bound to sites immediately downstream from the two VAI terminators (at approximately +160 and +200). The third, a previously unrecognized VA gene binding protein termed VBP, bound immediately upstream of the B-block element in the VAI gene but showed no binding to VAII. Possible roles for these proteins in VA gene transcription were investigated in in vitro assay systems reconstituted with partially purified transcription factors (RNA polymerase III, TFIIIB, and TFIIIC). Although TFIIIC activity was present predominantly in fractions containing B-block binding activity, there was not complete correspondence between functional and DNA binding activities. The nuclear factor I-like protein had no effect when added to a complete transcription reaction. The presence of VBP appeared to depress the intrinsic ratio of VAI-VAII synthesis, thereby simulating the relative transcription levels observed early in adenovirus infection of HeLa cells. These observations suggest a model, involving both intragenic binding factors (VBP and TFIIIC) and variable template concentrations, for the differential regulation of VA transcription during the course of adenovirus infection. Images PMID:3561405

  12. Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5

    PubMed Central

    Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad

    2010-01-01

    Background Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. Methods/Results We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. Conclusion In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. PMID:20927353

  13. Adenovirus serotype 5 hexon mediates liver gene transfer.

    PubMed

    Waddington, Simon N; McVey, John H; Bhella, David; Parker, Alan L; Barker, Kristeen; Atoda, Hideko; Pink, Rebecca; Buckley, Suzanne M K; Greig, Jenny A; Denby, Laura; Custers, Jerome; Morita, Takashi; Francischetti, Ivo M B; Monteiro, Robson Q; Barouch, Dan H; van Rooijen, Nico; Napoli, Claudio; Havenga, Menzo J E; Nicklin, Stuart A; Baker, Andrew H

    2008-02-01

    Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo. PMID:18267072

  14. Verapamil Enhances the Antitumoral Efficacy of Oncolytic Adenoviruses

    PubMed Central

    Gros, Alena; Puig, Cristina; Guedan, Sonia; Rojas, Juan José; Alemany, Ramon; Cascallo, Manel

    2010-01-01

    The therapeutic potential of oncolytic adenoviruses is limited by the rate of adenovirus release. Based on the observation that several viruses induce cell death and progeny release by disrupting intracellular calcium homeostasis, we hypothesized that the alteration in intracellular calcium concentration induced by verapamil could improve the rate of virus release and spread, eventually enhancing the antitumoral activity of oncolytic adenoviruses. Our results indicate that verapamil substantially enhanced the release of adenovirus from a variety of cell types resulting in an improved cell-to-cell spread and cytotoxicity. Furthermore, the combination of the systemic administration of an oncolytic adenovirus (ICOVIR-5) with verapamil in vivo greatly improved its antitumoral activity in two different tumor xenograft models without affecting the selectivity of this virus. Overall, our findings indicate that verapamil provides a new, safe, and versatile way to improve the antitumoral potency of oncolytic adenoviruses in the clinical setting. PMID:20179683

  15. Expression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have demonstrated that administration of type I, II, or III interferons (IFN) delivered using a replication defective human adenovirus 5 (Ad5) vector is effective to control Foot-and-Mouth Disease (FMD) in cattle and swine during experimental infections. However, high doses are requi...

  16. Clinical Assessment of a Novel Recombinant Simian Adenovirus ChAdOx1 as a Vectored Vaccine Expressing Conserved Influenza A Antigens

    PubMed Central

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian VS; Lambe, Teresa; Gilbert, Sarah C

    2014-01-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  17. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens.

    PubMed

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian Vs; Lambe, Teresa; Gilbert, Sarah C

    2014-03-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  18. SPRi-based adenovirus detection using a surrogate antibody method.

    PubMed

    Abadian, Pegah N; Yildirim, Nimet; Gu, April Z; Goluch, Edgar D

    2015-12-15

    Adenovirus infection, which is a waterborne viral disease, is one of the most prevelant causes of human morbidity in the world. Thus, methods for rapid detection of this infectious virus in the environment are urgently needed for public health protection. In this study, we developed a rapid, real-time, sensitive, and label-free SPRi-based biosensor for rapid, sensitive and highly selective detection of adenoviruses. The sensing protocol consists of mixing the sample containing adenovirus with a predetermined concentration of adenovirus antibody. The mixture was filtered to remove the free antibodies from the sample. A secondary antibody, which was specific to the adenovirus antibody, was immobilized onto the SPRi chip surface covalently and the filtrate was flowed over the sensor surface. When the free adenovirus antibodies bound to the surface-immobilized secondary antibodies, we observed this binding via changes in reflectivity. In this approach, a higher amount of adenoviruses resulted in fewer free adenovirus antibodies and thus smaller reflectivity changes. A dose-response curve was generated, and the linear detection range was determined to be from 10 PFU/mL to 5000 PFU/mL with an R(2) value greater than 0.9. The results also showed that the developed biosensing system had a high specificity towards adenovirus (less than 20% signal change when tested in a sample matrix containing rotavirus and lentivirus). PMID:26232675

  19. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    PubMed

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  20. Mouse Adenovirus Type 1 Infection of Natural Killer Cell-Deficient Mice

    PubMed Central

    Welton, Amanda R.; Gralinski, Lisa E.; Spindler, Katherine R.

    2008-01-01

    Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice. PMID:18155121

  1. Genetic mapping of a major site of phosphorylation in adenovirus type 2 E1A proteins

    SciTech Connect

    Tsukamotot, A.S.; Ponticelli, A.; Berk, A.J.; Gaynor, R.B.

    1986-07-01

    Adenovirus early region 1A (E1A) encodes two acidic phosphoproteins which are required for transactivation of viral transcription, efficient viral DNA replication in phase G/sub 0/-arrested human cells, and oncogenic transformation of rodent cells. Biochemical analysis of in vivo /sup 32/P-labeled adenovirus type 2 E1A proteins purified with monoclonal antibodies demonstrated that these proteins were phosphorylated at multiple serine residues. Two-dimensional phosphotryptic peptide maps of wild-type and mutant E1A proteins were used to locate a major site of E1A protein phosphorylation at serine-219 of the large E1A protein. Although this serine fell within a consensus sequence for phosphorylation by the cyclic AMP-dependent protein kinases, experiments with mutant CHO cells defective in these enzymes indicated that it was not. Oligonucleotide-directed mutagenesis was used to substitute an alanine for serine-219. This mutation prevented phosphorylation at this site. Nonetheless, the mutant was indistinguishable from the wild type for early gene transactivation, replication on G/sub 0/-arrested WI-38 cells, and transformation of cloned rat embryo fibroblast cells.

  2. Oncolytic Adenovirus Loaded with L-carnosine as Novel Strategy to Enhance the Antitumor Activity.

    PubMed

    Garofalo, Mariangela; Iovine, Barbara; Kuryk, Lukasz; Capasso, Cristian; Hirvinen, Mari; Vitale, Andrea; Yliperttula, Marjo; Bevilacqua, Maria Assunta; Cerullo, Vincenzo

    2016-04-01

    Oncolytic viruses are able to specifically replicate, infect, and kill only cancer cells. Their combination with chemotherapeutic drugs has shown promising results due to the synergistic action of virus and drugs; the combinatorial therapy is considered a potential clinically relevant approach for cancer. In this study, we optimized a strategy to absorb peptides on the viral capsid, based on electrostatic interaction, and used this strategy to deliver an active antitumor drug. We used L-carnosine, a naturally occurring histidine dipeptide with a significant antiproliferative activity. An ad hoc modified, positively charged L-carnosine was combined with the capsid of an oncolytic adenovirus to generate an electrostatic virus-carnosine complex. This complex showed enhanced antitumor efficacy in vitro and in vivo in different tumor models. In HCT-116 colorectal and A549 lung cancer cell lines, the complex showed higher transduction ratio and infectious titer compared with an uncoated oncolytic adenovirus. The in vivo efficacy of the complex was tested in lung and colon cancer xenograft models, showing a significant reduction in tumor growth. Importantly, we investigated the molecular mechanisms underlying the effects of complex on tumor growth reduction. We found that complex induces apoptosis in both cell lines, by using two different mechanisms, enhancing viral replication and affecting the expression of Hsp27. Our system could be used in future studies also for delivery of other bioactive drugs. Mol Cancer Ther; 15(4); 651-60. ©2016 AACR. PMID:26861248

  3. Aerosol stability of bovine adenovirus type 3.

    PubMed Central

    Elazhary, M A; Derbyshire, J B

    1979-01-01

    The WBR-1 strain of bovine adenovirus type 3 was suspended in Eagle's medium or bovine nasal secretion and atomized into a rotating drum at temperatures of 6 degrees C or 32 degrees C and relative humidities of 30% or 90%. Impinger samples of the aerosols were collected seven minutes, one, two and three hours postgeneration, and titrated for infectivity in embryonic bovine kidney cell cultures. Under certain conditions of temperature and relative humidity, the virus was more stable in aerosols of Eagle's medium than in nasal secretion. The bovine adenovirus was usually inactivated more rapidly at 30% relative humidity than at 90% relative humidity and during aging of the aerosols the virus was inactivated more rapidly at 32 degrees C than at 6 degrees C. PMID:226247

  4. Persistence and reactivation of human adenoviruses in the gastrointestinal tract.

    PubMed

    Kosulin, K; Geiger, E; Vécsei, A; Huber, W-D; Rauch, M; Brenner, E; Wrba, F; Hammer, K; Innerhofer, A; Pötschger, U; Lawitschka, A; Matthes-Leodolter, S; Fritsch, G; Lion, T

    2016-04-01

    Reactivation of persistent human adenoviruses (HAdVs) is associated with high morbidity and mortality in paediatric haematopoietic stem cell transplant (HSCT) recipients. Although invasive HAdV infections mainly arise from the gastrointestinal (GI) tract, the specific sites of HAdV persistence are not well characterised. We prospectively screened biopsies from 143 non-HSCT paediatric patients undergoing GI endoscopy and monitored serial stool specimens from 148 paediatric HSCT recipients for the presence of HAdV by real-time PCR. Persistence of HAdV in the GI tract was identified in 31% of children, with the highest prevalence in the terminal ileum. In situ hybridisation and immunohistochemistry identified HAdV persistence in lymphoid cells of the lamina propria, whereas biopsies from five transplant recipients revealed high numbers of replicating HAdV in intestinal epithelial cells. The prevalence of HAdV species, the frequencies of persistence in the GI tract and reactivations post transplant indicated a correlation of intestinal HAdV shedding pre-transplant with high risk of invasive infection. HAdV persistence in the GI tract is a likely origin of infectious complications in immunocompromised children. Intestinal lymphocytes represent a reservoir for HAdV persistence and reactivation, whereas the intestinal epithelium is the main site of viral proliferation preceding dissemination. The findings have important implications for assessing the risk of life-threatening invasive HAdV infections. PMID:26711435

  5. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  6. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  7. Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus

    PubMed Central

    Doronin, Konstantin; Shashkova, Elena V.; May, Shannon M.; Hofherr, Sean E.

    2009-01-01

    Abstract Oncolytic adenoviruses are anticancer agents that replicate within tumors and spread to uninfected tumor cells, amplifying the anticancer effect of initial transduction. We tested whether coating the viral particle with polyethylene glycol (PEG) could reduce transduction of hepatocytes and hepatotoxicity after systemic (intravenous) administration of oncolytic adenovirus serotype 5 (Ad5). Conjugating Ad5 with high molecular weight 20-kDa PEG but not with 5-kDa PEG reduced hepatocyte transduction and hepatotoxicity after intravenous injection. PEGylation with 20-kDa PEG was as efficient at detargeting adenovirus from Kupffer cells and hepatocytes as virus predosing and warfarin. Bioluminescence imaging of virus distribution in two xenograft tumor models in nude mice demonstrated that PEGylation with 20-kDa PEG reduced liver infection 19- to 90-fold. Tumor transduction levels were similar for vectors PEGylated with 20-kDa PEG and unPEGylated vectors. Anticancer efficacy after a single intravenous injection was retained at the level of unmodified vector in large established prostate carcinoma xenografts, resulting in complete elimination of tumors in all animals and long-term tumor-free survival. Anticancer efficacy after a single intravenous injection was increased in large established hepatocellular carcinoma xenografts, resulting in significant prolongation of survival as compared with unmodified vector. The increase in efficacy was comparable to that obtained with predosing and warfarin pretreatment, significantly extending the median of survival. Shielding adenovirus with 20-kDa PEG may be a useful approach to improve the therapeutic window of oncolytic adenovirus after systemic delivery to primary and metastatic tumor sites. PMID:19469693

  8. Bacteriophage replication modules.

    PubMed

    Weigel, Christoph; Seitz, Harald

    2006-05-01

    Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online). PMID:16594962

  9. Replication of Tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Ishikawa, Masayuki

    2016-08-01

    Tobacco mosaic virus and other tobamoviruses have served as models for studying the mechanisms of viral RNA replication. In tobamoviruses, genomic RNA replication occurs via several steps: (a) synthesis of viral replication proteins by translation of the genomic RNA; (b) translation-coupled binding of the replication proteins to a 5'-terminal region of the genomic RNA; (c) recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; (d) synthesis of complementary (negative-strand) RNA in the complex; and (e) synthesis of progeny genomic RNA. This article reviews current knowledge on tobamovirus RNA replication, particularly regarding how the genomic RNA is specifically selected as a replication template and how the replication proteins are activated. We also focus on the roles of the replication proteins in evading or suppressing host defense systems. PMID:27296148

  10. Structure, Function and Dynamics in Adenovirus Maturation

    PubMed Central

    Mangel, Walter F.; San Martín, Carmen

    2014-01-01

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. Finally, possible roles for maturation of the terminal protein are discussed. PMID:25421887

  11. Structure, function and dynamics in adenovirus maturation

    SciTech Connect

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.

  12. Structure, function and dynamics in adenovirus maturation

    DOE PAGESBeta

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore » more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.« less

  13. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    SciTech Connect

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  14. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Mosby; 2013:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  15. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  16. A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model.

    PubMed

    Patel, Ami; Tikoo, Suresh; Kobinger, Gary

    2010-01-01

    Human adenovirus 5 (AdHu5) vectors are robust vaccine platforms however the presence of naturally-acquired neutralizing antibodies may reduce vector efficacy and potential for re-administration. This study evaluates immune responses and protection following vaccination with a replication-incompetent porcine adenovirus 3 (PAV3) vector as an alternative vaccine to AdHu5 using an avian influenza H5N1 disease model. Vaccine efficacy was evaluated in BALB/c mice following vaccination with different doses of the PAV3 vector expressing an optimized A/Hanoi/30408/2005 H5N1 hemagglutinin antigen (PAV3-HA) and compared with an AdHu5-HA control. PAV3-HA rapidly generated antibody responses, with significant neutralizing antibody titers on day 21, and stronger cellular immune responses detected on day 8, compared to AdHu5-HA. The PAV3-HA vaccine, administered 8 days before challenge, demonstrated improved survival and lower virus load. Evaluation of long-term vaccine efficacy at 12 months post-vaccination showed better protection with the PAV3-HA than with the AdHu5-HA vaccine. Importantly, as opposed to AdHu5, PAV3 vector was not significantly neutralized by human antibodies pooled from over 10,000 individuals. Overall, PAV3-based vector is capable of mediating swift, strong immune responses and offer a promising alternative to AdHu5. PMID:21179494

  17. Genetic organization, size, and complete sequence of early region 3 genes of human adenovirus type 41.

    PubMed Central

    Yeh, H Y; Pieniazek, N; Pieniazek, D; Luftig, R B

    1996-01-01

    The complete nucleotide and predicted amino acid sequences for open reading frames (ORFs) of the human adenovirus type 41 (Ad41) early region 3 (E3) gene have been determined. The sequence of the Ad41 E3 gene (map units 74 to 83.9) consists of 3,373 nucleotides and has one TATA box and two polyadenylation signals (AATAAA). Analysis of the nucleotide sequence reveals that the E3 gene can encode six ORFs, designated RL1 to RL6. These are all expressed at the mRNA level, as determined by reverse transcription-PCR analysis of AD41-infected cell RNA. When compared with known E3 sequences of most other human adenoviruses deposited in GenBank, the sequences of RL1 to RL3 were found to be unique to subgroup F adenoviruses (Ad40 and Ad41). They encode putative proteins of 173 amino acids (19.4 kDa) and 276 amino acids (31.6 kDa) in one reading frame as well as a 59- amino-acid (6.7 kDa) protein in an overlapping reading frame. RL4 encodes a 90-amino-acid protein (10.1 kDa) with 40% homology to the Ad2 E3 10.4-kDa protein, which induces degradation of the epidermal growth factor receptor and functions together with the Ad2 E3 14.5-kDa protein to protect mouse cell lines against lysis. RL5 encodes a protein of 107 amino acid residues (12.3 kDa) and is analogous to the Ad E3 14.5-kDa protein. RL6 codes for a protein of 122 amino acids (14.7 kDa) that is analogous to the Ad2 14.7-kDa protein, which functions to protect Ad-infected cells from tumor necrosis factor-induced cytolysis. This finding of three unique (RL1 to RL3) E3 gene ORFs may explain why subgroup F adenoviruses differ substantially from other human adenoviruses in their host range; i.e., they replicate predominantly in the host's gastrointestinal rather than respiratory tract. A recent phylogenetic study that compared subgroup F Ad40 DNA sequences with representatives of subgroups B (Ad3), C (Ad2), and E (Ad4) reached a similar conclusion about the uniqueness of RL1 and RL2. PMID:8642703

  18. Immune Response to Recombinant Capsid Proteins of Adenovirus in Humans: Antifiber and Anti-Penton Base Antibodies Have a Synergistic Effect on Neutralizing Activity

    PubMed Central

    Gahéry-Ségard, Hanne; Farace, Françoise; Godfrin, Dominique; Gaston, Jesintha; Lengagne, Renée; Tursz, Thomas; Boulanger, Pierre; Guillet, Jean-Gérard

    1998-01-01

    Replication-deficient adenovirus used in humans for gene therapy induces a strong immune response to the vector, resulting in transient recombinant protein expression and the blocking of gene transfer upon a second administration. Therefore, in this study we examined in detail the capsid-specific humoral immune response in sera of patients with lung cancer who had been given one dose of a replication-defective adenovirus. We analyzed the immune response to the three major components of the viral capsid, hexon (Hx), penton base (Pb), and fiber (Fi). A longitudinal study of the humoral response assayed on adenovirus particle-coated enzyme-linked immunosorbent assay plates showed that patients had preexisting immunity to adenovirus prior to the administration of adenovirus–β-gal. The level of the response increased in three patients after adenovirus administration and remained at a maximum after three months. One patient had a strong immune response to adenovirus prior to treatment, and this response was unaffected by adenovirus administration. Sera collected from the patients were assayed for recognition of each individual viral capsid protein to determine more precisely the molecular basis of the humoral immune response. Clear differences existed in the humoral response to the three major components of the viral capsid in serum from humans. Sequential appearance of these antibodies was observed: anti-Fi antibodies appeared first, followed by anti-Pb antibodies and then by anti-Hx antibodies. Moreover, anti-Fi antibodies preferentially recognized the native trimeric form of Fi protein, suggesting that they recognized conformational epitopes. Our results showed that sera with no neutralizing activity contained only anti-Fi antibodies. In contrast, neutralizing activity was only obtained with sera containing anti-Fi and anti-Pb antibodies. More importantly, we showed that anti-native Fi and anti-Pb antibodies had a synergistic effect on neutralization. The

  19. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed. PMID:25421597

  20. Enhanced inactivation of adenovirus under polychromatic UV lamps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adenovirus is recognized as the most UV-resistant waterborne pathogen of concern to public health microbiologists. The US EPA has stipulated that a UV fluence (dose) of 186 mJ cm-2 is required for 4-log inactivation credit in water treatment. However, all adenovirus inactivation data to date publi...

  1. Capturing and concentrating adenovirus using magnetic anionic nanobeads.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  2. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    PubMed Central

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  3. Anomalous Arms

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this composite image of spiral galaxy M106 (NGC 4258), optical data from the Digitized Sky Survey is shown as yellow, radio data from the Very Large Array appears as purple, X-ray data from Chandra is coded blue, and infrared data from the Spitzer Space Telescope appears red. Two anomalous arms, which aren't visible at optical wavelengths, appear as purple and blue emission.

  4. Replicating repetitive DNA.

    PubMed

    Tognetti, Silvia; Speck, Christian

    2016-05-27

    The function and regulation of repetitive DNA, the 'dark matter' of the genome, is still only rudimentarily understood. Now a study investigating DNA replication of repetitive centromeric chromosome segments has started to expose a fascinating replication program that involves suppression of ATR signalling, in particular during replication stress. PMID:27230530

  5. Biodistribution and Safety Assessment of Bladder Cancer Specific Recombinant Oncolytic Adenovirus in Subcutaneous Xenografts Tumor Model in Nude Mice

    PubMed Central

    Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

    2012-01-01

    Background The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Materials and Method Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific Uroplakin II (UP II) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. Results General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5×108 pfu or higher dose (5×109 pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5×109 pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Conclusions Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5×107 pfu and 5×108 pfu intratumorally injection in mice, without any discernable effects on general health

  6. Armoring CRAds with p21/Waf-1 shRNAs: the next generation of oncolytic adenoviruses

    PubMed Central

    Höti, N; Chowdhury, WH; Mustafa, S; Ribas, J; Castanares, M; Johnson, T; Liu, M; Lupold, SE; Rodriguez, R

    2011-01-01

    Conditionally replicating adenoviruses (CRAds) represent a promising modality for the treatment of neoplastic diseases, including Prostate Cancer. Selectively replicating viruses can be generated by placing a tissue or cancer-specific promoter upstream of one or more of the viral genes required for replication (for example, E1A, E1B). We have previously reported multiple cellular processes that can attenuate viral replication, which in turn compromises viral oncolysis and tumor kill. In this study, we investigated the importance of the cyclin-dependent kinase inhibitor p21/Waf-1, on viral replication and tumor growth. To our knowledge, this is the first report describing the importance of p21/Waf-1shRNA on the induction of an androgen responsive element (ARE) based promoter driving the E1A gene. As a proof of concept, the study emphasizes the use of RNA interference technology to overcome promoter weaknesses for tissue-specific oncolytic viruses, as well as the cellular inhibitor pathways on viral life cycle. Using RNA interference against p21/Waf-1, we were able to show an increase in viral replication and viral oncolysis of prostate cancer cells. Similarly, CRAd viruses that carry p21/Waf-1 shRNA (Ad5-RV004.21) were able to prevent tumor outgrowth that resulted in a marked increase in the mean survival time of tumor-bearing mice compared with CRAd without p21/Waf-1 shRNA (Ad5-RV004). In studies combining Ad5-RV004.21 with Adriamycin, a suprar-additive effect was observed only in CRAds that harbor shRNA against p21/Waf-1. Taken together, these findings of enhanced viral replication in prostate cancer cells by using RNA interference against the cdk inhibitor p21/Waf-1 have significant implications in the development of prostate-specific CRAd therapies. PMID:20448671

  7. Vaccination of puppies born to immune dams with a canine adenovirus-based vaccine protects against a canine distemper virus challenge.

    PubMed

    Fischer, Laurent; Tronel, Jean Phillipe; Pardo-David, Camilla; Tanner, Patrick; Colombet, Guy; Minke, Jules; Audonnet, Jean-Christophe

    2002-10-01

    None of the currently available distemper vaccines provides a satisfactory solution for the immunization of very young carnivores in the face of maternal-derived immunity. Since mucosal immunization with replication-competent adenovirus-based vaccines has been proven effective in the face of passive immunity against the vector, it has the potential to provide a solution for the vaccination of young puppies born to canine distemper virus (CDV)-immune dams. We report the engineering and the characterization of two replication-competent canine adenovirus type 2 (CAV2)-based vaccines expressing, respectively, the CDV hemagglutinin (HA) and fusion (F) antigens. We first demonstrated that the intranasal vaccination with a mixture of both recombinant CAV2s provides an excellent level of protection in seronegative puppies, confirming the value of replication-competent adenovirus-based vectors for mucosal vaccination. In contrast, intranasal immunization with the same vaccine of puppies born to CDV- and CAV2-immune dams, failed to activate specific and protective immune responses. We hypothesized that an active CAV2 infection occurred while puppies were in close contact with the vaccinated dams in the breeding units and that the resulting active mucosal immunity interfered with the intranasal administration of CAV2-based CDV vaccine. However, when puppies born to CDV- and CAV2-immune dams were vaccinated subcutaneously with the CAV2-based CDV vaccine, significant seroconversion and solid protective immunity were triggered despite pre-existing systemic immunity to the vector. This latter result is surprising and suggests that subcutaneous vaccination with a replication-competent recombinant CAV2 may be an efficient strategy to overcome both passive and active adenovirus specific immunity in the dog. From a practical point of view, this could pave the way for an original strategy to vaccinate young puppies in the face of maternal-derived immunity. PMID:12297394

  8. E2F/Rb Family Proteins Mediate Interferon Induced Repression of Adenovirus Immediate Early Transcription to Promote Persistent Viral Infection.

    PubMed

    Zheng, Yueting; Stamminger, Thomas; Hearing, Patrick

    2016-01-01

    Interferons (IFNs) are cytokines that have pleiotropic effects and play important roles in innate and adaptive immunity. IFNs have broad antiviral properties and function by different mechanisms. IFNs fail to inhibit wild-type Adenovirus (Ad) replication in established cancer cell lines. In this study, we analyzed the effects of IFNs on Ad replication in normal human cells. Our data demonstrate that both IFNα and IFNγ blocked wild-type Ad5 replication in primary human bronchial epithelial cells (NHBEC) and TERT-immortalized normal human diploid fibroblasts (HDF-TERT). IFNs inhibited the replication of divergent adenoviruses. The inhibition of Ad5 replication by IFNα and IFNγ is the consequence of repression of transcription of the E1A immediate early gene product. Both IFNα and IFNγ impede the association of the transactivator GABP with the E1A enhancer region during the early phase of infection. The repression of E1A expression by IFNs requires a conserved E2F binding site in the E1A enhancer, and IFNs increased the enrichment of the E2F-associated pocket proteins, Rb and p107, at the E1A enhancer in vivo. PD0332991 (Pabociclib), a specific CDK4/6 inhibitor, dephosphoryles pocket proteins to promote their interaction with E2Fs and inhibited wild-type Ad5 replication dependent on the conserved E2F binding site. Consistent with this result, expression of the small E1A oncoprotein, which abrogates E2F/pocket protein interactions, rescued Ad replication in the presence of IFNα or IFNγ. Finally, we established a persistent Ad infection model in vitro and demonstrated that IFNγ suppresses productive Ad replication in a manner dependent on the E2F binding site in the E1A enhancer. This is the first study that probes the molecular basis of persistent adenovirus infection and reveals a novel mechanism by which adenoviruses utilize IFN signaling to suppress lytic virus replication and to promote persistent infection. PMID:26809031

  9. E2F/Rb Family Proteins Mediate Interferon Induced Repression of Adenovirus Immediate Early Transcription to Promote Persistent Viral Infection

    PubMed Central

    Zheng, Yueting; Stamminger, Thomas; Hearing, Patrick

    2016-01-01

    Interferons (IFNs) are cytokines that have pleiotropic effects and play important roles in innate and adaptive immunity. IFNs have broad antiviral properties and function by different mechanisms. IFNs fail to inhibit wild-type Adenovirus (Ad) replication in established cancer cell lines. In this study, we analyzed the effects of IFNs on Ad replication in normal human cells. Our data demonstrate that both IFNα and IFNγ blocked wild-type Ad5 replication in primary human bronchial epithelial cells (NHBEC) and TERT-immortalized normal human diploid fibroblasts (HDF-TERT). IFNs inhibited the replication of divergent adenoviruses. The inhibition of Ad5 replication by IFNα and IFNγ is the consequence of repression of transcription of the E1A immediate early gene product. Both IFNα and IFNγ impede the association of the transactivator GABP with the E1A enhancer region during the early phase of infection. The repression of E1A expression by IFNs requires a conserved E2F binding site in the E1A enhancer, and IFNs increased the enrichment of the E2F-associated pocket proteins, Rb and p107, at the E1A enhancer in vivo. PD0332991 (Pabociclib), a specific CDK4/6 inhibitor, dephosphoryles pocket proteins to promote their interaction with E2Fs and inhibited wild-type Ad5 replication dependent on the conserved E2F binding site. Consistent with this result, expression of the small E1A oncoprotein, which abrogates E2F/pocket protein interactions, rescued Ad replication in the presence of IFNα or IFNγ. Finally, we established a persistent Ad infection model in vitro and demonstrated that IFNγ suppresses productive Ad replication in a manner dependent on the E2F binding site in the E1A enhancer. This is the first study that probes the molecular basis of persistent adenovirus infection and reveals a novel mechanism by which adenoviruses utilize IFN signaling to suppress lytic virus replication and to promote persistent infection. PMID:26809031

  10. Bicalutamide-activated oncolytic adenovirus for the adjuvant therapy of high-risk prostate cancer.

    PubMed

    Johnson, T J; Höti, N; Liu, C; Chowdhury, W H; Li, Y; Zhang, Y; Lupold, S E; Deweese, T; Rodriguez, R

    2013-07-01

    Conditionally replicating adenoviruses (CRAds) utilize tissue-specific promoters to control the expression of the early genes, E1A and E1B, to preferentially replicate and lyse tumor cells (oncolysis). Previous CRAds used in prostate cancer (PCa) gene therapy require androgens to activate prostate-specific promoters and induce viral replication. Unfortunately, these CRAds have reduced activity in patients on androgen-suppressive therapy. We describe a novel prostate-specific CRAd generated by fusing the E1A gene to the androgen receptor (AR) cDNA with a point mutation in codon 685 (C685Y). The E1A-AR fusion neutralizes the previously described mutual inhibition of E1A and AR, and the C685Y point mutation alters specificity of steroid ligand binding to the AR, such that both androgens and nonsteroidal anti-androgens can activate viral replication. We demonstrate that the mutated E1A-AR retained the ability to function in regulating AR-responsive genes and E1A-responsive viral genes. In combination therapy of virus, bicalutamide (anti-androgen) and radiation, a profound impact on cell death by viral oncolysis was seen both in vitro and tumor xenografts. To our knowledge, this is the first gene therapy engineered to be enhanced by anti-androgens and a particularly attractive adjuvant strategy for intensity-modulated radiation therapy of high-risk PCas. PMID:23764901

  11. Bicalutamide Activated Oncolytic Adenovirus for the Adjuvant Therapy of High Risk Prostate Cancer

    PubMed Central

    Johnson, Tamara Jane; Hoti, Naser Uddin; Liu, Chunyan; Chowdhury, Wasim H.; Li, Ying; Zhang, Yonggang; Lupold, Shawn E.; DeWeese, Theodore; Rodriguez, Ronald

    2013-01-01

    Conditionally replicating adenoviruses (CRAds) utilize tissue specific promoters to control the expression of the early genes, E1A and E1B, to preferentially replicate and lyse tumor cells (oncolysis). Previous CRAds used in prostate cancer gene therapy require androgens to activate prostate specific promoters and induce viral replication. Unfortunately, these CRAds have reduced activity in patients on androgen suppressive therapy. We describe a novel prostate specific CRAd generated by fusing the E1A gene to the androgen receptor (AR) cDNA with a point mutation in codon 685 (C685Y). The E1A-AR fusion neutralizes the previously described mutual inhibition of E1A & AR, and the C685Y point mutation alters specificity of steroid ligand binding to the AR, such that both androgens and non-steroidal anti-androgens can activate viral replication. We demonstrate that the mutated E1A-AR retained the ability to function in regulating AR responsive genes and E1A responsive viral genes. In combination therapy of virus, bicalutamide (anti-androgen) and radiation, a profound impact on cell death by viral oncolysis was seen both in vitro and tumor xenografts. To our knowledge, this is the first gene therapy engineered to be enhanced by anti-androgens, and a particularly attractive adjuvant strategy for intensity modulated radiation therapy (IMRT) of high-risk prostate cancers. PMID:23764901

  12. PEGylated Adenoviruses: From Mice to Monkeys

    PubMed Central

    Wonganan, Piyanuch; Croyle, Maria A.

    2010-01-01

    Covalent modification with polyethylene glycol (PEG), a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models. PMID:21994645

  13. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy.

    PubMed

    Choi, Joung-Woo; Park, Ji Won; Na, Youjin; Jung, Soo-Jung; Hwang, June Kyu; Choi, Dongho; Lee, Kyeong Geun; Yun, Chae-Ok

    2015-10-01

    Adenovirus (Ad) is a widely used vector for cancer gene therapy but its therapeutic efficacy is limited by low coxsackievirus and adenovirus receptor (CAR) expression in tumors and non-specifically targeted infection. Ad infectivity and specificity can be markedly improved by creating Ad-magnetic nanoparticles cluster complexes and directing their migration with an external magnetic field (MGF). We electrostatically complexed GFP-expressing, replication-incompetent Ad (dAd) with PEGylated and cross-linked iron oxide nanoparticles (PCION), generating dAd-PCION complexes. The dAd-PCION showed increased transduction efficiency, independent of CAR expression, in the absence or presence of an MGF. Cancer cell killing and intracellular oncolytic Ad (HmT)-PCION replication significantly increased with MGF exposure. Site-directed, magnetically-targeted delivery of the HmT-PCION elicited significantly greater therapeutic efficacy versus treatment with naked HmT or HmT-PCION without MGF in CAR-negative MCF7 tumors. Immunohistochemical tumor analysis showed increased oncolytic Ad replication in tumors following infection by HmT-PCION using an MGF. Whole-body bioluminescence imaging of tumor-bearing mice showed a 450-fold increased tumor-to-liver ratio for HmT-PCION with, versus without, MGF. These results demonstrate the feasibility and potential of external MGF-responsive PCION-coated oncolytic Ads as smart hybrid vectors for cancer gene therapy. PMID:26164117

  14. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    DOE PAGESBeta

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; Hu, Zebin; Cleveland, Elyse; Wu, Ying; Hutten, Ryan; Xiao, Xianghui; Stock, Stuart R.; Shevrin, Daniel; et al

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle tomore » establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.« less

  15. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    SciTech Connect

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; Hu, Zebin; Cleveland, Elyse; Wu, Ying; Hutten, Ryan; Xiao, Xianghui; Stock, Stuart R.; Shevrin, Daniel; Kaul, Karen; Brendler, Charles; Iozzo, Renato V.; Seth, Prem

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle to establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.

