Sample records for aromatase cytochrome p450

  1. INHIBITION OF AROMATASE CYTOCHROME P-450 (ESTROGEN SYNTHETASE) BY DERIVATIVES OF ALPHA-NAPHTHOFLAVONE

    EPA Science Inventory

    alpha-Naphthoflavone (ANF; 7,8-benzoflavone) is a potent competitive inhibitor of human aromatase cytochrome P-450 (J.T. Kellis, Jr. and L.E. Vickery, Science 225, 1032 (1984)). The authors have further investigated inhibition of aromatase by several derivatives of ANF. Using hum...

  2. Detection of aromatase cytochrome P-450 in endometrial biopsy specimens as a diagnostic test for endometriosis

    Microsoft Academic Search

    Jo Kitawaki; Izumi Kusuki; Hisato Koshiba; Katsumi Tsukamoto; Shinji Fushiki; Hideo Honjo

    1999-01-01

    Objective: To evaluate the clinical usefulness of examining endometrial biopsy specimens for aromatase cytochrome P-450 as a diagnostic test for endometriosis.Design: Retrospective, case-controlled study.Setting: Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Kyoto, Japan.Patient(s): One hundred five women of reproductive age with normal menstrual cycles underwent endometrial biopsy laparotomy or laparoscopy, and examination of their tissue revealed endometriosis,

  3. Expression of Aromatase Cytochrome P450 in Eutopic Endometrium and Its Application as a Diagnostic Test for Endometriosis

    Microsoft Academic Search

    Jo Kitawaki; Izumi Kusuki; Hisato Koshiba; Katsumi Tsukamoto; Hideo Honjo

    1999-01-01

    Endometriotic implants, like other estrogen-dependent tumors, contain both estrogen receptors and aromatase cytochrome P450 (P450arom), suggesting that at a local level, endometriotic implants produce estrogens, which may be involved in tissue growth through interaction with the estrogen receptors. P450arom is also expressed in the eutopic endometria of patients with endometriosis, adenomyosis, and\\/or leiomyomas, whereas neither P450arom protein nor mRNA is

  4. Stereochemistry of estrogen biosynthesis by a reconstituted aromatase cytochrome P-450 preparation from human placenta

    SciTech Connect

    Muto, N.; Tan, L.

    1986-04-29

    According to the literature, the multistep reaction mechanism of estrogen biosynthesis proceeds with stereospecific loss of the equatorial 1 beta-, and axial 2 beta-protons. These results were deduced from experiments carried out, either with crude microsomes, or at best with impure enzyme extracts. However, when (1,2- /sup 3/H)4-androstene-3,17-dione of known absolute /sup 3/H-label distribution was incubated with a reconstituted enzyme system, consisting of homogeneous NADPH-cytochrome P-450 reductase and highly purified aromatase, we obtained results that can only be logically explained by a trans- and antiparallel elimination reaction of both the axially oriented C-2 beta-, and C-1-alpha protons. We further demonstrate that the reconstituted enzyme has an aromatase activity optimum at pH 7.2, and an apparent Km of 0.66 microM for NADPH and of 0.24 microM for 4-androstene-3,17-dione. Also, the enzyme requires 3 nmoles of NADPH for each nmole of estrogen that is formed.

  5. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons.

    PubMed

    Hojo, Yasushi; Hattori, Taka-Aki; Enami, Taihei; Furukawa, Aizo; Suzuki, Kumiko; Ishii, Hiro-Taka; Mukai, Hideo; Morrison, John H; Janssen, William G M; Kominami, Shiro; Harada, Nobuhiro; Kimoto, Tetsuya; Kawato, Suguru

    2004-01-20

    In adult mammalian brain, occurrence of the synthesis of estradiol from endogenous cholesterol has been doubted because of the inability to detect dehydroepiandrosterone synthase, P45017alpha. In adult male rat hippocampal formation, significant localization was demonstrated for both cytochromes P45017alpha and P450 aromatase, in pyramidal neurons in the CA1-CA3 regions, as well as in the granule cells in the dentate gyrus, by means of immunohistochemical staining of slices. Only a weak immunoreaction of these P450s was observed in astrocytes and oligodendrocytes. ImmunoGold electron microscopy revealed that P45017alpha and P450 aromatase were localized in pre- and postsynaptic compartments as well as in the endoplasmic reticulum in principal neurons. The expression of these cytochromes was further verified by using Western blot analysis and RT-PCR. Stimulation of hippocampal neurons with N-methyl-d-aspartate induced a significant net production of estradiol. Analysis of radioactive metabolites demonstrated the conversion from [(3)H]pregnenolone to [(3)H]estradiol through dehydroepiandrosterone and testosterone. This activity was abolished by the application of specific inhibitors of cytochrome P450s. Interestingly, estradiol was not significantly converted to other steroid metabolites. Taken together with our previous finding of a P450scc-containing neuronal system for pregnenolone synthesis, these results imply that 17beta-estradiol is synthesized by P45017alpha and P450 aromatase localized in hippocampal neurons from endogenous cholesterol. This synthesis may be regulated by a glutamate-mediated synaptic communication that evokes Ca(2+) signals. PMID:14694190

  6. Changes in testosterone metabolism associated with the evolution of placental and gonadal isozymes of porcine aromatase cytochrome P450.

    PubMed

    Corbin, C J; Trant, J M; Walters, K W; Conley, A J

    1999-11-01

    Differences in the catalytic activity of the placental and gonadal isozymes of porcine aromatase cytochrome P450 (P450arom) were examined in cell lines exhibiting stable expression of recombinant enzyme. Cell lines were selected that expressed high, but similar, immunodetectable levels of each isozyme based on Western analysis. Aromatase activity varied with growth in culture, decreasing at confluence from a peak reached between 50-80% cell density. Cells expressing the placental isozyme had 3-5 times higher catalytic activity (per mg protein) than those expressing the gonadal isozyme. The P450arom inhibitor fadrazole (1 microM) inhibited more than 97% of this activity, whereas another imidazole, etomidate (1 microM), selectively inhibited gonadal P450arom activity by 92%. Estrogen synthesis from androstenedione and testosterone was determined by RIA and confirmed by HPLC analysis, which also identified the accumulation of the 19-hydroxy and 19-oxo intermediates of the respective substrates. There was no evidence of other steroid metabolites accumulating in the media of cell lines expressing either isozyme. Tritiated water formed during aromatization of substrates 3H labeled at the C1 and C2 positions was stereo-selective for the beta orientation, but less so for testosterone than androstenedione during metabolism by the porcine placental (and human) isozyme than the gonadal isozyme. Testosterone showed a higher affinity for the porcine placental P450arom than the gonadal P450arom, but both isozymes had similar affinities for androstenedione. Testosterone was also aromatized more slowly than androstenedione by the porcine gonadal P450arom. These data suggest that catalytic differences have arisen in the substrate binding pocket during the evolution of isozymes of porcine P450arom that affect androgen metabolism, particularly the aromatization of testosterone. The physiological significance of these differences to the reproductive biology of the pig remains to be determined. PMID:10537150

  7. Effects of tri-iodothyronine on alternative splicing events in the coding region of cytochrome P450 aromatase in immature rat Sertoli cells.

    PubMed

    Pezzi, V; Panno, M L; Sirianni, R; Forastieri, P; Casaburi, I; Lanzino, M; Rago, V; Giordano, F; Giordano, C; Carpino, A; Andò, S

    2001-08-01

    Transient postnatal hypothyroidism in male rats induces a prolonged proliferation of immature Sertoli cells. This change in Sertoli cell replication at young ages is coincident with enhanced and prolonged aromatase activity that leads to a marked increase in the conversion of androgens into estrogens. Both events are drastically inhibited by tri-iodothyronine (T(3)) replacement either in vivo or in vitro. This study, after the immunolocalization of aromatase in cultured rat Sertoli cells, examined the effects elicited by T(3) on this enzyme, by simultaneously investigating three functional levels of aromatase: mRNA expression, protein content, and enzymatic activity. The immunolocalization of cytochrome P450 aromatase (P450 arom) was shown in the cytoplasm of cultured Sertoli cells from 15- and 21-day-old rats. Western blot analysis revealed an enhancement of aromatase protein content upon stimulation with N(6),2'-O-dibutyryladenosine-3':5'-cyclic monophosphate ((Bu)(2)cAMP) that was clearly down-regulated by T(3). The presence of a functional P450 arom protein in purified Sertoli cells was confirmed by the measurement of [(3)H]H(2)O released after incubation with [1 beta-(3)H]androst-4-ene-3,17-dione. With 100 nM T3, a decrease in both P450 arom mRNA levels and aromatase activity was observed. The aromatase enzymatic activity was strongly stimulated by (Bu)(2)cAMP and markedly down-regulated by T(3). In contrast, the strong increase in aromatase mRNA upon (Bu)(2)cAMP stimulation was apparently unaffected by T(3) administration. This paper shows how the identification of an altered transcript induced by T(3) coding for putative truncated and inactive aromatase protein might explain such a decrease in aromatase activity in T(3)-treated cells. On the basis of these results, it is concluded that at least two mechanisms could be involved in the down-regulatory effect of T(3) on aromatase activity in prepuberal Sertoli cells. The first mechanism is linked to a possible direct modulatory role for T(3) in the regulation of the aromatase promoter, whilst the second one is represented by the induction of altered transcripts coding for truncated and inactive aromatase proteins. PMID:11479134

  8. Immunoexpression of aromatase cytochrome P450 and 17?-hydroxysteroid dehydrogenase in women’s ovaries after menopause

    PubMed Central

    2014-01-01

    Background Menopause results in a lack of regular menstrual cycles, leading to the reduction of estrogen production. On the other hand, ovarian androgen synthesis is still present at reduced levels and requires expression of several steroidogenic enzymes. Methods This study was performed on 104 postmenopausal women hospitalized due to uterine leiomyomas, endometriosis, and/or a prolapsed uterus. Patients were divided into three groups depending on the time from menopause. Group A patients experienced menopause 1–5 years before enrollment in the study (42 women). Group B included women who had their last menstruation 5–10 years before the study (40 women). Group C consisted of 22 women who were more than 10 years past menopause. Hysterectomy or removal of the uterine corpus with adnexa was performed during laparotomy. We evaluated the expression of aromatase cytochrome P450 (CYP 19) and 17?-hydroxysteroid dehydrogenase (17? HSD) by employing immunohistochemistry. Results Activity of 17?-HSD and CYP19 was demonstrated in the cytoplasm of stromal cells of postmenopausal ovaries, epithelium cells coating the ovaries, vascular endothelial cells, and epithelial inclusion cysts. However, overall expression of both 17?-HSD and CYP 19 decreased with time after menopause. Conclusion Demonstration of the activity of the key enzymes of ovarian steroidogenesis, CYP 19 and 17?-HSD, confirms steroidogenic activity in the ovaries of postmenopausal women. Nevertheless, ovarian steroidogenic activity decreases with time, and its significant decrease occurs 10 years after menopause. PMID:24855493

  9. Characterization of Aromatase Cytochrome P450 Activity in the Human Temporal Lobe

    Microsoft Academic Search

    STEPHAN STECKELBROECK; DAGMAR D. HEIDRICH; BIRGIT STOFFEL-WAGNER; VOLKMAR H. J. HANS; JOHANNES SCHRAMM; FRANK BIDLINGMAIER; DIETRICH KLINGMULLER

    2010-01-01

    Local aromatase-mediated conversion of androgens plays an im- portant role in androgen action on the brain. To characterize estrogen formation in the human brain, we measured the microsomal aro- matase activity of temporal lobe biopsies and compared it to that of human placenta using a highly sensitive 3H2O assay with (1b- 3 H)an- drostenedione as substrate. Brain tissue was removed

  10. Two distinct cytochrome P450 aromatases in the orange-spotted grouper (Epinephelus coioides): cDNA cloning and differential mRNA expression.

    PubMed

    Zhang, Yong; Zhang, Weimin; Zhang, Lihong; Zhu, Tianyang; Tian, Jing; Li, Xin; Lin, Haoran

    2004-09-01

    The cDNA sequences encoding two distinct cytochrome P450 aromatases, namely P450aromB and P450aromA, were isolated from brain and ovary cDNA libraries of the orange-spotted grouper, respectively. The P450aromB cDNA consists of 1892 bp, and the open reading frame (ORF) encodes a putative protein of 506 amino acids. The P450aromA cDNA consists of 1836 bp, and the ORF encodes a putative protein of 518 amino acids. Northern blot analysis revealed a transcript of about 1.9 kb for P450aromB in the brain and kidney, and 2.1 kb for P450aromA in the ovary. The expression of both P450aromB and P450aromA genes in different tissues was further examined using one-step RT-PCR followed by Southern blot analysis. High levels of P450aromB mRNA expression were detected in the olfactory bulb, forebrain, midbrain, hypothalamus, medulla, pituitary, gill filament, gill arch, kidney, muscle, adipose tissue, and blood cells, but low levels in the hindbrain and ovary. High levels of P450aromA mRNA expression were detected in the ovary, pituitary, gill filament, gill arch, and spleen, but low levels in the forebrain, hindbrain, hypothalamus, and blood cells. In addition, the expression of P450arom genes in the orange-spotted grouper of different gonadal stages as induced by 17 alpha-methyltestosterone (MT) was investigated. The mRNA expression of P450aromB in the hypothalamus was highest in the intersexual stage, whereas the mRNA expression of P450aromA in the gonads was highest in the female stage, decreased in the intersexual stage, and lowest in the male stage. Results from current study indicate that P450aromB and P450aromA genes of the orange-spotted grouper have distinct tissue patterns of mRNA expression, and both of them may be involved in the MT-induced sex change. PMID:15544929

  11. Analysis of the complex formation, interaction and electron transfer pathway between the "open" conformation of NADPH-cytochrome P450 reductase and aromatase.

    PubMed

    Dai, Yuejie; Zhen, Jing; Zhang, Xiuli; Zhong, Yonghui; Liu, Shaodan; Sun, Ziyue; Guo, Yue; Wu, Qingli

    2015-09-01

    The complex structure of human aromatase (CYP19) and the open form of ?TGEE mutant NADPH-cytochrome P450 reductase (mCPR) was constructed using template-based protein alignment method. Dynamic simulation of formed complex was performed on NAMD 2.9, in which CHARMm all 27_prot_lipid_na force field and an explicit TIP3P water solvent model were applied. The result showed mCPR in its open conformation could steadily combine with aromatase from the proximal face. Data analysis indicates hydrogen bonds and four salt bridges on the binding surface enhance the interaction between the two protein molecules. Amino acid, Lys108 plays a key role in aromatase activity through the formation of a salt bridge with Asp147 and two hydrogen bonds with Asp147 and Gln150 in mCPR. The optimal pathway for the first electron transfer from CPR to aromatase was revealed and calculated using HARLEM software. The rates for solvent mediated and non-solvent mediated electron transfer from FMNH2 to heme were determined as 1.04×10(6)s(-)(1) and 4.86×10(5)s(-)(1) respectively, which indicates the solvent water can facilitate the electron transfer from FMNH2 to heme. This study presents a novel strategy for the study of the protein-protein interactions based on the template-based protein alignment, which may help new aromtase development targeting the electron transfer between mCPR and aromatase. PMID:26087061

  12. Modulation of ovarian cytochrome P450 17 alpha-hydroxylase and cytochrome aromatase messenger ribonucleic acid by prolactin in the domestic turkey.

    PubMed

    Tabibzadeh, C; Rozenboim, I; Silsby, J L; Pitts, G R; Foster, D N; el Halawani, M

    1995-03-01

    The effect of exogenous ovine prolactin (oPRL) on preovulatory follicle P450 17 alpha-hydroxylase (C17) and aromatase (ARO) mRNA abundance was investigated in turkeys. Ovine PRL (124 IU/hen per day) was injected i.m. into four sets (n = 8) of laying turkeys for 2, 4, 8, or 14 days. Vehicle was injected into control hens for 8 days (n = 8). Blood samples were collected and serum was assayed for LH, progesterone (P), testosterone (T), and estradiol (E). Theca layers from the largest (F1) and the third (F3), fifth (F5), and seventh (F7) largest preovulatory follicles and from small white follicles (SWF) were examined for C17 and ARO mRNA contents. The number of atretic follicles increased from 0 (vehicle-injected controls) to 9 (14-day-oPRL-injected hens). Serum E, T, and LH levels decreased, while P levels remained unchanged. There was a transient increase in theca C17 mRNA abundance of 2- and 4-day-oPRL-treated hen follicles. Cytochrome P450 ARO mRNA levels were reduced in SWF and F7 in response to oPRL. Thecal C17 and ARO mRNA content was reduced during follicular maturation in laying hens. ARO mRNA was not detectable in granulosa cells. The progressive decline in C17 and ARO mRNA content associated with follicular maturation as well as the absence of ARO mRNA in granulosa cells is consistent with the secretory activity of P, T, and E in preovulatory follicles. These findings suggest that reduced circulating E may be a consequence of suppressed ARO gene expression whereas the oPRL suppression of T secretion may not be coupled to C17 gene expression. PMID:7756453

  13. Mechanism of the Third Oxidative Step in the Conversion of Androgens to Estrogens by Cytochrome P450 19A1 Steroid Aromatase

    PubMed Central

    2014-01-01

    Aromatase is the cytochrome P450 enzyme that cleaves the C10–C19 carbon–carbon bond of androgens to form estrogens, in a three-step process. Compound I (FeO3+) and ferric peroxide (FeO2–) have both been proposed in the literature as the active iron species in the third step, yielding an estrogen and formic acid. Incubation of purified aromatase with its 19-deutero-19-oxo androgen substrate was performed in the presence of 18O2, and the products were derivatized using a novel diazo reagent. Analysis of the products by high-resolution mass spectrometry showed a lack of 18O incorporation in the product formic acid, supporting only the Compound I pathway. Furthermore, a new androgen 19-carboxylic acid product was identified. The rates of nonenzymatic hydration of the 19-oxo androgen and dehydration of the 19,19-gem-diol were shown to be catalytically competent. Thus, the evidence supports Compound I and not ferric peroxide as the active iron species in the third step of the steroid aromatase reaction. PMID:25252141

  14. Alcohol-inducible cytochrome P-450 (P-450 ALC )

    Microsoft Academic Search

    Minor J. Coon; Dennis R. Koop

    1987-01-01

    Of the family of P-450 cytochromes occurring in rabbit liver microsomes, only isozyme 3 a (P-450ALC) is induced by alcohol administration and is effective in catalyzing the reaction: ethanol+02+NADPH+H+ ? acetaldehyde +2H2O+NADP+. As judged by immuno-chemical quantitation, P-450ALC is also induced in the animals by other diverse agents, including imidazole, trichlorethylene, acetone, pyrazole, and isoniazid. Evidence has been obtained for

  15. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in Pejerrey, Odontesthes bonariensis

    USGS Publications Warehouse

    Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.

    2007-01-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.

  16. Molecular biology of channel catfish brain cytochrome P450 aromatase (CYP19A2): cloning, preovulatory induction of gene expression, hormonal gene regulation and analysis of promoter region.

    PubMed

    Kazeto, Y; Trant, J M

    2005-12-01

    Cytochrome P450 aromatase (CYP19) converts androgens to estrogens. Unlike mammals, teleosts have two CYP19 genes, expressed differentially in ovary (CYP19A1) and neuronal tissues (CYP19A2). The primary purpose of this study was to demonstrate the potential involvement of CYP19A2 in the reproductive endocrinology of teleosts. Channel catfish CYP19A2 (ccCYP19A2) cDNAs were isolated from the brain using a PCR-based strategy. The ccCYP19A2 cDNA putatively encodes 500 amino acids which conferred aromatase activity in transfected COS-7 cells. Additionally, an alternatively spliced transcript was isolated which lacks the first 122 amino acids and is catalytically inactive. The brain and the pituitary were predominant sources of ccCYP19A2 transcript and the abundance in both tissues acutely increased prior to spawning. This preovulatory induction of ccCYP19A2 gene in the pituitary is remarkably similar to the pattern of gene expression for luteinizing hormone-beta (LHbeta). Estradiol-17beta (E(2)) and testosterone enhanced the transcript abundance of ccCYP19A2 and LHbeta in catfish pituitary cells cultured in vitro but the stimulatory effects of testosterone were abolished by an aromatase inhibitor, indicating an important role of E(2), the product of CYP19A2 activity, in the regulation of CYP19A2 and LHbeta. Structural and functional analysis of the 5'-flanking region of the gene suggested that the sequence from -1076 to - 435 bp is critical for the basal promoter activity in the pituitary. This report demonstrates that CYP19A2 functions as an important factor in the reproductive endocrinology of teleosts through the brain-pituitary-gonadal axis. PMID:16326841

  17. The immunoexpression of androgen receptor, estrogen receptors alpha and beta, vanilloid type 1 receptor and cytochrome p450 aromatase in rats testis chronically treated with letrozole, an aromatase inhibitor.

    PubMed

    Pilutin, Anna; Misiakiewicz-Has, Kamila; Kolasa, Agnieszka; Baranowska-Bosiacka, Irena; Marchlewicz, Mariola; Wiszniewska, Barbara

    2014-01-01

    The function of testis is under hormonal control and any disturbance of hormonal homeostasis can lead to morphological and physiological changes. Therefore the aim of the study was to investigate the expression of androgen and estrogen receptors (AR, ERs), vanilloid receptor (TRPV1), cytochrome P450 aromatase (P450arom), as well as apoptosis of cells in testis of adult rats chronically treated with letrozole (LT), a non-steroidal aromatase inhibitor, for 6 months. The testicular tissues were fixed in Bouin's fixative and embedded in paraffin. Immunohistochemistry with monoclonal antibodies (abs) against AR, ERa, P450arom, and polyclonalabs against ER?, TRPV1, caspase-3 was applied. Long-lasting estradiol deficiency, as an effect of LT treatment, produced changes in the morphology of testis and altered the expression of the studied receptors in cells of the seminiferous tubules and rate of cell apoptosis. The immunostaining for AR was found in the nuclei of Sertoli cells and the cytoplasm of spermatogonia and spermatocytes in III-IV stages of the seminiferous epithelium cycle. The intensity of staining for P450arom was lower in the testis of LT-treated rats as compared to control animals. The immunofluorescence of ER? and ER? was observed exclusively in the nuclei of Leydig cells of LT-treated rats. There were no changes in localization of TRPV1, however, the intensity of reaction was stronger in germ cells of the seminiferous epithelium after LT treatment. The apoptosis in both groups of animals was observed within the population of spermatocytes and spermatids in II and III stages of the seminiferous epithelium cycle. In testis of LT-treated rats the immunoexpression of caspase-3 was additionally found in the germ cells in I and IV stages, and Sertoli, myoid and Leydig cells. In conclusion, our results underline the important role of letrozole treatment in the proper function of male reproductive system, and additionally demonstrate that hormonal imbalance can produce the morphological abnormalities in testis. PMID:25308736

  18. Dual Regulation of Promoter II- and Promoter 1f-Derived Cytochrome P450 Aromatase Transcripts in Equine Granulosa Cells during Human Chorionic Gonadotropin-Induced Ovulation: A Novel Model for the Study of Aromatase Promoter Switching

    Microsoft Academic Search

    DEREK BOERBOOM; ABDURZAG KERBAN; JEAN SIROIS

    1999-01-01

    Estradiol biosynthesis is a key biochemical trait of developing follicles. To study its regulation in equine follicles, the objectives of this study were to clone and determine the structure of equine cytochrome P450 aro- matase (P450AROM), and characterize the regulation of P450AROM and P450 17a-hydroxylase\\/C17-20 lyase (P45017a) messenger RNAs (mRNAs) in vivo in equine preovulatory follicles isolated during hCG- induced

  19. Cytochromes P450: Roles in Diseases*

    PubMed Central

    Pikuleva, Irina A.; Waterman, Michael R.

    2013-01-01

    The cytochrome P450 superfamily consists of a large number of heme-containing monooxygenases. Many human P450s metabolize drugs used to treat human diseases. Others are necessary for synthesis of endogenous compounds essential for human physiology. In some instances, alterations in specific P450s affect the biological processes that they mediate and lead to a disease. In this minireview, we describe medically significant human P450s (from families 2, 4, 7, 11, 17, 19, 21, 24, 27, 46, and 51) and the diseases associated with these P450s. PMID:23632021

  20. QM/MM modeling of the hydroxylation of the androstenedione substrate catalyzed by cytochrome P450 aromatase (CYP19A1).

    PubMed

    Viciano, Ignacio; Castillo, Raquel; Martí, Sergio

    2015-09-01

    CYP19A1 aromatase is a member of the Cytochrome P450 family of hemeproteins, and is the enzyme responsible for the final step of the androgens conversion into the corresponding estrogens, via a three-step oxidative process. For this reason, the inhibition of this enzyme plays an important role in the treatment of hormone-dependent breast cancer. The first catalytic subcycle, corresponding to the hydroxilation of androstenedione, has been proposed to occur through a first hydrogen abstraction and a subsequent oxygen rebound step. In present work, we have studied the mechanism of the first catalytic subcycle by means of hybrid quantum mechanics/molecular mechanics methods. The inclusion of the protein flexibility has been achieved by means of Free Energy Perturbation techniques, giving rise to a free energy of activation for the hydrogen abstraction step of 13.5 kcal/mol. The subsequent oxygen rebound step, characterized by a small free energy barrier (1.5 kcal/mol), leads to the hydroxylated products through a highly exergonic reaction. In addition, an analysis of the primary deuterium kinetic isotopic effects, calculated for the hydrogen abstraction step, reveals values (?10) overpassing the semiclassical limit for the C?H, indicating the presence of a substantial tunnel effect. Finally, a decomposition analysis of the interaction energy for the substrate and cofactor in the active site is also discussed. According to our results, the role of the enzymatic environment consists of a transition state stabilization by means of dispersive and polarization effects. © 2015 Wiley Periodicals, Inc. PMID:26096372

  1. Unusual Cytochrome P450 Enzymes and Reactions*

    PubMed Central

    Guengerich, F. Peter; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 enzymes primarily catalyze mixed-function oxidation reactions, plus some reductions and rearrangements of oxygenated species, e.g. prostaglandins. Most of these reactions can be rationalized in a paradigm involving Compound I, a high-valent iron-oxygen complex (FeO3+), to explain seemingly unusual reactions, including ring couplings, ring expansion and contraction, and fusion of substrates. Most P450s interact with flavoenzymes or iron-sulfur proteins to receive electrons from NAD(P)H. In some cases, P450s are fused to protein partners. Other P450s catalyze non-redox isomerization reactions. A number of permutations on the P450 theme reveal the diversity of cytochrome P450 form and function. PMID:23632016

  2. Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors.

    PubMed

    Schuster, Daniela; Laggner, Christian; Steindl, Theodora M; Palusczak, Anja; Hartmann, Rolf W; Langer, Thierry

    2006-01-01

    Cytochrome P450 19 (P450 19, aromatase) constitutes a successful target for the treatment of breast cancer. This study analyzes chemical features common to P450 19 inhibitors to develop ligand-based, selective pharmacophore models for this enzyme. The HipHop and HypoRefine algorithms implemented in the Catalyst software package were employed to create both common feature and quantitative models. The common feature model for P450 19 includes two ring aromatic features in its core and two hydrogen bond acceptors at the ends. The models were used as database search queries to identify active compounds from the NCI database. PMID:16711749

  3. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  4. Multiple Forms of Plant Cytochromes P-450 1

    PubMed Central

    Donaldson, Robert P.; Luster, Douglas G.

    1991-01-01

    Accumulating evidence indicates that there is a multiplicity of cytochrome P-450 enzymes in plants. These monooxygenases are implicated in the metabolism of sterols, terpenes, gibberellins, isoflavonoids, and xenobiotics. Evidence that cytochromes P-450 are involved in the detoxification of herbicides (chlorotoluron, primsulfuron, and diclofop) includes photoreversible CO inhibition of the reactions, and a requirement for O2 and NADPH. Several cytochromes P-450, Mr 45,000 to 65,000, have been isolated, including hydroxylases of cinnamic acid, 3,9-dihydroxypterocarpan, and digitoxin. In some cases the purified cytochrome P-450 has been successfully reconstituted with NADPH:cytochrome P-450 reductase (Mr 72,000-84,000 protein). This reductase appears to be a nonspecific electron donor to different forms of cytochrome P-450. Immunological techniques and specific inhibitors (triazoles, imidazole derivatives) are being used to characterize plant cytochromes P-450 and the NADPH:cytochrome P-450 reductase. Specific cytochromes P-450 are induced by wounding or pathogens, others are expressed in specific cell types. Plant cytochromes P-450 are found in various subcellular locations, including endoplasmic reticulum, plasma membranes, glyoxysomes, and perhaps mitochondria. A cytochrome P-450 demethylase from avocado has recently been sequenced and found to have a hydrophobic N terminus similar to the membrane anchor of cytochromes P-450 from other organisms. The existence of cytochromes P-450 in different subcellular locations suggests that there are many genes for cytochromes P-450 in plants which have yet to be identified and classified. PMID:16668240

  5. Colocalization of p450 aromatase and oxytocin immunostaining in the rat hypothalamus.

    PubMed

    El-Emam Dief, A; Caldwell, J D; Jirikowski, G F

    2013-04-01

    With combined immunoperoxidase and immunofluorescence, we observed colocalization of cytochrome P450 aromatase with the posterior lobe peptide oxytocin and its associated neurophysin 1 in adult male rats. P450 was most abundant in the anterior hypothalamus. Colocalization of OT with P450 was observed in the preoptic region, the periventricular nucleus of the hypothalamus, the lateral subcommissural nucleus, and in the zona incerta. Magnocellular perikarya in the supraoptic and in the paraventricular nuclei contained only occasionally both antigens. P450 immunostaining overlapped to a great extent with known estrogen target regions. Oxytocinergic functions are controlled by estradiol while androgen receptors are mostly absent in neuroendocrine hypothalamic nuclei. Our findings suggest that systemic androgens may be aromatized to estrogens in male oxytocinergic neurons linked to the limbic system. PMID:23225240

  6. Cytochrome P450s in flavonoid metabolism

    Microsoft Academic Search

    Shin-ichi Ayabe; Tomoyoshi Akashi

    2006-01-01

    In this review, cytochrome P450s characterized at the molecular level catalyzing aromatic hydroxylations, aliphatic hydroxylations and skeleton formation in the flavonoid metabolism are surveyed. They are involved in the biosynthesis of anthocyanin pigments and condensed tannin (CYP75, flavonoid 3?,5?-hydroxylase and 3?-hydroxylase), flavones [CYP93B, (2S)-flavanone 2-hydroxylase and flavone synthase II], and leguminous isoflavonoid phytoalexins [CYP71D9, flavonoid 6-hydroxylase; CYP81E, isoflavone 2?-hydroxylase and

  7. Novel extrahepatic cytochrome P450s

    SciTech Connect

    Karlgren, Maria [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm (Sweden)]. E-mail: Maria.Karlgren@imm.ki.se; Miura, Shin-ichi [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Ingelman-Sundberg, Magnus [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2005-09-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis.

  8. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes

    PubMed Central

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members’ duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes. PMID:26129850

  9. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes. PMID:26129850

  10. Flower colour and cytochromes P450

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3?-hydroxylase (F3?H) and flavonoid 3?,5?-hydroxylase (F3?5?H) and thus they play a crucial role in the determination of flower colour. F3?H and F3?5?H mostly belong to CYP75B and CYP75A, respectively, except for the F3?5?Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3?5?H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3?5?H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3?5?H and F3?H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  11. Effects of tri-iodothyronine on alternative splicing events in the coding region of cytochrome P450 aromatase in immature rat Sertoli cells

    Microsoft Academic Search

    V Pezzi; M L Panno; R Sirianni; P Forastieri; I Casaburi; M Lanzino; V Rago; F Giordano; C Giordano; A Carpino

    2001-01-01

    Transient postnatal hypothyroidism in male rats induces a prolonged proliferation of immature Sertoli cells. This change in Sertoli cell replication at young ages is coinci- dent with enhanced and prolonged aromatase activity that leads to a marked increase in the conversion of androgens into estrogens. Both events are drastically inhibited by tri-iodothyronine (T3) replacement either in vivo or in vitro.

  12. A Suite of Activity-Based Probes for Human Cytochrome P450 Enzymes

    PubMed Central

    Wright, Aaron T.; Song, Joongyu D.; Cravatt, Benjamin F.

    2009-01-01

    Cytochrome P450 (P450) enzymes regulate a variety of endogenous signaling molecules and play central roles in the metabolism of xenobiotics and drugs. We recently showed that an aryl alkyne serves as an effective activity-based probe for profiling mouse liver microsomal P450s in vitro and in vivo. However, individual P450s display distinct substrate and inhibitor specificities, indicating that multiple probe structures may be required to achieve comprehensive coverage of this large and diverse enzyme family. Here, we have synthesized a suite of P450-directed, activity-based protein profiling (ABPP) probes that contain: 1) varied chemical architectures validated as mechanism-based inhibitors of the P450 enzyme family, and 2) terminal alkyne groups for click chemistry conjugation of reporter tags. This set of probes was screened against a wide cross-section of human P450s, leading to the discovery of an optimal set of probes that provide broad coverage of this enzyme family. We used these probes to profile the effects on P450 activity of aromatase inhibitors in current clinical use for the treatment of breast cancer. We describe the surprising discovery that one of these aromatase inhibitors, anastrozole, significantly increases probe-labeling of P450 1A2, indicative of a heterotypic cooperativity effect on a central P450 isozyme involved in metabolizing numerous drugs and xenobiotics. The results presented herein greatly expand the suite of ABPP probes for profiling P450s and illuminate new applications for these tools to understand P450-drug interactions. PMID:19583257

  13. Expression of a cytochrome P450 gene family in maize

    Microsoft Academic Search

    Monika Frey; Ralf Kliem; Heinz Saedler; Alfons Gierl

    1995-01-01

    Maize seedlings, like seedlings of many other plants, are rich in cytochrome P450 (P450) enzyme activity. Four P450 genes (CYPzm1–4), isolated from a seedling-specific cDNA library, are characterised by a transient and seedling-specific expression pattern. The maximum steady state mRNA levels are reached at 3 days in root and at 7 days in shoot tissue, respectively. All four genes belong

  14. Theca cell cytochrome P450 17-hydroxylase and aromatase messenger ribonucleic acid abundance and serum steroid levels during follicular atresia associated with incubation behavior in the domestic turkey hen.

    PubMed

    Tabibzadeh, C; Silsby, J L; Rozenboim, I; Pitts, G R; Foster, D N; el Halawani, M E

    1994-10-01

    This study was designed to examine changes in cytochrome P450 17 alpha-hydroxylase (C17) and aromatase (ARO) mRNA contents in the theca layer of preovulatory follicles (POF) as turkey hens transit from egg laying to incubation. Hens were grouped into the following categories: 1) laying hens--laid one egg per day and nested 1-2 times per day; 2) transitional hens--laid one egg per day and nested > 4 times per day; and 3) Day 1, Day 3, and Day 5 incubating hens--laid no eggs for 2, 4, or 6 days, respectively, and nested > 4 times per day. Small white follicles (SWF) and the theca layer from the largest (F1) and the third (F3), fifth (F5), and seventh (F7) largest POF were dispersed and challenged with testosterone (T) for 5 h. Relative levels of C17 and ARO mRNA were examined from the theca layers of F1, F3, F5, F7, and SWF. The number of atretic follicles increased from 0 (layers) to 8 (Day 5 incubating hens). Serum LH, progesterone (P), and estradiol (E), but not T, declined on Day 1 of incubation. Basal levels of P, T, and E from theca and SWF cells declined in incubating hens. Both basal and T-stimulated theca and SWF production of E decreased in incubating hens. C17 and ARO mRNA declined in SWF, F7, and F5 during follicular atresia. It is suggested that reduced gene expression of ovarian steroidogenic enzymes may be a partial determinant of reduced circulating sex steroid levels in incubating hens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7819456

  15. Canine cytochrome P450 (CYP) pharmacogenetics

    PubMed Central

    Court, Michael H.

    2013-01-01

    Synopsis The cytochrome P450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences. Canine CYP1A2, which metabolizes phenacetin, caffeine, and theophylline, is the most widely studied polymorphic canine CYP. A single nucleotide polymorphism resulting in a CYP1A2 premature stop codon (c.1117C>T; R383X) with a complete lack of enzyme is highly prevalent in certain dog breeds including Beagle and Irish wolfhound. This polymorphism was shown to substantially affect the pharmacokinetics of several experimental compounds in Beagles during preclinical drug development. However, the impact on the pharmacokinetics of phenacetin (a substrate specific for human CYP1A2) was quite modest probably because other canine CYPs are capable of metabolizing phenacetin. Other canine CYPs with known genetic polymorphisms include CYP2C41 (gene deletion), as well as CYP2D15, CYP2E1, and CYP3A12 (coding SNPs). However the impact of these variants on drug metabolism in vitro or on drug pharmacokinetics is unknown. Future systematic investigations are needed to comprehensively identify CYP genetic polymorphisms that are predictive of drug effects in canine patients. PMID:23890236

  16. African variation at Cytochrome P450 genes

    PubMed Central

    Bains, Ripudaman K.

    2013-01-01

    The genomics revolution has provided a plethora of data from many previously uncharacterized populations. The increase in the amount of genetic data has improved our understanding of why individuals and populations differ in their susceptibility to multiple diseases. It has also enabled researchers to identify how genomic variation, including at the Cytochrome P450 (CYP450) super-family, affects the safety and efficacy of therapeutic drugs. CYP450 metabolize ?90% of clinically administered drugs. Variability in CYP450 expression is known to affect the safety and efficacy of therapeutic drugs, including many used in the treatment and control of infectious diseases. There are inter-ethnic differences in the frequencies of clinically relevant CYP450 variants which affect CYP450 expression. Comparative studies of African populations have identified population structuring at CYP450 genes. This is associated with intra-African differences in the success of drug therapies used in the treatment of infectious diseases. Therapeutic drugs dominate control strategies for infectious diseases and are widely administered through mass drug administration campaigns. However, resistance to chemotherapy is spreading across endemic regions. The most common response has been to increase chemotherapeutic dosages, and administer combination therapies. However, there are few pharmacovigilance data examining how these changes influence adverse drug reactions. This review provides an overview of current knowledge of intra-Africa CYP450 variation, and the known associations with sub-optimal clinical outcomes in the treatment of infectious diseases. In addition, the potential for evolutionary approaches in the study of CYP450 variation is discussed to examine their potential in preventative medicine and intervention strategies within Africa. PMID:24481193

  17. TERATOGEN METABOLISM: THALIDOMIDE ACTIVATION IS MEDIATED BY CYTOCHROME P-450

    EPA Science Inventory

    A metabolite of thalidomide generated by hepatic microsomes inhibited the attachment of tumor cells to concanavalin A-coated polyethylene. Evidence that metabolite formation is mediated by microsomal cytochrome P-450 is presented. Microsomes incubated with thalidomide underwent a...

  18. Mobility of cytochrome P450 in the endoplasmic reticulum membrane

    PubMed Central

    Szczesna-Skorupa, Elzbieta; Chen, Ci-Di; Rogers, Steven; Kemper, Byron

    1998-01-01

    Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 × 10?10 cm2/s. A coefficient only slightly larger (7.1 × 10?10 cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes. PMID:9843968

  19. Comparison of Cytochrome P450 Genes from Six Plant Genomes

    Microsoft Academic Search

    David R. Nelson; Ray Ming; Maqsudul Alam; Mary A. Schuler

    2008-01-01

    Plants depend on cytochrome P450 (CYP) enzymes for nearly every aspect of their biology. In several sequenced angiosperms,\\u000a CYP genes constitute up to 1% of the protein coding genes. The angiosperm sequence diversity is encapsulated by 59 CYP families,\\u000a of which 52 families form a widely distributed core set. In the 20 years since the first plant P450 was sequenced, 3,387

  20. Expression of Aromatase P450 is Increased in Spontaneous Prolactinomas of Aged Rats

    Microsoft Academic Search

    José Carretero; Deborah Jane Burks; Gabriel Vázquez; Manuel Rubio; Elena Hernández; Pilar Bodego; Ricardo Vázquez

    2002-01-01

    We have recently reported the presence of aromatase P450 in the rat hypophysis. This enzyme is responsible for the aromatization of testosterone to estradiol. Since the induction of prolactinomas has been demonstrated in the rat following chronic treatment with estradiol, the aim of the present study was to analyze whether a relationship exists between the presence of pituitary aromatase and

  1. Oxidation of nonionic detergents by cytochrome P450 enzymes.

    PubMed

    Hosea, N A; Guengerich, F P

    1998-05-15

    Nonionic phenolic detergents are commonly used in the purification of membrane-associated proteins. Triton N-101 was shown to be oxidized by NADPH-fortified human liver microsomes and recombinant human cytochromes P450 (P450). Oxidation was monitored using HPLC and the fluorescence properties of Triton N-101 and other alkylphenol ethoxylate detergents, which are similar to those of anisole. Human liver microsomes and recombinantly expressed reconstituted P450 3A4-oxidized Triton N-101 in a concentration-dependent manner which could be inhibited by ketoconazole, a P450 3A4-selective inhibitor. Triton N-101 inhibition of testosterone oxidation by human liver microsomes was of a mixed nature but mainly non-competitive. Electrospray ionization mass spectrometry and tandem mass spectrometry indicated that the major product formed was hydroxylated on the alkyl moiety. Human liver microsomes also oxidized other Tritons (X-100 and X-114), Emulgens 911 and 913, and Tergitol NP-10 to a similar extent. P450s 1A1, 1A2, and 2C9 also oxidized Triton N-101 but to a lesser extent than P450 3A4. We conclude that Triton N-101 and similar nonionic detergents are oxidized by P450 3A4 and some other P450s. PMID:9606971

  2. Unusual regioselectivity and active site topology of human cytochrome P450 2J2

    E-print Network

    Boyer, Edmond

    1 Unusual regioselectivity and active site topology of human cytochrome P450 2J2 . : This work.mansuy@univ-paris5.fr #12;2 ABBREVIATIONS COSY: correlation spectroscopy; CYP or P450: cytochrome P450; EDTA; hemeproteins. #12;4 Cytochromes P450 (CYPs) constitute a superfamily of hemoproteins that play key roles

  3. Purification of the pyrazole-inducible cytochrome P-450 isozyme

    SciTech Connect

    Palakodety, R.; Clejan, L.; Krikun, G.; Feierman, D.; Cederbaum, A.I.

    1987-05-01

    The alcohol dehydrogenase inhibitor, pyrazole, appears to induce a cytochrome P-450 isozyme with properties similar to the ethanol-inducible P-450. The pyrazole-inducible P-450 isozyme was purified from the liver microsomes of rats treated with pyrazole essentially by the procedure of Ryan et al and also by chromatofocussing. The final preparation appeared homogenous by SDS-PAGE with an apparent molecular weight of 52,000, had a specific content of 11 nmoles P-450 per mg protein, showed very high activity of low K/sub m/ dimethylnitrosamine demethylase and produced a type II binding spectrum with dimethylsulfoxide. The enzyme was also active with aniline and aminopyrine as substrates. Pyrazole itself served as an excellent substrate with 4-hydroxy pyrazole being the product. An antibody against the pyrazole-inducible P-450 raised in chickens recognized a protein with mol.wt of about 52,000 in control microsomes. This band was highly enriched in microsomes from rats treated with pyrazole, 4-methyl-pyrazole, ethanol or acetone, but not phenobarbital or 3-methylcholanthrene. In summary, the pyrazole-inducible P-450 has been purified and appears to be identical in its catalytic and immunological properties to the alcohol-inducible P-450.

  4. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex

    PubMed Central

    Baldwin, William S; Marko, Peter B; Nelson, David R

    2009-01-01

    Background Cytochrome P450s (CYPs) in animals fall into two categories: those that synthesize or metabolize endogenous molecules and those that interact with exogenous chemicals from the diet or the environment. The latter form a critical component of detoxification systems. Results Data mining and manual curation of the Daphnia pulex genome identified 75 functional CYP genes, and three CYP pseudogenes. These CYPs belong to 4 clans, 13 families, and 19 subfamilies. The CYP 2, 3, 4, and mitochondrial clans are the same four clans found in other sequenced protostome genomes. Comparison of the CYPs from D. pulex to the CYPs from insects, vertebrates and sea anemone (Nematostella vectensis) show that the CYP2 clan, and to a lesser degree, the CYP4 clan has expanded in Daphnia pulex, whereas the CYP3 clan has expanded in insects. However, the expansion of the Daphnia CYP2 clan is not as great as the expansion observed in deuterostomes and the nematode C. elegans. Mapping of CYP tandem repeat regions demonstrated the unusual expansion of the CYP370 family of the CYP2 clan. The CYP370s are similar to the CYP15s and CYP303s that occur as solo genes in insects, but the CYP370s constitute ~20% of all the CYP genes in Daphnia pulex. Lastly, our phylogenetic comparisons provide new insights into the potential origins of otherwise mysterious CYPs such as CYP46 and CYP19 (aromatase). Conclusion Overall, the cladoceran, D. pulex has a wide range of CYPs with the same clans as insects and nematodes, but with distinct changes in the size and composition of each clan. PMID:19383150

  5. Influence of inhaled formaldehyde on rat lung cytochrome P450

    SciTech Connect

    Dallas, C.E.; Badeaux, P.; Theiss, J.C.; Fairchild, E.J.

    1989-06-01

    The effect of formaldehyde (HCHO) inhalation on total cytochrome P450 in the lungs of Sprague-Dawley rats was assessed after single and repeated exposures to 0, 0.5, 3, and 15 ppm HCHO. Whole-body exposures were conducted in dynamic, monitored exposure systems for 6 hr/day, 5 days/week, for periods of exposure of 1 day, 4 days, 12 weeks, or 24 weeks. Lung microsomal fractions were prepared and total protein and cytochrome P450 were measured 18 hr after the end of exposure at each time point. Two separate sets of exposure studies were conducted, thus duplicating all measurements for each dose group and at each time point. There were no detectable levels of total lung P450 in any of the rats that received a single 6-hr exposure to all three HCHO doses, while control lung P450 levels were similar to that found for 4-day and 12-week control rats. After 4 days of repeated exposures, however, there was a highly significant, reproducible, and dose-dependent increase in lung P450 levels relative to controls, with the 0.5, 3, and 15 ppm groups demonstrating 387, 1026, and 1123% of control values, respectively. Lung P450 levels remained elevated at all HCHO concentrations through 12 and 24 weeks of exposure, although the percentage difference between exposed and control rats continually dropped throughout the course of long-term repeated exposures. While HCHO-exposed rats did have decreased total body weight relative to controls, lung microsomal protein and lung weight of nearly all of the HCHO-exposed rats was not significantly different from the controls. The initial inactivation of lung P450 after a single HCHO exposure is apparently a transient phenomenon, with dose-dependent induction of the total P450 levels in the lung as the pattern of response to repeated exposures to inhaled HCHO.

  6. Terpene hydroxylation with microbial cytochrome p450 monooxygenases.

    PubMed

    Janocha, Simon; Schmitz, Daniela; Bernhardt, Rita

    2015-01-01

    : Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids' diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C-H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes. PMID:25682070

  7. Cytochrome P450 arachidonic acid metabolism in bovine corneal epithelium

    SciTech Connect

    Masferrer, J.; Schwartzman, M.L.; Abraham, N.G.; Dunn, M.W.; McGiff, J.C.

    1986-03-01

    The presence of the cytochrom P450 system and its involvement in the metabolism of AA was studied in the corneal epithelium. This tissue contains cytochrome P450 as assessed directly by measurement of the carbon monoxide reduced spectrum (specific activity of 161 pmol/10 mg protein) and indirectly by measuring the activity of aryl hydrocarbon hydroxylase (AHH) - a cytochrome P450-dependent enzyme (11-39 pmol 3-OH benzopyrene/mg protein/10 min). When corneal epithelial microsomes were incubated with /sup 14/C-arachidonic acid, 30-50% of the total radioactivity was converted to two peaks, I and II. Further separation using high performance liquid chromatography has shown that each peak contains two metabolites, A,B and C,D. Metabolite formation was dependent on the addition of NADPH (1 mM) and inhibited by carbon monoxide and SKF-525A (100 ..mu..M) suggesting a cytochrome P450-dependent mechanism. Compound C (5-10 ..mu..M) inhibited the activity of corneal epithelial Na-K-ATPase by 30-60%, being 100-fold more potent than ouabain. Compound D (10-100 ng) induced a dose dependent relaxation of the rat caudal artery. Compound D also inhibited corneal Na-K-ATPase activity but less potently than compound C. These compounds may be important to transport processes of ocular epithelia and participate in the control of the ocular circulation and aqueous humor dynamics.

  8. Conformational landscape and the selectivity of cytochrome p450cam.

    PubMed

    Basom, Edward J; Spearman, James W; Thielges, Megan C

    2015-06-01

    Conformational heterogeneity and dynamics likely contribute to the remarkable activity of enzymes but are challenging to characterize experimentally. These features are of particular interest within the cytochrome P450 class of monooxygenases, which are of great academic, medicinal, and biotechnological interest as they recognize a broad range of substrates, such as various lipids, steroid precursors, and xenobiotics, including therapeutics. Here, we use linear and 2D IR spectroscopy to characterize the prototypical P450, cytochrome P450cam, bound to three different substrates, camphor, norcamphor, or thiocamphor, which are hydroxylated with high, low, and intermediate regioselectivity, respectively. The data suggest that specific interactions with the substrate drive the population of two different conformations, one that is associated with high regioselectivity and another associated with lower regioselectivity. Although Y96 mediates a hydrogen bond thought necessary to orient the substrate for high regioselectivity, the population and dynamics of the conformational states are largely unaltered by the Y96F mutation. This study suggests that knowledge of the conformational landscape is central to understanding P450 activity, which has important practical ramifications for the design of therapeutics with optimized pharmacokinetics, and the manipulation of P450s, and possibly other enzymes, for biotechnological applications. PMID:25955684

  9. Aromatase P450 expression in human pituitary adenomas.

    PubMed

    Gonzales, Paulo Henrique; Mezzomo, Lisiane Cervieri; Ferreira, Nelson Pires; Roehe, Adriana Vial; Kohek, Maria Beatriz Fonte; Oliveira, Miriam da Costa

    2015-02-01

    Estrogen has been shown to play an important role in pituitary tumor pathogenesis. In humans, this biosynthesis is mediated by aromatase, an enzyme that converts androgens to estrogens. Just a few studies about aromatase expression in human pituitary gland, both in normal and pathological ones, are found in the literature. This study aimed to assess aromatase enzyme expression in human pituitary adenomas and associate it with gender, tumor size and tumor subtype. We conducted a cross-sectional study, reviewed clinical data and surgical specimens of consecutive 65 patients (35 women and 30 men) with anatomopathologic diagnosis of pituitary adenoma who underwent adenomectomy at a neurosurgical referral center in southern Brazil. Immunohistochemistry was performed to assess aromatase expression and define tumor subtype, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to estimate aromatase gene expression. Mean patient age was 45.6 (±13.3) years (range, 18 to 73 years), 86.2% of our samples were macroadenomas while 13.8% were classified as microadenomas. Based on clinical and immunohistochemical data, 23 (35.4%) patients had non-functioning adenomas, 19 (29.2%) had somatotroph adenomas (acromegaly), 12 (18.5%) had lactotroph adenomas (hyperprolactinemic syndrome), and 11 (16.9%) had corticotroph adenomas (Cushing's disease). Immunohistochemical analysis was performed in 59 cases, and 58 (98.3%) showed no aromatase expression. Quantification by qRT-PCR was performed in 43 samples, and 36 (83.7%) revealed no gene expression. Among tumor specimens examined by both techniques (37 cases), 30 showed no gene or protein expression (concordance index, 0.81). It is possible to mention that aromatase expression was lost in most pituitary adenomas, regardless of gender, tumor subtype, or tumor size. PMID:25410472

  10. Cytochrome p450 part 2: what nurses need to know about the cytochrome p450 family systems.

    PubMed

    Krau, Stephen D

    2013-12-01

    To provide the best patient care related to medication administration and prescription, an understanding of the specific enzymes is essential. Enzymes affect the metabolizing of most medications that nurses administer and that nurse practitioners and physicians prescribe on a regular basis. More specifically, the most important p450 enzymes in drug metabolism are cytochrome p450 (CYP) 1A2, the CYP2C family, CYP2D6, and CYP3A4. In addition, the enzymes are instrumental in the body's reaction to environmental factors, some of which are carcinogens. PMID:24295195

  11. Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements

    E-print Network

    Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements Jin Liu Research and Materiel Command, Fort Detrick, Maryland, United States of America Abstract Cytochrome P450) Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements. PLoS ONE 8(12): e

  12. A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments

    E-print Network

    Snow, Christopher

    A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments of the biotechnologically important5­9 cytochrome P450 enzymes. Here we show that a chimera's thermostability can and for studying sequence- stability-function relationships. The versatile cytochrome P450 family of heme

  13. Cytochrome P450 in fluke Opisthorchis felineus: identification and characterization.

    PubMed

    Pakharukova, Maria Y; Ershov, Nikita I; Vorontsova, Elena V; Katokhin, Alexei V; Merkulova, Tatiana I; Mordvinov, Viatcheslav A

    2012-02-01

    Infection with the human liver fluke Opisthorchis felineus is a serious public health problem in Russia and other Eastern Europe countries. The aim of this work was to identify and sequence cytochrome P450 mRNA from O. felineus and to analyze its expression at different developmental stages. We found only one cytochrome P450 in O. felineus. It contains a conserved Pfam00067 domain which was typical of the CYP450 II eukaryotic microsomal type, and a putative transmembrane domain. Additionally, we identified a high degree of homology between a 3D model of O. felineus CYP450 and mammalian CYP2 structures. The level of O. felineus CYP mRNA expression in maritae (adult stage in definitive mammal host) is significantly higher than in metacercaria. This fact indicates an important role of this biotransformation enzyme in the biochemistry of the parasite at the maritae stage. PMID:22115821

  14. Human Cytochrome P450 17A1 Conformational Selection

    PubMed Central

    Estrada, D. Fernando; Skinner, Andria L.; Laurence, Jennifer S.; Scott, Emily E.

    2014-01-01

    Crystallographic studies of different membrane cytochrome P450 enzymes have provided examples of distinct structural conformations, suggesting protein flexibility. It has been speculated that conformational selection is an integral component of substrate recognition and access, but direct evidence of such substate interconversion has thus far remained elusive. In the current study, solution NMR revealed multiple and exchanging backbone conformations for certain structural features of the human steroidogenic cytochrome P450 17A1 (CYP17A1). This bifunctional enzyme is responsible for pregnenolone C17 hydroxylation, followed by a 17,20-lyase reaction to produce dehydroepiandrosterone, the key intermediate in human synthesis of androgen and estrogen sex steroids. The distribution of CYP17A1 conformational states was influenced by temperature, binding of these two substrates, and binding of the soluble domain of cytochrome b5 (b5). Notably, titration of b5 to CYP17A1·pregnenolone induced a set of conformational states closely resembling those of CYP17A1·17?-hydroxypregnenolone without b5, providing structural evidence consistent with the reported ability of b5 to selectively enhance 17,20-lyase activity. Solution NMR thus revealed a set of conformations likely to modulate human steroidogenesis by CYP17A1, demonstrating that this approach has the potential to make similar contributions to understanding the functions of other membrane P450 enzymes involved in drug metabolism and disease states. PMID:24671419

  15. Oxidation of Dihydrotestosterone by Human Cytochromes P450 19A1 and 3A4*

    PubMed Central

    Cheng, Qian; Sohl, Christal D.; Yoshimoto, Francis K.; Guengerich, F. Peter

    2012-01-01

    Dihydrotestosterone is a more potent androgen than testosterone and plays an important role in endocrine function. We demonstrated that, like testosterone, dihydrotestosterone can be oxidized by human cytochrome P450 (P450) 19A1, the steroid aromatase. The products identified include the 19-hydroxy- and 19-oxo derivatives and the resulting ?1,10-, ?5,10-, and ?9,10-dehydro 19-norsteroid products (loss of 19-methyl group). The overall catalytic efficiency of oxidation was ?10-fold higher than reported for 3?-reduction by 3?-hydroxysteroid dehydrogenase, the major enzyme known to deactivate dihydrotestosterone. These and other studies demonstrate the flexibility of P450 19A1 in removing the 1- and 2-hydrogens from 19-norsteroids, the 2-hydrogen from estrone, and (in this case) the 1-, 5?-, and 9?-hydrogens of dihydrotestosterone. Incubation of dihydrotestosterone with human liver microsomes and NADPH yielded the 18- and 19-hydroxy products plus the ?1,10-dehydro 19-nor product identified in the P450 19A1 reaction. The 18- and 19-hydroxylation reactions were attributed to P450 3A4, and 18- and 19-hydroxydihydrotestosterone were identified in human plasma and urine samples. The change in the pucker of the A ring caused by reduction of the ?4,5 bond is remarkable in shifting the course of hydroxylation from the 6?-, 2?-, 1?-, and 15?-methylene carbons (testosterone) to the axial methyl groups (18, 19) in dihydrotestosterone and demonstrates the sensitivity of P450 3A4, even with its large active site, to small changes in substrate structure. PMID:22773874

  16. Epoxidation activities of human cytochromes P450c17 and P450c21.

    PubMed

    Yoshimoto, Francis K; Peng, Hwei-Ming; Zhang, Haoming; Anderson, Sean M; Auchus, Richard J

    2014-12-01

    Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon-carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16?-hydroxylates progesterone, might catalyze the formation of the 16?,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16?,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16?-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16?-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16?-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16?,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3?-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16?-hydroxylase activity of the enzymes. PMID:25386927

  17. Purification and characterization of three constitutive cytochrome P-450 isoforms from bovine olfactory epithelium.

    PubMed Central

    Longo, V; Amato, G; Santucci, A; Gervasi, P G

    1997-01-01

    Three constitutive forms of cytochrome P-450 (P-450s) were isolated from olfactory microsomes of cattle. The purified P-450s, designated P-450bov1, P-450bov2 and P-450bov3, were electrophoretically nearly homogeneous by SDS/PAGE and their apparent relative molecular masses were estimated to be 50000, 53000 and 51000 respectively. As indicated by several criteria including the N-terminal sequence and absorption spectra, the three olfactory forms of P-450 were distinct from each other and from all the other P-450s currently known in cattle. P-450bov1 and P-450bov2 were purified in the low-spin state, whereas P-450bov3 was in the high-spin state. Studies to evaluate, by Western blot analysis, the reactivity of these purified P-450s with antibodies raised against rat hepatic P-450 2E1, 2B, 1A and 3A and rabbit olfactory P-450NMa and P-450NMb showed that P-450bov3 strongly cross-reacted with anti-P-450NMb IgG, and P-450bov1 moderately with anti-P-450NMa IgG. As determined by immunoblots, P-450bov1 and P-450bov3 represented a great portion of the total olfactory P-450. In a reconstituted system with NADPH:cytochrome P-450 reductase and phospholipids, P-450bov1 was more active in the metabolism of xenobiotic compounds (i.e. O-de-ethylation of ethoxycoumarin and N-demethylation of hexamethylphosphoramide) than towards endogenous substrates (testosterone and progesterone). Conversely, P-450bov3 metabolized the xenobiotics at lower rates but exhibited total oxidation rates of the above sex hormones higher than those of P-450bov1. From the comparison of the catalytic, immunochemical and structural properties, it was inferred that P-450bov1 and P-450bov3 are the bovine orthologues of P-450NMa (2A) and P-450NMb (2G1) respectively, the only two olfactory P-450s previously purified from rabbit. P-450bov2, which showed low activity toward some exogenous and endogenous compounds, represents a novel purified olfactory hemoprotein possibly belonging to the 3A subfamily. These results are consistent with a specific presence of catalytically and structurally similar P-450s, at least for the major ones, in the olfactory mucosa of mammals. PMID:9173903

  18. New Cytochrome P-450 Ligands Based on Urea Derivatives

    Microsoft Academic Search

    A. I. Khlebnikov; R. R. Akhmedzhanov; O. I. Naboka; A. A. Bakibaev; M. I. Tartynova; T. P. Novozheeva; A. S. Saratikov

    2005-01-01

    Cytochrome P-450 (CYPIIB1 isoform) ligands were constructed de novo on the basis of QSAR models derived using the frontal polygon (FP) method. The following compounds were designed and synthesized: 2-phenyl-6-benzyl-2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione, N-acetyl-N'-(1-phenylethyl)urea, and (1-phenyl-3-methylbutyl)urea. Their interaction with phenobarbital-induced microsomes isolated from rat liver was studied spectrophotometrically. The dissociation constants Ks of the enzyme - substrate complexes measured are in good agreement

  19. Human cytochromes P450 in health and disease

    PubMed Central

    Nebert, Daniel W.; Wikvall, Kjell; Miller, Walter L.

    2013-01-01

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  20. Human cytochromes P450 in health and disease.

    PubMed

    Nebert, Daniel W; Wikvall, Kjell; Miller, Walter L

    2013-02-19

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases-confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  1. De-orphanization of Cytochrome P450 2R1

    PubMed Central

    Cheng, Jeffrey B.; Motola, Daniel L.; Mangelsdorf, David J.; Russell, David W.

    2015-01-01

    The conversion of vitamin D into an active ligand for the vitamin D receptor requires 25-hydroxylation in the liver and 1?-hydroxylation in the kidney. Mitochondrial and microsomal vitamin D 25-hydroxylase enzymes catalyze the first reaction. The mitochondrial activity is associated with sterol 27-hydroxylase, a cytochrome P450 (CYP27A1); however, the identity of the microsomal enzyme has remained elusive. A cDNA library prepared from hepatic mRNA of sterol 27-hydroxylase-deficient mice was screened with a ligand activation assay to identify an evolutionarily conserved microsomal cytochrome P450 (CYP2R1) with vitamin D 25-hydroxylase activity. Expression of CYP2R1 in cells led to the transcriptional activation of the vitamin D receptor when either vitamin D2 or D3 was added to the medium. Thin layer chromatography and radioimmunoassays indicated that the secosteroid product of CYP2R1 was 25-hydroxyvitamin D3. Co-expression of CYP2R1 with vitamin D 1?-hydroxylase (CYP27B1) elicited additive activation of vitamin D3, whereas co-expression with vitamin D 24-hydroxylase (CYP24A1) caused inactivation. CYP2R1 mRNA is abundant in the liver and testis, and present at lower levels in other tissues. The data suggest that CYP2R1 is a strong candidate for the microsomal vitamin D 25-hydroxylase. PMID:12867411

  2. Engineering of daidzein 3’-hydroxylase P450 enzyme into catalytically self-sufficient cytochrome P450

    PubMed Central

    2012-01-01

    A cytochrome P450 (CYP) enzyme, 3’-daidzein hydroxylase, CYP105D7 (3’-DH), responsible for daidzein hydroxylation at the 3’-position, was recently reported. CYP105D7 (3’-DH) is a class I type of CYP that requires electrons provided through electron transfer proteins such as ferredoxin and ferredoxin reductase. Presently, we constructed an artificial CYP in order to develop a reaction host for the production of a hydroxylated product. Fusion-mediated construction with the reductase domain from self-sufficient CYP102D1 was done to increase electron transfer efficiency and coupling with the oxidative process. An artificial self-sufficient daidzein hydroxylase (3’-ASDH) displayed distinct spectral properties of both flavoprotein and CYP. The fusion enzyme catalyzed hydroxylation of daidzein more efficiently, with a kcat/Km value of 16.8??M-1?min-1, which was about 24-fold higher than that of the 3’-DH-camA/B reconstituted enzyme. Finally, a recombinant Streptomyces avermitilis host for the expression of 3’-ASDH and production of the hydroxylated product was developed. The conversion that was attained (34.6%) was 5.2-fold higher than that of the wild-type. PMID:22697884

  3. Expression, induction and regulation of the cytochrome P450 monooxygenase system in the rat glioma C6 cell line

    Microsoft Academic Search

    Jun Geng

    1996-01-01

    The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in

  4. Probing the membrane topology of Candida tropicalis cytochrome P450.

    PubMed

    Sanglard, D; Sengstag, C; Seghezzi, W

    1993-09-01

    The membrane topology of two alkane-inducible cytochromes P450 from the yeast Candida tropicalis, alk1 and alk2, was tested by construction of fusion proteins with part of invertase and histidinol dehydrogenase (invHIS4C) and expression in a Saccharomyces cerevisiae his4 mutant. Depending on the localization of invHIS4C on the endoplasmic reticulum (ER) cytoplasmic or luminal side, the enzyme converts histidinol to histidine and allows the his4 yeast strain to grow on histidinol-supplemented medium. The N-terminal segments of alk1 and alk2 were fused to invHIS4C at three different locations that follow the first alk1 and alk2 transmembrane domains or a second putative transmembrane domain of alk1. The combination of this in vivo assay with subcellular immunoprecipitations of the expressed fusion proteins allowed us to establish that both P450s contain only one transmembrane domain with their N-terminus located in the ER lumen. Deletions performed in these fusion proteins removing the first transmembrane domain of alk1 (delta TM) resulted in a less efficient targeting to the ER membrane but did not prevent their insertion in these membranes. Furthermore deletion of a negatively charged peptide preceding the first alk1 transmembrane domain (delta L) in an invHIS4C protein fused after this domain caused the N-terminal to have a positive net charge and to be oriented in the cytoplasm thus translocating the remaining protein into the ER lumen. The presence of the second hydrophobic segment, however, prevented the complete translocation of this fusion protein into the ER lumen. This study describes the first assessment of P450 membrane topology using an in vivo technique. PMID:8375386

  5. Ab initio dynamics of the cytochrome P450 hydroxylation reaction.

    PubMed

    Elenewski, Justin E; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin ?-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  6. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; Hackett, John C.

    2015-02-01

    The iron(IV)-oxo porphyrin ?-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  7. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering

    PubMed Central

    Pikuleva, Irina A.

    2010-01-01

    Cardiovascular disease (CVD) continues to be a leading cause of death worldwide. Elevated serum cholesterol is one of the classical risk factors for CVD which also include age, hypertension, smoking, diabetes mellitus, obesity and family history. A number of therapeutic drug classes have been developed to treat hypercholesterolemia, yet, an important percentage of patients do not reach their treatment goals. Therefore, new cholesterol-lowering medications, having a site of action different from that of currently available drugs need to be developed. This review summarizes new information about cytochrome P450 enzymes 7A1, 27A1, and 46A1, that play key roles in cholesterol elimination and that have potential to serve as targets for cholesterol-lowering. PMID:18950282

  8. Amplification of cci4 toxicity by chlordecone: Destruction of rat hepatic microsomal cytochrome p?450 subpopulation

    Microsoft Academic Search

    Shibani Chaudhury; Harihara M. Mehendale

    1991-01-01

    Previous work has established marked amplification of CCI4 hepatotoxicity by prior exposure to chlordecone (CD). Since CCI4 is toxic by virtue of its bioactivation by the hepatomicrosomal cytochrome P?450 (cyt P?450) system, which is in turn destroyed, our first interest was to determine if cyt P?450 isozymes were selectively destroyed in this interaction. CoCI2 also decreased hepatic P?450 contents, so

  9. Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes

    Microsoft Academic Search

    Kyoung-Ah Kim; Jaegul Chung; Dong-Hae Jung; Ji-Young Park

    2004-01-01

    Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with

  10. An inducible NADPH-cytochrome P450 reductase from Picrorhiza kurrooa - an imperative redox partner of cytochrome P450 enzymes.

    PubMed

    Bhat, Wajid Waheed; Rana, Satiander; Dhar, Niha; Razdan, Sumeer; Pandith, Shahzad A; Vishwakarma, Ram; Lattoo, Surrinder K

    2014-06-01

    Picrorhiza kurrooa synthesizes a large array of pharmacologically important monoterpenoid iridoid glycosides called picrosides. Although chemical profile and pharmacological activities of P. kurrooa have been extensively studied, limited attempts have been made to decipher the biosynthetic route and to identify the key regulatory genes involved in picroside biosynthesis. In the present study, NADPH-cytochrome P450 reductase, a key enzyme involved in electron transfer to cytochrome P450s was identified from P. kurrooa. The full length cDNA (2679 bp) contained an open reading frame of 2133 bp, corresponding to 710 amino acids. PkCPR was heterologously expressed in Escherichia coli and the kinetic parameters of the recombinant enzyme were determined. Specific activity, V max and K m of PkCPR were found to be 5.8?±?0.05 ?mol min(-1) mg(-1), 8.1?±?0.12 ?mol min(-1) mg(-1) and 7.8 ?M, respectively. PkCPR was found to be spatially regulated at transcript level, being maximally expressed in leaf tissues. Altitude was found to have a positive effect on the picroside concentration and the picroside content positively correlated with the PkCPR transcript levels in samples collected at varied altitudes. Further, transcript profiling under methyl jasmonate, salicylic acid, 2,4-dicholorophenoxy acetic acid and UV-B elicitations displayed differential transcriptional regulation of PkCPR that fully corroborated with the identified cis-elements within the PkCPR promoter. Expression of PkCPR was inducible by UV-B and phytohormone elicitation, indicating that the PkCPR is possibly related to defence reactions, including biosynthesis of secondary metabolites. Present study is so far the only report of identification and functional characterization of CPR ortholog from P. kurrooa. PMID:24522789

  11. Author's personal copy A highly sensitive fluorogenic probe for cytochrome P450 activity in live cells

    E-print Network

    Raines, Ronald T.

    Accepted 4 June 2008 Available online 10 June 2008 Keywords: Carcinogen CYP1A1 isozyme Cytochrome P450.09 lM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2, where it plays an important role in the metabolic activation of chemical carcinogens.1,15 The lung

  12. Construction of a 3D model of cytochrome P450 2B4

    E-print Network

    Chang, Yan-Tyng; Stiffelman, Oscar B.; Vakser, Ilya A.; Loew, Gilda H.; Bridges, Angela; Waskell, Lucy

    1997-02-01

    A three-dimensional structural model of rabbit phenobarbital-inducible cytochrome P450 2B4 (LM2) was constructed by homology modeling techniques previously developed for building and evaluating a 3D model of the cytochrome P450choP isozyme. Four...

  13. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    SciTech Connect

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland); Mallet, Delphine [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France)] [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Hofer, Gaby [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland)] [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland); Samara-Boustani, Dinane [Hopital Necker-Enfants malades, Paris (France)] [Hopital Necker-Enfants malades, Paris (France); Leger, Juliane [Hopital Robert Debre, Paris (France)] [Hopital Robert Debre, Paris (France); Polak, Michel [Hopital Necker-Enfants malades, Paris (France)] [Hopital Necker-Enfants malades, Paris (France); Morel, Yves [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France)] [Service d'Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern (Switzerland)

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

  14. Bacterial Cytochrome P450 System Catabolizing the Fusarium Toxin Deoxynivalenol

    PubMed Central

    Ito, Michihiro; Sato, Ikuo; Ishizaka, Masumi; Yoshida, Shin-ichiro; Koitabashi, Motoo; Yoshida, Shigenobu

    2013-01-01

    Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (kcat/Km) of 6.4 mM?1 s?1. The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat. PMID:23275503

  15. Targeting Cytochrome P450 Enzymes: A New Approach in Anti-cancer Drug Development

    PubMed Central

    Bruno, Robert D.; Njar, Vincent C.O.

    2007-01-01

    Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in Phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e. inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of Vitamin D3 and Vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer. PMID:17544277

  16. Interaction of cyanoketone and other steroid nitriles with cytochrome oxidase, hemoglobin, and cytochrome P-450.

    PubMed

    Graves, P E; Uzgiris, V I; Querner, M; Kashiwagi, K; McIntosh, E N; Salhanick, H A

    1978-04-01

    The inhibitory activity of cyanoketone (CNK; 2alpha-cyano-4,4,17alpha-trimethyl-17beta-hydroxy-5-androsten-3-one), was investigated for enzymes of the respiratory chain and cholesterol side chain cleavage (CSCC). In bovine corpus luteum mitochondria incubated with [26-14C]cholesterol, 500 micron CNK caused 90% inhibition of pregnenolone synthesis. Comparable results were obtained with adrenal and placental mitochondria. Addition of CNK to bovine corpus luteum mitochondria or to cytochrome P-450 purified from this source elicited a concentration-dependent, reverse type I difference spectrum with an absorption maximum at about 423 nm and a minimum at about 395 nm, confirming binding to oxidized cytochrome P-450. This spectral change resembles those of steroids which inhibit CSCC. In mitochondrial preparations, CNK induced a second peak at about 445 nm. This peak was similar to that elicited by the interaction of potassium cyanide with cytochrome a3 when the former is added to rabbit heart mitochondria which are devoid of P-450. Like cyanide, CNK block mitochondrial respiration at the cytochrome oxidase site, and induced spectral changes in human hemoglobin. Therefore, this peak at 445 nm probably represents the interaction of CNK with oxidized cytochrome a3. Several other steroid nitriles had little, if any, effect on CSCC activity, nor did they induce spectral changes with cytochrome oxidase or hemoglobin. It appears that the steroid configuration of CNK is responsible for the binding to P-450 and inhibition of CSCC, whereas the binding to cytochrome a3 and hemoglobin and the inhibitory effect on electron transfer are probably related to the cyano group of CNK. PMID:217613

  17. Effect of hemodialysis on hepatic cytochrome P450 functional expression.

    PubMed

    Michaud, Josée; Nolin, Thomas D; Naud, Judith; Dani, Mélina; Lafrance, Jean-Philippe; Leblond, Francois A; Himmelfarb, Jonathan; Pichette, Vincent

    2008-10-01

    Cytochrome P450 (CYP) functional expression is reduced in uremia and normalized after restoration of kidney function via transplantation. The aim of this study was to evaluate the effect of conventional hemodialysis on the functional expression of CYP1A, 2C, and 3A. We also investigated the role of nuclear factor-kappaB (NF-kappaB) in CYP regulation during uremia. Primary cultures of normal rat hepatocytes were incubated with serum obtained from end-stage renal disease patients pre- and post-hemodialysis and healthy control subjects, in the presence and absence of the NF-kappaB inhibitor andrographolide. Uremic pre-hemodialysis serum caused significant reductions (P<0.01) in CYP1A (44%), 2C (27%), and 3A (35%) protein expression compared to control serum, while dialyzed serum (i.e., obtained immediately post-hemodialysis) had no effect. CYP1A2, 2C11, and 3A2 mRNA expression, as well as CYP3A activity, were similarly impacted by uremic serum and were improved to >80% of control values after hemodialysis. NF-kappaB inhibition nearly eliminated the effect of uremic serum on CYP functional expression. This is the first study to demonstrate that conventional hemodialysis acutely improves altered CYP functional expression observed in rat hepatocytes incubated with uremic human serum. PMID:18845914

  18. Effects of icaritin on cytochrome P450 enzymes in rats.

    PubMed

    Liang, Dong-Lou; Zheng, Shuang-Li

    2014-04-01

    The purpose of this study was to find out whether icaritin influences the effect on rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg), was orally administered to rats treated with multiple doses of icaritin. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0. Treatment with multiple doses of icaritin had inhibitive effects on rat CYP1A2, CYP2C9 and CYP3A4 enzyme activities. However, icaritin has no inductive or inhibitory effect on the activity of CYP2E1. Therefore, caution is needed when icaritin is co-administered with some CYP1A2, CYP2C9 or CYP3A4 substrates, which may result in treatment failure and herb-drug interactions. PMID:24791596

  19. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis.

    PubMed

    Rao, P S S; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  20. Classification of cytochrome p(450) activities using machine learning methods.

    PubMed

    Hammann, Felix; Gutmann, Heike; Baumann, Ulli; Helma, Christoph; Drewe, Juergen

    2009-01-01

    The cytochrome P(450) (CYP) system plays an integral part in the metabolism of drugs and other xenobiotics. Knowledge of the structural features required for interaction with any of the different isoforms of the CYP system is therefore immensely valuable in early drug discovery. In this paper, we focus on three major isoforms (CYP 1A2, CYP 2D6, and CYP 3A4) and present a data set of 335 structurally diverse drug compounds classified for their interaction (as substrate, inhibitor, or any interaction) with these isoforms. We also present machine learning models using a variety of commonly used methods (k-nearest neighbors, decision tree induction using the CHAID and CRT algorithms, random forests, artificial neural networks, and support vector machines using the radial basis function (RBF) and homogeneous polynomials as kernel functions). We discuss the physicochemical features relevant for each end point and compare it to similar studies. Many of these models perform exceptionally well, even with 10-fold cross-validation, yielding corrected classification rates of 81.7 to 91.9% for CYP 1A2, 89.2 to 92.9% for CYP 2D6, and 87.4 to 89.9% for CYP3A4. Our models help in understanding the structural requirements for CYP interactions and can serve as sensitive tools in virtual screenings and lead optimization for toxicological profiles in drug discovery. PMID:19813762

  1. Cytochrome P450 1B1 and Primary Congenital Glaucoma.

    PubMed

    Zhao, Yun; Sorenson, Christine M; Sheibani, Nader

    2015-01-01

    Cytochrome P450 1B1 (Cyp1b1) belongs to the CYP450 superfamily of heme-binding mono-oxygenases which catalyze oxidation of various endogenous and exogenous substrates. The expression of Cyp1b1 plays an important role in the modulation of development and functions of the trabecular meshwork (TM). Mutations in Cyp1b1 have been reported in patients with primary congenital glaucoma (PCG). Mice lacking Cyp1b1 also exhibit developmental defects in the TM similar to those reported in congenital glaucoma patients. However, how Cyp1b1 deficiency contributes to TM dysgenesis remains unknown. In the present review, we will address the significance of Cyp1b1 expression and/or its function in anterior segment development. Cyp1b1-deficient (Cyp1b1 (-/-)) mice are discussed as a promising model for an oxidative stress-induced model of PCG, in which Cyp1b1 activity is revealed as an important modulator of oxidative homeostasis contributing to the development and structural function of the TM. This conclusion suggests a possible clinical intervention for individuals who are genetically at high risk of developing PCG. PMID:26005555

  2. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    PubMed Central

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  3. Conformational heterogeneity of cytochrome P450 3A4 revealed by high pressure spectroscopy

    Microsoft Academic Search

    Dmitri R Davydov; James R Halpert; Jean-Paul Renaud; Gaston Hui Bon Hoa

    2003-01-01

    We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b5, (b5) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both

  4. The role of cytochrome b5 structural domains in interaction with cytochromes P450.

    PubMed

    Sergeev, G V; Gilep, A A; Usanov, S A

    2014-05-01

    To understand the role of the structural elements of cytochrome b5 in its interaction with cytochrome P450 and the catalysis performed by this heme protein, we carried out comparative structural and functional analysis of the two major mammalian forms of membrane-bound cytochrome b5 - microsomal and mitochondrial, designed chimeric forms of the heme proteins in which the hydrophilic domain of one heme protein is replaced by the hydrophilic domain of another one, and investigated the effect of the highly purified native and chimeric heme proteins on the enzymatic activity of recombinant cytochromes P4503A4 and P45017A1 (CYP3A4 and CYP17A1). We show that the presence of a hydrophobic domain in the structure of cytochrome b5 is necessary for its effective interaction with its redox partners, while the nature of the hydrophobic domain has no significant effect on the ability of cytochrome b5 to stimulate the activity of cytochrome P450-catalyzed reactions. Thus, the functional properties of cytochrome b5 are mainly determined by the structure of the heme-binding domain. PMID:24954591

  5. Structure and Function of an NADPH-Cytochrome P450 Oxidoreductase in an Open Conformation Capable of Reducing Cytochrome P450

    SciTech Connect

    Hamdane, Djemel; Xia, Chuanwu; Im, Sang-Choul; Zhang, Haoming; Kim, Jung-Ja P.; Waskell, Lucy; (MCW); (Michigan-Med)

    2010-01-20

    NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.

  6. Clofibrate-induced cytochrome P450-lauric acid omega hydroxylase(P450LA omega):purification, cDNA cloning, sequence and regulation

    SciTech Connect

    Hardwick, J.P.; Song, B.J.; Gonzalez, F.J.

    1986-05-01

    A cytochrome P450 that hydroxylates lauric acid at the 12 position (P450LA omega) was isolated from liver microsomes of clofibrate treated rats. P450LA omega was immunologically distinct from P450s a,b,c,d,e,f,g,h,j,PB1, and PCN1. Polyclonal antibody against P450LA omega was utilized to screen a gt11 cDNA library. A clone (pP450LA omega), was isolated and its sequence determined. The P450LA omega mRNA is a minimum 2387 nts in length and codes for a P450 of Mr.58,222 daltons. This protein shares less than 35% amino acid similarity with P450s b,c,d,e,f,PB1, and PCN1; however, it does contain a hydrophobic amino terminal peptide and a conserved sequence surrounding the Cys residue at position 456, which is similar to other microsomal P450s. P450LA omega is present at high levels in untreated rat kidney and is induced by clofibrate in both kidney and liver. This induction is the result of an accumulation of mRNA through a rapid transcriptional activation of the P450LA gene. Southern blotting data suggest the presence of 2 or 3 genes in the P450LA omega family. This P450 gene family may be associated with arachidonic acid and prostraglandin metabolism in kidney and other tissues.

  7. Structure, function and drug targeting in Mycobacterium tuberculosis cytochrome P450 systems

    Microsoft Academic Search

    Kirsty J. McLean; Adrian J. Dunford; Rajasekhar Neeli; Max D. Driscoll; Andrew W. Munro

    2007-01-01

    The human pathogen Mycobacterium tuberculosis has made a dramatic resurgence in recent years. Drug resistant and multidrug resistant strains are prevalent, and novel antibiotic strategies are desperately needed to counter Mtb’s global spread. The M. tuberculosis genome sequence revealed an unexpectedly high number of cytochrome P450 (P450) enzymes (20), and parallel studies indicated that P450-inhibiting azole drugs had potent anti-mycobacterial

  8. Activation of Chemically Diverse Procarcinogens by Human Cytochrome P-450 IBI1

    Microsoft Academic Search

    Tsutomu Shimada; Carrie L. Hayes; Hiroshi Yamazaki; Shantu Amin; Stephen S. Hecht; F. Peter Guengerich; Thomas R. Sutler

    A human cytochrome P-450 (P450) IBI cDNA was expressed in Sat-- charomyces cerevisiae, and the microsomes containing P450 IBI were used to examine the selectivity of this enzyme in the activation of a variety of environmental carcinogens and mutagens in Salmonella typhimurium TA1535\\/pSK1002 or NM2009 tester strains, using the SOS response as an end point of DNA damage. We also

  9. Phenotyping of Cytochromes P-450 in Human Tissues with Monoclonal Antibodies

    Microsoft Academic Search

    Tadahiko Fujino; Sang Shin Park; Donna West; Harry V. Gelboin

    1982-01-01

    Cytochrome P-450 (P-450)-dependent aryl hydrocarbon hydroxylase (AHHase) and 7-ethoxycoumarin deethylase (ECDEtase) in human tissues were differentially inhibited by monoclonal antibodies (MAbs) that were prepared to inhibit and completely inhibited the activity of 3-methylcholanthrene-induced rat liver P-450. The AHHase and ECDEtase of placentas from individual women who smoked were inhibited by the MAbs by 83-90% and by 34-74%, respectively, Benz[a]anthracene (BaA)-induced

  10. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

    Microsoft Academic Search

    Jürgen Ehlting; Vincent Sauveplane; Alexandre Olry; Jean-François Ginglinger; Nicholas J Provart; Danièle Werck-Reichhart

    2008-01-01

    BACKGROUND: Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s) is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis

  11. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics.

    PubMed

    Vuong, Chau; Xie, Lisa H; Potter, Brittney M J; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Nanayakkara, N P Dhammika; Tekwani, Babu L; Walker, Larry A; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Smith, Bryan; Marcsisin, Sean R

    2015-07-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  12. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    PubMed

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  13. Inhibitors of cytochrome P450 4A suppress angiogenic responses.

    PubMed

    Chen, Ping; Guo, Meng; Wygle, Dana; Edwards, Paul A; Falck, John R; Roman, Richard J; Scicli, A Guillermo

    2005-02-01

    Cytochrome P450 enzymes of the 4A family (CYP4A) convert arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) in blood vessels of several vascular beds. The present study examined the effects of inhibiting the formation of 20-HETE with N-hydroxy-N'-(4-butyl-2-methylphenol) formamidine (HET0016) on the mitogenic response of vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs) in vitro, and on growth factor-induced angiogenesis in the cornea of rats in vivo. HET0016 (10 micromol/L and 20 microg, respectively) abolished the mitogenic response to VEGF in HUVECs and the angiogenic response to VEGF, basic fibroblast growth factor, and epidermal growth factor in vivo by 80 to 90% (P < 0.001). Dibromododecenyl methylsulfonimide (DDMS), a structurally and mechanistically different inhibitor of 20-HETE synthesis, also abolished angiogenic responses when tested with VEGF. Additionally, administration of the stable 20-HETE agonist, 20-hydroxyeicosa-6(Z) 15(Z)-dienoic acid (WIT003) induced mitogenesis in HUVECs and angiogenesis in the rat cornea in vivo. We studied the ability of HET0016 to alter the angiogenic response in the rat cornea to human glioblastoma cancer cells (U251). When administered locally into the cornea, HET0016 (20 microg) reduced the angiogenic response to U251 cancer cells by 70%. These results suggest that a product of CYP4A product, possibly 20-HETE, plays a critical role in the regulation of angiogenesis and may provide a useful target for reduction of pathological angiogenesis. PMID:15681843

  14. The ratio of two isozyme groups in microsomal cytochrome P-450 under exogenous influence of carbon tetrachloride and cyclophosphamide.

    PubMed

    Izotov, M V; Shcherbakov, V M; Devichensky, V M; Spiridonova, S M; Lugovaja, L V; Benediktova, S A

    1988-12-01

    A method for measuring the content of two groups of microsomal cytochrome P-450 isozymes--cytochromes P-450W and P-450L--with the active sites directed into the water phase and membrane lipids, respectively, has been developed. The method is based on the ability of the xanthine oxidase-menadione complex to reduce microsomal cytochromes b5 and P-450 under anaerobic conditions by transferring electrons to hemoproteins with the active sites directed into the water phase. Cytochrome b5 is completely reduced (to the dithionite level) and cytochrome P-450 is reduced partially (only a group of cytochromes P-450W). The amount of cytochromes P-450L is estimated using the difference between the total content of cytochrome P-450 reduced by sodium dithionite and the content of cytochromes P-450W. The possibility of controlling the ratio of these two isozyme groups in cytochrome P-450 in vivo in membranes of the endoplasmic reticulum by pretreatment of animals with a variety of chemicals has been demonstrated. The ratio of cytochromes P-450W and P-450L has been shown to decrease two-fold 18 days after three injections of phenobarbital into mice. Carbon tetrachloride and cyclophosphamide also decrease this ratio in vivo. PMID:3233147

  15. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. (New York University Medical Center, Institute of Environmental Medicine, Tuxedo (USA))

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  16. Global Incorporation of Norleucine in Place of Methionine in Cytochrome P450

    E-print Network

    Arnold, Frances H.

    Global Incorporation of Norleucine in Place of Methionine in Cytochrome P450 BM-3 Heme Domain) with the isosteric methionine analog norleucine. This experiment has provided a means of testing the functional methionine oxidation. Although there was no increase in the stability of the P450 under stan- dard reaction

  17. Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors

    Microsoft Academic Search

    Nobutaka Kitahata; Shigeki Saito; Yutaka Miyazawa; Taishi Umezawa; Yukihisa Shimada; Yong Ki Min; Masaharu Mizutani; Nobuhiro Hirai; Kazuo Shinozaki; Shigeo Yoshida; Tadao Asami

    2005-01-01

    Plant hormone abscisic acid (ABA) is an important factor for conferring drought stress resistance on plants. Therefore, small molecules that regulate ABA levels in plants can be useful both for investigating functions of ABA and for developing new plant growth regulators. Abscisic acid (ABA) catabolism in plants is primarily regulated by ABA 8?-hydroxylase, which is a cytochrome P450 (P450). We

  18. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  19. Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes.

    PubMed

    Hammons, G J; Milton, D; Stepps, K; Guengerich, F P; Tukey, R H; Kadlubar, F F

    1997-04-01

    The N-hydroxylation of carcinogenic arylamines represents an initial step in their metabolic activation. Animal studies have shown that this reaction is catalyzed by the cytochrome P450 (P450) enzymes P450 1A1 and P450 1A2. In this study, utilizing enzymes expressed in Escherichia coli (and purified) or in human B-lymphoblastoid cells, the catalytic activities of recombinant human P450 1A1, P450 1A2, and P450 3A4 for N-hydroxylation of several carcinogenic arylamines were determined. P450 1A2 from both expression systems catalyzed the N-hydroxylation of 4-aminobiphenyl and the heterocyclic amines, 2-amino-3-methylimidazo[4,5-f/quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Rates were similar, with values of 1.1-7.8 nmol/min/nmol P450. In contrast, P450 1A1 catalyzed N-hydroxylation of only PhIP, and no activity was observed with P450 3A4. Further kinetic analysis with purified P450 1A2 showed similar Km and Vmax values for N-hydroxylation of the arylamines. Furafylline and fluvoxamine, inhibitors of P450 1A2 activity in human liver microsomes, were found to be inhibitory of the recombinant P450 1A2 N-hydroxylation activity. Results from this study are supportive of a major role for human P450 1A2 in the metabolic activation of arylamines. PMID:9111224

  20. Monooxygenation of small hydrocarbons catalyzed by bacterial cytochrome p450s.

    PubMed

    Shoji, Osami; Watanabe, Yoshihito

    2015-01-01

    Cytochrome P450s (P450s) catalyze the NAD(P)H/O2-dependent monooxygenation of less reactive organic molecules under mild conditions. The catalytic activity of bacterial P450s is very high compared with P450s isolated from animals and plants, and the substrate specificity of bacterial P450s is also very high. Accordingly, their catalytic activities toward nonnative substrates are generally low especially toward small hydrocarbons. However, mutagenesis approaches have been very successful for engineering bacterial P450s for the hydroxylation of small hydrocarbons. On the other hand, "decoy" molecules, whose structures are very similar to natural substrates, can be used to trick the substrate recognition of bacterial P450s, allowing the P450s to catalyze oxidation reactions of nonnative substrates without any substitution of amino acid residues in the presence of decoy molecules. Thus, the hydroxylation of small hydrocarbons such as ethane, propane, butane and benzene can be catalyzed by P450BM3, a long-alkyl-chain hydroxylase, using substrate misrecognition of P450s induced by decoy molecules. Furthermore, a number of H2O2-dependent bacterial P450s can catalyze the peroxygenation of a variety of nonnative substrates through a simple substrate-misrecognition trick, in which catalytic activities and enantioselectivity are dependent on the structure of decoy molecules. PMID:26002736

  1. Expression and induction of cytochrome P-450 1A1 and P-450 2D subfamily in the rat glioma C6 cell line.

    PubMed

    Geng, J; Strobel, H W

    1997-11-01

    The cytochrome P-450 (P-450) monooxygenase system can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs and pollutants. The functions of this system are as diverse as the substrates. Though this enzyme system has the highest level of activity in the liver, it is present in other tissues, including brain. In this study, we have established the rat glioma C6 cell line as an in vitro model system to examine the expression and induction of P-450 1A1 and the P-450 2D subfamily. Rat glioma C6 cells were treated with P-450 inducers phenobarbital (PB) or benzo[a]anthracene (BA). The presence of P-450 1A1 and 2D1-5 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction enzyme digestion. The induction of P-450 1A1 and 2D1-5 was quantified using competitive PCR. Although P-450 2D1-5 do not seem to be affected by PB or BA treatment, tenfold induction of P-450 1A1 mRNA after BA treatment was detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P-450 1A1 at the protein level. ELISAs showed that BA induces P-450 1A1 proteins 7.3-fold. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P-450 monooxygenase system which can be induced by P-450 inducers. In summary, we believe the presence of the cytochrome P-450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. PMID:9452186

  2. Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3 Edgardo T. Farinas,

    E-print Network

    Arnold, Frances H.

    Catalyzing a wide range of oxidative reactions under mild conditions in aqueous solutions, cytochrome P450, and methanol in potassium phosphate buffer. For propylene oxidation, the buffer was first saturated

  3. Human cytochrome P450 17A1 conformational selection: modulation by ligand and cytochrome b5.

    PubMed

    Estrada, D Fernando; Skinner, Andria L; Laurence, Jennifer S; Scott, Emily E

    2014-05-16

    Crystallographic studies of different membrane cytochrome P450 enzymes have provided examples of distinct structural conformations, suggesting protein flexibility. It has been speculated that conformational selection is an integral component of substrate recognition and access, but direct evidence of such substate interconversion has thus far remained elusive. In the current study, solution NMR revealed multiple and exchanging backbone conformations for certain structural features of the human steroidogenic cytochrome P450 17A1 (CYP17A1). This bifunctional enzyme is responsible for pregnenolone C17 hydroxylation, followed by a 17,20-lyase reaction to produce dehydroepiandrosterone, the key intermediate in human synthesis of androgen and estrogen sex steroids. The distribution of CYP17A1 conformational states was influenced by temperature, binding of these two substrates, and binding of the soluble domain of cytochrome b5 (b5). Notably, titration of b5 to CYP17A1·pregnenolone induced a set of conformational states closely resembling those of CYP17A1·17?-hydroxypregnenolone without b5, providing structural evidence consistent with the reported ability of b5 to selectively enhance 17,20-lyase activity. Solution NMR thus revealed a set of conformations likely to modulate human steroidogenesis by CYP17A1, demonstrating that this approach has the potential to make similar contributions to understanding the functions of other membrane P450 enzymes involved in drug metabolism and disease states. PMID:24671419

  4. Interactions among cytochromes P450 in microsomal membranes: oligomerization of cytochromes P450 3A4, 3A5, and 2E1 and its functional consequences.

    PubMed

    Davydov, Dmitri R; Davydova, Nadezhda Y; Sineva, Elena V; Halpert, James R

    2015-02-01

    The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of ?-naphthoflavone. Biochem. J. 453, 219-230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species. PMID:25533469

  5. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    Microsoft Academic Search

    Barnett A. Rattner; Mark J. Melancon; Thomas W. Custer; Roger L. Hothem; Kirke A. King; Leonard J. LeCaptain; James W. Spann; Bruce R. Woodin; John J. Stegeman

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially

  6. Inducibility of cytochrome P-450 in Acinetobacter calcoaceticus by n-alkanes

    Microsoft Academic Search

    Otmar Asperger; Annelore Naumann; Hans-Peter Kleber

    1984-01-01

    Cytochrome P-450, detectable in n-hexadecane-grown cells of Acinetobacter calcoaceticus, is not found during growth on complex media, sugars, or various metabolic indermediates, such as mono- or dicarboxylic acids. Cytochrome P-450 formation is observed after shifting cells from a non-hydrocarbon medium to a minimal medium with n-hexadecane as the sole source of carbon, or after addition of n-hexadecane to cultures growing

  7. Tissue Localization, Induction, and Developmental Expression of Cytochrome P450 Monooxygenases in the German Cockroach

    Microsoft Academic Search

    Steven M. Valles; Simon J. Yu

    1996-01-01

    Methods of microsome preparation were evaluated to determine their influence on the activity of cytochrome P450 monooxygenases in adult males and final instar nymphs of the German cockroach,Blattella germanica(L.). Aldrin epoxidase activity was significantly improved when homogenization occurred in a protected buffer and when alimentary canal contents were removed prior to homogenization. Apparently, a potent inhibitor of cytochrome P450 monooxygenases,

  8. Expression and localization of aromatase P450 AROM, estrogen receptor-?, and estrogen receptor-? in the developing fetal bovine frontal cortex

    Microsoft Academic Search

    A. Peruffo; M. Giacomello; S. Montelli; L. Corain; B. Cozzi

    2011-01-01

    The enzyme aromatase (P450AROM) converts testosterone (T) into 17-? estradiol (E2) and is crucial for the control of development of the central nervous system during ontogenesis. The effects of E2 in various brain areas are mediated by the estrogen receptor alpha (ER-?) and the estrogen receptor beta (ER-?). During fetal development, steroids are responsible for the sexual differentiation of the

  9. Forster Distances of Ligand-Heme Pairs in Cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Fern, Joel; Guengerich, F. Peter; Marsch, Glenn A.

    2003-04-01

    Cytochrome P450 3A4 is a protein in the human intestine and liver which oxidizes over half of drugs in use today. Cytochrome P450 3A4 has proven resistant to structure determination by NMR or x-ray crystallography. Fluorescence Resonance Energy Transfer (FRET) studies of P450 3A4 can be used to compute distances between fluorophores in the protein, providing information on the structure of the protein. For a ligand to be suitably used as a probe its fluorescence must not be completely quenched by the heme cofactor in P450 3A4. By using quantum yields, fluorescence, and the absorption spectra of six P450 ligands, the following Forster distances between each ligand and the P450 heme moiety were obtained: pyrene 4.6 nm, aflatoxin B2 5.7 nm, alpha-naphthoflavone 3.7 nm, indinavir 2.6 nm, quinidine 3.5 nm, and terfenadine 2.8 nm. Having these distances should yield a better low-resolution cytochrome P450 3A4 structure. Using the Forster distances, FRET experiments on inter-ligand placement in P450 3A4 will be undertaken soon.

  10. Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105).

    PubMed

    Yasutake, Yoshiaki; Imoto, Noriko; Fujii, Yoshikazu; Fujii, Tadashi; Arisawa, Akira; Tamura, Tomohiro

    2007-10-01

    Cytochrome P450 MoxA (P450moxA) from a rare actinomycete Nonomuraea recticatena belongs to the CYP105 family and exhibits remarkably broad substrate specificity. Here, we demonstrate that P450moxA acts on several luciferin derivatives, which were originally identified as substrates of the human microsomal P450s. We also describe the crystal structure of P450moxA in substrate-free form. Structural comparison with various bacterial and human microsomal P450s reveals that the P450moxA structure is most closely related to that of the fungal nitric oxide reductase P450nor (CYP55A1). Final refined model of P450moxA comprises almost all the residues, including the "BC-loop" and "FG-loop" regions pivotal for substrate recognition, and the current structure thus defines a well-ordered substrate-binding pocket. Clear electron density map reveals that the MES molecule is bound to the substrate-binding site, and the sixth coordination position of the heme iron is not occupied by a water molecule, probably due to the presence of MES molecule in the vicinity of the heme. The unexpected binding of the MES molecule might reflect the ability of P450moxA to accommodate a broad range of structurally diverse compounds. PMID:17679139

  11. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min?1 (mg protein)?1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  12. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  13. Expression and induction of cytochrome P-450 1A1 and P-450 2D subfamily in the rat glioma C6 cell line

    Microsoft Academic Search

    Jun Geng; Henry W Strobel

    1997-01-01

    The cytochrome P-450 (P-450) monooxygenase system can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs and pollutants. The functions of this system are as diverse as the substrates. Though this enzyme system has the highest level of activity in the liver, it is present in other tissues, including brain. In

  14. Induction of hepatic cytochrome P-450 mediated alkoxyresorufin O-dealkylase activities in different species by prototype P-450 inducers.

    PubMed

    Lubet, R A; Syi, J L; Nelson, J O; Nims, R W

    1990-01-01

    The induction of cytochrome P-450-mediated alkoxyresorufin O-dealkylase activities by various xenobiotics was examined in liver from a variety of animal species in order to gain insights into the substrate specificities of the induced P-450s. We found that forms of cytochrome P-450 capable of mediating the O-dealkylation of the short-chain phenoxazone ethers methoxy-, ethoxy- and propoxyresorufin were highly induced by 3-methylcholanthrene-type inducers and by Aroclor-1254 in all species tested, although there were species differences in the relative turnover rates for the various substrates. For example, in hamster liver the turnover rates for the short-chain resorufin ethers decreased in the following order: methoxy greater than ethoxy much greater than propoxy, while in the rat liver almost the exact opposite order was observed: ethoxy = propoxy much greater than methoxy. In contrast, the degree of induction by phenobarbital-type inducers of isozymes catalyzing the O-dealkylation of pentoxy- or benzyloxyresorufin was highly species-dependent. Thus, F344/NCr rats, B6C3F1 mice and NZB rabbits showed the greatest (greater than 20-fold) induction of these activities, either by phenobarbital or Aroclor-1254, while Mongolian gerbils showed intermediate levels of induction and Syrian golden hamsters exhibited very low induction. In the Japanese quail, phenobarbital- or DDT-treatment resulted in minimal induction of pentoxy- or benzyloxyresorufin O-dealkylase activity, although significant induction of the latter activity occurred following treatment with 5,6-benzoflavone or with Aroclor-1254. Since substrate specificities of most enzymes can be rationalized based upon differences in the steric requirements at the enzyme active site, we employed molecular modeling techniques to calculate the molecular dimensions of the alkoxyresorufins. Surprisingly, the minimal energy conformations in vacuo of each of the resorufin ethers examined are essentially planar. However, alternative configurations, especially for the pentoxy- and benxyloxy-ethers, having greater three-dimensional bulk are also energetically possible. PMID:2379261

  15. Combining Machine Learning techniques to Predict Compounds' Cytochrome P450

    E-print Network

    Fernandez, Thomas

    are able to predict activity with P450. 2 #12;Combined Classifier via 2 Stages: Clementine. Genetic related groups (vertical) Inactive records split into 5 groups (horizontal) 5 "balanced" training sets Tree 3 Tree 4 5 #12;Composite of 75 Networks: Boosting GP and Matlab boosting code use identical data

  16. DOI: 10.1002/chem.200900643 A Panel of Cytochrome P450 BM3 Variants to Produce Drug Metabolites

    E-print Network

    Arnold, Frances H.