  16. Biodistribution of an oncolytic adenovirus after intracranial injection in permissive animals: a comparative study of Syrian hamsters and cotton rats

    PubMed Central

    Sonabend, AM; Ulasov, IV; Han, Y; Rolle, CE; Nandi, S; Cao, D; Tyler, MA; Lesniak, MS

    2008-01-01

    Conditionally replicative adenoviruses (CRAds) are often evaluated in mice; however, normal and cancerous mouse tissues are poorly permissive for human CRAds. As the cotton rat (CR) is a semipermissive animal and the Syrian hamster (SH) is a fully permissive model for adenoviral replication, we compared them in a single study following intracranial (i.c.) injection of a novel glioma-targeting CRAd. Viral genomic copies were quantified by real-time PCR in brain, blood, liver and lung. The studies were corroborated by immunohistochemical, serological and immunological assays. CR had a multiple log higher susceptibility for adenoviral infection than SH. A similar amount of genomic copies of CRAd-Survivin-pk7 and human adenovirus serotype 5 (AdWT) was found in the brain of CR and in all organs from SH. In blood and lung of CR, AdWT had more genomic copies than CRAd-Survivin-pk7 in some of the time points studied. Viral antigens were confirmed in brain slices, an elevation of serum transaminases was observed in both models, and an increase in anti-adenoviral antibodies was detected in SH sera. In conclusion, CR represents a sensitive model for studying biodistribution of CRAds after i.c. delivery, allowing for the detection of differences in the replication of CRAd-Survivin-pk7 and AdWT that were not evident in SH. PMID:19011597

  17. Actin-resistant DNAse I Expression From Oncolytic Adenovirus Enadenotucirev Enhances Its Intratumoral Spread and Reduces Tumor Growth.

    PubMed

    Tedcastle, Alison; Illingworth, Sam; Brown, Alice; Seymour, Leonard W; Fisher, Kerry D

    2016-04-01

    Spread of oncolytic viruses through tumor tissue is essential to effective virotherapy. Interstitial matrix is thought to be a significant barrier to virus particle convection between "islands" of tumor cells. One way to address this is to encode matrix-degrading enzymes within oncolytic viruses, for secretion from infected cells. To test the hypothesis that extracellular DNA provides an important barrier, we assessed the ability of DNase to promote virus spread. Nonreplicating Ad5 vectors expressing actin-resistant DNase (aDNAse I), proteinase K (PK), hyaluronidase (rhPH20), and chondroitinase ABC (CABC) were injected into established DLD human colorectal adenocarcinoma xenografts, transcomplemented with a replicating Ad5 virus. Each enzyme improved oncolysis by the replicating adenovirus, with no evidence of tumor cells being shed into the bloodstream. aDNAse I and rhPH20 hyaluronidase were then cloned into conditionally-replicating group B adenovirus, Enadenotucirev (EnAd). EnAd encoding each enzyme showed significantly better antitumor efficacy than the parental virus, with the aDNAse I-expressing virus showing improved spread. Both DNase and hyaluronidase activity was still measurable 32 days postinfection. This is the first time that extracellular DNA has been implicated as a barrier for interstitial virus spread, and suggests that oncolytic viruses expressing aDNAse I may be promising candidates for clinical translation. PMID:26708004

  18. T-cell Subsets in Peripheral Blood and Tumors of Patients Treated With Oncolytic Adenoviruses

    PubMed Central

    Kristian, Taipale; Ilkka, Liikanen; Juuso, Juhila; Aila, Karioja-Kallio; Minna, Oksanen; Riku, Turkki; Nina, Linder; Johan, Lundin; Ari, Ristimäki; Anna, Kanerva; Anniina, Koski; Timo, Joensuu; Markus, Vähä-Koskela; Akseli, Hemminki

    2015-01-01

    The quality of the antitumor immune response is decisive when developing new immunotherapies for cancer. Oncolytic adenoviruses cause a potent immunogenic stimulus and arming them with costimulatory molecules reshapes the immune response further. We evaluated peripheral blood T-cell subsets of 50 patients with refractory solid tumors undergoing treatment with oncolytic adenovirus. These data were compared to changes in antiviral and antitumor T cells, treatment efficacy, overall survival, and T-cell subsets in pre- and post-treatment tumor biopsies. Treatment caused a significant (P < 0.0001) shift in T-cell subsets in blood, characterized by a proportional increase of CD8+ cells, and decrease of CD4+ cells. Concomitant treatment with cyclophosphamide and temozolomide resulted in less CD4+ decrease (P = 0.041) than cyclophosphamide only. Interestingly, we saw a correlation between T-cell changes in peripheral blood and the tumor site. This correlation was positive for CD8+ and inverse for CD4+ cells. These findings give insight to the interconnections between peripheral blood and tumor-infiltrating lymphocyte (TIL) populations regarding oncolytic virotherapy. In particular, our data suggest that induction of T-cell response is not sufficient for clinical response in the context of immunosuppressive tumors, and that peripheral blood T cells have a complicated and potentially misleading relationship with TILs. PMID:25655312

  19. Deletion of the E4 region of the genome produces adenovirus DNA concatemers.

    PubMed Central

    Weiden, M D; Ginsberg, H S

    1994-01-01

    Two mutants containing large deletions in the E4 region of the adenovirus genome H5dl366 (91.9-98.3 map units) and H2dl808 (93.0-97.1 map units) were used to investigate the role of E4 genes in adenovirus DNA synthesis. Infection of KB human epidermoid carcinoma cells with either mutant resulted in production of large concatemers of viral DNA. Only monomer viral genome forms were produced, however, when mutants infected W162 cells, a monkey kidney cell line transformed with and expressing the E4 genes. Diffusible E4 gene products, therefore, complement the E4 mutant phenotype. The viral DNA concatemers produced in dl366- and dl808-infected KB cells did not have any specific orientation of monomer joining: the junctions consisted of head-to-head, head-to-tail, and tail-to-tail joints. The junctions were covalently linked molecules, but molecules were not precisely joined, and restriction enzyme maps revealed a heterogeneous size distribution of junction fragments. A series of mutants that disrupted single E4 open reading frames (ORFs) was also studied: none showed phenotypes similar to that of dl366 or dl808. Mutants containing defects in both ORF3 and ORF6, however, manifested the concatemer phenotype, indicating redundancy in genes preventing concatemer formation. These data suggest that the E4 ORFs 3 and 6 express functions critical for regulation of viral DNA replication and that concatemer intermediates may exist during adenovirus DNA synthesis. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278357

  20. The evolution of replicators.

    PubMed Central

    Szathmáry, E

    2000-01-01

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914

  1. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  2. Stepwise Loss of Fluorescent Core Protein V from Human Adenovirus during Entry into Cells ▿ †

    PubMed Central

    Puntener, Daniel; Engelke, Martin F.; Ruzsics, Zsolt; Strunze, Sten; Wilhelm, Corinne; Greber, Urs F.

    2011-01-01

    Human adenoviruses (Ads) replicate and assemble particles in the nucleus. They organize a linear double-strand DNA genome into a condensed core with about 180 nucleosomes, by the viral proteins VII (pVII), pX, and pV attaching the DNA to the capsid. Using reverse genetics, we generated a novel, nonconditionally replicating Ad reporter by inserting green fluorescent protein (GFP) at the amino terminus of pV. Purified Ad2-GFP-pV virions had an oversized complete genome and incorporated about 38 GFP-pV molecules per virion, which is about 25% of the pV levels in Ad2. GFP-pV cofractionated with the DNA core, like pV, and newly synthesized GFP-pV had a subcellular localization indistinguishable from that of pV, indicating that GFP-pV is a valid reporter for pV. Ad2-GFP-pV completed the replication cycle, although at lower yields than Ad2. Incoming GFP-pV (or pV) was not imported into the nucleus. Virions lost GFP-pV at two points during the infection process: at entry into the cytosol and at the nuclear pore complex, where capsids disassemble. Disassembled capsids, positive for the conformation-specific antihexon antibody R70, were devoid of GFP-pV. The loss of GFP-pV was reduced by the macrolide antibiotic leptomycin B (LMB), which blocks nuclear export and adenovirus attachment to the nuclear pore complex. LMB inhibited the appearance of R70 epitopes on Ad2 and Ad2-GFP-pV, indicating that the loss of GFP-pV from Ad2-GFP-pV is an authentic step in the adenovirus uncoating program. Ad2-GFP-pV is genetically complete and hence enables detailed analyses of infection and spreading dynamics in cells and model organisms or assessment of oncolytic adenoviral potential. PMID:21047958

  3. Isolation and Epidemiology of Falcon Adenovirus

    PubMed Central

    Oaks, J. Lindsay; Schrenzel, Mark; Rideout, Bruce; Sandfort, Cal

    2005-01-01

    An adenovirus was detected by electron microscopy in tissues from falcons that died during an outbreak of inclusion body hepatitis and enteritis that affected neonatal Northern aplomado (Falco femoralis septentrionalis) and peregrine (Falco peregrinus anatum) falcons. Molecular characterization has identified the falcon virus as a new member of the aviadenovirus group (M. Schrenzel, J. L. Oaks, D. Rotstein, G. Maalouf, E. Snook, C. Sandfort, and B. Rideout, J. Clin. Microbiol. 43:3402-3413, 2005). In this study, the virus was successfully isolated and propagated in peregrine falcon embryo fibroblasts, in which it caused visible and reproducible cytopathology. Testing for serum neutralizing antibodies found that infection with this virus was limited almost exclusively to falcons. Serology also found that wild and captive peregrine falcons had high seropositivity rates of 80% and 100%, respectively, although clinical disease was rarely reported in this species. These data implicate peregrine falcons as the natural host and primary reservoir for the virus. Other species of North American falcons, including aplomado falcons, had lower seropositivity rates of 43 to 57%. Falcon species of tropical and/or island origin were uniformly seronegative, although deaths among adults of these species have been described, suggesting they are highly susceptible. Chickens and quail were uniformly seronegative and not susceptible to infection, indicating that fowl were not the source of infection. Based on the information from this study, the primary control of falcon adenovirus infections should be based on segregation of carrier and susceptible falcon species. PMID:16000467

  4. Selective induction of toxicity to human cells expressing human immunodeficiency virus type 1 Tat by a conditionally cytotoxic adenovirus vector.

    PubMed Central

    Venkatesh, L K; Arens, M Q; Subramanian, T; Chinnadurai, G

    1990-01-01

    The human immunodeficiency viruses (HIVs) primarily infect CD4+ T lymphocytes, leading eventually to the development of a systemic immune dysfunction termed acquired immunodeficiency syndrome (AIDS). An attractive strategy to combat HIV-mediated pathogenesis would be to eliminate the initial pool of infected cells and thus prevent disease progression. We have engineered a replication-defective, conditionally cytotoxic adenovirus vector, Ad-tk, whose action is dependent on the targeted expression of the herpes simplex virus type 1 thymidine kinase gene (tk), cloned downstream of the HIV-1 long terminal repeat, in human cells expressing the HIV-1 transcriptional activator Tat. Infection of Tat-expressing human HeLa or Jurkat cells with Ad-tk resulted in high-level tk expression, which was not deleterious to the viability of these cells. However, in the presence of the antiherpetic nucleoside analog ganciclovir, Ad-tk infection resulted in a massive reduction in the viability of these Tat-expressing cell lines. As adenoviruses are natural passengers of the human lymphoid system, our results suggest adenovirus vector-based strategies for the targeted expression, under the control of cis-responsive HIV regulatory elements, of cytotoxic agents in HIV-infected cells for the therapy of HIV-mediated pathogenesis. Images PMID:2247444

  5. Characterization of the Antiglioma Effect of the Oncolytic Adenovirus VCN-01.

    PubMed

    Vera, Beatriz; Martínez-Vélez, Naiara; Xipell, Enric; Acanda de la Rocha, Arlet; Patiño-García, Ana; Saez-Castresana, Javier; Gonzalez-Huarriz, Marisol; Cascallo, Manel; Alemany, Ramón; Alonso, Marta M

    2016-01-01

    Despite the recent advances in the development of antitumor therapies, the prognosis for patients with malignant gliomas remains dismal. Therapy with tumor-selective viruses is emerging as a treatment option for this devastating disease. In this study we characterize the anti-glioma effect of VCN-01, an improved hyaluronidase-armed pRB-pathway-selective oncolytic adenovirus that has proven safe and effective in the treatment of several solid tumors. VCN-01 displayed a significant cytotoxic effect on glioma cells in vitro. In vivo, in two different orthotopic glioma models, a single intra-tumoral administration of VCN-01 increased overall survival significantly and led to long-term survivors free of disease. PMID:26808201

  6. Characterization of the Antiglioma Effect of the Oncolytic Adenovirus VCN-01

    PubMed Central

    Vera, Beatriz; Martínez-Vélez, Naiara; Xipell, Enric; Acanda de la Rocha, Arlet; Patiño-García, Ana; Saez-Castresana, Javier; Gonzalez-Huarriz, Marisol; Cascallo, Manel; Alemany, Ramón; Alonso, Marta M.

    2016-01-01

    Despite the recent advances in the development of antitumor therapies, the prognosis for patients with malignant gliomas remains dismal. Therapy with tumor-selective viruses is emerging as a treatment option for this devastating disease. In this study we characterize the anti-glioma effect of VCN-01, an improved hyaluronidase-armed pRB-pathway-selective oncolytic adenovirus that has proven safe and effective in the treatment of several solid tumors. VCN-01 displayed a significant cytotoxic effect on glioma cells in vitro. In vivo, in two different orthotopic glioma models, a single intra-tumoral administration of VCN-01 increased overall survival significantly and led to long-term survivors free of disease. PMID:26808201

  7. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  8. A Single Intraduodenal Administration of Human Adenovirus 40 Vaccine Effectively Prevents Anaphylactic Shock

    PubMed Central

    Yamasaki, Satoshi; Miura, Yoshiaki; Davydova, Julia; Vickers, Selwyn M.

    2013-01-01

    Vaccine administration into the intestine is known to induce mucosal tolerance most efficiently. Therefore, developing a delivery system that targets the intestinal mucosa is expected to improve the efficiency of immunosuppression. Human enteric adenovirus serotype 40 (Ad40)-based vectors have the advantage of targeting intestinal mucosa, making them prime candidates as mucosal vaccine carriers for immunosuppression. Here, after both oral and intraduodenal administrations, the vector distribution of replication-defective recombinant Ad40 vectors (rAd40) was significantly higher than that of a conventional Ad vector based on human adenovirus 5 (Ad5) in ilea containing Peyer's patches. Single intraduodenal administration of rAd40 induced antigen-specific mucosal immunoreaction mediated by intestinal mucosal and systemic immunity. In ovalbumin-induced allergy mouse models, this approach inhibited antigen-specific delayed-type hypersensitivity reactions, diarrhea occurrence, and systemic anaphylaxis. Thus, a single intraduodenal administration of rAd40 provides a potent method of inducing allergen-specific mucosal tolerance and a new allergen-specific immunotherapy for overcoming problems with current therapies against life-threatening allergic reactions, including anaphylaxis. PMID:23885027

  9. Inhibition of adenovirus multiplication by inosine pranobex and interferon α in vitro

    PubMed Central

    Lasek, Witold; Janyst, Michał; Młynarczyk, Grażyna

    2016-01-01

    There are no specific antivirals designed for adenoviral infections. Due to many cases of adenovirus infections worldwide, epidemic nature of some types of adenoviruses, and growing number of patients with severe adenoviral infections resulting from dysfunction the immune system, the need for searching an effective and safe therapy is increasing. Inosine pranobex exerts antiviral effects which are both direct and secondary to immunomodulatory activity. In the present study we evaluated in vitro effect of inosine pranobex and interferon α (IFN-α) on replication of HAdV-2 and HAdV-5. The effectiveness of inosine pranobex under these conditions has not been previously reported. In conducted study we reported that inosine pranobex reduced the titer of infectious HAdV-2 and HAdV-5 in vitro. Higher concentrations of IP strongly inhibited multiplication of viruses. Combination of inosine pranobex and IFN-α display higher efficacy than either treatment alone and suggest that both agents may increase therapeutic effectiveness without augmenting toxic effects. Combination index calculations showed that inosine pranobex and INF-α synergistically inhibit HAdV-2 and HAdV-5 titers in A549 cells. PMID:26862302

  10. A simplified system for generating recombinant E3-deleted canine adenovirus-2.

    PubMed

    Yu, Zuo; Jiang, Qian; Liu, Jiasen; Guo, Dongchun; Quan, Chuansong; Li, Botao; Qu, Liandong

    2015-01-01

    Canine adenovirus type 2 (CAV-2) has been used extensively as a vector for studying gene therapy and vaccine applications. We describe a simple strategy for generating a replication-competent recombinant CAV-2 using a backbone vector and a shuttle vector. The backbone plasmid containing the full-length CAV-2 genome was constructed by homologous recombination in Escherichia coli strain BJ5183. The shuttle plasmid, which has a deletion of 1478 bp in the nonessential E3 viral genome region, was generated by subcloning a fusion fragment containing the flanking sequences of the CAV-2 E3 region and expression cassette sequences from pcDNA3.1(+) into modified pUC18. To determine system effectiveness, a gene for enhanced green fluorescent protein (EGFP) was inserted into the shuttle plasmid and cloned into the backbone plasmid using two unique NruI and SalI sites. Transfection of Madin-Darby canine kidney (MDCK) cells with the recombinant adenovirus genome containing the EGFP expression cassette resulted in infectious viral particles. This strategy provides a solid foundation for developing candidate vaccines using CAV-2 as a delivery vector. PMID:25450764

  11. E1B and E4 Oncoproteins of Adenovirus Antagonize the Effect of Apoptosis Inducing Factor

    PubMed Central

    Turner, Roberta L.; Wilkinson, John C.; Ornelles, David A.

    2014-01-01

    Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4orf3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4orf3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins. PMID:24889240

  12. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy

    PubMed Central

    Ulasov, Ilya V.; Shah, Nameeta; Kaverina, Natalya V.; Lee, Hwahyang; Lin, Biaoyang; Lieber, Andre; Kadagidze, Zaira G.; Yoon, Jae-Guen; Schroeder, Brett; Hothi, Parvinder; Ghosh, Dhimankrishna; Baryshnikov, Anatoly Y.; Cobbs, Charles S.

    2015-01-01

    Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy. PMID:25738357

  13. Self-replicating systems.

    PubMed

    Clixby, Gregory; Twyman, Lance

    2016-05-01

    Over the past 25 years, there has been a surge of development in research towards self-replication and self-replicating systems. The interest in these systems relates to one of the most fundamental questions posed in all fields of science - How did life on earth begin? Investigating how the self-replication process evolved may hold the key to understanding the emergence and evolution of living systems and, ultimately, gain a clear insight into the origin of life on earth. This introductory review aims to highlight the fundamental prerequisites of self-replication along with the important research that has been conducted over the past few decades. PMID:27086507

  14. New human adenovirus isolated from a renal transplant recipient: description and characterization of candiate adenovirus type 34.

    PubMed Central

    Hierholzer, J C; Atuk, N O; Gwaltney, J M

    1975-01-01

    An antigenically distinct adenovirus is described which was isolated in March 1972 from the urine of a 17-year-old Caucasian male who was experiencing fever after receiving a kidney transplant from a cadaver in February. The adenovirus could not be isolated in April from a pharyngeal swab which yielded cytomegalovirus. Complement-fixation, hemagglutination-inhibition, and/or serum-neutralization tests on sequential serum specimens from the patient confirmed that the adenovirus infection occurred during March and showed that infections with cytomegalovirus and respiratory syncytial virus also occurred during late March and April. The patient's persistent fever, for which other causes could not be found, may have been associated with one or more of these infections. Upper respiratory symptoms and lung involvement were not found during this period. Mild liver dysfunction during this time could not be clearly related to adenovirus infection because of the presence of multiple other causes. The adenovirus may have been latent in the donor kidney and become active in the new host as a consequence of immunological impairment. The adenovirus, purified by terminal dilution and plaque procedures, has antigenic, morphological, biophysical, host susceptibility, and hemagglutinating properties characteristic of adenovirus group IA. Buoyant densities in CsCl are 1.340 g/ml for the virion, 1.304 g/ml for the group CF antigen (hexon), 1.295 g/ml for the major soluble complete hemagglutinin (dodecon), and 1.206 g/ml for the minor soluble complete hemagglutinin (tentatively, fiber dimer). The virus does not cross-react in reciprocal hemagglutination-inhibition and serum-neutralization tests with antisera to adenovirus types 1 to 33. We propose this virus as candidate adenovirus type 34 (Compton). Images PMID:170313

  15. Differential immunogenicity between HAdV-5 and chimpanzee adenovirus vector ChAdOx1 is independent of fiber and penton RGD loop sequences in mice

    PubMed Central

    Dicks, Matthew D. J.; Spencer, Alexandra J.; Coughlan, Lynda; Bauza, Karolis; Gilbert, Sarah C.; Hill, Adrian V. S.; Cottingham, Matthew G.

    2015-01-01

    Replication defective adenoviruses are promising vectors for the delivery of vaccine antigens. However, the potential of a vector to elicit transgene-specific adaptive immune responses is largely dependent on the viral serotype used. HAdV-5 (Human adenovirus C) vectors are more immunogenic than chimpanzee adenovirus vectors from species Human adenovirus E (ChAdOx1 and AdC68) in mice, though the mechanisms responsible for these differences in immunogenicity remain poorly understood. In this study, superior immunogenicity was associated with markedly higher levels of transgene expression in vivo, particularly within draining lymph nodes. To investigate the viral factors contributing to these phenotypes, we generated recombinant ChAdOx1 vectors by exchanging components of the viral capsid reported to be principally involved in cell entry with the corresponding sequences from HAdV-5. Remarkably, pseudotyping with the HAdV-5 fiber and/or penton RGD loop had little to no effect on in vivo transgene expression or transgene-specific adaptive immune responses despite considerable species-specific sequence heterogeneity in these components. Our results suggest that mechanisms governing vector transduction after intramuscular administration in mice may be different from those described in vitro. PMID:26576856

  16. An Adenovirus Type 5 Mutant with the Preterminal Protein Gene Deleted Efficiently Provides Helper Functions for the Production of Recombinant Adeno-Associated Virus

    PubMed Central

    Maxwell, Ian H.; Maxwell, Francoise; Schaack, Jerome

    1998-01-01

    Production of recombinant adeno-associated virus (rAAV) requires helper functions that have routinely been provided by infection of the producer cells with adenovirus. Complete removal and/or inactivation of progeny adenovirus, present in such rAAV preparations, presents significant difficulty. Here, we report that an adenovirus type 5 (Ad5) mutant with the preterminal protein (pTP) gene deleted can provide helper function for the growth of rAAV. At high multiplicity, Ad5dl308ΔpTP was as efficient as the phenotypically wild-type Ad5dl309 in permitting growth of rAAV. Use of Ad5dl308ΔpTP, which is incapable of replication in the absence of complementation for pTP, as a helper avoids the need to remove contaminating adenovirus infectious activity by heat inactivation or by purification. Comparison of the transducing ability of rAAV generated with either Ad5dl308ΔpTP or Ad5dl309 as a helper demonstrated that the heat inactivation protocol generally used does not remove all of the helper Ad5dl309 function. PMID:9733887

  17. The Intracellular Domain of the Coxsackievirus and Adenovirus Receptor Differentially Influences Adenovirus Entry

    PubMed Central

    Loustalot, Fabien

    2015-01-01

    ABSTRACT The coxsackievirus and adenovirus receptor (CAR) is a cell adhesion molecule used as a docking molecule by some adenoviruses (AdVs) and group B coxsackieviruses. We previously proposed that the preferential transduction of neurons by canine adenovirus type 2 (CAV-2) is due to CAR-mediated internalization. Our proposed pathway of CAV-2 entry is in contrast to that of human AdV type 5 (HAdV-C5) in nonneuronal cells, where internalization is mediated by auxiliary receptors such as integrins. We therefore asked if in fibroblast-like cells the intracellular domain (ICD) of CAR plays a role in the internalization of the CAV-2 fiber knob (FKCAV), CAV-2, or HAdV-C5 when the capsid cannot engage integrins. Here, we show that in fibroblast-like cells, the CAR ICD is needed for FKCAV entry and efficient CAV-2 transduction but dispensable for HAdV-C5 and an HAdV-C5 capsid lacking the RGD sequence (an integrin-interacting motif) in the penton. Moreover, the deletion of the CAR ICD further impacts CAV-2 intracellular trafficking, highlighting the crucial role of CAR in CAV-2 intracellular dynamics. These data demonstrate that the CAR ICD contains sequences important for the recruitment of the endocytic machinery that differentially influences AdV cell entry. IMPORTANCE Understanding how viruses interact with the host cell surface and reach the intracellular space is of crucial importance for applied and fundamental virology. Here, we compare the role of a cell adhesion molecule (CAR) in the internalization of adenoviruses that naturally infect humans and Canidae. We show that the intracellular domain of CAR differentially regulates AdV entry and trafficking. Our study highlights the mechanistic differences that a receptor can have for two viruses from the same family. PMID:26136571

  18. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    SciTech Connect

    Freytag, Svend O.; Stricker, Hans; Lu, Mei; Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho; Peabody, James; Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang; Oja-Tebbe, Nancy; Bourgeois, Renee; Gupta, Nilesh; Lane, Zhaoli; Rodriguez, Ron; DeWeese, Theodore; and others

    2014-06-01

    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.

  19. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new

  20. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for

  1. Combined therapy of oncolytic adenovirus and temozolomide enhances lung cancer virotherapy in vitro and in vivo.

    PubMed

    Gomez-Gutierrez, Jorge G; Nitz, Jonathan; Sharma, Rajesh; Wechman, Stephen L; Riedinger, Eric; Martinez-Jaramillo, Elvis; Sam Zhou, Heshan; McMasters, Kelly M

    2016-01-01

    Oncolytic adenoviruses (OAds) are very promising for the treatment of lung cancer. However, OAd-based monotherapeutics have not been effective during clinical trials. Therefore, the effectiveness of virotherapy must be enhanced by combining OAds with other therapies. In this study, the therapeutic potential of OAd in combination with temozolomide (TMZ) was evaluated in lung cancer cells in vitro and in vivo. The combination of OAd and TMZ therapy synergistically enhanced cancer cell death; this enhanced cancer cell death may be explained via three related mechanisms: apoptosis, virus replication, and autophagy. Autophagy inhibition partially protected cancer cells from this combined therapy. This combination significantly suppressed the growth of subcutaneous H441 lung cancer xenograft tumors in athymic nude mice. In this study, we have provided an experimental rationale to test OAds in combination with TMZ in a lung cancer clinical trial. PMID:26561948

  2. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    PubMed

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. PMID:26247875

  3. Who Needs Replication?

    ERIC Educational Resources Information Center

    Porte, Graeme

    2013-01-01

    In this paper, the editor of a recent Cambridge University Press book on research methods discusses replicating previous key studies to throw more light on their reliability and generalizability. Replication research is presented as an accepted method of validating previous research by providing comparability between the original and replicated…

  4. Transient acute adrenal insufficiency associated with adenovirus serotype 40 infection

    PubMed Central

    Rai, Birendra; Ali, Muhammad; Kumar, Varun; Krebit, Ibraheem

    2014-01-01

    We present an instance of a 6-year-old boy who was admitted with adenovirus infection and developed transient acute adrenal insufficiency, which required supplementation with glucocorticoids and mineralocorticoids for 8 weeks. Adenovirus has got adrenotropic potential and can cause adrenal insufficiency. We could not find any similar reported case in medical literature. We hope our case would add to the existing knowledge of adenoviral complications in paediatric patients. PMID:24928932

  5. Acute Hepatitis and Pancytopenia in Healthy Infant with Adenovirus.

    PubMed

    Matoq, Amr; Salahuddin, Asma

    2016-01-01

    Adenoviruses are a common cause of respiratory infection, pharyngitis, and conjunctivitis in infants and young children. They are known to cause hepatitis and liver failure in immunocompromised patients; they are a rare cause of hepatitis in immunocompetent patients and have been known to cause fulminant hepatic failure. We present a 23-month-old immunocompetent infant who presented with acute noncholestatic hepatitis, hypoalbuminemia, generalized anasarca, and pancytopenia secondary to adenovirus infection. PMID:27340581

  6. Acute Hepatitis and Pancytopenia in Healthy Infant with Adenovirus

    PubMed Central

    Salahuddin, Asma

    2016-01-01

    Adenoviruses are a common cause of respiratory infection, pharyngitis, and conjunctivitis in infants and young children. They are known to cause hepatitis and liver failure in immunocompromised patients; they are a rare cause of hepatitis in immunocompetent patients and have been known to cause fulminant hepatic failure. We present a 23-month-old immunocompetent infant who presented with acute noncholestatic hepatitis, hypoalbuminemia, generalized anasarca, and pancytopenia secondary to adenovirus infection. PMID:27340581

  7. Experimental virotherapy of chemoresistant pancreatic carcinoma using infectivity-enhanced fiber-mosaic oncolytic adenovirus

    PubMed Central

    Kaliberov, Sergey A.; Kaliberova, Lyudmila N.; Buchsbaum, Donald J.; Curiel, David T.

    2014-01-01

    Pancreatic cancer is a significant clinical problem and novel therapeutic approaches are desperately needed. Recent advances in conditionally replicative adenovirus-based (CRAd) oncolytic virus design allow the application of CRAd vectors as a therapeutic strategy to efficiently target and eradicate chemoresistant pancreatic cancer cells thereby improving the efficacy of pancreatic cancer treatment. The goal of this study was to construct and validate the efficacy of an infectivity-enhanced, liver-untargeted, tumor-specific CRAd vector. A panel of CRAds has been derived which embody the C-X-C chemokine receptor type 4 promoter for conditional replication, two fiber complex mosaicism for targeting expansion, and hexon hypervariable region 7 (HVR7) modification for liver untargeting. We evaluated CRAds for cancer virotherapy using a human pancreatic tumor xenograft model. Employment of the fiber mosaic approach improved CRAd replication in pancreatic tumor xenografts. Substitution of the HVR7 of the Ad5 hexon for Ad serotype 3 hexon resulted in decreased liver tropism of systemically administrated CRAd. Obtained data demonstrated that employment of complex mosaicism increased efficacy of the combination of oncolytic virotherapy with chemotherapy in a human pancreatic tumor xenograft model. PMID:24903014

  8. Polymeric oncolytic adenovirus for cancer gene therapy

    PubMed Central

    Choi, Joung-Woo; Lee, Young Sook; Yun, Chae-Ok; Kim, Sung Wan

    2015-01-01

    Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research. PMID:26453806

  9. Adenovirus infection of the large bowel in HIV positive patients.

    PubMed Central

    Maddox, A.; Francis, N.; Moss, J.; Blanshard, C.; Gazzard, B.

    1992-01-01

    AIMS: To describe the microscopic appearance of adenovirus infection in the large bowel of human immunodeficiency virus (HIV) positive patients with diarrhoea. METHODS: Large bowel biopsy specimens from 10 HIV positive patients, eight of whom were also infected with other gastrointestinal pathogens, with diarrhoea were examined, together with six small bowel biopsy specimens from the same group of patients. Eight of the patients had AIDS. The biopsy specimens were examined by light microscopy performed on haematoxylin and eosin stained and immunoperoxidase preparations, the latter using a commercially available antibody (Serotec MCA 489). Confirmation was obtained with electron microscopy. RESULTS: The morphological appearance of cells infected with adenovirus showed characteristic nuclear and cellular changes, although the inflammatory reaction was non-specific. Immunoperoxidase staining for adenovirus was sensitive and specific, and the presence of viral inclusions consistent with adenovirus was confirmed by electron microscopy. CONCLUSIONS: The light microscopic features of adenovirus infection are distinctive and immunocytochemistry with a commercially available antibody is a sensitive and specific means of confirming the diagnosis. Further studies of the role of adenovirus in causing diarrhoea in these patients are indicated. Images PMID:1401177

  10. The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment

    PubMed Central

    Hashimoto, Yuuri; Tazawa, Hiroshi; Teraishi, Fuminori; Kojima, Toru; Watanabe, Yuichi; Uno, Futoshi; Yano, Shuya; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2012-01-01

    Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells. PMID:22720091

  11. Rejection of adenovirus infection is independent of coxsackie and adenovirus receptor expression in cisplatin-resistant human lung cancer cells.