    Bacillus megaterium, P450 BM3 has properties that greatly facilitate Abstract: Herein we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity

  17. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  18. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  19. RNA Interference of NADPH-Cytochrome P450 Reductase Results in Reduced Insecticide Resistance in the Bed Bug, Cimex lectularius

    Microsoft Academic Search

    Fang Zhu; Sarah Sams; Tim Moural; Kenneth F. Haynes; Michael F. Potter; Subba R. Palli

    2012-01-01

    BackgroundNADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or

  20. Cytochrome P450-encoding genes from the Heliconius genome as candidates for cyanogenesis.

    PubMed

    Chauhan, R; Jones, R; Wilkinson, P; Pauchet, Y; Ffrench-Constant, R H

    2013-10-01

    Cytochrome P450s are important both in the metabolism of xenobiotics and the production of compounds such as cyanogenic glucosides, which insects use in their defence. In the present study, we use transcriptomic and genomic information to isolate and name P450-encoding genes from the butterfly Heliconius melpomene. We classify each of the putative genes into its appropriate superfamily and compare the distribution of P450s across sequenced insects. We also identify homologues of two P450s known to be involved in cyanogenesis in the six-spot Burnet moth, Zygaena filipendulae. Classification of Heliconius?P450s should be an important step in the dissection of their role in the exploitation of their host plant, the passion vine Passiflora. PMID:23834845

  1. Aromatase (P450arom) and 11beta-hydroxylase (P45011beta) genes are differentially expressed during the sex change process of the protogynous rice field eel, Monopterus albus.

    PubMed

    Liu, Ji-Fang; Guiguen, Yann; Liu, Shao-Jun

    2009-08-01

    Steroids are known to play a crucial role in gonadal sex differentiation in many non-mammalian vertebrates, but also in the gonadal sex change of hermaphroditic teleosts. We investigated the expression of two genes encoding key steroidogenic enzymes, i.e., cytochrome P450 aromatase (P450arom) and cytochrome P45011beta-hydroxylase (P45011beta), during the sex change of the protogynous rice field eel, Monopterus albus. Using RT-PCR with degenerate primers, we cloned rice field eel homologous fragments for both genes (rcP450arom and rcP45011beta) as indicated by the high level of homology with P450arom and P45011beta sequences from various vertebrates. Gonadal expression of rcP450arom and rcP45011beta mRNA levels were then assessed during the sex change by semi-quantitative RT-PCR and a real-time RT-PCR. rcP450arom was predominantly expressed in ovary, much less in ovotestis, and barely in testis. Conversely, P45011beta was markedly up-regulated at the onset of testicular development. These findings underline that regulation of steroidogenesis is an important process in the sex change of protogynous rice field eel, and they clearly indicate that the concomitant down-regulation of P450arom and up-regulation of P45011beta are of pivotal importance to the sex change of this species. PMID:18807204

  2. Monoclonal antibodies of differentiating specificities as probes of cytochrome P450h (2C11).

    PubMed

    Ryan, D E; Thomas, P E; Levin, W; Maines, S L; Bandiera, S; Reik, L M

    1993-03-01

    A panel of 30 monoclonal antibodies against rat hepatic microsomal cytochrome P450h (2C11) has been produced, purified, and characterized. A broad range of reactivities was observed when 13 purified rat cytochrome P450 isozymes were tested for epitope relatedness in a noncompetitive enzyme-linked immunosorbent assay or on immunoblots. Several antibodies were antigen-specific, others reacted with additional members of the 2C subfamily, and other monoclonal antibodies recognized cytochromes P450 from the 2E, 2B, 2A, and 1A subfamilies. Cytochromes P450p (3A1) and P4501 (3A2) did not react with any of the antibodies. A minimum of seven spatially distinct epitopes on cytochrome P450h were defined by the panel of antibodies. Immunoblot analysis of rat microsomes illustrated the male specificity of cytochrome P450h expression which extended to extrahepatic tissues including kidney and lung. A survey of various species by immunoblot analysis with several antibodies revealed little if any epitope relatedness among microsomal proteins from rats, mice, rabbits, hamsters, squirrel monkeys, guinea pigs, or humans. All of the antibodies were screened as potential inhibitors of cytochrome P450h-mediated testosterone hydroxylation in a reconstituted system. Although most of the antibodies were noninhibitory, greater than 70% inhibition of 2 alpha- and 16 alpha-hydroxylation of testosterone was observed with selected antibodies. These inhibitory antibodies gave similar results when benzphetamine N-demethylation was evaluated in the reconstituted system. The inhibitory antibodies were then used to assess the role of cytochrome P450h in microsomal benzphetamine N-demethylation, since this isozyme exhibits high catalytic activity for this substrate. Only 20-25% inhibition of benzphetamine metabolism was attained in microsomal preparations from adult male rats, and the antibodies did not influence the microsomal catalytic activity of immature males or females or adult females. Thus, despite the high level of expression of cytochrome P450h in microsomes from adult male rats and the high catalytic activity of the purified protein for benzphetamine, this isozyme contributes only a small portion of the metabolism of this substrate in microsomes. PMID:7681658

  3. Interaction of fluoroethane chlorofluorocarbon (CFC) substitutes with microsomal cytochrome P450. Stimulation of P450 activity and chlorodifluoroethene metabolism.

    PubMed

    Wang, Y; Olson, M J; Baker, M T

    1993-07-01

    The abilities of halothane and the fluoroethane chlorofluorocarbon (CFC) substitutes, FC-123, FC-133a, FC-124, FC-134a and FC-125, to stimulate cytochrome P450 activities and 2-chloro-1,1-difluoroethene (CDE) defluorination in hepatic microsomes from phenobarbital-treated rabbits were compared. At 1% (v/v) each, halothane and FC-123 similarly increased the consumption of NADPH and O2 by 300 and 100%, respectively, over that in microsomes without substrate. FC-133a and FC-124 were less effective, increasing NADPH and O2 consumption by 150-200 and 70%. FC-134a and FC-125 were the least effective, increasing NADPH and O2 consumption by only 70 and 50%, respectively. No metabolism of any fluoroethane could be detected under the incubation conditions used. Halothane and FC-123 were most effective in stimulating CDE metabolism with increases of CDE defluorination ranging from 1.5- to 2-fold. FC-133a and FC-124 enhanced CDE oxidation 89 and 74%, respectively, and FC-134a and FC-125 had no effect. While CDE metabolism was enhanced in the presence of the fluoroethanes, no additional NADPH or O2 was consumed when halothane or FC-124 was incubated with CDE compared with incubations containing only halothane or FC-124. Log-log plots of NADPH consumption and CDE metabolism with the olive oil/gas partition coefficients of each fluoroethane showed linear relationships. These data demonstrate that the activity of the fluoroethanes in stimulating P450 activity and CDE metabolism is a function of their lipid solubility, and fluoroethane-enhanced CDE metabolism is related to the ability of these compounds to increase uncoupled P450 activity. PMID:8347140

  4. Regulation of Intestinal Cytochrome P450 Expression by Hepatic Cytochrome P450: Possible Involvement of Fibroblast Growth Factor 15 and Impact on Systemic Drug Exposure

    PubMed Central

    Zhu, Yi; Ding, Xinxin; Fang, Cheng

    2014-01-01

    Tissue-specific deletion of the gene for NADPH-cytochrome P450 (P450) reductase (CPR), the essential electron donor to all microsomal P450 enzymes, in either liver or intestine, leads to upregulation of many P450 genes in the tissue with the Cpr deletion. Here, by studying the liver-specific Cpr-null (LCN) mouse, we examined whether an interorgan regulatory pathway exists, such that a loss of hepatic CPR would cause compensatory changes in intestinal P450 expression and capacity for first-pass metabolism of oral drugs. We show for the first time that intestinal expression of CYP2B, 2C, and 3A proteins was increased in LCN mice by 2- to 3-fold compared with wild-type (WT) mice, accompanied by significant increases in small intestinal microsomal lovastatin-hydroxylase activity and systemic clearance of oral lovastatin (at 5 mg/kg). Additional studies showed that the hepatic Cpr deletion, which caused large decreases in bile acid (BA) levels in the liver, intestine, plasma, and intestinal content, led to drastic decreases in the mRNA levels of intestinal fibroblast growth factor 15 (FGF15), a target gene of the BA receptor farnesoid X receptor. Furthermore, treatment of mice with FGF19 (the human counterpart of mouse FGF15) abolished the difference between WT and LCN mice in small intestinal (SI) CYP3A levels at 6 hours after the treatment. Our findings reveal a previously unrecognized direct role of intestinal FGF15/19 in the regulation of SI P450 expression and may have profound implications for the prediction of drug exposure in patients with compromised hepatic P450 function. PMID:24184963

  5. Phenotyping of cytochromes P-450 in human tissues with monoclonal antibodies.

    PubMed

    Fujino, T; Park, S S; West, D; Gelboin, H V

    1982-06-01

    Cytochrome P-450 (P-450)-dependent aryl hydrocarbon hydroxylase (AHHase) and 7-ethoxycoumarin deethylase (ECDEtase) in human tissues were differentially inhibited by monoclonal antibodies (MAbs) that were prepared to inhibit and completely inhibited the activity of 3-methylcholanthrene-induced rat liver P-450. The AHHase and ECDEtase of placentas from individual women who smoked were inhibited by the MAbs by 83-90% and by 34-74%, respectively. Benz[a]anthracene (BaA)-induced AHHase and ECDEtase in lymphocytes were inhibited 18-65% and 30-78%, respectively. The enzymes in both control and BaA-induced human cells in culture were inhibited to different extents. Both the AHHase and ECDEtase in control and BaA-induced monocytes and in normal liver were largely unaffected by the MAb. Thus, we have with the MAbs: (i) identified P-450s with a common antigenic site in placenta, lymphocytes, and human cells in culture; (ii) identified two forms of hydrocarbon-induced P-450s in lymphocytes, at least one of which is common with the induced P-450s of placenta and with a P-450 form present in uninduced lymphocytes; (iii) identified two forms of P-450 responsible for smoking-induced ECDEtase activity in placenta, one of which is also responsible for AHHase activity; (iv) shown that the P-450s of liver, basal, and BaA-induced monocytes are different from the MAb-sensitive P-450s of placenta and lymphocytes; (v) quantitated in several human tissues the percentages of control and inducible AHHase and ECDEtase that are dependent on the MAb-sensitive P-450; and (vi) defined by HPLC the contribution of the MAb-sensitive P-450 to the formation of specific benzo[a]-pyrene metabolites. The results demonstrate the value of MAbs for defining antigenic site relatedness for different enzymatic functions of P-450s and for identifying and quantifying the amount of a specific enzyme activity in a tissue dependent on specific P-450s. This study may be a prototype for the use of MAbs for phenotyping and mapping of P-450s responsible for specific metabolic reactions and, thus, may be useful in determining the relationship of P-450 phenotype to individual differences in drug metabolism and carcinogen susceptibility. PMID:6980417

  6. Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B)

    Microsoft Academic Search

    Kenji Matsui; Mizuyoshi Shibutani; Toshiharu Hase; Tadahiko Kajiwara

    1996-01-01

    Fatty acid hydroperoxide lyases cleave a C?C bond adjacent to a hydroperoxide group in lipoxygenase derived lipid hydroperoxides to form short-chain aldehydes and oxo-acids. Previously, we showed that fatty acid hydroperoxide lyase from bell pepper fruits is a heme protein whose spectrophotometric properties greatly resemble a cytochrome P450. In order to ascertain the relationship of it to the P450 gene

  7. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver

    Microsoft Academic Search

    S. Oetari; M. Sudibyo; Jan N. M. Commandeur; R. Samhoedi; Nico P. E. Vermeulen

    1996-01-01

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or by adding glutathione (GSH), N-acetyl l-cysteine (NAC), ascorbic acid, rat liver microsomes, or rat

  8. Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships

    PubMed Central

    Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam

    2014-01-01

    With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990’s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes. However, the details of structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis. PMID:24287985

  9. Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis.

    PubMed

    Lamb, S B; Lamb, D C; Kelly, S L; Stuckey, D C

    1998-07-24

    The diverse substrate specificity of the cytochrome P450 (P450; CYP) enzyme superfamily offers the opportunity to develop enzymatic systems for environmental detoxification and biotransformations of drugs, pesticides and fine chemicals. Here we report on the immobilisation of a fusion protein between plant cytochrome P450-71B1 (CYP71B1) and its electron donor, plant NADPH cytochrome P450 reductase using an oil-in-water macro-emulsion, termed polyaphron, which contains a proportion of internal organic phase (phi) greater than 0.74. Efficiency of P450 immobilisation was greater than 85%, and in this state enzymatic activity could be measured for more than 24 h at 15 degrees C. Chlortoluron, a recalcitrant herbicide pollutant in the environment, was shown to be metabolised, with the major metabolite (N-monodemethylated chlortoluron) being separated from the substrate due to partitioning into the aqueous phase. The turnovers exhibited superactivity compared with those obtained using free enzyme located in membranes prepared following heterologous expression in Saccharomyces cerevisiae and Escherichia coli. The potential to exploit the unprecedented catalytic diversity of the P450 superfamily in biocatalysis is discussed. PMID:9714539

  10. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  11. Assessing the Geometric Diversity of Cytochrome P450 Ligand Conformers by Hierarchical Clustering with a Stop Criterion

    E-print Network

    Paris-Sud XI, Université de

    ARTICLES Assessing the Geometric Diversity of Cytochrome P450 Ligand Conformers by Hierarchical applied on a database containing 70 ligands of the cytochrome CYP 3A4, showing that the structural is valid for all small molecules. 1. INTRODUCTION The cytochrome CYP 3A4 is a member of the P450

  12. Alteration of Cytochrome P-450 and Glutathione S-Transferase Activity in Normal and Malignant Human Stomach

    Microsoft Academic Search

    Hyung Sik Kim; Seung Jun Kwack; Byung Mu Lee

    2005-01-01

    Cytochrome P-450 and glutathione S-transferase (GST) activities were investigated in stomach tumor and tumor-adjacent tissues of patients (n = 211) with gastric adenocarcinoma, and in the stomach tissues of unaffected individuals (normal tissues, n = 113). A significant reduction in total cytochrome P-450 activity was observed in tumor and tumor-adjacent tissues versus normal stomach. In all cases, cytochrome P-450 activity

  13. Conformational heterogeneity of cytochrome P450 3A4 revealed by high pressure spectroscopy.

    PubMed

    Davydov, Dmitri R; Halpert, James R; Renaud, Jean-Paul; Hui Bon Hoa, Gaston

    2003-12-01

    We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids. PMID:14630029

  14. Xenobiotic-metabolizing cytochromes p450 in human white adipose tissue: expression and induction.

    PubMed

    Ellero, Sandrine; Chakhtoura, Ghassan; Barreau, Corinne; Langouët, Sophie; Benelli, Chantal; Penicaud, Luc; Beaune, Philippe; de Waziers, Isabelle

    2010-04-01

    Lipophilic pollutants can accumulate in human white adipose tissue (WAT), and the consequences of this accumulation are still poorly understood. Cytochromes P450 (P450s) have recently been found in rat WAT and shown to be inducible through mechanisms similar to those in the liver. The aim of our study was to describe the cytochrome P450 pattern and their induction mechanisms in human WAT. Explants of subcutaneous and visceral WAT and primary culture of subcutaneous adipocytes were used as WAT models, and liver biopsies and primary culture of hepatocytes were used as liver models to characterize P450 expression in both tissues. The WAT and liver models were then treated with typical P450 inducers (rifampicin, phenobarbital, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and lipophilic pollutants (lindane, prochloraz, and chlorpyrifos), and the effects on P450 expression were studied. P450 expression was considerably lower in WAT than in the liver, except for CYP1B1 and CYP2U1, which were the most highly expressed adipose P450s in all individuals. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and prochloraz induced CYP1A1 and CYP1B1 expression in both tissues. The aryl hydrocarbon receptor was also present in WAT. In contrast, neither phenobarbital nor rifampicin treatment induced CYP2 or CYP3 mRNA in WAT, and constitutive androstane receptor and pregnane X receptor were almost undetectable. These results suggest that the mechanisms by which P450s of family 1 are regulated in the liver are also functional in human WAT, but those regulating CYP2 and CYP3 expression are not. PMID:20035023

  15. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition

    SciTech Connect

    Ishihara, Yasuhiro [Department of Biology, Graduate School of Science, Osaka University, Osaka 532-8686 (Japan); Shiba, Dai [Department of Biology, Graduate School of Science, Osaka University, Osaka 532-8686 (Japan); Shimamoto, Norio [Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193 (Japan)]. E-mail: n-shimamoto@kph.bunri-u.ac.jp

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as {alpha}-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  16. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride.

    PubMed

    Manno, M; De Matteis, F; King, L J

    1988-05-15

    1. Stoichiometric losses of microsomal haem and cytochrome P-450 were observed when carbon tetrachloride (CCl4) was incubated anaerobically with rat liver microsomes using NADPH or sodium dithionite as a reducing agent. A rapid destruction of haem was also observed during the non-enzymatic reductive incubation of CCl4 with soluble haem preparations (methaemalbumin) in presence of sodium dithionite. The results indicate that haem is both the site and the target of the suicidal activation of CCl4 by cytochrome P-450. 2. When an additional, fluorimetric assay for haem determination was used, an equimolar loss of protoporphyrin IX fluorescence was also observed in both the enzymatic and non-enzymatic system, indicating that the haem moiety of cytochrome P-450 has undergone a structural change, involving either loss or labilization of the porphyrin tetrapyrrolic structure. In both systems the loss of porphyrin was prevented by carbon monoxide (CO). 3. A dichlorocarbene-cytochrome P-450 ligand complex is partially responsible for the difference spectrum obtained on addition of CCl4 to anaerobically reduced rat liver microsomes. A molar extinction coefficient for this complex has been calculated. The carbene trapping agent 2,3-dimethyl-2-butene (DMB) strongly inhibited (greater than 95%) the formation of this spectrum but did not modify the loss of haem in reduced CCl4-supplemented microsomal incubations. The results suggest that dichlorocarbene (:CCl2) is not significantly involved in CCl4-dependent haem destruction. 4. Pretreatment of rats with different microsomal enzyme inducers was responsible for similar but not identical patterns of :CCl2 and CO formation and haem loss during incubation of CCl4 with reduced microsomes. This indicates a critical role of CCl4 metabolism in the suicidal destruction of cytochrome P-450 haem and suggests that the apoprotein of cytochrome P-450 is capable of modulating not only the metabolism of CCl4 to :CCl2 but also the hydrolysis of :CCl2 to CO. 5. Inactivation of cytochrome P-450 by CCl4 with reduced microsomes from Aroclor-pretreated rats was saturable and followed pseudo first-order kinetics. This provides further evidence to conclude that CCl4 activation is a suicidal process where the reactive metabolite(s) formed bind to haem, we predict, in a one to one stoichiometry. 6. The partition ratio between loss of cytochrome P-450 haem and CCl4 metabolism by liver microsomes from Aroclor pretreated rats has been investigated using limiting concentrations of CCl4. It was calculated that approximately 26 molecules of CCl4 had to be metabolised to achieve the loss of one molecule of haem. PMID:3377806

  17. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    Microsoft Academic Search

    A. J. Marinello; S. K. Bansal; B. Paul; P. L. Koser; J. Love; R. F. Struck; H. L. Gurtoo

    1984-01-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of (chloroethyl-3H)cyclophosphamide (( chloroethyl-3H)CP) and (4-14C)cyclophosphamide (( 4-14C)CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of (14C)acrolein, a metabolite of (4-14C)CP, were also investigated. The metabolism of (chloroethyl-3H)CP and (4-14C)CP to polar metabolites was

  18. Regulation of cytochrome P-450j in rat hepatocytes in vivo and in primry monolayer culture

    SciTech Connect

    Hunt, C.M.; Molowa, D.T.; Thomas, P.E.; Levin, W.; Guzelian, P.S.; Wrighton, S.A.

    1987-05-01

    Cytochrome P-450j is of importance because it metabolically activates carcinogens and cytotoxic agents. They treated groups of 4 rats with 10% ethanol (EtOH) or 0.1% isoniazid (INH) and found that the amount of liver microsomal P-450j protein was increased 1.5- and 2.4 fold, respectively, over untreated control levels. When liver RNA samples were subjected to Northern and slot blot analyses, a 1.8 kb RNA species that hybridized with a cDNA probe which encodes for HLj (the human ortholog of P-450j) was increased 1.6- and 1.7-fold, respectively, in EtOH- and INH-treated rats as compared to controls. To investigate the P-450j induction mechanism, they isolated hepatocytes from untreated rats and found that when the cells were incubated on an extracellular biomatrix in serum free medium, the amount of P-450j immunoreactive protein decrease to < 50% of the level at time 0 after 72 h in culture and < 25% after 120h. Additions to the culture medium of pyrazole, hydrazine, or INH for 72 h increased P-450j immunoreactive protein up to 4.5-fold, 2.4-fold, and 1.6-fold, respectively, over control values. Moreover, P-450j mRNA decreased becoming undetectable within 24-48 h in culture. Additions of pyrazole but not other inducers increased P-450j mRNA to detectable levels. They conclude that at least some inducers of P-450j act directly on the hepatocyte by a mechanism(s) that involves both increases in P-450j mRNA and, apparently, other post-transcriptional events.

  19. Triphenyltin acetate-mediated in vitro inactivation of rat liver cytochrome P-450.

    PubMed

    Nebbia, C; Ceppa, L; Dacasto, M; Carletti, M

    1999-03-26

    The in vitro effects of the organotin (OT) compound triphenyltin acetate (TPTA) on cytochrome P-450 content and functions were investigated in liver microsomes from untreated, phenobarbital (PB)- or beta-naphthoflavone- (betaNAF) pretreated rats. At a concentration of 0.5 mM, TPTA caused a marked loss in the spectrally detectable content of cytochrome P-450 up to 27% of its original value, along with an increase in the inactive form cytochrome P-420. Both effects were most pronounced in betaNAF-treated microsomes, which showed a shift in the hemoprotein absorption maximum from 448 nm to 451 nm, but in all cases TPTA failed to affect either cytochrome b5 or total heme content, or to increase the production of malondialdehyde. These results suggest that lipid peroxidation of microsomal membranes or damage to the heme moiety should be excluded as contributing factors in the hemoprotein loss. TPTA also produced a concentration-related functional inactivation of cytochrome P-450 that was most pronounced in betaNAF-exposed microsomal preparations, as denoted by a striking reduction in the ethoxyresorufin O-deethylase (EROD) activity (IC50 = 0.088 mM). In contrast, the activities of cytochrome P-450-independent microsomal enzymes such as NADPH cytochrome c reductase and indophenyl acetate esterase (IPA-EST) were not markedly affected even by 0.5 mM TPTA (-30%). As assessed by Lineweaver-Burk plots, the mechanism of inhibition appeared to be noncompetitive for IPA-EST and of mixed type (competitive-noncompetitive) for EROD. Among sulfhydryl-containing compounds, dithiothreitol was considerably more effective than albumin and reduced glutathione in preventing cytochrome P-450 inactivation and even was able to partially reverse the hemoprotein damage when added after TPTA; glycerol, which is known to protect the hydrophobic environment of cytochrome P-450, was as effective as albumin. This study indicates that TPTA behaves as an almost specific and powerful in vitro inhibitor of cytochrome P-450-dependent monooxygenases, apparently through the interaction with critical sulfhydryl groups of the hemoprotein. PMID:10096365

  20. [Induction and measurement of cytochrome P450 in white rot fungi].

    PubMed

    Ning, Da-liang; Wang, Hui; Li, Dong

    2009-08-15

    The induction and measurement of cytochrome P450 in white rot fungus Phanerochaete chrysosporium were studied in this work. The spectrophotometric results demonstrated that n-hexane was able to induce the fungal P450 to high level, which facilitated isolation and measurement of microsomal P450. The highest concentration of microsomal P450 could reach 140-160 pmol/mg after 6-h-induction by addition of 2 microL/mL hexane each hour, and the concentration of hexane and incubation time had significant effect on the induction of P450s. After effective induction, the method for isolation and measurement of microsomal P450 with CO difference spectrum was studied and the optimized method was obtained as followed. High-speed disperser and glass homogenizer were used to disrupt cells, which obtained higher amount of microsomal P450 than those from cells disrupted by glass homogenizer, ultrasonicator and bead-beater respectively. To record CO difference spectrum,the sample was bubbled with CO for 40 s at a rate of 3 mL/min (300 microL sample), and the reference cuvette was bubbled with N2 to the same extent. Then, the reducer sodium dithionite was added to a concentration 0.4 mol/L. PMID:19799321

  1. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor.

    PubMed

    Tian, Zhenhua; Cheng, Qian; Yoshimoto, Francis K; Lei, Li; Lamb, David C; Guengerich, F Peter

    2013-02-15

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed 'bld' (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules. PMID:23357279

  2. Cytochrome P450-catalyzed brassinosteroid pathway activation through synthesis of castasterone and brassinolide in Phaseolus vulgaris.

    PubMed

    Kim, Tae-Wuk; Chang, Soo Chul; Lee, June Seung; Hwang, Baik; Takatsuto, Suguru; Yokota, Takao; Kim, Seong-Ki

    2004-03-01

    The last reaction in the biosynthesis of brassinolide has been examined enzymatically. A microsomal enzyme preparation from cultured cells of Phaseolus vulgaris catalyzed a conversion from castasterone to brassinolide, indicating that castasterone 6-oxidase (brassinolide synthase) is membrane associated. This enzyme preparation also catalyzed the conversions of 6-deoxocastasterone and typhasterol to castasterone which have been reported to be catalyzed by cytochrome P450s, CYP85A1 of tomato and CYP92A6 of pea, respectively. The activities of these enzymes require molecular oxygen as well as NADPH as a cofactor. The enzyme activities were strongly inhibited by carbon monoxide, an inhibitor of cytochrome P450, and this inhibition was recovered by blue light irradiation in the presence of oxygen. Commercial cytochrome P450 inhibitors including cytochrome c, SKF 525A, 1-aminobenzotriazole and ketoconazole also inhibited the enzyme activities. The present work presents unanimous enzymological evidence that cytochrome P450s are responsible for the synthesis of brassinolide from castasterone as well as of castasterone from typhasterol and 6-deoxocastasterone, which have been deemed activation steps of BRs. PMID:15016564

  3. Evidence that the androgen receptor mediates sexual differentiation of mouse renal cytochrome P450 expression.

    PubMed Central

    Henderson, C J; Wolf, C R

    1991-01-01

    We have previously shown that sexual dimorphism in the expression of mouse renal cytochrome P450s is mediated by androgens, probably at a transcriptional level [Henderson, Scott, Yang & Wolf (1990), Biochem. J. 266, 675-681]. In the present study we show that this effect is already observed for most isoenzymes at only 2-3 weeks of age, as is the ability to induce or suppress expression with exogenous testosterone. The testosterone responsiveness did, however, exhibit age- as well as dose-dependency. Intriguingly, the effects of androgen took up to 8 days to become maximized, and the dose of testosterone needed to convert the female into the male phenotype was much higher than the circulating levels normally found in males. Studies using testicular feminized (Tfm) male mice, which carry an androgen receptor defect, showed them to have the female kidney cytochrome P450 phenotype, and these animals were not responsive to testosterone treatment. These data demonstrate the involvement of the androgen receptor in the regulation process. Taken together, our results indicate that the androgen receptor does not interact directly with the P450 genes, but initiates a cascade of events leading to the changes in cytochrome P450 gene expression. Significant differences were observed in the degree of sexual dimorphism in kidney P450 expression in other mammalian species. The significance of these findings in relation to the observed sexual dimorphism in other species is discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1898342

  4. Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum.

    PubMed

    Park, Ji Won; Reed, James R; Brignac-Huber, Lauren M; Backes, Wayne L

    2014-12-01

    Cytochrome P450 (P450) function is dependent on the ability of these enzymes to successfully interact with their redox partners, NADPH-cytochrome P450 reductase (CPR) and cytochrome b5, in the endoplasmic reticulum (ER). Because the ER is heterogeneous in lipid composition, membrane microdomains with different characteristics are formed. Ordered microdomains are more tightly packed, and enriched in saturated fatty acids, sphingomyelin and cholesterol, whereas disordered regions contain higher levels of unsaturated fatty acids. The goal of the present study was to determine whether the P450 system proteins localize to different regions of the ER. The localization of CYP1A2, CYP2B4 and CYP2E1 within the ER was determined by partial membrane solubilization with Brij 98, centrifugation on a discontinuous sucrose gradient and immune blotting of the gradient fractions to identify ordered and disordered microdomains. CYP1A2 resided almost entirely in the ordered regions of the ER with CPR also localized predominantly to this region. CYP2B4 was equally distributed between the ordered and disordered domains. In contrast, CYP2E1 localized to the disordered membrane regions. Removal of cholesterol (an important constituent of ordered domains) led to the relocation of CYP1A2, CYP2B4 and CPR to the disordered regions. Interestingly, CYP1A1 and CYP1A2 localized to different membrane microdomains, despite their high degree of sequence similarity. These data demonstrate that P450 system enzymes are organized in specific membrane regions, and their localization can be affected by depletion of membrane cholesterol. The differential localization of different P450 in specific membrane regions may provide a novel mechanism for modulating P450 function. PMID:25236845

  5. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    SciTech Connect

    Pechurskaya, Tatiana A. [Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141 (Belarus); Harnastai, Ivan N. [Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141 (Belarus); Grabovec, Irina P. [Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141 (Belarus); Gilep, Andrei A. [Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141 (Belarus); Usanov, Sergey A. [Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141 (Belarus)]. E-mail: usanov@iboch.bas-net.by

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.

  6. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  7. A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes.

    PubMed

    Miyakawa, Kazuhisa; Albee, Ryan; Letzig, Lynda G; Lehner, Andreas F; Scott, Michael A; Buchweitz, John P; James, Laura P; Ganey, Patricia E; Roth, Robert A

    2015-08-01

    Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (?5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ? 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies. PMID:26065700

  8. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  9. Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways1[C][W][OA

    PubMed Central

    Pan, Yinghong; Michael, Todd P.; Hudson, Matthew E.; Kay, Steve A.; Chory, Joanne; Schuler, Mary A.

    2009-01-01

    Cytochrome P450 monooxygenases (P450s) play important roles in the synthesis of diverse secondary compounds in Arabidopsis (Arabidopsis thaliana). Comparison of four data sets analyzing seedlings harvested over a 2-d period of constant conditions after growth with varying photoperiods and thermocycles recorded a total of 98 P450 loci as circadian regulated for at least one of the four conditions. Here, we further describe the circadian-regulated pathways using, as reporters, individual P450 loci that are likely to be rate limiting in secondary metabolic pathways. Reverse transcription-polymerase chain reaction gel blot analyses have confirmed circadian regulation of P450s in phenylpropanoid, carotenoid, oxylipin, glucosinolate, and brassinosteroid biosyntheses and have shown that both P450 and non-P450 genes in the many branches of the phenylpropanoid pathway have similar circadian patterns of expression. In silico analyses of the subsets of coregulated promoters have identified overrepresented promoter elements in various biosynthetic pathway genes, including MYB and MYB4 elements that are significantly more abundant in promoters for the core and lignin sections of phenylpropanoid metabolism. Interactions with these elements important for circadian regulation do not involve the MYB transcription factor PAP1, as previously proposed, since the expression patterns of circadian-regulated P450s are the same in pap1-D mutant seedlings as in wild-type seedlings. Further analysis of circadian-regulated promoters in other biochemical pathways provides us with the opportunity to identify novel promoter motifs that might be important in P450 circadian regulation. PMID:19386812

  10. TRANSFECTION OF CYTOCHROME P450 CDNAS INTO MAMMALIAN CELLS USED IN MUTATION AND TRANSFORMATION ASSAYS

    EPA Science Inventory

    The present work demonstrates that cDNAs coding for cytochrome P450 enzymes can be tranfected into mammalian cells and expressed, n the present studies, two different cell systems were used for transfection: 0T1/2 cells which can be used to study initiation and promotion (Diamond...

  11. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  12. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  13. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  14. Microfluidic-based measurements of cytochrome P450 enzyme activity of primary mammalian hepatocytes

    E-print Network

    Microfluidic-based measurements of cytochrome P450 enzyme activity of primary mammalian hepatocytes monitoring of the 7-ethoxyresorufin O-dealkylation (EROD) activity of primary rat hepatocytes by measuring concentration up to 30 mM and fluorescent intensity over the chip's circular chamber area. The EROD activity

  15. Opioid regimens in patients with chronic pain with multiple cytochrome P450 defects.

    PubMed

    Tennant, Forest

    2015-01-01

    There is a subgroup of patients with chronic pain who have multiple cytochrome P450 enzyme defects. These patients tend to use opioids that are not metabolized by the CYP450 system and most apparently require a higher than average dosage. A significant number require nonoral administration. PMID:25985808

  16. A Common Genetic Basis in Sweet Corn Inbred Cr1 for Cross Sensitivity to Multiple Cytochrome P450-Metabolized Herbicides

    E-print Network

    Sims, Gerald K.

    A Common Genetic Basis in Sweet Corn Inbred Cr1 for Cross Sensitivity to Multiple Cytochrome P450 sensitivity to multiple cytochrome P450 enzyme-metabolized herbicides. Nomenclature: Bentazon; carfentrazone herbicides from different chemical families with different modes of action. An association between

  17. The human cytochrome P450 2A family: Comparisons and identification of amino acids essential for substrate recognition

    E-print Network

    DeVore, Natasha M.

    2008-01-01

    The goal of this research was to identify the differential structure-activity relationships between cytochromes P450 (CYP) 2A13 and 2A6 and their substrates. Cytochromes P450 2A13 and 2A6 are very closely related, having 94% amino acid sequence...

  18. Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism,

    E-print Network

    Steinbach, Joe Henry

    Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition), catalyzed in vitro by intestinal, hepatic, and expressed cytochrome P450 (CYP) 3A4. However, the role of CYP-labeled and IV unlabeled methadone after pretreatment with rifampin (INN, rifampicin) (hepatic/intestinal CYP3A

  19. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONANZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-Cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14a-demethylase. esistance is restored through complementation by the plasmid-born...

  20. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  1. Inhibition of cytochrome P450 2C9 expression and activity in vitro by allyl isothiocyanate.

    PubMed

    Lim, Yun-Ping; Chen, Wei-Cheng; Cheng, Ching-Hao; Ma, Wei-Chih; Lin, Yu-Hsien; Chen, Cing-Yu; Hung, Dong-Zong; Chen, Jih-Jung; Yokoi, Tsuyoshi; Nakajima, Miki; Chen, Chao-Jung

    2014-08-01

    The growing interest in the use of natural herbal products and dietary supplements to treat and prevent diseases raises the question of medicinal drug safety. Allyl isothiocyanate, a hydrolysis product of a glucosinolate, sinigrin, has multiple beneficial properties, and based on this fact, allyl isothiocyanate-containing dietary supplements have been developed. To date, no studies of the effects of this compound on the cytochrome P450 2C9 have been reported. In this study, we found that allyl isothiocyanate reduced catalytic activity, messenger ribonucleic acid, and protein expression of cytochrome P450 2C9 in HepaRG cells. An investigation of the transcriptional activity of the pregnane X receptor and the constitutive androstane receptor revealed that allyl isothiocyanate disrupted the transcriptional coregulation effects of the pregnane X receptor/constitutive androstane receptor with several important coregulators and interfered with the assembly of transcriptional complexes of the cytochrome P450 2C9 pregnane X receptor/constitutive androstane receptor-response element. The decrease of cytochrome P450 2C9 expression and activity mediated by allyl isothiocyanate suggested that this agent could alter the metabolism of drugs metabolized by cytochrome P450 2C9. This may cause food/dietary supplement-drug interactions or alter the therapeutic effects, and even the toxicity of drugs coadministered with allyl isothiocyanate. Since the consumption of allyl isothiocyanate-containing food/dietary supplements continues to increase, it is important to predict and ultimately avoid interactions with concomitant drugs. It is required that these possible pharmacokinetic interactions be characterized and the recommendations available to patients and healthcare professionals be improved. PMID:25197954

  2. Involvement of cytochrome P450 in host-plant utilization by Sonoran Desert Drosophila.

    PubMed

    Frank, M R; Fogleman, J C

    1992-12-15

    The four Drosophila species endemic to the Sonoran Desert (Drosophila mettleri, Drosophila mojavensis, Drosophila nigrospiracula, and Drosophila pachea) utilize necrotic cactus tissue or soil soaked by rot exudate as breeding substrates. Each Drosophila species uses a different cactus species as its primary host. D. pachea is limited to senita cactus by a biochemical dependency on unusual sterols available only in that cactus. For the other Drosophila species, no such chemical dependencies exist to explain the relationships with their primary host plants. Each cactus species has a different array of allelochemicals that have detrimental effects on non-resident fly species. We have hypothesized that the desert fly-cactus associations are due, in part, to differences between the fly species in their allelochemical detoxication enzymes, the cytochrome P450 system. To test whether P450s are involved in the detoxication of cactus allelochemicals, several experiments were done. (i) The effect of a specific P450 inhibitor, piperonyl butoxide, on larval survival through eclosion on each cactus substrate was investigated. (ii) In vitro metabolism of cactus alkaloids was determined for each Drosophila species. The effects of specific inducers and inhibitors were included in these experiments. (iii) The basal and induced content of cytochrome P450 in each species was determined. The results support the hypothesis that P450 enzymes are involved in host-plant utilization by these Sonoran Desert Drosophila species. PMID:1465429

  3. Involvement of cytochrome P450 in host-plant utilization by Sonoran Desert Drosophila.

    PubMed Central

    Frank, M R; Fogleman, J C

    1992-01-01

    The four Drosophila species endemic to the Sonoran Desert (Drosophila mettleri, Drosophila mojavensis, Drosophila nigrospiracula, and Drosophila pachea) utilize necrotic cactus tissue or soil soaked by rot exudate as breeding substrates. Each Drosophila species uses a different cactus species as its primary host. D. pachea is limited to senita cactus by a biochemical dependency on unusual sterols available only in that cactus. For the other Drosophila species, no such chemical dependencies exist to explain the relationships with their primary host plants. Each cactus species has a different array of allelochemicals that have detrimental effects on non-resident fly species. We have hypothesized that the desert fly-cactus associations are due, in part, to differences between the fly species in their allelochemical detoxication enzymes, the cytochrome P450 system. To test whether P450s are involved in the detoxication of cactus allelochemicals, several experiments were done. (i) The effect of a specific P450 inhibitor, piperonyl butoxide, on larval survival through eclosion on each cactus substrate was investigated. (ii) In vitro metabolism of cactus alkaloids was determined for each Drosophila species. The effects of specific inducers and inhibitors were included in these experiments. (iii) The basal and induced content of cytochrome P450 in each species was determined. The results support the hypothesis that P450 enzymes are involved in host-plant utilization by these Sonoran Desert Drosophila species. Images PMID:1465429

  4. Crystal Structure of Human Cytochrome P450 2D6 with Prinomastat Bound*

    PubMed Central

    Wang, An; Savas, Uzen; Hsu, Mei-Hui; Stout, C. David; Johnson, Eric F.

    2012-01-01

    Human cytochrome P450 2D6 contributes to the metabolism of >15% of drugs used in clinical practice. This study determined the structure of P450 2D6 complexed with a substrate and potent inhibitor, prinomastat, to 2.85 Å resolution by x-ray crystallography. Prinomastat binding is well defined by electron density maps with its pyridyl nitrogen bound to the heme iron. The structure of ligand-bound P450 2D6 differs significantly from the ligand-free structure reported for the P450 2D6 Met-374 variant (Protein Data Bank code 2F9Q). Superposition of the structures reveals significant differences for ? sheet 1, helices A, F, F?, G?, G, and H as well as the helix B-C loop. The structure of the ligand complex exhibits a closed active site cavity that conforms closely to the shape of prinomastat. The closure of the open cavity seen for the 2F9Q structure reflects a change in the direction and pitch of helix F and introduction of a turn at Gly-218, which is followed by a well defined helix F? that was not observed in the 2F9Q structure. These differences reflect considerable structural flexibility that is likely to contribute to the catalytic versatility of P450 2D6, and this new structure provides an alternative model for in silico studies of substrate interactions with P450 2D6. PMID:22308038

  5. Characterization of a novel ACTH inducible cytochrome P-450 from rat adrenal microsomes

    SciTech Connect

    Otto, S.A.; Marcus, C.M.; Jefcoate, C.R. (Univ. of Wisconsin, Madison (United States))

    1990-02-26

    In rat adrenal cortex 7,12 dimethylbenz(a)anthracene (DMBA) causes massive necrosis that is dependent of ACTH. This is related to an ACTH inducible adrenal microsomal cytochrome P-450 that catalyzes hydrocarbon metabolism. Rat adrenal microsomes, catalyze the formation of DMBA 3,4 diol a precursor of the bay region reactive electrophile DMBA 3,4 diol 1,2 oxide. Both DMBA metabolism and a 57Kd protein have disappeared from microsomes 30 days after hypophysectomy, but are restored by 14 days treatment with ACTH. Dexamethasone which fully suppresses ACTH only partially suppresses this activity. The 57 Kd protein was partially purified to a single major band in one step from solubilized microsomes by h.p.l.c. chromatography using detergent elution from a novel column that mimics phospholipid membranes. This preparation exhibits a specific content of 2 nm P-450/mg protein and a turnover number of 1,500pm DMBA/nm P-450/minutes. A polyclonal antisera raised against this preparation provides a single western blot corresponding to the 57Kd ACTH sensitive protein. This antibody did not blot microsomal P-450 c21, nor did selected antibodies from known families react with this adrenal P-450 protein, suggesting substantial sequence differences from known P-450's.

  6. Oxidation of Endogenous N-Arachidonoylserotonin by Human Cytochrome P450 2U1*

    PubMed Central

    Siller, Michal; Goyal, Sandeep; Yoshimoto, Francis K.; Xiao, Yi; Wei, Shouzou; Guengerich, F. Peter

    2014-01-01

    Cytochrome P450 (P450) 2U1 has been shown to be expressed, at the mRNA level, in human thymus, brain, and several other tissues. Recombinant P450 2U1 was purified and used as a reagent in a metabolomic search for substrates in bovine brain. In addition to fatty acid oxidation reactions, an oxidation of endogenous N-arachidonoylserotonin was characterized. Subsequent NMR and mass spectrometry and chemical synthesis showed that the main product was the result of C-2 oxidation of the indole ring, in contrast to other human P450s that generated different products. N-Arachidonoylserotonin, first synthesized chemically and described as an inhibitor of fatty acid amide hydrolase, had previously been found in porcine and mouse intestine; we demonstrated its presence in bovine and human brain samples. The product (2-oxo) was 4-fold less active than N-arachidonoylserotonin in inhibiting fatty acid amide hydrolase. The rate of oxidation of N-arachidonoylserotonin was similar to that of arachidonic acid, one of the previously identified fatty acid substrates of P450 2U1. The demonstration of the oxidation of N-arachidonoylserotonin by P450 2U1 suggests a possible role in human brain and possibly other sites. PMID:24563460

  7. Conformational Plasticity and Structure/Function Relationships in Cytochromes P450

    PubMed Central

    Kazanis, Sophia; Dang, Marina

    2010-01-01

    Abstract The cytochrome P450s are a superfamily of enzymes that are found in all kingdoms of living organisms, and typically catalyze the oxidative addition of atomic oxygen to an unactivated C-C or C-H bond. Over 8000 nonredundant sequences of putative and confirmed P450 enzymes have been identified, but three-dimensional structures have been determined for only a small fraction of these. While all P450 enzymes for which structures have been determined share a common global fold, the flexibility and modularity of structure around the active site account for the ability of P450 enzymes to accommodate a vast number of structurally dissimilar substrates and support a wide range of selective oxidations. In this review, known P450 structures are compared, and some structural criteria for prediction of substrate selectivity and reaction type are suggested. The importance of dynamic processes such as redox-dependent and effector-induced conformational changes in determining catalytic competence and regio- and stereoselectivity is discussed, and noncrystallographic methods for characterizing P450 structures and dynamics, in particular, mass spectrometry and nuclear magnetic resonance spectroscopy are reviewed. Antioxid. Redox Signal. 13, 1273–1296. PMID:20446763

  8. Neuronal cytochrome P450 activity and opioid analgesia: relevant sites and mechanisms.

    PubMed

    Hough, Lindsay B; Nalwalk, Julia W; Yang, Weizhu; Ding, Xinxin

    2015-08-01

    Recent studies suggest a functional role for neuronal cytochrome P450 monooxygenase (P450) activity in opioid analgesia. To characterize the relevant receptors, brain areas, and circuits, detailed in vitro and in vivo studies were performed with the highly selective ? opioid receptor agonist DAMGO in neuronal P450-deficient mutant (Null) and control mice. Homogenates of brain regions and spinal cord showed no differences in DAMGO-induced activation of [(35)S]- GTP?S binding between Null and control mice, indicating no genotype differences in µ opioid receptor signaling, receptor affinities or receptor densities. Intracerebroventricular (icv) DAMGO produced robust, near-maximal, analgesic responses in control mice which were attenuated by 50% in Null mice, confirming a role for µ opioid receptors in activating P450-associated responses. Intra-periaqueductal gray (PAG) and intra-rostral ventromedial medulla (RVM) injections of DAMGO revealed deficits in Null (vs. control) analgesic responses, yet no such genotype differences were observed after intrathecal DAMGO administration. Taken with earlier published findings, the present results suggest that activation of µ opioid receptors in both the PAG and in the RVM relieves pain by mechanisms which include nerve-terminal P450 enzymes within inhibitory PAG-RVM projections. Spinal opioid analgesia, however, does not seem to require such P450 enzyme activity. PMID:25935691

  9. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  10. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 GENE FAMILY

    EPA Science Inventory

    The P450ALK gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. tructural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures a...

  11. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1.

    PubMed Central

    Hayes, C L; Spink, D C; Spink, B C; Cao, J Q; Walker, N J; Sutter, T R

    1996-01-01

    The 4-hydroxy metabolite of 17 beta-estradiol (E2) has been implicated in the carcinogenicity of this hormone. Previous studies showed that aryl hydrocarbon-receptor agonists induced a cytochrome P450 that catalyzed the 4-hydroxylation of E2. This activity was associated with human P450 1B1. To determine the relationship of the human P450 1B1 gene product and E2 4-hydroxylation, the protein was expressed in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the 4- and 2-hydroxylation of E2 with Km values of 0.71 and 0.78 microM and turnover numbers of 1.39 and 0.27 nmol product min-1.nmol P450-1, respectively. Treatment of MCF-7 human breast cancer cells with the aryl hydrocarbon-receptor ligand indolo[3,2-b]carbazole resulted in a concentration-dependent increase in P450 1B1 and P450 1A1 mRNA levels, and caused increased rates of 2-, 4-, 6 alpha-, and 15 alpha-hydroxylation of E2. At an E2 concentration of 10 nM, the increased rates of 2- and 4-hydroxylation were approximately equal, emphasizing the significance of the low Km P450 1B1-component of E2 metabolism. These studies demonstrate that human P450 1B1 is a catalytically efficient E2 4-hydroxylase that is likely to participate in endocrine regulation and the toxicity of estrogens. Images Fig. 1 PMID:8790407

  12. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1.

    PubMed

    Hayes, C L; Spink, D C; Spink, B C; Cao, J Q; Walker, N J; Sutter, T R

    1996-09-01

    The 4-hydroxy metabolite of 17 beta-estradiol (E2) has been implicated in the carcinogenicity of this hormone. Previous studies showed that aryl hydrocarbon-receptor agonists induced a cytochrome P450 that catalyzed the 4-hydroxylation of E2. This activity was associated with human P450 1B1. To determine the relationship of the human P450 1B1 gene product and E2 4-hydroxylation, the protein was expressed in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the 4- and 2-hydroxylation of E2 with Km values of 0.71 and 0.78 microM and turnover numbers of 1.39 and 0.27 nmol product min-1.nmol P450-1, respectively. Treatment of MCF-7 human breast cancer cells with the aryl hydrocarbon-receptor ligand indolo[3,2-b]carbazole resulted in a concentration-dependent increase in P450 1B1 and P450 1A1 mRNA levels, and caused increased rates of 2-, 4-, 6 alpha-, and 15 alpha-hydroxylation of E2. At an E2 concentration of 10 nM, the increased rates of 2- and 4-hydroxylation were approximately equal, emphasizing the significance of the low Km P450 1B1-component of E2 metabolism. These studies demonstrate that human P450 1B1 is a catalytically efficient E2 4-hydroxylase that is likely to participate in endocrine regulation and the toxicity of estrogens. PMID:8790407

  13. Two mutant alleles of the human cytochrome P-450dbl gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs

    SciTech Connect

    Skoda, R.C.; Gonzalez, F.L.; Demierre, A.; Meyer, R.A. (Biocenter of the Univ. of Basel (Switzerland))

    1988-07-01

    The debrisoquine polymorphism is a clinically important genetic defect of drug metabolism affecting 5-10% of individuals in Caucasian populations. It is inherited as an autosomal recessive trait. A full-length cDNA for human cytochrome P-450db1, the deficient enzyme (also designated P450IID1 for P450 family II subfamily D isozyme 1), has recently been cloned. Leukocyte DNA from extensive metabolizers (EMs) or poor metabolizers (PMs) of debrisoquine was examined by Southern analysis. Two polymorphic restriction fragments were associated with the PM phenotype when DNAs from 24 unrelated PM and 29 unrelated EM individuals were probed with P-450db1 cDNA after digestion with Xba I restriction endonuclease and Southern blotting. Seventy-five percent of PMs had either the 44-kb or the 11.5-kb fragment or both. Segregation of these restriction fragment length polymorphisms in the families of six PM probands demonstrated that each of the two fragments is allelic with the 29-kb fragment present in all EM individuals and suggests that they identify two independent mutated alleles of the P-450db1 gene (designated P450C2D1). The Xba I 44-kb fragment and 11.5-kb fragment were in linkage disequilibrium with restriction fragment length polymorphisms generated by four and five additional restriction endonucleases, respectively, which can be used to identify the same mutant alleles for the P-450db1 gene.