    PubMed

    Zhang, Nian-Hua; Peng, Rui-Qing; Ding, Ya; Zhang, Xiao-Shi

    2016-08-01

    The adenovirus vector-based cancer gene therapy is controversial. Low transduction efficacy is believed to be one of the main barriers for the decreased expression of coxsackie and adenovirus receptor (CAR) on tumor cells. However, the expression of CAR on primary tumor tissue and tumor tissue survived from treatment has still been not extensively studied. The present study analyzed the adenovirus infection rates and CAR expression in human lung adenocarcinoma cell line A549 and its cisplatin-resistant subline A549/DDP. The results showed that although the CAR expression in A549 and A549/DDP was not different, compared with the A549, A549/DDP appeared obviously to reject adenovirus infection. Moreover, we modified CAR expression in the two cell lines with proteasome inhibitor MG-132 and histone deacetylase inhibitor trichostatin A (TSA), and analyzed the adenovirus infection rates after modifying agent treatments. Both TSA and MG-132 pretreatments could increase the CAR expression in the two cell lines, but the drug pretreatments could only make A549 cells more susceptible to adenovirus infectivity. PMID:27373420

  12. Human Adenovirus 52 Uses Sialic Acid-containing Glycoproteins and the Coxsackie and Adenovirus Receptor for Binding to Target Cells

    PubMed Central

    Lenman, Annasara; Liaci, A. Manuel; Liu, Yan; Årdahl, Carin; Rajan, Anandi; Nilsson, Emma; Bradford, Will; Kaeshammer, Lisa; Jones, Morris S.; Frängsmyr, Lars; Feizi, Ten; Stehle, Thilo; Arnberg, Niklas

    2015-01-01

    Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy. PMID:25674795

  13. A Combinatory Strategy for Detection of Live CTCs Using Microfiltration and a New Telomerase-Selective Adenovirus.

    PubMed

    Ma, Yanchun; Hao, Sijie; Wang, Shuwen; Zhao, Yuanjun; Lim, Bora; Lei, Ming; Spector, David J; El-Deiry, Wafik S; Zheng, Si-Yang; Zhu, Jiyue

    2015-03-01

    Circulating tumor cells (CTC) have become an important biomarker for early cancer diagnosis, prognosis, and treatment monitoring. Recently, a replication-competent recombinant adenovirus driven by a human telomerase gene (hTERT) promoter was shown to detect live CTCs in blood samples of patients with cancer. Here, we report a new class of adenoviruses containing regulatory elements that repress the hTERT gene in normal cells. Compared with the virus with only the hTERT core promoter, the new viruses showed better selectivity for replication in cancer cells than in normal cells. In particular, Ad5GTSe, containing three extra copies of a repressor element, displayed a superior tropism for cancer cells among leukocytes and was thus selected for CTC detection in blood samples. To further improve the efficiency and specificity of CTC identification, we tested a combinatory strategy of microfiltration enrichment using flexible micro spring arrays and Ad5GTSe imaging. Our experiments showed that this method efficiently detected both cancer cells spiked into healthy blood and potential CTCs in blood samples of patients with breast and pancreatic cancer, demonstrating its potential as a highly sensitive and reliable system for detection and capture of CTCs of different tumor types. PMID:25589497

  14. Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity.

    PubMed Central

    Teodoro, J G; Halliday, T; Whalen, S G; Takayesu, D; Graham, F L; Branton, P E

    1994-01-01

    The 55-kDa product of early region 1B (E1B) of human adenoviruses is required for viral replication and participates in cell transformation through complex formation with and inactivation of the cellular tumor suppressor p53. We have used both biochemical and genetic approaches to show that this 496-residue (496R) protein of adenovirus type 5 is phosphorylated at serine and threonine residues near the carboxy terminus within sequences characteristic of substrates of casein kinase II. Mutations which converted serines 490 and 491 to alanine residues decreased viral replication and greatly reduced the efficiency of transformation of primary baby rat kidney cells. Such mutant 496R proteins interacted with p53 at efficiencies similar to those of wild-type 496R but only partially inhibited p53 transactivation activity. These results indicated that phosphorylation at these carboxy-terminal sites either regulates the inhibition of p53 or regulates some other 496R function required for cell transformation. Images PMID:8289381

  15. Development of a replication defective adenovirus 5 vector expressing porcine interleukin-18 and a mutated analog

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell-mediated immune responses against swine pathogens are sometimes necessary to elicit durable protective immunity. Cell mediated or Th1 immunity is dependent on the coordinated expression of several cytokines, including interferon-gamma to assist in the production of antigen-specific cytotoxic T...

  16. Biosynthesis of adenovirus type 2 i-leader protein.

    PubMed Central

    Symington, J S; Lucher, L A; Brackmann, K H; Virtanen, A; Pettersson, U; Green, M

    1986-01-01

    The i-leader is a 440-base-pair sequence located between 21.8 and 23.0 map units on the adenovirus type 2 genome and is spliced between the second and third segments of the major tripartite leader in certain viral mRNA molecules. The i-leader contains an open translational reading frame for a hypothetical protein of Mr about 16,600, and a 16,000-Mr polypeptide (16K protein) has been translated in vitro on mRNA selected with DNA containing the i-leader (A. Virtanen, P. Aleström, H. Persson, M. G. Katze, and U. Pettersson, Nucleic Acids Res. 10:2539-2548, 1982). To determine whether the i-leader protein is synthesized during productive infection and to provide an immunological reagent to study the properties and functions of the i-leader protein, we prepared antipeptide antibodies directed to a 16-amino acid synthetic peptide which is encoded near the N terminus of the hypothetical i-leader protein and contains a high acidic amino acid and proline content. Antipeptide antibodies immunoprecipitated from extracts of adenovirus type 2-infected cells a major 16K protein that comigrated with a 16K protein translated in vitro. Partial N-terminal amino acid sequence analysis by Edman degradation of radiolabeled 16K antigen showed that methionine is present at residue 1 and leucine is present at residues 8 and 10, as predicted from the DNA sequence, establishing that the 16K protein precipitated by this antibody is indeed the i-leader protein. Thus, the i-leader protein is a prominent species that is synthesized during productive infection. The i-leader protein is often seen as a doublet on polyacrylamide gels, suggesting that either two related forms of i-leader protein are synthesized in infected cells or that a posttranslational modification occurs. Time course studies using immunoprecipitation analysis with antipeptide antibodies revealed that the E1A 289R T antigen and the E1B-19K (175R) T antigen are synthesized beginning at 2 to 3 and 4 to 5 h postinfection

  17. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  18. Replication-Fork Dynamics

    PubMed Central

    Duderstadt, Karl E.; Reyes-Lamothe, Rodrigo; van Oijen, Antoine M.; Sherratt, David J.

    2014-01-01

    The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged. PMID:23881939

  19. Adenovirus Improves the Efficacy of Adoptive T-cell Therapy by Recruiting Immune Cells to and Promoting Their Activity at the Tumor.

    PubMed

    Tähtinen, Siri; Grönberg-Vähä-Koskela, Susanna; Lumen, Dave; Merisalo-Soikkeli, Maiju; Siurala, Mikko; Airaksinen, Anu J; Vähä-Koskela, Markus; Hemminki, Akseli

    2015-08-01

    Despite the rapid progress in the development of novel adoptive T-cell therapies, the clinical benefits in treatment of established tumors have remained modest. Several immune evasion mechanisms hinder T-cell entry into tumors and their activity within the tumor. Of note, oncolytic adenoviruses are intrinsically immunogenic due to inherent pathogen-associated molecular patterns. Here, we studied the capacity of adenovirus to overcome resistance of chicken ovalbumin-expressing B16.OVA murine melanoma tumors to adoptive ovalbumin-specific CD8(+) T-cell (OT-I) therapy. Following intraperitoneal transfer of polyclonally activated OT-I lymphocytes, control of tumor growth was superior in mice given intratumoral adenovirus compared with control mice, even in the absence of oncolytic virus replication. Preexisting antiviral immunity against serotype 5 did not hinder the therapeutic efficacy of the combination treatment. Intratumoral adenovirus injection was associated with an increase in proinflammatory cytokines, CD45(+) leukocytes, CD8(+) lymphocytes, and F4/80(+) macrophages, suggesting enhanced tumor immunogenicity. The proinflammatory effects of adenovirus on the tumor microenvironment led to expression of costimulatory signals on CD11c(+) antigen-presenting cells and subsequent activation of T cells, thus breaking the tumor-induced peripheral tolerance. An increased number of CD8(+) T cells specific for endogenous tumor antigens TRP-2 and gp100 was detected in combination-treated mice, indicating epitope spreading. Moreover, the majority of virus/T-cell-treated mice rejected the challenge of parental B16.F10 tumors, suggesting that systemic antitumor immunity was induced. In summary, we provide proof-of-mechanism data on combining adoptive T-cell therapy and adenovirotherapy for the treatment of cancer. PMID:25977260

  20. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  1. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  2. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... dilution in a varying serum-constant virus neutralization test using 50 to 300 TCID50 of canine adenovirus... virus neutralization test using 50 to 300 TCID50 of canine adenovirus. (i) A geometric mean titer of...

  3. SCREENING STUDIES TO DETRMINE THE EFFECTIVENESS OF CHLORINE TO INACTIVATE ADENOVIRUS (RM.C.M.4)

    EPA Science Inventory

    To evaluate the susceptibility of adenovirus (CCL organism) to inactivation by chemical disinfectants, including chlorine and chloramine. Bench scale disinfection studies will be conducted on adenovirus and selected bacteriophages suspended in oxidant demand free buffered water: ...

  4. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines. PMID:23536756

  5. Prime and boost immunization with influenza and adenovirus encoding the Toxoplasma gondii surface antigen 2 (SAG2) induces strong protective immunity.

    PubMed

    Machado, Alexandre V; Caetano, Bráulia C; Barbosa, Rafael P; Salgado, Ana Paula C; Rabelo, Renata H; Garcia, Cristiana C; Bruna-Romero, Oscar; Escriou, Nicolas; Gazzinelli, Ricardo T

    2010-04-19

    In this work, we explored an original vaccination protocol using recombinant influenza and adenovirus. We constructed recombinant influenza viruses harboring dicistronic NA segments containing the surface antigen 2 (SAG2) from Toxoplasma gondii under control of the duplicated 3' promoter. Recombinant influenza viruses were able to drive the expression of the foreign SAG2 sequence in cell culture and to replicate efficiently both in cell culture and in lungs of infected mice. In addition, mice primed with recombinant influenza virus and boosted with a recombinant adenovirus encoding SAG2 elicited both humoral and cellular immune responses specific for SAG2. Moreover, when immunized animals were challenged with the cystogenic P-Br strain of T. gondii, they displayed up to 85% of reduction in parasite burden. These results demonstrate the potential use of recombinant influenza vectors harboring the dicistronic segments in the development of vaccines against infectious diseases. PMID:20189485

  6. DNA Replication Origins

    PubMed Central

    Leonard, Alan C.; Méchali, Marcel

    2013-01-01

    The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression. PMID:23838439

  7. Replication of lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Ming Y.; Matson, Lawrence E.; Lee, Heedong; Chen, Chenggang

    2009-08-01

    The fabrication of lightweight mirror assemblages via a replication technique offers great potential for eliminating the high cost and schedule associated with the grinding and polishing steps needed for conventional glass or SiC mirrors. A replication mandrel is polished to an inverse figure shape and to the desired finish quality. It is then, coated with a release layer, the appropriate reflective layer, and followed by a laminate for coefficient of thermal expansion (CTE) tailorability and strength. This optical membrane is adhered to a mirror structural substrate with a low shrinkage, CTE tailored adhesive. Afterwards, the whole assembly is separated from the mandrel. The mandrel is then cleaned and reused for the next replication run. The ultimate goal of replication is to preserve the surface finish and figure of the optical membrane upon its release from the mandrel. Successful replication requires a minimization of the residual stresses within the optical coating stack, the curing stresses from the adhesive and the thermal stress resulting from CTE mismatch between the structural substrate, the adhesive, and the optical membrane. In this paper, the results on replicated trials using both metal/metal and ceramic/ceramic laminates adhered to light weighted structural substrates made from syntactic foams (both inorganic and organic) will be discussed.

  8. An evaluation of ARM radiosonde operational performance

    SciTech Connect

    Lesht, B.M.

    1995-06-01

    Because the ARM (Atmospheric Radiation Measurement) program uses data from radiosondes for real-time quality control and sensitive modeling applications, it is important to have a quantitative measure of the quality of the radiosonde data themselves. Two methods have been tried for estimating the quality of radiosonde data: comparisons with known standards before launch and examination of pseudo-replicate samples by single sensors aloft. The ground check procedure showed that the ARM radiosondes are within manufacturer`s specifications for measuring relative humidity; procedural artifacts prevented verification for temperature. Pseudo-replicates from ascent and descent suggest that the temperature measurement is within the specified {minus_plus}0.2 C. On average ascent and descent data are similar, but detailed structure may be obscured on descent by loss of sampling density, and the descent involves other uncertainties.

  9. Functional dissection of adenovirus VAI RNA.

    PubMed Central

    Furtado, M R; Subramanian, S; Bhat, R A; Fowlkes, D M; Safer, B; Thimmappaya, B

    1989-01-01

    During the course of adenovirus infection, the VAI RNA protects the translation apparatus of host cells by preventing the activation of host double-stranded RNA-activated protein kinase, which phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2. In the absence of VAI RNA, protein synthesis is drastically inhibited at late times in infected cells. The experimentally derived secondary structure of VAI RNA consists of two extended base-paired regions, stems I and III, which are joined by a short base-paired region, stem II, at the center. Stems I and II are joined by a small loop, A, and stem III contains a hairpin loop, B. At the center of the molecule and at the 3' side, stems II and III are connected by a short stem-loop (stem IV and hairpin loop C). A fourth, minor loop, D, exists between stems II and IV. To determine sequences and domains critical for function within this VAI RNA structure, we have constructed adenovirus mutants with linker-scan substitution mutations in defined regions of the molecule. Cells infected with these mutants were analyzed for polypeptide synthesis, virus yield, and eIF-2 alpha kinase activity. Our results showed that disruption of base-paired regions in the distal parts of the longest stems, I and III, did not affect function, whereas mutations causing structural perturbations in the central part of the molecule containing stem II, the proximal part of stem III, and the central short stem-loop led to loss of function. Surprisingly, one substitution mutant, sub742, although dramatically perturbing the integrity of the structure of this central portion, showed a wild-type phenotype, suggesting that an RNA with an alternate secondary structure is functional. On the basis of sensitivity to single-strand-specific RNases, we can derive a novel secondary structure for the mutant RNA in which a portion of the sequences may fold to form a structure that resembles the central part of the wild-type molecule

  10. Arms control and the arms race

    SciTech Connect

    Not Available

    1985-01-01

    A collection of 16 articles from the Scientific American discusses the evolution of nuclear weapons since 1945 and the attempts to control the nuclear arms race through national action and international negotiations. The articles and commentaries by political scientists Bruce M. Russett and Fred Chernoff combine technical information on weapons and deployment systems with political analysis of current arms strategies and diplomacy. The articles are grouped under three major topics: SALT and the history of arms control negotiations, current strategic arms negotiations, and European security. A separate abstract was written for each of the 16 articles selected for the Energy Data Base. 226 references.

  11. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing...

  12. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  13. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing...

  14. 9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Canine Hepatitis and Canine Adenovirus...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed...

  15. ANTIGEN DETECTION WITH MONOCLONAL ANTIBODIES FOR THE DIAGNOSIS OF ADENOVIRUS GASTROENTERITIS

    EPA Science Inventory

    The authors have developed a monoclonal antibody-based enzyme immunoassay (EIA) for direct detection of enteric adenoviruses in stool specimens from patients with gastroenteritis. Tests specific for each of the enteric adenoviruses, adenovirus type 40 (Ad40) and type 41 (Ad41) we...

  16. Physical organization of subgroup B human adenovirus genomes.

    PubMed Central

    Tibbetts, C

    1977-01-01

    Cleavage sites of nine bacterial restriction endonucleases were mapped in the DNA of adenovirus type 3 (Ad3) and Ad7, representative serotypes of the "weakly oncogenic" subgroup B human adenoviruses. Of 94 sites mapped, 82 were common to both serotypes, in accord with the high overall sequence homology of DNA among members of the same subgroups. Of the sites in Ad3 and Ad7 DNA, fewer than 20% corresponded to mapped restriction sites in the DNA of Ad2 or Ad5. The latter serotypes represent the "nononcogenic" subgroup C, having only 10 to 20% overall sequence homology with the DNA of subgroup B adenoviruses. Hybridization mapping of viral mRNA from Ad7-infected cells resulted in a complex physical map that was nearly identical to the map of early and late gene clusters in Ad2 DNA. Thus the DNA sequences of human adenoviruses of subgroups B and C have significantly diverged in the course of viral evolution, but the complex organization of the adenovirus genome has been rigidly conserved. Images PMID:916027

  17. Bovine adenovirus-3 as a vaccine delivery vehicle.

    PubMed

    Ayalew, Lisanework E; Kumar, Pankaj; Gaba, Amit; Makadiya, Niraj; Tikoo, Suresh K

    2015-01-15

    The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle. PMID:25498212

  18. [Adenovirus-delivered BMI-1 shRNA].

    PubMed

    Chen, Zhen-Ping; Chen, Xiao-Li; Zhen, Jie

    2009-10-01

    Recently, some plasmid vectors that direct transcription of small hairpin RNAs have been developed, which are processed into functional siRNAs by cellular enzymes. Although these vectors possess certain advantages over synthesized siRNA, many disadvantages exist, including low and variable transfection efficiency. This study was aimed to establish an adenoviral siRNA delivery system without above-mentioned disadvantages on the basis of commercially available vectors. A vector was designed to target the human polycomb gene BMI-1. The pAd-BMI-1shRNA-CMV-GFP vector was produced by cloning a 300 bp U6-BMI-1 cassette from the pGE1BMI-1shRNA plasmid and a CMV-GFP cassette from pAdTrack CMV in pShutter vector. The adenovirus was produced from the 293A packaging cell line and then infected K562 cells. The mRNA and protein levels of Bmi-1 were detected by real time-PCR and Western blot respectively. The results showed that the adenovirus carrying the BMI-1shRNA was successfully produced. After being transfected with the adenovirus, the K562 cells dramatically down-regulated BMI-1 expression, whereas the adenoviruses carrying control shRNA had no effect on BMI-1 expression. It is concluded that the adenoviruses are efficient vectors for delivery of siRNA into mammalian cells and may become a candidate vector carrying siRNA drugs for gene therapy. PMID:19840467

  19. The Adenovirus E4orf4 Protein Provides a Novel Mechanism for Inhibition of the DNA Damage Response

    PubMed Central

    Kechker, Peter; Sharf, Rakefet; Kleinberger, Tamar

    2016-01-01

    The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition

  20. Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis.

    PubMed Central

    Babiss, L E; Ginsberg, H S

    1984-01-01

    To determine the role adenovirus 5 early region 1b-encoded 21- and 55-kilodalton proteins play in adenovirus productive infection, mutants have been isolated which were engineered to contain small deletions or insertions at 5.8, 7.9, or 9.6 map units. By using an overlap recombination procedure involving H5dl314 (delta 3.7 to 4.6 map units) DNA cleaved at 2.6 map units with ClaI and the adenovirus 5 XhoI-C (0 to 15.5 map units) fragment containing the desired mutation, viral mutants were isolated by their ability to produce plaques on KB cell line 18, which constitutively expresses only viral early region 1b functions (Babiss et al., J. Virol. 46:454-465, 1983). DNA sequence analysis of the viral mutants isolated (H5dl118, H5dl110, H5in127, and H5dl163) indicates that all of the viruses contain mutations which affect the 55-kilodalton protein, whereas dl118 should also produce a truncated form of the 21-kilodalton protein. When analyzed for their replication characteristics in HeLa cells, all of the mutant viruses exhibited extended eclipse periods and effected yields that were reduced to 10% or less of that produced by H5sub309 (parent virus of the mutants which is phenotypically identical to wild-type adenovirus 5). When compared with characteristics of sub309, the early and late transcription and DNA replication of the mutants were similar, but synthesis of late polypeptides and late cytoplasmic mRNAs was greatly reduced. Quantitation of mutant virus-specific late mRNAs associated with polysomes revealed a threefold reduction when compared with that of sub309. Analysis of infected cell extracts further revealed that these mutants were incapable of efficiently shutting off host cell protein synthesis, suggesting that the 55-kilodalton protein plays a role in this process. These data suggest that early region 1b products may function by interacting with additional viral or host cell macromolecules to modulate host cell shutoff or that some late viral mRNA or

  1. Human adenovirus: Viral pathogen with increasing importance

    PubMed Central

    2014-01-01

    The aim of this review is to describe the biology of human adenovirus (HAdV), the clinical and epidemiological characteristics of adenoviral epidemic keratoconjunctivitis and to present a practical update on its diagnosis, treatment, and prophylaxis. There are two well-defined adenoviral keratoconjunctivitis clinical syndromes: epidemic keratoconjunctivitis (EKC) and pharyngoconjunctival fever (PCF), which are caused by different HAdV serotypes. The exact incidence of adenoviral conjunctivitis is still poorly known. However, cases are more frequent during warmer months. The virus is endemic in the general population, and frequently causes severe disease in immunocompromised patients, especially the pediatric patients. Contagion is possible through direct contact or fomites, and the virus is extremely resistant to different physical and chemical agents. The clinical signs or symptoms of conjunctival infection are similar to any other conjunctivitis, with a higher incidence of pseudomembranes. In the cornea, adenoviral infection may lead to keratitis nummularis. Diagnosis is mainly clinical, but its etiology can be confirmed using cell cultures, antigen detection, polymerase chain reaction or immunochromatography. Multiple treatments have been tried for this disease, but none of them seem to be completely effective. Prevention is the most reliable and recommended strategy to control this contagious infection. PMID:24678403

  2. Adenovirus 36 and Obesity: An Overview

    PubMed Central

    Ponterio, Eleonora; Gnessi, Lucio

    2015-01-01

    There is an epidemic of obesity starting about 1980 in both developed and undeveloped countries definitely associated with multiple etiologies. About 670 million people worldwide are obese. The incidence of obesity has increased in all age groups, including children. Obesity causes numerous diseases and the interaction between genetic, metabolic, social, cultural and environmental factors are possible cofactors for the development of obesity. Evidence emerging over the last 20 years supports the hypothesis that viral infections may be associated with obesity in animals and humans. The most widely studied infectious agent possibly linked to obesity is adenovirus 36 (Adv36). Adv36 causes obesity in animals. In humans, Adv36 associates with obesity both in adults and children and the prevalence of Adv36 increases in relation to the body mass index. In vivo and in vitro studies have shown that the viral E4orf1 protein (early region 4 open reading frame 1, Adv) mediates the Adv36 effect including its adipogenic potential. The Adv36 infection should therefore be considered as a possible risk factor for obesity and could be a potential new therapeutic target in addition to an original way to understand the worldwide rise of the epidemic of obesity. Here, the data indicating a possible link between viral infection and obesity with a particular emphasis to the Adv36 will be reviewed. PMID:26184280

  3. Enhanced expression of adenovirus transforming proteins.

    PubMed Central

    Gaynor, R B; Tsukamoto, A; Montell, C; Berk, A J

    1982-01-01

    Proteins encoded in regions EIA and EIB of human adenoviruses cause transformation of rodent cells. One protein from EIA also stimulates transcription of other early regions at early times in a productive infection. In the past, direct analysis of these proteins synthesized in vivo has been difficult because of the low levels produced in both transformed cells and productively infected cells. We present a simple method which leads to expression of EIA and EIB mRNAs and proteins at 30-fold greater levels than those observed during the early phase of a standard productive infection. Under these conditions, these proteins are among the most prominent translation products of infected cells. This allowed direct visualization of EIA and EIB proteins on two-dimensional gels of pulse-labeled total cell protein. Experiments with EIA and EIB mutants confirm that the identified proteins are indeed encoded in these regions. Two EIA proteins are observed, one translated from each of the major early EIA mRNAs. Both of these EIA proteins are phosphorylated. Images PMID:7143568

  4. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors.

    PubMed

    Solanki, Manish; Zhang, Wenli; Jing, Liu; Ehrhardt, Anja

    2016-01-01

    Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors. PMID:26519158

  5. Antitumor efficacy of a recombinant adenovirus encoding endostatin combined with an E1B55KD-deficient adenovirus in gastric cancer cells

    PubMed Central

    2013-01-01

    Background Gene therapy using a recombinant adenovirus (Ad) encoding secretory human endostatin (Ad-Endo) has been demonstrated to be a promising antiangiogenesis and antitumor strategy of in animal models and clinical trials. The E1B55KD-deficient Ad dl1520 was also found to replicate selectively in and destroy cancer cells. In this study, we aimed to investigate the antitumor effects of antiangiogenic agent Ad-Endo combined with the oncolytic Ad dl1520 on gastric cancer (GC) in vitro and in vivo and determine the mechanisms of these effects. Methods The Ad DNA copy number was determined by real-time PCR, and gene expression was assessed by ELISA, Western blotting or immunohistochemistry. The anti-proliferation effect (cytotoxicity) of Ad was assessed using the colorimetry-based MTT cell viability assay. The antitumor effects were evaluated in BALB/c nude mice carrying SGC-7901 GC xenografts. The microvessel density and Ad replication in tumor tissue were evaluated by checking the expression of CD34 and hexon proteins, respectively. Results dl1520 replicated selectively in GC cells harboring an abnormal p53 pathway, including p53 mutation and the loss of p14ARF expression, but did not in normal epithelial cells. In cultured GC cells, dl1520 rescued Ad-Endo replication, and dramatically promoted endostatin expression by Ad-Endo in a dose- and time-dependent manner. In turn, the addition of Ad-Endo enhanced the inhibitory effect of dl1520 on the proliferation of GC cells. The transgenic expression of Ad5 E1A and E1B19K simulated the rescue effect of dl1520 supporting Ad-Endo replication in GC cells. In the nude mouse xenograft model, the combined treatment with dl1520 and Ad-Endo significantly inhibited tumor angiogenesis and the growth of GC xenografts through the increased endostatin expression and oncolytic effects. Conclusions Ad-Endo combined with dl1520 has more antitumor efficacy against GC than Ad-Endo or dl1520 alone. These findings indicate that the

  6. Challenges in Replicating Interventions

    PubMed Central

    Bell, Stephanie G; Newcomer, Susan F; Bachrach, Christine; Borawski, Elaine; Jemmott, John L; Morrison, Diane; Stanton, Bonita; Tortolero, Susan; Zimmerman, Richard

    2007-01-01

    Purpose This paper describes and reflects on an effort to document, through a set of six interventions, the process of adapting effective youth risk behavior interventions for new settings. It provides insights into how this might best be accomplished. It discusses six studies funded by NIH starting in 1999. The studies were funded in response to a Request for Applications [RFA] to replicate HIV prevention interventions for youth. Researchers were to select an HIV risk reduction intervention program shown to be effective in one adolescent population and to replicate it in a new community or different adolescent population. This was to be done while systematically documenting those processes and aspects of the intervention hypothesized to be critical to the development of community-based, culturally sensitive programs. The replication was to assess the variations necessary to gain cooperation, implement a locally feasible and meaningful intervention, and evaluate the outcomes in the new setting. Methods This paper lays out the rationale for this initiative and describes the goals and the approaches to adaptation of the funded researchers. Results The paper discusses issues relevant to all interventions, those unique to replication and to these replications in particular. It then reflects on the processes and the consequences of the adaptations. It does not address the further challenges in taking a successful intervention “to scale.” Conclusions Replications of effective interventions face all of the challenges of implementation design plus additional challenges of balancing fidelity to the original intervention and sensitivity to the needs of new populations. PMID:17531757

  7. Disseminated adenovirus infection in an immunocompromised host. Pitfalls in diagnosis.

    PubMed

    Landry, M L; Fong, C K; Neddermann, K; Solomon, L; Hsiung, G D

    1987-09-01

    In this report, a bone marrow transplant recipient with rapidly fatal gastroenteritis is presented. The presence of intranuclear inclusions on postmortem light microscopic examination of liver, lung, and small bowel tissue was considered diagnostic of cytomegalovirus infection. However, electron microscopic examination of liver tissue demonstrated adenovirus infection. This was confirmed by isolation of an adenovirus type 2 with unusual laboratory features from liver, lung, colon contents, serum, esophageal swab, and oral ulcerations. Results of a complement fixation test for antibodies to adenovirus performed on postmortem serum samples were negative, and a titer of 1:4 was noted for antibody against cytomegalovirus. This case illustrates the diagnostic pitfalls that may be encountered in establishing a specific viral diagnosis in severely ill patients. PMID:2821806

  8. Capsid-like Arrays in Crystals of Chimpanzee Adenovirus Hexon

    SciTech Connect

    Xue,F.; Burnett, R.

    2006-01-01

    The major coat protein, hexon, from a chimpanzee adenovirus (AdC68) is of interest as a target for vaccine vector modification. AdC68 hexon has been crystallized in the orthorhombic space group C222 with unit cell dimensions of a = 90.8 Angstroms, b = 433.0 Angstroms, c = 159.3 Angstroms, and one trimer (3 x 104,942 Da) in the asymmetric unit. The crystals diffract to 2.1 Angstroms resolution. Initial studies reveal that the molecular arrangement is quite unlike that in hexon crystals for human adenovirus. In the AdC68 crystals, hexon trimers are parallel and pack closely in two-dimensional continuous arrays similar to those formed on electron microscope grids. The AdC68 crystals are the first in which adenovirus hexon has molecular interactions that mimic those used in constructing the viral capsid.

  9. Species-Specific Identification of Human Adenoviruses in Sewage.

    PubMed

    Wieczorek, Magdalena; Krzysztoszek, Arleta; Witek, Agnieszka

    2015-01-01

    Human adenovirus (HAdV) diversity in sewage was assessed by species-specific molecular methods. Samples of raw sewage were collected in 14 sewage disposal systems from January to December 2011, in Poland. HAdVs were detected in 92.1% of the analysed sewage samples and was significantly higher at cities of over 100 000 inhabitants. HAdV DNA was detected in sewage during all seasons. The most abundant species identified were HAdV-F (average 89.6%) and -A (average 19.6%), which are associated with intestine infections. Adenoviruses from B species were not detected. The result of the present study demonstrate that human adenoviruses are consistently present in sewage in Poland, demonstrating the importance of an adequate treatment before the disposal in the environment. Multiple HAdV species identified in raw sewage provide new information about HAdV circulation in the Polish population. PMID:26094312

  10. Crystal Structure of Enteric Adenovirus Serotype 41 Short Fiber Head

    PubMed Central

    Seiradake, Elena; Cusack, Stephen

    2005-01-01

    Human enteric adenoviruses of species F contain two fibers in the same virion, a long fiber which binds to coxsackievirus and adenovirus receptor (CAR) and a short fiber of unknown function. We have determined the high-resolution crystal structure of the short fiber head of human adenovirus serotype 41 (Ad41). The short fiber head has the characteristic fold of other known fiber heads but has three unusual features. First, it has much shorter loops between the beta-strands. Second, one of the usually well-ordered beta-strands on the distal face of the fiber head is highly disordered and this same region is sensitive to digestion with pepsin, an enzyme occurring naturally in the intestinal tract, the physiological environment of Ad41. Third, the AB loop has a deletion giving it a distinct conformation incompatible with CAR binding. PMID:16254343

  11. Improved orthopedic arm joint

    NASA Technical Reports Server (NTRS)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  12. Arm Injuries and Disorders

    MedlinePlus

    ... of muscles, joints, tendons and other connective tissue. Injuries to any of these parts of the arm ... a fall or an accident. Types of arm injuries include Tendinitis and bursitis Sprains Dislocations Broken bones ...

  13. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    SciTech Connect

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.

  14. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection.

    PubMed

    Wechman, Stephen L; Rao, Xiao-Mei; Cheng, Pei-Hsin; Gomez-Gutierrez, Jorge G; McMasters, Kelly M; Zhou, H Sam

    2016-01-01

    Oncolytic adenoviruses (Ads) have been shown to be safe and have great potential for the treatment of solid tumors. However, the therapeutic efficacy of Ads is antagonized by limited spread within solid tumors. To develop Ads with enhanced spread, viral particles of an E1-wildtype Ad5 dl309 was repeatedly treated with UV type C irradiation and selected for the efficient replication and release from cancer cells. After 72 cycles of treatment and cancer selection, AdUV was isolated. This vector has displayed many favorable characteristics for oncolytic therapy. AdUV was shown to lyse cancer cells more effectively than both E1-deleted and E1-wildtype Ads. This enhanced cancer cell lysis appeared to be related to increased AdUV replication in and release from infected cancer cells. AdUV-treated A549 cells displayed greater expression of the autophagy marker LC3-II during oncolysis and formed larger viral plaques upon cancer cell monolayers, indicating increased virus spread among cancer cells. This study indicates the potential of this approach of irradiation of entire viral particles for the development of oncolytic viruses with designated therapeutic properties. PMID:27314377

  15. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection

    PubMed Central

    Wechman, Stephen L.; Rao, Xiao-Mei; Cheng, Pei-Hsin; Gomez-Gutierrez, Jorge G.; McMasters, Kelly M.; Zhou, H. Sam

    2016-01-01

    Oncolytic adenoviruses (Ads) have been shown to be safe and have great potential for the treatment of solid tumors. However, the therapeutic efficacy of Ads is antagonized by limited spread within solid tumors. To develop Ads with enhanced spread, viral particles of an E1-wildtype Ad5 dl309 was repeatedly treated with UV type C irradiation and selected for the efficient replication and release from cancer cells. After 72 cycles of treatment and cancer selection, AdUV was isolated. This vector has displayed many favorable characteristics for oncolytic therapy. AdUV was shown to lyse cancer cells more effectively than both E1-deleted and E1-wildtype Ads. This enhanced cancer cell lysis appeared to be related to increased AdUV replication in and release from infected cancer cells. AdUV-treated A549 cells displayed greater expression of the autophagy marker LC3-II during oncolysis and formed larger viral plaques upon cancer cell monolayers, indicating increased virus spread among cancer cells. This study indicates the potential of this approach of irradiation of entire viral particles for the development of oncolytic viruses with designated therapeutic properties. PMID:27314377

  16. Mutations of the precursor to the terminal protein of adenovirus serotypes 2 and 5.

    PubMed Central

    Pettit, S C; Horwitz, M S; Engler, J A

    1989-01-01

    Using a series of transient expression plasmids and adenovirus-specific DNA replication assays for both initiation and elongation, we measured the relative activities of mutant polypeptides of the precursor to the terminal protein (pTP) in vitro. Mutations that removed two to six amino acids of the amino terminus gradually decreased pTP activity; a deletion of 18 amino acids was completely inactive. Replacement of cysteine at residue 8 with a serine had little effect on pTP activity. Two amino-terminal in-frame linker insertion mutant polypeptides previously characterized in vivo as either replication defective or temperature sensitive had considerable activity at the permissive temperature in vitro. For one mutant pTP with a temperature-sensitive phenotype in vivo, elongation activity was decreased more than initiation in vitro, suggesting a role for this protein after the initiation step. Replacement mutations of serine 580, the site of covalent attachment of dCTP, completely abolished pTP function for both initiation and elongation. Images PMID:2511338

  17. Replicated Composite Optics Development

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in ten-ns of fine surface finish and figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicate optic is not better than the master or mandrel from which it is made. This task is a continuance of previous studies to identify methods and materials for forming these extremely low roughness optical components.