  14. Hydroxylation of oleanolic acid to queretaroic acid by cytochrome P450 from Nonomuraea recticatena.

    PubMed

    Fujii, Yoshikazu; Hirosue, Shinji; Fujii, Tadashi; Matsumoto, Naoki; Agematu, Hitosi; Arisawa, Akira

    2006-09-01

    A gene for cytochrome P450 (moxA) from Nonomuraea recticatena, coexpressed with camAB for pseudomonad redox partners in Escherichia coli, hydroxylated oleanolic acid to produce queretaroic acid. When we used the P450-induced whole-cell as a catalyst, only a small amount of queretaroic acid was produced, probably due to poor permeability of oleanolic acid into the E. coli cell. In an alternative approach with the cell-free reaction system, the conversion ratio increased up to 17%. PMID:16960364

  15. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi [Biometal Science Laboratory, RIKEN Harima Institute/Spring8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  16. Cytochrome P450 monooxygenases in the cotton bollworm (Lepidoptera: Noctuidae): tissue difference and induction.

    PubMed

    Qiu, Xinghui; Li, Wei; Tian, Yu; Leng, Xinfu

    2003-08-01

    Differences in the microsomal P450 monooxygenase system and its inducibility by pentamethylbenzene (PMB) and naphathalene (NA) were investigated in midgut and fatbody tissues of the cotton bollworm, Helicoverpa armigera (Boddie), larvae. Orthogonal array design was used to establish the optimal conditions for measuring Aldrin epoxidation (AE). The optima for AE were similar for the midgut and the fatbody at a temperature of 30 degrees C, pH 7.4, and a time of 10 min. In comparison to fatbody, the midgut had higher levels of total cytochrome P450s, p-nitroanisole O-demethylation (ODM) and AE. In vivo administration of 0.2% PMB or 0.2% NA resulted in higher microsomal protein content and levels of total cytochrome P450 as well as the two examined monooxygenase activities. Total cytochrome P450 and ODM activity were induced to a greater degree in the fatbody. In the midgut, PMB was significantly more effective on ODM than NA. Differences existed in SDS-PAGE profiles between the midgut and the fatbody. The induction of the midgut with PMB and of the fatbody with NA and PMB resulted in marked intensification of the protein bands with molecular masses of 59,100, 53,400, 50,400 Da. PMID:14503602

  17. Assessing orally bioavailable commercial silver nanoparticle product on human cytochrome P450 enzyme activity.

    PubMed

    Munger, Mark A; Hadlock, Greg; Stoddard, Greg; Slawson, Matthew H; Wilkins, Diana G; Cox, Nicholas; Rollins, Doug

    2015-05-01

    Nanotechnology produces a wide range of medicinal compounds, including nanoparticulate silver, which are increasingly introduced in various forms for consumer use. As with all medicinal compounds, potential drug interactions are an important consideration for ingested silver nanoparticles. Nanoparticulate silver-drug interactions may be mediated through induced oxidative stress in liver tissue where the majority of systemically bioavailable silver nanoparticles is found. To investigate whether an orally ingested commercially available colloidal silver nanoproduct produces pharmacokinetic interference on select cytochrome P450 enzymes, a prospective, single-blind, controlled in vivo human study using simultaneous administration of standardized probes for P450 enzyme classes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 was conducted. Oral ingestion of a commercial colloidal silver nanoproduct produces detectable silver in human serum after 14 days of dosing. This silver, however, elicits no demonstrable clinically significant changes in metabolic, hematologic, urinary, physical findings or cytochrome P450 enzyme inhibition or induction activity. Given their increasingly broad, diverse human exposures, future characterization of human cytochrome P450 enzyme activity for other systemically bioavailable nanotechnology products are warranted. PMID:25137296

  18. Structural and kinetic basis of steroid 17?,20-lyase activity in teleost fish cytochrome P450 17A1 and its absence in cytochrome P450 17A2.

    PubMed

    Pallan, Pradeep S; Nagy, Leslie D; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M; Azumaya, Caleigh M; Wawrzak, Zdzislaw; Waterman, Michael R; Guengerich, F Peter; Egli, Martin

    2015-02-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17?-hydroxylation and a subsequent 17?,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17?-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17?-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17?-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116-119) showed only a few differences near the active site, despite only ?50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  19. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  20. UNDERSTANDING THE MECHANISM OF CYTOCHROME P450 3A4: RECENT ADVANCES AND REMAINING PROBLEMS

    PubMed Central

    Sevrioukova, Irina F.; Poulos, Thomas L.

    2013-01-01

    Cytochromes P450 (CYPs) represent a diverse group of heme-thiolate proteins found in almost all organisms. CYPs share a common protein fold but differ in substrate selectivity and catalyze a wide variety of monooxygenation reactions via activation of molecular oxygen. Among 57 human P450s, the 3A4 isoform (CYP3A4) is the most abundant and the most important because it metabolizes the majority of the administered drugs. A remarkable feature of CYP3A4 is its extreme promiscuity in substrate specificity and cooperative substrate binding, which often leads to undesirable drug-drug interactions and toxic side effects. Owing to its importance in drug development and therapy, CYP3A4 has been the most extensively studied mammalian P450. In this review we provide an overview on recent progress and remaining problems in the CYP3A4 research. PMID:23018626

  1. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  2. In vitro activity of uva-ursi against cytochrome P450 isoenzymes and P-glycoprotein.

    PubMed

    Chauhan, B; Yu, C; Krantis, A; Scott, I; Arnason, J T; Marles, R J; Foster, B C

    2007-11-01

    Some natural health products (NHPs) affect drug metabolism enzymes and transport proteins, potentially affecting the safety and efficacy of the drug or other NHPs. This study was undertaken to characterize the effect of uva-ursi (Arctostaphylos uva-ursi) on cytochrome P450 isozyme (3A4, 3A5, 3A7, 2C19, and 19)-mediated metabolism and P-glycoprotein (P-gp) transport. Three bulk and 2 capsulated uva-ursi samples were obtained from commercial outlets. The capsules were batched, and herbal samples were ground to a common consistency. Aqueous and methanol extracts were freshly prepared. Cytochrome P450 isozyme-mediated metabolism was determined by using in vitro bioassays. P-gp transport function was determined by using a rhodamine 123 (Rh123) uptake test in human (THP-1) monocytes and human Caco-2 cells. All products were analyzed by HPLC for arbutin, gallic acid, myricitrin, and isoquercetin. A large variation was observed in the biomarkers found between the bulk and capsulated samples. Our data indicate that both the aqueous and methanol extracts of all 5 uva-ursi products showed high cytochrome P450 isozyme inhibition, with the exception of the methanol extracts against cytochromes P3A4 and P19, which had low to moderate activity. The aqueous extracts of uva-ursi showed an inhibitory effect on Rh123 efflux by P-gp at 1 h and an inductive effect at 18 h for both cell lines. Our results show that the uva-ursi herbal products tested here have pharmacological properties, including the potential capacity to affect drug safety and efficacy. Further studies are warranted against a wider range of cytochrome P450 isozymes and to determine whether these effects are clinically significant. PMID:18066112

  3. Molecular cloning and xenobiotic induction of seven novel cytochrome P450 monooxygenases in Aedes albopictus.

    PubMed

    Chan, Hiang Hao; Wajidi, Mustafa Fadzil Farid; Zairi, Jaal

    2014-01-01

    Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450. PMID:25399430

  4. Novel approaches to the use of cytochrome P450 activities in wildlife toxicity studies

    SciTech Connect

    VandenBerg, M. [Utrecht Univ. (Netherlands). Research Inst. of Toxicology; Bosveld, A.T.C.

    1995-12-31

    Many wildlife toxicity studies, e.g. with avian species, use cytochrome P450 activities as markers for biological activities of environmental contaminants. It has been established that induction of CYP1A1 correlates with Ah-receptor mediated toxicity of dioxin-like compounds in many species. In addition, CYP1A1 plays a significant role in bioactivation of polycyclic aromatics. So far very few studies focused on the natural function of P450 isoenzymes in wildlife species. Besides classical hepatic CYP1A(1) associated activities, like EROD and AHH, several new techniques are available to study the activities of various CYP isoenzymes. Caffeine N-demethylation, testosterone and 17ss-estradiol hydroxylation patterns can provide new insights in the physiological function of P450 isoenzymes and the induction of the basal activities by chemicals. So far little interest was given to processes which occur after the DNA-receptor binding, e.g. changes in steroid hormone metabolism and pathways in environmental toxicology. This in spite of the fact that very subtle changes in steroid hormone levels may have significant physiological implications. This presentation will focus on some P450 activities, besides CYP1A(1), which might be important for development and reproduction. Some experimental approaches, limitations and techniques will be discussed which could lead to elucidation of the possible endocrine function of P450s.

  5. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 ?mol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  6. [Factors determining the selectivity of cytochrome P-450-catalyzed alkane oxidation].

    PubMed

    Karasevich, E I; Khenkin, A M

    1986-09-01

    Hexane oxidation by various liver microsomes fractions of noninduced and phenobarbitol- or methylcholantrene-induced rabbits (MR, MRPB, MRMC) has been studied. The relative reactivity of the C-H bond at the 1st, 2nd and 3rd carbon atoms has been shown to depend on the fraction nature and on the oxygen-activating system (NADPH/O2 or PhIO). The C3/C2 hexanol ratio is determined by steric factors of the hexane oxidation reaction. According to this parameter, the forms of cytochrome P-450 can be arranged in the following order: MRMC less than MRPB less than MR. The size of hydrophobic cavities connecting the substrate seems to decrease in the same order. The data obtained suggest that microsomes contain a cytochrome P-450 fraction which oxidizes alkanes only at the terminal methyl group. The regioselectivity of hexane oxidation in the P-450-NADPH-O2 and P-450-PhIO systems has been compared. These systems have been shown to generate different particles responsible for hydroxylation. PMID:3768443

  7. The role of cytochrome P450s in polycyclic aromatic hydrocarbon carcinogenesis

    SciTech Connect

    Polzer, R.J.

    1993-01-01

    Metabolic activation of polycyclic aromatic hydrocarbons (PAH) to carcinogenic diol epoxides has been determined to be a critical step in tumor initiation by PAH. The key enzyme(s) involved in the metabolic activation are members of the cytochrome P450 superfamily. Two distinct isoforms of cytochrome P450 have been determined to be induced upon treatment of cells in culture with benzo(a)pyrene (B(a)P) by use of Immobilized Artificial Membrane Column High Performance Liquid Chromatography, Western blotting, Northern blotting, and in vitro metabolism studies. Cytochrome P4501A is involved in the metabolism of PAH in the human hepatoma cell line, HepG2; the human mammary carcinoma cell line, MCF-7; and the mouse hepatoma cell line; Hepa-1; whereas cytochrome P450EF is involved in this metabolism in both secondary hamster and mouse embryo cell cultures. Induction of cytochrome P450s by B(a)P generally leads to an increased metabolism of tritiated B(a)P, DMBA, and DB(a,1)P to water-soluble metabolities and to the formation of PAH-DNA adducts, suggesting that induction by B(a)P alters the metabolism of PAH to metabolic activation. DMBA induction of cytochrome P450s leads to various changes in metabolism and PAH-DNA binding and these changes were both cell and PAH specific. These results suggest that DMBA can shift metabolism of certain PAH towards metabolic activation in some cells, while in other cells DMBA or one of its metabolities can compete with other PAH for metabolic activation. UDP-glucuronosyl-transferase and epoxide hydrase do not have significant roles in detoxifying proximate or ultimate carcinogenic PAH metabolites, however, sulfotransferase and glutathione-S-transferase do detoxify proximate and ultimate carcinogenic metabolities in the HepG2 cell line. Finally, attempts to inhibit B(a)P metabolism and DNA-binding in intact cells in culture through conjugation of inhibitory cytochrome P4501A1 antibodies to insulin or folic acid were examined.

  8. BM3h-8C8 Mutant of the heme domain of the bacterial cytochrome P450-BM3 (Bacillus megaterium)

    E-print Network

    Levin, Judith G.

    BM3h-8C8 Mutant of the heme domain of the bacterial cytochrome P450-BM3 (Bacillus megaterium) [BM3h Mutant of the heme domain of the bacterial cytochrome P450-BM3 (Bacillus megaterium) Abbreviated name: BM of the heme domain of the bacterial cytochrome P450-BM3 (BM3h) from Bacillus megaterium, and it was generated

  9. A Model of the Membrane-bound Cytochrome b5-Cytochrome P450 Complex from NMR and Mutagenesis Data*

    PubMed Central

    Ahuja, Shivani; Jahr, Nicole; Im, Sang-Choul; Vivekanandan, Subramanian; Popovych, Nataliya; Le Clair, Stéphanie V.; Huang, Rui; Soong, Ronald; Xu, Jiadi; Yamamoto, Kazutoshi; Nanga, Ravi P.; Bridges, Angela; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-01-01

    Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and ?-bulge of cytP450 and residues at the end of helix ?4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes. PMID:23709268

  10. Identification and functional characterization of novel feline cytochrome P450 2A.

    PubMed

    Okamatsu, Gaku; Komatsu, Tetsuya; Kubota, Akira; Onaga, Takenori; Uchide, Tsuyoshi; Endo, Daiji; Kirisawa, Rikio; Yin, Guojun; Inoue, Hiroki; Kitazawa, Takio; Uno, Yasuhiro; Teraoka, Hiroki

    2015-06-01

    1. Cytochrome P450s are the major metabolizing enzymes for xenobiotics in humans and other mammals. Although the domestic cat Felis catus, an obligate carnivore, is the most common companion animal, the properties of cytochrome P450 subfamilies are largely unknown. 2. We newly identified the feline CYP2A13, which consists of 494 deduced amino acids, showing the highest identity to CYP2As of dogs, followed by those of pigs, cattle and humans. 3. The feline CYP2A13 transcript and protein were expressed almost exclusively in the liver without particular sex-dependent differences. 4. The feline CYP2A13 protein heterogeneously expressed in Escherichia coli showed metabolic activity similar to those of human and canine CYP2As for coumarin, 7-ethoxycoumarin and nicotine. 5. The results indicate the importance of CYP2A13 in systemic metabolism of xenobiotics in cats. PMID:25547627

  11. Cytochrome P450 2C8: Substrates, Inhibitors, Pharmacogenetics, and Clinical Relevance

    Microsoft Academic Search

    Rheem A. Totah; Allan E. Rettie

    2005-01-01

    Cytochrome P450 (CYP) 2C9 has been a relatively neglected member of the human CYP2C family. Over the period from 2000 through 2003, PubMed searches with the key word CYP2C8 returned only 10% to 15% of the citations obtained for all of the CYP2C enzymes combined. However, in the past year a crystal structure for CYP2C8 has been described, new inhibitors

  12. 13 C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites

    Microsoft Academic Search

    Christopher R. McCullough; Phani Kumar Pullela; Sang-Choul Im; Lucy Waskell; Daniel S. Sem

    2009-01-01

    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism\\u000a of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that\\u000a provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could\\u000a be obtained in

  13. Inhibition of Vascular Smooth Muscle Cell Migration by Cytochrome P450 Epoxygenase-Derived Eicosanoids

    Microsoft Academic Search

    Jianxin Sun; XinXin Sui; J. Alyce Bradbury; Darryl C. Zeldin; Michael S. Conte; James K. Liao

    Vascular smooth muscle cell (SMC) migration and proliferation contribute to neointimal hyperplasia and restenosis after vascular injury. The epoxyeicosatrienoic acids (EETs), which are products of cytochrome P450 (CYP) epoxygenases, possess vasodilatory, antiinflammatory, and fibrinolytic properties. To determine whether these compounds also possess antimigratory and antiproliferative properties, we stimulated rat aortic SMCs with either 20% serum or platelet-derived growth factor (PDGF-BB,

  14. Cytochromes P-450 catalyze the formation of marchantins A and C in Marchantia polymorpha

    Microsoft Academic Search

    Susanne Friederich; Martina Rueffer; Yoshinori Asakawa; Meinhart H. Zenk

    1999-01-01

    Two specific cytochrome P-450 enzymes were detected in cell suspension cultures of Marchantia polymorpha; the first catalyzes the coupling of two molecules of lunularic acid to form marchantin C and CO2 and the second hydroxylates marchantin C to marchantin A. Cell free experiments using 3H\\/14C doubly-labeled substrates demonstrated that lunularic acid, and neither lunularine nor prelunularic acid, is the sole

  15. Selective Serotonin Reuptake Inhibitors and Cytochrome P-450 Mediated Drug-Drug Interactions: An Update

    Microsoft Academic Search

    Alex Hemeryck; Frans M. Belpaire

    2002-01-01

    The selective serotonin reuptake inhibitors (SSRIs) have become the most prescribed antidepressants in many countries. Although the SSRIs share a common mechanism of action, they differ substantially in their chemical structure, metabolism, and pharmacokinetics. Perhaps the most important difference between the SSRIs is their potential to cause drug-drug interactions through inhibition of cytochrome-P450 (CYP) isoforms. This paper provides an update

  16. Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes.

    PubMed

    Nielsen, J S; Moller, B L

    1999-08-01

    The biosynthesis of the two cyanogenic glucosides, taxiphyllin and triglochinin, in Triglochin maritima (seaside arrow grass) has been studied using undialyzed microsomal preparations from flowers and fruits. Tyrosine was converted to p-hydroxymandelonitrile with V(max) and K(m) values of 36 nmol mg(-1) g(-1) fresh weight and 0.14 mM, respectively. p-Hydroxyphenylacetaldoxime and p-hydroxyphenylacetonitrile accumulated as intermediates in the reaction mixtures. Using radiolabeled tyrosine as substrate, the radiolabel was easily trapped in p-hydroxyphenylacetaldoxime and p-hydroxyphenylacetonitrile when these were added as unlabeled compounds. p-Hydroxyphenylacetaldoxime was the only product obtained using microsomes prepared from green leaves or dialyzed microsomes prepared from flowers and fruits. These data contrast earlier reports (Hösel and Nahrstedt, Arch. Biochem. Biophys. 203, 753-757, 1980; and Cutler et al., J. Biol. Chem. 256, 4253-4258, 1981) where p-hydroxyphenylacetaldoxime was found not to accumulate. All steps in the conversion of tyrosine to p-hydroxymandelonitrile were found to be catalyzed by cytochrome P450 enzymes as documented by photoreversible carbon monoxide inhibition, inhibition by antibodies toward NADPH-cytochrome P450 oxidoreductase, and by cytochrome P450 inhibitors. We hypothesize that cyanogenic glucoside synthesis in T. maritima is catalyzed by multifunctional cytochrome P450 enzymes similar to CYP79A1 and CYP71E1 in Sorghum bicolor except that the homolog to CYP71E1 in T. maritima exhibits a less tight binding of p-hydroxyphenylacetonitrile, thus permitting the release of this intermediate and its conversion into triglochinin. PMID:10415119

  17. The human genome project and novel aspects of cytochrome P450 research

    Microsoft Academic Search

    Magnus Ingelman-Sundberg

    2005-01-01

    Currently, 57 active cytochrome P450 (CYP) genes and 58 pseudogenes are known to be present in the human genome. Among the genes discovered by initiatives in the human genome project are CYP2R1, CYP2W1, CYP2S1, CYP2U1 and CYP3A43, the latter apparently encoding a pseudoenzyme. The function, polymorphism and regulation of these genes are still to be discovered to a great extent.

  18. Effects of herbal components on cDNA-expressed cytochrome P450 enzyme catalytic activity

    Microsoft Academic Search

    L Zou; M. R Harkey; G. L Henderson

    2002-01-01

    We evaluated the effects of 25 purified components of commonly used herbal products on the catalytic activity of cDNA-expressed cytochrome P450 isoforms in in vitro experiments. Increasing concentrations of the compounds were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in

  19. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1

    Microsoft Academic Search

    Maria Karlgren; Alvin Gomez; Katarina Stark; Jenny Svärd; Cristina Rodriguez-Antona; Ernst Oliw; Maria Luisa Bernal; Santiago Ramón y Cajal; Inger Johansson; Magnus Ingelman-Sundberg

    2006-01-01

    A novel human cytochrome P450, CYP2W1, was cloned and expressed heterologously. No or very low CYP2W1 mRNA levels were detected in fetal and adult human tissues, expression was however seen in 54% of human tumor samples investigated (n=37), in particular colon and adrenal tumors. Western blotting also revealed high expression of CYP2W1 in some human colon tumors. In rat tissues,

  20. Cytochrome P450 enzyme activity in five herbivorous, non-passerine bird species

    Microsoft Academic Search

    Tuija Liukkonen-Anttila; Henrika Honkanen; Päivi Peltokangas; Olavi Pelkonen; Esa Hohtola

    2003-01-01

    We examined hepatic cytochrome P450 activity in wild and hand-reared grey partridges (Perdix perdix), capercaillies (Tetrao urogallus) and ring-necked pheasants (Phasianus colchicus), as well as the enzyme activity in a variety of tissues of hand-reared Japanese quails (Coturnix coturnix japonica) and pigeons (Columba livia). Post-mortem decrease in hepatic enzyme activity in the grey partridge was measured. Hepatic 7-ethoxyresorufin-O-deethylase activity was

  1. Cytochrome P450c17? 5?-untranslated region *T\\/C polymorphism in endometriosis

    Microsoft Academic Search

    Yao-Yuan Hsieh; Chi-Chen Chang; Fuu-Jen Tsai; Cheng-Chieh Lin; Chang-Hai Tsai

    2004-01-01

    Estrogen plays a role in the pathogenesis of endometriosis. The CYP17 gene codes for the cytochrome P450c17? enzyme that is\\u000a involved in the estrogen biosynthesis. We aimed to investigate if CYP17 polymorphism could be used as marker to predict the\\u000a susceptibility of endometriosis. Women were divided into two groups: (1) severe endometriosis (n=119); (2) non-endometriosis\\u000a groups (n=128). A 169-bp fragment

  2. Cytochrome P450/NADPH-dependent formation of trans epoxides from trans-arachidonic acids.

    PubMed

    Roy, Uzzal; Loreau, Olivier; Balazy, Michael

    2004-02-23

    Trans-arachidonic acids (trans-AA) are products of cis-trans isomerization of arachidonic acid by nitrogen dioxide radical (NO(2)), and occur in vivo, but their metabolism is unknown. We found that hepatic microsomes oxidized trans-AA via cytochrome P450/NADPH system to epoxides, which were hydrolyzed by epoxide hydrolase to diols (DiHETEs). 14,15-trans-AA produced one erythro diol and three threo diols each having one trans double bond. PMID:15013014

  3. Two cytochromes P450 are major hepatocellular autoantigens in autoimmune polyglandular syndrome type 1

    Microsoft Academic Search

    Maria Grazia Clemente; Antonella Meloni; Petra Obermayer-Straub; Fulvia Frau; Michael Peter Manns; Stefano de Virgiliis

    1998-01-01

    Background & Aims: Liver disease has been described in 10%–15% of patients with autoimmune polyglandular syndrome type 1 (APS-1). After the discovery of cytochrome P450 1A2 (CYP1A2) as a hepatocellular autoantigen in liver-kidney microsomal autoantibody (LKM)-positive patients with APS-1, the investigation of antiliver antibodies was extended to 11 Sardinian patients with APS-1. Methods: Indirect immunofluorescence and Western blotting analysis were

  4. Effect of St John's wort ( Hypericum perforatum) on cytochrome P-450 activity in perfused rat liver

    Microsoft Academic Search

    M. Dostalek; J. Pistovcakova; J. Jurica; J. Tomandl; I. Linhart; A. Sulcová; E. Hadasova

    2005-01-01

    St. John's wort (Hypericum perforatum) is a popular over-the-counter dietary supplement and a herbal antidepressant that has been implicated in drug interactions with substrates of several cytochrome P-450 (CYP) isozymes. The effects of the St. John's wort extract (100 mg\\/kg, i.p., once daily for 10 days) on metabolic activity of CYP450 were assessed in the system of isolated perfused rat

  5. The effects of St John's wort (Hypericum perforatum) on human cytochrome P450 activity

    Microsoft Academic Search

    Zaiqi Wang; J. Christopher Gorski; Mitchell A. Hamman; Shiew-Mei Huang; Lawrence J. Lesko; Stephen D. Hall

    2001-01-01

    Background: St John's wort(Hypericum perforatum) is a popular over-the-counter dietary supplement and herbal remedy that has been implicated in drug interactions with substrates of several cytochrome P450 (CYP) isozymes. The effect of St John's wort on CYP activity in vivo was examined with a probe drug cocktail.Methods: Twelve healthy subjects (5 female, 7 male) completed this 3-period, open-label, fixed schedule

  6. Effect of pyridine on the expression of cytochrome P450 isozymes in primary rat hepatocyte culture

    Microsoft Academic Search

    Defeng Wu; Sorush A. Ramin; Arthur I. Cederbaum

    1997-01-01

    In vivo administration of pyridine has been shown to increase theactivity and content of several forms of cytochrome P450 by transcriptionaland posttranscriptional mechanisms. The effect of pyridine on CYP1A andCYP2E1 isozymes was studied in a rat hepatocyte culture model. Hepatocyteswere isolated from non-induced rats and seeded onto matrigel-coated dishesand incubated in William's medium E containing 10% fetal calf serum,hormones, and

  7. Increased blood pressure in mice lacking cytochrome P450 2J5

    Microsoft Academic Search

    Krairerk Athirakul; J. Alyce Bradbury; Joan P. Graves; Laura M. DeGraff; Jixiang Ma; Yun Zhao; John F. Couse; Raymond Quigley; David R. Harder; Xueying Zhao; John D. Imig; Theresa L. Pedersen; John W. Newman; Bruce D. Hammock; Alan J. Conley; Kenneth S. Korach; Thomas M. Coffman; Darryl C. Zeldin

    2008-01-01

    The cytochrome P450 (CYP) enzymes par- ticipate in a wide range of biochemical functions, includ- ing metabolism of arachidonic acid and steroid hor- mones. Mouse CYP2J5 is abundant in the kidney where its products, the cis-epoxyeicosatrienoic acids (EETs), mod- ulate sodium transport and vascular tone. To define the physiological role of CYP2J5 in the kidney, knockout mice were generated using

  8. Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula

    Microsoft Academic Search

    Lingyong Li; Hao Cheng; Junyi Gai; Deyue Yu

    2007-01-01

    In plants, cytochrome P450 is a group of monooxygenases existing as a gene superfamily and plays important roles in metabolizing\\u000a physiologically important compounds. However, to date only a limited number of P450s have been identified and characterized\\u000a in legumes. In this study, data mining methods were used, and 151 putative P450 genes in the model legume Medicago truncatula were identified,

  9. Construction and engineering of a thermostable self-sufficient cytochrome P450

    SciTech Connect

    Mandai, Takao; Fujiwara, Shinsuke [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)] [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)] [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  10. Cytochrome P450 Inhibitors Reduce Creeping Bentgrass (Agrostis stolonifera) Tolerance to Topramezone

    PubMed Central

    Elmore, Matthew T.; Brosnan, James T.; Armel, Gregory R.; Kopsell, Dean A.; Best, Michael D.; Mueller, Thomas C.; Sorochan, John C.

    2015-01-01

    Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450 monooxygenase inhibitors 1-aminobenzotriazole (ABT) and malathion alone or in combination with the herbicide safener cloquintocet-mexyl influence creeping bentgrass tolerance to topramezone. Creeping bentgrass in hydroponic culture was treated with ABT (70 ?M), malathion (70 ?m and 1000 g ha-1), or cloquintocet-mexyl (70 ?M and 1000 g ha-1) prior to topramezone (8 g ha-1) application. Topramezone-induced injury to creeping bentgrass increased from 22% when applied alone to 79 and 41% when applied with malathion or ABT, respectively. Cloquintocet-mexyl (70 ?M and 1000 g ha-1) reduced topramezone injury to 1% and increased creeping bentgrass biomass and PSII quantum yield. Cloquintocet-mexyl mitigated the synergistic effects of ABT more than those of malathion. The effects of malathion on topramezone injury were supported by creeping bentgrass biomass responses. Responses to ABT and malathion suggest that creeping bentgrass tolerance to topramezone is influenced by cytochrome P450-catalyzed metabolism. Future research should elucidate primary topramezone metabolites and determine the contribution of cytochrome P450 monooxygenases and glutathione S-transferases to metabolite formation in safened and non-safened creeping bentgrass. PMID:26186714

  11. Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.

    PubMed

    Syed, Khajamohiddin; Shale, Karabo; Pagadala, Nataraj Sekhar; Tuszynski, Jack

    2014-01-01

    Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin's theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our knowledge, this is the first report on the identification and comparative-evolutionary analysis of P450 families enriched in model basidiomycetes. PMID:24466198

  12. Systematic Identification and Evolutionary Analysis of Catalytically Versatile Cytochrome P450 Monooxygenase Families Enriched in Model Basidiomycete Fungi

    PubMed Central

    Syed, Khajamohiddin; Shale, Karabo; Pagadala, Nataraj Sekhar; Tuszynski, Jack

    2014-01-01

    Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin’s theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our knowledge, this is the first report on the identification and comparative-evolutionary analysis of P450 families enriched in model basidiomycetes. PMID:24466198

  13. Time course for induction of cytochrome P450 - Dependent activities by ethylbenzene

    SciTech Connect

    Sequeira, D.J.; Eyer, C.S.; Cawley, G.F.; Backes, W.L. (Louisiana State Univ., New Orleans, LA (United States))

    1992-02-26

    The goal of this study was to examine the time course for ethylbenzene-mediated induction of cytochrome P450-dependent activities. Male Holtzman rats were treated with a single i.p. injection of ethylbenzene (EB) suspended in corn oil. In this study, the rats were injected at different times so all animals were killed at the same time P450 levels were transiently elevated at 1 hr after EB treatment, and returned to control levels by 2 hrs. Levels increased again at 10 hrs to a maximum at 24 hrs, returning to control after 48 hrs. Cytochrome b{sub 5} levels reached a minimum at 5 hrs and returned to controls after 10 hrs. In general, P450-dependent activities produced maximal induction after 24 hrs. Most of the P450-dependent activities examined returned to controls by 48 hrs; however, p-nitroanisole demethylation remained elevated after 48 hrs. Toluene metabolism was also induced by EB treatment, with each of the three metabolites exhibiting its own pattern of induction. Benzyl alcohol formation dropped to a minimum at 5-10 hrs, returning to controls by 24 hrs. Production of o-cresol was elevated more than 10 fold at 24 hrs and remained elevated after 48 hrs. Production of p-cresol followed a biphasic patter of induction increasing about 7 fold after 1 hr, and further increasing to a maximum between 10 and 24 hrs. P-cresol levels remained elevated at 48 hrs. Western blotting showed induction of both P450 1A1 and 2B1 at 1 and 2 hr, respectively, reaching a maximum at 24 hrs.

  14. Potential effects of environmental contaminants on P450 aromatase activity and DNA damage in swallows

    E-print Network

    Mora, Miguel A.

    in the LRGV, such as atrazine, and some of the highly persistent organochlorines, such as toxaphene and DDE, could be potentially associated with modulation of aromatase activity in avian tissues. Previous studies

  15. Implication of ligand modified spectra of cytochrome P-450 associated with pregnenolone synthesis in mitochondria from corpus luteum.

    PubMed

    Uzgiris, V I; McIntosh, E N; Graves, P; Salhanick, H A

    1975-01-01

    The implications of ligand modified spectra of cytochrome P-450 in mitochondria from corpus luteum are considered. Mitochondria from bovine corpus luteum contain a single cytochrome P-450 which oxidizes cholesterol to pregnenolone and isocaproaldehyde. These mitochondria and the cytochrome P-450 purified from these mitochondria yield Type I spectral changes with substrates, reverse Type I spectral changes with certain steroid substrates, steroid products and unrelated steroid ligands. Nitrogenous ligands yield Type II spectral changes. Mitochondrial and purified cytochrome P-450 preparations are equivalent in this study. The inhibitory effects on the cholesterol monooxygenase are directly related to the spectral changes induced by Type II ligands. Lastly, it is suggested that a similar relationship exists with reverse Type I ligands. PMID:1155251

  16. SEASONAL HEPATIC CYTOCHROME P-450 INDUCTION IN COTTON RATS (SIGMODON HISPIDUS) INHABITING PETROCHEMICAL WASTE SITES. (R826242)

    EPA Science Inventory

    Abstract Wildlife species inhabiting contaminated sites are often exposed to complex mixtures of chemicals that have known effects on physiological and biochemical function. We evaluated the induction of major hepatic cytochrome P-450 isoenzymes through O -dealky...

  17. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    Microsoft Academic Search

    Anett Schallmey; Gijs den Besten; Ite G. P. Teune; Roga F. Kembaren; Dick B. Janssen

    2011-01-01

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using\\u000a molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic\\u000a soil bacterium Thermobifida fusca. The enzyme was overexpressed in Escherichia coli at up to 14% of total soluble protein and purified to homogeneity in three

  18. Oxidative aldehyde deformylation catalyzed by NADPH-cytochrome P450 reductase and the flavoprotein domain of neuronal nitric oxide synthase

    Microsoft Academic Search

    Kostas P. Vatsis; Minor J. Coon

    2005-01-01

    We report here the unexpected finding that recombinant or hepatic microsomal NADPH-cytochrome P450 reductase catalyzes the oxidative deformylation of a model xenobiotic aldehyde, 2-phenylpropionaldehyde, to the n-1 alcohol, 1-phenylethanol, in the absence of cytochrome P450. The flavoprotein and NADPH are absolute requirements, and the reaction displays a dependence on time and on NADPH and reductase concentration. Not surprisingly, the hydrophobic

  19. Purification and Characterization of Cytochrome P-450 Induced by Benz(a)anthracene in Mouse Skin Microsomes

    Microsoft Academic Search

    Takeshi Ichikawa; Shin-ichi Hayashi; Mitsuhide Noshiro; Kazuaki Takada; Kyuichiro Okuda

    Topical application of benz(a)anthracene to mouse skin elicited a 2- fold increase in cytochrome P-450 content, with accompanying increases in monooxygenase activities such as benzo(a)pyrene hydroxylation, 7- ethoxycoumarin O-deethylation, and acetanilide 4-hydroxylation, in the microsomes. A major form of cytochrome P-450 was purified from skin microsomes of mice treated with polvi-veliearomatic hydrocarbon. A specific content of 1.95 nmol\\/mg of protein,

  20. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response

    Microsoft Academic Search

    L P Rivory; K A Slaviero; S J Clarke

    2002-01-01

    Inflammatory disease states (infection, arthritis) are associated with reduced drug oxidation by the cytochrome P450 3A system. Many chemotherapy agents are metabolised through this pathway, and disease may therefore influence inter-individual differences in drug pharmacokinetics. The purpose of this study was to assess cytochrome P450 3A function in patients with advanced cancer, and its relation to the acute-phase response. We

  1. Three-Dimensional Structure of NADPH-Cytochrome P450 Reductase: Prototype for FMN and FAD-Containing Enzymes

    Microsoft Academic Search

    Ming Wang; David L. Roberts; Rosemary Paschke; Thomas M. Shea; Bettie Sue Siler Masters; Jung-Ja P. Kim

    1997-01-01

    Microsomal NADPH-cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by

  2. Aromatase gene expression in the stallion

    Microsoft Academic Search

    Emmanuel Lemazurier; Pascal Sourdaine; Céline Nativelle; Bruno Plainfossé; Gilles-Eric Séralini

    2001-01-01

    Adult stallion secretes very high estrogen levels in its testicular vein and semen, and the responsible enzyme cytochrome P450 aromatase (P450 arom) is known to be present mainly in Leydig cells. We studied in further details the distribution of equine aromatase in various adult tissues including the brain (hypothalamic area), liver, kidney, small intestine, muscle, bulbourethral gland and testes. The

  3. Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution.

    PubMed Central

    Zhao, Q.; Modi, S.; Smith, G.; Paine, M.; McDonagh, P. D.; Wolf, C. R.; Tew, D.; Lian, L. Y.; Roberts, G. C.; Driessen, H. P.

    1999-01-01

    The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c. PMID:10048323

  4. Molecular Characterization and Functional Analysis of Three Pathogenesis-Related Cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea)

    PubMed Central

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-01-01

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant. PMID:25756378

  5. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    PubMed Central

    Bezirtzoglou, Eugenia Elefterios Venizelos

    2012-01-01

    Cytochromes P450 (CYPs) enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80%) followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450) cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status. PMID:23990816

  6. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    SciTech Connect

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States)] [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States); Panda, Satya P., E-mail: panda@uthscsa.edu [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States)

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  7. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L. (Los Alamos, NM); Simpson, Daniel J. (Los Alamos, NM); Unkefer, Clifford J. (Los Alamos, NM); Whaley, Thomas W. (Santa Fe, NM)

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  8. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L. (Los Alamos, NM); Simpson, Daniel J. (Los Alamos, NM); Unkefer, Clifford J. (Los Alamos, NM); Whaley, Thomas W. (Santa Fe, NM)

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  9. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I.

    PubMed

    Grant, Job L; Hsieh, Chun H; Makris, Thomas M

    2015-04-22

    OleT(JE), a cytochrome P450, catalyzes the conversion of fatty acids to terminal alkenes using hydrogen peroxide as a cosubstrate. Analytical studies with an eicosanoic acid substrate show that the enzyme predominantly generates nonadecene and that carbon dioxide is the one carbon coproduct of the reaction. The addition of hydrogen peroxide to a deuterated substrate-enzyme (E-S) complex results in the transient formation of an iron(IV) oxo ? cation radical (Compound I) intermediate which is spectroscopically indistinguishable from those that perform oxygen insertion chemistries. A kinetic isotope effect for Compound I decay suggests that it abstracts a substrate hydrogen atom to initiate fatty acid decarboxylation. Together, these results indicate that the initial mechanism for alkene formation, which does not result from oxygen rebound, is similar to that widely suggested for P450 monooxygenation reactions. PMID:25843451

  10. DESIGN, SYNTHESIS, AND EVALUATION OF CARBAZOLE ANALOGS AS POTENTIAL CYTOCHROME P450 INHIBITORS

    PubMed Central

    Foroozesh, Maryam; Jiang, Quan; Sridhar, Jayalakshmi; Liu, Jiawang; Dotson, Brandan; McClain, Erika

    2014-01-01

    Carbazoles are a class of nitrogen-containing aromatic heterocyclic compounds. They not only have various biological activities (e.g. antibacterial, anti-inflammatory, antitumor), but also exhibit useful properties as organic materials due to their special structures. Cytochrome P450 enzymes are a superfamily of hemoproteins involved in the metabolism of endogenous and exogenous compounds including many drugs and environmental chemicals. Some aryl and arylalkyl acetylenes, and propargyl ethers have been shown to act as inhibitors of certain P450s. In an attempt to improve the potency and selectivity of inhibition, we have focused our attention on the design and synthesis of a new series of carbazole analogs, a few of which contain a propargyl ether functional group. For this project, eight carbazole analogs have been synthesized and characterized. PMID:25580095

  11. Modification of enzymatic activity and difference spectra of cytochrome P-450 from various sources by cholesterol side chain cleavage inhibitors.

    PubMed

    Graves, P E; Uzgiris, V I; Salhanick, H A

    1980-05-01

    Several groups of compounds were tested for their ability to inhibit cholesterol side chain cleavage and induce spectral change in cytochrome P-450 from bovine corpus luteum, bovine adrenal cortex, and human placental mitochondria. The substances tested include: steroids, pyridines, glutarimides, anilines and imidazoles. Good correlation was found between spectral change and enzymatic inhibition, especially in the corpus luteum which has only a single P-450-linked steroid hydroxylase. The cholesterol side chain cleavage enzyme systems from each of the three sources appear to have similar affinities for the inhibitors, which adds further support to the concept that these cytochrome P-450s are functionally identical. PMID:6893091

  12. Expression, purification and characterization of cytochrome P450 BioI: a novel P450 involved in biotin synthesis in Bacillus subtilis

    Microsoft Academic Search

    Amanda J. Green; Stuart L. Rivers; Myles Cheesman; Graeme A. Reid; Luca G. Quaroni; Iain D. Macdonald; Stephen K. Chapman; Andrew W. Munro

    2001-01-01

    The bioI gene has been sub-cloned and over-expressed in Escherichia coli, and the protein purified to homogeneity. The protein is a cytochrome P450, as indicated by its visible spectrum (low-spin haem iron Soret band at 419 nm) and by the characteristic carbon monoxide-induced shift of the Soret band to 448 nm in the reduced form. N-terminal amino acid sequencing and

  13. Characterization of human cytochrome P450s involved in the bioactivation of clozapine.

    PubMed

    Dragovic, Sanja; Gunness, Patrina; Ingelman-Sundberg, Magnus; Vermeulen, Nico P E; Commandeur, Jan N M

    2013-03-01

    Clozapine is known to cause hepatotoxicity in a small percentage of patients. Oxidative bioactivation to reactive intermediates by hepatic cytochrome P450s (P450s) has be proposed as a possible mechanism. However, in contrast to their role in formation of N-desmethylclozapine and clozapine N-oxide, the involvement of individual P450s in the bioactivation to reactive intermediates is much less well characterized. The results of the present study show that 7 of 14 recombinant human P450s were able to bioactivate clozapine to a glutathione-reactive nitrenium ion. CYP3A4 and CYP2D6 showed the highest specific activity. Enzyme kinetical characterization of these P450s showed comparable intrinsic clearance of bioactivation, implicating that CYP3A4 would be more important because of its higher hepatic expression, compared with CYP2D6. Inhibition experiments using pooled human liver microsomes confirmed the major role of CYP3A4 in hepatic bioactivation of clozapine. By studying bioactivation of clozapine in human liver microsomes from 100 different individuals, an 8-fold variability in bioactivation activity was observed. In two individuals bioactivation activity exceeded N-demethylation and N-oxidation activity. Quinidine did not show significant inhibition of bioactivation in any of these liver fractions, suggesting that CYP2D6 polymorphism is not an important factor in determining susceptibility to hepatotoxicity of clozapine. Therefore, interindividual differences and drug-drug interactions at the level of CYP3A4 might be factors determining exposure of hepatic tissue to reactive clozapine metabolites. PMID:23297297

  14. Purification and Characterization of an NADPH-Cytochrome P450 (Cytochrome c) Reductase from Spearmint ( Mentha spicata) Glandular Trichomes

    Microsoft Academic Search

    Krishan Ponnamperuma; Rodney Croteau

    1996-01-01

    Solubilized NADPH-cytochrome c (P450) reductase was purified to homogeneity from an extract of spearmint (Mentha spicata) glandular trichomes by dye-ligand interaction chromatography on Matrex-Gel Red A and affinity chromatography on 2?,5?-adenosine diphosphate agarose. SDS–PAGE of the purified enzyme preparation revealed the presence of two similar proteins with masses of 82 kDa (major) and 77 kDa (minor) that crossreacted on immunoblot

  15. Dynamic Mobility of Genetically Expressed Fusion Protein between Cytochrome P4501A1 and NADPH-Cytochrome P450 Reductase in Yeast Microsomes

    E-print Network

    Kawato, Suguru

    Dynamic Mobility of Genetically Expressed Fusion Protein between Cytochrome P4501A1 and NADPH-CytochromeVed March 19, 1999 ABSTRACT: A fusion protein of rat liver CYP1A1 with NADPH-cytochrome P450 reductase was expressed genetically in yeast microsomal membranes. This flavo-cytochrome is active in 6-hydroxylation

  16. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate.

    PubMed Central

    Karlson, U; Dwyer, D F; Hooper, S W; Moore, E R; Timmis, K N; Eltis, L D

    1993-01-01

    A red-pigmented coryneform bacterium, identified as Rhodococcus rhodochrous strain 116, that grew on 2-ethoxyphenol and 4-methoxybenzoate as sole carbon and energy sources was isolated. Phylogenetic analysis based on the 16S rDNA sequences indicates that the strain clusters more closely to other rhodococci than to other gram-positive organisms with a high G + C content. Each of the abovementioned growth substrates was shown to induce a distinct cytochrome P-450: cytochrome P-450RR1 was induced by 2-ethoxyphenol, and cytochrome P-450RR2 was induced by 4-methoxybenzoate. A type I difference spectrum typical of substrate binding was induced in cytochrome P-450RR1 by both 2-ethoxyphenol (KS = 4.2 +/- 0.3 microM) and 2-methoxyphenol (KS = 2.0 +/- 0.1 microM), but not 4-methoxybenzoate or 4-ethoxybenzoate. Similarly, a type I difference spectrum was induced in cytochrome P-450RR2 by both 4-methoxybenzoate (KS = 2.1 +/- 0.1 microM) and 4-ethoxybenzoate (KS = 1.6 +/- 0.1 microM), but not 2-methoxyphenol or 2-ethoxyphenol. A purified polyclonal antiserum prepared against cytochrome P-450RR1 did not cross-react with cytochrome P-450RR2, indicating that the proteins are immunologically distinct. The cytochromes appear to catalyze the O-dealkylation of their respective substrates. The respective products of the O-dealkylation are further metabolized via ortho cleavage enzymes, whose expression is also regulated by the respective aromatic ethers. Images PMID:8444808

  17. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P. [Department of Science, United States Coast Guard Academy, New London, CT (United States); Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.ed [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  18. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

    PubMed

    Gray, Joshua P; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury. PMID:20561902

  19. Inhibition of P-450 aromatase prevents feminisation and induces protection during cysticercosis

    Microsoft Academic Search

    J. Morales-Montor; C. Hallal-Calleros; M. C. Romano; R. T. Damian

    2002-01-01

    Cysticercotic male mice undergo an impressive feminisation process, characterised by 200 times increased serum 17?-estradiol levels while testosterone and dihydrotestosterone are 90% reduced, which results in elevated parasite burden. Administration of Fadrozole (an aromatase inhibitor) in male and female mice suppressed the production of 17?-estradiol, accompanied with a 70% reduction in parasite burden. This protective effect was associated in male

  20. Certain tryptophan photoproducts are inhibitors of cytochrome P450-dependent mutagenicity.

    PubMed

    Rannug, U; Agurell, E; Rannug, A; Cederberg, H

    1992-01-01

    Two photoproducts, derived from UV-irradiation of the amino acid L-tryptophan and with high Ah (TCDD) receptor binding affinity, were tested for genotoxic and antimutagenic effects. The two indolo[3,2-b]carbazole derivatives, with the molecular weights of 284 and 312, respectively, were tested in Saccharomyces cerevisiae strain D7 for mitotic gene conversion and reverse mutation and in strain RS112 for sister chromatid conversion and gene conversion. No significant (P > 0.05) genotoxic effects were found in strain D7, while strain RS112 showed a small but significant increase in the frequency of sister chromatid conversions. In Chinese hamster ovary (CHO) cells the two compounds induced a statistically significant but less than twofold increase in the frequency of sister chromatid exchanges (SCE). No mutations were detected when the compounds were tested in Salmonella typhimurium strains TA98 and TA100. However, both 284 and 312 acted as antimutagens on strain TA100 + S9 in the presence of benzo(a)pyrene. The decrease in mutagenicity by the most potent compound 284 was 20 revertants/nmol. This effect could be explained by an inhibitory effect on the cytochrome P450-dependent ethoxyresorufin O-deethylase (EROD) activity as seen in rat hepatocytes. The two compounds were also tested with hamster cells expressing rat cytochrome P-450IA1. The results support the conclusion that this cytochrome P-450 isozyme is inhibited by the tryptophan photoproducts. Similar results were also seen with two other high affinity Ah receptor ligands the quinazolinocarboline alkaloids rutaecarpine and dehydrorutaecarpine. PMID:1330548

  1. Cytochrome P450 3A Inhibition by Ketoconazole Affects Prasugrel and Clopidogrel Pharmacokinetics and Pharmacodynamics Differently

    Microsoft Academic Search

    N A Farid; C D Payne; D S Small; K J Winters; C S Ernest; J T Brandt; C Darstein; J A Jakubowski; D E Salazar

    2007-01-01

    Prasugrel and clopidogrel inhibit platelet aggregation through active metabolite formation. Prasugrel's active metabolite (R-138727) is formed primarily by cytochrome P450 (CYP) 3A and CYP2B6, with roles for CYP2C9 and CYP2C19. Clopidogrel's activation involves two sequential steps by CYP3A, CYP1A2, CYP2C9, CYP2C19, and\\/or CYP2B6. In a randomized crossover study, healthy subjects received a loading dose (LD) of prasugrel (60 mg) or

  2. Cytochrome P450-derived versus mitochondrial oxidant stress in acetaminophen hepatotoxicity.

    PubMed

    Jaeschke, Hartmut; McGill, Mitchell R

    2015-06-15

    In evaluating the mechanisms of acetaminophen hepatotoxicity in experimental systems, it is critical to keep in mind the relevance of the model system for humans. Important aspects of the human toxicity include formation of a reactive metabolite by the cytochrome P450 system and protein adduct formation, which is thought to trigger mitochondrial dysfunction and oxidant stress ultimately causing necrotic cell death. If models that miss critical parts of this well-established mechanism are used, the relevance of the new information for the human toxicity has to be questioned. Therefore, we feel it is necessary to express our concern regarding the recent publication by Jiang et al. (2015). PMID:25858113

  3. Epoxidation of olefins by cytochrome P-450 model compounds: mechanism of oxygen atom transfer.

    PubMed Central

    Collman, J P; Brauman, J I; Meunier, B; Raybuck, S A; Kodadek, T

    1984-01-01

    The mechanism of the Mn(III) porphyrin-catalyzed epoxidation of olefins by lithium hypochlorite is examined. The active oxidant is thought to be a high-valent manganese-oxo complex. It is shown that a relatively stable intermediate is reversibly formed upon interaction of the olefin and the oxo complex. The decomposition of this intermediate to Mn(III) porphyrin and epoxide is the rate-determining step of the catalytic cycle. Some analogies to the biochemical epoxidation of olefins catalyzed by cytochrome P-450 are discussed. PMID:6587349

  4. Differential stabilization of cytochrome P-450 isoenzymes in primary cultures of adult rat liver parenchymal cells

    Microsoft Academic Search

    Dietmar Utesch; Elvira Molitor; Karl-Ludwig Platt; Franz Oesch

    1991-01-01

    Summary  Cytochrome P-450 dependent hydroxylation of testosterone was measured in 7-day-old cultures of primary rat liver parenchymal\\u000a cells. Determinations were carried out in monocultures of parenchymal cells and co-cultures of parenchymal cells with rat\\u000a liver nonparenchymal epithelial cells, or mouse embryo fibroblasts.\\u000a \\u000a In the monoculture system, testosterone metabolism was drastically reduced and hardly measurable after 7 days in culture.\\u000a In the

  5. Induction of cytochrome p-450-ia1 in juvenile fish by creosote-contaminated sediment

    SciTech Connect

    Schoor, W.P.; Williams, D.E.; Takahashi, N.

    1991-01-01

    Intact sediment cores, including their surface layers, were used in simulated field exposure tests of juvenile guppies (Poecilia reticulata) to creosote-contaminated sediments. Mixed-function oxygenase activity was induced in the fish after 43 days of exposure to environmentally realistic, sublethal concentrations of creosote-related compounds. An average 50-fold induction in the cytochrome P-450-IA1 was found in the liver in the absence of any histopathological lesions. The possibility that a threshold level for proliferative liver changes was not reached is discussed in the light of the observed biochemical activation.

  6. Improving the activity of cytochrome P450 BM-3 catalyzing indole hydroxylation by directed evolution.

    PubMed

    Pengpai, Zhang; Sheng, Hu; Lehe, Mei; Yinlin, Lei; Zhihua, Jin; Guixiang, Hu

    2013-09-01

    Cytochrome P450 BM-3 (A74G/F87V/L188Q) could catalyze indole to produce indigo. To further improve this capability, random mutagenesis was performed on the heme domain of P450 BM-3 (A74G/F87V/L188Q) with error-prone PCR. A single mutant V445A was selected out from the error-prone library and exhibited the highest specific activity toward indole among the mutants obtained. The kinetic parameters of V445A were also highly improved. Compared with the parent enzyme, the turnover rate (k cat) of V445A was increased by 7.5 times, while its K m value decreased by 9.2 %. Consequently, the catalytic efficiency (k cat/K m) of V445A was raised to 8.2 times than that of the parent enzyme. Moreover, alanine was confirmed as the best amino acid substitution by saturated mutagenesis in Val445 position. Three-dimensional structure analysis was also used to rationalize the effect on the enzyme properties of the mutation. This study showed that random mutagenesis was efficient to identify mutants with potential values in industry and increased our insight into P450 BM-3. PMID:23817788

  7. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong [ORNL; Baudry, Jerome Y [ORNL

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  8. Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors.

    PubMed

    Kitahata, Nobutaka; Saito, Shigeki; Miyazawa, Yutaka; Umezawa, Taishi; Shimada, Yukihisa; Min, Yong Ki; Mizutani, Masaharu; Hirai, Nobuhiro; Shinozaki, Kazuo; Yoshida, Shigeo; Asami, Tadao

    2005-07-15

    Plant hormone abscisic acid (ABA) is an important factor for conferring drought stress resistance on plants. Therefore, small molecules that regulate ABA levels in plants can be useful both for investigating functions of ABA and for developing new plant growth regulators. Abscisic acid (ABA) catabolism in plants is primarily regulated by ABA 8'-hydroxylase, which is a cytochrome P450 (P450). We tested known P450 inhibitors containing a triazole group and found that uniconazole-P inhibited ABA catabolism in cultured tobacco Bright Yellow-2 cells. In a structure-activity study of uniconazole, we found a more effective ABA catabolic inhibitor (diniconazole) than uniconazole-P. Diniconazole, a fungicide, acted as a potent competitive inhibitor of recombinant Arabidopsis ABA 8'-hydroxylase, CYP707A3, in an in vitro assay. Diniconazole-treated plants retained a higher ABA content and higher transcription levels of ABA response genes during rehydration than did untreated plants and were more drought stress tolerant than untreated plants. These results strongly suggest that ABA catabolic inhibitors that target ABA 8'-hydroxylase can regulate the ABA content of plants and conferred drought stress resistance on plants. The optical resolution of diniconazole revealed that the S-form isomer, which is a weak fungicidal isomer, was more active as an ABA catabolic inhibitor than was the R-form isomer. PMID:15882944

  9. Oxidase uncoupling in heme monoxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    PubMed Central

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.; Sligar, Stephen G.

    2014-01-01

    The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons : 1 dioxygen : 1 product. However, three alternate unproductive pathways exist where the intermediate iron-oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen-oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4 reconstituted in Nanodiscs. We discovered that the “oxidase” uncoupling pathway is also operating in the substrate free form of the enzyme with rate of this pathway substantially increasing with the first substrate binding event. Surprisingly, a large fraction of the reducing equivalents used by the P450 system is wasted in this oxidase pathway. In addition, the overall coupling with testosterone and bromocryptine as substrates is significantly higher in the presence of anionic lipids, which is attributed to the changes in the redox potential of CYP3A4 and reductase. PMID:23266608

  10. Relationships among Ergot Alkaloids, Cytochrome P450 Activity, and Beef Steer Growth

    NASA Astrophysics Data System (ADS)

    Rosenkrans, Charles; Ezell, Nicholas

    2015-03-01

    Determining a grazing animal’s susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 ?M of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 µM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 d of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 d. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins.

  11. Relationships among ergot alkaloids, cytochrome P450 activity, and beef steer growth

    PubMed Central

    Rosenkrans, Charles F.; Ezell, Nicholas S.

    2015-01-01

    Determining a grazing animal's susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 ?M of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 ?M concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 days of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 days. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = ?0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins. PMID:25815288

  12. Relationships among ergot alkaloids, cytochrome P450 activity, and beef steer growth.

    PubMed

    Rosenkrans, Charles F; Ezell, Nicholas S

    2015-01-01

    Determining a grazing animal's susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 ?M of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 ?M concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 days of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 days. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins. PMID:25815288

  13. Synergy between rhinacanthins from Rhinacanthus nasutus in inhibition against mosquito cytochrome P450 enzymes.

    PubMed

    Kotewong, Rattanawadee; Pouyfung, Phisit; Duangkaew, Panida; Prasopthum, Aruna; Rongnoparut, Pornpimol

    2015-07-01

    The cytochrome P450 monooxygenases play a major role in insecticide detoxification and become a target for development of insecticide synergists. In this study, a collection of rhinacanthins (rhinacanthin-D, -E, -G, -N, -Q, and -H/I) purified from Rhinacanthus nasutus, in addition to previously purified rhinacanthin-B and -C, were isolated. These compounds displayed various degrees of inhibition against benzyloxyresorufin-O-debenzylation mediated by CYP6AA3 and CYP6P7 which were implicated in pyrethroid resistance in Anopheles minimus malaria vector. Inhibition modes and kinetics were determined for each of rhinacanthins. Cell-based inhibition assays by rhinacanthins employing 3-(4, 5-dimethylthiazol-2-y-l)-2, 5-diphenyltetrazolium bromide (MTT) cytotoxicity test were explored their synergistic effects with cypermethrin toxicity on CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells. Rhinacanthin-B, -D, -E, -G, and -N exhibited mechanism-based inhibition against CYP6AA3, an indication of irreversible inhibition, while rhinacanthin-B, -D, -G, and -N were mechanism-based inhibitors of CYP6P7. There was structure-function relationship of these rhinacanthins in inhibition effects against both enzymes. In vitro enzymatic inhibition assays revealed that there were synergistic interactions among rhinacanthins, except rhinacanthin-B and -Q, in inhibition against both enzymes. These rhinacanthins exerted synergism with cypermethrin toxicity on Sf9 cells expressing each of the two P450 enzymes via P450 inhibition and in addition could interact in synergy to further increase cypermethrin toxicity. The inhibition potentials, synergy among rhinacanthins in inhibition against the P450 detoxification enzymes, and synergism with cypermethrin toxicity of the R. nasutus constituents of reported herein could be beneficial to implement effective resistance management of mosquito vector control. PMID:25869958

  14. Cytochrome P450 family 4 in a cockroach: molecular cloning and regulation by regulation by hypertrehalosemic hormone.

    PubMed Central

    Bradfield, J Y; Lee, Y H; Keeley, L L

    1991-01-01

    Hypertrehalosemic hormone (a carbohydrate-mobilizing neuroendocrine decapeptide) and starvation markedly increased levels of a cockroach (Blaberus discoidalis) fat body cytochrome P450 message. The gene represented by the cloned P450 cDNA has been named CYP4C1 (cytochrome P450 family 4, subfamily C, gene 1), a newly identified member of the ubiquitous cytochrome P450 monooxygenase gene superfamily. Blaberus CYP4C1 (511 amino acids, Mr = 58,485) has a hydrophobic NH2 terminus and a sequence near the COOH terminus that is homologous to the cysteine-containing heme-binding region definitive of cytochromes P450. The cockroach sequence is 32-36% identical to mammalian family 4A and 4B enzymes. It contains a 13-residue sequence characteristic of family 4 but not other P450s. This study suggests that CYP4C1 is hormonally regulated in association with energy substrate mobilization and supports the idea that family 4 is an old and widespread gene family. Images PMID:2034694

  15. Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme.

    PubMed

    Venkataraman, Harini; Te Poele, Evelien M; Ros?oniec, Kamila Z; Vermeulen, Nico; Commandeur, Jan N M; van der Geize, Robert; Dijkhuizen, Lubbert

    2015-06-01

    In the present study, the use of Rhodococcus erythropolis mutant strain RG9 expressing the cytochrome P450 BM3 mutant M02 enzyme has been evaluated for whole-cell biotransformation of a 17-ketosteroid, norandrostenedione, as a model substrate. Purified P450 BM3 mutant M02 enzyme hydroxylated the steroid with >95 % regioselectivity to form 16-?-OH norandrostenedione, as confirmed by NMR analysis. Whole cells of R. erythropolis RG9 expressing P450 BM3 M02 enzyme also converted norandrostenedione into the 16-?-hydroxylated product, resulting in the formation of about 0.35 g/L. Whole cells of strain RG9 itself did not convert norandrostenedione, indicating that metabolite formation is P450 BM3 M02 enzyme mediated. This study shows that R. erythropolis is a novel and interesting host for the heterologous expression of highly selective and active P450 BM3 M02 enzyme variants able to perform steroid bioconversions. PMID:25511824

  16. Reaction of Mycobacterium tuberculosis cytochrome P450 enzymes with nitric oxide.

    PubMed

    Ouellet, Hugues; Lang, Jérôme; Couture, Manon; Ortiz de Montellano, Paul R

    2009-02-10

    During the initial growth infection stage of Mycobacterium tuberculosis (Mtb), (*)NO produced by host macrophages inhibits heme-containing terminal cytochrome oxidases, inactivates iron/sulfur proteins, and promotes entry into latency. Here we evaluate the potential of (*)NO as an inhibitor of Mtb cytochrome P450 enzymes, as represented by CYP130, CYP51, and the two previously uncharacterized enzymes CYP125 and CYP142. Using UV-visible absorption, resonance Raman, and stopped-flow spectroscopy, we investigated the reactions of (*)NO with these heme proteins in their ferric resting form. (*)NO coordinates tightly to CYP125 and CYP142 (submicromolar) and with a lower affinity (micromolar) to CYP130 and CYP51. Anaerobic reduction of the ferric-NO species with sodium dithionite led to the formation of two spectrally distinct classes of five-coordinate ferrous-NO complexes. Exposure of these species to O(2) revealed that the ferrous-NO forms of CYP125 and CYP142 are labile and convert back to the ferric state within a few minutes, whereas ferrous CYP130 and CYP51 bind (*)NO almost irreversibly. This work clearly indicates that, at physiological concentrations (approximately 1 microM), (*)NO would impair the activity of CYP130 and CYP51, whereas CYP125 and CYP142 are more resistant. Selective P450 inhibition may contribute to the inhibitory effects of (*)NO on Mtb growth. PMID:19146393

  17. Cytochrome P450 gene CYP337 and heritability of fitness traits in the Glanville fritillary butterfly.

    PubMed

    de Jong, M A; Wong, S C; Lehtonen, R; Hanski, I

    2014-04-01

    Fitness-related life history traits often show substantial heritable genetic variation in natural populations, but knowledge of the genetic architecture of these traits is limited. In the Glanville fritillary butterfly, we measured the heritability of key life history traits in a large outdoor population cage during 2 years and generations and combined this experiment with an association study of a set of candidate genes. The genes were selected on the basis of previous genomic and transcriptomic studies and have been linked to the physiology and life history of this or other arthropod species. Heritability was high and significant for two traits, post-diapause larval development time (h(2) = 0.37) and lifetime egg (and larval) production (h(2) = 0.62); the latter is closely related to lifetime reproductive success and therefore fitness. We discovered a strong association between genetic polymorphism in the cytochrome P450 gene CYP337 and lifetime egg production, which accounted for 14% of the additive variance in egg production. This gene belongs to a group of cytochrome P450 genes that have a well-documented role in host plant adaptations in Lepidoptera and other insects and is likely to play an important role in the ecology and microevolution of the Glanville fritillary. This study provides a prime example of a gene associated with heritable fitness variation, measured under semi-natural ecological conditions. PMID:24552294

  18. Metalloporphyrins as biomimetic models for cytochrome p-450 in the oxidation of atrazine.

    PubMed

    Gotardo, Maria C A F; Moraes, Luiz A B de; Assis, Marilda D

    2006-12-27

    The aim of this work was to evaluate whether metalloporphyrin models could mimic the action of cytochrome P-450 in the oxidation of atrazine, a herbicide. The commercially available second-generation metalloporphyrins 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin metal(III) chloride [M(TDCPP)Cl] and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin metal(III) chloride [M(TFPP)Cl] (metal = Fe or Mn) and the oxidants iodosylbenzene and metachloroperbenzoic acid were employed in this study. Results showed that the metalloporphyrins used here can oxidize atrazine. Yields as high as 32% were obtained for the Mn(TFPP)Cl/PhIO system, which shows that these catalysts can mimic both the in vivo and the in vitro action of cytochrome P-450, with formation of the metabolites DEA and DIA. The formation of five other unknown products was also detected, but only one of them could be identified, since the other four were present in very low concentrations. The compound COA, identified by mass spectrometry, was the main product in most of the oxidation reactions. PMID:17177535

  19. Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol.

    PubMed

    Sandstrom, Pamela; Welch, William H; Blomquist, Gary J; Tittiger, Claus

    2006-11-01

    The final steps in the pheromone-biosynthetic pathway of the pine engraver beetle, Ips pini (Say) (Coleoptera: Scolytidae) are unknown, but likely involve myrcene (7-methyl-3-methylene-1,6-octadiene) hydroxylation to produce the aggregation pheromone component, ipsdienol (2-methyl-6-methylene-2,7-octadien-4-ol). We have isolated a full-length I. pini cDNA encoding a cytochrome P450, CYP9T2. The recovered cDNA is 1.83kb and the open reading frame encodes a 532 amino acid protein. CYP9T2 is regulated by the same physiological factors that induce pheromone production. Quantitative real-time PCR experiments showed that feeding on host phloem induced CYP9T2 expression in males, but not females, and that basal expression levels are highest in male midguts, similar to other I. pini pheromone-biosynthetic genes. Microsomes prepared from Sf9 cells co-expressing baculoviral-mediated recombinant CYP9T2 and housefly (Musca domestica) NADPH-cytochrome P450 reductase converted myrcene to ipsdienol. The product identified by coupled GC-MS was mostly (4R)-(-)-ipsdienol, an important aggregation pheromone component for western North American I. pini. These results are consistent with CYP9T2 encoding a myrcene hydroxylase that functions near the end of the pheromone-biosynthetic pathway. PMID:17046597

  20. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila

    PubMed Central

    Fu, Chengjie; Xiong, Jie; Miao, Wei

    2009-01-01

    Background Cytochrome P450 monooxygenases play key roles in the metabolism of a wide variety of substrates and they are closely associated with endocellular physiological processes or detoxification metabolism under environmental exposure. To date, however, none has been systematically characterized in the phylum Ciliophora. T. thermophila possess many advantages as a eukaryotic model organism and it exhibits rapid and sensitive responses to xenobiotics, making it an ideal model system to study the evolutionary and functional diversity of the P450 monooxygenase gene family. Results A total of 44 putative functional cytochrome P450 genes were identified and could be classified into 13 families and 21 sub-families according to standard nomenclature. The characteristics of both the conserved intron-exon organization and scaffold localization of tandem repeats within each P450 family clade suggested that the enlargement of T. thermophila P450 families probably resulted from recent separate small duplication events. Gene expression patterns of all T. thermophila P450s during three important cell physiological stages (vegetative growth, starvation and conjugation) were analyzed based on EST and microarray data, and three main categories of expression patterns were postulated. Evolutionary analysis including codon usage preference, site-specific selection and gene-expression evolution patterns were investigated and the results indicated remarkable divergences among the T. thermophila P450 genes. Conclusion The characterization, expression and evolutionary analysis of T. thermophila P450 monooxygenase genes in the current study provides useful information for understanding the characteristics and diversities of the P450 genes in the Ciliophora, and provides the baseline for functional analyses of individual P450 isoforms in this model ciliate species. PMID:19409101

  1. Cj1411c Encodes for a Cytochrome P450 Involved in Campylobacter jejuni 81-176 Pathogenicity

    PubMed Central

    Alvarez, Luis A. J.; Bourke, Billy; Pircalabioru, Gratiela; Georgiev, Atanas Y.; Knaus, Ulla G.; Daff, Simon; Corcionivoschi, Nicolae

    2013-01-01

    Cytochrome P450s are b-heme-containing enzymes that are able to introduce oxygen atoms into a wide variety of organic substrates. They are extremely widespread in nature having diverse functions at both biochemical and physiological level. The genome of C. jejuni 81-176 encodes a single cytochrome P450 (Cj1411c) that has no close homologues. Cj1411c is unusual in its genomic location within a cluster involved in the biosynthesis of outer surface structures. Here we show that E. coli expressed and affinity-purified C. jejuni cytochrome P450 is lipophilic, containing one equivalent Cys-ligated heme. Immunoblotting confirmed the association of cytochrome P450 with membrane fractions. A Cj1411c deletion mutant had significantly reduced ability to infect human cells and was less able to survive following exposure to human serum when compared to the wild type strain. Phenotypically following staining with Alcian blue, we show that a Cj1411c deletion mutant produces significantly less capsular polysaccharide. This study describes the first known membrane-bound bacterial cytochrome P450 and its involvement in Campylobacter virulence. PMID:24086558

  2. Assessment of cytochrome P450 sequences offers a useful tool for determining genetic diversity in higher plant species

    Microsoft Academic Search

    S. Yamanaka; E. Suzuki; M. Tanaka; Y. Takeda; J. A. Watanabe; K. N. Watanabe

    2003-01-01

    To investigate and develop new genetic tools for assessing genome-wide diversity in higher plant-species, polymorphisms of gene analogues of mammalian cytochrome P450 mono-oxygenases were studied. Data mining on Arabidopsis thaliana indicated that a small number of primer-sets derived from P450 genes could provide universal tools for the assessment of genome-wide genetic diversity in diverse plant species that do not have

  3. Involvement of cytochrome P450 3A4 in N-dealkylation of buprenorphine in human liver microsomes

    Microsoft Academic Search

    Christelle Iribarne; Daniel Picart; Yvonne Dréano; Jean-Pierre Bail; François Berthou

    1997-01-01

    Buprenorphine is a long acting analgesic of the opiate family. Recently, it has been proposed for the opioid dependency treatment at a large scale. The drug is extensively metabolized by the hepatic cytochrome P450 in man, yielding a N-dealkylated metabolite, norbuprenorphine. The specific forms of P450 involved in this oxidative N-demethylation were examined in a panel of 18 human liver

  4. Fusion protein bilayer fabrication composed of recombinant azurin/cytochrome P450 by the sortase-mediated ligation method.

    PubMed

    Lee, Taek; Min, Junhong; Hirakawa, Hidehiko; Nagamune, Teruyuki; Choi, Jeong-Woo

    2014-08-01

    Recently, the fabrication of protein bilayer has been required for the development of protein or enzyme complex formation. In the present study, we fabricated a fusion protein bilayer composed of recombinant azurin-cytochrome P450, which was synthesized by a site-specific sortase-mediated ligation method. The Pseudomonas aeruginosa azurin was modified by DNA recombinant technique, for enzymatic ligation and immobilization. The Pseudomonas putida cytochrome P450 was also modified for enzymatic ligation. The recombinant metalloproteins were conjugated via the sortase A. The conjugation was confirmed by SDS-PAGE and UV-vis. Then, the prepared fusion protein was immobilized on Au substrate, by the self-assembly method. The Azu-P450 (recombinant azurin-cytochrome P450) fusion protein layer was confirmed by AFM (Atomic Force Microscopy) and SERS (Surface-enhanced Raman Spectroscopy), to confirm the fusion protein bilayer orientation. Moreover, the electrochemical property of Azu-P450 was observed by cyclic voltammetry (CV). As a result, the Azu-P450 fusion protein bilayer shows good orientation on the Au substrate. Also, the original redox property of this fusion protein bilayer has been well maintained. The proposed fusion protein bilayer can. PMID:24924834

  5. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes

    PubMed Central

    2012-01-01

    Background Cytochrome P450 proteins (CYPs) play diverse and pivotal roles in fungal metabolism and adaptation to specific ecological niches. Fungal genomes encode extremely variable “CYPomes” ranging from one to more than 300 CYPs. Despite the rapid growth of sequenced fungal and oomycete genomes and the resulting influx of predicted CYPs, the vast majority of CYPs remain functionally uncharacterized. To facilitate the curation and functional and evolutionary studies of CYPs, we previously developed Fungal Cytochrome P450 Database (FCPD), which included CYPs from 70 fungal and oomycete species. Here we present a new version of FCPD (1.2) with more data and an improved classification scheme. Results The new database contains 22,940 CYPs from 213 species divided into 2,579 clusters and 115 clans. By optimizing the clustering pipeline, we were able to uncover 36 novel clans and to assign 153 orphan CYP families to specific clans. To augment their functional annotation, CYP clusters were mapped to David Nelson’s P450 databases, which archive a total of 12,500 manually curated CYPs. Additionally, over 150 clusters were functionally classified based on sequence similarity to experimentally characterized CYPs. Comparative analysis of fungal and oomycete CYPomes revealed cases of both extreme expansion and contraction. The most dramatic expansions in fungi were observed in clans CYP58 and CYP68 (Pezizomycotina), clans CYP5150 and CYP63 (Agaricomycotina), and family CYP509 (Mucoromycotina). Although much of the extraordinary diversity of the pan-fungal CYPome can be attributed to gene duplication and adaptive divergence, our analysis also suggests a few potential horizontal gene transfer events. Updated families and clans can be accessed through the new version of the FCPD database. Conclusions FCPD version 1.2 provides a systematic and searchable catalogue of 9,550 fungal CYP sequences (292 families) encoded by 108 fungal species and 147 CYP sequences (9 families) encoded by five oomycete species. In comparison to the first version, it offers a more comprehensive clan classification, is fully compatible with Nelson’s P450 databases, and has expanded functional categorization. These features will facilitate functional annotation and classification of CYPs encoded by newly sequenced fungal and oomycete genomes. Additionally, the classification system will aid in studying the roles of CYPs in the evolution of fungal adaptation to specific ecological niches. PMID:23033934

  6. Interaction of Polycyclic Aromatic Hydrocarbons with Human Cytochrome P450 1B1 in Inhibiting Catalytic Activity

    PubMed Central

    Shimada, Tsutomu; Murayama, Norie; Tanaka, Katsuhiro; Takenaka, Shigeo; Imai, Yoshio; Hopkins, Nancy E.; Foroozesh, Maryam K.; Alworth, Willam L.; Yamazaki, Hiroshi; Guengerich, F. Peter; Komori, Masayuki

    2009-01-01

    Eleven polycyclic aromatic hydrocarbons (PAHs) and 14 acetylenic PAHs and biphenyls were used to analyze interactions with cytochrome P450 (P450) 1B1 in inhibiting catalytic activity, using 7-ethoxyresorufin O-deethylation (EROD) as a model reaction. Most of the chemicals examined were direct inhibitors of P450 1B1 except for 4-(1-propynyl)biphenyl, a mechanism-based inhibitor. In the case of direct inhibition of EROD activity {15 of 24 chemicals, e.g. benzo[a]pyrene, 1-(1-propynyl)pyrene, and 3-(1-propynyl)phenanthrene}, restoration of the EROD activity occurred with increasing incubation time, and kinetic analysis showed that EROD Km values were higher with these inhibitors at initial stages of incubation but became lower with increasing incubation time. With the other 9 chemicals, the Km values for P450 1B1-mediated EROD increased during the incubations. Acetylenic inhibitors, but not the 11 PAHs, induced reverse type I spectral changes with P450 1B1 and the low dissociation constants (Ks) suggested a role for such interaction in the inhibition of catalytic activity. Studies of quenching of P450 1B1-derived fluorescence with inhibitors demonstrated that acetylenic inhibitors and PAHs interacted rapidly with P450 1B1, with Kd values <10 ?M. However, studies of quenching of inhibitor-derived fluorescence with P450 1B1 showed these interactions to be different, i.e. B[a]P interacted with P450 1B1 more slowly. Molecular docking of P450 1B1, based on P450 1A2 crystal structure, suggested that there are clear differences in the interaction of PAH inhibitors with P450 1B1 and 1A2 and that these differences may explain why PAH inhibitors inhibit P450 1 enzymes by different mechanisms. The results suggest that P450 1B1 interacts with synthetic polycyclic aromatic acetylenes and PAHs in different ways, depending on the chemicals, and that these differences in interactions may explain how these chemicals inhibit P450 activities by different mechanisms. PMID:19548353

  7. Human Cytochrome P450 2E1: Functional Comparison to Cytochrome 2A13 and 2A6

    E-print Network

    Blevins, Melanie

    2008-05-05

    , and CYP2A6. Refrences 1 Rendic, S. and Di Carlo, F. J. (197) Human cytochrome P450 enzymes: a status report sumarizing their eactions, ubstrates, inducers, and inhibitors. Drug Metab Rev 29, 413-580 2 Kop, D. ., Laethm, C. L. and Tierny, D. J...: Substrate Overlap nd Diversity 16 CYP2A6 19 213 21 CYP2E1 23 Enzyme Kinetics 25 Refrences 28 Chapter 2. Project Goals, Hypothesi, and Design 37 Project Goals and ypothesis 37 roject Design 38...

  8. Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills

    SciTech Connect

    Lee, Richard F.; Anderson, Jack W.

    2005-07-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to higher order biological effects, e.g. toxicity, lesions, reproductive failure.

  9. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5?L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes. PMID:22876969

  10. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity.

    PubMed

    Kawaguchi-Suzuki, Marina; Frye, Reginald F; Zhu, Hao-Jie; Brinda, Bryan J; Chavin, Kenneth D; Bernstein, Hilary J; Markowitz, John S

    2014-10-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities. PMID:25028567

  11. Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency

    SciTech Connect

    Meier, U.T.; Meyer, U.A.

    1987-12-15

    The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated by immunoinhibition and immunoprecipitation of microsomal (S)-mephenytoin 4-hydroxylation activity and by the recognition by anti-LKM2 antibodies of a single (/sup 125/I)-protein band on immunoblots of human liver microsomes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing. The cytochrome P-450 recognized by anti-LKM2 antibodies was immunopurified from microsomes derived from livers of extensive (EM) or poor metabolizers (PM) of (S)-mephenytoin. Comparison of the EM-type cytochrome P-450 to that isolated from PM livers revealed no difference in regard to immuno-cross-reactivity, molecular weight, isoelectric point, relative content in microsomes, two-dimensional tryptic peptide maps, one-dimensional peptide maps with three proteases, amino acid composition, and amino-terminal protein sequence. Finally, the same protein was precipitated from microsomes prepared from the liver biopsy of a subject phenotyped in vivo as a poor metabolizer of mephenytoin. These data strongly suggest that the mephenytoin hydroxylation deficiency is caused by a minor structural change leading to a functionally altered cytochrome P-450 isozyme.

  12. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    DOEpatents

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  13. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    PubMed Central

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at ?330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s?1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  14. Directed evolution of the actinomycete cytochrome P450moxA (CYP105) for enhanced activity.

    PubMed

    Kabumoto, Hiroki; Miyazaki, Kentaro; Arisawa, Akira

    2009-09-01

    Actinomycete cytochrome P450 from Nonomuraea recticatena NBRC 14525 (P450moxA) catalyzes the hydroxylation of a broad range of substrates, including fatty acids, steroids, and various aromatic compounds. Hence, the enzyme is potentially useful in medicinal applications, but the activity is insufficient for practical use. Here we applied directed evolution to enhance the activity. A random mutagenesis library was screened using 7-ethoxycoumarin as a substrate to retrieve 17 variants showing >2-fold activities. Twenty-five amino acid substitutions were found in the variants, of which five mutations were identified to have the largest effects (Q87W, T115A, H132L, R191W, and G294D). These mutations additively increased the activity; the quintet mutant had 20-times the activity of the wildtype. These five single mutations also increased in activity toward structurally distinct substrates (diclofenac and naringenin). Based on the three-dimensional structure of the enzyme, we discerned that mutations in the substrate recognition site improved the activity, which was substrate dependent; mutations apart from the active site improved the activity as well as the substrates did. PMID:19734686

  15. Molecular cloning and characterization of a cytochrome P450 in sanguinarine biosynthesis from Eschscholzia californica cells.

    PubMed

    Takemura, Tomoya; Ikezawa, Nobuhiro; Iwasa, Kinuko; Sato, Fumihiko

    2013-07-01

    Benzophenanthridine alkaloids, such as sanguinarine, are produced from reticuline, a common intermediate in benzylisoquinoline alkaloid biosynthesis, via protopine. Four cytochrome P450s are involved in the biosynthesis of sanguinarine from reticuline; i.e. cheilanthifoline synthase (CYP719A5; EC 1.14.21.2.), stylopine synthase (CYP719A2/A3; EC 1.14.21.1.), N-methylstylopine hydroxylase (MSH) and protopine 6-hydroxylase (P6H; EC 1.14.13.55.). In this study, a cDNA of P6H was isolated from cultured Eschscholzia californica cells, based on an integrated analysis of metabolites and transcript expression profiles of transgenic cells with Coptis japonica scoulerine-9-O-methyltransferase. Using the full-length candidate cDNA for P6H (CYP82N2v2), recombinant protein was produced in Saccharomyces cerevisiae for characterization. The microsomal fraction containing recombinant CYP82N2v2 showed typical reduced CO-difference spectra of P450, and production of dihydrosanguinarine and dihydrochelerythrine from protopine and allocryptopine, respectively. Further characterization of the substrate-specificity of CYP82N2v2 indicated that 6-hydroxylation played a role in the reaction. PMID:22421633

  16. Danazol Inhibits Cytochrome P450 2J2 Activity in a Substrate-independent Manner.

    PubMed

    Lee, Eunyoung; Wu, Zhexue; Shon, Jong Cheol; Liu, Kwang-Hyeon

    2015-08-01

    Cytochrome P450 2J2 (CYP2J2) is an enzyme responsible for the metabolism of endogenous substrates including arachidonic acid, as well as therapeutic drugs such as albendazole, astemizole, ebastine, and terfenadine. Selective inhibitors of CYP2J2 are essential for P450 reaction phenotyping studies. To find representative CYP2J2 index inhibitors, we evaluated the inhibitory potential of danazol, hydroxyebastine, telmisartan, and terfenadone against CYP2J2 activity for four representative CYP2J2 substrates (albendazole, astemizole, ebastine, and terfenadine) using recombinant CYP2J2. Of these four CYP2J2 inhibitors, danazol strongly inhibited CYP2J2-mediated albendazole, astemizole, ebastine, and terfenadine metabolism in a substrate-independent manner, with IC50 values of 0.05, 0.07, 0.18, and 0.34 ?M, respectively. Danazol noncompetitively inhibited CYP2J2-mediated astemizole O-demethylation activities with a Ki value of 0.06 ?M. Terfenadone strongly inhibited CYP2J2-mediated albendazole, astemizole, and terfenadine metabolism (IC50 < 0.21 ?M), whereas it showed weak inhibition against CYP2J2-catalyzed ebastine hydroxylase activity (IC50 = 6.04 ?M). Telmisartan had no inhibitory effect on CYP2J2-mediated ebastine and terfenadine hydroxylation (IC50 > 20 ?M). Taken together, these data suggest that danazol may be used as a CYP2J2 index inhibitor in reaction phenotyping studies. PMID:26048912

  17. Identification of a Cyclosporine-Specific P450 Hydroxylase Gene through Targeted Cytochrome P450 Complement (CYPome) Disruption in Sebekia benihana

    PubMed Central

    Lee, Mi-Jin; Kim, Hyun-Bum; Yoon, Yeo Joon; Han, Kyuboem

    2013-01-01

    It was previously proposed that regio-specific hydroxylation of an immunosuppressive cyclosporine (CsA) at the 4th N-methyl leucine is mediated by cytochrome P450 hydroxylase (CYP) in the rare actinomycete Sebekia benihana. This modification is thought to be the reason for the hair growth-promoting side effect without the immunosuppressive activity of CsA. Through S. benihana genome sequencing and in silico analysis, we identified the complete cytochrome P450 complement (CYPome) of S. benihana, including 21 CYPs and their electron transfer partners, consisting of 7 ferredoxins (FDs) and 4 ferredoxin reductases (FDRs). Using Escherichia coli conjugation-based S. benihana CYPome-targeted disruption, all of the identified CYP, FD, and FDR genes in S. benihana were individually inactivated. Among the 32 S. benihana exconjugant mutants tested, only a single S. benihana CYP mutant, ?CYP-sb21, failed to exhibit CsA hydroxylation activity. The hydroxylation was restored by CYP-sb21 gene complementation. Since all S. benihana FD and FDR disruption mutants maintained CsA hydroxylation activity, it can be concluded that CYP-sb21, a new member of the bacterial CYP107 family, is the only essential component of the in vivo regio-specific CsA hydroxylation process in S. benihana. Moreover, expression of an extra copy of the CYP-sb21 gene increased CsA hydroxylation in wild-type S. benihana and an NADPH-enriched Streptomyces coelicolor mutant, by 2-fold and 1.5-fold, respectively. These results show for the first time that regio-specific hydroxylation of CsA is carried out by a specific P450 hydroxylase present in S. benihana, and they set the stage for the biotechnological application of regio-specific CsA hydroxylation through heterologous CYP-sb21 expression. PMID:23354713

  18. Repression of Hepatic Cytochrome P450 2D Expression in Mice during Babesia microti Infection

    PubMed Central

    SHIMAMOTO, Yoshinori; WATANABE, Kensuke; IKADAI, Hiromi; OKAMURA, Masashi; ISHIZUKA, Mayumi

    2014-01-01

    ABSTRACT To examine the effect of Babesia infection on the level of the drug-metabolizing enzyme hepatic cytochrome P450 (CYP) 2D, we intraperitoneally inoculated Babesia microti into male ICR mice. CYP2D protein and CYP2D9 mRNA were significantly decreased at 12 days after infection with B. microti. The activity of bunitrolol 4-hydroxylase, which is catalyzed by CYP2D, was also significantly decreased. The mRNA levels of transcriptional regulators of CYP2D9, hepatocyte nuclear factor 4? and signal transducer and activator of transcription 5b, were markedly suppressed. These results suggest that Babesia infection represses CYP2D expression in the mouse liver. The decline in CYP2D-dependent drug metabolism might be involved in the incidence of adverse drug reactions in patients with babesiosis. PMID:24784440

  19. In vivo cytochrome P450 drug metabolizing enzyme characterization using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yanfang; Bachmann, Kenneth A.; Cameron, Brent D.

    2003-07-01

    The development of a rapid, inexpensive, and accurate in vivo phenotyping methodology for characterizing drug-metabolizing phenotypes with reference to the cytochrome P450 (CYP450) enzymes would be very beneficial. In terms of application, in the wake of the human genome project, considerable interest is focused on the development of new drugs whose uses will be tailored to specific genetic polymorphisms, and on the individualization of dosing regimens that are also tailored to meet individual patient needs depending upon genotype. In this investigation, chemical probes for CYP450 enzymes were characterized and identified with Raman spectroscopy. Furthermore, gold-based metal colloid clusters were utilized to generate surface enhanced Raman spectra for each of the chemical probes. Results will be presented demonstrating the ability of SERS to identify minute quantities of these probes on the order needed for in vivo application.

  20. Evaluation on activity of cytochrome p450 enzymes in turbot via a probe drug cocktail.

    PubMed

    Chang, Zhi-Qiang; Li, Jian; Zhai, Qian-Qian

    2014-12-01

    Cytochrome P450s (CYPs) are the main catalytic enzymes for metabolism by a variety of endogenous and exogenous substrates in mammals, fish, insects, etc. We evaluated the application of a multidrug cocktail on changes in CYP1, CYP2, and CYP3 activity in Turbot Scophthalmus maximus. The probe drugs were a combination of caffeine (5 mg/kg body weight), dapsone (5 mg/kg), and chlorzoxazone (10 mg/kg). After a single intraperitoneal injection of the cocktail, the concentration of all three probe drugs in the plasma increased quickly to a peak and then decreased gradually over 24 h. Pharmacokinetic profiles of the three probe drugs were determined using a noncompartmental analysis, and the typical parameters were calculated. In the assay for CYP induction, pretreatment with rifampicin significantly reduced the typical pharmacokinetic metrics for caffeine and chlorzoxazone, but not dapsone, indicating that the activity of CYP1 and CYP2 in turbot were induced by rifampicin. PMID:25369285

  1. The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation

    PubMed Central

    Miura, Mai; Ito, Kensuke; Hayashi, Maiko; Nakajima, Motowo; Tanaka, Tohru; Ogura, Shun-ichiro

    2015-01-01

    Of late, numerous prodrugs are widely used for therapy. The hemeprotein cytochrome P450 (CYP) catalyzes the activation of prodrugs to form active metabolites. Therefore, the activation of CYP function might allow the use of lower doses of prodrugs and decrease toxicity. We hypothesized that the addition of 5-aminolevulinic acid (ALA), a precursor in the porphyrin biosynthetic pathway, enhances the synthesis of heme, leading to the up-regulation of CYP activity. To test this hypothesis, we treated a human gastric cancer cell line with ALA and determined the effect on CYP-dependent prodrug activation. For this purpose, we focused on the anticancer prodrug tegafur, which is converted to its active metabolite 5-fluorouracil (5-FU) mainly by CYP2A6. We show here that ALA increased CYP2A6-dependent tegafur activation, suggesting that ALA elevated CYP activity and potentiated the activation of the prodrug. PMID:26181717

  2. Interactions between the cytochrome P450 system and the second-generation antipsychotics

    PubMed Central

    Prior, Trevor I.; Baker, Glen B.

    2003-01-01

    Awareness of the metabolism of second-generation antipsychotics by the cytochrome P450 (CYP) system can inform the clinician about how to avoid and manage drug–drug interactions involving these enzymes. Clozapine is metabolized primarily by CYP1A2, with additional contributions by CYP2C19, CYP2D6 and CYP3A4. Risperidone is metabolized primarily by CYP2D6 and to a lesser extent by CYP3A4. Olanzapine is metabolized primarily by CYP1A2 and to a lesser extent by CYP2D6. Quetiapine and ziprasidone are metabolized by CYP3A4. At the usual clinical doses, these drugs appear not to significantly affect the metabolism of other medications. There is, however, a lack of in vivo metabolic data, especially for the 3 newest second-generation antipsychotics: olanzapine, quetiapine and ziprasidone. PMID:12670127

  3. Expression of a mammalian PCB-metabolizing cytochrome P-450 in Nicotiana tabacum

    SciTech Connect

    Wall, V.D.; Galbraith, D.W.; Halpert, J.R.; Bourque, D.P. (Univ. of Arizona, Tucson (United States))

    1991-05-01

    Polychlorinated biphenyls (PCBs) are resistant to metabolism in most animal species. The dog possesses the unique ability to metabolize and eliminate certain PCB congeners, as a result of the activity of the cytochrome P-450 isozyme PBD-2. An expressible cDNA coding for PBD-2 has been introduced into the genome of tobacco plants. PBD-2 cDNA and a screenable marker gene coding for neomycin phosphotransferase were introduced into tobacco leaf disks using a binary Agrobacterium tumefaciens vector system. Southern and Western blot analyses have confirmed chromosomal integration of the cDNA and expression of the PBD-2 polypeptide. Differential centrifugation and Western blot analyses have shown the PBD-2 protein to be associated with a membrane fraction in transgenic tobacco leaf homogenates. The authors goal is to develop transgenic plants in which the PBD-2 protein metabolizes PCBs, thus providing a novel method for bioremediation of PCB-contaminated soils.

  4. Heterologous expression and functional characterization of the NADPH-cytochrome P450 reductase from Capsicum annuum.

    PubMed

    Lee, Ga-Young; Kim, Hyun Min; Ma, Sang Hoon; Park, Se Hee; Joung, Young Hee; Yun, Chul-Ho

    2014-09-01

    Two NADPH-cytochrome P450 reductase (CPR) genes (CaCPR1 and CaCPR2) were isolated from hot pepper (Capsicum annuum L. cv. Bukang). At the red ripe stage, the expression level of CaCPR1 was more than 6-fold greater than that in leaves or flowers. It gradually increased during fruit ripening. The CaCPR2 gene seemed to be expressed constitutively in all of the tested tissues. To investigate the enzymatic properties of CaCPR1, the cDNA of CaCPR1 was heterologously expressed in Escherichia coli without any modification of amino acid sequences, and CaCPR1 was purified. The enzymatic properties of CaCPR1 were confirmed using cytochrome c and cytochrome b5 as protein substrates. The CaCPR1 could support human CYP1A2-catalyzed reaction. It also reduced tetrazolium salts and ferricyanide. These results show that CaCPR1 is the major CPR in most hot pepper tissues. It is suggested that the CaCPR1 can be used a prototype for studying biological functions and biotechnological applications of plant CPRs. PMID:24935229

  5. Cytochrome P450 reductase-mediated anaerobic biotransformation of ethanol to 1-hydroxyethyl-free radicals and acetaldehyde.

    PubMed

    Díaz Gómez, M I; Castro, G D; de Layño, A M; Costantini, M H; Castro, J A

    2000-11-23

    The ability of cytochrome P450 reductase to metabolize ethanol (EtOH) to acetaldehyde (AC) and 1-hydroxyethyl free radicals (1HEt) in anaerobic media was studied. Determination of AC was made by GC-FID analysis of the head space of incubation mixtures. The formation of 1HEt was established by GC-MS analysis of the adduct formed between the radical and the spin trap PBN. Results showed that pure human P450 reductase is able to biotransform EtOH to AC and 1HEt in a NADPH-dependent process under an oxygen-free nitrogen atmosphere. Pure FAD in the presence of NADPH was also able to generate AC and 1HEt from the alcohol. Anaerobic incubation mixtures containing either rat liver microsomes or pure nuclei were also able to biotransform EtOH to AC and 1HEt in the presence of NADPH. These processes were inhibited by antibody against rat liver microsomal P450 reductase. Results suggest that semiquinone forms of the flavin in P450 reductase may biotransform EtOH. These reactions might be of some significance in tissues where the P450 reductase is present in the absence of specific forms of cytochrome P450 known to be involved in EtOH metabolism (e.g. CYP2E1). However the toxicological significance of this enzymatic process remains to be established. PMID:11118675

  6. Melatonin and Steroid Hormones Activate Intermembrane CU,ZN-Superoxide Dismutase by Means of Mitochondrial Cytochrome P450

    PubMed Central

    IÑARREA, Pedro; CASANOVA, Alvaro; ALAVA, Maria Angeles; ITURRALDE, María; CADENAS, Enrique

    2011-01-01

    Melatonin and steroid hormones are cytochrome P450 (CYP or P450; EC 1.14.14.1) substrates that have antioxidant properties and mitochondrial protective activities. IMS (Mitochondrial intermembrane space) SOD1 (Cu,Zn-superoxide dismutase) is activated following oxidative modification of its critical thiol moieties by superoxide anion (O2.? ). This study was aimed at investigating the potential association between the hormonal protective antioxidant actions in mitochondria and regulation of IMS SOD1 activity. Melatonin, testosterone, dihydrotestosterone, estradiol, and vitamin D induced a sustained activation over time of SOD1 in intact mitochondria showing a bell-shaped enzyme activation dose-response with a threshold at 50 nM and a maximum effect at 1 ?M concentration. Enzyme activation was not affected by furafylline, but it was inhibited by omeprazole, ketoconazole, and tiron, thereby supporting the occurrence of a mitochondrial P450 activity and O2.? requirements. Mitochondrial P450–dependent activation of IMS SOD1 prevented O2.? -induced loss of aconitase activity in intact mitochondria respiring at state 3 respiration. Optimal protection of aconitase activity was observed at 0.1 ?M P450 substrate concentration evidencing a likely oxidative effect on the mitochondrial matrix by higher substrate concentrations. Likewise, enzyme activation mediated by mitochondrial P450 activity delayed CaCl2-induced loss of trans-membrane potential, and decreased cytochrome c release. Omeprazole and ketoconazole abrogated both protecting mitochondrial functions promoted by melatonin and steroid hormones. PMID:21397009

  7. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus is involved in gravitropic signal transduction. (Partially support by NSF: 0618506 to SEW)

  8. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism.

    PubMed Central

    Shedlofsky, S I; Israel, B C; McClain, C J; Hill, D B; Blouin, R A

    1994-01-01

    In experimental animals, injection of gram-negative endotoxin (LPS) decreases hepatic cytochrome P450-mediated drug metabolism. To evaluate this phenomenon in a human model of gram-negative sepsis, LPS was administered on two consecutive days to healthy male volunteers during which time a cocktail of antipyrine (AP-250 mg), hexobarbital (HB-500 mg), and theophylline (TH-150 mg) was ingested and the apparent oral clearance of each drug determined. Each subject had a control drug clearance study with saline injections. In the first experiment, six subjects received the drug cocktail 0.5 h after the first dose of LPS. In the second experiment, another six subjects received the drug cocktail 0.5 h after the second dose of LPS. In both experiments, LPS caused the expected physiologic responses of inflammation including fever with increases in serum concentrations of TNF alpha, IL-1 beta, IL-6, and acute phase reactants. In the first experiment, only minor decreases in clearances of the probe drugs were observed (7-12%). However in the second experiment, marked decreases in the clearances of AP (35, 95% CI 18-48%), HB (27, 95% CI 14-34%), and TH (22, 95% CI 12-32%) were seen. The decreases in AP clearance correlated with initial peak values of TNF alpha (r = 0.82) and IL-6 (r = 0.86). These data show that in humans the inflammatory response to even a very low dose of LPS significantly decreases hepatic cytochrome P450-mediated drug metabolism and this effect evolves over a 24-h period. It is likely that septic patients with much higher exposures to LPS have more profound inhibition of drug metabolism. PMID:7989576

  9. Effect of age on hepatic cytochrome P450 of Ross 708 broiler chickens.

    PubMed

    Hu, S X

    2013-05-01

    Age has significant impact on hepatic cytochrome P450 (CYP450) systems in animals. Ross 708 broiler chicken is a breed of chicken with fast growth characteristics. Cytochrome P450 in the livers of Ross 708 broiler chicken of different ages has been investigated. The birds were raised under standard husbandry conditions. A certain number of chickens was randomly sampled weekly for liver collection from d 1 to 56 posthatch. The chicken body and liver weights were recorded. The chicken livers were processed for liver microsomes though a multiple-step procedure at low temperature. Total CYP450 content in chicken liver homogenates and liver microsomes was measured using a UV/visible spectroscopic method. The enzymatic activities of CYP450 in the chicken liver microsomes were determined through incubation of CYP450 isoform substrates followed by measurement of formation of their metabolites. The chicken showed an opposite age pattern in hepatic CYP450 content and activities compared with most mammals. The hepatic CYP450 content and activities of chicken at d 1 posthatch were higher than at other ages. The total hepatic CYP450 content in chickens at d 1 posthatch was more than twice the average hepatic value of the chickens at d 7 to 28. This high CYP450 fell quickly in the first week posthatch and slightly rose from d 28 to 56. Hepatic CYP450 activities of CYP1A, 3A, 2C, 2D, and 2H were much higher in the chicken at d 1 posthatch. The differences of these enzymatic activities between d 1 and other ages of chicken were CYP450 isoform dependent. This result suggests that embryonic development of chicken livers has a significant impact on the age profile of hepatic CYP450 content and activities of posthatch chickens. PMID:23571338

  10. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).

    PubMed Central

    Funk, C.; Croteau, R.

    1993-01-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. PMID:12231778

  11. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).

    PubMed

    Funk, C.; Croteau, R.

    1993-04-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. PMID:12231778

  12. Regulation of rat liver cytochrome P450j, a high affinity N-nitrosodimethylamine demethylase (NDMAD)

    SciTech Connect

    Thomas, P.E.; Bandiera, S.; Maines, S.L.; Ryan, D.E.; Levin, W.

    1987-05-01

    Purified IgG from sera of rabbits immunized with homogeneous P450j was absorbed to produce monospecific anti-P450j. Results using anti-P450j in ELISA show that rat liver microsomal P450j content decreases between 3 and 6 wks of age in both sexes. Several xenobiotics (Aroclor 1254, mirex and 3-methylcholanthrene) repressed P450j levels when administered to male rats. In contrast, hepatic levels of P450j were induced by isoniazid, dimethylsulfoxide, pyrazole, 4-methylpyrazole, ethanol and chemically-induced diabetes. P450j levels were measurable in kidney, whereas this isozyme was barely detectable in lung, ovaries and testes; however, extra-hepatic P450j was inducible by isoniazid. Between 80-90% of microsomal NDMAD was inhibited by anti-P450j whether the microsomes were isolated from untreated rats or animals administered inducers or repressors of P450j. Results obtained with the reconstituted system suggest that the remaining microsomal NDMAD resistant to antibody inhibition is the result of the inaccessibility of a certain proportion of P450j due to interference by NADPH-P450 reductase. P450j content and NDMAD activity correlated well in microsomes from rats of all treatment groups. The evidence indicates that P450j is the primary, and possibly only, microsomal catalyst of NDMAD at substrate concentrations relevant to hepatocarcinogenesis induced by NDMA.

  13. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    PubMed

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages. PMID:24488622

  14. Probing the Transmembrane Structure and Dynamics of Microsomal NADPH-cytochrome P450 oxidoreductase by Solid-State NMR

    PubMed Central

    Huang, Rui; Yamamoto, Kazutoshi; Zhang, Meng; Popovych, Nataliya; Hung, Ivan; Im, Sang-Choul; Gan, Zhehong; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-01-01

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is an essential redox partner of the cytochrome P450 (cyt P450) superfamily of metabolic enzymes. In the endoplasmic reticulum of liver cells, such enzymes metabolize ?75% of the pharmaceuticals in use today. It is known that the transmembrane domain of CYPOR plays a crucial role in aiding the formation of a complex between CYPOR and cyt P450. Here we present the transmembrane structure, topology, and dynamics of the FMN binding domain of CYPOR in a native membrane-like environment. Our solid-state NMR results reveal that the N-terminal transmembrane domain of CYPOR adopts an ?-helical conformation in the lipid membrane environment. Most notably, we also show that the transmembrane helix is tilted ?13° from the lipid bilayer normal, and exhibits motions on a submillisecond timescale including rotational diffusion of the whole helix and fluctuation of the helical director axis. The approaches and the information reported in this study would enable further investigations on the structure and dynamics of the full-length NADPH-cytochrome P450 oxidoreductase and its interaction with other membrane proteins in a membrane environment. PMID:24853741

  15. Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline.