  18. The Prevalence of Rotavirus and Adenovirus in the Childhood Gastroenteritis

    PubMed Central

    Ozsari, Tamer; Bora, Gulhan; Kaya, Bulent; Yakut, Kahraman

    2016-01-01

    Background Acute gastroenteritis stemming from viral causes is very common during the childhood period. Rotavirus and enteric adenovirus are the most common factors of acute gastroenteritis encountered in infants and children. However, the epidemiology of rotavirus and enteric adenovirus gastroenteritis in the east Anatolia region is not well-known. Objectives We aimed to evaluate the relationship between the distribution of antigen positivity in rotavirus and enteric adenovirus antigen tests required cases and demographic data retrospectively in pediatric patients admitted to our hospital. Patients and Methods The records of stool sample analyses for 1154 patients admitted to our hospital from June 2011 to December 2011 with complaints of diarrhea were retrospectively examined. The presence of rotavirus and enteric adenovirus antigens in stool specimens was investigated by means of an immunochromatographic test. Results Viral antigens were detected in 327 (28.3%) stool specimens out of 1154. Among the positive results, the frequency was 73.7% for rotavirus and 26.2% for adenovirus. While the detected rotavirus antigen rate was high for all age groups, it was highest for children under the age of 2, with a rate of 57.1%. Moreover, the rotavirus infections were observed at a rate of 44.3% in winter and of 24.6% in autumn. Conclusions The most important factor in childhood acute gastroenteritis in east Anatolia is the rotavirus. Rotavirus and adenovirus antigens should be routinely investigated as a factor in fresh stool samples for the accurate diagnosis and treatment of gastroenteritis in children in the winter and autumn months.

  19. Functional prediction of hypothetical proteins in human adenoviruses.

    PubMed

    Dorden, Shane; Mahadevan, Padmanabhan

    2015-01-01

    Assigning functional information to hypothetical proteins in virus genomes is crucial for gaining insight into their proteomes. Human adenoviruses are medium sized viruses that cause a range of diseases. Their genomes possess proteins with uncharacterized function known as hypothetical proteins. Using a wide range of protein function prediction servers, functional information was obtained about these hypothetical proteins. A comparison of functional information obtained from these servers revealed that some of them produced functional information, while others provided little functional information about these human adenovirus hypothetical proteins. The PFP, ESG, PSIPRED, 3d2GO, and ProtFun servers produced the most functional information regarding these hypothetical proteins. PMID:26664031

  20. Human Adenovirus Type 2 but Not Adenovirus Type 12 Is Mutagenic at the Hypoxanthine Phosphoribosyltransferase Locus of Cloned Rat Liver Epithelial Cells

    PubMed Central

    Paraskeva, Christos; Roberts, Carl; Biggs, Paul; Gallimore, Phillip H.

    1983-01-01

    Using resistance to the base analog 8-azaguanine as a genetic marker, we showed that adenovirus type 2, but not adenovirus type 12, is mutagenic at the hypoxanthine phosphoribosyltransferase locus of cloned diploid rat liver epithelial cells. Adenovirus type 2 increased the frequency of 8-azaguanine-resistant colonies by up to ninefold over the spontaneous frequency, depending on expression time and virus dose. PMID:6572280

  1. Interspecies Differences in Virus Uptake versus Cardiac Function of the Coxsackievirus and Adenovirus Receptor

    PubMed Central

    Freiberg, Fabian; Sauter, Martina; Pinkert, Sandra; Govindarajan, Thirupugal; Kaldrack, Joanna; Thakkar, Meghna; Fechner, Henry; Klingel, Karin

    2014-01-01

    ABSTRACT The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail links CAR to the cytoskeleton and intracellular signaling cascades. In the heart, CAR is crucial for embryonic development, electrophysiology, and coxsackievirus B infection. Noncardiac functions are less well understood, in part due to the lack of suitable animal models. Here, we generated a transgenic mouse that rescued the otherwise embryonic-lethal CAR knockout (KO) phenotype by expressing chicken CAR exclusively in the heart. Using this rescue model, we addressed interspecies differences in coxsackievirus uptake and noncardiac functions of CAR. Survival of the noncardiac CAR KO (ncKO) mouse indicates an essential role for CAR in the developing heart but not in other tissues. In adult animals, cardiac activity was normal, suggesting that chicken CAR can replace the physiological functions of mouse CAR in the cardiomyocyte. However, chicken CAR did not mediate virus entry in vivo, so that hearts expressing chicken instead of mouse CAR were protected from infection and myocarditis. Comparison of sequence homology and modeling of the D1 domain indicate differences between mammalian and chicken CAR that relate to the sites important for virus binding but not those involved in homodimerization. Thus, CAR-directed anticoxsackievirus therapy with only minor adverse effects in noncardiac tissue could be further improved by selectively targeting the virus-host interaction while maintaining cardiac function. IMPORTANCE Coxsackievirus B3 (CVB3) is one of the most common human pathogens causing myocarditis. Its receptor, the coxsackievirus and adenovirus receptor (CAR), not only mediates virus uptake but also relates to cytoskeletal organization and intracellular signaling

  2. Impact of adenovirus life cycle progression on the generation of canine helper-dependent vectors.

    PubMed

    Fernandes, P; Simão, D; Guerreiro, M R; Kremer, E J; Coroadinha, A S; Alves, P M

    2015-01-01

    Helper-dependent adenovirus vectors (HDVs) are safe and efficient tools for gene transfer with high cloning capacity. However, the multiple amplification steps needed to produce HDVs hamper a robust production process and in turn the availability of high-quality vectors. To understand the factors behind the low productivity, we analyzed the progression of HDV life cycle. Canine adenovirus (Ad) type 2 vectors, holding attractive features to overcome immunogenic concerns and treat neurobiological disorders, were the focus of this work. When compared with E1-deleted (ΔE1) vectors, we found a faster helper genome replication during HDV production. This was consistent with an upregulation of the Ad polymerase and pre-terminal protein and led to higher and earlier expression of structural proteins. Although genome packaging occurred similarly to ΔE1 vectors, more immature capsids were obtained during HDV production, which led to a ~4-fold increase in physical-to-infectious particles ratio. The higher viral protein content in HDV-producing cells was also consistent with an increased activation of autophagy and cell death, in which earlier cell death compromised volumetric productivity. The increased empty capsids and earlier cell death found in HDV production may partially contribute to the lower vector infectivity. However, an HDV-specific factor responsible for a defective maturation process should be also involved to fully explain the low infectious titers. This study showed how a deregulated Ad cycle progression affected cell line homeostasis and HDV propagation, highlighting the impact of vector genome design on virus-cell interaction. PMID:25338917

  3. Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults.

    PubMed

    Green, Christopher A; Scarselli, Elisa; Sande, Charles J; Thompson, Amber J; de Lara, Catherine M; Taylor, Kathryn S; Haworth, Kathryn; Del Sorbo, Mariarosaria; Angus, Brian; Siani, Loredana; Di Marco, Stefania; Traboni, Cinzia; Folgori, Antonella; Colloca, Stefano; Capone, Stefania; Vitelli, Alessandra; Cortese, Riccardo; Klenerman, Paul; Nicosia, Alfredo; Pollard, Andrew J

    2015-08-12

    Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication-defective viral vectors encoding the RSV fusion (F), nucleocapsid (N), and matrix (M2-1) proteins for the induction of humoral and cellular responses. We performed an open-label, dose escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intramuscular (IM) and intranasal (IN) administration of the adenovirus-vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralizing antibody titers rose in response to IM prime with PanAd3-RSV and after IM boost for individuals primed by the IN route. Circulating anti-F immunoglobulin G (IgG) and IgA antibody-secreting cells (ASCs) were observed after the IM prime and IM boost. RSV-specific T cell responses were increased after the IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. Interferon-γ (IFN-γ) secretion after boost was from both CD4(+) and CD8(+) T cells, without detectable T helper cell 2 (TH2) cytokines that have been previously associated with immune pathogenesis following exposure to RSV after the formalin-inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease. PMID:26268313

  4. Identification and characterization of a novel adenovirus in the cloacal bursa of gulls

    SciTech Connect

    Bodewes, R.; Bildt, M.W.G. van de; Schapendonk, C.M.E.; Leeuwen, M. van; Boheemen, S. van; Jong, A.A.W. de; Osterhaus, A.D.M.E.; Smits, S.L.; Kuiken, T.

    2013-05-25

    Several viruses of the family of Adenoviridae are associated with disease in birds. Here we report the detection of a novel adenovirus in the cloacal bursa of herring gulls (Larus argentatus) and lesser black-backed gulls (Larus fuscus) that were found dead in the Netherlands in 2001. Histopathological analysis of the cloacal bursa revealed cytomegaly and karyomegaly with basophilic intranuclear inclusions typical for adenovirus infection. The presence of an adenovirus was confirmed by electron microscopy. By random PCR in combination with deep sequencing, sequences were detected that had the best hit with known adenoviruses. Phylogenetic analysis of complete coding sequences of the hexon, penton and polymerase genes indicates that this novel virus, tentatively named Gull adenovirus, belongs to the genus Aviadenovirus. The present study demonstrates that birds of the Laridae family are infected by family-specific adenoviruses that differ from known adenoviruses in other bird species. - Highlights: ► Lesions typical for adenovirus infection detected in cloacal bursa of dead gulls. ► Confirmation of adenovirus infection by electron microscopy and deep sequencing. ► Sequence analysis indicates that it is a novel adenovirus in the genus Aviadenovirus. ► The novel (Gull) adenovirus was detected in multiple organs of two species of gulls.

  5. The Eukaryotic Replication Machine.

    PubMed

    Zhang, D; O'Donnell, M

    2016-01-01

    The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine. PMID:27241931

  6. Phylogenetic and pathogenic characterization of novel adenoviruses isolated from long-tailed ducks (Clangula hyemalis).

    PubMed

    Counihan, Katrina L; Skerratt, Lee F; Franson, J Christian; Hollmén, Tuula E

    2015-11-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections. PMID:26342465

  7. Transport of human adenoviruses in porous media

    NASA Astrophysics Data System (ADS)

    Kokkinos, Petros; Syngouna, Vasiliki I.; Tselepi, Maria A.; Bellou, Maria; Chrysikopoulos, Constantinos V.; Vantarakis, Apostolos

    2015-04-01

    Groundwater may be contaminated with infective human enteric viruses from various wastewater discharges, sanitary landfills, septic tanks, agricultural practices, and artificial groundwater recharge. Coliphages have been widely used as surrogates of enteric viruses, because they share many fundamental properties and features. Although a large number of studies focusing on various factors (i.e. pore water solution chemistry, fluid velocity, moisture content, temperature, and grain size) that affect biocolloid (bacteria, viruses) transport have been published over the past two decades, little attention has been given toward human adenoviruses (hAdVs). The main objective of this study was to evaluate the effect of pore water velocity on hAdV transport in water saturated laboratory-scale columns packed with glass beads. The effects of pore water velocity on virus transport and retention in porous media was examined at three pore water velocities (0.39, 0.75, and 1.22 cm/min). The results indicated that all estimated average mass recovery values for hAdV were lower than those of coliphages, which were previously reported in the literature by others for experiments conducted under similar experimental conditions. However, no obvious relationship between hAdV mass recovery and water velocity could be established from the experimental results. The collision efficiencies were quantified using the classical colloid filtration theory. Average collision efficiency, α, values decreased with decreasing flow rate, Q, and pore water velocity, U, but no significant effect of U on α was observed. Furthermore, the surface properties of viruses and glass beads were used to construct classical DLVO potential energy profiles. The results revealed that the experimental conditions of this study were unfavorable to deposition and that no aggregation between virus particles is expected to occur. A thorough understanding of the key processes governing virus transport is pivotal for public

  8. Adenovirus Dodecahedron, as a Drug Delivery Vector

    PubMed Central

    Zochowska, Monika; Paca, Agnieszka; Schoehn, Guy; Andrieu, Jean-Pierre; Chroboczek, Jadwiga; Dublet, Bernard; Szolajska, Ewa

    2009-01-01

    Background Bleomycin (BLM) is an anticancer antibiotic used in many cancer regimens. Its utility is limited by systemic toxicity and dose-dependent pneumonitis able to progress to lung fibrosis. The latter can affect up to nearly 50% of the total patient population, out of which 3% will die. We propose to improve BLM delivery by tethering it to an efficient delivery vector. Adenovirus (Ad) dodecahedron base (DB) is a particulate vector composed of 12 copies of a pentameric viral protein responsible for virus penetration. The vector efficiently penetrates the plasma membrane, is liberated in the cytoplasm and has a propensity to concentrate around the nucleus; up to 300000 particles can be observed in one cell in vitro. Principal Findings Dodecahedron (Dd) structure is preserved at up to about 50°C at pH 7–8 and during dialysis, freezing and drying in the speed-vac in the presence of 150 mM ammonium sulfate, as well as during lyophilization in the presence of cryoprotectants. The vector is also stable in human serum for 2 h at 37°C. We prepared a Dd-BLM conjugate which upon penetration induced death of transformed cells. Similarly to free bleomycin, Dd-BLM caused dsDNA breaks. Significantly, effective cytotoxic concentration of BLM delivered with Dd was 100 times lower than that of free bleomycin. Conclusions/Significance Stability studies show that Dds can be conveniently stored and transported, and can potentially be used for therapeutic purposes under various climates. Successful BLM delivery by Ad Dds demonstrates that the use of virus like particle (VLP) results in significantly improved drug bioavailability. These experiments open new vistas for delivery of non-permeant labile drugs. PMID:19440379

  9. Replicative DNA polymerases.

    PubMed

    Johansson, Erik; Dixon, Nicholas

    2013-06-01

    In 1959, Arthur Kornberg was awarded the Nobel Prize for his work on the principles by which DNA is duplicated by DNA polymerases. Since then, it has been confirmed in all branches of life that replicative DNA polymerases require a single-stranded template to build a complementary strand, but they cannot start a new DNA strand de novo. Thus, they also depend on a primase, which generally assembles a short RNA primer to provide a 3'-OH that can be extended by the replicative DNA polymerase. The general principles that (1) a helicase unwinds the double-stranded DNA, (2) single-stranded DNA-binding proteins stabilize the single-stranded DNA, (3) a primase builds a short RNA primer, and (4) a clamp loader loads a clamp to (5) facilitate the loading and processivity of the replicative polymerase, are well conserved among all species. Replication of the genome is remarkably robust and is performed with high fidelity even in extreme environments. Work over the last decade or so has confirmed (6) that a common two-metal ion-promoted mechanism exists for the nucleotidyltransferase reaction that builds DNA strands, and (7) that the replicative DNA polymerases always act as a key component of larger multiprotein assemblies, termed replisomes. Furthermore (8), the integrity of replisomes is maintained by multiple protein-protein and protein-DNA interactions, many of which are inherently weak. This enables large conformational changes to occur without dissociation of replisome components, and also means that in general replisomes cannot be isolated intact. PMID:23732474

  10. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models

    PubMed Central

    Zheng, Fei-qun; Xu, Yin; Yang, Ren-jie; Wu, Bin; Tan, Xiao-hua; Qin, Yi-de; Zhang, Qun-wei

    2009-01-01

    Aim: Oncolytic adenovirus, also called conditionally replicating adenovirus (CRAD), can selectively propagate in tumor cells and cause cell lysis. The released viral progeny can infect neighboring cancer cells, initiating a cascade that can lead to the ultimate destruction of the tumor. Suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) and ganciclovir (GCV) offers a potential treatment strategy for cancer and is undergoing preclinical trials for a variety of tumors. We hypothesized that HSV-TK gene therapy combined with oncolytic adenoviral therapy would have an enhanced effect compared with the individual effects of the therapies and is a potential novel therapeutic strategy to treat liver cancer. Methods: To address our hypothesis, a novel CRAD was created, which consisted of a telomerase-dependent oncolytic adenovirus engineered to express E1A and HSV-TK genes (Ad-ETK). The combined effect of Ad-ETK and GCV was assessed both in vitro and in vivo in nude mice bearing HepG2 cell-derived tumors. Expression of the therapeutic genes by the transduced tumor cells was analyzed by RT-PCR and Western blotting. Results: We confirmed that Ad-ETK had antitumorigenic effects on human hepatocellular carcinoma (HCC) both in vitro and in vivo, and the TK/GCV system enhanced oncolytic adenoviral therapy. We confirmed that both E1A and HSV-TK genes were expressed in vivo. Conclusion: The Ad-ETK construct should provide a relatively safe and selective approach to killing cancer cells and should be investigated as an adjuvant therapy for hepatocellular carcinoma. PMID:19363518

  11. Hexon-modified recombinant E1-deleted adenovirus vectors as dual specificity vaccine carriers for influenza virus.

    PubMed

    Zhou, Dongming; Wu, Te-Lang; Emmer, Kristel L; Kurupati, Raj; Tuyishime, Steven; Li, Yan; Giles-Davis, Wynetta; Zhou, Xiangyang; Xiang, Zhiquan; Liu, Qin; Ratcliffe, Sarah J; Ertl, Hildegund C J

    2013-03-01

    To determine if an ordered and repetitive display of an epitope promoted induction of superior antibody responses, we compared B-cell responses to an influenza A virus epitope that was either encoded as a transgene by an adenovirus (Ad) vector or expressed on the vector's surface. To this end, we constructed a panel of influenza A virus vaccines based on chimpanzee-derived replication-defective adenovirus (AdC) vectors of serotype SAd-V25 also called AdC68. AdC68 vectors were modified to express a linear B-cell epitope of the ectodomain of matrix 2 (M2e) within variable regions 1 (VR1) or 4 (VR4) of the adenovirus hexon. Additional vectors with wild-type or M2e-modified hexon encoded M2e fused to the influenza A virus nucleoprotein (NP) as a transgene product. Hexon-modified vectors were tested for immunogenicity and efficacy in mice in comparison to vectors with native hexon expressing the M2e-NP fusion protein. Upon priming, vectors expressing M2e within VR1 of hexon induced M2e-specific antibody responses of higher magnitude and avidity than those carrying M2e within VR4 or vectors expressing the M2e as part of a transgene product. CD8(+) T-cell responses to the transgenic NP were comparable between vectors. M2e-specific antibody responses could be boosted by a second dose of the VR1 hexon-modified vector but not by repeated immunization with the VR4 hexon-modified vector. PMID:23229092

  12. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization.

    PubMed

    Gao, Wentao; Soloff, Adam C; Lu, Xiuhua; Montecalvo, Angela; Nguyen, Doan C; Matsuoka, Yumi; Robbins, Paul D; Swayne, David E; Donis, Ruben O; Katz, Jacqueline M; Barratt-Boyes, Simon M; Gambotto, Andrea

    2006-02-01

    The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza. PMID:16439551

  13. Enhanced antitumor effect of combining TRAIL and MnSOD mediated by CEA-controlled oncolytic adenovirus in lung cancer.

    PubMed

    Zhang, R; Zhang, X; Ma, B; Xiao, B; Huang, F; Huang, P; Ying, C; Liu, T; Wang, Y

    2016-06-01

    Lung cancer, especially adenocarcinoma, is one of the leading causes of death in the world. Carcinoembryonic antigen (CEA), a superb non-small-cell lung cancer marker candidate, showed a beneficial effect in cancer therapy with oncolytic adenovirus in recent studies. Cancer-targeting dual gene-virotherapy delivers two therapeutic genes, linked by a connexon, in the replication-deficient vector instead of one gene so that they can work in common. In this study, we constructed a tumor-specific oncolytic adenovirus, CD55-TRAIL-IETD-MnSOD. The virus has the fusion protein complementary DNAs for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and for manganese superoxide dismutase (MnSOD) complementary DNA linked through a 4-amino acid caspase-8 cleavage site (IETD), and uses a CEA promoter to control virus E1A express. This is the first work to use a CEA promoter-regulated oncolytic adenovirus carrying two therapeutic genes for cancer research. Its targeting and anticancer capacity was evaluated by in vitro and in vivo experiments. The results indicated that CD55-TRAIL-IETD-MnSOD caused more cell apoptosis than CD55-TRAIL or CD55-MnSOD alone, or their combination in vitro, with low cytotoxicity of normal cells. In the A549 tumor xenograft model in nude mice, data showed that CD55-TRAIL-IETD-MnSOD could effectively suppress tumor growth than single gene groups, with no histological damage in liver, spleen or kidney tissues. Thus, the CEA-regulated dual-gene oncolytic virus CD55-TRAIL-IETD-MnSOD may be a novel potential therapy for lung cancer. PMID:27080225

  14. Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model.

    PubMed

    Yan, Yang; Xu, Yingxin; Zhao, Yunshan; Li, Li; Sun, Peiming; Liu, Hailiang; Fan, Qinghao; Liang, Kai; Liang, Wentao; Sun, Huiwei; Du, Xiaohui; Li, Rong

    2014-02-01

    Due to the anatomical structure of the rectum, the treatment of rectal cancer remains challenging. Ad-E2F, an oncolytic adenovirus containing the E2F-1 promoter, can selectively replicate within and kill cancer cells derived from solid tumors. Thus, this virus provides a novel approach for the treatment of rectal cancer. Given the poor efficacy and possible adverse reactions that arise from the use of oncolytic virus alone and the results of our analysis of the efficacy of Ad-E2F in the treatment of rectal cancer, we investigated the use of oncolytic adenovirus in combination with adoptive immunotherapy using cytokine-induced killer (CIK) cells as a therapeutic treatment for rectal cancer. Our results illustrated that E2F-1 gene expression is higher in rectal cancer tissue than in normal tissue. Furthermore, the designed oncolytic adenovirus Ad-E2F is capable of selectively killing colorectal cell lines but has no significant effect on CIK cells. The results of in vitro and in vivo experiments demonstrated that combined therapy with Ad-E2F and CIK cells produce stronger antitumor effects than the administration of Ad-E2F or CIK cells alone. For low rectal cancers that are suitable for intratumoral injection, local injections of oncolytic viruses in combination with CIK cell-based adoptive immunotherapy may be suitable as a novel comprehensive therapeutic approach. PMID:24037896

  15. Studies of Nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses III. Base Composition, Molecular Weight, and Conformation of the Ad2+ND1 Genome

    PubMed Central

    Crumpacker, Clyde S.; Henry, Patrick H.; Kakefuda, Tuyoski; Rowe, Wallace P.; Levin, Myron J.; Lewis, Andrew M.

    1971-01-01

    The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2+ND1, differs from the defective Ad-SV40 hybrid populations previously described, in that this hybrid virus can replicate without the aid of nonhybrid adenovirus helper. Consequently, the deoxyribonucleic acid (DNA) from this virus, which can be obtained free of nonhybrid adenovirus DNA, is well suited for biophysical studies on Ad-SV40 hybrid DNA. Such studies have been performed and demonstrate Ad2+ND1 DNA to have a buoyant density (1.715 g/cm3) and thermal denaturation profile (Tm = 75.1 C) almost identical with nonhybrid Ad2 DNA. Furthermore, its molecular weight, as determined by analytical zone sedimentation and electron microscopy, was 22 × 106 to 25 × 106 daltons, which is also very similar to that determined for Ad2. Electron micrographs showed all of the hybrid molecules to be double-stranded and linear. By using this determination of the molecular weight of Ad2+ND1 DNA and assuming that 1% of this molecule consists of covalently linked SV40 DNA (see companion paper), we calculate that the hybrid DNA molecule contains 220 × 103 to 250 × 103 daltons of SV40 DNA, or the equivalent of one-tenth of the SV40 genome. PMID:4323710

  16. Telomere replication: poised but puzzling

    PubMed Central

    Sampathi, Shilpa; Chai, Weihang

    2011-01-01

    Abstract Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chromosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis. This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication and their roles in telomere maintenance and protection. PMID:21122064

  17. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models.

    PubMed

    Yumul, Roma; Richter, Maximilian; Lu, Zhuo-Zhuang; Saydaminova, Kamola; Wang, Hongjie; Wang, Chung-Huei Katherine; Carter, Darrick; Lieber, André

    2016-04-01

    A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses. PMID:26993072

  18. Bioaccumulation of animal adenoviruses in the pink shrimp.

    PubMed

    Luz, Roger B; Staggemeier, Rodrigo; Fabres, Rafael B; Soliman, Mayra C; Souza, Fernanda G; Gonçalves, Raoni; Fausto, Ivone V; Rigotto, Caroline; Heinzelmann, Larissa S; Henzel, Andréia; Fleck, Juliane D; Spilki, Fernando R

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems. PMID:26413052

  19. Bioaccumulation of animal adenoviruses in the pink shrimp

    PubMed Central

    Luz, Roger B.; Staggemeier, Rodrigo; Fabres, Rafael B.; Soliman, Mayra C.; Souza, Fernanda G.; Gonçalves, Raoni; Fausto, Ivone V.; Rigotto, Caroline; Heinzelmann, Larissa S.; Henzel, Andréia; Fleck, Juliane D.; Spilki, Fernando R.

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems. PMID:26413052

  20. Low seroprevalent species D adenovirus vectors as influenza vaccines.

    PubMed

    Weaver, Eric A; Barry, Michael A

    2013-01-01

    Seasonal and pandemic influenza remains a constant threat. While standard influenza vaccines have great utility, the need for improved vaccine technologies have been brought to light by the 2009 swine flu pandemic, highly pathogenic avian influenza infections, and the most recent early and widespread influenza activity. Species C adenoviruses based on serotype 5 (AD5) are potent vehicles for gene-based vaccination. While potent, most humans are already immune to this virus. In this study, low seroprevalent species D adenoviruses Ad26, 28, and 48 were cloned and modified to express the influenza virus A/PR/8/34 hemagglutinin gene for vaccine studies. When studied in vivo, these species D Ad vectors performed quite differently as compared to species C Ad vectors depending on the route of immunization. By intramuscular injection, species D vaccines were markedly weaker than species C vaccines. In contrast, the species D vaccines were equally efficient as species C when delivered mucosally by the intranasal route. Intranasal adenovirus vaccine doses as low as 10(8) virus particles per mouse induced complete protection against a stringent lethal challenge dose of influenza. These data support translation of species D adenoviruses as mucosal vaccines and highlight the fundamental effects of differences in virus tropism on vaccine applications. PMID:23991187

  1. Serologic and hexon phylogenetic analysis of ruminant adenoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine the antigenic relationship among ruminant adenoviruses and determine their phylogenetic relationship based on the deduced hexon gene amino acid sequence. Results of reciprocal cross-neutralization tests demonstrated antigenic relationships in either on...

  2. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  3. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  4. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  5. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  6. 21 CFR 866.3020 - Adenovirus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adenovirus serological reagents. 866.3020 Section 866.3020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020...

  7. Molecular cloning, expression and characterization of 100K gene of fowl adenovirus-4 for prevention and control of hydropericardium syndrome.

    PubMed

    Shah, M S; Ashraf, A; Khan, M I; Rahman, M; Habib, M; Qureshi, J A

    2016-01-01

    Fowl adenovirus-4 is an infectious agent causing Hydropericardium syndrome in chickens. Adenovirus are non-enveloped virions having linear, double stranded DNA. Viral genome codes for few structural and non structural proteins. 100K is an important non-structural viral protein. Open reading frame for coding sequence of 100K protein was cloned with oligo histidine tag and expressed in Escherichia coli as a fusion protein. Nucleotide sequence of the gene revealed that 100K gene of FAdV-4 has high homology (98%) with the respective gene of FAdV-10. Recombinant 100K protein was expressed in E. coli and purified by nickel affinity chromatography. Immunization of chickens with recombinant 100K protein elicited significant serum antibody titers. However challenge protection test revealed that 100K protein conferred little protection (40%) to the immunized chicken against pathogenic viral challenge. So it was concluded that 100K gene has 2397 bp length and recombinant 100K protein has molecular weight of 95 kDa. It was also found that the recombinant protein has little capacity to affect the immune response because in-spite of having an important role in intracellular transport & folding of viral capsid proteins during viral replication, it is not exposed on the surface of the virus at any stage. PMID:26558992

  8. Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex.

    PubMed Central

    Cristiano, R J; Smith, L C; Kay, M A; Brinkley, B R; Woo, S L

    1993-01-01

    Receptor-mediated endocytosis is an effective method for gene delivery into target cells. We have previously shown that DNA molecules complexed with asialoglycoprotein can be efficiently endocytosed by primary hepatocytes and the internalized DNA can be released from endosomes by the use of a replication-defective adenovirus. Because the DNA and virus enter target cells independently, activity enhancement requires high concentrations of adenoviral particles. In this study, adenoviral particles were chemically conjugated to poly(L-lysine) and bound ionically to DNA molecules. Quantitative delivery to primary hepatocytes was achieved with significantly reduced viral titer when the asialoorosomucoid-poly(L-lysine) conjugate was included in the complex. The conjugated adenovirus was used to deliver a DNA vector containing canine factor IX to mouse hepatocytes, resulting in the expression of significant concentrations of canine factor IX in the culture medium. The results suggest that receptor-mediated endocytosis coupled with an efficient endosomal lysis vector should permit the application of targeted and efficient gene delivery into the liver for gene therapy of hepatic deficiencies. Images Fig. 2 Fig. 4 PMID:8265587

  9. Hepatitis D Virus Replication.

    PubMed

    Taylor, John M

    2015-11-01

    This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection. PMID:26525452

  10. [Preparation of Recombinant Human Adenoviruses Labeled with miniSOG].

    PubMed

    Zou, Xiaohui; Xiao, Rong; Guo, Xiaojuan; Qu, Jianguo; Lu, Zhuozhuang; Hong, Tao

    2016-01-01

    We wished to study the intracellular transport of adenoviruses. We constructed a novel recombinant adenovirus in which the structural protein IX was labeled with a mini-singlet oxygen generator (miniSOG). The miniSOG gene was synthesized by overlapping extension polymerase chain reaction (PCR), cloned to the pcDNA3 vector, and expressed in 293 cells. Activation of miniSOG generated sufficient numbers of singlet oxygen molecules to catalyze polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by transmission electron microscopy (TEM). To construct miniSOG-labelled recombinant adenoviruses, the miniSOG gene was subcloned downstream of the IX gene in a pShuttle plasmid. Adenoviral plasmid pAd5-IXSOG was generated by homologous recombination of the modified shuttle plasmid (pShuttle-IXSOG) with the backbone plasmid (pAdeasy-1) in the BJ5183 strain of Eschericia coli. Adenovirus HAdV-5-IXSOG was rescued by transfection of 293 cells with the linearized pAd5-IXSOG. After propagation, virions were purified using the CsC1 ultracentrifugation method. Finally, HAdV-5-IXSOG in 2.0 mL with a particle titer of 6 x 1011 vp/mL was obtained. Morphology of HAdV-5-IXSOG was verified by TEM. Fusion of IX with the miniSOG gene was confirmed by PCR. In conclusion, miniSOG-labeled recombinant adenoviruses were constructed, which could be valuable tools for virus tracking by TEM. PMID:27295881

  11. Functional Heterogeneity of Virions in Human Adenovirus Types 2 and 12

    PubMed Central

    Rainbow, Andrew J.; Mak, Stanley

    1970-01-01

    Purified preparations of adenovirus types 2 and 12 were used to infect KB cells at different input multiplicities. The resulting infected cultures were scored for inclusion body formation, production of infectious centers, and cloning efficiency. Both preparations were found to contain some defective particles capable of preventing a cell from cloning but unable to induce inclusion bodies or form plaques. The proportion of such defective particles in adenovirus 12 was about 10 times that in adenovirus 2. At high input multiplicities, the percentage of cells displaying an inclusion body was less than that predicted by the Poisson distribution and reached a maximum of 40 to 60% for adenovirus 2 and 12 to 15% for adenovirus 12. This reduction may be due to interference by large numbers of non-plaque-producing particles infecting each cell. The per cent of cells forming infectious centers was substantially greater for adenovirus 2 than for adenovirus 12 when compared at the same input plaque-forming units, reaching a maximum of 35 to 73% for adenovirus 2 and 5 to 10% for adenovirus 12. The low value for adenovirus 12 may be a result of the same interference phenomenon. Images PMID:4194167

  12. Recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus partially protects mice from challenge with heterologous virus: A/HK/1/68 (H3N2).

    PubMed

    Tang, M; Harp, J A; Wesley, R D

    2002-11-01

    Immunization with recombinant adenoviral vaccine that induces potent immunity has been applied to many infectious diseases. We report here developing a recombinant adenoviral vaccine encoding the HA gene from swine H3N2 influenza virus (SIV). Two replication-defective recombinant adenoviruses were generated: (1) rAd-HA: recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus, and (2) rAd-vector: a control recombinant adenovirus containing adenovirus and transfer plasmids without a foreign HA gene. Mice given rAd-HA developed high titers of neutralizing and hemagglutination inhibition antibodies to SIV in comparison to mice inoculated with rAd-vector or PBS as early as 2 weeks after immunization, and these antibodies were substantially increased in the mice given rAd-HA within the next 3 weeks following the first dose. However, these antibodies were not able to neutralize the virus, A/HK/68 (H3N2), used for challenge. Nonetheless mice immunized with one or two doses of rAd-HA were protected from lethal challenge with heterologous virus, A/HK/1/68 (H3N2). A statistically significant ( P < 0.03) difference between survival rates of rAd-HA mice vs. rAd-vector or PBS mice was observed. PMID:12417948

  13. The future of arms control

    SciTech Connect

    Ball, D.; Mack, A.