    PubMed

    Kunze, K L; Trager, W F

    1993-01-01

    Biotransformation reactions catalyzed by human cytochrome P450 1A2 (P450 1A2) appear to play a significant role in both the metabolic clearance of drugs and the activation of environmental contaminants and drugs to toxic or carcinogenic species. Furafylline is a potent and selective inhibitor of P450 1A2 activity in human liver microsomes [Sesardic, D., Boobis, A., Murray, B., Murray, S., Segura, J., De La Torre, R., and Davies, D. (1990) Br. J. Clin. Pharmacol. 29, 651-663] which may be of great utility in defining the role of P450 1A2 in metabolic processes. We have investigated the hypothesis that furafylline is a mechanism-based inhibitor of P450 1A2. Key findings consistent with this hypothesis are the following: (1) Furafylline causes a time- and cofactor-dependent loss of P450 1A2 activity which does not return upon dialysis. (2) The loss of activity is associated with a reduction of P450 spectral content which is in turn proportional in amount to P450 1A2-associated catalytic activity in uninhibited microsomes from 7 individual livers. (3) The inactivation of P450 1A2 is characterized by a Ki of 23 microM, a kinact of 0.87 min-1 and a furafylline depletion-based partition ratio of approximately 3-6 metabolic events per inactivating event. (4) The processing of the C-8 methyl group of furaylline is involved in inactivation as demonstrated by the observation of a deuterium isotope effect of approximately 2.0 on kinact and no effect on Ki when the C-8 methyl group protons of furafylline are replaced with deuterium atoms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8292742

  16. Mechanism-based inactivation and reversibility: is there a new trend in the inactivation of cytochrome p450 enzymes?

    PubMed

    Blobaum, Anna L

    2006-01-01

    Recent studies with cytochrome P450 (P450) enzymes from the 2E and 2B subfamilies have shed light on what may be a new trend in the mechanism-based inactivation of P450s: reversibility. The reversible inactivation of P450-type enzymes was first reported in the mid-1990s by Dexter and Hager [Dexter AF and Hager LP (1995) J Am Chem Soc 117:817-818], who studied the transient heme N-alkylation of chloroperoxidase by allylbenzene and 1-hexyne. While characterizing small tert-butyl acetylenes as mechanism-based inactivators of P450s 2E1 and 2B4, Hollenberg and coworkers observed the reversible inactivation of an acetylene-inactivated T303A mutant of P450 2E1. The mechanism of reversibility was a combined product of the structure of the inactivator and the positioning of conserved amino acid residues, threonine 303 (alanine in the mutant) and glutamate 302, in the enzyme active site. Reversibility was also observed with both wild-type P450 2B4 and the T302A mutant of 2B4, although this inactivation and reversibility did not seem to depend on the T302 residue. Subsequent studies have attempted to elucidate the chemical/structural requirements of the inactivator in determining reversibility and have shown that both the size and the chemical nature of functional groups play an important role. At this time, reversibility has only been observed with P450 2E and 2B enzymes during their mechanism-based inactivation by terminal alkynes. Future studies with P450s from other subfamilies and structurally distinct inactivators will greatly aid our understanding of the molecular and chemical determinants of reversibility. PMID:16369051

  17. 2,2?,3,3?,6,6?-Hexachlorobiphenyl (PCB 136) Atropisomers Interact Enantioselectively with Hepatic Microsomal Cytochrome P450 Enzymes

    PubMed Central

    Kania-Korwel, Izabela; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim

    2008-01-01

    2,2?,3,3?,6,6?-Hexachlorobiphenyl (PCB 136) is a chiral and highly neurotoxic PCB congener of environmental relevance. (+)-PCB 136 was previously shown to be enriched in tissues from mice treated with racemic PCB 136. We investigated the spectral interactions of (+)-, (-)- and (±)-PCB 136 with mouse and rat hepatic microsomal cytochrome P450 (P450) enzymes to test the hypothesis that enantioselective binding to specific P450 enzymes causes the enrichment of (+)-PCB 136 in vivo. Hepatic microsomes prepared from C57BL/6 mice or Long Evans rats treated with ?-naphthoflavone or 3-methylcholanthrene, phenobarbital and dexamethasone (prototypical inducers of CYP1A, CYP2B and CYP3A, respectively) were used to determine first, if the (+)-PCB 136 atropisomer binds to hepatic microsomal P450 enzymes to a greater extent than does the (-)-PCB 136 atropisomer; and second, if P450 enzymes of one subfamily bind the two PCB 136 atropisomers more efficiently than do P450 enzymes of other subfamilies. Increasing concentrations of (+)-, (-)- or (±)-PCB 136 were added to hepatic microsomes and the difference spectrum and maximal absorbance change, a measure of PCB binding to P450 enzymes, were measured. A significantly larger absorbance change was observed with (+)-PCB 136 than with (-)-PCB 136 with all four hepatic microsomal preparations in mice and rats, indicating that (+)-PCB 136 interacted with microsomal P450 enzymes to a greater degree than did (-)-PCB 136. In addition, binding of the PCB 136 atropisomers was greatest in microsomes from PB-treated mice and rats, and was inhibited by CYP2B antibodies, indicating the involvement of CYP2B enzymes. Together these results suggest preferential binding of (+)-PCB 136 to P450 enzymes (such as CYP2B and CYP3A) in hepatic microsomes, an observation that may explain the enantioselective enrichment of the (+)-PCB 136 atropisomer in tissues of mice. PMID:18494506

  18. Ethylbenzene Induces Microsomal Oxygen Free Radical Generation: Antibody-Directed Characterization of the Responsible Cytochrome P450 Enzymes

    Microsoft Academic Search

    Sonia C. Serron; Neelam Dwivedi; Wayne L. Backes

    2000-01-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were

  19. ISOLATION AND CHARACTERIZATION OF THE ALKANE-INDUCIBLE NADPH-CYTOCHROME P-450 OXIDOREDUCTASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    The gene coding for the Candida tropicalis NADPH-cytochrome P-450 oxidoreductase (CPR, NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was isolated by immunoscreening of a C. tropicalis gtll expression library and colony hybridization of a C. tropicalis genomic library. he C. ...

  20. Fungal lactone ring opening of 6', 7'-dihydroxybergamottin diminishes cytochrome P450 3A4 inhibitory activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...

  1. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1.

    PubMed

    Brezna, Barbara; Kweon, Ohgew; Stingley, Robin L; Freeman, James P; Khan, Ashraf A; Polek, Bystrik; Jones, Richard C; Cerniglia, Carl E

    2006-07-01

    Mycobacterium vanbaalenii PYR-1 has the ability to degrade low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). In addition to dioxygenases, cytochrome P450 monooxygenases have been implicated in PAH degradation. Three cytochrome P450 genes, cyp151 (pipA), cyp150, and cyp51, were detected and amplified by polymerase chain reaction from M. vanbaalenii PYR-1. The complete sequence of these genes was determined. The translated putative proteins were > or = 80% identical to other GenBank-listed mycobacterial CYP151, CYP150, and CYP51. Genes pipA and cyp150 were cloned, and the proteins partially expressed in Escherichia coli as soluble heme-containing cytochrome P450s that exhibited a characteristic peak at 450 nm in reduced carbon monoxide difference spectra. Monooxygenation metabolites of pyrene, dibenzothiophene, and 7-methylbenz[alpha]anthracene were detected in whole cell biotransformations, with E. coli expressing pipA or cyp150 when analyzed by gas chromatography/mass spectrometry. The cytochrome P450 inhibitor metyrapone strongly inhibited the S-oxidation of dibenzothiophene. Thirteen other Mycobacterium strains were screened for the presence of pipA, cyp150, and cyp51 genes, as well as the initial PAH dioxygenase (nidA and nidB). The results indicated that many of the Mycobacterium spp. surveyed contain both monooxygenases and dioxygenases to degrade PAHs. Our results provide further evidence for the diverse enzymatic capability of Mycobacterium spp. to metabolize polycyclic aromatic hydrocarbons. PMID:16317545

  2. The Prostate 67:1029 ^1037 (2007) Cytochrome P450 2B6 is a Growth-Inhibitory and

    E-print Network

    Blumberg, Bruce

    2007-01-01

    The Prostate 67:1029 ^1037 (2007) Cytochrome P450 2B6 is a Growth-Inhibitory and Prognostic Factor for Prostate Cancer Jinpei Kumagai,1 Tetsuya Fujimura,1 Satoru Takahashi,1 * Tomohiko Urano,2 Tetsuo Ogushi,1, we examined CYP2B6 expression in human prostate tissues and prostate cancer. METHODS

  3. Cytochrome P450 site of metabolism prediction from 2D topological fingerprints using GPU accelerated probabilistic classifiers

    E-print Network

    Tyzack, Jonathan D.; Mussa, Hamse Y.; Williamson, Mark J.; Kirchmair, Johannes; Glen, Robert C.

    2014-05-27

    metabolism: a review. Xenobiotica; Fate Foreign Compounds Biol Syst 2005, 35(10-11):955–73. [http://www.ncbi. nlm.nih.gov/pubmed/16393855] 5. Tarcsay A, Keseru GM: In silico site of metabolism prediction of cytochrome P450-mediated biotransformations. Expert...

  4. Genetic polymorphism of cytochrome P450s in beagles: possible influence of CYP1A2 deficiency on toxicological evaluations

    Microsoft Academic Search

    H. Kamimura

    2006-01-01

    A number of human cytochrome P450 (CYP) isozymes have been shown to be genetically polymorphic, and extensive pharmaceutical studies have been conducted to characterize the clinical relevance of the polymorphism. Although the beagle is extensively used in the safety assessment studies of new drug candidates and agricultural chemicals, only a limited number of studies have been reported on the significance

  5. Effects of bovine cytochrome P450 single nucleotide polymorphism, forage type, and body condition on production traits in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relating single nucleotide polymorphisms (SNP) to cows with acceptable productivity could benefit cattle breeders especially in areas where tall fescue is the predominant forage. This study aimed to 1) identify SNPs in bovine cytochrome P450 3A28 (CYP3A28) and 2) determine associations between SNP g...

  6. Induction of cytochrome p?450 in the norway rat, rattus norvegicus, following exposure to potential environmental contaminants

    Microsoft Academic Search

    Raymond W. Nims; Ronald A. Lubet

    1995-01-01

    Cytochrome P?450 (CYP) induction (consisting of increases in cellular RNA and protein content and associated catalytic activities) occurs predominantly in the liver, but also in small intestine, lung, kidney, and placenta, of Norway rats (Rattus norvegicus.) exposed to certain types of potential environmental contaminants. The specific isoform(s) induced in the rat and the magnitudes of the increases observed depend upon

  7. (+)-Abscisic Acid 8?-Hydroxylase Is a Cytochrome P450 Monooxygenase1

    PubMed Central

    Krochko, Joan E.; Abrams, Garth D.; Loewen, Mary K.; Abrams, Suzanne R.; Cutler, Adrian J.

    1998-01-01

    Abscisic acid (ABA) 8?-hydroxylase catalyzes the first step in the oxidative degradation of (+)-ABA. The development of a robust in vitro assay has now permitted detailed examination and characterization of this enzyme. Although several factors (buffer, cofactor, and source tissue) were critical in developing the assay, the most important of these was the identification of a tissue displaying high amounts of in vivo enzyme activity (A.J. Cutler, T.M. Squires, M.K. Loewen, J.J. Balsevich [1997] J Exp Bot 48: 1787–1795). (+)-ABA 8?-hydroxylase is an integral membrane protein that is localized to the microsomal fraction in suspension-cultured maize (Zea mays) cells. (+)-ABA metabolism requires both NADPH and molecular oxygen. NADH was not an effective cofactor, although there was substantial stimulation of activity (synergism) when it was included at rate-limiting NADPH concentrations. The metabolism of (+)-ABA was progressively inhibited at O2 concentrations less than 10% (v/v) and was very low (less than 5% of control) under N2. (+)-ABA 8?-hydroxylase activity was inhibited by tetcyclacis (50% inhibition at 10?6 m), cytochrome c (oxidized form), and CO. The CO inhibition was reversible by light from several regions of the visible spectrum, but most efficiently by blue and amber light. These data strongly support the contention that (+)-ABA 8?-hydroxylase is a cytochrome P450 monooxygenase. PMID:9808729

  8. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    PubMed

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species. PMID:19444989

  9. Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule

    PubMed Central

    2010-01-01

    Background Different isoforms of Cytochrome P450 (CYP) metabolized different types of substrates (or drugs molecule) and make them soluble during biotransformation. Therefore, fate of any drug molecule depends on how they are treated or metabolized by CYP isoform. There is a need to develop models for predicting substrate specificity of major isoforms of P450, in order to understand whether a given drug will be metabolized or not. This paper describes an in-silico method for predicting the metabolizing capability of major isoforms (e.g. CYP 3A4, 2D6, 1A2, 2C9 and 2C19). Results All models were trained and tested on 226 approved drug molecules. Firstly, 2392 molecular descriptors for each drug molecule were calculated using various softwares. Secondly, best 41 descriptors were selected using general and genetic algorithm. Thirdly, Support Vector Machine (SVM) based QSAR models were developed using 41 best descriptors and achieved an average accuracy of 86.02%, evaluated using fivefold cross-validation. We have also evaluated the performance of our model on an independent dataset of 146 drug molecules and achieved average accuracy 70.55%. In addition, SVM based models were developed using 26 Chemistry Development Kit (CDK) molecular descriptors and achieved an average accuracy of 86.60%. Conclusions This study demonstrates that SVM based QSAR model can predict substrate specificity of major CYP isoforms with high accuracy. These models can be used to predict isoform responsible for metabolizing a drug molecule. Thus these models can used to understand whether a molecule will be metabolized or not. This is possible to develop highly accurate models for predicting substrate specificity of major isoforms using CDK descriptors. A web server MetaPred has been developed for predicting metabolizing isoform of a drug molecule http://crdd.osdd.net/raghava/metapred/. PMID:20637097

  10. Substrate and Reaction Specificity of Mycobacterium tuberculosis Cytochrome P450 CYP121

    PubMed Central

    Fonvielle, Matthieu; Le Du, Marie-Hélène; Lequin, Olivier; Lecoq, Alain; Jacquet, Mickaël; Thai, Robert; Dubois, Steven; Grach, Guillaume; Gondry, Muriel; Belin, Pascal

    2013-01-01

    Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn85, Phe168, and Trp182. The propensity of the cYY tyrosyl to point toward Arg386 was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy. PMID:23620594

  11. Supramolecular protein assembly supports immobilization of a cytochrome P450 monooxygenase system as water-insoluble gel

    PubMed Central

    Tan, Cheau Yuaan; Hirakawa, Hidehiko; Nagamune, Teruyuki

    2015-01-01

    Diverse applications of the versatile bacterial cytochrome P450 enzymes (P450s) are hampered by their requirement for the auxiliary proteins, ferredoxin reductases and ferredoxins, that transfer electrons to P450s. Notably, this limits the use of P450s as immobilized enzymes for industrial purposes. Herein, we demonstrate the immobilization of a bacterial P450 and its redox protein partners by supramolecular complex formation using a self-assembled heterotrimeric protein. Employment of homodimeric phosphite dehydrogenase (PTDH) for cross-linking “proliferating cell nuclear antigen-utilized protein complex of P450 and its two electron transfer-related proteins” (PUPPET) yielded a gelling PUPPET-PTDH system capable of regenerating NADH for electron supply owing to its phosphite oxidation activity. The protein gel catalyzed monooxygenation in the presence of phosphite and NAD+. The gel was completely water-insoluble and could be reused. This concept of oligomeric protein-insolubilized enzymes can be widely applied to various multienzymatic reactions such as cascade reactions and coupling reactions. PMID:25733255

  12. Cloning and characterization of bovine cytochrome P-450(11 beta) genes.

    PubMed

    Hashimoto, T; Morohashi, K; Omura, T

    1989-05-01

    We isolated 4 different clones of the P-450(11 beta) gene from a bovine genomic library. These genomic clones were highly homologous with each other. Two of the isolated clones were pseudogenes. Determination of its nucleotide sequences indicated that the bovine P-450(11 beta) gene is divided into 9 exons by 8 introns and that it is about 8.5 kb in total length. The number of exons and the locations of intron insertion into the P-450(11 beta) gene are identical with those in the case of P-450(SCC), but different from those of other microsomal P-450s. PMID:2753866

  13. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter.

    PubMed

    Reed, James R; Cruz, Albert Leo N Dela; Lomnicki, Slawo M; Backes, Wayne L

    2015-05-15

    Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ? 230°C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50°C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR·P450 complex. PMID:25817938

  14. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants

    PubMed Central

    Geisler, Katrin; Hughes, Richard K.; Sainsbury, Frank; Lomonossoff, George P.; Rejzek, Martin; Fairhurst, Shirley; Olsen, Carl-Erik; Motawia, Mohammed Saddik; Melton, Rachel E.; Hemmings, Andrew M.; Bak, Søren; Osbourn, Anne

    2013-01-01

    Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14?-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14?-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, ?-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate ?-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13?-epoxy-3?,16?-dihydroxy-oleanane (12,13?-epoxy-16?-hydroxy-?-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family—as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism. PMID:23940321

  15. Assessment of regional cytochrome P450 activities in rat liver slices using resorufin substrates and fluorescence confocal laser cytometry.

    PubMed Central

    Heinonen, J T; Sidhu, J S; Reilly, M T; Farin, F M; Omiecinski, C J; Eaton, D L; Kavanagh, T J

    1996-01-01

    Characterizing constitutive activities and inducibility of various cytochrome P450 isozymes is important for elucidating species and individual differences in susceptibility to many toxicants. Although expression of certain P450s has been studied in homogenized tissues, the ability to assess functional enzyme activity without tissue disruption would further our understanding of interactive factors that modulate P450 activities. We used precision-cut, viable rat liver slices and confocal laser cytometry to determine the regional enzyme activities of P450 isozymes in situ. Livers from control and beta-naphthoflavone (beta NF)-treated rats were sectioned with a Krumdieck tissue slicer into 250-microns thick sections. A slice perfusion chamber that mounts on the cytometer stage was developed to allow for successive measurement of region-specific P450-dependent O-dealkylation of 7-ethoxy-, 7-pentoxy-, and 7-benzyloxyresorufin (EROD, PROD, and BROD activity, respectively) in the same liver slice. Images of the accumulated fluorescent resorufin product within the tissue were acquired using a confocal laser cytometer in confocal mode. As expected, slices isolated from beta NF-treated rats showed high levels of centrilobular EROD activity compared to slices from control rats, whereas PROD and BROD activities remained at control levels. These techniques should allow for the accurate quantification of regional and cell-specific P450 enzyme activity and, with subsequent analysis of the same slice, the ability to correlate specific P450 mRNAs or other factors with enzymatic activity. Moreover, these techniques should be amenable to examination of similar phenomena in other tissues such as lung and kidney, where marked heterogeneity in cellular P450 expression patterns is also known to occur. Images Figure 1. Figure 2. Figure 3. Figure 3. Figure 4. Figure 4. Figure 5. Figure 6. PMID:8743442

  16. [Effects of vitamins deficiency on the cytochrome P450 inducibility in rats].

    PubMed

    Trusov, N V; Guseva, G V; Beketova, N A; Aksenov, I V; Avrent'eva, L I; Kravchenko, L V

    2014-01-01

    The purpose of the study was to determine multi-vitamin deficiency effects on the inducibility of main isoforms of cytochrome P450 in the rat liver. The study was carried out on 4 groups of Wistar rats. Rats of the 1st and 3rd group received semi-synthetic diets containing adequate (100% of recommended vitamin level) level of vitamins, the 2nd and 4th--the semi-synthetic diet containing vitamins in the amount of 20% from adequate level. The duration of the experiment was 4 weeks. During the last week indole-3-carbinol (I-3-C) in dose of 20 mg/kg body weight was added to the diet of the 3rd and 4th group of rats. Vitamin E content in liver and blood serum declined by 59 and 34%, respectively in rats which were fed vitamin-deficient diet (2nd group); vitamin A level decreased by 5 times in the liver, but was not changed in blood serum. Multi-vitamin deficiency in the diet led to the increase in the liver ethoxyresorufin O-dealkylase (EROD) activity of CYP1A1, methoxyresorufin O-dealkylase (MROD) activity of CYP1A2 and testosteron 6beta-hydroxylase (6beta-TG) activity of CYP3A by 11, 80 and 53%, respectively, and gene expression of CYP1A1, CYP1A2, CYP3A and AhR by 8,5; 1,6; 2,4 and 3,6 fold. In rats fed diet with adequate levels of vitamins (3rd group) I-3-C increased activity of EROD and MROD by 4,4 and 5,5 fold, and the expression of CYP1A1, CYP1A2 and AhR genes by 148; 3 and 3,5 fold compared to the parameters of the 1st group (without I-3-C). Multi-vitamin deficiency increased I-3-C-related induction of EROD activity and expression of CYP1A1 and CYP1A2 genes, but decreased I-3-C-related induction of the MROD activity. Thus, 5-fold reducing of vitamin content in rat diet lead to significant changes in activity and inducibility of cytochrome P450 of CYP1A and 3A family, which play a key role in the detoxification and metabolism of drugs. PMID:25300103

  17. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities

    PubMed Central

    Hanapi, N. A.; Ismail, S.; Mansor, S. M.

    2013-01-01

    Context: To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. Aims: This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. Methods and Material: The in vitro study was conducted using a high-throughput luminescence assay. Statistical Analysis: Statistical analysis was conducted using one-way ANOVA and Dunnett's test with P < 0.05 vs. control. The IC50 values were calculated using the GraphPad Prism® 5 (Version 5.01, GraphPad Software, Inc., USA). Results: Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC50 values of 9.70±4.80 and 41.32±6.74 ?M respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. Vmax values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 ?M luciferin formed/pmol/min respectively. Km values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 ?M respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the Ki values of 61.48 and 12.86 ?M respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a Ki value of 379.18 ?M. Conclusions: The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions. PMID:24174816

  18. Role of cytochrome P-450 2E1 in methacrylonitrile metabolism and disposition.

    PubMed

    Ghanayem, B I; Sanders, J M; Chanas, B; Burka, L T; Gonzalez, F J

    1999-05-01

    Methacrylonitrile (MAN) is a widely used aliphatic nitrile and is structurally similar to the known rat carcinogen and suspected human carcinogen acrylonitrile (AN). There is evidence that AN is metabolized via the cytochrome P-450 (CYP) 2E1. Recently, we identified two biliary conjugates originating from the interaction of MAN and its epoxide with glutathione. Mercapturic acids formed via the degradation of the two conjugates were also identified in rat and mouse urine. Additionally, a significant portion of MAN was eliminated in the expired air as CO2 (formed via the epoxide pathway) and unchanged MAN. The objective of the present work was to determine whether CYP2E1 is involved in the oxidative metabolism of MAN as was suggested for AN. 2-14C-MAN was administered to CYP2E1-null or wild-type mice by gavage at 12 mg/kg. Although total urinary and fecal excretion of MAN-derived radioactivity was slightly different in CYP2E1-null versus wild-type mice, the ratio of mercapturic acids originating from the epoxide-glutathione versus MAN-glutathione conjugates were lower in urine of CYP2E1-null mice than in that of wild-type animals. Exhalation of MAN-derived organic volatiles (primarily parent MAN) was 12- and 42-fold greater in female and male CYP2E1-null mice than in wild-type mice, respectively. Additionally, exhalation of CO2 derived from metabolism of MAN via the CYP2E1 pathway was 3- to 5-fold greater in wild-type than in CYP2E1-null animals. Although these data indicate that CYP2E1 is the principal enzyme responsible for the oxidative metabolism of MAN, other cytochrome P-450 enzymes may be involved. Assessment of MAN metabolism in CYP2E1-null mice pretreated with 1-aminobenzotriazole (CYP inhibitor) resulted in a further decrease in oxidative metabolites of MAN. Comparison of the tissue concentrations of MAN-derived radioactivity in mouse tissues revealed that MAN-derived radioactivity is generally higher in wild-type > CYP2E1-null mice > CYP2E1-null mice pretreated with 1-aminobenzotriazole, suggesting a direct relationship between MAN oxidative metabolism and the half-life of MAN and/or its metabolites in various tissues. It is therefore concluded that MAN oxidative metabolites such as the epoxide intermediate have greater reactivity than parent MAN. PMID:10215687

  19. Investigations of heme ligation and ligand switching in cytochromes P450 and P420

    PubMed Central

    Sun, Yuhan; Zeng, Weiqiao; Benabbas, Abdelkrim; Ye, Xin; Denisov, Ilia; Sligar, Stephen G.; Du, Jing; Dawson, John H.; Champion, Paul M.

    2013-01-01

    It is generally accepted that the inactive P420 form of cytochrome P450 (CYP) involves the protonation of the native cysteine thiolate to form a neutral thiol heme ligand. On the other hand, it has also been suggested that recruitment of a histidine to replace the native cysteine thiolate ligand might underlie the P450?P420 transition. Here we discuss resonance Raman investigations of the H93G myoglobin (Mb) mutant in the presence of tetrahydrothiophene (THT) or cyclopentathiol (CPSH), and on pressure-induced cytochrome P420cam (CYP101), that show a histidine becomes the heme ligand upon CO binding. The Raman mode near 220 cm?1, normally associated with the Fe-histidine vibration in heme proteins, is not observed in either reduced P420cam or the reduced H93G Mb samples, indicating that histidine is not the ligand in the reduced state. The absence of a mode near 220 cm?1 is also inconsistent with a generalization of the suggestion that the 221 cm?1 Raman mode, observed in the P420-CO photoproduct of inducible nitric oxide synthase (iNOS), arises from a thiol-bound ferrous heme. This leads us to assign the 218 cm?1 mode observed in the 10 ns P420cam-CO photoproduct Raman spectrum to a Fe-histidine vibration, in analogy to many other histidine bound heme systems. Additionally, the inverse correlation plots of the ?Fe-His and ?CO frequencies for the CO adducts of P420cam and the H93G analogs provide supporting evidence that histidine is the heme ligand in the P420-CO bound state. We conclude that, when CO binds to the ferrous P420 state, a histidine ligand is recruited as the heme ligand. The common existence of a HXC-Fe motif in many CYP systems allows the C?H ligand switch to occur with only minor conformational changes. One suggested conformation of P420-CO involves the addition of another turn in the proximal L helix so that, when the protonated Cys ligand is dissociated from the heme, it can become part of the helix and the heme is ligated by the His residue from the adjoining loop region. In other systems, such as iNOS and CYP3A4 (where the HXC-Fe motif is not found) a somewhat larger conformational change would be necessary to recuit a nearby histidine. PMID:23905516

  20. Development of the ovary and ontongeny of mRNA and protein for P450 aromatase (arom) and estrogen receptors (ER) alpha and beta during early fetal life in cattle.

    PubMed

    Garverick, H A; Juengel, J L; Smith, P; Heath, D A; Burkhart, M N; Perry, G A; Smith, M F; McNatty, K P

    2010-01-01

    Estradiol-17beta is the predominant steroid produced during early stages of ovarian development in ruminants and steroid hormones have been hypothesized to regulate ovigerous cord formation, germ cell meiosis and ovarian vascular development. Therefore, the objective was to determine the presence and localization of mRNA and protein encoding cytochrome P450 aromatase (P450arom), and estrogen receptors alpha (ERalpha) and beta (ERbeta) during ovarian development in fetuses of cattle on days 35, 45, 60, 75, 90 and 105 after breeding (n=4/age) using in situ hybridization and immunohistochemistry. No ovarian tissue was found in the day 35 fetuses, but was found in all later ages studied. There appeared to be little organization of specific structures in ovaries on days 45 and 60, although germ cells could be identified. Evidence of the beginning of ovigerous cord formation was found on day 60. By day 75 of gestation, the ovigerous cords were more extensive and mesonephric-derived cell streams were detectable. By day 90 (and still present at day 105), both ovigerous cords and cell streams/rete tubules were definitive structures of the developing ovaries. Ovaries appeared to develop in "lobular" segments around the periphery of the ovary. Some lobes appeared to be at slightly different developmental stages, as assessed by the extent or definition of ovigerous cord formation. The localization of mRNAs for P450arom, ERalpha and ERbeta were closely associated with protein content. At days 45 and 60, mRNA and protein of P450arom and ERbeta were located throughout ovaries with signal in medulla being denser than in the cortex. P450arom mRNA or protein was punctate, but not evident in germ cells. From day 75, P450arom was increasingly becoming localized to cell streams or clusters of cells (rete tubules) in the medulla, and by days 90 and 105 of gestation, was more definitively localized to cell streams and/or rete tubules. Similar to P450arom, ERbeta mRNA and protein were observed in cells in the medulla, and also in germ cells, pre-granulosa cells and some surface epithelial cells. ERalpha mRNA and protein were predominately in the surface epithelium in ovaries of all ages with fainter signal for ERalpha protein also being observed in pre-granulosa and stromal cells including the cell streams/rete tubules. ERalpha protein was also detected in a few germ cells at days 90 and 105 of gestation. Thus, in cattle, estradiol-17beta has the potential to regulate, in an autocrine/paracrine manner, a number of different cell types during ovarian development. PMID:19501990

  1. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin

    Microsoft Academic Search

    Søren Bak; Rachel Alice Kahn; Hanne Linde Nielsen; Birger Lindberg Møller; Barbara Ann Halkier

    1998-01-01

    A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V\\/I)KEX(L\\/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum

  2. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    SciTech Connect

    Abdulla, Dalya [Department of Pharmacology, Sir Charles Tupper Medical Bldg., Dalhousie University, Halifax, Nova Scotia, B3H 4H7 (Canada); Goralski, Kerry B. [Department of Pharmacology, Sir Charles Tupper Medical Bldg., Dalhousie University, Halifax, Nova Scotia, B3H 4H7 (Canada); College of Pharmacy, Burbidge Building, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Renton, Kenneth W. [Department of Pharmacology, Sir Charles Tupper Medical Bldg., Dalhousie University, Halifax, Nova Scotia, B3H 4H7 (Canada)]. E-mail: Ken.Renton@dal.ca

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo, an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.

  3. Selective interactions of cytochromes P-450 with the hydroxymethyl derivatives of 7,12-dimethylbenz[a]anthracene.

    PubMed

    Christou, M; Marcus, C; Jefcoate, C R

    1986-06-01

    Competition between a hydroxylated metabolite and the parent polycyclic aromatic hydrocarbon (PAH) for metabolism at cytochromes P-450 may result in the generation of hydroxylated dihydrodiol epoxides. The effectiveness of the competition between 7-hydroxymethyl-12-methylbenz[a]anthracene (7HOMMBA) or 12-hydroxymethyl-7-methylbenz[a]anthracene (12HOMMBA) and 7,12-dimethylbenz[a]anthracene (DMBA) is highly dependent on the form(s) of cytochrome P-450 in the microsomes. The inhibitory effects of exogenously added 7HOMMBA or 12HOMMBA on DMBA metabolism were 30- to 50-fold greater in 3-methylcholanthrene (MC)-induced rat liver microsomes (Ki = 0.4 microM) compared to either uninduced or phenobarbital (PB)-induced liver microsomes (Ki = 14 and 11 microM, respectively). Similarly, product inhibition of total DMBA metabolism by metabolites generated in situ was significant only in MC-induced liver microsomes (Ki' = 2.5 microM). Metabolism of 7HOMMBA in these microsomes was strongly restricted by an unusual substrate inhibition derived from the inhibitory binding of a second molecule of 7HOMMBA. This same phenomenon was observed with reconstituted cytochrome P-450c but not with PB-induced or uninduced microsomes. Complex formation by binding of DMBA, 7HOMMBA, and 12HOMMBA to purified P-450c reconstituted in phospholipid micelles was determined by optical spectroscopy and fluorescence quenching. Binding affinities of both the 7HOMMBA and 12HOMMBA (Kd = 95 and 110 nM, respectively), were 2.5-fold higher compared to that of DMBA (Kd = 265 nM). These results provide a first demonstration that hydroxylation of a PAH can lead to preferential metabolism through an increased affinity for cytochrome P-450. PMID:3085967

  4. Characterization of distinct forms of cytochromes P-450, epoxide metabolizing enzymes and UDP-glucuronosyltransferases in rat skin.

    PubMed

    Pham, M A; Magdalou, J; Totis, M; Fournel-Gigleux, S; Siest, G; Hammock, B D

    1989-07-01

    Study of drug metabolizing enzyme activity was undertaken in skin microsomal and cytosolic fractions of male and female rats. The presence of several isoforms was revealed from their activities towards selected substrates and from their cross immunoreactivity using antibodies raised against purified hepatic or renal cytochromes P-450, epoxide hydrolase and UDP-glucuronosyltransferases. Cytochrome P-450 content was precisely quantified by second derivative spectrophotometry, 23.1 and 16.5 pmol/mg protein in males and females, respectively. The monooxygenase activity associated to cytochromes P-450IIB1 and P-450IA1 was determined through O-dealkylation of ethoxy-; pentoxy- and benzoxyresorufin. The activity ranged between 4 and 2 nmol/min/mg protein for male and female rats, respectively. These results and Western blot analysis indicated that rat skin microsomes contain both monooxygenase systems associated with cytochromes P-450IIB1 and P-450IA1. By contrast lauric acid hydroxylation, supported by cytochrome P-450IVA1, was not detectable. Activities of epoxide metabolizing enzymes (microsomal and cytosolic epoxide hydrolases; glutathione S-transferase) were also characterized in skin. Microsomes catalysed the hydratation of benzo(a)pyrene-4,5-oxide and cis-stilbene oxide at the same extent, whatever the sex, although the specific activity was 10 times lower than in liver. The hydratation of trans-stilbene oxide by soluble epoxide hydrolase was four times lower than in the liver. Conjugation of cis-stilbene oxide with glutathione in skin and liver proceeded at essentially similar rates, as the specific activity of glutathione S-transferase in skin was only two times less than that measured in hepatic cytosol. Glucuronidation of 1-naphthol, bilirubin but not of testosterone could be followed in the microsomal fraction. Revelation by Western blot indicated that both the isoforms involved in conjugation of phenols and bilirubin were present in skin microsomes. By contrast, the isoform catalysing the conjugation of testosterone was apparently missing. When immunoblotting was carried out using specific antibodies raised against the renal isoforms, the same result was obtained. In addition, an intense staining corresponding to a 57 kD-protein was observed. PMID:2500129

  5. Mechanism-based inactivation of cytochrome P450 2B1 by 2-ethynylnaphthalene: identification of an active-site peptide.

    PubMed

    Roberts, E S; Hopkins, N E; Alworth, W L; Hollenberg, P F

    1993-01-01

    The 7-ethoxycoumarin O-deethylase activity of rat liver cytochrome P450 2B1 reconstituted with NADPH-cytochrome P450 reductase and lipid was inactivated by 2-ethynylnaphthalene (2EN) in a time- and NADPH-dependent manner, and the loss of activity followed pseudo-first-order kinetics. The extrapolated KI and kinactivation were 0.08 microM and 0.83 min-1, respectively. The loss of 7-ethoxycoumarin O-deethylation activity displayed a number of characteristics consistent with mechanism-based inactivation, including irreversibility, saturability, protection by an alternate substrate, and the lack of an effect of exogenous nucleophiles on the inactivation. The inactivation was not accompanied by a concomitant loss of spectrally detectable cytochrome P450. HPLC analysis showed that [3H]2EN was irreversibly bound to the protein moiety of cytochrome P450 and the stoichiometry of inactivation was approximately 1.3 mol of 2EN bound per mole of cytochrome P450. Liquid chromatographic and GC-MS analyses of the organic extracts from these incubations showed that the major metabolite was 2-naphthylacetic acid, and a partition ratio of 4-5 mol of acid produced per mole of cytochrome P450 2B1 inactivated was determined. A radiolabeled peptide, approximately 6.5 kDa when analyzed by Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was isolated by HPLC from a tryptic digest of the [3H]2EN-inactivated cytochrome P450 and NADPH-cytochrome P450 reductase. Sequence data were obtained after cyanogen bromide cleavage of this amino-terminally blocked peptide. These results in conjunction with the results from the cleavage of the intact [3H]2EN-inactivated cytochrome P450 by cyanogen bromide and separation of the peptides either by HPLC or by Tricine-SDS-PAGE followed by transfer of the peptides to a poly(vinylidene difluoride) membrane and sequencing of the labeled peptides from both experiments, led to the identification of a 2EN-modified active-site peptide with the sequence ISLLSLFFAGTETSSTTLRYGFLLM. This corresponds to positions 290-314 in cytochrome P450 2B1. Sequence alignments of cytochrome P450 2B1 with cytochrome P450 2B1 with cytochrome P450 101 predict that this region might correspond to helix I of the bacterial protein [Poulos, T.L. (1988) Pharm. Res. 5, 67-75] that contains a highly conserved threonine residue involved in oxygen binding. PMID:8374044

  6. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats

    SciTech Connect

    Ohhira, Shuji [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, Tochigi 321-0293 (Japan)]. E-mail: s-ohhira@dokkyomed.ac.jp; Enomoto, Mitsunori [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, Tochigi 321-0293 (Japan); Matsui, Hisao [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, Tochigi 321-0293 (Japan)

    2006-01-15

    Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, including typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats.

  7. Stereoselective epoxidation of the last double bond of polyunsaturated fatty acids by human cytochromes P450

    PubMed Central

    Lucas, Danièle; Goulitquer, Sophie; Marienhagen, Jan; Fer, Maude; Dreano, Yvonne; Schwaneberg, Ulrich; Amet, Yolande; Corcos, Laurent

    2010-01-01

    Cytochromes P450 (CYPs) metabolize polyunsaturated long-chain fatty acids (PUFA-LC) to several classes of oxygenated metabolites. Through use of human recombinant CYPs, we recently showed that CYP1A1, -2C19, -2D6, -2E1, and -3A4 are mainly hydroxylases, whereas CYP1A2, -2C8, -2C9, and -2J2 are mainly epoxygenases of arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), respectively. It is worth noting that the last double bond of these PUFAs, i.e., ?6 in AA or ?3 in EPA and DHA, respectively, was preferentially epoxidized. In this study, we have characterized the stereoselectivity of this epoxidation reaction by comparison with the PUFA-LC epoxide stereoisomers obtained from the enantioselective bacterial CYP102A1 F87V. The stereoselectivity of the epoxidation of the last olefin of AA (?6), EPA (?3), or DHA (?3) differed between the CYP isoforms but was similar for EPA and DHA. These data give additional insight into the PUFA-LC epoxide enantiomers generated by the hepatic CYPs. PMID:19965576

  8. Interactions of food and dietary supplements with drug metabolising cytochrome P450 enzymes.

    PubMed

    Nekvindová, J; Anzenbacher, P

    2007-07-01

    Drug side effects and toxicity and often the drug efficacy are highly dependent on drug metabolism determining the activation and/or elimination of the respective compound. In humans, cytochromes P450 are the most important drug metabolizing enzymes of the first phase of drug biotransformation. Their activity can vary due to interindividual genetic differences, but it can be changed also by inhibition or induction of the enzymes by their substrates or other compounds that are not only drugs themselves and/or drugs taken concomitantly. Often, influence on drug metabolism by compounds that occur in the environment, most remarkably in the food, is forgotten. Some commonly used herbs, fruits as well as e.g. alcohol may cause failure of the therapy up to serious alterations of the patient's health. This review presents a brief overview of potentially dangerous nutrition factors including herbs (incl. teas, infusions) that should be considered when indicating individual drug therapy. Examples include primarily grapefruits, pomelo, star fruit, pomegranates and some other fruits, St John's Wort (Hypericum perforatum), caffeine, as well as alcohol and cigarette smoking. PMID:17969314

  9. Role of the LolP cytochrome P450 monooxygenase in loline alkaloid biosynthesis.

    PubMed

    Spiering, Martin J; Faulkner, Jerome R; Zhang, Dong-Xiu; Machado, Caroline; Grossman, Robert B; Schardl, Christopher L

    2008-09-01

    The insecticidal loline alkaloids, produced by Neotyphodium uncinatum and related endophytes, are exo-1-aminopyrrolizidines with an ether bridge between C-2 and C-7. Loline alkaloids vary in methyl, acetyl, and formyl substituents on the 1-amine, which affect their biological activity. Enzymes for key loline biosynthesis steps are probably encoded by genes in the LOL cluster, which is duplicated in N. uncinatum, except for a large deletion in lolP2. The role of lolP1 was investigated by its replacement with a hygromycin B phosphotransferase gene. Compared to wild type N. uncinatum and an ectopic transformant, DeltalolP1 cultures had greatly elevated levels of N-methylloline (NML) and lacked N-formylloline (NFL). Complementation of DeltalolP1 with lolP1 under control of the Emericella nidulans trpC promoter restored NFL production. These results and the inferred sequence of LolP1 indicate that it is a cytochrome P450, catalyzing oxygenation of an N-methyl group in NML to the N-formyl group in NFL. PMID:18655839

  10. Competition between hydrocarbon and barbiturate for spectral binding to hepatic cytochrome P-450

    SciTech Connect

    Backes, W.L.; Means, M.; Canady, W.J.

    1984-08-25

    The substrates hexobarbital and ethylbenzene have been shown to compete for the spectral binding site of phenobarbital-induced rat hepatic microsomal cytochrome P-450. Over the concentration ranges studied, there is no change in the availability of the enzyme as a result of substrate addition; the difference in ..delta..Abs/sub max/ apparently being due to varying abilities of different substrates to bring about a spin shift in the enzyme. Evidence is presented to indicate that differences between enzymes from untreated male rats and phenobarbital-treated male rats are attributable to differences in the enzyme itself and not to changes in the nature of the membrane brought about by phenobarbital administration, at least insofar as heat entropy compensation is concerned. The enthalpy-entropy compensation observed in the binding of a homologous series of barbiturates to the microsomal membrane as determined from the membrane concentration dependence of their binding constants is shown to agree surprisingly well with the direct determination performed by Sitar and Mannering.

  11. Degradation of Diuron by Phanerochaete chrysosporium: Role of Ligninolytic Enzymes and Cytochrome P450

    PubMed Central

    Coelho-Moreira, Jaqueline da Silva; de Souza, Aline Cristine da Silva; Oliveira, Roselene Ferreira; de Sá-Nakanishi, Anacharis Babeto; de Souza, Cristina Giatti Marques; Peralta, Rosane Marina

    2013-01-01

    The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7??g/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74??g/mL and 0.06??g/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products. PMID:24490150

  12. Pharmacologic Stimulation of Cytochrome P450 46A1 and Cerebral Cholesterol Turnover in Mice*

    PubMed Central

    Mast, Natalia; Li, Yong; Linger, Marlin; Clark, Matthew; Wiseman, Jeffrey; Pikuleva, Irina A.

    2014-01-01

    Cytochrome P450 46A1 (CYP46A1) is a brain-specific cholesterol 24-hydroxylase responsible for the majority of cholesterol elimination from the brain. Genetically increased CYP46A1 expression in mice leads to improved cognition and decreases manifestations of Alzheimer disease. We found that four pharmaceuticals (efavirenz (EFV), acetaminophen, mirtazapine, and galantamine) prescribed for indications unrelated to cholesterol maintenance increased CYP46A1 activity in vitro. We then evaluated the anti-HIV medication EFV for the mode of interaction with CYP46A1 and the effect on mice. We propose a model for CYP46A1 activation by EFV and show that EFV enhanced CYP46A1 activity and cerebral cholesterol turnover in animals with no effect on the levels of brain cholesterol. The doses of EFV administered to mice and required for the stimulation of their cerebral cholesterol turnover are a hundred times lower than those prescribed to HIV patients. At such small doses, EFV may be devoid of adverse effects elicited by high drug concentrations. CYP46A1 could be a novel therapeutic target and a tool to further investigate the physiological and medical significance of cerebral cholesterol turnover. PMID:24352658

  13. Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes.

    PubMed

    Barton, H A; Tang, J; Sey, Y M; Stanko, J P; Murrell, R N; Rockett, J C; Dix, D J

    2006-09-01

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil was metabolized more rapidly than triadimefon, which is consistent with metabolism of the n-butyl side-chain in the former and the t-butyl group in the latter compound. Human and rat CYP2C and CYP3A enzymes were the most active. Metabolism was similar in microsomes prepared from livers of control and low-dose rats. High-dose (115 mg kg-1 day-1 of triadimefon or 150 mg kg-1 day-1 of myclobutanil) rats showed increased liver weight, induction of total CYP, and increased metabolism of the two triazoles, though the apparent Km appeared unchanged relative to the control. These data identify CYP enzymes important for the metabolization of these two triazoles. Estimated hepatic clearances suggest that CYP induction may have limited impact in vivo. PMID:16971344

  14. Cytochrome P450 enzyme activity in five herbivorous, non-passerine bird species.

    PubMed

    Liukkonen-Anttila, Tuija; Honkanen, Henrika; Peltokangas, Päivi; Pelkonen, Olavi; Hohtola, Esa

    2003-01-01

    We examined hepatic cytochrome P450 activity in wild and hand-reared grey partridges (Perdix perdix), capercaillies (Tetrao urogallus) and ring-necked pheasants (Phasianus colchicus), as well as the enzyme activity in a variety of tissues of hand-reared Japanese quails (Coturnix coturnix japonica) and pigeons (Columba livia). Post-mortem decrease in hepatic enzyme activity in the grey partridge was measured. Hepatic 7-ethoxyresorufin-O-deethylase activity was similar in wild and hand-reared grey partridges and pheasants, but the activity was significantly lower in wild than in hand-reared capercaillies, probably resulting from their phenolic-rich diet. In the tissues of both quails and pigeons 7-ethoxycoumarin-O-deethylase exhibited the highest and 7-pentoxyresorufin-O-deethylase the lowest activity. Hepatic enzyme activity was significantly higher than that in other tissues. In the small intestine some activity could be found, reflecting some intestinal detoxication capacity. Enzyme activity decreased by 34-69% during the 30-min sampling period, which confirmed the importance of equalising sampling time to obtain comparable data. Because the hand-reared birds in this study were fed the same commercial diets, we assumed that the enzyme activity values detected reflect species differences without any induction by dietary secondary compounds. PMID:12524019

  15. Clinical outcomes and management of mechanism-based inhibition of cytochrome P450 3A4

    PubMed Central

    Zhou, Shufeng; Chan, Eli; Li, Xiaotian; Huang, Min

    2005-01-01

    Mechanism-based inhibition of cytochrome P450 (CYP) 3A4 is characterized by NADPH-, time-, and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYPs to reactive metabolites. Such inhibition of CYP3A4 can be due to the chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. The inactivation of CYP3A4 by drugs has important clinical significance as it metabolizes approximately 60% of therapeutic drugs, and its inhibition frequently causes unfavorable drug–drug interactions and toxicity. The clinical outcomes due to CYP3A4 inactivation depend on many factors associated with the enzyme, drugs, and patients. Clinical professionals should adopt proper approaches when using drugs that are mechanism-based CYP3A4 inhibitors. These include early identification of drugs behaving as CYP3A4 inactivators, rational use of such drugs (eg, safe drug combination regimen, dose adjustment, or discontinuation of therapy when toxic drug interactions occur), therapeutic drug monitoring, and predicting the risks for potential drug–drug interactions. A good understanding of CYP3A4 inactivation and proper clinical management are needed by clinical professionals when these drugs are used. PMID:18360537

  16. Contribution of human hepatic cytochrome p450 isoforms to the metabolism of psychotropic drugs.

    PubMed

    Niwa, Toshiro; Shiraga, Toshifumi; Ishii, Ikuko; Kagayama, Akira; Takagi, Akira

    2005-09-01

    The metabolic activities of six psychotropic drugs, diazepam, clotiazepam, tofisopam, etizolam, tandospirone, and imipramine, were determined for 14 isoforms of recombinant human hepatic cytochrome P450s (CYPs) and human liver microsomes by measuring the disappearance rate of parent compounds. In vitro kinetic studies revealed that Vmax/Km values in human liver microsomes were the highest for tofisopam, followed by tandospirone>clotiazepam>imipramine, diazepam, and etizolam. Among the recombinant CYPs, CYP3A4 exhibited the highest metabolic activities of all compounds except for clotiazepam and imipramine. The metabolism of clotiazepam was catalyzed by CYP2B6, CYP3A4, CYP2C18, and CYP2C19, and imipramine was metabolized by CYP2D6 most efficiently. In addition, the metabolic activities of diazepam, clotiazepam, and etizolam in human liver microsomes were inhibited by 2.5 microM ketoconazole, a CYP3A4 inhibitor, by 97.5%, 65.1%, and 83.5%, respectively, and the imipramine metabolism was not detected after the addition of 1 or 10 microM quinidine, a CYP2D6 inhibitor. These results suggest that the psychotropic drugs investigated are metabolized predominantly by CYP3A4, except that CYP2D6 catalyzes the metabolism of imipramine. In addition, this approach based on the disappearance rate appears to be useful for the identification of the responsible CYP isoform(s) of older drugs, for which metabolic profiles have not been reported. PMID:16141545

  17. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3.

    PubMed

    Lefèvre, Caroline; Bouadjar, Bakar; Ferrand, Véronique; Tadini, Gianluca; Mégarbané, André; Lathrop, Mark; Prud'homme, Jean-François; Fischer, Judith

    2006-03-01

    We report the identification of mutations in a non-syndromic autosomal recessive congenital ichthyosis (ARCI) in a new gene mapping within a previously identified locus on chromosome 19p12-q12, which has been defined as LI3 in the OMIM database (MIM 604777). The phenotype usually presents as lamellar ichthyosis and hyperlinearity of palms and soles. Seven homozygous mutations including five missense mutations and two deletions were identified in a new gene, FLJ39501, on chromosome 19p12 in 21 patients from 12 consanguineous families from Algeria, France, Italy and Lebanon. FLJ39501 encodes a protein which was found to be a cytochrome P450, family 4, subfamily F, polypeptide 2 homolog of the leukotriene B4-omega-hydroxylase (CYP4F2) and could catalyze the 20-hydroxylation of trioxilin A3 from the 12(R)-lipoxygenase pathway. Further oxidation of this substrate by the fatty alcohol:nicotinamide-adenine dinucleotide oxidoreductase (FAO) enzyme complex, in which one component, ALDH3A2, is known to be mutated in Sjögren-Larsson syndrome (characterized by ichthyosis and spastic paraplegia), would lead to 20-carboxy-(R)-trioxilin A3. This compound could be involved in skin hydration and would be the essential missing product in most forms of ARCI. Its chiral homolog, 20-carboxy-(S)-trioxilin A3, could be implicated in spastic paraplegia and in the maintenance of neuronal integrity. PMID:16436457

  18. Cytochrome P450 oxidoreductase deficiency: rare congenital disorder leading to skeletal malformations and steroidogenic defects.

    PubMed

    Fukami, Maki; Ogata, Tsutomu

    2014-12-01

    Cytochrome P450 oxidoreductase (POR) deficiency (PORD) is a newly characterized disorder. PORD is caused by homozygous or compound heterozygous mutations in POR encoding an electron donor for several microsomal enzymes such as CYP21A2, CYP17A1, CYP19A1, CYP51A1, and CYP26A1-C1. Molecular defects of PORD include a Japanese founder mutation p.R457H, as well as various missense, nonsense, frameshift, and splice-site mutations and exonic deletions. PORD leads to unique skeletal malformations referred to as Antley-Bixler syndrome, in addition to 46,XX and 46,XY disorders of sex development, pubertal failure, adrenal dysfunction, and maternal virilization during pregnancy. Such clinical features are ascribable to impaired activities of the POR-dependent microsomal enzymes. PORD represents one form of congenital adrenal hyperplasia, although it can occur as a congenital malformation syndrome and a disorder of sex development. Phenotypic severity of PORD is highly variable and only partly depends on the residual activity of the mutant proteins. It is possible that PORD remains undiagnosed in several patients. Detailed hormonal assessment and molecular analysis are useful for diagnosis of PORD. PMID:25294558

  19. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes

    PubMed Central

    Raunio, Hannu; Kuusisto, Mira; Juvonen, Risto O.; Pentikäinen, Olli T.

    2015-01-01

    The adverse effects to humans and environment of only few chemicals are well known. Absorption, distribution, metabolism, and excretion (ADME) are the steps of pharmaco/toxicokinetics that determine the internal dose of chemicals to which the organism is exposed. Of all the xenobiotic-metabolizing enzymes, the cytochrome P450 (CYP) enzymes are the most important due to their abundance and versatility. Reactions catalyzed by CYPs usually turn xenobiotics to harmless and excretable metabolites, but sometimes an innocuous xenobiotic is transformed into a toxic metabolite. Data on ADME and toxicity properties of compounds are increasingly generated using in vitro and modeling (in silico) tools. Both physics-based and empirical modeling approaches are used. Numerous ligand-based and target-based as well as combined modeling methods have been employed to evaluate determinants of CYP ligand binding as well as predicting sites of metabolism and inhibition characteristics of test molecules. In silico prediction of CYP–ligand interactions have made crucial contributions in understanding (1) determinants of CYP ligand binding recognition and affinity; (2) prediction of likely metabolites from substrates; (3) prediction of inhibitors and their inhibition potency. Truly predictive models of toxic outcomes cannot be created without incorporating metabolic characteristics; in silico methods help producing such information and filling gaps in experimentally derived data. Currently modeling methods are not mature enough to replace standard in vitro and in vivo approaches, but they are already used as an important component in risk assessment of drugs and other chemicals. PMID:26124721

  20. Multiple, Ligand-Dependent Routes from the Active Site of Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Winn, Peter J.; Wade, Rebecca C.

    2012-02-13

    The active site of liver-specific, drug-metabolizing cytochrome P450 (CYP) monooxygenases is deeply buried in the protein and is connected to the protein surface through multiple tunnels, many of which were found open in different CYP crystal structures. It has been shown that different tunnels could serve as ligand passage routes in different CYPs. However, it is not understood whether one CYP uses multiple routes for substrate access and product release and whether these routes depend on ligand properties. From 300 ns of molecular dynamics simulations of CYP2C9, the second most abundant CYP in the human liver we found four main ligand exit routes, the occurrence of each depending on the ligand type and the conformation of the F-G loop, which is likely to be affected by the CYP-membrane interaction. A non-helical F-G loop favored exit towards the putative membrane-embedded region. Important protein features that direct ligand exit include aromatic residues that divide the active site and whose motions control access to two pathways. The ligands interacted with positively charged residues on the protein surface through hydrogen bonds that appear to select for acidic substrates. The observation of multiple, ligand-dependent routes in a CYP aids understanding of how CYP mutations affect drug metabolism and provides new possibilities for CYP inhibition.

  1. Investigation of cytochrome P450 1A2 and 3A inhibitory properties of Danshen tincture.

    PubMed

    Wang, Xin; Yeung, John Hok-Keung

    2012-02-15

    Danshen (Salvia miltiorrhiza Bunge) as a famous Traditional Chinese medicine is widely used in the treatment of cardiovascular and cerebrovascular diseases in the world. Danshen tincture (DT), extracted from Danshen root with a mixture of water and alcohol, is a commonly used preparation method for human consumption. The aim of this study was to investigate the effects of DT on the cytochrome P450 (CYP) 1A2 and 3A activities by human and rat liver microsomes. Effects of DT were assessed with use of Danshen ethanolic extract (DEE) and selective substrates, markers of CYP activities. DEE (0.5-10 ?g/ml) competitively inhibited human and rat liver microsomal CYP1A2 activity with inhibition constant (K(i)) values at 3.40 and 5.16 ?g/ml, respectively. At the same time, DEE (2.5-20 ?g/ml) not only noncompetitively inhibited human liver microsomal CYP3A4/5 activity with a K(i) of 11.9 ?g/ml, but also competitively inhibited rat liver microsomal CYP3A1/2 activity with a K(i) of 52.1 ?g/ml. The data indicate that DEE inhibited the metabolism of CYP1A2 and 3A substrates in human and rat liver in vitro with different mode of inhibition. This study may be helpful for clinical application of Danshen tincture. PMID:22056022

  2. Pharmacologic stimulation of cytochrome P450 46A1 and cerebral cholesterol turnover in mice.

    PubMed

    Mast, Natalia; Li, Yong; Linger, Marlin; Clark, Matthew; Wiseman, Jeffrey; Pikuleva, Irina A

    2014-02-01

    Cytochrome P450 46A1 (CYP46A1) is a brain-specific cholesterol 24-hydroxylase responsible for the majority of cholesterol elimination from the brain. Genetically increased CYP46A1 expression in mice leads to improved cognition and decreases manifestations of Alzheimer disease. We found that four pharmaceuticals (efavirenz (EFV), acetaminophen, mirtazapine, and galantamine) prescribed for indications unrelated to cholesterol maintenance increased CYP46A1 activity in vitro. We then evaluated the anti-HIV medication EFV for the mode of interaction with CYP46A1 and the effect on mice. We propose a model for CYP46A1 activation by EFV and show that EFV enhanced CYP46A1 activity and cerebral cholesterol turnover in animals with no effect on the levels of brain cholesterol. The doses of EFV administered to mice and required for the stimulation of their cerebral cholesterol turnover are a hundred times lower than those prescribed to HIV patients. At such small doses, EFV may be devoid of adverse effects elicited by high drug concentrations. CYP46A1 could be a novel therapeutic target and a tool to further investigate the physiological and medical significance of cerebral cholesterol turnover. PMID:24352658

  3. Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors

    PubMed Central

    Granville, David J.; Tashakkor, Babak; Takeuchi, Cindy; Gustafsson, Åsa B.; Huang, Chengqun; Sayen, M. Richard; Wentworth, Paul; Yeager, Mark; Gottlieb, Roberta A.

    2004-01-01

    Ischemia and reperfusion both contribute to tissue damage after myocardial infarction. Although many drugs have been shown to reduce infarct size when administered before ischemia, few have been shown to be effective when administered at reperfusion. Moreover, although it is generally accepted that a burst of reactive oxygen species (ROS) occurs at the onset of reperfusion and contributes to tissue damage, the source of ROS and the mechanism of injury is unclear. We now report the finding that chloramphenicol administered at reperfusion reduced infarct size by 60% in a Langendorff isolated perfused rat heart model, and that ROS production was also substantially reduced. Chloramphenicol is an inhibitor of mitochondrial protein synthesis and is also an inhibitor of a subset of cytochrome P450 monooxygenases (CYPs). We could not detect any effect on mitochondrial encoded proteins or mitochondrial respiration in chloramphenicol-perfused hearts, and hypothesized that the effect was caused by inhibition of CYPs. We tested additional CYP inhibitors and found that cimetidine and sulfaphenazole, two CYP inhibitors that have no effect on mitochondrial protein synthesis, were also able to reduce creatine kinase release and infarct size in the Langendorff model. We also showed that chloramphenicol reduced infarct size in an open chest rabbit model of regional ischemia. Taken together, these findings implicate CYPs in myocardial ischemia/reperfusion injury. PMID:14734800

  4. Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Balali-Mood, Kia; Sansom, Mark S.; Wade, Rebecca C.

    2011-08-11

    The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme’s buried active site. The membrane facilitated the opening of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix.

  5. Effect of ergot alkaloids associated with fescue toxicosis on hepatic cytochrome P450 and antioxidant proteins

    SciTech Connect

    Settivari, Raja S. [Division of Animal Science, University of Missouri, Columbia, MO 65211 (United States); Evans, Tim J. [Veterinary Diagnostic Laboratory, University of Missouri, Columbia, MO 65211 (United States); Rucker, Ed [Department of Veterinary Physiology and Pharmacology, Texas A and M University, College Station, TX77843 (United States); Rottinghaus, George E. [Veterinary Diagnostic Laboratory, University of Missouri, Columbia, MO 65211 (United States); Spiers, Donald E. [Division of Animal Science, University of Missouri, Columbia, MO 65211 (United States)], E-mail: spiersd@missouri.edu

    2008-03-15

    Intake of ergot alkaloids found in endophyte-infected tall fescue grass is associated with decreased feed intake and reduction in body weight gain. The liver is one of the target organs of fescue toxicosis with upregulation of genes involved in xenobiotic metabolism and downregulation of genes associated with antioxidant pathways. It was hypothesized that short-term exposure of rats to ergot alkaloids would change hepatic cytochrome P450 (CYP) and antioxidant expression, as well as reduce antioxidant enzyme activity and hepatocellular proliferation rates. Hepatic gene expression of various CYPs, selected nuclear receptors associated with the CYP induction, and antioxidant enzymes were measured using real-time PCR. Hepatic expression of CYP, antioxidant and proliferating cell nuclear antigen (PCNA) proteins were measured using Western blots. The CYP3A1 protein expression was evaluated using primary rat hepatocellular cultures treated with ergovaline, one of the major ergot alkaloids produced by fescue endophyte, in order to assess the direct role of ergot alkaloids in CYP induction. The enzyme activities of selected antioxidants were assayed spectrophotometrically. While hepatic CYP and nuclear receptor expression were increased in ergot alkaloid-exposed rats, the expression and activity of antioxidant enzymes were reduced. This could potentially lead to increased oxidative stress, which might be responsible for the decrease in hepatocellular proliferation after ergot alkaloid exposure. This study demonstrated that even short-term exposure to ergot alkaloids can potentially induce hepatic oxidative stress which can contribute to the pathogenesis of fescue toxicosis.

  6. Impact of age on hepatic cytochrome P450 of domestic male Camborough-29 pigs.

    PubMed

    Hu, S X

    2015-04-01

    Swine is not only an important species in veterinary medicine research but also a popular animal model for human drug discovery. It is valuable to understand the impact of pig age on abundance and activity of porcine hepatic cytochrome P450 (CYP450). Liver microsomes were prepared from Camborough-29 intact male pigs at the age of 1 day and 2 weeks and the castrated male pigs at the age of 5, 10, and 20 weeks. Hepatic CYP450 content in the liver microsomes was measured using a UV/visible spectroscopic method. The activities of CYP450s were evaluated by metabolism of phenacetin, coumarin, tolbutamide, bufuralol, chlorzoxazone, and midazolam. The porcine hepatic CYP450 content increased with age with a plateau between age 2 and 5 weeks. Activities of all CYP450 enzymes increased with age of pigs too. The bufuralol 1'-hydroxylase showed the highest hepatic activities compared with other CYP enzymes at all ages of pigs. The average activities at the age of 20 weeks were about five times higher than those at the age of 5 weeks for most of the CYP enzymes. With compensation of the ratio of liver to body weights, the overall CYP450 metabolism capability of the pigs may be peaked around ages of 10 to 20 weeks. Those findings suggest that metabolism can be significantly different in growing phase of pigs and that the age may be an important factor in porcine medicine evaluation and pig model development. PMID:25230135

  7. [Effect of three herbal extracts on cytochrome P450 and possibility of interaction with drugs].

    PubMed

    Yokotani, Kaori; Chiba, Tsuyoshi; Sato, Yoko; Nakanishi, Tomoko; Murata, Masatsune; Umegaki, Keizo

    2013-01-01

    Herb-drug interactions are mainly mediated by hepatic cytochrome P450 (CYP) enzymes. Here, we examined the effect of three herbs (valerian, salacia and black cohosh) on CYP activity in vivo in mice and in liver microsomes in vitro. Extracts which showed activity in the preliminary tests were then fed to mice at various doses (0, 0.5, 1.5 and 4.5%). Valerian did not show any effect on hepatic CYPs. Black cohosh increased the liver weight, total CYP content and CYP activities (2B and 3A) in a dose-dependent manner (up to 4.5%). Salacia inhibited CYP1A2 activity in liver microsomes in vitro. Also, salacia at the dietary dose of 4.5% suppressed body weight gain, decreased hepatic total CYP content and increased CYP activities (1A1, 2B and 2C). These findings suggest that black cohosh and salacia at high dose affect the activity of hepatic CYPs, and therefore may interact with drugs that are metabolized by CYP. PMID:23470874

  8. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    PubMed

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions. PMID:22975634

  9. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity

    PubMed Central

    Sangar, Michelle C; Bansal, Seema

    2010-01-01

    Importance of the field Microsomal cytochrome P450s are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. Areas covered in this review This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. What the readers will gain A comprehensive review of the literature on drug metabolism in the mitochondrial compartment, and their potential for inducing mitochondrial dysfunction. Take home message Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity. PMID:20629582

  10. Cytochrome P450 1B1 mRNA in the human central nervous system.

    PubMed Central

    Rieder, C R; Ramsden, D B; Williams, A C

    1998-01-01

    AIMS: To study the expression of CYP1B1 in a variety of human and rat cell lines as a means of identifying a new tool for the investigation of gene regulation. In addition, to identify the expression of cytochrome P450 1B1 (CYP1B1) in different regions of the central nervous system (CNS). METHODS: Reverse transcription-polymerase chain reaction followed by cloning and sequencing were used to detect the expression of CYP1B1 in human cell lines. Poly A+ mRNA from the human spinal cord and from different brain regions was analysed using a CYP1B1 probe labelled with 32PdCTP. RESULTS: Expression of CYP1B1 was shown in a human astrocytoma cell line (MOG-G-CCM). CYP1B1 mRNA was expressed in a variety of regions of the CNS but with a distinct regional specificity. Expression was highest in the putamen. CONCLUSIONS: The expression of CYP1B1 in a human astrocytoma enables this cell line to be used in further studies of regulation and function of this gene. The demonstration that CYP1B1 mRNA is expressed in a variety of regions of the CNS suggests a role for this gene in brain and spinal cord metabolism. The regional specificity of expression might explain the focal damage of certain human neurodegenerative diseases. PMID:9850336

  11. Iron stimulation of chemiluminescence by microsomes and purified NADPH-cytochrome P-450 reductase

    SciTech Connect

    Puntarulo, S.; Clejan, L.; Palakodety, R.; Cederbaum, A.I.

    1987-05-01

    Low level chemiluminescence (CL) was measured as an assay of the steady state level of production of oxygen radicals during microsomal electron transfer. In the presence of an NADPH-generating system, antioxidant-sensitive CL was observed with isolated rat liver microsomes. Depending on the nature of the chelating agent, ferric iron markedly affected this CL. For example, ferric-EDTA inhibited, whereas ferric-ADP stimulated CL. This response to iron chelators was identical to that found when measuring microsomal lipid peroxidation, but was opposite to the catalytic effectiveness of ferric-chelates in stimulating microsomal generation of hydroxyl radicals. Similar studies were conducted with purified NADPH-cytochrome P-450 reductase in the presence of t-butyl hydroperoxide (t-BOOH). No CL was observed in the absence of added iron. The addition of ferric-EDTA or ferric-detapac stimulated production of CL, whereas ferric chloride or ferric-ATP has little or no effect. This pattern of response to iron chelates is opposite to that found with the microsomes. CL was inhibited by catalase and OH scavengers such as ethanol and DMSO but not by superoxide dismutase. Thus, CL by the reductase system appears to involve the generation of OH via a Fenton-type of reaction, and subsequent interaction of OH with t-BOOH to produce excited species.

  12. In vitro inhibition of human cytochrome P450 by cudratricusxanthone A.

    PubMed

    Sim, Juhee; Choi, Eunhwa; Lee, You-Mie; Jeong, Gil-Saeng; Lee, Sangkyu

    2015-07-01

    Cudratricusxanthone A (CTXA) isolated from the roots of Cudrania tricuspidata Bureau (Moraceae) has several biological activities, including hepatoprotective, neuroprotective, anti-inflammatory, monoamine oxidase inhibitory, and antithrombotic activities. In this study, we investigated the potential herb-drug interaction of CTXA and nine cytochrome P450 (CYP) isoforms in pooled human liver microsomes (HLMs) using a cocktail probe assay. CTXA reversibly inhibited the CYP1A2-catalyzed phenacetin O-deethylation, CYP2C8-catalyzed paclitaxel 6-hydroxylation, and CYP2C9-catalyzed diclofenac 4'-hydroxylation with half-maximal inhibitory concentration (IC50) values of 3.9, 4.7, and 2.9?µM, respectively. The IC50 values did not change under different preincubation conditions. CTXA showed marked dose-dependent, but not time-dependent, inhibition of CYP1A2 and 2C9 activities in HLMs. Dixon plots showed typical competitive inhibition of CYP1A2 and CYP2C9 with Ki values of 1.3 and 1.5?µM, respectively. Further, CTXA inhibited CYP2C8 in a non-competitive manner with a Ki value of 2.2?µM. Our results showed that CTXA reversibly inhibits CYP1A2, 2C8, and 2C9. PMID:25936586

  13. The effects of fenbendazole, flubendazole and mebendazole on activities of hepatic cytochromes P450 in pig.

    PubMed

    Baliharová, V; Velík, J; Savlík, M; Szotáková, B; Lamka, J; Tahotná, L; Skálová, L

    2004-04-01

    Fenbendazole (FBZ), flubendazole (FLBZ) and mebendazole (MBZ) are benzimidazole anthelmintics widely used in veterinary medicine. The effects of these drugs on cytochromes P450 (CYP) were investigated in primary cultures of swine (Sus scrofa f. domestica) hepatocytes. After 48-h incubation of hepatocytes with benzimidazoles (0.1-2.5 microm), ethoxyresorufin O-deethylation (EROD), benzoxyresorufin O-dearylation (BROD), testosterone hydroxylase (6beta-TOH) and testosterone oxidase (17-TO) activities were measured and the CYP1A and 3A protein levels were determined by Western blotting. FBZ produced a significant, concentration-dependent increase of CYP1A activity (EROD) and protein level. No enhancement of CYP1A was observed after exposure to FLBZ and MBZ. All benzimidazoles tested did not cause any induction of CYP3A (BROD, 6beta-TOH, 17-TO activities and protein content). On the other hand, MBZ produced a significant, concentration-dependent decrease of CYP3A (BROD, 6beta-TOH and 17-TO) activities. Pharmacological and toxicological consequences of CYP1A induction and CYP3A inhibition should be taken into account in treatment of pigs with FBZ and MBZ. PMID:15096105

  14. Cytochrome P450 BM3 of Bacillus megaterium - a possible endosulfan biotransforming gene.

    PubMed

    Seralathan, Muhil Vannan; Sivanesan, Saravanadevi; Bafana, Amit; Kashyap, Sanjay Madanchand; Patrizio, Arrigo; Krishnamurthi, Kannan; Chakrabarti, Tapan

    2014-11-01

    Computing chemistry was applied to understand biotransformation mechanism of an organochlorine pesticide, endosulfan. The stereo specific metabolic activity of human CYP-2B6 (cytochrome P450) on endosulfan has been well demonstrated. Sequence and structural similarity search revealed that the bacterium Bacillus megaterium encodes CYP-BM3, which is similar to CYP-2B6. The functional similarity was studied at organism level by batch-scale studies and it was proved that B. megaterium could metabolize endosulfan to endosulfan sulfate, as CYP-2B6 does in human system. The gene expression analyses also confirmed the possible role of CYP-BM3 in endosulfan metabolism. Thus, our results show that the protein structure based in-silico approach can help us to understand and identify microbes for remediation strategy development. To the best of our knowledge this is the first report which has extrapolated the bacterial gene for endosulfan biotransformation through in silico prediction approach for metabolic gene identification. PMID:25458686

  15. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes.

    PubMed

    Raunio, Hannu; Kuusisto, Mira; Juvonen, Risto O; Pentikäinen, Olli T

    2015-01-01

    The adverse effects to humans and environment of only few chemicals are well known. Absorption, distribution, metabolism, and excretion (ADME) are the steps of pharmaco/toxicokinetics that determine the internal dose of chemicals to which the organism is exposed. Of all the xenobiotic-metabolizing enzymes, the cytochrome P450 (CYP) enzymes are the most important due to their abundance and versatility. Reactions catalyzed by CYPs usually turn xenobiotics to harmless and excretable metabolites, but sometimes an innocuous xenobiotic is transformed into a toxic metabolite. Data on ADME and toxicity properties of compounds are increasingly generated using in vitro and modeling (in silico) tools. Both physics-based and empirical modeling approaches are used. Numerous ligand-based and target-based as well as combined modeling methods have been employed to evaluate determinants of CYP ligand binding as well as predicting sites of metabolism and inhibition characteristics of test molecules. In silico prediction of CYP-ligand interactions have made crucial contributions in understanding (1) determinants of CYP ligand binding recognition and affinity; (2) prediction of likely metabolites from substrates; (3) prediction of inhibitors and their inhibition potency. Truly predictive models of toxic outcomes cannot be created without incorporating metabolic characteristics; in silico methods help producing such information and filling gaps in experimentally derived data. Currently modeling methods are not mature enough to replace standard in vitro and in vivo approaches, but they are already used as an important component in risk assessment of drugs and other chemicals. PMID:26124721

  16. Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways.

    PubMed

    Haarmann, Thomas; Ortel, Ingo; Tudzynski, Paul; Keller, Ullrich

    2006-04-01

    Clavines and D-lysergic acid-derived alkaloid amides and alkaloid peptides are two different families of compounds that have the indole-derived tetracyclic metergoline ring system in common. Previous work has shown that D-lysergic acid is biosynthetically derived from clavine alkaloids. Recent cloning and analysis of the ergot alkaloid biosynthesis gene cluster from the D-lysergic acid peptide (ergopeptines)-producing Claviceps purpurea, has shown that it most probably contains all genes necessary for D-lysergic acid synthesis as well as those that encode the assembly of D-lysergic acid peptides, such as ergotamine. To address the role of the oxygenase genes of alkaloid-gene clusters, the only cytochrome P450 monooxygenase gene of this cluster was inactivated by disruption. The resultant mutant accumulated agroclavine, elymoclavine, and chanoclavine in substantial amounts but not ergopeptines. Feeding the mutant with D-lysergic acid restored ergopeptine synthesis; this suggests a block in the conversion of elymoclavine to D-lysergic acid. The gene was designated cloA (for encoding a clavine oxidase, CLOA). Retransformation of the mutant with the intact cloA gene also restored ergopeptine synthesis. These data show that CLOA catalyses the conversion of clavines to D-lysergic acid, it acts as a critical enzyme in the ergot alkaloid gene cluster, and bridges the biosynthesis of the two different families of alkaloids. PMID:16538694

  17. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    PubMed

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. PMID:23137635

  18. Induction of cytochrome P450 enzymes in rat liver by two conazoles, myclobutanil and triadimefon.

    PubMed

    Sun, G; Grindstaff, R D; Thai, S F; Lambert, G R; Tully, D B; Dix, D J; Nesnow, S

    2007-02-01

    This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon, on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague Dawley rats. Rats were dosed with the conazoles at three dose levels by gavage for 14 days: myclobutanil (150, 75, and 10mgkg(-1) body weight day(-1); triadimefon (115, 50, and 10 mg kg(-1) body weight day-'), which included their maximum tolerated dose levels (MTD). Both myclobutanil and triadimefon significantly induced pentoxyresorufin O-depentylase activities at their MTD levels: myclobutanil, 8.1-fold at 150mgkg(-1) body weight day- ; and triadimefon, 18.5-fold at 115mgkg(-1) body weight day-'. Benzyloxyresorufin O-debenzylase activities were similarly increased: myclobutanil, 13.3-fold; triadimefon, 27.7-fold. Quantitative real-time reverse-transcription polymerase chain reaction assays were used to characterize the mRNA expression of specific CYP genes induced by these two conazoles. Myclobutanil and triadimefon treatment at their MTD levels significantly increased rat hepatic mRNA expression of CYP2B1 (14.3- and 54.6-fold), CYP3A23/3A1 (2.2- and 7.3-fold), and CYP3A2 (1.5- and 1.7-fold). Western immunoblots of rat hepatic microsomal proteins identified significantly increased levels of CYP isoforms after myclobutanil or triadimefon treatment at their MTD levels: CYP2BI/2 (4.8- and 5.3-fold), and CYP3A1 (2.2- and 2.9-fold). Triadimefon also increased CYP3A2 immunoreactive protein levels 1.8-fold. These results indicate that triadimefon and myclobutanil, like other triazole-containing conazoles, induced CYP2B and CYP3A families of cytochromes in rat liver. PMID:17484520

  19. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor.

    PubMed

    Baj-Rossi, C; Rezzonico Jost, T; Cavallini, A; Grassi, F; De Micheli, G; Carrara, S

    2014-03-15

    This paper reports the characterization of an electrochemical biosensor for the continuous monitoring of Naproxen based on cytochrome P450. The electrochemical biosensor is based on the drop-casting of multi-walled carbon-nanotubes (MWCNTs) and microsomal cytochrome P4501A2 (msCYP1A2) on a graphite screen-printed electrode (SPE). The proposed biosensor was employed to monitor Naproxen (NAP), a well-known anti-inflammatory compound, through cyclic voltammetry. The dynamic linear range for the amperometric detection of NAP had an upper limit of 300 µM with a corresponding limit of detection (LOD) of 16 ± 1 µM (S/N=3), which is included in NAP physiological range (9-300 µM). The MWCNT/msCYP1A2-SPE sensor was also calibrated for NAP detection in mouse serum that was previously extracted from mice, showing a slightly higher LOD (33 ± 18 µM). The stability of the msCYP1A2-based biosensor was assessed by longtime continuous cyclic voltammetric measurements. The ability of the sensor to monitor drug delivery was investigated by using a commercial micro-osmotic pump. Results show that the MWCNT/msCYP1A2-SPE sensor is capable of precisely monitoring the real-time delivery of NAP for 16 h. This work proves that the proposed electrochemical sensor might represent an innovative point-of-care solution for the personalization of drug therapies, as well as for pharmacokinetic studies in both animals and humans. PMID:24144559

  20. Structures of human steroidogenic cytochrome P450 17A1 with substrates.

    PubMed

    Petrunak, Elyse M; DeVore, Natasha M; Porubsky, Patrick R; Scott, Emily E

    2014-11-21

    The human cytochrome P450 17A1 (CYP17A1) enzyme operates at a key juncture of human steroidogenesis, controlling the levels of mineralocorticoids influencing blood pressure, glucocorticoids involved in immune and stress responses, and androgens and estrogens involved in development and homeostasis of reproductive tissues. Understanding CYP17A1 multifunctional biochemistry is thus integral to treating prostate and breast cancer, subfertility, blood pressure, and other diseases. CYP17A1 structures with all four physiologically relevant steroid substrates suggest answers to four fundamental aspects of CYP17A1 function. First, all substrates bind in a similar overall orientation, rising ?60° with respect to the heme. Second, both hydroxylase substrates pregnenolone and progesterone hydrogen bond to Asn(202) in orientations consistent with production of 17?-hydroxy major metabolites, but functional and structural evidence for an A105L mutation suggests that a minor conformation may yield the minor 16?-hydroxyprogesterone metabolite. Third, substrate specificity of the subsequent 17,20-lyase reaction may be explained by variation in substrate height above the heme. Although 17?-hydroxyprogesterone is only observed farther from the catalytic iron, 17?-hydroxypregnenolone is also observed closer to the heme. In conjunction with spectroscopic evidence, this suggests that only 17?-hydroxypregnenolone approaches and interacts with the proximal oxygen of the catalytic iron-peroxy intermediate, yielding efficient production of dehydroepiandrosterone as the key intermediate in human testosterone and estrogen synthesis. Fourth, differential positioning of 17?-hydroxypregnenolone offers a mechanism whereby allosteric binding of cytochrome b5 might selectively enhance the lyase reaction. In aggregate, these structures provide a structural basis for understanding multiple key reactions at the heart of human steroidogenesis. PMID:25301938

  1. Oxidation of methyl and ethyl nitrosamines by cytochrome P450 2E1 and 2B1.

    PubMed

    Chowdhury, Goutam; Calcutt, M Wade; Nagy, Leslie D; Guengerich, F Peter

    2012-12-18

    Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine [N,N-dimethylnitrosamine (DMN)], a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ?8. The KIE was not attenuated in noncompetitive intermolecular experiments with rat liver microsomes {(D)V = 12.5; (D)(V/K) = 10.9 [nomenclature of Northrop, D. B. (1982) Methods Enzymol. 87, 607-625]} but was with purified human P450 2E1 [(D)V = 3.3; (D)(V/K) = 3.7], indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine [N,N-diethylnitrosamine (DEN)], the intrinsic KIE was slightly lower and was not expressed [e.g., (D)(V/K) = 1.2] in noncompetitive intermolecular experiments. The same general pattern of KIEs was also seen in the (D)(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH(3)NH(2), CH(3)CH(2)NH(2), and NO(2)(-)). Experiments with deuterated N-nitroso-N-methyl-N-ethylamine demonstrated that the lower KIEs associated with ethyl versus methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 [Chowdhury, G., et al. (2010) J. Biol. Chem. 285, 8031-8044]. These same features (no lag phase for HCO(2)H formation and a lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has a lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkyl nitrosamine oxidation appears to be shared by a number of P450s. PMID:23186213

  2. Chimeric cytochromes P450 engineered by domain swapping and random mutagenesis for producing human metabolites of drugs.

    PubMed

    Kang, Ji-Yeon; Ryu, Sang Hoon; Park, Sun-Ha; Cha, Gun Su; Kim, Dong-Hyun; Kim, Keon-Hee; Hong, Austin W; Ahn, Taeho; Pan, Jae-Gu; Joung, Young Hee; Kang, Hyung-Sik; Yun, Chul-Ho

    2014-07-01

    Human drug metabolites produced by cytochrome P450 enzymes are critical for safety testing and may themselves act as drugs or leads in the drug discovery and development process. Here, highly active chimeric fusion proteins (chimeras) were obtained by reductase domain swapping of mutants at key catalytic residues of the heme domain with that of a natural variant (CYP102A1.2) of P450 BM3 (CYP102A1.1) from Bacillus megaterium. Random mutagenesis at the heme domain of the chimera was also used to generate chimeric mutants that were more active and diverse than the chimeras themselves. To determine whether the chimeras and several mutants of the highly active chimera displayed enhanced catalytic activity and, more importantly, whether they acquired activities of biotechnological importance, we measured the oxidation activities of the chimeras and chimeric mutants toward human P450 substrates, mainly drugs. Some of the chimeric mutants showed high activity toward typical human P450 substrates including drugs. Statin leads, especially chiral products, with inhibitory effects toward HMG-CoA reductase could be obtained from metabolites of statin drugs generated using these chimeric mutants. This study reveals the critical role of the reductase domain for the activity of P450 BM3 and shows that chimeras generated by domain swapping can be used to develop industrial enzymes for the synthesis of human metabolites from drugs and drug leads. PMID:24474032

  3. Cloning, Functional Expression, and Subcellular Localization of Multiple NADPH-Cytochrome P450 Reductases from Hybrid Poplar1

    PubMed Central

    Ro, Dae-Kyun; Ehlting, Jürgen; Douglas, Carl J.

    2002-01-01

    NADPH:cytochrome P450 reductase (CPR) provides reducing equivalents to diverse cytochrome P450 monooxygenases. We isolated cDNAs for three CPR genes (CPR1, CPR2, and CPR3) from hybrid poplar (Populus trichocarpa × Populus deltoides). Deduced CPR2 and CPR3 amino acid sequences were 91% identical, but encoded isoforms divergent from CPR1 (72% identity). CPR1 and CPR2 were co-expressed together with the P450 enzyme cinnamate-4-hydroxylase (C4H) in yeast (Saccharomyces cerevisiae). Microsomes isolated from strains expressing CPR1/C4H or CPR2/C4H enhanced C4H activities approximately 10-fold relative to the C4H-only control strain, and catalyzed NADPH-dependent cytochrome c reduction. The divergent CPR isoforms (CPR1 and CPR2/3) contained entirely different N-terminal sequences, which are conserved in other plant CPRs and are diagnostic for two distinct classes of CPRs within the angiosperms. C-terminal green fluorescent protein fusions to CPR1 and CPR2 were constructed and expressed in both yeast and Arabidopsis. The fusion proteins expressed in yeast retained the ability to support C4H activity and, thus, were catalytically active. Both CPR::green fluorescent protein fusion proteins were strictly localized to the endoplasmic reticulum in transgenic Arabidopsis. The lack of localization of either isoform to chloroplasts, where P450s are known to be present, suggests that an alternative P450 reduction system may be operative in this organelle. Transcripts for the three poplar CPR genes were present ubiquitously in all tissues examined, but CPR2 showed highest expression in young leaf tissue. PMID:12481067

  4. Spectra and Kinetic Studies of the Compound I Derivative of Cytochrome P450 119 (CYP119)

    PubMed Central

    Sheng, Xin; Horner, John H.; Newcomb, Martin

    2010-01-01

    The Compound I derivative of cytochrome P450 119 (CYP119) was produced by laser flash photolysis of the corresponding Compound II derivative, which, in turn, was prepared by reaction of the resting enzyme with peroxynitrite. The UV-visible spectrum of the Compound I species contains an asymmetric Soret band that can be resolved into overlapping transitions centered at ca. 367 and 416 nm and a Q-band with ?max ? 650 nm. Reactions of the Compound I derivative with organic substrates gave epoxideized (alkene oxidations) and hydroxylated (C-H oxidations) products as demonstrated by product studies and oxygen-18 labeling studies. The kinetics of oxidations by CYP119 Compound I were measured directly; the reactions included hydroxylations of benzyl alcohol, ethylbenzene, Tris buffer, lauric acid, and methyl laurate, and epoxidations of styrene and 10-undecenoic acid. Apparent second-order rate constants, equal to the product of the equilibrium binding constant (Kbind) times the first-order oxidation rate constant (kox), were obtained for all substrates. The oxidations of lauric acid and methyl laurate displayed saturation kinetic behavior, which permitted solution of both Kbind and kox for these substrates. The unactivated C-H positions of lauric acid reacted with a rate constant of kox = 0.8 s?1 at room temperature. The CYP119 Compound I derivative is more reactive than model Compound I species, iron(IV)-oxo porphyrin radical cations, and similar in reactivity to the Compound I derivative of the heme-thiolate enzyme chloroperoxidase. Kinetic isotope effects (kH/kD) for oxidations of benzyl alcohol and ethylbenzene were small, reflecting the increased reactivity of the Compound I derivative in comparison to models. Nonetheless, CYP119 Compound I apparently is much less reactive than the oxidizing species formed in the P450cam reaction cycle. Competition kinetic studies employing CYP119 activated by hydrogen peroxide indicate that the same oxidizing transient is formed in the photochemical reaction and in the hydrogen peroxide shunt reaction. PMID:18788736

  5. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

    PubMed Central

    Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-01-01

    Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101

  6. Downregulation of cytochrome P450scc as an initial adverse effect of adult exposure to diethylstilbestrol on testicular steroidogenesis.

    PubMed

    Maeda, Naoyuki; Okumura, Kanako; Tanaka, Emi; Suzuki, Tomokazu; Miyasho, Taku; Haeno, Satoko; Ueda, Hiromi; Hoshi, Nobuhiko; Yokota, Hiroshi

    2014-12-01

    Reproductive toxicities and endocrine disruptions caused by chemicals in adult males are still poorly understood. It is our objectives to understand further details of the initial adverse effects leading severe testicular toxicities of a pharmaceutical endocrine disruptor, diethylstilbestrol (DES). Downregulations of both testicular regulatory proteins, such as the steroidogenic acute regulatory protein (StAR) and the peripheral benzodiazepine receptor (PBR), which play important roles in the transport of cholesterol into the mitochondria, and cytochrome P450 mediating the cholesterol side chain cleavage reaction (P450scc), were observed in the rat orally administered DES (340??g/kg/2 days) for 2 weeks. We found that after only 1 week treatment with DES, the blood and testicular testosterone (TS) levels were drastically decreased without abnormalities of the StAR and PBR; however, the protein and mRNA levels of P450scc were diminished. Decrease in the conversion rate of cholesterol to pregnenolone was delayed in the in vitro assay using the testicular mitochondrial fraction from the rat treated with DES for 1 week. When the precursors in TS biosynthesis containing the testis were identified and determined by liquid chromatography-mass spectrometry analysis, decreased levels of all precursors except cholesterol were observed. In conclusion, suppressed cytochrome P450scc expression in adult male rat was identified as an initial target of DES in testicular steroidogenesis disorder leading reproductive toxicities. PMID:23873838

  7. 906 variations among 27 genes encoding cytochrome P450 (CYP) enzymes and aldehyde dehydrogenases (ALDHs) in the Japanese population

    Microsoft Academic Search

    Susumu Saito; Aritoshi Iida; Akihiro Sekine; Chie Ogawa; Saori Kawauchi; Shoko Higuchi; Machi Ohno; Yusuke Nakamura

    2002-01-01

    We screened DNAs from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in genes encoding 13 cytochrome\\u000a P450 (CYP) enzymes and 14 aldehyde dehydrogenases (ALDHs) by directly sequencing their entire genomic regions except for repetitive\\u000a elements. This approach identified 810 SNPs and 96 insertion\\/deletion polymorphisms among the 27 genes. Of the 810 SNPs, 229\\u000a were identified among the CYP genes and

  8. Assessment of cytochrome P450 1A in harbour seals ( Phoca vitulina) using a minimally-invasive biopsy approach

    Microsoft Academic Search

    Kelsey A. Miller; Marta G. L. Assunção; Neil J. Dangerfield; Stelvio M. Bandiera; Peter S. Ross

    2005-01-01

    Biomarkers of organochlorine exposure, such as the induction of cytochrome P450 1A (CYP1A), can be used to assess the impact of environmental contaminants on the health of free-ranging marine mammal populations. The objective of the present study was to measure CYP1A in skin and liver biopsies obtained from live harbour seals (Phoca vitulina). Twelve harbour seal pups, aged three to

  9. Effects of TBT and 3MC co-exposure on cytochrome P450 expression and activity in marine organisms

    Microsoft Academic Search

    P. McClellan-Green; J. Robbins

    2000-01-01

    Tributyltin (TBT) is an organotin compound used as a chemical anti-fouling agent. This compound is most often found absorbed to the sediments in marinas and harbors where other contaminants such as polycyclic aromatic hydrocarbons are present. This study looked at the effects of TBT and 3-methylcholanthrene (3-MC) co-exposure on cytochrome P450 expression and enzymatic activity in the southern flounder (Paralichthys

  10. Identification of a Novel Mammary-Restricted Cytochrome P450, CYP4Z1, with Overexpression in Breast Carcinoma

    Microsoft Academic Search

    Michael A. Rieger; Reinhard Ebner; David R. Bell; Andrea Kiessling; Jacques Rohayem; Marc Schmitz; Achim Temme; E. Peter Rieber; Bernd Weigle

    2004-01-01

    By screening a transcriptome database for expressed sequence tags that are specifically expressed in mammary gland and breast carcinoma, we identified a new human cytochrome P450 (CYP), termed CYP4Z1. The cDNA was cloned from the breast carcinoma line SK-BR-3 and codes for a protein of 505 amino acids. Moreover, a transcribed pseudogene CYP4Z2P that codes for a truncated CYP protein

  11. Human cytochrome P450 3A4 is involved in the biotransformation of the herbicide 2,4-dichlorophenoxyacetic acid

    Microsoft Academic Search

    Zahid Mehmood; Michael P. Williamson; Diane E. Kelly; Steven L. Kelly

    1996-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most frequently used herbicides and is an environmental pollutant. Evidence exists that 2,4-D exposure results in an increased risk for certain malignant disorders such as nasal carcinoma and soft tissue sarcoma in humans and animals. The involvement of cytochrome P450 3A4 (CYP3A4), the major form of monooxygenase enzyme in human liver, in the

  12. ASsessment of botanical supplementation on human cytochrome P450 phenotype: citrus aurantium, echinacea, milk thistle, saw palmetto

    Microsoft Academic Search

    B. J. Gurley; S. F. Gardner; M. A. Hubbard; K. Williams; B. Gentry; J. Carrier; D. Edwards; I. Khan

    2004-01-01

    Objectives: Phytochemical-mediated modulation of cytochrome P-450 activity may underlie many herb-drug interactions. Single time-point, phenotypic metabolic ratios were used to determine if supplementation with citrus aurantium, echinacea, milk thistle, or saw palmetto affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4 activity.Methods: Twelve healthy volunteers were randomly assigned to receive each supplement for 28 days. A 30-day washout period was interposed between each

  13. Age and gender effects on the pharmacokinetics and pharmacodynamics of triazolam, a cytochrome P450 3A substrate

    Microsoft Academic Search

    David J. Greenblatt; Jerold S. Harmatz; Lisa L. von Moltke; C. Eugene Wright; Richard I. Shader

    2004-01-01

    Sixty-one healthy men and women, aged 20 to 75 years, received single 0.25-mg doses of triazolam, a cytochrome P450 (CYP) 3A substrate benzodiazepine, and placebo in a double-blind crossover study. Among women, age had no significant effect on area under the triazolam plasma concentration curve (AUC) (Spearman r = 0.14, P = .44) or clearance (r = ?0.09, P =

  14. In vivo comparisons of constitutive cytochrome P450 3A activity assessed by alprazolam, triazolam, and midazolam

    Microsoft Academic Search

    Andrew L. Masica; Gail Mayo; Grant R. Wilkinson

    2004-01-01

    Background: Previous studies have not demonstrated good correlations between various presumed phenotypic measures of in vivo cytochrome P450 (CYP) 3A activity. However, in reality, few have used appropriate and validated in vivo probes that consider the complexities of CYP3A. Accordingly, the disposition of 3 closely related benzodiazepines with extensive and similar CYP3A-mediated metabolism characteristics but different pharmacokinetics was investigated, and

  15. Chemical toxicity testing in vitro using cytochrome P450–expressing cell lines, such as human CYP1B1

    Microsoft Academic Search

    Robert Landsiedel; Eric Fabian; Tewes Tralau; Andreas Luch

    2011-01-01

    This protocol describes how to use cytochrome P450–dependent monooxygenase (CYP)-expressing cell lines in toxicity testing of chemicals in vitro. Selected cells amenable to permanently grow in culture are genetically manipulated to stably express single CYP enzymes originating from any species of interest. This expression can be characterized by, for example, determining CYP mRNA content, CYP protein level (western blotting or

  16. Cytochrome P450 system and heme synthesis enzymes activity in flounder liver as biomarkers of marine environments pollution

    Microsoft Academic Search

    Sergei Bogovski; Boris Sergeyev; Vladimir Muzyka; Svetlana Karlova

    1998-01-01

    The total cytochrome P450 (CYP) levels, aryl hydrocarbon hydroxylase (AHH), aminopyrine N-demethylase (APND), 5-aminolevulinic acid synthase (ALA-S), and heme synthase (HEM-S) activities were analyzed in liver of flounder (Platichthys flesus) collected from urban and nonurban embayments of the Baltic Sea off Tallinn area to show the response of biomarkers to anthropogenic contaminants, especially carcinogenic PAHs, in marine environments. CYP, APND,

  17. Effect of Tadalafil on Cytochrome P450 3A4–mediated Clearance: Studies in Vitro and in Vivo

    Microsoft Academic Search

    Barbara J. Ring; Beverley E. Patterson; Malcolm I. Mitchell; Mark Vandenbranden; Jennifer Gillespie; Alun W. Bedding; Hayley Jewell; Christopher D. Payne; S. Thomas Forgue; James Eckstein; Steven A. Wrighton; Diane L. Phillips

    2005-01-01

    Objectives: Tadalafil was examined in vitro and in vivo for its ability to affect human cytochrome P450 (CYP) 3A–mediated metabolism.Methods: Reversible and mechanism-based inhibition of CYP3A by tadalafil was examined in human liver microsomes. The ability of tadalafil to influence CYP3A activity was also examined in primary cultures of human hepatocytes. The effect of tadalafil on the pharmacokinetics of CYP3A

  18. Expression of cytochrome P450 2E1 in normal human bronchial epithelial cells and activation by ethanol in culture

    Microsoft Academic Search

    Dorothee M. Runge; Thomas W. Stock; Thomas Lehmann; Christiane Taege; Ulrike Bernauer; Donna Beer Stolz; Stefan Hofmann; Heidi Foth

    2001-01-01

    Serum-free primary cultures of human bronchial epithelial cells and freshly isolated samples of human bronchial epithelium were used to investigate basal expression of the cytochrome P450 enzyme CYP2E1 and its activation or induction by ethanol in bronchial epithelial cells. The cultures consisted of ⃋% cells of epithelial characteristics as determined by transmission electron microscopy and immunohistochemical staining. Monolayers were obtained

  19. Cytochrome P450 2E1 and 3A activities do not differ between Mexicans and European Americans

    Microsoft Academic Search

    Russell A. Poland; Keh-Ming Lin; Cenci Nuccio; Grant R. Wilkinson

    2002-01-01

    Objectives: Population differences in the activity of various cytochrome P450 (CYP) enzymes have been demonstrated on the basis of either genetic or environmental determinants. Hispanics are a large demographic group both worldwide and within the United States; hence the possibility of differences in metabolism between one such group—Mexicans—and a European-derived population was determined with respect to CYP2E1 and CYP3A.Methods: Young

  20. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids

    Microsoft Academic Search

    Nour-Eddine Rmiki; Jaouad Rachadi; Yves Lemoine

    2001-01-01

    Astaxanthin accumulation by green microalgae is a natural phenomenon known as red snows and blood rains. The fact that astaxanthin synthesis requires oxygen, NADPH and Fe2+ led Cunningham and Gantt [Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 (1998) 557–583] to propose that a cytochrome P450-dependent enzyme might be involved in the transformation of ?-carotene to astaxanthin. In Haematococcus only

  1. Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1

    Microsoft Academic Search

    Hamed Doostdar; M. Danny Burke; Richard T Mayer

    2000-01-01

    Interactions of six naturally occurring flavonoids (acacetin, diosmetin, eriodictyol, hesperetin, homoeriodictyol, and naringenin) with human cytochrome P450 (CYP1) enzymes were studied. The flavones acacetin and diosmetin were potent inhibitors of ethoxyresorufin O-dealkylase (EROD) activity of CYP1A and CYP1B1. Hydroxy and\\/or methoxy substitutions at the 3? and 4? positions in the flavonoid structures were the major factors involved in conveying selectivity

  2. Cytochrome P450 and contaminant concentrations in nestling black-crowned night-herons and their interrelation with sibling embryos

    Microsoft Academic Search

    Barnett A. Rattner; Mark J. Melancon; Thomas W. Custer; Roger L. Hothem

    1996-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-d-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to Chincoteague National Wildlife Reguge, VA, USA) and three contaminated sites (Cat Island, Green Bay, WI, USA; Bair Island, San Francisco Bay, CA, USA; and West Marin Island, San Francisco Bay, CA, USA). Arylhydrocarbon hydroxylase and benzyloxyresorufin-O-dealkylase activities of nestlings

  3. Lung expression of cytochrome P450 1A1 as a possible biomarker of exposure to diesel exhaust particles

    Microsoft Academic Search

    Hirohisa Takano; Rie Yanagisawa; Takamichi Ichinose; Kaori Sadakane; Ken-ichiro Inoue; Sei-ichi Yoshida; Ken Takeda; Shin Yoshino; Toshikazu Yoshikawa; Masatoshi Morita

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAH) and reactive oxygen species (ROS) derived from diesel exhaust particles (DEP) are implicated in the pathophysiology of respiratory diseases. Cytochrome P450 (Cyp) 1A1 can be induced by several kinds of PAH and produce ROS. We determined whether acute inhalation exposure to DEP induced the expression of Cyp 1A1 in murine lung. Intratracheal instillation of DEP dose-dependently

  4. Stimulatory effects of benzene on rabbit liver and kidney microsomal cytochrome P-450 dependent drug metabolizing enzymes

    Microsoft Academic Search

    Emel Arinç; Orhan Adall; Mesude ??can; Tülin Güray

    1991-01-01

    Treatment of rabbits with benzene (880 mg\\/kg\\/day), s.c. for 3 consecutive days, caused 3.8- and 5.7-fold increases in aniline 4-hydroxylation rates of liver and kidney microsomes, respectively. Benzene treatment markedly enhanced hydroxylation rates ofp-nitrophenol by liver and kidney by 7.2- and 4.2-fold, respectively. Both of these enzymes are associated with cytochrome P-450 LM3a. In contrast, the activity of benzphetamine N-demethylase,

  5. Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro.