    1987-01-01

    This collection of essays examines the issues involved in the arms negotiations between the Superpowers, and the potential for developing effective arms control in the future. Contents (partial): Preface; Reagan administration and arms control; Superpowers Arms Control: The Soviet perspective; Nuclear disengagement zones and no first use doctrines as arms control measures; Regional arms control in the South Pacific; Arms control and the Indian Ocean; Preventing Proliferation: The role of Australian uranium.

  14. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies.

    PubMed

    Ryu, Hodon; Cashdollar, Jennifer L; Fout, G Shay; Schrantz, Karen A; Hayes, Samuel

    2015-01-01

    Practical difficulties of the traditional adenovirus infectivity assay such as intensive labor requirements and longer turnaround period limit the direct use of adenovirus as a testing microorganism for systematic, comprehensive disinfection studies. In this study, we attempted to validate the applicability of integrated cell culture quantitative PCR (ICC-qPCR) as an alternative to the traditional cell culture method with human adenovirus type 2 (HAdV2) in a low-pressure UV disinfection study and to further optimize the procedures of ICC-qPCR for 24-well plate format. The relatively high stability of the hexon gene of HAdV2 was observed after exposure to UV radiation, resulting in a maximum gene copy reduction of 0.5 log10 at 280 mJ cm(-2). Two-day post-inoculation incubation period and a maximum spiking level of 10(5) MPN mL(-1) were selected as optimum conditions of ICC-qPCR with the tested HAdV2. An approximate 1:1 correlation of virus quantities by the traditional and ICC-qPCR cell culture based methods suggested that ICC-qPCR is a satisfactory alternative for practical application in HAdV2 disinfection studies. ICC-qPCR results, coupled with a first-order kinetic model (i.e., the inactivation rate constant of 0.0232 cm(2) mJ(-1)), showed that an UV dose of 172 mJ cm(-2) achieved a 4-log inactivation credit for HAdV2. This estimate is comparable to other studies with HAdV2 and other adenovirus respiratory types. The newly optimized ICC-qPCR shows much promise for further study on its applicability of other slow replicating viruses in disinfection studies. PMID:26030683

  15. Nucleotides in the polyomavirus enhancer that control viral transcription and DNA replication.

    PubMed Central

    Tang, W J; Berger, S L; Triezenberg, S J; Folk, W R

    1987-01-01

    The polyomavirus enhancer is required in cis for high-level expression of the viral early region and for replication of the viral genome. We introduced multiple mutations in the enhancer which reduced transcription and DNA replication. Polyomaviruses with these mutant enhancers formed very small plaques in whole mouse embryo cells. Revertants of the viral mutants were isolated and characterized. Reversion occurred by any of the following events: restoration of guanosines at nucleotide (nt) 5134 and nt 5140 within the adenovirus 5 E1A enhancer core AGGAAGTGACT; acquisition of an A----G mutation at nt 5258, which is the same mutation that enables polyomavirus to grow in embryonal carcinoma F9 cells; duplication of mutated sequences between nt 5146 and 5292 (including sequences homologous with immunoglobulin G, simian virus 40, and bovine papillomavirus enhancer elements). Reversion restored both the replicative and transcriptional functions of the viruses. Revertants that acquired the F9 mutation at nt 5258 grew at least 20-fold better than the original mutant in whole mouse embryo cells, but replicated only marginally better than the original mutant in 3T6 cells. Viruses with a reversion of the mutation at nt 5140 replicated equally well in both types of cells. Since individual nucleotides in the polyomavirus enhancer simultaneously altered DNA replication and transcription in specific cell types, it is likely that these processes rely upon a common element, such as an enhancer-binding protein. Images PMID:3037332

  16. Inhibition of Cellular Proteasome Activities Mediates HBX-Independent Hepatitis B Virus Replication In Vivo▿

    PubMed Central

    Zhang, Zhensheng; Sun, Eun; Ou, Jing-hsiung James; Liang, T. Jake

    2010-01-01

    The X protein (HBX) of the hepatitis B virus (HBV) is essential for HBV productive infection in vivo. Our previous study (Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, J. Virol. 73:7231-7240, 1999) shows that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. Previously, we demonstrated that HBX affects hepadnaviral replication through a proteasome-dependent pathway in cell culture models. In the present study, we studied the effect of the proteasome inhibitor MLN-273 in two HBV mouse models. We demonstrated that administration of MLN-273 to transgenic mice containing the replication-competent HBV genome with the defective HBX gene substantially enhanced HBV replication, while the compound had a minor effect on wild-type HBV transgenic mice. Similar results were obtained by using C57BL/6 mice infected with recombinant adenoviruses expressing the replicating HBV genome. Our data suggest that HBV replication is subjected to regulation by cellular proteasome and HBX functions through the inhibition of proteasome activities to enhance HBV replication in vivo. PMID:20592087

  17. Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells.

    PubMed Central

    Stillman, B W; Gluzman, Y

    1985-01-01

    Soluble extracts prepared from the nucleus and cytoplasm of human 293 cells are capable of efficient replication and supercoiling of added DNA templates that contain the origin of simian virus 40 replication. Extracts prepared from human HeLa cells are less active than similarly prepared extracts from 293 cells for initiation and elongation of nascent DNA strands. DNA synthesis is dependent on addition of purified simian virus 40 tumor (T) antigen, which is isolated by immunoaffinity chromatography of extracts from cells infected with an adenovirus modified to produce large quantities of this protein. In the presence of T antigen and the cytoplasmic extract, replication initiates at the origin and continues bidirectionally. Initiation is completely dependent on functional origin sequences; a plasmid DNA containing an origin mutation known to affect DNA replication in vivo fails to replicate in vitro. Multiple rounds of DNA synthesis occur, as shown by the appearance of heavy-heavy, bromodeoxyuridine-labeled DNA products. The products of this reaction are resolved, but are relaxed, covalently closed DNA circles. Addition of a nuclear extract during DNA synthesis promotes the negative supercoiling of the replicated DNA molecules. Images PMID:3018548

  18. Replication Research and Special Education

    ERIC Educational Resources Information Center

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  19. Adenovirus Type 2-Simian Virus 40 Hybrid Population: Evidence for a Hybrid Deoxyribonucleic Acid Molecule and the Absence of Adenovirus-Encapsidated Circular Simian Virus 40 Deoxyribonucleic Acid

    PubMed Central

    Crumpacker, Clyde S.; Levin, Myron J.; Wiese, William H.; Lewis, Andrew M.; Rowe, Wallace P.

    1970-01-01

    The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2++ HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2++ HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules. PMID:4322081

  20. Radial arm strike rail

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.

    1991-01-01

    The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.

  1. Adenovirus-mediated artificial MicroRNAs targeting matrix or nucleoprotein genes protect mice against lethal influenza virus challenge.

    PubMed

    Zhang, H; Tang, X; Zhu, C; Song, Y; Yin, J; Xu, J; Ertl, H C J; Zhou, D

    2015-08-01

    Influenza virus (IV) infection is a major public health problem, causing millions of cases of severe illness and as many as 500 000 deaths each year worldwide. Given the limitations of current prevention or treatment of acute influenza, novel therapies are needed. RNA interference (RNAi) through microRNAs (miRNA) is an emerging technology that can suppress virus replication in vitro and in vivo. Here, we describe a novel strategy for the treatment of infuenza based on RNAi delivered by a replication-defective adenovirus (Ad) vector, derived from chimpanzee serotype 68 (AdC68). Our results showed that artificial miRNAs (amiRNAs) specifically targeting conserved regions of the IV genome could effectively inhibit virus replication in human embryonic kidney 293 cells. Moreover, our results demonstrated that prophylactic treatment with AdC68 expressing amiRNAs directed against M1, M2 or nucleoprotein genes of IV completely protected mice from homologous A/PR8 virus challenge and partially protected the mice from heterologous influenza A virus strains such as H9N2 and H5N1. Collectively, our data demonstrate that amiRNAs targeting the conserved regions of influenza A virus delivered by Ad vectors should be pursued as a novel strategy for prophylaxis of IV infection in humans and animals. PMID:25835311

  2. Mesenchymal Stromal Cells for Linked Delivery of Oncolytic and Apoptotic Adenoviruses to Non-small-cell Lung Cancers.

    PubMed

    Hoyos, Valentina; Del Bufalo, Francesca; Yagyu, Shigeki; Ando, Miki; Dotti, Gianpietro; Suzuki, Masataka; Bouchier-Hayes, Lisa; Alemany, Ramon; Brenner, Malcolm K

    2015-09-01

    Oncolytic adenoviruses (OAdV) represent a promising strategy for cancer therapy. Despite their activity in preclinical models, to date the clinical efficacy remains confined to minor responses after intratumor injection. To overcome these limitations, we developed an alternative approach using the combination of the OAdv ICOVIR15 with a replication incompetent adenoviral vector carrying the suicide gene of inducible Caspase 9 (Ad.iC9), both of which are delivered by mesenchymal stromal cells (MSCs). We hypothesized that coinfection with ICOVIR15 and Ad.iC9 would allow MSCs to replicate both vectors and deliver two distinct types of antitumor therapy to the tumor, amplifying the cytotoxic effects of the two viruses, in a non-small-cell lung cancer (NSCLC) model. We showed that MSCs can replicate and release both vectors, enabling significant transduction of the iC9 gene in tumor cells. In the in vivo model using human NSCLC xenografts, MSCs homed to lung tumors where they released both viruses. The activation of iC9 by the chemical inducer of dimerization (CID) significantly enhanced the antitumor activity of the ICOVIR15, increasing the tumor control and translating into improved overall survival of tumor-bearing mice. These data support the use of this innovative approach for the treatment of NSCLC. PMID:26084970

  3. Potent anti-tumor effects of a dual specific oncolytic adenovirus expressing apoptin in vitro and in vivo

    PubMed Central

    2010-01-01

    Background Oncolytic virotherapy is an attractive drug platform of cancer gene therapy, but efficacy and specificity are important prerequisites for success of such strategies. Previous studies determined that Apoptin is a p53 independent, bcl-2 insensitive apoptotic protein with the ability to specifically induce apoptosis in tumor cells. Here, we generated a conditional replication-competent adenovirus (CRCA), designated Ad-hTERT-E1a-Apoptin, and investigated the effectiveness of the CRCA a gene therapy agent for further clinical trials. Results The observation that infection with Ad-hTERT-E1a-Apoptin significantly inhibited growth of the melanoma cells, protecting normal human epidermal melanocytes from growth inhibition confirmed cancer cell selective adenoviral replication, growth inhibition, and apoptosis induction of this therapeutic approach. The in vivo assays performed by using C57BL/6 mice containing established primary or metastatic tumors expanded the in vitro studies. When treated with Ad-hTERT-E1a-Apoptin, the subcutaneous primary tumor volume reduction was not only observed in intratumoral injection group but in systemic delivery mice. In the lung metastasis model, Ad-hTERT-E1a-Apoptin effectively suppressed pulmonary metastatic lesions. Furthermore, treatment of primary and metastatic models with Ad-hTERT-E1a-Apoptin increased mice survival. Conclusions These data further reinforce the previously research showing that an adenovirus expressing Apoptin is more effective and advocate the potential applications of Ad-hTERT-E1a-Apoptin in the treatment of neoplastic diseases in future clinical trials. PMID:20085660

  4. Dendritic cells serve as a “Trojan horse” for oncolytic adenovirus delivery in the treatment of mouse prostate cancer

    PubMed Central

    Li, Zhao-lun; Liang, Xuan; Li, He-cheng; Wang, Zi-ming; Chong, Tie

    2016-01-01

    Aim: Adenovirus-mediated gene therapy is a novel therapeutic approach for the treatment of cancer, in which replication of the virus itself is the anticancer method. However, the success of this novel therapy is limited due to inefficient delivery of the virus to the target sites. In this study, we used dendritic cells (DCs) as carriers for conditionally replicating adenoviruses (CRAds) in targeting prostate carcinoma (PCa). Methods: Four types of CRAds, including Ad-PC (without PCa-specific promoter and a recombinant human tumor necrosis factor, rmhTNF, sequence), Ad-PC-rmhTNF (without PCa-specific promoter), Ad-PPC-NCS (without an rmhTNF sequence) and Ad-PPC-rmhTNF, were constructed. The androgen-insensitive mouse PCa RM-1 cells were co-cultured with CRAd-loading DCs, and the viability of RM-1 cells was examined using MTT assay. The in vivo effects of CRAd-loading DCs on PCa were evaluated in RM-1 xenograft mouse model. Results: Two PCa-specific CRAds (Ad-PPC-NCS, Ad-PPC-rmhTNF) exhibited more potent suppression on the viability of RM-1 cells in vitro than the PCa-non-specific CRAds (Ad-PC, Ad-PC-rmhTNF). In PCa-bearing mice, intravenous injection of the PCa-specific CRAd-loading DCs significantly inhibited the growth of xenografted tumors, extended the survival time, and induced T-cell activation. Additionally, the rmhTNF-containing CRAds exhibited greater tumor killing ability than CRAds without rmhTNF. Conclusion: DCs may be an effective vector for the delivery of CRAds in the treatment of PCa. PMID:27345628

  5. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  6. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications.

    PubMed

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L

    2015-11-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  7. Group D Adenoviruses Infect Primary Central Nervous System Cells More Efficiently than Those from Group C

    PubMed Central

    Chillon, Miguel; Bosch, Assumpció; Zabner, Joseph; Law, Lane; Armentano, Donna; Welsh, Michael J.; Davidson, Beverly L.

    1999-01-01

    Group C adenovirus-mediated gene transfer to central nervous system cells is inefficient. We found that wild-type group D viruses, or recombinant adenovirus type 2 (Ad2) (group C) modified to contain Ad17 (group D) fiber, were more efficient in infecting primary cultures of neurons. Together with studies on primary vascular endothelial cells and tissue culture cell lines, our results indicate that there is not a universally applicable adenovirus serotype for use as a gene transfer vector. PMID:9971839

  8. [Characteristics of intranuclear inclusions formed during the reproduction of bovine adenoviruses].

    PubMed

    Nosach, L N; Belousova, R V; Diachenko, N S; Kolenkova, L M

    1986-01-01

    A cytomorphological method was used to study the reproduction of bovine adenoviruses: Ad bos 1 - Ad bos 3, belonging to the serological subgroup I, and Ad bos 4, Ad bos 5, Ad bos 7, Ad bos 8, belonging to the serological subgroup II, and those isolated from animal adenoviruses N18 and N3056. Cytomorphological method is supposed to be used not only for revealing bovine adenoviruses but also for determining preliminarily their subgroup belonging. PMID:3754069

  9. Identification of Adenoviruses in Specimens from High-Risk Pediatric Stem Cell Transplant Recipients and Controls▿

    PubMed Central

    Zheng, Xiaotian; Lu, Xiaoyan; Erdman, Dean D.; Anderson, Evan J.; Guzman-Cottrill, Judith A.; Kletzel, Morris; Katz, Ben Z.

    2008-01-01

    Adenovirus infection is an important cause of morbidity and mortality in stem cell transplant recipients. We report species and type-specific analysis from a prospective study of high-risk adenovirus infections following hematopoietic progenitor cell transplantation prior to, during, and after treatment with cidofovir, as well as species analysis of contemporaneously collected samples from control patients. Nine different adenovirus types representing all six recognized species were identified, and mixed infections were commonly found in this group of patients. PMID:17989198

  10. Modeling Inhomogeneous DNA Replication Kinetics

    PubMed Central

    Gauthier, Michel G.; Norio, Paolo; Bechhoefer, John

    2012-01-01

    In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited. PMID:22412853

  11. Chromatin and DNA replication.

    PubMed

    MacAlpine, David M; Almouzni, Geneviève

    2013-08-01

    The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program. PMID:23751185

  12. Generation and screening of a large collection of novel simian Adenovirus allows the identification of vaccine vectors inducing potent cellular immunity in humans

    PubMed Central

    Colloca, Stefano; Folgori, Antonella; Ammendola, Virginia; Capone, Stefania; Cirillo, Agostino; Siani, Loredana; Naddeo, Mariarosaria; Grazioli, Fabiana; Esposito, Maria Luisa; Ambrosio, Maria; Sparacino, Angela; Bartiromo, Marta; Meola, Annalisa; Smith, Kira; Kurioka, Ayako; O’Hara, Geraldine A.; Ewer, Katie J.; Hill, Adrian V. S.; Traboni, Cinzia; Barnes, Eleanor; Klenerman, Paul; Cortese, Riccardo; Nicosia, Alfredo

    2013-01-01

    Replication defective Adenovirus vectors based on the human serotype 5 (Ad5) have been shown to induce protective immune responses against diverse pathogens and cancer in animal models and to elicit robust and sustained cellular immunity in humans. However, most humans have anti-Ad5 neutralising antibodies that can impair the immunological potency of such vaccines. Here we show that most other human Adenoviruses from rare serotypes are far less potent as vaccine vectors than Ad5 in mice and non-human primates, casting doubt on their potential efficacy in humans. To identify novel vaccine carriers suitable for vaccine delivery in humans we isolated and sequenced over a thousand Adenovirus strains from chimpanzees (ChAd). Replication-defective vectors were generated from different ChAd serotypes and were screened for neutralization by human sera and for ability to grow in human cell lines already approved for clinical studies. Most importantly, we devised a screening strategy to rank the ChAd vectors by immunological potency in mice which predicts their immunogenicity in non-human primates and humans. The vectors studied varied by up to a thousand-fold in potency for CD8 T cell induction in mice. Two of the most potent ChAd vectors were selected for clinical studies as carriers for Malaria and Hepatitis C virus (HCV) genetic vaccines. These ChAd vectors were found to be safe and immunologically potent in Phase I clinical trials thereby validating our screening approach. The ChAd vectors that we have developed represent a large collection of non cross-reactive, potent vectors that can be exploited for diverse vaccine strategies. PMID:22218691

  13. First detection of adenovirus in the vampire bat (Desmodus rotundus) in Brazil.

    PubMed

    Lima, Francisco Esmaile de Sales; Cibulski, Samuel Paulo; Elesbao, Felipe; Carnieli Junior, Pedro; Batista, Helena Beatriz de Carvalho Ruthner; Roehe, Paulo Michel; Franco, Ana Cláudia

    2013-10-01

    This paper describes the first detection of adenovirus in a Brazilian Desmodus rotundus bat, the common vampire bat. As part of a continuous rabies surveillance program, three bat specimens were captured in Southern Brazil. Total DNA was extracted from pooled organs and submitted to a nested PCR designed to amplify a 280 bp long portion of the DNA polymerase gene of adenoviruses. One positive sample was subjected to nucleotide sequencing, confirming that this DNA fragment belongs to a member of the genus Mastadenovirus. This sequence is approximately 25 % divergent at the nucleotide level from equine adenovirus 1 and two other recently characterized bat adenoviruses. PMID:23828618

  14. Phylogenetic Analyses of Novel Squamate Adenovirus Sequences in Wild-Caught Anolis Lizards

    PubMed Central

    Ascher, Jill M.; Geneva, Anthony J.; Ng, Julienne; Wyatt, Jeffrey D.; Glor, Richard E.

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity. PMID:23593364

  15. ARM Mentor Selection Process

    SciTech Connect

    Sisterson, D. L.

    2015-10-01

    The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that provide ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.

  16. Novel bat adenoviruses with an extremely large E3 gene.

    PubMed

    Tan, Bing; Yang, Xing-Lou; Ge, Xing-Yi; Peng, Cheng; Zhang, Yun-Zhi; Zhang, Li-Biao; Shi, Zheng-Li

    2016-07-01

    Bats carry diverse RNA viruses, some of which are responsible for human diseases. Compared to bat-borne RNA viruses, relatively little information is known regarding bat-borne DNA viruses. In this study, we isolated and characterized three novel bat adenoviruses (BtAdV WIV9-11) from Rhinolophus sinicus. Their genomes, which are highly similar to each other but distinct from those of previously sequenced adenoviruses (AdVs), are 37 545, 37 566 and 38 073 bp in size, respectively. An unusually large E3 gene was identified in their genomes. Phylogenetic and taxonomic analyses suggested that these isolates represent a distinct species of the genus Mastadenovirus. Cell susceptibility assays revealed a broad cell tropism for these isolates, indicating that they have a potentially wide host range. Our results expand the understanding of genetic diversity of bat AdVs. PMID:27032099

  17. Adenovirus type 3 pneumonia causing lung damage in childhood.

    PubMed Central

    Herbert, F. A.; Wilkinson, D.; Burchak, E.; Morgante, O.

    1977-01-01

    An outbreak of adenovirus type 3 infection occurred in a hospital in 19 North American Indian infants and young children who were being treated for unrelated problems. Pneumonia occurred in 14 and was usually severe, with persistent signs of airway obstruction. Eleven of the 14 were followed periodically and complete medical reviews were conducted 8 to 10 years later. Ten had abnormal chest radiographs, and bronchography revealed bronchiectasis and minor airways changes in seven. In three cases there was clear evidence that these changes were directly related to the adenovirus type 3 infection. Pulmonary function studies showed a combination of restrictive and obstructive changes with minimal hypoxemia in most. Despite the presence of a persistent productive cough all were able to carry on a relatively normal life. Images FIG. 1 FIG. 2 FIG. 3 PMID:189889

  18. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  19. Effect of Relative Humidity on Dynamic Aerosols of Adenovirus 12

    PubMed Central

    Davis, Gary W.; Griesemer, Richard A.; Shadduck, John A.; Farrell, Robert L.

    1971-01-01

    Dynamic aerosols of adenovirus 12 were generated in the same Henderson apparatus under conditions of high, medium, and low relative humidity. High relative humidities resulted in more recovery of adenovirus 12 from aerosols and lungs of newborn Syrian hamsters. At 89, 51, and 32% relative humidity, the total infectious virus recovered from a 20-min aerosol was 106.7, 106.0, and 104.3 TCD50, respectively. Hamsters exposed to these 20-min aerosols retained measured lung doses of 103.0, 102.4, and 101.0 TCD50, respectively. The measured retained lung doses were compared to calculated inhaled lung doses based on both total virus aerosolized and total virus recovery from the aerosols. PMID:4930277

  20. DNA replication origins in archaea

    PubMed Central

    Wu, Zhenfang; Liu, Jingfang; Yang, Haibo; Xiang, Hua

    2014-01-01

    DNA replication initiation, which starts at specific chromosomal site (known as replication origins), is the key regulatory stage of chromosome replication. Archaea, the third domain of life, use a single or multiple origin(s) to initiate replication of their circular chromosomes. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several conserved repeats (origin recognition box, ORB) that are located adjacent to a replication initiator gene. Both the ORB sequence and the adjacent initiator gene are considerably diverse among different replication origins, while in silico and genetic analyses have indicated the specificity between the initiator genes and their cognate origins. These replicator–initiator pairings are reminiscent of the oriC-dnaA system in bacteria, and a model for the negative regulation of origin activity by a downstream cluster of ORB elements has been recently proposed in haloarchaea. Moreover, comparative genomic analyses have revealed that the mosaics of replicator-initiator pairings in archaeal chromosomes originated from the integration of extrachromosomal elements. This review summarizes the research progress in understanding of archaeal replication origins with particular focus on the utilization, control and evolution of multiple replication origins in haloarchaea. PMID:24808892

  1. Nucleosome-like structural subunits of intranuclear parental adenovirus type 2 DNA.

    PubMed Central

    Sergeant, A; Tigges, M A; Raskas, H J

    1979-01-01

    The intranuclear structure of parental adenovirus 2 DNA was studied using digestion with micrococcal nuclease as a probe. When cultures were infected with 32P-labeled virions, at a multiplicity of 3,000 particles per cell, 14 to 21% of parental DNA penetrated the cell and reached the nucleus. Of this parental DNA, 60% could be solubilized by extensive digestion with micrococcal nuclease. The nuclease-resistant fraction contained viral deoxyribonucleoprotein monomers and oligomers. These nucleosome-like structures contained DNA fragments which are integral multiples of a unit-length DNA of approximately 185 base pairs. The monomeric DNA is similar in length to the unit-length DNA contained in cellular nucleosomes. However, the viral oligomers are slightly smaller than their cellular counterparts. DNA-DNA hybridization demonstrated that all segments of the viral genome, including those expressed as mRNA only at late times, are represented in the nucleosomal viral DNA. The amount of early intranuclear viral chromatin was proportional to multiplicity of infection up to multiplicities of 4,000 particles per cell. However, viral transcriptional activity did not increase in direct proportion to the amount of viral chromatin. Maximum accumulation of intranuclear viral chromatin was achieved by 3 h after infection. The intranuclear parental viral chromatin remained resistant to nuclease digestion even at late times in infection, after viral DNA replication had begun. Images PMID:448800

  2. Structural Analysis of Adenovirus VAI RNA Defines the Mechanism of Inhibition of PKR

    PubMed Central

    Launer-Felty, Katherine; Wong, C. Jason; Cole, James L.

    2015-01-01

    Protein kinase R (PKR) is activated by dsRNA produced during virus replication and plays a major role in the innate immunity response to virus infection. In response, viruses have evolved multiple strategies to evade PKR. Adenovirus virus-associated RNA-I (VAI) is a short, noncoding transcript that functions as an RNA decoy to sequester PKR in an inactive state. VAI consists of an apical stem-loop, a highly structured central domain, and a terminal stem. Chemical probing and mutagenesis demonstrate that the central domain is stabilized by a pseudoknot. A structural model of VAI was obtained from constraints derived from chemical probing and small angle x-ray scattering (SAXS) measurements. VAI adopts a flat, extended conformation with the apical and terminal stems emanating from a protuberance in the center. This model reveals how the apical stem and central domain assemble to produce an extended duplex that is precisely tuned to bind a single PKR monomer with high affinity, thereby inhibiting activation of PKR by viral dsRNA. PMID:25650941

  3. Comparison between Sendai virus and adenovirus vectors to transduce HIV-1 genes into human dendritic cells.

    PubMed

    Hosoya, Noriaki; Miura, Toshiyuki; Kawana-Tachikawa, Ai; Koibuchi, Tomohiko; Shioda, Tatsuo; Odawara, Takashi; Nakamura, Tetsuya; Kitamura, Yoshihiro; Kano, Munehide; Kato, Atsushi; Hasegawa, Mamoru; Nagai, Yoshiyuki; Iwamoto, Aikichi

    2008-03-01

    Immuno-genetherapy using dendritic cells (DCs) can be applied to human immunodeficiency virus type 1 (HIV-1) infection. Sendai virus (SeV) has unique features such as cytoplasmic replication and high protein expression as a vector for genetic manipulation. In this study, we compared the efficiency of inducing green fluorescent protein (GFP) and HIV-1 gene expression in human monocyte-derived DCs between SeV and adenovirus (AdV). Human monocyte-derived DCs infected with SeV showed the maximum gene expression 24 hr after infection at a multiplicity of infection (MOI) of 2. Although SeV vector showed higher cytopathic effect on DCs than AdV, SeV vector induced maximum gene expression earlier and at much lower MOI. In terms of cell surface phenotype, both SeV and AdV vectors induced DC maturation. DCs infected with SeV as well as AdV elicited HIV-1 specific T-cell responses detected by interferon gamma (IFN-gamma) enzyme-linked immunospot (Elispot). Our data suggest that SeV could be one of the reliable vectors for immuno-genetherapy for HIV-1 infected patients. PMID:18205221

  4. Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation

    PubMed Central

    Thaci, Bart; Ulasov, Ilya V.; Ahmed, Atique U.; Ferguson, Sherise D.; Han, Yu; Lesniak, Maciej S.

    2012-01-01

    Conditionally replicating adenoviruses (CRAd) are a promising class of gene therapy agents that can overcome already known glioblastoma (GBM) resistance mechanisms but have limited distribution upon direct intratumoral (i.t.) injection. Collagen bundles in the extracellular matrix (ECM) play an important role in inhibiting virus distribution. In fact, ECM pre-treatment with collagenases improves virus distributions to tumor cells. Matrix metalloproteinases (MMPs) are an endogenous class of collagenases secreted by tumor cells whose function can be altered by different drugs including anti-angiogenic agents, such as bevacizumab. In this study we hypothesized that up-regulation of MMP activity during antiangiogenic therapy can improve CRAd-S-pk7 distribution in GBM. We find that MMP-2 activity in human U251 GBM xenografts increases (*p=0.03) and collagen IV content decreases (*p=0.01) during vascular endothelial growth factor (VEGF-A) antibody neutralization. After proving that collagen IV inhibits CRAd-S-pk7 distribution in U251 xenografts (Spearman rho= −0.38; **p=0.003), we show that VEGF blocking antibody treatment followed by CRAd-S-pk7 i.t. injection reduces U251 tumor growth more than each individual agent alone (***p<0.0001). Our data proposes a novel approach to improve virus distribution in tumors by relying on the early effects of anti-angiogenic therapy. PMID:22673390

  5. Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation.

    PubMed

    Thaci, B; Ulasov, I V; Ahmed, A U; Ferguson, S D; Han, Y; Lesniak, M S

    2013-03-01

    Conditionally replicating adenoviruses (CRAd) are a promising class of gene therapy agents that can overcome already known glioblastoma (GBM) resistance mechanisms but have limited distribution upon direct intratumoral (i.t.) injection. Collagen bundles in the extracellular matrix (ECM) have an important role in inhibiting virus distribution. In fact, ECM pre-treatment with collagenases improves virus distributions to tumor cells. Matrix metalloproteinases (MMPs) are an endogenous class of collagenases secreted by tumor cells whose function can be altered by different drugs including anti-angiogenic agents, such as bevacizumab. In this study we hypothesized that upregulation of MMP activity during anti-angiogenic therapy can improve CRAd-S-pk7 distribution in GBM. We find that MMP-2 activity in human U251 GBM xenografts increases (*P=0.03) and collagen IV content decreases (*P=0.01) during vascular endothelial growth factor (VEGF-A) antibody neutralization. After proving that collagen IV inhibits CRAd-S-pk7 distribution in U251 xenografts (Spearman rho=-0.38; **P=0.003), we show that VEGF-blocking antibody treatment followed by CRAd-S-pk7 i.t. injection reduces U251 tumor growth more than each individual agent alone (***P<0.0001). Our data propose a novel approach to improve virus distribution in tumors by relying on the early effects of anti-angiogenic therapy. PMID:22673390

  6. Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1.

    PubMed

    Lambe, Teresa; Carey, John B; Li, Yuanyuan; Spencer, Alexandra J; van Laarhoven, Arjan; Mullarkey, Caitlin E; Vrdoljak, Anto; Moore, Anne C; Gilbert, Sarah C

    2013-01-01

    Alternate prime/boost vaccination regimens employing recombinant replication-deficient adenovirus or MVA, expressing Influenza A virus nucleoprotein and matrix protein 1, induced antigen-specific T cell responses in intradermally (ID) vaccinated mice; with the strongest responses resulting from Ad/MVA immunization. In BALB/C mice the immunodominant response was shifted from the previously identified immunodominant epitope to a novel epitope when the antigen was derived from A/Panama/2007/1999 rather than A/PR/8. Alternate immunization routes did not affect the magnitude of antigen-specific systemic IFN-γ response, but higher CD8(+) T-cell IFN-γ immune responses were seen in the bronchoalveolar lavage following intransal (IN) boosting after intramuscular (IM) priming, whilst higher splenic antigen-specific CD8(+) T cell IFN-γ was seen following IM boosting. Partial protection against heterologous influenza virus challenge was achieved following either IM/IM or IM/IN but not ID/ID immunization. These data may be of relevance for the design of optimal immunization regimens for human influenza vaccines, especially for influenza-naïve infants. PMID:23485942

  7. [Morphogenetic study of human adenovirus type 41 in 293TE cells].

    PubMed

    Song, Jing-Dong; Wang, Min; Zou, Xiao-Hui; Qu, Jian-Guo; Lu, Zhuo-Zhuang; Hong, Tao

    2014-03-01

    To investigate the morphogenetic process of human adenovirus type 41 (HAdV-41), 293TE cells were infected with purified wild-type HAdV-41, and ultrathin sections of infected cells were prepared and observed under a transmission electron microscope. Results showed that HAdV-41 entered host cells mainly through three ways: non-clathrin-coated pit, clathrin-coated pit, and direct penetration of plasma membrane. In addition, cell microvilli might help HAdV-41 enter cells. After entering into cells, HAdV-41 virus particles could be found in vacuoles or lysosomes or be in a free state in cytoplasm. Only free virus particles could be found near nuclear pores (NP), suggesting that the virus needed to escape from lysosomes for effective infection and viral nucleoprotein entered the nucleus through NP. Progeny viruses were as-sembled in the nucleus. Three types of inclusion bodies, which were termed as fibrillous inclusion body, condense inclusion body, and stripped condense inclusion body, were involved in HAdV-41 morphogenesis. In the late phase of viral replication, the membrane integrity of the infected cells was lost and viral particles were released extracellularly. This study reveals the partial process of HAdV-41 morphogenesis and provides more biological information on HAdV-41. PMID:24923169

  8. KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification

    PubMed Central

    Bürck, Carolin; Mund, Andreas; Berscheminski, Julia; Kieweg, Lisa; Müncheberg, Sarah

    2015-01-01

    ABSTRACT Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for

  9. Oncolytic adenovirus-mediated therapy for prostate cancer.

    PubMed

    Sweeney, Katrina; Halldén, Gunnel

    2016-01-01

    Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen-androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses. PMID:27579296

  10. Oncolytic adenovirus-mediated therapy for prostate cancer

    PubMed Central

    Sweeney, Katrina; Halldén, Gunnel

    2016-01-01

    Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses. PMID:27579296

  11. Characterization of an Oncolytic Adenovirus Vector Constructed to Target the cMet Receptor

    PubMed Central

    Sakr, Hany I; Coleman, David T; Cardelli, James A; Mathis, J Michael

    2015-01-01

    The cMet receptor is a homodimer with tyrosine kinase activity. Upon stimulation with its ligand, hepatocyte growth factor (HGF), the receptor mediates wide physiologic actions. The HGF-cMet signaling pathway is dysregulated in many cancers, which makes cMet an important target for novel therapeutic interventions. Oncolytic adenoviruses (Ads) have been used for the past three decades as a promising therapeutic approach for a wide array of neoplastic diseases. To date, achieving cancer-specific replication of oncolytic Ads has been accomplished by either viral genome deletions or by incorporating tumor selective promoters. To achieve novel specificity of oncolytic Ad infection of cancer cells that overexpress cMet, we inserted the HGF NK2 sequence, corresponding to a competitive antagonist of HGF binding to the cMet receptor, into the Ad serotype 5 (Ad5) fiber gene. The resulting vector, Ad5-pIX-RFP-FF/NK2, was rescued, amplified in HEK293 cells, and characterized. Binding specificity and viral infectivity were tested in various cancer cell lines that express varying levels of cMet and hCAR (the Ad5 receptor). We found that Ad5-pIX-RFP-FF/NK2 demonstrated binding specificity to the cMet receptor. In addition, there was enhanced viral infectivity and virus replication compared with a non-targeted Ad vector. Although NK2 weakly induces cMet receptor activation, our results showed no receptor phosphorylation in the context of an oncolytic Ad virus. In summary, these results suggest that an oncolytic Ad retargeted to the cMet receptor is a promising vector for developing a novel cancer therapeutic agent. PMID:26866014

  12. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness.

    PubMed

    Vemula, Sai V; Ahi, Yadvinder S; Swaim, Anne-Marie; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  13. Protection of chickens against avian influenza with nonreplicating adenovirus-vectored vaccine.

    PubMed

    Toro, H; Tang, D C

    2009-04-01

    Protective immunity against avian influenza (AI) virus has been elicited in chickens by single-dose in ovo or i.m. vaccination with a replication-competent adenovirus (Ad)-free human Ad vector encoding the AI virus A/Turkey/Wisconsin/68 H5 (AdTW68. H5) or the A/Chicken/New York/94 H7 (AdChNY94. H7) hemagglutinin (HA). The AdTW68.H5-vaccinated chickens were protected against both H5N1 and H5N2 highly pathogenic AI virus challenges. The AdChNY94. H7-vaccinated chickens were protected against an H7N3 highly pathogenic avian influenza virus challenge. Chickens vaccinated in ovo with AdTW68.H5 followed by posthatch i.m. vaccination with AdChNY94.H7 responded to both vaccinations, with robust antibody titers against both the H5 and H7 AI proteins. The use of a synthetic AI H5 HA gene codon optimized to match the tRNA pool found in chicken cells is more potent than the cognate H5 HA gene. Mass administration of this AI vaccine can be streamlined with available robotic in ovo injectors. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of the nonreplicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination will not interfere with epidemiological surveys of natural AI infections. Finally, the demonstration that Ad-vectored vaccines can be administered repeatedly without appreciably losing potency highlights the commercial potential of this new class of vaccine in poultry. PMID:19276437

  14. Triple-controlled oncolytic adenovirus expressing melittin to exert inhibitory efficacy on hepatocellular carcinoma

    PubMed Central

    Qian, Chun-Yu; Wang, Kai-Li; Fang, Fan-Fu; Gu, Wei; Huang, Feng; Wang, Fu-Zhe; Li, Bai; Wang, Li-Na

    2015-01-01

    Hepatocellular carcinoma (HCC) is a highly malignant disease, and its outcome of routine therapies is poor. Comprehensive treatment including gene therapy is an important way to improve patients’ prognosis and survival. In this study, we successfully constructed a triple-controlled cancer-selective oncolytic adenovirus, QG511-HA-Melittin, carrying melittin gene, in which the hybrid promoter, hypoxia-response element (HRE)-AFP promoter, was used to control viral E1a expression targeting AFP-positive cancer cells in hypoxia microenviroment, and the E1b-55 kDa gene was deleted in cancer cells with p53-deficiency. The cytological experiments found that the viral replication of QG511-HA-Melittin was increased to 12800-folds in Hep3B cells within 48 h, and 130-folds in SMMC-7721, but the virus did not replicate in L-02 cells. QG511-HA-Melittin had a strong inhibition effect on AFP-positive HCC cell proliferation, such as Hep3B and HepG2, whereas, there was low or no inhibition effect of QG511-HA-Melittin on AFP-negative cancer cells SMMC-7721 and normal cells L-02. In the in vivo experiment, compared with the blank control group, QG511-HA-Melittin can significantly inhibit the growth of HCC xenografts (P<0.05). The survival of mice in QG511-HA-Melittin group was much longer than that of the blank control group. Both in vitro and in vivo experiments manifested that QG511-HA-Melittin exerts an inhibitory effect on HCC cells, which may provide a new strategy for HCC biotherapy. PMID:26617748

  15. Potent and long-term antiangiogenic efficacy mediated by FP3-expressing oncolytic adenovirus.

    PubMed

    Choi, Il-Kyu; Shin, Hyewon; Oh, Eonju; Yoo, Ji Young; Hwang, June Kyu; Shin, Kyungsub; Yu, De-Chao; Yun, Chae-Ok

    2015-11-01

    Various ways to inhibit vascular endothelial growth factor (VEGF), a key facilitator in tumor angiogenesis, are being developed to treat cancer. The soluble VEGF decoy receptor (FP3), due to its high affinity to VEGF, is a highly effective and promising strategy to disrupt VEGF signaling pathway. Despite potential advantage and potent therapeutic efficacy, its employment has been limited by very poor in vivo pharmacokinetic properties. To address this challenge, we designed a novel oncolytic adenovirus (Ad) expressing FP3 (RdB/FP3). To demonstrate the VEGF-specific nature of RdB/FP3, replication-incompetent Ad expressing FP3 (dE1/FP3) was also generated. dE1/FP3 was highly effective in reducing VEGF expression and functionally elicited an antiangiogeneic effect. Furthermore, RdB/FP3 exhibited a potent antitumor effect compared with RdB or recombinant FP3. Consistent with these data, RdB/FP3 was shown to greatly decrease VEGF expression level and vessel density and increase apoptosis in both tumor endothelial and tumor cells, verifying potent suppressive effects of RdB/FP3 on VEGF-mediated tumor angiogenesis in vivo. Importantly, the therapeutic mechanism of antitumor effect mediated by RdB/FP3 is associated with prolonged VEGF silencing efficacy and enhanced oncolysis via cancer cell-specific replication of oncolytic Ad. Taken together, RdB/FP3 provides a new promising therapeutic approach in the treatment of cancer and angiogenesis-related diseases. PMID:25944623

  16. Adenovirus-mediated delivery of interferon-γ gene inhibits the growth of nasopharyngeal carcinoma

    PubMed Central

    2012-01-01

    Background Interferon-γ (IFN-γ) is regarded as a potent antitumor agent, but its clinical application is limited by its short half-life and significant side effects. In this paper, we tried to develop IFN-γ gene therapy by a replication defective adenovirus encoding the human IFN-γ (Ad-IFNγ), and evaluate the antitumoral effects of Ad-IFNγ on nasopharyngeal carcinoma (NPC) cell lines in vitro and in xenografts model. Methods The mRNA levels of human IFN-γ in Ad-IFNγ-infected NPC cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), and IFN-γ protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in the culture supernatants of NPC cells and tumor tissues and bloods of nude mice treated with Ad-IFNγ. The effects of Ad-IFNγ on NPC cell proliferation was determined using MTT assay, cell cycle distribution was determined by flow cytometry analysis for DNA content, and cells apoptosis were analyzed by Annexin V-FITC/7-AAD binding assay and hoechst 33342/PI double staining. The anti-tumor effects and toxicity of Ad-IFNγ were evaluated in BALB/c nude mice carrying NPC xenografts. Results The results demonstrated that Ad-IFNγ efficiently expressed human IFN-γ protein in NPC cell lines in vitro and in vivo. Ad-IFNγ infection resulted in antiproliferative effects on NPC cells by inducing G1 phase arrest and cell apoptosis. Intratumoral administration of Ad-IFNγ significantly inhibited the growth of CNE-2 and C666-1 cell xenografts in nude mice, while no significant toxicity was observed. Conclusions These findings indicate IFN-γ gene therapy mediated by replication defective adenoviral vector is likely a promising approach in the treatment of nasopharyngeal carcinoma. PMID:23272637

  17. Progress on adenovirus-vectored universal influenza vaccines

    PubMed Central

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8+ T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides ‘self-adjuvanting’ activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches. PMID:25876176

  18. An outbreak of lethal adenovirus infection among different otariid species.

    PubMed

    Inoshima, Yasuo; Murakami, Tomoaki; Ishiguro, Naotaka; Hasegawa, Kazuhiro; Kasamatsu, Masahiko

    2013-08-30

    An outbreak of fatal fulminant hepatitis at a Japanese aquarium involved 3 otariids: a California sea lion (Zalophus californianus), a South African fur seal (Arctocephalus pusillus) and a South American sea lion (Otaria flavescens). In a span of about a week in February 2012, 3 otariids showed diarrhea and were acutely low-spirited; subsequently, all three animals died within a period of 3 days. Markedly increased aspartate amino transferase and alanine amino transferase activities were observed. Necrotic hepatitis and eosinophilic intranuclear inclusion bodies in liver hepatocytes and intestinal epithelial cells were observed in the South American sea lion on histological examination. Otarine adenovirus DNA was detected from the livers of all three animals by polymerase chain reaction and determination of the sequences showed that all were identical. These results suggest that a single otarine adenovirus strain may have been the etiological agent of this outbreak of fatal fulminant hepatitis among the different otariid species, and it may be a lethal threat to wild and captive otariids. This is the first evidence of an outbreak of lethal adenovirus infection among different otariid species. PMID:23643878

  19. Progress on adenovirus-vectored universal influenza vaccines.

    PubMed

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches. PMID:25876176

  20. History of the restoration of adenovirus type 4 and type 7 vaccine, live oral (Adenovirus Vaccine) in the context of the Department of Defense acquisition system.

    PubMed

    Hoke, Charles H; Snyder, Clifford E

    2013-03-15

    Respiratory pathogens cause morbidity and mortality in US military basic trainees. Following the influenza pandemic of 1918, and stimulated by WWII, the need to protect military personnel against epidemic respiratory disease was evident. Over several decades, the US military elucidated etiologies of acute respiratory diseases and invented and deployed vaccines to prevent disease caused by influenza, meningococcus, and adenoviruses. In 1994, the Adenovirus Vaccine manufacturer stopped its production. By 1999, supplies were exhausted and adenovirus-associated disease, especially serotype 4-associated febrile respiratory illness, returned to basic training installations. Advisory bodies persuaded Department of Defense leaders to initiate restoration of Adenovirus Vaccine. In 2011, after 10 years of effort by government and contractor personnel and at a cost of about $100 million, the Adenovirus Vaccine was restored to use at all military basic training installations. Disease and adenovirus serotype 4 isolation rates have fallen dramatically since vaccinations resumed in October 2011 and remain very low. Mindful of the adage that "The more successful a vaccine is, the more quickly the need for it will be forgotten.", sustainment of the supply of the Adenovirus Vaccine may be a challenge, and careful management will be required for such sustainment. PMID:23291475

  1. SUMO and KSHV Replication.

    PubMed

    Chang, Pei-Ching; Kung, Hsing-Jien

    2014-01-01

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV's life cycle and pathogenesis. PMID:25268162

  2. SUMO and KSHV Replication

    PubMed Central

    Chang, Pei-Ching; Kung, Hsing-Jien

    2014-01-01

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis. PMID:25268162

  3. The Evaluation of Polyhexamethylene Biguanide (PHMB) as a Disinfectant for Adenovirus

    PubMed Central

    Romanowski, Eric G.; Yates, Kathleen A.; O’Connor, Katherine E.; Mah, Francis S.; Shanks, Robert M. Q.; Kowalski, Regis P.

    2013-01-01

    Purpose Swimming pools can be a vector for transmission of adenovirus ocular infections. Polyhexamethylene biguanide (PHMB) is a disinfectant used in swimming pools and hot tubs. The current study determined whether PHMB is an effective disinfectant against ocular adenovirus serotypes at a concentration used to disinfect swimming pools and hot tubs. Methods The direct disinfecting activity of PHMB was determined in triplicate assays by incubating nine human adenovirus types (1, 2, 3, 4, 5, 7a, 8, 19, and 37) with 50 and 0 PPM (µg/ml) of PHMB for 24 hours at room temperature, to simulate swimming pool temperatures, or 40°C, to simulate hot tub temperatures. Plaque assays determined adenovirus titers after incubation. Titers were Log10 converted and mean ± standard deviation Log10 reductions from controls were calculated. Virucidal (greater than 99.9%) decreases in mean adenovirus titers after PHMB treatment were determined for each adenovirus type and temperature tested. Results At room temperature, 50 PPM of PHMB produced mean reductions in titers less than 1 Log10 for all adenovirus types tested. At 40°C, 50 PPM of PHMB produced mean reductions in titers less than 1 Log10 for two adenovirus types and greater than 1 Log10, but less than 3 Log10, for seven of nine adenovirus types. Conclusions 50 PPM of PHMB was not virucidal against adenovirus at temperatures consistent with swimming pools or hot tubs. Clinical Relevance Recreational water maintained and sanitized with PHMB has the potential to serve as a vector for the transmission of ocular adenovirus infections. PMID:23450376

  4. KSHV Genome Replication and Maintenance

    PubMed Central

    Purushothaman, Pravinkumar; Dabral, Prerna; Gupta, Namrata; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is a major etiological agent for multiple severe malignancies in immune-compromised patients. KSHV establishes lifetime persistence in the infected individuals and displays two distinct life cycles, generally a prolonged passive latent, and a short productive or lytic cycle. During latent phase, the viral episome is tethered to the host chromosome and replicates once during every cell division. Latency-associated nuclear antigen (LANA) is a predominant multifunctional nuclear protein expressed during latency, which plays a central role in episome tethering, replication and perpetual segregation of the episomes during cell division. LANA binds cooperatively to LANA binding sites (LBS) within the terminal repeat (TR) region of the viral episome as well as to the cellular nucleosomal proteins to tether viral episome to the host chromosome. LANA has been shown to modulate multiple cellular signaling pathways and recruits various cellular proteins such as chromatin modifying enzymes, replication factors, transcription factors, and cellular mitotic framework to maintain a successful latent infection. Although, many other regions within the KSHV genome can initiate replication, KSHV TR is important for latent DNA replication and possible segregation of the replicated episomes. Binding of LANA to LBS favors the recruitment of various replication factors to initiate LANA dependent DNA replication. In this review, we discuss the molecular mechanisms relevant to KSHV genome replication, segregation, and maintenance of latency. PMID:26870016

  5. [Development and Characterization of a Novel Adenovirus Vector Exhibiting MicroRNA-mediated Suppression of the Leaky Expression of Adenovirus Genes].

    PubMed

    Shimizu, Kahori

    2015-01-01

    Replication-incompetent adenovirus (Ad) vectors have gained attention as gene delivery vehicles. Theoretically, no Ad genes should be expressed following transduction; however, Ad genes are expressed from the vector genome, leading to induction of cellular immunity against Ad proteins and Ad protein-induced toxicity. To suppress the leaky expression of Ad genes, a microRNA (miRNA)-regulated gene expression system was utilized. We developed novel Ad vectors by incorporating targeted sequences of miR-122a or miR-142-3p, which exhibit liver- or spleen-specific expression, respectively, in the 3'-untranslated region (UTR) of the E2A, E4, or pIX genes. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional human embryonic kidney 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold in an miRNA-dependent manner, compared with a conventional Ad vector, by the insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a-targeted sequences into the 3'-UTR of the E4 gene (Ad-E4-122aT) expressed 1.5- to 34-fold higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver compared with a conventional Ad vector. miR-122a-mediated suppression of E4 gene expression in the liver significantly reduced the hepatotoxicity that an Ad vector causes via both adaptive and non-adaptive immune responses. Ad-E4-122aT would be a promising framework for efficient gene delivery due to its ability to mediate higher and longer-term transgene expression and lower hepatotoxicity than a conventional Ad vector. PMID:26632150

  6. Adenovirus type 2 terminal protein: purification and comparison of tryptic peptides with known adenovirus-coded proteins.

    PubMed Central

    Harter, M L; Lewis, J B; Anderson, C W

    1979-01-01

    The protein covalently bound to the 5' termini of adenovirus type 2 DNA has been purified from virus labeled with [35S]methionine, using exclusion chromatography of disrupted virions to isolate the DNA-protein complex, which is then digested with DNase. The terminal protein isolated from mature virus is most effectively labeled if the cells are exposed to [35S]methionine during the "intermediate" period of 13 to 21 h postinfection, suggesting that the protein is synthesized during this interval. The tryptic peptides of the terminal protein were compared with those of several known adenovirus-coded proteins and found to be unrelated. In particular, the terminal protein is not related to the 38-50K early proteins encoded by the leftmost 4.4% of the adenovirus genome, one region essential for the transforming activity of the virus. Neither is it related to the 72K single-strand-specific DNA binding protein, the minor virion component IVa2, or the major capsid component hexon. Images PMID:513195

  7. Nonspecific Arm Pain

    PubMed Central

    Moradi, Ali; Ebrahimzadeh, Mohammad H; Ring, David

    2013-01-01

    Nonspecific activity-related arm pain is characterized by an absence of objective physical findings and symptoms that do not correspond with objective pathophysiology. Arm pain without strict diagnosis is often related to activity, work-related activity in particular, and is often seen in patients with physically demanding work. Psychological factors such as catastrophic thinking, symptoms of depression, and heightened illness concern determine a substantial percentage of the disability associated with puzzling hand and arm pains. Ergonomic modifications can help to control symptoms, but optimal health may require collaborative management incorporating psychosocial and psychological elements of illness. PMID:25207288

  8. MVACS Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, R.; Slostad, J.; Bon, B.; Braun, D.; Brill, R.; Buck, C.; Fleischner, R.; Haldeman, A.; Herman, J.; Hertzel, M.; Noon, D.; Pixler, G.; Schenker, P.; Ton, T.; Tucker, C.; Zimmerman, W.

    2000-01-01

    The primary purpose of the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm is to support to the other MVACS science instruments by digging trenches in the Martian soil; acquiring and dumping soil samples into the thermal evolved gas analyzer (TEGA); positioning the Soil Temperature Probe (STP) in the soil: positioning the Robotic Arm Air Temperature Sensor (RAATS) at various heights above the surface, and positioning the Robotic Arm Camera (RAC) for taking images of the surface, trench, soil samples, magnetic targets and other objects of scientific interest within its workspace.

  9. Inhibition of proteolytic processing of adenoviral proteins by epsilon-aminocaproic acid and ambenum in adenovirus-infected cells.

    PubMed

    Nosach, Lidiya; Dyachenko, Nataliya; Zhovnovataya, Valentina; Lozinskiy, Miron; Lozitsky, Victor

    2002-01-01

    Maturation of adenovirus particles is markedly affected by proteolytic processing. The possibility for blocking the conversion of precursor structural core protein (preVII) into mature structure protein VII by officinal drugs epsilon-aminocaproic acid and ambenum has been demonstrated in Hep-2 cells infected with adenovirus. Proteolytic processing may be regarded as one of the targets for inhibiting adenovirus reproduction. PMID:12545207

  10. Kinematically redundant arm formulations for coordinated multiple arm implementations

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Quiocho, Leslie J.; Cleghorn, Timothy F.

    1990-01-01

    Although control laws for kinematically redundant robotic arms were presented as early as 1969, redundant arms have only recently become recognized as viable solutions to limitations inherent to kinematically sufficient arms. The advantages of run-time control optimization and arm reconfiguration are becoming increasingly attractive as the complexity and criticality of robotic systems continues to progress. A generalized control law for a spatial arm with 7 or more degrees of freedom (DOF) based on Whitney's resolved rate formulation is given. Results from a simulation implementation utilizing this control law are presented. Furthermore, results from a two arm simulation are presented to demonstrate the coordinated control of multiple arms using this formulation.

  11. Efficient Gene Transfer into Human CD34+ Cells by a Retargeted Adenovirus Vector

    PubMed Central

    Shayakhmetov, Dmitry M.; Papayannopoulou, Thalia; Stamatoyannopoulos, George; Lieber, André

    2000-01-01

    Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and αv integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34+ cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34+ cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an αv integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34+ cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34+ cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34+ cells expressing αv integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34+ cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34+ cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34+ c-Kit+ cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34+ c-Kit+ cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells. PMID:10684271

  12. Adenovirus Type 7 Pneumonia in Children Who Died from Measles-Associated Pneumonia, Hanoi, Vietnam, 2014

    PubMed Central

    Hai, Le Thanh; Thach, Hoang Ngoc; Tuan, Ta Anh; Nam, Dao Huu; Dien, Tran Minh; Sato, Yuko; Kumasaka, Toshio; Suzuki, Tadaki; Hanaoka, Nozomu; Fujimoto, Tsuguto; Katano, Harutaka; Hasegawa, Hideki; Kawachi, Shoji

    2016-01-01

    During a 2014 measles outbreak in Vietnam, postmortem pathologic examination of hospitalized children who died showed that adenovirus type 7 pneumonia was a contributory cause of death in children with measles-associated immune suppression. Adenovirus type 7 pneumonia should be recognized as a major cause of secondary infection after measles. PMID:26926035

  13. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    PubMed

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  14. PREPARATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES TO ENTERIC ADENOVIRUS TYPES 40 AND 41

    EPA Science Inventory

    The authors have prepared monoclonal antibodies to each of the enteric adenoviruses types 40 and 41. Three different hybridoma cell lines were selected which produced antibody found to react by radioimmunoprecipitation with adenovirus (Ad) hexon antigens. One was specific for Ad4...

  15. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2.

    PubMed

    Zhang, Zheng; Wang, Guoxian; Li, Chen; Liu, Danping

    2013-08-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2(+) gene) was cloned into an adenovirus shuttle vector to obtain pShuttle cytomegalovirus (CMV)-BMP2(+)-internal ribosome entry site (IRES)-hrGFP-1. The adenovirus plasmid pAd CMV-BMP2(+)-IRES-hrGFP-1 was constructed by homologous recombination and was transfected into HEK293A cells, followed by adenovirus packaging. pAd CMV-BMP2 was used as the control. The two types of adenovirus were transfected into marrow stromal cells (MSCs). The expression of BMP2 and GFP, as well as the alkaline phosphatase (ALP) activity of expressed BMP2 were detected. Following mutagenesis, the BMP2 gene sequence and recombinant adenovirus vector were as predicted. The novel adenovirus vector expressed both BMP2 and GFP, indicating that a novel recombinant human adenovirus vector expressing BMP2 had been successfully constructed. PMID:24137184

  16. Arm MRI scan

    MedlinePlus

    ... arm MRI (magnetic resonance imaging) scan uses strong magnets to create pictures of the upper and lower ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  17. An elastica arm scale.

    PubMed

    Bosi, F; Misseroni, D; Dal Corso, F; Bigoni, D

    2014-09-01

    The concept of a 'deformable arm scale' (completely different from a traditional rigid arm balance) is theoretically introduced and experimentally validated. The idea is not intuitive, but is the result of nonlinear equilibrium kinematics of rods inducing configurational forces, so that deflection of the arms becomes necessary for equilibrium, which would be impossible for a rigid system. In particular, the rigid arms of usual scales are replaced by a flexible elastic lamina, free to slide in a frictionless and inclined sliding sleeve, which can reach a unique equilibrium configuration when two vertical dead loads are applied. Prototypes designed to demonstrate the feasibility of the system show a high accuracy in the measurement of load within a certain range of use. Finally, we show that the presented results are strongly related to snaking of confined beams, with implications for locomotion of serpents, plumbing and smart oil drilling. PMID:25197248

  18. Bruising Hands and Arms

    MedlinePlus

    ... and arms is common. Dermatologists call it 'actinic purpura', 'solar purpura' or 'Bateman's purpura'. These flat blotches start out red, then turn ... flimsy looking. Mostly seen in older individuals, actinic purpura is due to the weakened state of blood ...

  19. An elastica arm scale

    PubMed Central

    Bosi, F.; Misseroni, D.; Dal Corso, F.; Bigoni, D.

    2014-01-01

    The concept of a ‘deformable arm scale’ (completely different from a traditional rigid arm balance) is theoretically introduced and experimentally validated. The idea is not intuitive, but is the result of nonlinear equilibrium kinematics of rods inducing configurational forces, so that deflection of the arms becomes necessary for equilibrium, which would be impossible for a rigid system. In particular, the rigid arms of usual scales are replaced by a flexible elastic lamina, free to slide in a frictionless and inclined sliding sleeve, which can reach a unique equilibrium configuration when two vertical dead loads are applied. Prototypes designed to demonstrate the feasibility of the system show a high accuracy in the measurement of load within a certain range of use. Finally, we show that the presented results are strongly related to snaking of confined beams, with implications for locomotion of serpents, plumbing and smart oil drilling. PMID:25197248

  20. Ultima Replicated Optics Research

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Engelhaupt, Darell

    1997-01-01

    Designs are reviewed incorporating processes suitable for replication of precision spherical segments of very large (greater than 20 meter diameter) telescopes combining ultra-lightweight and high precision. These designs must be amenable to assembly and alignment after deployment . The methods considered lie outside the present scope of fabrication, deployment and alignment considered to date. Design guidelines for reducing the weight and low frequency resonance in low G environment were given by The Serius Group, Dr. Glenn Zeiders, and are considered baseline for this activity. The goal of a rigid design of 10 Kg/sq M is being persued for the Next Generation Space Telescope (NGST) and is not likely adequate for advanced efforts. Flexures have been considered for maintaining the figure of many lightweight structures by control loop processes. This adds to the complexity and weight to the extent that it becomes difficult to recover the benefits. Two fabrication guidelines lead to a stiffer and concurrently lighter structure. First the use of thin vertical wall triangular structural reinforcements to increase the resistance to bending is preferred over hexagonal or square similar sections. Secondly, the incorporation of a similar back sheet on a cellular structure markedly improves the geometric stiffness. Neither improves the short range stiffness. Also often overlooked is that selected material properties must include high microyield and low hysteresis in addition to high elastic modulus to weight (stiffness). The fabrication steps can easily exceed the strain requirement.

  1. Rapid mold replication

    SciTech Connect

    Heestand, G.M.; Beeler, R.G. Jr.; Brown, D.L.

    1995-06-01

    The desire to reduce tooling costs have driven manufacturers to investigate new manufacturing methods and materials. In the plastics injection molding industry replicating molds to meet production needs is time consuming (up to 6 months) and costly in terms of lost business. We have recently completed a feasibility study demonstrating the capability of high rate Electron Beam Physical Vapor Deposition (EBPVD) in producing mold inserts in days, not months. In the current practice a graphite mandrel, in the shape of the insert`s negative image, was exposed to a jet of metal vapor atoms emanating from an electron beam heated source of an aluminum-bronze alloy. The condensation rate of the metal atoms on the mandrel was sufficient to allow the deposit to grow at over 30 {mu}m/min or 1.2 mils per minute. The vaporization process continued for approximately 14 hours after which the mandrel and deposit were removed from the EBPVD vacuum chamber. The mandrel and condensate were easily separated resulting in a fully dense aluminum-bronze mold insert about 2.5 cm or one inch thick. This mold was subsequently cleaned and drilled for water cooling passages and mounted on a fixture for operation in an actual injection molding machine. Results of the mold`s operation were extremely successful showing great promise for this technique. This paper describes the EBPVD feasibility demonstration in more detail and discusses future development work needed to bring this technique into practice.

  2. ARM for Platform Application

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Poupat, Jean-Luc; Le Meur, Patrick

    2015-09-01

    The activities described in this paper are part of the CNES R&T “Study of a Cortex-R ARM based architecture” performed by Airbus DS Space System & Electronics in 2014. With the support of CNES, Airbus DS has performed the porting of a representative space application software on an ARM based demonstration platform. This paper presents the platform itself, the activities performed at software level and the first results on this evaluation study.

  3. Archaeology of Eukaryotic DNA Replication

    PubMed Central

    Makarova, Kira S.; Koonin, Eugene V.

    2013-01-01

    Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously uncharacterized archaeal proteins involved in replication and currently reveal a nearly complete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were comparable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionalization of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific duplications of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal replication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. PMID:23881942

  4. Charter School Replication. Policy Guide

    ERIC Educational Resources Information Center

    Rhim, Lauren Morando

    2009-01-01

    "Replication" is the practice of a single charter school board or management organization opening several more schools that are each based on the same school model. The most rapid strategy to increase the number of new high-quality charter schools available to children is to encourage the replication of existing quality schools. This policy guide…

  5. Hello to Arms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image highlights the hidden spiral arms (blue) that were discovered around the nearby galaxy NGC 4625 by the ultraviolet eyes of NASA's Galaxy Evolution Explorer.

    The image is composed of ultraviolet and visible-light data, from the Galaxy Evolution Explorer and the California Institute of Technology's Digitized Sky Survey, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red.

    As the image demonstrates, the lengthy spiral arms are nearly invisible when viewed in optical light while bright in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The youthful arms are also very long, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The armless companion galaxy seen below NGC 4625 is called NGC 4618. Astronomers do not know why it lacks arms but speculate that it may have triggered the development of arms in NGC 4625.

  6. NACSA Charter School Replication Guide: The Spectrum of Replication Options. Authorizing Matters. Replication Brief 1

    ERIC Educational Resources Information Center

    O'Neill, Paul

    2010-01-01

    One of the most important and high-profile issues in public education reform today is the replication of successful public charter school programs. With more than 5,000 failing public schools in the United States, there is a tremendous need for strong alternatives for parents and students. Replicating successful charter school models is an…

  7. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points.

    PubMed

    Sauthoff, Harald; Hu, Jing; Maca, Cielo; Goldman, Michael; Heitner, Sheila; Yee, Herman; Pipiya, Teona; Rom, William N; Hay, John G

    2003-03-20

    Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor

  8. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    PubMed Central

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  9. Proteins encoded near the adenovirus late messenger RNA leader segments

    SciTech Connect

    Lewis, J.B.; Anderson, C.W.

    1983-01-01

    Small fragments of adenovirus 2 DNA cloned into the single-strand phage M13 were used to select adenoviral messenger RNAs transcribed from the R-strand between map positions 16 and 30. Cell-free translation of these mRNAs produced proteins of 13.5K, 13.6K, and 11.5K, respectively encoded between the first and second segments of the tripartite major late leader, within the ''i''-leader segment, and immediately preceding the third leader segment. Partial sequence analysis of the 13.6K protein is consistent with the hypothesis that it is encoded within the i-leader segment.

  10. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    PubMed

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing. PMID:25632689

  11. Thermal trap for DNA replication.

    PubMed

    Mast, Christof B; Braun, Dieter

    2010-05-01

    The hallmark of living matter is the replication of genetic molecules and their active storage against diffusion. We implement both in the simple nonequilibrium environment of a temperature gradient. Convective flow both drives the DNA replicating polymerase chain reaction while concurrent thermophoresis accumulates the replicated 143 base pair DNA in bulk solution. The time constant for accumulation is 92 s while DNA is doubled every 50 s. The experiments explore conditions in pores of hydrothermal rock which can serve as a model environment for the origin of life. PMID:20482214

  12. Pediatric Arm Function Test

    PubMed Central

    Uswatte, Gitendra; Taub, Edward; Griffin, Angi; Rowe, Jan; Vogtle, Laura; Barman, Joydip

    2012-01-01

    Objective Although there are several validated upper-extremity measures in young children with cerebral palsy (CP), none primarily assess capacity to carry out actions and tasks with the more-affected arm. To address this need, we developed the Pediatric Arm Function Test (PAFT), which involves behavioral observation of how children use their more-affected arm during structured play in the laboratory or clinic. This paper evaluates the reliability and validity of the PAFT Functional Ability scale. Design In Study 1, 20 children between 2–8 years with a wide range of upper-extremity hemiparesis due to CP completed the PAFT on two occasions separated by three weeks. In Study 2, 41 children between 2–6 years with similar characteristics completed the PAFT and received a grade reflecting severity of more-affected arm motor impairment. Results In Study 1, the PAFT test-retest reliability correlation coefficient was 0.74. In Study 2, convergent validity was supported by a strong, inverse correlation (r = −0.6, p < .001) between PAFT scores and grade of impairment. Conclusions The PAFT Functional Ability scale is a reliable and valid measure of more-affected arm motor capacity in children with CP between 2–6 years. It can be employed to measure upper-extremity neurorehabilitation outcome. PMID:23103486

  13. Phoenix Stretches its Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    The Phoenix spacecraft is scheduled to begin raising its robotic arm up and out of its stowed configuration on the third Martian day, or Sol 3 (May 28, 2008) of the mission. This artist's animation, based on engineering models, shows how Phoenix will accomplish this task. First, its wrist actuator will rotate, releasing its launch-restraint pin. Next, the forearm moves up, releasing the elbow launch-restraint pin. The elbow will then move up and over in small steps, a process referred to as 'staircasing.' This ensures that the arm's protective biobarrier wrap, now unpeeled and lying to the side of the arm, will not get in the way of the arm's deployment.

    The arm is scheduled to straighten all the way out on Sol 4 (May 29, 2008), after engineers have reviewed images and telemetry data from the spacecraft showing that the biobarrier material has been cleared.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Augmented Replicative Capacity of the Boosting Antigen Improves the Protective Efficacy of Heterologous Prime-Boost Vaccine Regimens

    PubMed Central

    Penaloza-MacMaster, Pablo; Teigler, Jeffrey E.; Obeng, Rebecca C.; Kang, Zi H.; Provine, Nicholas M.; Parenteau, Lily; Blackmore, Stephen; Ra, Joshua; Borducchi, Erica N.

    2014-01-01

    ABSTRACT Prime-boost immunization regimens have proven efficacious at generating robust immune responses. However, whether the level of replication of the boosting antigen impacts the magnitude and protective efficacy of vaccine-elicited immune responses remains unclear. To evaluate this, we primed mice with replication-defective adenovirus vectors expressing the lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP), followed by boosting with either LCMV Armstrong, which is rapidly controlled, or LCMV CL-13, which leads to a more prolonged exposure to the boosting antigen. Although priming of naive mice with LCMV CL-13 normally results in T cell exhaustion and establishment of chronic infection, boosting with CL-13 resulted in potent recall CD8 T cell responses that were greater than those following boosting with LCMV Armstrong. Furthermore, following the CL-13 boost, a greater number of anamnestic CD8 T cells localized to the lymph nodes, exhibited granzyme B expression, and conferred improved protection against Listeria and vaccinia virus challenges compared with the Armstrong boost. Overall, our findings suggest that the replicative capacity of the boosting antigen influences the protective efficacy afforded by prime-boost vaccine regimens. These findings are relevant for optimizing vaccine candidates and suggest a benefit of robustly replicating vaccine vectors. IMPORTANCE The development of optimal prime-boost vaccine regimens is a high priority for the vaccine development field. In this study, we compared two boosting antigens with different replicative capacities. Boosting with a more highly replicative vector resulted in augmented immune responses and improved protective efficacy. PMID:24648461

  15. The antitumor efficacy of a novel adenovirus-mediated anti-p21Ras single chain fragment variable antibody on human cancers in vitro and in vivo.

    PubMed

    Yang, Ju-Lun; Pan, Xin-Yan; Zhao, Wen-Xing; Hu, Qi-Chan; Ding, Feng; Feng, Qiang; Li, Gui-Yun; Luo, Ying

    2016-03-01

    Activated ras genes are found in a large number of human tumors, and therefore are one of important targets for cancer therapy. This study investigated the antitumor effects of a novel single chain fragment variable antibody (scFv) against ras protein, p21Ras. The anti-p21Ras scFv gene was constructed by phage display library from hybridoma KGHR1, and then subcloned into replication-defective adenovirus vector to obtain recombinant adenovirus KGHV100. Human tumor cell lines with high expression of p21Ras SW480, MDA-MB‑231, OVCAR-3, BEL-7402, as well as tumor cell line with low expression of p21Ras, SKOV3, were employed to investigate antitumor effects in vitro and in vivo. Fluorescence microscopy demonstrated that KGHV100 was able to express intracellularly anti-p21Ras scFv antibody in cultured tumor cells and in transplantation tumor cells. MTT, Transwell, colony formation, and flow cytometry analysis showed that KGHV100 led to significant growth arrest in tumor cells with high p21Ras expression, and induced G0/G1 cell cycle arrest in the studied tumor cell lines. In vivo, KGHV100 significantly inhibited tumor growth following intratumoral injection, and the survival rates of the mice were higher than the control group. These results indicate that the adenovirus-mediated intracellular expression of the novel anti-p21Ras scFv exerted strong antitumoral effects, and may be a potential method for therapy of cancers with p21Ras overexpression. PMID:26780944

  16. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex

    PubMed Central

    Querido, Emmanuelle; Blanchette, Paola; Yan, Qin; Kamura, Takumi; Morrison, Megan; Boivin, Dominique; Kaelin, William G.; Conaway, Ronald C.; Conaway, Joan Weliky; Branton, Philip E.

    2001-01-01

    Although MDM2 plays a major role in regulating the stability of the p53 tumor suppressor protein, other poorly understood MDM2-independent pathways also exist. Human adenoviruses have evolved strategies to regulate p53 function and stability to permit efficient viral replication. One mechanism involves adenovirus E1B55K and E4orf6 proteins, which collaborate to target p53 for degradation. To determine the mechanism of this process, a multiprotein E4orf6-associated complex was purified and shown to contain a novel Cullin-containing E3 ubiquitin ligase that is (1) composed of Cullin family member Cul5, Elongins B and C, and the RING-H2 finger protein Rbx1(ROC1); (2) remarkably similar to the von Hippel-Lindau tumor suppressor and SCF (Skp1–Cul1/Cdc53–F-box) E3 ubiquitin ligase complexes; and (3) capable of stimulating ubiquitination of p53 in vitro in the presence of E1/E2 ubiquitin-activating and -conjugating enzymes. Cullins are activated by NEDD8 modification; therefore, to determine whether Cullin complexes are required for adenovirus-induced p53 degradation, studies were conducted in ts41 Chinese hamster ovary cells that are temperature sensitive for the NEDD8 pathway. E4orf6/E1B55K failed to induce the degradation of p53 at the nonpermissive temperature. Thus, our results identify a novel role for the Cullin-based machinery in regulation of p53. PMID:11731475

  17. Enhanced immune responses against Japanese encephalitis virus using recombinant adenoviruses coexpressing Japanese encephalitis virus envelope and porcine interleukin-6 proteins in mice.

    PubMed

    Liu, Hanyang; Wu, Rui; Liu, Kai; Yuan, Lei; Huang, Xiaobo; Wen, Yiping; Ma, Xiaoping; Yan, Qigui; Zhao, Qin; Wen, Xintian; Cao, Sanjie

    2016-08-15

    Japanese encephalitis is a reproductive disorder caused by Japanese encephalitis virus (JEV) in swine. Previous studies have demonstrated that recombinant adenovirus serotype 5 (Ad5) may be a potential vaccine candidate because it can express JEV envelope epitopes and induce immune responses against JEV. Still, it will be necessary to develop an adjuvant that can enhance both humoral and cellular immune responses to the recombinant antigen delivered by non-replicating Ad5. In this study, we investigated the systemic immune responses of BALB/c mice immunized with recombinant adenovirus expressing JEV envelope epitopes in combination with porcine interleukin-6 (rAdE-IL-6).The rAdE-IL-6 immunized group had the highest titers of anti-JEV antibody as detected by an enzyme-linked immunosorbent assay (ELISA), as well as the highest levels of neutralizing antibody (1:75) as detected by a serum neutralization test. Similarly, higher concentrations of interferon-gamma (834.7pg/ml) and interleukin-6 (IL-6) (229.7pg/ml) were detected in the rAdE-IL-6 group using an ELISA assay. These data indicate that immunized BALB/c induce a strong cellular response against rAdE-IL-6. Furthermore, after challenge with the virulent JEV SCYA201201 strain, the rAdE-IL-6 group generated an immune protective response 70% greater than that of the control group, indicating that rAdE-IL-6 induced a protective immune response against JEV challenge in mice. The results from this study demonstrated that IL-6 is a strong adjuvant that can enhance both humoral and cellular immune responses in mice. Furthermore, a recombinant adenovirus coexpressing JEV envelope epitopes and porcine IL-6 protein may be an effective vaccine in animals. PMID:27235810

  18. Phase I trial of recombinant adenovirus gene transfer in lung cancer. Longitudinal study of the immune responses to transgene and viral products.

    PubMed Central

    Gahéry-Ségard, H; Molinier-Frenkel, V; Le Boulaire, C; Saulnier, P; Opolon, P; Lengagne, R; Gautier, E; Le Cesne, A; Zitvogel, L; Venet, A; Schatz, C; Courtney, M; Le Chevalier, T; Tursz, T; Guillet, J G; Farace, F

    1997-01-01

    Animal studies indicate that the use of replication-deficient adenovirus for human gene therapy is limited by host antivector immune responses that result in transient recombinant protein expression and blocking of gene transfer when rechallenged. Therefore, we have examined immune responses to an adenoviral vector and to the beta-galactosidase protein in four patients with lung cancer given a single intratumor injection of 10(9) plaque-forming units of recombinant adenovirus. The beta-galactosidase protein was expressed in day-8 tumor biopsies from all patients at variable levels. Recombinant virus DNA was detected by PCR in day-30 and day-60 tumor biopsies from all patients except patient 1. A high level of neutralizing antiadenovirus antibodies was detected in patient 1 before Ad-beta-gal injection whereas it was low (patient 3) or undetectable in the other two patients. All patients developed potent CD4 type 1 helper T cell (Th1) responses to adenoviral particles which increased gradually over time after injection. Antiadenovirus cytotoxic T lymphocyte responses were consistently boosted in the two patients examined (patients 3 and 4). Sustained production of anti-beta-galactosidase IgG was observed in all patients except patient 1. Consistent with anti-beta-gal antibody production, all patients except patient 1 developed intense, dose-dependent Th1 responses to soluble beta-galactosidase which increased over time. Strong beta-galactosidase-specific cytotoxic T lymphocyte responses were detected in patients 2, 3, and 4. Our results clearly show that despite the intensity of antiadenovirus responses, transgene protein expression was sufficient to induce strong and prolonged immunity in three patients. Recombinant adenovirus injected directly into the tumor is a highly efficient vector for immunizing patients against the transgene protein. PMID:9410899

  19. Mathematical modeling of genome replication

    NASA Astrophysics Data System (ADS)

    Retkute, Renata; Nieduszynski, Conrad A.; de Moura, Alessandro

    2012-09-01

    Eukaryotic DNA replication is initiated from multiple sites on the chromosome, but little is known about the global and local regulation of replication. We present a mathematical model for the spatial dynamics of DNA replication, which offers insight into the kinetics of replication in different types of organisms. Most biological experiments involve average quantities over large cell populations (typically >107 cells) and therefore can mask the cell-to-cell variability present in the system. Although the model is formulated in terms of a population of cells, using mathematical analysis we show that one can obtain signatures of stochasticity in individual cells from averaged quantities. This work generalizes the result by Retkute [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.068103 107, 068103 (2011)] to a broader set of parameter regimes.

  20. Adenovirus vaccine vectors expressing hepatitis B surface antigen: importance of regulatory elements in the adenovirus major late intron.

    PubMed

    Mason, B B; Davis, A R; Bhat, B M; Chengalvala, M; Lubeck, M D; Zandle, G; Kostek, B; Cholodofsky, S; Dheer, S; Molnar-Kimber, K

    1990-08-01

    Adenovirus types 4 and 7 are currently used as live oral vaccines for prevention of acute respiratory disease caused by these adenovirus serotypes. To investigate the concept of producing live recombinant vaccines using these serotypes, adenovirus types 4 (Ad4) and 7 (Ad7) were constructed that produce HBsAg upon infection of cell cultures. Ad4 recombinants were constructed that express HBsAg from a cassette inserted 135 bp from the right-hand terminus of the viral genome. The cassette contained the Ad4 major late promoter followed by leader 1 of the tripartite leader, the first intervening sequence between leaders 1 and 2, leaders 2 and 3, the HBsAg gene, and tandem polyadenylation signals from the Ad4 E3B and hexon genes. Using this same cassette, a series of Ad4 recombinants expressing HBsAg were constructed with deletions in the intervening sequence between leaders 1 and 2 to evaluate the contribution of the downstream control elements more precisely. Inclusion of regions located between +82 and +148 as well as +148 and +232 resulted in increases in expression levels of HBsAg in A549-infected cells by 22-fold and 44-fold, respectively, over the levels attained by an adenovirus recombinant retaining only sequences from +1 to +82, showing the importance of these elements in the activation of the major late promoter during the course of a natural Ad4 viral infection. Parallel increases were also observed in steady-state levels of cytoplasmic HBsAg-specific mRNA. When similar Ad7 recombinant viruses were constructed, these viruses also expressed 20-fold more HBsAg due to the presence of the intron. All Ad4 and Ad7 recombinants produced HBsAg particles containing gp27 and p24 which were secreted in the medium. When dogs were immunized intratracheally with one of these Ad7 recombinants, they seroconverted to both Ad7 and HBsAg to a high level. PMID:2371766

  1. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  2. Phylogenetic and pathogenic characterization of novel adenoviruses from long-tailed ducks (Clangula hyemalis)

    USGS Publications Warehouse

    Counihan, Katrina; Skerratt, Lee; Franson, J. Christian; Hollmen, Tuula E.

    2015-01-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  3. Neonatal Infection with Species C Adenoviruses Confirmed in Viable Cord Blood Lymphocytes

    PubMed Central

    Ornelles, David A.; Gooding, Linda R.; Garnett-Benson, C.

    2015-01-01

    Credible but conflicting reports address the frequency of prenatal infection by species C adenovirus. This question is important because these viruses persist in lymphoid cells and suppress double-stranded DNA-break repair. Consequently, prenatal adenovirus infections may generate the aberrant clones of lymphocytes that precede development of childhood acute lymphoblastic leukemia (ALL). The present study was designed to overcome technical limitations of prior work by processing cord blood lymphocytes within a day of collection, and by analyzing sufficient numbers of lymphocytes to detect adenovirus-containing cells at the lower limits determined by our previous studies of tonsil lymphocytes. By this approach, adenoviral DNA was identified in 19 of 517 (3.7%) samples, providing definitive evidence for the occurrence of prenatal infection with species C adenoviruses in a significant fraction of neonates predominantly of African American and Hispanic ancestry. Cord blood samples were also tested for the presence of the ETV6-RUNX1 translocation, the most common genetic abnormality in childhood ALL. Using a nested PCR assay, the ETV6-RUNX1 transcript was detected in four of 196 adenovirus-negative samples and one of 14 adenovirus-positive cord blood samples. These findings indicate that this method will be suitable for determining concordance between adenovirus infection and the leukemia-associated translocations in newborns. PMID:25764068

  4. Neonatal infection with species C adenoviruses confirmed in viable cord blood lymphocytes.

    PubMed

    Ornelles, David A; Gooding, Linda R; Garnett-Benson, C

    2015-01-01

    Credible but conflicting reports address the frequency of prenatal infection by species C adenovirus. This question is important because these viruses persist in lymphoid cells and suppress double-stranded DNA-break repair. Consequently, prenatal adenovirus infections may generate the aberrant clones of lymphocytes that precede development of childhood acute lymphoblastic leukemia (ALL). The present study was designed to overcome technical limitations of prior work by processing cord blood lymphocytes within a day of collection, and by analyzing sufficient numbers of lymphocytes to detect adenovirus-containing cells at the lower limits determined by our previous studies of tonsil lymphocytes. By this approach, adenoviral DNA was identified in 19 of 517 (3.7%) samples, providing definitive evidence for the occurrence of prenatal infection with species C adenoviruses in a significant fraction of neonates predominantly of African American and Hispanic ancestry. Cord blood samples were also tested for the presence of the ETV6-RUNX1 translocation, the most common genetic abnormality in childhood ALL. Using a nested PCR assay, the ETV6-RUNX1 transcript was detected in four of 196 adenovirus-negative samples and one of 14 adenovirus-positive cord blood samples. These findings indicate that this method will be suitable for determining concordance between adenovirus infection and the leukemia-associated translocations in newborns. PMID:25764068

  5. Mechanism by which calcium phosphate coprecipitation enhances adenovirus-mediated gene transfer.

    PubMed

    Walters, R; Welsh, M

    1999-11-01

    Delivery of a normal copy of CFTR cDNA to airway epithelia may provide a novel treatment for cystic fibrosis lung disease. Unfortunately, current vectors are inefficient because of limited binding to the apical surface of airway epithelia. We recently reported that incorporation of adenovirus in a calcium phosphate coprecipitate (Ad:CaPi) improves adenovirus-mediated gene transfer to airway epithelia in vitro and in vivo. To understand better how coprecipitation improves gene transfer, we tested the hypothesis that incorporation in a CaPi coprecipitate increases the binding of adenovirus to the apical surface of differentiated human airway epithelia. When a Cy3-labelled adenovirus was delivered in a coprecipitate, binding increased 54-fold as compared with adenovirus alone. Moreover, infection by Ad:CaPi was independent of fiber knob-CAR and penton base-integrin interactions. After binding to the cell surface, the virus must enter the cell in order to infect. We hypothesized that Ad:CaPi may stimulate fluid phase endocytosis, thereby facilitating entry. However, we found that neither adenovirus nor Ad:CaPi coprecipitates altered fluid phase endocytosis. Nevertheless, Ad:CaPi preferentially infected cells showing endocytosis. Thus, CaPi coprecipitation improves adenovirus-mediated gene transfer by coating the epithelial surface with a layer of virus which enters cells during the normal process of endocytosis. PMID:10602380

  6. Robotic Arm Unwrapped

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken shortly after NASA's Phoenix Mars Lander touched down on the surface of Mars, shows the spacecraft's robotic arm in its stowed configuration, with its biobarrier successfully unpeeled. The 'elbow' of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

    The biobarrier is an extra precautionary measure for protecting Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars.

    Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have appeared during the final steps before launch and during the journey to Mars will not contact the robotic arm.

    After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

    The base of the lander's Meteorological Station can be seen in this picture on the upper left. Because only the base of the station is showing, this image tells engineers that the instrument deployed successfully.

    The image was taken on landing day, May 25, 2008, by the spacecraft's Surface Stereo Imager.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Overexpression of the Replicative Helicase in Escherichia coli Inhibits Replication Initiation and Replication Fork Reloading

    PubMed Central

    Brüning, Jan-Gert; Myka, Kamila Katarzyna; McGlynn, Peter

    2016-01-01

    Replicative helicases play central roles in chromosome duplication and their assembly onto DNA is regulated via initiators and helicase loader proteins. The Escherichia coli replicative helicase DnaB and the helicase loader DnaC form a DnaB6–DnaC6 complex that is required for loading DnaB onto single-stranded DNA. Overexpression of dnaC inhibits replication by promoting continual rebinding of DnaC to DnaB and consequent prevention of helicase translocation. Here we show that overexpression of dnaB also inhibits growth and chromosome duplication. This inhibition is countered by co-overexpression of wild-type DnaC but not of a DnaC mutant that cannot interact with DnaB, indicating that a reduction in DnaB6–DnaC6 concentration is responsible for the phenotypes associated with elevated DnaB concentration. Partial defects in the oriC-specific initiator DnaA and in PriA-specific initiation away from oriC during replication repair sensitise cells to dnaB overexpression. Absence of the accessory replicative helicase Rep, resulting in increased replication blockage and thus increased reinitiation away from oriC, also exacerbates DnaB-induced defects. These findings indicate that elevated levels of helicase perturb replication initiation not only at origins of replication but also during fork repair at other sites on the chromosome. Thus, imbalances in levels of the replicative helicase and helicase loader can inhibit replication both via inhibition of DnaB6–DnaC6 complex formation with excess DnaB, as shown here, and promotion of formation of DnaB6–DnaC6 complexes with excess DnaC [Allen GC, Jr., Kornberg A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J. Biol. Chem. 1991;266:22096–22101; Skarstad K, Wold S. The speed of the Escherichia coli fork in vivo depends on the DnaB:DnaC ratio. Mol. Microbiol. 1995;17:825–831]. Thus, there are two mechanisms by which an imbalance in the replicative helicase and its

  8. The Biology of Replicative Senescence

    SciTech Connect

    Campisi, J.

    1996-12-04

    Most cells cannot divide indefinitely due to a processtermed cellular or replicative senescence. Replicative senescence appearsto be a fundamental feature of somatic cells, with the exception of mosttumour cells and possibly certain stem cells. How do cells sense thenumber of divisions they have completed? Although it has not yet beencritically tested, the telomere shortening hypothesis is currentlyperhaps the best explanation for a cell division 'counting' mechanism.Why do cells irreversibly cease proliferation after completing a finitenumber of divisions? It is now known that replicative senescence altersthe expression of a few crucial growth-regulatory genes. It is not knownhow these changes in growth-regulatory gene expression are related totelomere shortening in higher eukaryotes. However, lower eukaryotes haveprovided several plausible mechanisms. Finally, what are thephysiological consequences of replicative senescence? Several lines ofevidence suggest that, at least in human cells, replicative senescence isa powerful tumour suppressive mechanism. There is also indirect evidencethat replicative senescence contributes to ageing. Taken together,current findings suggest that, at least in mammals, replicativesenescence may have evolved to curtail tumorigenesis, but may also havethe unselected effect of contributing to age-related pathologies,including cancer.

  9. SMARCAL1 and replication stress

    PubMed Central

    Bansbach, Carol E; Cortez, David

    2010-01-01

    The SNF2 family of ATPases acts in the context of chromatin to regulate transcription, replication, repair and recombination. Defects in SNF2 genes cause many human diseases. For example, mutations in SMARCAL1 (also named HARP) cause Schimke immuno-osseous dysplasia (SIOD); a multi-system disorder characterized by growth defects, immune deficiencies, renal failure and other complex phenotypes. Several groups including ours recently identified SMARCAL1 as a replication stress response protein. Importantly, SMARCAL1 localizes to stalled replication forks and this localization of SMARCAL1 activity prevents DNA damage accumulation during DNA replication. We determined that SIOD-related SMARCAL1 mutants could not prevent replication-associated DNA damage in cells in which endogenous SMARCAL1 was silenced, establishing the first link between SIOD and a defect in a specific biological activity. Here, we also report that cells from patients with SIOD exhibit elevated levels of DNA damage that can be rescued by re-introduction of wild-type SMARCAL1. Our data suggest that loss of SMARCAL1 function in patients may cause DNA replication-associated genome instability that contributes to the pleiotropic phenotypes of SIOD. PMID:21327070

  10. Replication and Virus-Induced Transcriptome of HAdV-5 in Normal Host Cells versus Cancer Cells - Differences of Relevance for Adenoviral Oncolysis

    PubMed Central

    Fellenberg, Kurt; Kaufmann, Johanna K.; Engelhardt, Sarah; Hoheisel, Jörg D.; Nettelbeck, Dirk M.

    2011-01-01

    Adenoviruses (Ads), especially HAdV-5, have been genetically equipped with tumor-restricted replication potential to enable applications in oncolytic cancer therapy. Such oncolytic adenoviruses have been well tolerated in cancer patients, but their anti-tumor efficacy needs to be enhanced. In this regard, it should be considered that cancer cells, dependent on their tissue of origin, can differ substantially from the normal host cells to which Ads are adapted by complex virus-host interactions. Consequently, viral replication efficiency, a key determinant of oncolytic activity, might be suboptimal in cancer cells. Therefore, we have analyzed both the replication kinetics of HAdV-5 and the virus-induced transcriptome in human bronchial epithelial cells (HBEC) in comparison to cancer cells. This is the first report on genome-wide expression profiling of Ads in their native host cells. We found that E1A expression and onset of viral genome replication are most rapid in HBEC and considerably delayed in melanoma cells. In squamous cell lung carcinoma cells, we observed intermediate HAdV-5 replication kinetics. Infectious particle production, viral spread and lytic activity of HAdV-5 were attenuated in melanoma cells versus HBEC. Expression profiling at the onset of viral genome replication revealed that HAdV-5 induced the strongest changes in the cellular transcriptome in HBEC, followed by lung cancer and melanoma cells. We identified prominent regulation of genes involved in cell cycle and DNA metabolism, replication and packaging in HBEC, which is in accord with the necessity to induce S phase for viral replication. Strikingly, in melanoma cells HAdV-5 triggered opposing regulation of said genes and, in contrast to lung cancer cells, no weak S phase induction was detected when using the E2F promoter as reporter. Our results provide a rationale for improving oncolytic adenoviruses either by adaptation of viral infection to target tumor cells or by modulating tumor cell

  11. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-01-01

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene). PMID:26782515

  12. Application of the polymerase chain reaction to detect fowl adenoviruses.

    PubMed Central

    Jiang, P; Ojkic, D; Tuboly, T; Huber, P; Nagy, E

    1999-01-01

    The possibility of using the polymerase chain reaction (PCR) for the detection of fowl adenoviruses (FAdV) was tested. The optimal reaction parameters were evaluated and defined for purified genomic DNA of type 8 fowl adenovirus (FAdV-8), and then the same conditions were applied for nucleic acid extracted from infected cells. One hundred picograms of purified viral DNA, or 250 FAdV-8-infected cells, were detected by ethidium bromide staining of the PCR products in agarose gels. The sensitivity was increased to 10 pg purified viral DNA, or 25 infected cells, when the PCR products were hybridized with a specific labeled probe. Several field isolates of FAdV and the CELO virus (FAdV serotype 1) could be amplified by the same primers and conditions, but the size of the amplicons was smaller than that for the FAdV-8 PCR product. Other avian viruses and uninfected cell cultures tested negative. Images Figure 2. Figure 3. Figure 4. PMID:10369570

  13. Purification of a native membrane-associated adenovirus tumor antigen.

    PubMed Central

    Persson, H; Katze, M G; Philipson, L

    1982-01-01

    A 15,000-dalton protein was purified from HeLa cells infected with adenovirus type 2. Proteins solubilized from a membrane fraction of lytically infected cells was used as the starting material for purification. Subsequent purification steps involved lentil-lectin, phosphocellulose, hydroxyapatite, DEAE-cellulose, and aminohexyl-Sepharose chromatographies. A monospecific antiserum, raised against the purified protein, immunoprecipitated a 15,000-dalton protein encoded in early-region E1B (E1B/15K protein) of the adenovirus type 2 DNA. Tryptic finger print analysis revealed that the purified protein was identical to the E1B/15K protein encoded in the transforming part of the viral genome. The antiserum immunoprecipitated the E1B/15K protein from a variety of viral transformed cell lines isolated from humans, rats, or hamsters. The E1B/15K protein was associated with the membrane fraction of both lytically and virus-transformed cell lines and could only be released by detergent treatment. Furthermore, a 11,000- to 12,000-dalton protein that could be precipitated with the anti-E1B/15K serum was recovered from membranes treated with trypsin or proteinase K, suggesting that a major part of the E1B/15K protein is protected in membrane vesicles. Translation of early viral mRNA in a cell-free system, supplemented with rough microsomes, showed that this protein was associated with the membrane fraction also in vitro. Images PMID:7097863

  14. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    SciTech Connect

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.; Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J.; Mercier, George T.; Barry, Michael A.

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  15. Molecular characterization of adenovirus circulating in Central and South America during the 2006–2008 period

    PubMed Central

    García, Josefina; Sovero, Merly; Laguna‐Torres, Victor Alberto; Gomez, Jorge; Chicaiza, Wilson; Barrantes, Melvin; Sanchez, Felix; Jimenez, Mirna; Comach, Guillermo; De Rivera, Ivette L.; Agudo, Roberto; Arango, Ana E.; Barboza, Alma; Aguayo, Nicolas; Kochel, Tadeusz J.

    2009-01-01

    Background  Human Adenoviruses are recognized pathogens, causing a broad spectrum of diseases. Serotype identification is critical for epidemiological surveillance, detection of new strains and understanding of HAdvs pathogenesis. Little data is available about HAdvs subtypes in Latin America. Methods  In this study, we have molecularly characterized 213 adenoviruses collected from ILI presenting patients, during 2006‐08, in Central and South America. Results  Our results indicate that 161(76%) adenoviruses belong to subgroup C, 45 (21%) to subgroup B and 7 (3%) to subtype E4. PMID:19903214

  16. Molecular detection of two adenoviruses associated with disease in Australian lizards.

    PubMed

    Hyndman, T; Shilton, C M

    2011-06-01

    We give the first published description of the pathology and molecular findings associated with adenovirus infection in lizards in Australia. A central netted dragon (Ctenophorus nuchalis) exhibited severe necrotising hepatitis with abundant intranuclear inclusion bodies within hepatocytes and rarely within intestinal epithelial cells. Polymerase chain reaction (PCR) using pooled tissues yielded an amplicon that shared strong nucleotide identity with an agamid adenovirus (EU914203). PCR on the liver of a bearded dragon (Pogona minor minor) with illthrift, coccidiosis, nematodiasis and hepatic lipidosis yielded an amplicon with strong nucleotide identity to a helodermatid adenovirus (EU914207). PMID:21595645

  17. An Attenuated Adenovirus, ONYX-015, As Mouthwash Therapy for Premalignant Oral Dysplasia

    PubMed Central

    Rudin, Charles M.; Cohen, Ezra E.W.; Papadimitrakopoulou, Vassiliki A.; Silverman, Sol; Recant, Wendy; El-Naggar, Adel K.; Stenson, Kirsten; Lippman, Scott M.; Hong, Waun Ki; Vokes, Everett E.

    2015-01-01

    Purpose Dysplastic lesions of the oral epithelium are known precursors of oral cancer. A significant proportion of oral dysplastic lesions have functional defects in p53 response pathways. The ONYX-015 adenovirus is selectively cytotoxic to cells carrying defects in p53-dependent signaling pathways. The current study sought to establish the feasibility and activity of ONYX-015 administered topically as a mouthwash to patients with clinically apparent and histologically dysplastic lesions of the oral mucosa. Patients and Methods A total of 22 patients (19 assessable patients) were enrolled onto the study. ONYX-015 was administered on three different schedules to consecutive cohorts. Biopsies of the involved mucosa were performed to evaluate histologic response and changes in expression of putative markers of malignant potential, including p53, cyclin D1, and Ki-67. Serology was performed to measure antiadenoviral titers. Results Histologic resolution of dysplasia was seen in seven (37%) of 19 patients, and the grade of dysplasia improved in one additional patient. The majority of responses were transient. No toxicity greater than grade 2 (febrile episode in one patient) was observed. Only one of seven patients demonstrated an increase in circulating antiadenoviral antibody titer while on therapy. Although responding and resistant lesions had similar mean p53 staining at baseline, histologic response correlated with a decrease in p53 positivity over time. Significant changes in cyclin D1 or Ki-67 were not observed. Viral replication was confirmed in two of three lesions examined. Conclusion This novel approach to cancer prevention is tolerable, feasible, and has demonstrable activity. PMID:14597742

  18. Adenovirus-mediated gene delivery to cells of the magnocellular hypothalamo-neurohypophyseal system

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Beltz, T. G.; Haskell, R. E.; Johnson, R. F.; Meyrelles, S. S.; Davidson, B. L.; Johnson, A. K.

    2001-01-01

    The objective of the present study was to define the optimum conditions for using replication-defective adenovirus (Ad) to transfer the gene for the green fluorescent protein (GFP) to the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei and cells of the neurohypophysis (NH). As indicated by characterizing cell survival over 15 days in culture and in electrophysiological whole cell patch-clamp studies, viral concentrations up to 2 x 10(7) pfu/coverslip did not affect viability of transfected PVN and NH cultured cells from preweanling rats. At 2 x 10(7) pfu, GFP gene expression was higher (40% of GFP-positive cells) and more sustained (up to 15 days). Using a stereotaxic approach in adult rats, we were able to directly transduce the PVN, SON, and NH and visualize gene expression in coronal brain slices and in the pituitary 4 days after injection of Ad. In animals receiving NH injections of Ad, the virus was retrogradely transported to PVN and SON neurons as indicated by the appearance of GFP-positive neurons in cultures of dissociated cells from those brain nuclei and by polymerase chain reaction and Western blot analyses of PVN and SON tissues. Adenoviral concentrations of up to 8 x 10(6) pfu injected into the NH did not affect cell viability and did not cause inflammatory responses. Adenoviral injection into the pituitary enabled the selective delivery of genes to the soma of magnocellular neurons. The experimental approaches described here provide potentially useful strategies for the treatment of disordered expression of the hormones vasopressin or oxytocin. Copyright 2000 Academic Press.

  19. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Beltz, T. G.; Meyrelles, S. S.; Johnson, A. K.

    1999-01-01

    Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.

  20. Binding sites of HeLa cell nuclear proteins on the upstream region of adenovirus type 5 E1A gene.

    PubMed Central

    Yoshida, K; Narita, M; Fujinaga, K

    1989-01-01

    Twenty one binding sites of HeLa cell nuclear proteins were identified on the upstream region of adenovirus type 5 E1A gene using DNase I footprint assay. The proximal promoter region contained five binding sites that overlapped the cap site, TATA box, TATA-like sequence, CCAAT box, and -100 region relative to the E1A cap site(+1). The -190 region was a potential site for octamer-motif binding proteins, such as NFIII and OBP100. An upstream copy of the E1A enhancer element 1 was the site for a factor (E1A-F) with the binding specificity of XGGAYGT (X = A, C; Y = A, T). E1A-F factor also bound to three other sites, one of which coincided with the distal E1A enhancer element. The distal element also contained a potential site for ATF factor. The adenovirus minimal origin of DNA replication competed for DNA-protein complex formation on the CCAAT and TATA box region and the -190 region, suggesting that these regions interacted with a common or related factor. Images PMID:2532319

  1. Adenovirus Small E1A Employs the Lysine Acetylases p300/CBP and Tumor Suppressor Rb to Repress Select Host Genes and Promote Productive Virus Infection

    PubMed Central

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A.; Nava, Miguel; Su, Trent; Yousef, Ahmed F.; Zemke, Nathan R.; Pellegrini, Matteo; Kurdistani, Siavash K.; Berk, Arnold J.

    2015-01-01

    SUMMARY Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGFβ-, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. PMID:25525796

  2. A Comparative Study of Neural and Mesenchymal Stem Cell-Based Carriers for Oncolytic Adenovirus in a Model of Malignant Glioma

    PubMed Central

    Ahmed, Atique U.; Tyler, Matthew A.; Thaci, Bart; Alexiades, Nikita G.; Han, Yu; Ulasov, Ilya V.; Lesniak, Maciej S.

    2011-01-01

    Glioblastoma multiforme is a primary malignancy of the central nervous system that is universally fatal due to its disseminated nature. Recent investigations have focused on the unique tumor-tropic properties of stem cells as a novel platform for targeted delivery of anticancer agents to the brain. Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) both have the potential to function as cell carriers for targeted delivery of a glioma restricted oncolytic virus to disseminated tumor due to their reported tumor tropism. In this study, we evaluated NSCs and MSCs as cellular delivery vehicles for an oncolytic adenovirus in the context of human glioma. We report the first preclinical comparison of the two cell lines and show that, while both stem cell lines are able to support therapeutic adenoviral replication intracellularly, the amount of virus released from NSCs was a log higher than the MSC (p < 0.001). Moreover, only virus loaded NSCs that were administered intracranially in an orthotopic glioma model significantly prolonged the survival of tumor bearing animals (median survival for NSCs 68.5 days vs 44 days for MSCs, p < 0.002). Loading oncolytic adenovirus into NSCs and MSCs also led to expression of both pro- and anti-inflammatory genes and decreased vector-mediated neuroinflammation. Our results indicate that, despite possessing a comparable migratory capacity, NSCs display superior therapeutic efficacy in the context of intracranial tumors. Taken together, these findings argue in favor of NSCs as an effective cell carrier for antiglioma oncolytic virotherapy. PMID:21718006

  3. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma.

    PubMed

    Ahmed, Atique U; Tyler, Matthew A; Thaci, Bart; Alexiades, Nikita G; Han, Yu; Ulasov, Ilya V; Lesniak, Maciej S

    2011-10-01

    Glioblastoma multiforme is a primary malignancy of the central nervous system that is universally fatal due to its disseminated nature. Recent investigations have focused on the unique tumor-tropic properties of stem cells as a novel platform for targeted delivery of anticancer agents to the brain. Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) both have the potential to function as cell carriers for targeted delivery of a glioma restricted oncolytic virus to disseminated tumor due to their reported tumor tropism. In this study, we evaluated NSCs and MSCs as cellular delivery vehicles for an oncolytic adenovirus in the context of human glioma. We report the first preclinical comparison of the two cell lines and show that, while both stem cell lines are able to support therapeutic adenoviral replication intracellularly, the amount of virus released from NSCs was a log higher than the MSC (p < 0.001). Moreover, only virus loaded NSCs that were administered intracranially in an orthotopic glioma model significantly prolonged the survival of tumor bearing animals (median survival for NSCs 68.5 days vs 44 days for MSCs, p < 0.002). Loading oncolytic adenovirus into NSCs and MSCs also led to expression of both pro- and anti-inflammatory genes and decreased vector-mediated neuroinflammation. Our results indicate that, despite possessing a comparable migratory capacity, NSCs display superior therapeutic efficacy in the context of intracranial tumors. Taken together, these findings argue in favor of NSCs as an effective cell carrier for antiglioma oncolytic virotherapy. PMID:21718006

  4. Therapeutic efficacy of an oncolytic adenovirus containing RGD ligand in minor capsid protein IX and Fiber, Δ24DoubleRGD, in an ovarian cancer model

    PubMed Central

    Gamble, Lena J.; Ugai, Hideyo; Wang, Minghui; Borovjagin, Anton V.; Matthews, Qiana L.

    2013-01-01

    Ovarian cancer is the leading cause of gynecological disease death despite advances in medicine. Therefore, novel strategies are required for ovarian cancer therapy. Conditionally replicative adenoviruses (CRAds), genetically modified as anti-cancer therapeutics, are one of the most attractive candidate agents for cancer therapy. However, a paucity of coxsackie B virus and adenovirus receptor (CAR) expression on the surface of ovarian cancer cells has impeded treatment of ovarian cancer using this approach. This study sought to engineer a CRAd with enhanced oncolytic ability in ovarian cancer cells, “Δ24DoubleRGD.” Δ24DoubleRGD carries an arginine-glycine-aspartate (RGD) motif incorporated into both fiber and capsid protein IX (pIX) and its oncolytic efficacy was evaluated in ovarian cancer. In vitro analysis of cell viability showed that infection of ovarian cancer cells with Δ24DoubleRGD leads to increased cell killing relative to the control CRAds. Data from this study suggested that not only an increase in number of RGD motifs on the CRAd capsid, but also a change in the repertoir of targeted integrins could lead to enhanced oncolytic potency of Δ24DoubleRGD in ovarian cancer cells in vitro. In an intraperitoneal model of ovarian cancer, mice injected with Δ24DoubleRGD showed, however, a similar survival rate as mice treated with control CRAds. PMID:23998042

  5. The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs.

    PubMed Central

    Pilder, S; Moore, M; Logan, J; Shenk, T

    1986-01-01

    The adenovirus type 5 mutant H5dl338 lacks 524 base pairs within early region 1B. The mutation removed a portion of the region encoding the related E1B-55K and -17K polypeptides but did not disturb the E1B-21K coding region. The virus can be propagated in 293 cells which contain and express the adenovirus type 5 E1A and E1B regions, but it is defective for growth in HeLa cells, in which its final yield is reduced about 100-fold compared with the wild-type virus. The mutant also fails to transform rat cells at normal efficiency. The site of the dl338 defect was studied in HeLa cells. Early gene expression and DNA replication appeared normal. Late after infection, mRNAs coded by the major late transcription unit accumulated to reduced levels. At a time when transcription rates and steady-state nuclear RNA species were normal, the rate at which late mRNA accumulated in the cytoplasm was markedly reduced. Furthermore, in contrast to the case with the wild type, transport and accumulation of cellular mRNAs continued late after infection with dl338. Thus, the E1B product appears to facilitate transport and accumulation of viral mRNAs late after infection while blocking the same processes for cellular mRNAs. Images PMID:2946932

  6. Arm pain and erythema

    PubMed Central

    Juergens, Andrew L.

    2016-01-01

    Pyomyositis can be a difficult diagnosis to make, as it can mimic many other disease processes. Various laboratory studies can be abnormal with pyomyositis, but none are specific to the disease. Early disease can generally be treated with antibiotics alone, whereas advanced disease frequently requires emergent surgical intervention with significant resuscitation. We describe a case of pyomyositis of the right arm. PMID:27034571

  7. Arms and the Men

    ERIC Educational Resources Information Center

    Gurney, Ramsdell, Jr.

    1975-01-01

    The author traces the history of international weapons negotiations in this century and notes the world's two nuclear superpowers and chief protagonists of the arms race, the Soviet Union and the United States, must act speedily and decisively on this critical matter. (BT)

  8. Molecular Characterization of a Lizard Adenovirus Reveals the First Atadenovirus with Two Fiber Genes and the First Adenovirus with Either One Short or Three Long Fibers per Penton

    PubMed Central

    Pénzes, Judit J.; Menéndez-Conejero, Rosa; Condezo, Gabriela N.; Ball, Inna; Papp, Tibor; Doszpoly, Andor; Paradela, Alberto; Pérez-Berná, Ana J.; López-Sanz, María; Nguyen, Thanh H.; van Raaij, Mark J.; Marschang, Rachel E.; Harrach, Balázs; Benkő, Mária

    2014-01-01

    ABSTRACT Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins—one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton

  9. Biosynthesis and properties of the adenovirus 2 L1-encoded 52,000- and 55,000-Mr proteins.

    PubMed Central

    Lucher, L A; Symington, J S; Green, M

    1986-01-01

    The adenovirus type 2 L1 region, which is located at 30.7 to 39.2 map units on the viral genome, is transcribed from the major late promoter during both early and late stages of virus replication, and a 52,000-Mr (52K) protein-55K protein doublet has been translated in vitro on L1-specific RNA. To investigate the biosynthesis and properties of the L1 52K and 55K proteins, we prepared antibody against a synthetic peptide encoded near the predicted N terminus. As determined by immunoprecipitation and immunoblot analysis, the antipeptide antibody recognized major 52K and 55K proteins synthesized in adenovirus type 2-infected cells that appeared to be identical to the 52K-55K doublet translated in vitro. The immunoprecipitated 52K and 55K proteins were very closely related, as shown by a peptide map analysis. Both L1 proteins were phosphorylated, and they were phosphorylated at similar sites. No precursor-product relationship was detected between the 52K and 55K proteins by a pulse-chase analysis. Biosynthesis of the L1 52K and 55K proteins began about 6 to 7 h postinfection, after biosynthesis of the early region 1A and early region 1B 19K (175R) T antigens, and reached a maximum rate at about 15 h; the maximum rate was maintained until at least 25 h postinfection. At all times, the 55K protein appeared to be synthesized at a severalfold-higher level than the 52K protein. Both proteins were quite stable and accumulated until late times after infection. Viral DNA replication was not essential for formation of the L1 proteins. Thus, the L1 52K-55K gene appears to be regulated in a manner different from the classical early and late viral genes but similar to the protein encoded by the i-leader (Symington et al., J. Virol. 57:849-856, 1986). The L1 proteins were detected in the cell nucleus by immunofluorescence microscopy with antipeptide antibody and were found to be primarily associated with the nuclear membrane by an immunoblot analysis of subcellular fractions

  10. Robotic Arm of Rover 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    JPL engineers examine the robotic arm of Mars Exploration Rover 1. The arm is modeled after a human arm, complete with joints, and holds four devices on its end, the Rock Abrasion Tool which can grind into Martian rocks, a microscopic imager, and two spectrometers for elemental and iron-mineral identification.

  11. Layers of Experience Using "Arms"

    ERIC Educational Resources Information Center

    Brown, Laurinda; Coles, Alf; Ball, Derek; Morton, Pat; Coles, Matt; Ordman, Louise; Orr, Barry; Lam, Tung Ken

    2008-01-01

    This article presents the authors' personal accounts and their experiences in working on mathematics using "arms." "Arms" is an idea that first appeared as a program written by John Warwick and David Wooldridge in an ATM publication "Some Lessons in Mathematics with a Microcomputer," 1983. The introduction to "Arms" in the book states that it is a…

  12. Control of foot-and-mouth disease by using replication-defective human adenoviruses to deliver vaccines and biotherapeutics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease (FMD) is one of the most contagious viral diseases that can affect cloven-hoofed livestock and wild animals. Outbreaks of FMD have caused devastating economic losses and the slaughter of millions of animals in many regions of the world affecting the food chain and global devel...

  13. Functional Analysis of DNA Replication Fork Reversal Catalyzed by Mycobacterium tuberculosis RuvAB Proteins*

    PubMed Central

    Khanduja, Jasbeer Singh; Muniyappa, K.

    2012-01-01

    Initially discovered in Escherichia coli, RuvAB proteins are ubiquitous in bacteria and play a dual role as molecular motor proteins responsible for branch migration of the Holliday junction(s) and reversal of stalled replication forks. Despite mounting genetic evidence for a crucial role of RuvA and RuvB proteins in reversal of stalled replication forks, the mechanistic aspects of this process are still not fully understood. Here, we elucidate the ability of Mycobacterium tuberculosis RuvAB (MtRuvAB) complex to catalyze the reversal of replication forks using a range of DNA replication fork substrates. Our studies show that MtRuvAB, unlike E. coli RuvAB, is able to drive replication fork reversal via the formation of Holliday junction intermediates, suggesting that RuvAB-catalyzed fork reversal involves concerted unwinding and annealing of nascent leading and lagging strands. We also demonstrate the reversal of replication forks carrying hemi-replicated DNA, indicating that MtRuvAB complex-catalyzed fork reversal is independent of symmetry at the fork junction. The fork reversal reaction catalyzed by MtRuvAB is coupled to ATP hydrolysis, is processive, and culminates in the formation of an extended reverse DNA arm. Notably, we found that sequence heterology failed to impede the fork reversal activity of MtRuvAB. We discuss the implications of these results in the context of recognition and processing of varied types of replication fork structures by RuvAB proteins. PMID:22094465

  14. Molecular Detection of Adenoviruses, Rhabdoviruses, and Paramyxoviruses in Bats from Kenya

    PubMed Central

    Conrardy, Christina; Tao, Ying; Kuzmin, Ivan V.; Niezgoda, Michael; Agwanda, Bernard; Breiman, Robert F.; Anderson, Larry J.; Rupprecht, Charles E.; Tong, Suxiang

    2014-01-01

    We screened 217 bats of at least 20 species from 17 locations in Kenya during July and August of 2006 for the presence of adenovirus, rhabdovirus, and paramyxovirus nucleic acids using generic reverse transcription polymerase chain reaction (RT-PCR) and PCR assays. Of 217 bat fecal swabs examined, 4 bats were adenovirus DNA-positive, 11 bats were paramyxovirus RNA-positive, and 2 bats were rhabdovirus RNA-positive. Three bats were coinfected by two different viruses. By sequence comparison and phylogenetic analysis, the Kenya bat paramyxoviruses and rhabdoviruses from this study may represent novel viral lineages within their respective families; the Kenya bat adenoviruses could not be confirmed as novel, because the same region sequences from other known bat adenovirus genomes for comparison were lacking. Our study adds to previous evidence that bats carry diverse, potentially zoonotic viruses and may be coinfected with more than one virus. PMID:24865685

  15. Molecular detection of adenoviruses, rhabdoviruses, and paramyxoviruses in bats from Kenya.

    PubMed

    Conrardy, Christina; Tao, Ying; Kuzmin, Ivan V; Niezgoda, Michael; Agwanda, Bernard; Breiman, Robert F; Anderson, Larry J; Rupprecht, Charles E; Tong, Suxiang

    2014-08-01

    We screened 217 bats of at least 20 species from 17 locations in Kenya during July and August of 2006 for the presence of adenovirus, rhabdovirus, and paramyxovirus nucleic acids using generic reverse transcription polymerase chain reaction (RT-PCR) and PCR assays. Of 217 bat fecal swabs examined, 4 bats were adenovirus DNA-positive, 11 bats were paramyxovirus RNA-positive, and 2 bats were rhabdovirus RNA-positive. Three bats were coinfected by two different viruses. By sequence comparison and phylogenetic analysis, the Kenya bat paramyxoviruses and rhabdoviruses from this study may represent novel viral lineages within their respective families; the Kenya bat adenoviruses could not be confirmed as novel, because the same region sequences from other known bat adenovirus genomes for comparison were lacking. Our study adds to previous evidence that bats carry diverse, potentially zoonotic viruses and may be coinfected with more than one virus. PMID:24865685

  16. Arm blood flow and metabolism during arm and combined arm and leg exercise in humans

    PubMed Central

    Volianitis, S; Secher, N H

    2002-01-01

    The cardiovascular response to exercise with several groups of skeletal muscle suggests that work with the arms may decrease leg blood flow. This study evaluated whether intense exercise with the legs would have a similar effect on arm blood flow (Q̇arm) and O2 consumption (V̇O2,arm). Ten healthy male subjects (age 21 ± 1 year; mean ± S.D.) performed arm cranking at 80 % of maximum arm work capacity (A trial) and combined arm cranking with cycling at 60 % of maximum leg work capacity (A + L trial). The combined trial was a maximum effort for 5-6 min. Q̇arm measurement by thermodilution in the axilliary vein and arterial and venous blood samples permitted calculation of V̇O2,arm. During the combined trial, Q̇arm was reduced by 0.58 ± 0.25 l min−1 (19.1 ± 3.0 %, P < 0.05) from the value during arm cranking (3.00 ± 0.46 l min−1). The arterio-venous O2 difference increased from 122 ± 15 ml l−1 during the arm trial to 150 ± 21 ml l−1 (P < 0.05) during the combined trial. Thus, V̇O2,arm (0.45 ± 0.06 l min−1) was reduced by 9.6 ± 6.3 % (P < 0.05) and arm vascular conductance from 27 ± 4 to 23 ± 3 ml min−1 (mmHg)−1 (P < 0.05) as noradrenaline spillover from the arm increased from 7.5 ± 3.5 to 13.8 ± 4.2 nmol min−1 (P < 0.05). The data suggest that during maximal whole body exercise in humans, arm vasoconstriction is established to an extent that affects oxygen delivery to and utilisation by working skeletal muscles. PMID:12411540

  17. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A

    PubMed Central

    Stylianou, E.; Griffiths, K.L.; Poyntz, H.C.; Harrington-Kandt, R.; Dicks, M.D.; Stockdale, L.; Betts, G.; McShane, H.

    2015-01-01

    A replication-deficient chimpanzee adenovirus expressing Ag85A (ChAdOx1.85A) was assessed, both alone and in combination with modified vaccinia Ankara also expressing Ag85A (MVA85A), for its immunogenicity and protective efficacy against a Mycobacterium tuberculosis (M.tb) challenge in mice. Naïve and BCG-primed mice were vaccinated or boosted with ChAdOx1.85A and MVA85A in different combinations. Although intranasally administered ChAdOx1.85A induced strong immune responses in the lungs, it failed to consistently protect against aerosol M.tb challenge. In contrast, ChAdOx1.85A followed by MVA85A administered either mucosally or systemically, induced strong immune responses and was able to improve the protective efficacy of BCG. This vaccination regime has consistently shown superior protection over BCG alone and should be evaluated further. PMID:26478198

  18. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus.

    PubMed

    Del Bufalo, Francesca; Manzo, Teresa; Hoyos, Valentina; Yagyu, Shigeki; Caruana, Ignazio; Jacot, Jeffrey; Benavides, Omar; Rosen, Daniel; Brenner, Malcolm K

    2016-04-01

    Interactions between malignant and stromal cells and the 3D spatial architecture of the tumor both substantially modify tumor behavior, including the responses to small molecule drugs and biological therapies. Conventional 2D culture systems cannot replicate this complexity. To overcome these limitations and more accurately model solid tumors, we developed a highly versatile 3D PEG-fibrin hydrogel model of human lung adenocarcinoma. Our model relevantly recapitulates the effect of oncolytic adenovirus; tumor responses in this setting nearly reproduce those observed in vivo. We have also validated the use of this model for complex, long-term, 3D cultures of cancer cells and their stroma (fibroblasts and endothelial cells). Both tumor proliferation and invasiveness were enhanced in the presence of stromal components. These results validate our 3D hydrogel model as a relevant platform to study cancer biology and tumor responses to biological treatments. PMID:26826297

  19. SIV replication in human cells

    PubMed Central

    Sakuma, Ryuta; Takeuchi, Hiroaki

    2012-01-01

    Current human immunodeficiency virus type 1 pandemic is believed to originate from cross-species transmission of simian immunodeficiency virus (SIV) into human population. Such cross-species transmission, however, is not efficient in general, because viral replication is modulated by host cell factors, with the species-specificity of these factors affecting viral tropism. An understanding of those host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. This review will focus an anti-viral effect of ApoB mRNA editing catalytic subunit, tripartite motif protein 5 alpha, and cyclophilins on SIV replication and provide insight into the mechanism of species-specific barriers against viral infection in human cells. It will then present our current understanding of the mechanism that may explain zoonotic transmission of retroviruses. PMID:22679440

  20. Mimiviruses: Replication, Purification, and Quantification.

    PubMed

    Abrahão, Jônatas Santos; Oliveira, Graziele Pereira; Ferreira da Silva, Lorena Christine; Dos Santos Silva, Ludmila Karen; Kroon, Erna Geessien; La Scola, Bernard

    2016-01-01

    The aim of this protocol is to describe the replication, purification, and titration of mimiviruses. These viruses belong to the Mimiviridae family, the first member of which was isolated in 1992 from a cooling tower water sample collected during an outbreak of pneumonia in a hospital in Bradford, England. In recent years, several new mimiviruses have been isolated from different environmental conditions. These giant viruses are easily replicated in amoeba of the Acanthamoeba genus, its natural host. Mimiviruses present peculiar features that make them unique viruses, such as the particle and genome size and the genome's complexity. The discovery of these viruses rekindled discussions about their origin and evolution, and the genetic and structural complexity opened up a new field of study. Here, we describe some methods utilized for mimiviruses replication, purification, and titration. © 2016 by John Wiley & Sons, Inc. PMID:27153385

  1. Active Control of Repetitive Structural Transitions between Replication Forks and Holliday Junctions by Werner Syndrome Helicase.

    PubMed

    Shin, Soochul; Lee, Jinwoo; Yoo, Sangwoon; Kulikowicz, Tomasz; Bohr, Vilhelm A; Ahn, Byungchan; Hohng, Sungchul

    2016-08-01

    The reactivation of stalled DNA replication via fork regression invokes Holliday junction formation, branch migration, and the recovery of the replication fork after DNA repair or error-free DNA synthesis. The coordination mechanism for these DNA structural transitions by molecular motors, however, remains unclear. Here we perform single-molecule fluorescence experiments with Werner syndrome protein (WRN) and model replication forks. The Holliday junction is readily formed once the lagging arm is unwound, and migrated unidirectionally with 3.2 ± 0.03 bases/s velocity. The recovery of the replication fork was controlled by branch migration reversal of WRN, resulting in repetitive fork regression. The Holliday junction formation, branch migration, and migration direction reversal are all ATP dependent, revealing that WRN uses the energy of ATP hydrolysis to actively coordinate the structural transitions of DNA. PMID:27427477

  2. Armed conflict and child health

    PubMed Central

    Rieder, Michael; Choonara, Imti

    2012-01-01

    Summary Armed conflict has a major impact on child health throughout the world. One in six children worldwide lives in an area of armed conflict and civilians are more likely to die than soldiers as a result of the conflict. In stark contrast to the effect on children, the international arms trade results in huge profits for the large corporations involved in producing arms, weapons and munitions. Armed conflict is not inevitable but is an important health issue that should be prevented. PMID:21393303

  3. Use of Oligonucleotide Microarrays for Rapid Detection and Serotyping of Acute Respiratory Disease-Associated Adenoviruses

    PubMed Central

    Lin, Baochuan; Vora, Gary J.; Thach, Dzung; Walter, Elizabeth; Metzgar, David; Tibbetts, Clark; Stenger, David A.

    2004-01-01

    The cessation of the adenovirus vaccination program for military trainees has resulted in several recent acute respiratory disease (ARD) outbreaks. In the absence of vaccination, rapid detection methods are necessary for the timely implementation of measures to prevent adenovirus transmission within military training facilities. To this end, we have combined a fluorogenic real-time multiplex PCR assay with four sets of degenerate PCR primers that target the E1A, fiber, and hexon genes with a long oligonucleotide microarray capable of identifying the most common adenovirus serotypes associated with adult respiratory tract infections (serotypes 3, 4, 7, 16, and 21) and a representative member of adenovirus subgroup C (serotype 6) that is a common cause of childhood ARD and that often persists into adulthood. Analyses with prototype strains demonstrated unique hybridization patterns for representative members of adenovirus subgroups B1, B2, C, and E, thus allowing serotype determination. Microarray-based sensitivity assessments revealed lower detection limits (between 1 and 100 genomic copies) for adenovirus serotype 4 (Ad4) and Ad7 cell culture lysates, clinical nasal washes, and throat swabs and purified DNA from clinical samples. When adenovirus was detected from coded clinical samples, the results obtained by this approach demonstrated an excellent concordance with those obtained by the more established method of adenovirus identification as well as by cell culture with fluorescent-antibody staining. Finally, the utility of this method was further supported by its ability to detect adenoviral coinfections, contamination, and, potentially, recombination events. Taken together, the results demonstrate the usefulness of the simple and rapid diagnostic method developed for the unequivocal identification of ARD-associated adenoviral serotypes from laboratory or clinical samples that can be completed in 1.5 to 4.0 h. PMID:15243087

  4. A Replication of Failure, Not a Failure to Replicate

    ERIC Educational Resources Information Center

    Holden, Gary; Barker, Kathleen; Kuppens, Sofie; Rosenberg, Gary; LeBreton, Jonathan

    2015-01-01

    Purpose: The increasing role of systematic reviews in knowledge production demands greater rigor in the literature search process. The performance of the Social Work Abstracts (SWA) database has been examined multiple times over the past three decades. The current study is a replication within this line of research. Method: Issue-level coverage…

  5. Replicating systems concepts: Self-replicating lunar factory and demonstration

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Automation of lunar mining and manufacturing facility maintenance and repair is addressed. Designing the factory as an automated, multiproduct, remotely controlled, reprogrammable Lunar Manufacturing Facility capable of constructing duplicates of itself which would themselves be capable of further replication is proposed.

  6. Exploiting replication in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, T. A.

    1989-01-01

    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs.

  7. Response to Multiple Radiation Doses of Human Colorectal Carcinoma Cells Infected With Recombinant Adenovirus Containing Dominant-Negative Ku70 Fragment

    SciTech Connect

    Urano, Muneyasu; He Fuqiu; Minami, Akiko; Ling, C. Clifton; Li, Gloria C.

    2010-07-01

    Purpose: To investigate the effect of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment on the response of tumor cells to multiple small radiation doses. Our ultimate goal is to demonstrate the feasibility of using this virus in gene-radiotherapy to enhance the radiation response of tumor cells. Methods and Materials: Human colorectal HCT8 and HT29 carcinoma cells were plated in glass tubes, infected with virus (25 multiplicity of infection), and irradiated with a single dose or zero to five doses of 3 Gy each at 6-h intervals. Hypoxia was induced by flushing with 100% nitrogen gas. The cells were trypsinized 0 or 6 h after the final irradiation, and cell survival was determined by colony formation. The survival data were fitted to linear-quadratic model or exponential line. Results: Virus infection enhanced the radiation response of the HCT8 and HT29 cells. The virus enhancement ratio for single-dose irradiation at a surviving fraction of 0.1 was {approx}1.3 for oxic and hypoxic HCT8 and 1.4 and 1.1 for oxic and hypoxic HT29, respectively. A similar virus enhancement ratio of 1.2-1.3 was observed for both oxic and hypoxic cells irradiated with multiple doses; however, these values were smaller than the values found for dominant-negative Ku70-transfected Rat-1 cells. This difference has been discussed. The oxygen enhancement ratio for HCT8 and HT29 receiving fractionated doses was 1.2 and 2.0, respectively, and virus infection altered them slightly. Conclusion: Infection of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment enhanced the response of human colorectal cancer cells to single and multiple radiation doses.

  8. Mesangial Localization of Immune Complexes in Experimental Canine Adenovirus Glomerulonephritis

    PubMed Central

    Wright, N. G.; Morrison, W. I.; Thompson, H.; Cornwell, H. J. C.

    1974-01-01

    Each of a group of 14 dogs was infected experimentally by an intravenous dose of canine adenovirus calculated to allow survival until the initial stages of antibody production; the kidneys of infected dogs were examined during the period of 4-14 days after administration of virus. Proliferative glomerulonephritis with localization of IgG, C3 and viral antigen in mesangial regions was demonstrated. With the electron microscope, electron dense deposits were found scattered throughout the mesangium. There was proliferation of mesangial cells, infiltration into the glomerular tuft of polymorphonuclear leucocytes and, in some cases, focal glomerular necrosis with intracapsular and tubular haemorrhage. By means of an indirect immunofluorescence test, anti-viral antibody was detected in kidney eluates; anti-kidney antibody was not present. ImagesFigs. 5-8Figs. 9-10Figs. 1-4 PMID:4375485

  9. Purification of adenovirus hexon by high performance liquid chromatography.

    PubMed

    Siegel, S A; Hutchins, J E; Witt, D J

    1987-09-01

    Hexon is the major structural protein of adenovirus, and has significance in studies of virus structure and function, vaccine development, and immunodiagnosis. We describe a simple, single-step, anion-exchange high performance liquid chromatography (HPLC) method for the high yield purification of hexon. Purity of the isolated hexon was assessed by SDS-PAGE and HPLC methods. The isolated hexon was immunologically reactive with anti-hexon monoclonal antibody in a dot-blot assay. It also retained immunogenicity, as polyclonal antisera from rabbits immunized with hexon showed the desired antigen specificity. The enhanced speed of this purification method allows for the efficient isolation of hexon from various serotypes, and thus may facilitate comparative studies of hexon immunobiology. PMID:3680460

  10. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  11. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting. PMID:14970588

  12. Intermediates in the Synthesis of Type 2 Adenovirus Deoxyribonucleic Acid

    PubMed Central

    Horwitz, Marshall S.

    1971-01-01

    Intermediates in the synthesis of adenovirus type 2 deoxyribonucleic acid (DNA) were studied in HeLa cells. Pieces of DNA smaller than the viral genome were demonstrated after labeling with 3H-thymidine for 10 to 240 sec. Intermediates as small as the Okazaki fragments (8 to 10S) do not predominate at any of the above times. No detectable addition of nucleotides to parental genome could be shown, nor was there any breakdown of recently synthesized viral DNA. The DNA intermediates were of viral origin for they hybridized to viral DNA and were made at a stage of the cell cycle (G2) when host DNA is not synthesized. PMID:5132696

  13. Oncolytic adenoviruses: A thorny path to glioma cure

    PubMed Central

    Ulasov, I.V.; Borovjagin, A.V.; Schroeder, B.A.; Baryshnikov, A.Y.

    2014-01-01

    Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of glioma patients may have increased over the past decade. Current therapeutic options for glioma patients include tumor resection, chemotherapy, and concomitant radiation therapy with an average survival of approximately 16 months. The rapid progression of gliomas has spurred the development of novel treatment options, such as cancer gene therapy and oncolytic virotherapy. Preclinical testing of oncolytic adenoviruses using glioma models revealed both positive and negative sides of the virotherapy approach. Here we present a detailed overview of the glioma virotherapy field and discuss auxiliary therapeutic strategies with the potential for augmenting clinical efficacy of GBM virotherapy treatment. PMID:25685829

  14. Partial characterization of new adenoviruses found in lizards.

    PubMed

    Ball, Inna; Behncke, Helge; Schmidt, Volker; Geflügel, F T A; Papp, Tibor; Stöhr, Anke C; Marschang, Rachel E

    2014-06-01

    In the years 2011-2012, a consensus nested polymerase chain reaction was used for the detection of adenovirus (AdV) infection in reptiles. During this screening, three new AdVs were detected. One of these viruses was detected in three lizards from a group of green striped tree dragons (Japalura splendida). Another was detected in a green anole (Anolis carolinensis). A third virus was detected in a Jackson's chameleon (Chamaeleo jacksonii). Analysis of a portion of the DNA-dependent DNA polymerase genes of each of these viruses revealed that they all were different from one another and from all previously described reptilian AdVs. Phylogenetic analysis of the partial DNA polymerase gene sequence showed that all newly detected viruses clustered within the genus Atadenovirus. This is the first description of AdVs in these lizard species. PMID:25000689

  15. Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre

    SciTech Connect

    El Bakkouri, Majida; Seiradake, Elena; Cusack, Stephen; Ruigrok, Rob W.H. Schoehn, Guy

    2008-08-15

    There are more than 100 known adenovirus serotypes, including 50 human serotypes. They can infect all 5 major vertebrate classes but only Aviadenovirus infecting birds and Mastadenovirus infecting mammals have been well studied. CELO (chicken embryo lethal orphan) adenovirus is responsible for mild respiratory pathologies in birds. Most studies on CELO virus have focussed on its genome sequence and organisation whereas the structural work on CELO proteins has only recently started. Contrary to most adenoviruses, the vertices of CELO virus reveal pentons with two fibres of different lengths. The distal parts (or head) of those fibres are involved in cellular receptor binding. Here we have determined the atomic structure of the short-fibre head of CELO (amino acids 201-410) at 2.0 A resolution. Despite low sequence identity, this structure is conserved compared to the other adenovirus fibre heads. We have used the existing CELO long-fibre head structure and the one we show here for a structure-based alignment of 11 known adenovirus fibre heads which was subsequently used for the construction of an evolutionary tree. Both the fibre head sequence and structural alignments suggest that enteric human group F adenovirus 41 (short fibre) is closer to the CELO fibre heads than the canine CAdV-2 fibre head, that lies closer to the human virus fibre heads.

  16. Adenovirus-Mediated Efficient Gene Transfer into Cultured Three-Dimensional Organoids

    PubMed Central

    Wang, Ning; Zhang, Hongyu; Zhang, Bing-Qiang; Liu, Wei; Zhang, Zhonglin; Qiao, Min; Zhang, Hongmei; Deng, Fang; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Liao, Zhan; Zhang, Qian; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Deng, Youlin; Luu, Hue H.; Haydon, Rex C.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids. PMID:24695466

  17. Translation of adenovirus 2 late mRNAs microinjected into cultured African green monkey kidney cells

    SciTech Connect

    Richardson, W.D.; Anderson, C.W.

    1984-08-01

    Adenovirus 2-infected monkey cells fail to synthesize fiber, a 62,000 M/sub r/ virion polypeptide expressed at late times in productively infected cells. Yet these cells contain fiber mRNA that, after isolation, can be translated in vitro. The reason for the failure of monkey cells to translate fiber mRNA has been approached by microinjecting adenovirus mRNA into the cytoplasm of cultured monkey cells. Late adenovirus 2 mRNA, isolated from infected HeLa cells, was efficiently expressed when microinjected into the African green monkey kidney cell line CV-C. Expressed viral proteins identified by immunoprecipitation included the adenovirus fiber polypeptide. This result demonstrates that the monkey cell translational apparatus is capable of recognizing and expressing functional adenovirus mRNA. Microinjection of late virus mRNA into cells previously infected with wild-type adenovirus 2 failed to increase significantly the yield of infectious virus. 26 references, 2 figures, 1 table.

  18. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia.

    PubMed

    Walters, R W; Grunst, T; Bergelson, J M; Finberg, R W; Welsh, M J; Zabner, J

    1999-04-01

    Recent identification of two receptors for the adenovirus fiber protein, coxsackie B and adenovirus type 2 and 5 receptor (CAR), and the major histocompatibility complex (MHC) Class I alpha-2 domain allows the molecular basis of adenoviral infection to be investigated. Earlier work has shown that human airway epithelia are resistant to infection by adenovirus. Therefore, we examined the expression and localization of CAR and MHC Class I in an in vitro model of well differentiated, ciliated human airway epithelia. We found that airway epithelia express CAR and MHC Class I. However, neither receptor was present in the apical membrane; instead, both were polarized to the basolateral membrane. These findings explain the relative resistance to adenovirus infection from the apical surface. In contrast, when the virus was applied to the basolateral surface, gene transfer was much more efficient because of an interaction of adenovirus fiber with its receptors. In addition, when the integrity of the tight junctions was transiently disrupted, apically applied adenovirus gained access to the basolateral surface and enhanced gene transfer. These data suggest that the receptors required for efficient infection are not available on the apical surface, and interventions that allow access to the basolateral space where fiber receptors are located increase gene transfer efficiency. PMID:10187807