    PubMed Central

    Fuhr, U; Anders, E M; Mahr, G; Sörgel, F; Staib, A H

    1992-01-01

    Inhibition of cytochrome P450IA2 activity is an important adverse effect of quinolone antibacterial agents. It results in a prolonged half-life for some drugs that are coadministered with quinolones, such as theophylline. The objective of the study described here was to define the parameters for quantifying the inhibitory potencies of quinolones against cytochrome P450IA2 in vivo and in vitro and to investigate the relationship between the results of both approaches. Cytochrome P450IA2 activity in vitro was measured by using the 3-demethylation rate of caffeine (500 microM) in human liver microsomes. The inhibitory potency of a quinolone in vitro was determined by calculating the decrease in the activity of cytochrome P450IA2 caused by addition of the quinolone (500 microM) into the incubation medium. The mean values (percent reduction of activity without quinolone) were as follows: enoxacin, 74.9%; ciprofloxacin, 70.4%; nalidixic acid, 66.6%; pipemidic acid, 59.3%; norfloxacin, 55.7%; lomefloxacin, 23.4%; pefloxacin, 22.0%; amifloxacin, 21.4%; difloxacin, 21.3%; ofloxacin, 11.8%; temafloxacin, 10.0%; fleroxacin, no effect. The inhibitory potency of a quinolone in vivo was defined by a dose- and bioavailability-normalized parameter calculated from changes of the elimination half-life of theophylline and/or caffeine reported in previously published studies. Taking the pharmacokinetics of the quinolones into account, it was possible to differentiate between substances with and without clinically relevant inhibitory effects by using results of in vitro investigations. The in vitro test described here may help to qualitatively predict the relevant drug interactions between quinolones and methylxanthines that occur during therapy. PMID:1510417

  6. Immunohistochemical localization of cytochrome P450 2E1 in human pulmonary carcinoma and normal bronchial tissue

    Microsoft Academic Search

    K. T. Kivist; H. Kroemer; A. Linder; G. Friedel; P. Beaune; C. Belloc; P. Fritz

    1995-01-01

    Cytochrome P450 2E1 (CYP2E1) is a major xenobiotic-metabolizing enzyme but data concerning its extrahepatic expression are few. CYP2E1 can metabolically activate many procarcinogens and therefore its presence in the lung might play a role in bioactivation of procarcinogens, so we studied the expression and localization of CYP2E1 in primary pulmonary carcinomas and surrounding normal bronchial tissue from 28 patients. Seromucous

  7. Expression, purification and direct eletrochemistry of cytochrome P450 6A1 from the house fly, Musca domestica

    Microsoft Academic Search

    Li Zhang; Xuequn Liu; Chuntai Wang; Xinqiong Liu; Gang Cheng; Yunhua Wu

    2010-01-01

    A plasmid (pCW) was modified to code for the complete sequence of house fly (Musca domestica) cytochrome P450 6A1 (CYP6A1) with only the second amino acid changed in the N-terminal portion and this plasmid was used to express the enzyme CYP6A1 in Escherichia coli cells. With the addition of ?-aminolevulinic acid and FeCl3 to the culture, the enzyme was produced

  8. Distribution and Induction of Cytochrome P450 1A1 and 1A2 in Rat Brain

    Microsoft Academic Search

    Dennis C. Morse; Adam P. Stein; Paul E. Thomas; Herbert E. Lowndes

    1998-01-01

    Cytochromes P450 1A1 and 1A2 are involved in the oxidation of a wide spectrum of endogenous compounds and xenobiotics. Although their presence has been repeatedly confirmed in brain tissue, reports regarding their distribution in the brain are often contradictory. In the present study the possibility was examined that CYP1A1 and CYP1A2 are localized and inducible in the brain-CSF barrier and

  9. Impact of dimethyl sulfoxide on expression of nuclear receptors and drug-inducible cytochromes P450 in primary rat hepatocytes

    Microsoft Academic Search

    Ting Su; David J. Waxman

    2004-01-01

    Dimethyl sulfoxide (DMSO) is reported to induce hepatocyte redifferentiation. The impact of DMSO on liver transcription factors, cytochromes P450 (CYPs), and nuclear receptors regulating CYP expression was assayed in primary rat hepatocytes by QPCR. CYP 2B1, 3A1, and 4A1 mRNAs were reduced to 10–30% of initial liver levels without DMSO and restored at or above liver levels by DMSO treatment.

  10. Immunohistochemical Localization of Cytochrome P450 CYP1B1 in Breast Cancer with Monoclonal Antibodies Specific for CYP1B1

    Microsoft Academic Search

    Morag C. E. McFadyen; Suzanne Breeman; Simon Payne; Chris Stirk; Iain D. Miller; William T. Melvin; Graeme I. Murray

    1999-01-01

    Cytochrome P450 CYP1B1 is a recently identified member of the CYP1 P450 family. We have shown that this P450 displays increased expression in several types of human cancer, indicating that CYP1B1 is a potential tumor biomarker. In this study we developed monoclonal antibodies (MAbs) to CYP1B1 that are effective on formalin-fixed, paraffin-embedded tissue sections and investigated the presence of CYP1B1

  11. Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus

    Microsoft Academic Search

    Melissa C. Hardstone; Cheryl Leichter; Laura C. Harrington; Shinji Kasai; Takashi Tomita; Jeffrey G. Scott

    2007-01-01

    The cytochrome P450-dependent monooxygenases (P450s) are an important enzymatic system that metabolizes xenobiotics (e.g., pesticides), as well as endogenous compounds (e.g., hormones). P450-mediated metabolism can result in detoxification of insecticides such as pyrethroids, or can be involved in the bioactivation and detoxification of insecticides such as organophosphates. We isolated (from the JPAL strain) a permethrin resistant strain (ISOP450) of Culex

  12. The ferrous-dioxygen intermediate in human cytochrome P450 3A4. Substrate dependence of formation and decay kinetics.

    PubMed

    Denisov, Ilia G; Grinkova, Yelena V; Baas, Bradley J; Sligar, Stephen G

    2006-08-18

    The oxy-ferrous complex is the first of three branching intermediates in the catalytic cycle of cytochrome P450, in which the total efficiency of substrate turnover is curtailed by the side reaction of autoxidation. For human membrane-bound cytochromes P450, the oxy complex is believed to be the primary source of cytotoxic superoxide and peroxide, although information on the properties and stability of this intermediate is lacking. Here we document stopped-flow spectroscopic studies of the formation and decay of the oxy-ferrous complex in the most abundant human cytochrome P450 (CYP3A4) as a function of temperature in the substrate-free and substrate-bound form. CYP3A4 solubilized in purified monomeric form in nanoscale POPC bilayers is functionally and kinetically homogeneous. In substrate-free CYP3A4, the oxy complex is extremely unstable with a half-life of approximately 30 ms at 5 degrees C. Saturation with testosterone or bromocriptine stabilizes the oxy-ferrous intermediate. Comparison of the autoxidation rates with the available data on CYP3A4 turnover kinetics suggests that the oxy complex may be an important route for uncoupling. PMID:16762915

  13. Influence of some anti-inflammatory drugs on the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content

    SciTech Connect

    Mostafa, M.H.; Sheweita, S.A.; Abdel-Moneam, N.M. (Alexandria Univ. (Egypt))

    1990-06-01

    The metabolism of benzo({alpha})pyrene is mediated by the mixed function oxidase system including the cytochrome P450-dependent aryl hydrocarbon hydroxylase. The data of the present study revealed the ability of various commonly used anti-inflammatory drugs to alter the activity of this enzyme system, where all the tested drugs, namely phenyl butazone, ketoprofen, piroxicam, and acetaminophen, caused an increase in both the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content whether administered as a single dose or as a repeated dose for 6 consecutive days. The percentage of change for all drugs except phenyl butazone was proportional to the duration of drug administration. On the other hand, pyrazole which is chemically related to phenyl butazone, had no significant effect when administered as a single dose but caused a decrease in both studied parameters when administered as a repeated dose for 6 consecutive days. The mechanisms by which these commonly used drugs modify the aryl hydrocarbon hydroxylase activity and the cytochrome p450 content are discussed in the text.

  14. Interference of Thai traditional medicine (Yahom Ampanthong) on hepatic cytochrome P450 enzymes and pentobarbital-induced sleeping in mice.

    PubMed

    Sirisangtrakul, Wanna; Sripanidkulchai, Bungorn

    2011-01-15

    Yahom Ampanthong, a Thai traditional medicine, is commonly used for treatment of nausea, vomiting and syncope. Its formula is composed of more than 10 medicinal plants. Currently, the herbal-drug interactions were reported among the case of co-administration of traditional and Western medicines, since cytochrome P450 enzymes involve in drug metabolism and affect the drug action. This study aimed to investigate the effects of Yahom extracts on hepatic cytochrome P450 enzymes and pentobarbital-induced sleeping in mice. Powder of Yahom Ampanthong was extracted with three different solvents, i.e., dichloromethane, methanol and distilled water. The activities of CYP1A1, CYP1A2, CYP2B, CYP2E1 and CYP3A4 were determined after the administration of Yahom extracts for 4 weeks. All three extracts significantly inhibited CYP1A1, CYP1A2, CYP2E1 activities. In contrast, only dichloromethane and methanol extracts enhanced CYP2B activity. However, all three extracts did not affect CYP3A4 activity. When compared to the control group, the dichloromethane extract-treated animals showed shorter pentobarbital-induced sleeping time after treatment for 1 and 4 weeks. In conclusion, Yahom Ampanthong extracts modulated hepatic microsomal cytochrome P450 activities and decreased the pentobarbital-induced sleeping time. Therefore, the concomitant administration of Yahom with certain drugs may give rise to the herbal-drug interaction, which may affect the clinical implication of drug actions. PMID:21916258

  15. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15.

    PubMed

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2006-07-01

    In the present study, the cloning, expression and characterization of hepatic cytochrome P450 (CYP) CYP4A from koala (Phascolarctos cinereus), an obligate eucalyptus feeder, is described. It has been previously reported that microsomal lauric acid hydroxylase activity (a CYP4A marker) and CYP content were higher in koala liver in comparison to that in human, rat or wallaby, species that do not ingest eucalyptus leaves as food [Ngo, S., Kong, S., Kirlich, A., Mckinnon, R.A., Stupans, I., 2000. Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. Comp. Biochem. Physiol., C 127, 327-334]. A 1544 bp koala liver CYP4A cDNA, designated CYP4A15, was cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CYP4A15 cDNA encodes a protein of 500 amino acids and shares 69% nucleotide and 65% amino acid sequence identity to human CYP4A11. Transfection of the koala CYP4A15 cDNA into Cos-7 cells resulted in the expression of a protein with lauric acid hydroxylase activity. The koala CYP4A15 cDNA-expressed enzyme catalysed lauric acid hydroxylation at the rates of 0.45+/-0.18 nmol/min/mg protein and 4.79+/-1.91 nmol/min/nmol CYP (mean+/-SD, n=3), which were comparable to that of rat CYP4A subfamilies. Total CYP content for koala CYP4A15-expressed protein in Cos-7 cells was 0.094+/-0.001 nmol/mg protein (mean+/-SD, n=3) with negligible CYP content in untransfected Cos-7 cells lysate. Immunoblot analysis, using a sheep anti-rat CYP4A polyclonal antibody, detected multiple CYP4A immunoreactive bands in the liver from all species studied. The koala bands were found to be fainter and less confined but appeared much broader as compared to rat, human and wallaby. Northern blot analysis, utilising the koala CYP4A15 cDNA 417 bp probe, detected a mRNA species of approximately 2.6 kb in the koala liver and a mRNA species of approximately 2.4 kb in other species studied. Relative to the intensity of the beta-actin mRNA species, much stronger CYP4A mRNA signal was detected for koala liver relative to rat and human. In Southern blot analysis of EcoR 1-digested genomic DNAs, using the same koala CYP4A15 cDNA probe, the size of CYP4A gene fragments observed for the koala and other species were different, suggested a different CYP4A gene organization across species. Collectively, this study provides primary molecular data regarding koala CYP4A15 gene. The possibility that there may be higher CYP4A15 expression in the koala liver could not be excluded. PMID:16677781

  16. Relation among cytochrome P450, Ah-active PCB congeners and dioxin equivalents in pipping black- crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P450-associated monooxygenases and cytochrome P450 proteins, induced up to 85- fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r super(2) often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah- active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  17. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  18. Relation among cytochrome P450, Ah-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    SciTech Connect

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W. (National Biological Survey, Laurel, MD (United States). Patuxent Environmental Science Center); Tillitt, D.E. (National Biological Survey, Columbia, MO (United States). Midwest Science Center)

    1994-11-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P450-associated mono-oxygenates and cytochrome P450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r[sup 2] often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the AH receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  19. Reversible inhibition of three important human liver cytochrome p450 enzymes by tiliroside.

    PubMed

    Sun, Dong-Xue; Lu, Jin-Cai; Fang, Zhong-Ze; Zhang, Yan-Yan; Cao, Yun-Feng; Mao, Yu-Xi; Zhu, Liang-Liang; Yin, Jun; Yang, Ling

    2010-11-01

    Tiliroside, an active flavonoid extensively found in many medicinal plants including Helichrysum italicum, Geranium mexicanum and Helianthemum glomeratum, has been demonstrated to exert multiple biological effects including antiinflammatory, antimicrobial, antioxidant and antitumor activities. Cytochrome P450 (CYP) enzymes play an important role in the Phase I oxidation metabolism of a wide range of xenobiotics and inhibition of CYP isoforms might influence the elimination of drugs and induce serious adverse drug response. The inhibition of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2D6, CYP2C9, CYP2C8 and CYP2E1) by tiliroside was investigated using in vitro human liver microsomal incubation assays. The results showed that tiliroside strongly inhibited the activity of CYP3A4 (IC(50) = 9.0 ± 1.7 ?m), CYP2C8 (IC(50) = 12.1 ± 0.9 ?m) and CYP2C9 (IC(50) = 10.2 ± 0.9 ?m) with other CYP isoforms negligibly influenced. Further kinetic analysis showed that inhibition of these three CYP isoforms by tiliroside is best fit to a competitive way. The K(i) value was calculated to be 5.5 ?m, 3.3 ?m, 9.4 ?m for CYP3A4, CYP2C9 and CYP2C8, respectively. The relatively low K(i) values suggested that tiliroside might induce drug-drug interactions with many clinically used drugs which are mainly metabolized by these three CYP isoforms. Therefore, attention should be given to the probable drug-drug interaction between tiliroside-containing herbs and substrates of CYP3A4, CYP2C9 and CYP2C8. PMID:21031626

  20. Cytochrome P450 1B1: An unexpected modulator of liver fatty acid homeostasis.

    PubMed

    Larsen, Michele Campaigne; Bushkofsky, Justin R; Gorman, Tyler; Adhami, Vaqar; Mukhtar, Hasan; Wang, Suqing; Reeder, Scott B; Sheibani, Nader; Jefcoate, Colin R

    2015-04-01

    Cytochrome P450 1b1 (Cyp1b1) expression is absent in mouse hepatocytes, but present in liver endothelia and activated stellate cells. Increased expression during adipogenesis suggests a role of Cyp1b1 metabolism in fatty acid homeostasis. Wild-type C57BL/6j (WT) and Cyp1b1-null (Cyp1b1-ko) mice were provided low or high fat diets (LFD and HFD, respectively). Cyp1b1-deletion suppressed HFD-induced obesity, improved glucose tolerance and prevented liver steatosis. Suppression of lipid droplets in sinusoidal hepatocytes, concomitant with enhanced glycogen granules, was a consistent feature of Cyp1b1-ko mice. Cyp1b1 deletion altered the in vivo expression of 560 liver genes, including suppression of PPAR?, stearoyl CoA desaturase 1 (Scd1) and many genes stimulated by PPAR?, each consistent with this switch in energy storage mechanism. Ligand activation of PPAR? in Cyp1b1-ko mice by WY-14643 was, nevertheless, effective. Seventeen gene changes in Cyp1b1-ko mice correspond to mouse transgenic expression that attenuated diet-induced diabetes. The absence of Cyp1b1 in mouse hepatocytes indicates participation in energy homeostasis through extra-hepatocyte signaling. Extensive sexual dimorphism in hepatic gene expression suggests a developmental impact of estrogen metabolism by Cyp1b1. Suppression of Scd1 and increased leptin turnover support enhanced leptin participation from the hypothalamus. Cyp1b1-mediated effects on vascular cells may underlie these changes. PMID:25703193

  1. The cytochrome P450 family in the parasitic nematode Haemonchus contortus

    PubMed Central

    Laing, Roz; Bartley, David J.; Morrison, Alison A.; Rezansoff, Andrew; Martinelli, Axel; Laing, Steven T.; Gilleard, John S.

    2015-01-01

    Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of sheep, is particularly adept at developing resistance to the anthelmintic drugs used in its treatment and control. The basis of anthelmintic resistance is poorly understood for many commonly used drugs with most research being focused on mechanisms involving drug targets or drug efflux. Altered or increased drug metabolism is a possible mechanism that has yet to receive much attention despite the clear role of xenobiotic metabolism in pesticide resistance in insects. The cytochrome P450s (CYPs) are a large family of drug-metabolising enzymes present in almost all living organisms, but for many years thought to be absent from parasitic nematodes. In this paper, we describe the CYP sequences encoded in the H. contortus genome and compare their expression in different parasite life-stages, sexes and tissues. We developed a novel real-time PCR approach based on partially assembled CYP sequences “tags” and confirmed findings in the subsequent draft genome with RNA-seq. Constitutive expression was highest in larval stages for the majority of CYPs, although higher expression was detected in the adult male or female for a small subset of genes. Many CYPs were expressed in the worm intestine. A number of H. contortus genes share high identity with Caenorhabditis elegans CYPs and the similarity in their expression profiles supports their classification as putative orthologues. Notably, H. contortus appears to lack the dramatic CYP subfamily expansions seen in C. elegans and other species, which are typical of CYPs with exogenous roles. However, a small group of H. contortus genes cluster with the C. elegans CYP34 and CYP35 subfamilies and may represent candidate xenobiotic metabolising genes in the parasite. PMID:25558056

  2. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum

    PubMed Central

    2013-01-01

    Background The functional and evolutionary diversification of insect cytochrome P450s (CYPs) shaped the success of insects. CYPs constitute one of the largest and oldest gene superfamilies that are found in virtually all aerobic organisms. Because of the availability of whole genome sequence and well functioning RNA interference (RNAi), the red flour beetle, Tribolium castaneum serves as an ideal insect model for conducting functional genomics studies. Although several T. castaneum CYPs had been functionally investigated in our previous studies, the roles of the majority of CYPs remain largely unknown. Here, we comprehensively analyzed the phylogenetic relationship of all T. castaneum CYPs with genes in other insect species, investigated the CYP6BQ gene cluster organization, function and evolution, as well as examined the mitochondrial CYPs gene expression patterns and intron-exon organization. Results A total 143 CYPs were identified and classified into 26 families and 59 subfamilies. The phylogenetic trees of CYPs among insects across taxa provided evolutionary insight for the genetic distance and function. The percentage of singleton (33.3%) in T. castaneum CYPs is much less than those in Drosophila melanogaster (52.5%) and Bombyx mori (51.2%). Most members in the largest CYP6BQ gene cluster may make contribution to deltamethrin resistance in QTC279 strain. T. castaneum genome encodes nine mitochondrial CYPs, among them CYP12H1 is only expressed in the final instar larval stage. The intron-exon organizations of these mitochondrial CYPs are highly diverse. Conclusion Our studies provide a platform to understand the evolution and functions of T. castaneum CYP gene superfamily which will help reveal the strategies employed by insects to cope with their environment. PMID:23497158

  3. Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data.

    PubMed

    Sun, Hongmao; Veith, Henrike; Xia, Menghang; Austin, Christopher P; Huang, Ruili

    2011-10-24

    The human cytochrome P450 (CYP450) isozymes are the most important enzymes in the body to metabolize many endogenous and exogenous substances including environmental toxins and therapeutic drugs. Any unnecessary interactions between a small molecule and CYP450 isozymes may raise a potential to disarm the integrity of the protection. Accurately predicting the potential interactions between a small molecule and CYP450 isozymes is highly desirable for assessing the metabolic stability and toxicity of the molecule. The National Institutes of Health Chemical Genomics Center (NCGC) has screened a collection of over 17,000 compounds against the five major isozymes of CYP450 (1A2, 2C9, 2C19, 2D6, and 3A4) in a quantitative high throughput screening (qHTS) format. In this study, we developed support vector classification (SVC) models for these five isozymes using a set of customized generic atom types. The CYP450 data sets were randomly split into equal-sized training and test sets. The optimized SVC models exhibited high predictive power against the test sets for all five CYP450 isozymes with accuracies of 0.93, 0.89, 0.89, 0.85, and 0.87 for 1A2, 2C9, 2C19, 2D6, and 3A4, respectively, as measured by the area under the receiver operating characteristic (ROC) curves. The important atom types and features extracted from the five models are consistent with the structural preferences for different CYP450 substrates reported in the literature. We also identified novel features with significant discerning power to separate CYP450 actives from inactives. These models can be useful in prioritizing compounds in a drug discovery pipeline or recognizing the toxic potential of environmental chemicals. PMID:21905670

  4. MutaCYP: Classification of missense mutations in human cytochromes P450

    PubMed Central

    2014-01-01

    Background Cytochrome P450 monooxygenases (CYPs) represent a large and diverse family of enzymes involved in various biological processes in humans. Individual genome sequencing has revealed multiple mutations in human CYPs, and many missense mutations have been associated with variety of diseases. Since 3D structures are not resolved for most human CYPs, there is a need for a reliable sequence-based prediction that discriminates benign and disease causing mutations. Methods A new prediction method (MutaCYP) has been developed for scoring de novo missense mutations to have a deleterious effect. The method utilizes only five features, all of which are sequence-based: predicted relative solvent accessibility (RSA), variance of predicted RSA among the residues in close sequence proximity, Z-score of Shannon entropy for a given position, difference in similarity scores and weighted difference in size between wild type and new amino acids. The method is based on a single neural network. Results MutaCYP achieves MCC?=?0.70, Q2?=?88.52%, Recall?=?93.40% with Precision?=?91.09%, and AUC?=?0.909. Comparative evaluation with other existing methods indicates that MutaCYP outperforms SIFT and PolyPhen-2. Predictions by MutaCYP appear to be orthogonal to predictions by the evaluated methods. Potential issues on reliability of annotations of mutations in the existing databases are discussed. Conclusions A new accurate method, MutaCYP, for classification of missense mutations in human CYPs is presented. The prediction model consists of only five sequence-based features, including a real-valued predicted relative solvent accessibility. The method is publicly available at http://research.cchmc.org/MutaSense/. PMID:25073475

  5. Rapid Birth–Death Evolution Specific to Xenobiotic Cytochrome P450 Genes in Vertebrates

    PubMed Central

    Thomas, James H

    2007-01-01

    Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450) gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50–80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth–death evolution) even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. Unstable gene islands in vertebrates share some functional properties with bacterial genomic islands, though they arise by local gene duplication rather than horizontal gene transfer. PMID:17500592

  6. Mammalian Cytochrome P450-Dependent Metabolism of Polychlorinated Dibenzo-p-dioxins and Coplanar Polychlorinated Biphenyls

    PubMed Central

    Inui, Hideyuki; Itoh, Toshimasa; Yamamoto, Keiko; Ikushiro, Shin-Ichi; Sakaki, Toshiyuki

    2014-01-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD). Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126) to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs. PMID:25123135

  7. Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors.

    PubMed

    Ren, Shuang; Zeng, Juan; Mei, Ye; Zhang, John Z H; Yan, S Frank; Fei, Jian; Chen, Li

    2013-01-01

    Cytochrome P450 (CYP) 2J2 is one of the human CYPs involved in phase I xenobiotics metabolism. It is mainly expressed in extrahepatic tissues, including intestine and cardiovascular systems. The general role of CYP2J2 in drug metabolism is not yet fully understood, and the recent discovery that CYP2J2 can metabolize a wide range of structurally diverse drugs and its primary distribution in the intestine suggest its potentially indispensable role in first-pass intestinal metabolism and involvement in drug-drug interaction. To fully characterize its role in drug metabolism, selective and potent inhibitors of CYP2J2 are necessary tools. In the current study, 69 known drugs were screened for the inhibition of CYP2J2, and we discovered a number of marketed drugs as potent and selective CYP2J2 inhibitors. In particular, telmisartan and flunarizine have CYP2J2 inhibition IC(50) values of 0.42 ?M and 0.94 ?M, respectively, which are at least 10-fold more selective against all other major metabolizing CYPs; moreover, they are not substrates of CYP2J2 and show no time-dependent inhibition toward this CYP. The results of enzyme kinetics studies, supported by molecular modeling, have also elucidated that telmisartan is a mixed-type inhibitor, and flunarizine competitively inhibits CYP2J2. The K(i) for telmisartan is 0.19 ?M, with an ? value, an indicator of the type of inhibition mechanism, of 2.80, and flunarizine has a K(i) value of 0.13 ?M. These newly discovered CYP2J2 inhibitors can be potentially used as a tool to study CYP2J2 in drug metabolism and interaction in a clinical setting. PMID:23033255

  8. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice.

    PubMed

    Park, Young Joo; Lee, Eun Kyung; Lee, Yoon Kwang; Park, Do Joon; Jang, Hak Chul; Moore, David D

    2012-09-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR-/- mice, but not in hypothyroid PXR-/- mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR-/- hypothyroid mice, and this induction was abolished in CAR-/- mice and in and CAR-/- PXR-/- double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR-/- mice and lowest in WT and PXR-/- mice. Hypothyroid WT or PXR-/- mice survived chronic CBZ treatment, but all hypothyroid CAR-/- and CAR-/- PXR-/- mice died, with CAR-/-PXR-/- mice surviving longer than CAR-/- mice (12.3±3.3 days vs. 6.3±2.1 days, p=0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. PMID:22503787

  9. Cytochrome P450 2J2 Is Protective against Global Cerebral Ischemia in Transgenic Mice

    PubMed Central

    Li, Rui; Xu, Xizhen; Chen, Chen; Yu, Xuefeng; Edin, Matthew L.; Degraff, Laura Miller; Lee, Craig R.; Zeldin, Darryl C.; Wang, Dao Wen

    2012-01-01

    Background and Purpose Cytochrome P450 epoxygenase metabolites of arachidonic acid (EETs) have multiple cardiovascular effects, including reduction of blood pressure, protection against myocardial ischemia-reperfusion injury, and attenuation of endothelial inflammation and apoptosis. The present study was aimed to determine potential neuroprotective roles for EETs in cerebral ischemia. Methods Transgenic mice with endothelial overexpression of CYP2J2 (Tie2-CYP2J2-Tr) were subjected to global cerebral ischemia induced by bilateral common carotid artery occlusion (BCCAO) for 10 minutes, Cerebral EET production, infarct size, and apoptosis were examined after 24 hours of reperfusion. The action mechanisms of EETs on cerebral ischemia was also studied in cultures of astrocytes and Neuro-2a cells exposed to oxygen-glucose deprivation (OGD). Results In Tie2-CYP2J2-Tr mice, CYP2J2 expression and 14, 15-EET production in both brain tissue and plasma significantly increased while brain infarct size and apoptosis after ischemia decreased, accompanied increased activation of the PI3K/AKT and ERK1/2 pathways, decreased activation of JNK, and higher ratios of Bcl-2/Bax and Bcl-xl/Bax in ischemic brain compared to wild type mice. In cells, addition of exogenous EETs or CYP2J2 transfection attenuated OGD-induced apoptosis by activation of ERK1/2 and PI3K/AKT pathways, inhibition of JNK, which were reduced by pretreatments with inhibitors of the PI3K (LY294002), the MAPK (PD98059) and EETs (EEZE), respectively. Conclusions We conclude that CYP2J2 overexpression exerts marked neuroprotective effects against ischemic injury by a mechanism linked to increased level of circulating EETs and reduction of apoptosis. These data suggests the possibility for clinical therapy of cerebral ischemia by enhancing EET levels. PMID:23041291

  10. Opposing Regulation of Cytochrome P450 Expression by CAR and PXR in Hypothyroid Mice

    PubMed Central

    Park, Young Joo; Lee, Eun Kyung; Lee, Yoon Kwang; Park, Do Joon; Jang, Hak Chul; Moore, David D.

    2012-01-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR-/- mice, but not in hypothyroid PXR-/- mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR-/- hypothyroid mice, and this induction was abolished in CAR-/- mice and in and CAR-/- PXR-/- double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR-/- mice and lowest in WT and PXR-/- mice. Hypothyroid WT or PXR-/- mice survived chronic CBZ treatment, but all hypothyroid CAR-/- and CAR-/- PXR-/- mice died, with CAR-/-PXR-/- mice surviving longer than CAR-/- mice (12.3 ±3.3 days vs. 6.3 ±2.1 days, p=0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. PMID:22503787

  11. Isoform-specific regulation of cytochrome P450 expression and activity by estradiol in female rats

    PubMed Central

    Choi, Su-Young; Fischer, Liam; Yang, Kyunghee; Chung, Hyejin; Jeong, Hyunyoung

    2011-01-01

    Estradiol (E2) is the major endogenous estrogen, and its plasma concentration increases up to 100-fold during pregnancy in humans. Accumulating evidence suggests that an elevated level of E2 may influence hepatic drug metabolism, potentially being responsible for altered drug metabolism during pregnancy. We characterized effects of E2 on expression and activities of cytochrome P450 enzymes (CYPs) in an in vivo system using rats. To this end, female rats were treated with estradiol benzoate (EB) or known CYP inducers. Liver tissues were obtained after 5 days of treatment, and mRNA and protein expression levels as well as activities of major hepatic CYPs were determined by qRT-PCR, immunoblot, and microsomal assay. E2 increased CYP1A2 expression and activity to a smaller extent than ?-naphthoflavone did. E2 also enhanced CYP2C expression (CYP2C6, CYP2C7, and CYP2C12) to levels comparable to those observed by phenobarbital. E2 upregulated CYP3A9 expression, while expression of CYP3A1 was downregulated. Expression of hepatic nuclear receptors (PXR and CAR) and the obligate redox partner of CYPs (POR) was downregulated in EB-treated rats, suggesting their potential involvement in regulation of CYP expression and activity by E2. In summary, in female rats E2 regulates expression of hepatic CYPs in a CYP isoform-specific manner although the directional changes are different from those clinically observed during human pregnancy. Further study is warranted to determine whether the changes in drug metabolism during human pregnancy are attributable to involvement of hormones other than E2. PMID:21219883

  12. Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics

    PubMed Central

    Yang, Chunhua; Donthamsetty, Shashikiran; Cantuaria, Guilherme; Jadhav, Gajanan R.; Vangala, Subrahmanyam; Reid, Michelle D.; Aneja, Ritu

    2014-01-01

    Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural “milieu” confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens. PMID:25251219

  13. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19.

    PubMed

    Jiang, Rongrong; Yamaori, Satoshi; Okamoto, Yasuka; Yamamoto, Ikuo; Watanabe, Kazuhito

    2013-01-01

    The present study investigated the inhibitory effect of cannabidiol (CBD), a major constituent of marijuana, on the catalytic activity of cytochrome P450 2C19 (CYP2C19). (S)-Mephenytoin 4'-hydroxylase activities of human liver microsomes (HLMs) and recombinant CYP2C19 were inhibited by CBD in a concentration-dependent manner (IC?? = 8.70 and 2.51 µM, respectively). Omeprazole 5-hydroxylase and 3-O-methylfluorescein O-demethylase activities in recombinant CYP2C19 were also strongly inhibited by CBD (IC?? = 1.55 and 1.79 µM, respectively). Kinetic analysis for inhibition revealed that CBD showed a mixed-type inhibition against (S)-mephenytoin 4'-hydroxylation by recombinant CYP2C19. To clarify the structural requirements for CBD-mediated CYP2C19 inhibition, the effects of CBD-related compounds on CYP2C19 activity were examined. Olivetol inhibited the (S)-mephenytoin 4'-hydroxylase activity of recombinant CYP2C19 with the IC?? value of 15.3 µM, whereas d-limonene slightly inhibited the activity (IC?? > 50 µM). The inhibitory effect of CBD-2'-monomethyl ether (IC?? = 1.88 µM) on CYP2C19 was comparable to that of CBD, although the inhibitory potency of CBD-2',6'-dimethyl ether (IC?? = 14.8 µM) was lower than that of CBD. Cannabidivarin, possessing a propyl side chain, showed slightly less potent inhibition (IC?? = 3.45 µM) as compared with CBD, whereas orcinol and resorcinol did not inhibit CYP2C19 activity at all. These results indicate that CBD caused potent CYP2C19 inhibition, in which one free phenolic hydroxyl group and the pentyl side chain of CBD may play important roles. PMID:23318708

  14. Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin

    PubMed Central

    Chen, Wanping; Lee, Mi-Kyung; Jefcoate, Colin; Kim, Sun-Chang; Chen, Fusheng; Yu, Jae-Hyuk

    2014-01-01

    Cytochrome P450 (CYP) monooxygenase superfamily contributes a broad array of biological functions in living organisms. In fungi, CYPs play diverse and pivotal roles in versatile metabolism and fungal adaptation to specific ecological niches. In this report, CYPomes in the 47 genomes of fungi belong to the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota have been studied. The comparison of fungal CYPomes suggests that generally fungi possess abundant CYPs belonging to a variety of families with the two global families CYP51 and CYP61, indicating individuation of CYPomes during the evolution of fungi. Fungal CYPs show highly conserved characteristic motifs, but very low overall sequence similarities. The characteristic motifs of fungal CYPs are distinguishable from those of CYPs in animals, plants, and especially archaea and bacteria. The four representative motifs contribute to the general function of CYPs. Fungal CYP51s and CYP61s can be used as the models for the substrate recognition sites analysis. The CYP proteins are clustered into 15 clades and the phylogenetic analyses suggest that the wide variety of fungal CYPs has mainly arisen from gene duplication. Two large duplication events might have been associated with the booming of Ascomycota and Basidiomycota. In addition, horizontal gene transfer also contributes to the diversification of fungal CYPs. Finally, a possible evolutionary scenario for fungal CYPs along with fungal divergences is proposed. Our results provide the fundamental information for a better understanding of CYP distribution, structure and function, and new insights into the evolutionary events of fungal CYPs along with the evolution of fungi. PMID:24966179

  15. Computational Identification and Systematic Classification of Novel Cytochrome P450 Genes in Salvia miltiorrhiza

    PubMed Central

    Nelson, David R.; Wu, Kai; Liu, Chang

    2014-01-01

    Salvia miltiorrhiza is one of the most economically important medicinal plants. Cytochrome P450 (CYP450) genes have been implicated in the biosynthesis of its active components. However, only a dozen full-length CYP450 genes have been described, and there is no systematic classification of CYP450 genes in S. miltiorrhiza. We obtained 77,549 unigenes from three tissue types of S. miltiorrhiza using RNA-Seq technology. Combining our data with previously identified CYP450 sequences and scanning with the CYP450 model from Pfam resulted in the identification of 116 full-length and 135 partial-length CYP450 genes. The 116 genes were classified into 9 clans and 38 families using standard criteria. The RNA-Seq results showed that 35 CYP450 genes were co-expressed with CYP76AH1, a marker gene for tanshinone biosynthesis, using r?0.9 as a cutoff. The expression profiles for 16 of 19 randomly selected CYP450 obtained from RNA-Seq were validated by qRT-PCR. Comparing against the KEGG database, 10 CYP450 genes were found to be associated with diterpenoid biosynthesis. Considering all the evidence, 3 CYP450 genes were identified to be potentially involved in terpenoid biosynthesis. Moreover, we found that 15 CYP450 genes were possibly regulated by antisense transcripts (r?0.9 or r?–0.9). Lastly, a web resource (SMCYP450, http://www.herbalgenomics.org/samicyp450) was set up, which allows users to browse, search, retrieve and compare CYP450 genes and can serve as a centralized resource. PMID:25493946

  16. Characterization of ritonavir-mediated inactivation of cytochrome P450 3A4.

    PubMed

    Rock, Brooke M; Hengel, Shawna M; Rock, Dan A; Wienkers, Larry C; Kunze, Kent L

    2014-12-01

    Ritonavir is a human immunodeficiency virus (HIV) protease inhibitor and an inhibitor of cytochrome P450 3A4, the major human hepatic drug-metabolizing enzyme. Given the potent inhibition of CYP3A4 by ritonavir, subtherapeutic doses of ritonavir are used to increase plasma concentrations of other HIV drugs oxidized by CYP3A4, thereby extending their clinical efficacy. However, the mechanism of inhibition of CYP3A4 by ritonavir remains unclear. To date, data suggests multiple types of inhibition by ritonavir, including mechanism-based inactivation by metabolic-intermediate complex formation, competitive inhibition, irreversible type II coordination to the heme iron, and more recently heme destruction. The results presented here demonstrate that inhibition of CYP3A4 by ritonavir occurs by CYP3A4-mediated activation and subsequent formation of a covalent bond to the apoprotein. Incubations of [(3)H]ritonavir with reconstituted CYP3A4 and human liver microsomes resulted in a covalent binding stoichiometry equal to 0.93 ± 0.04 moles of ritonavir bound per mole of inactivated CYP3A4. The metabolism of [(3)H]ritonavir by CYP3A4 leads to the formation of a covalent adduct specifically to CYP3A4, confirmed by radiometric liquid chromatography-trace and whole-protein mass spectrometry. Tryptic digestion of the CYP3A4-[(3)H]ritonavir incubations exhibited an adducted peptide (255-RM K: ESRLEDTQKHR-268) associated with a radiochromatic peak and a mass consistent with ritonavir plus 16 Da, in agreement with the whole-protein mass spectrometry. Additionally, nucleophilic trapping agents and scavengers of free oxygen species did not prevent inactivation of CYP3A4 by ritonavir. In conclusion, ritonavir exhibited potent time-dependent inactivation of CYP3A, with the mechanism of inactivation occurring though a covalent bond to Lys257 of the CYP3A4 apoprotein. PMID:25274602

  17. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies

    PubMed Central

    Daily, Elizabeth B; Aquilante, Christina L

    2009-01-01

    Cytochrome P450 (CYP) 2C8 is responsible for the oxidative metabolism of many clinically available drugs from a diverse number of drug classes (e.g., thiazolidinediones, meglitinides, NSAIDs, antimalarials and chemotherapeutic taxanes). The CYP2C8 enzyme is encoded by the CYP2C8 gene, and several common nonsynonymous polymorphisms (e.g., CYP2C8*2 and CYP2C8*3) exist in this gene. The CYP2C8*2 and *3 alleles have been associated in vitro with decreased metabolism of paclitaxel and arachidonic acid. Recently, the influence of CYP2C8 polymorphisms on substrate disposition in humans has been investigated in a number of clinical pharmacogenetic studies. Contrary to in vitro data, clinical data suggest that the CYP2C8*3 allele is associated with increased metabolism of the CYP2C8 substrates, rosiglitazone, pioglitazone and repaglinide. However, the CYP2C8*3 allele has not been associated with paclitaxel pharmacokinetics in most clinical studies. Furthermore, clinical data regarding the impact of the CYP2C8*3 allele on the disposition of NSAIDs are conflicting and no definitive conclusions can be made at this time. The purpose of this review is to highlight these clinical studies that have investigated the association between CYP2C8 polymorphisms and CYP2C8 substrate pharmacokinetics and/or pharmacodynamics in humans. In this review, CYP2C8 clinical pharmacogenetic data are provided by drug class, followed by a discussion of the future of CYP2C8 clinical pharmacogenetic research. PMID:19761371

  18. EVALUATION OF CYTOCHROME P450-DERIVED EICOSANOIDS IN HUMANS WITH STABLE ATHEROSCLEROTIC CARDIOVASCULAR DISEASE

    PubMed Central

    Theken, Katherine N.; Schuck, Robert N.; Edin, Matthew L.; Tran, Bryant; Ellis, Kyle; Bass, Almasa; Lih, Fred B.; Tomer, Kenneth B.; Poloyac, Samuel M.; Wu, Michael C.; Hinderliter, Alan L.; Zeldin, Darryl C.; Stouffer, George A.; Lee, Craig R.

    2012-01-01

    Objective Preclinical and genetic epidemiologic studies suggest that modulating cytochrome P450 (CYP)-mediated arachidonic acid metabolism may have therapeutic utility in the management of coronary artery disease (CAD). However, predictors of inter-individual variation in CYP-derived eicosanoid metabolites in CAD patients have not been evaluated to date. Therefore, the primary objective was to identify clinical factors that influence CYP epoxygenase, soluble epoxide hydrolase (sEH), and CYP ?-hydroxylase metabolism in patients with established CAD. Methods Plasma levels of epoxyeicosatrienoic acids (EETs), dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE) were quantified by HPLC-MS/MS in a population of patients with stable, angiographically-confirmed CAD (N=82) and healthy volunteers from the local community (N=36). Predictors of CYP epoxygenase, sEH, and CYP ?-hydroxylase metabolic function were evaluated by regression. Results Obesity was significantly associated with low plasma EET levels and 14,15-EET:14,15-DHET ratios. Age, diabetes, and cigarette smoking also were significantly associated with CYP epoxygenase and sEH metabolic activity, while only renin-angiotensin system inhibitor use was associated with CYP ?-hydroxylase metabolic activity. Compared to healthy volunteers, both obese and non-obese CAD patients had significantly higher plasma EETs (P<0.01) and epoxide:diol ratios (P<0.01), whereas no difference in 20-HETE levels was observed (P=NS). Conclusions Collectively, these findings suggest that CYP-mediated eicosanoid metabolism is dysregulated in certain subsets of CAD patients, and demonstrate that biomarkers of CYP epoxygenase and sEH, but not CYP ?-hydroxylase, metabolism are altered in stable CAD patients relative to healthy individuals. Future studies are necessary to determine the therapeutic utility of modulating these pathways in patients with CAD. PMID:22503544

  19. Cytochrome P450-derived eicosanoids and vascular dysfunction in coronary artery disease patients

    PubMed Central

    Schuck, Robert N.; Theken, Katherine N.; Edin, Matthew L.; Caughey, Melissa; Bass, Almasa; Ellis, Kyle; Tran, Bryant; Steele, Savanna; Simmons, Brian P.; Lih, Fred B.; Tomer, Kenneth B.; Wu, Michael C.; Hinderliter, Alan L.; Stouffer, George A.; Zeldin, Darryl C.; Lee, Craig R.

    2013-01-01

    Objective Accumulating preclinical and epidemiologic evidence has emerged to suggest that modulation of cytochrome P450 (CYP)-mediated eicosanoid metabolism may be a viable vascular protective therapeutic strategy for the secondary prevention of coronary artery disease (CAD). The functional relationship between CYP-derived eicosanoid metabolite levels and vascular dysfunction in humans with established CAD, however, has not been evaluated. Therefore, we characterized the relationship between inter-individual variation in soluble epoxide hydrolase (sEH) and CYP ?-hydroxylase metabolism and established vascular function phenotypes predictive of prognosis in a cohort of patients with atherosclerotic cardiovascular disease. Methods Plasma epoxyeicosatrienoic acid (EET), dihydroxyeicosatrienoic acid (DHET), and 20-hydroxyeicosatetraenoic acid (20-HETE) levels were quantified by HPLC-MS/MS in 106 patients with stable, angiographically-confirmed CAD. Relationships between biomarkers of CYP-mediated eicosanoid metabolism and vascular function phenotypes were evaluated by Pearson’s correlation. Results A significant inverse association was observed between 20-HETE levels (a biomarker of CYP ?-hydroxylase metabolism) and brachial artery flow-mediated dilation (r = ?0.255, p = 0.010). An inverse association was also observed between 14,15-EET:DHET ratios (a biomarker of sEH metabolism) and both monocyte chemoattractant protein-1 levels (r = ?0.252, p = 0.009) and a consolidated cellular adhesion molecule ‘score’ reflecting the levels of E-selectin and P-selectin (r = ?0.216, p = 0.027). No associations with C-reactive protein or epithelial neutrophil-activating protein-78 levels were observed. Conclusions Collectively, these findings demonstrate that enhanced CYP ?-hydroxylase and sEH metabolic function are associated with more advanced endothelial dysfunction and vascular inflammation, respectively, in patients with established atherosclerotic cardiovascular disease. These findings lay the foundation for future clinical research in this area. PMID:23466098

  20. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    PubMed Central

    Wilderman, P. Ross; Jang, Hyun-Hee; Malenke, Jael R.; Salib, Mariam; Angermeier, Elizabeth; Lamime, Sonia; Dearing, M. Denise; Halpert, James R.

    2014-01-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in E. coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-?-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. PMID:24361551

  1. Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat (Neotoma lepida).

    PubMed

    Malenke, Jael R; Magnanou, Elodie; Thomas, Kirk; Dearing, M Denise

    2012-01-01

    Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compounds. Using a wild rodent herbivore, the desert woodrat (Neotoma lepida), we investigated genomic structural variation, sequence variability, and expression patterns in a multigene subfamily involved in xenobiotic metabolism, cytochrome P450 2B (CYP2B). We hypothesized that differences in CYP2B expression and sequence diversity could explain differential abilities of woodrat populations to consume native plant toxins. Woodrats from two distinct populations were fed diets supplemented with either juniper (Juniperus osteosperma) or creosote bush (Larrea tridentata), plants consumed by woodrats in their respective desert habitats. We used Southern blot and quantitative PCR to determine that the genomic copy number of CYP2B in both populations was equivalent, and similar in number to known rodent copy number. We compared CYP2B expression patterns and sequence diversity using cloned hepatic CYP2B cDNA. The resulting sequences were very diverse, and clustered into four major clades by amino acid similarity. Sequences from the experimental treatments were distributed non-randomly across a CYP2B tree, indicating unique expression patterns from woodrats on different diets and from different habitats. Furthermore, within each major CYP2B clade, sequences shared a unique combination of amino acid residues at 13 sites throughout the protein known to be important for CYP2B enzyme function, implying differences in the function of each major CYP2B variant. This work is the most comprehensive investigation of the genetic diversity of a detoxification enzyme subfamily in a wild mammalian herbivore, and contributes an initial genetic framework to our understanding of how a wild herbivore responds to critical changes in its diet. PMID:22927909

  2. Cytochrome P450 2B Diversity and Dietary Novelty in the Herbivorous, Desert Woodrat (Neotoma lepida)

    PubMed Central

    Malenke, Jael R.; Magnanou, Elodie; Thomas, Kirk; Dearing, M. Denise

    2012-01-01

    Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compounds. Using a wild rodent herbivore, the desert woodrat (Neotoma lepida), we investigated genomic structural variation, sequence variability, and expression patterns in a multigene subfamily involved in xenobiotic metabolism, cytochrome P450 2B (CYP2B). We hypothesized that differences in CYP2B expression and sequence diversity could explain differential abilities of woodrat populations to consume native plant toxins. Woodrats from two distinct populations were fed diets supplemented with either juniper (Juniperus osteosperma) or creosote bush (Larrea tridentata), plants consumed by woodrats in their respective desert habitats. We used Southern blot and quantitative PCR to determine that the genomic copy number of CYP2B in both populations was equivalent, and similar in number to known rodent copy number. We compared CYP2B expression patterns and sequence diversity using cloned hepatic CYP2B cDNA. The resulting sequences were very diverse, and clustered into four major clades by amino acid similarity. Sequences from the experimental treatments were distributed non-randomly across a CYP2B tree, indicating unique expression patterns from woodrats on different diets and from different habitats. Furthermore, within each major CYP2B clade, sequences shared a unique combination of amino acid residues at 13 sites throughout the protein known to be important for CYP2B enzyme function, implying differences in the function of each major CYP2B variant. This work is the most comprehensive investigation of the genetic diversity of a detoxification enzyme subfamily in a wild mammalian herbivore, and contributes an initial genetic framework to our understanding of how a wild herbivore responds to critical changes in its diet. PMID:22927909

  3. Tolfenamic acid suppresses cytochrome P450 2E1 expression in mouse liver.

    PubMed

    Shukoor, Mohammed I; Tiwari, Samata; Sankpal, Umesh T; Maliakal, Pius; Connelly, Sarah F; Siddiqi, Shaila; Siddiqi, Shadab A; Basha, Riyaz

    2012-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) play a significant role in the chemoprevention of cancer. We recently showed the chemopreventive response of a NSAID, 2-[(3-chloro-2-methylphenyl)amino]benzoic acid) known as tolfenamic acid (TA) in N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumors in rats. Pre-clinical studies showed that TA inhibits Specificity protein (Sp) transcription factors and acts as an anti-cancer agent in several cancer models; however the pertinent mechanisms associated with its chemopreventive response in esophageal cancer are not known. Since the bioactivation of carcinogens through cytochrome P450 (CYP) is critical for the induction of cancer, we have studied the effect of TA on critical CYP isozymes in mouse liver samples. Athymic nude mice were treated with vehicle (corn oil) or TA (50 mg kg(-1), 3 times per week) for 4 weeks. Protein extracts (whole cell lysates and microsomal fractions) were prepared from liver tissue and the expression of various CYP isozymes was determined by Western blot analysis. Rat (Sprague-Dawley) livers were harvested and primary hepatocyte cultures were treated with vehicle (DMSO) or TA (50 ?M) and cell viability was assessed at 2 and 5 days post-treatment. TA caused remarkable decrease in the expression of CYP2E1 in both liver lysates and sub-cellular fraction, while its response on other tested isozymes was marginal. TA did not affect the body weight of animals (mice) and viability of rat hepatocytes. These results demonstrate that TA modulates the expression of CYP2E1 which is associated with the bioactivation of carcinogens without causing apparent toxicity. These data suggest that TA-induced inhibition of CYP2E1 attenuates the bioactivation of carcinogens potentially leading to the chemoprevention of NMBA-induced esophageal tumorigenesis in rats. PMID:22832660

  4. Aflatoxin B1 activation to a plasmid mutagen by a chemical model of cytochrome P-450.

    PubMed

    Wood, M L; Smith, J R; Garner, R C

    1987-01-01

    Aflatoxin B1 (AFB1) was oxidised by a chemical model of cytochrome P-450 and the products obtained analysed by reversed-phase hplc. The oxidation system employs a water-insoluble iron(III)porphyrin catalyst (tetraphenylporphinatoiron(III) chloride; FeTPPCl) and an oxygen donor, iodosylbenzene (PhIO). The two AFB1 products obtained from this reaction were derived by initial oxidation across the 8-9 double bond of AFB1 and subsequent breakdown of AFB1-8,9-epoxide, the compound postulated to be the ultimate carcinogenic and mutagenic derivative of AFB1. Oxidation of AFB1 by the porphyrin-catalysed system in the presence of calf-thymus DNA, resulted in the formation of AFB1-DNA adducts identical to those formed in vivo and in vitro after liver mono-oxygenase activation. The chemical model system was therefore used on a microscale to react AFB1 with plasmid pHR1800, a plasmid containing the genes for beta-lactamase (amp-r) and galactokinase (galK). AFB1-modified plasmid DNA was then transformed into E. coli AB1886 (uvrA-) and the effects of the AFB1-DNA adducts on plasmid survival and the ability of pHR1800-transformed bacteria to metabolise galactose, were then studied. The results showed an AFB1 dose-dependent decrease in plasmid survival and increase in the mutation frequency of the galK gene only when the complete oxidation system was used to generate the reactive AFB1 metabolite. PMID:3099185

  5. Cytochromes P450 and Skin Cancer: Role of Local Endocrine Pathways

    PubMed Central

    Slominski, Andrzej T.; Zmijewski, Michal A.; Semak, Igor; Zbytek, Blazej; Pisarchik, Alexander; Li, Wei; Zjawiony, Jordan; Tuckey, Robert C.

    2013-01-01

    Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)?22(OH)7DHC?20,22(OH)2-7DHC?7-dehydropregnenolone, which can be further metabolized to other 5,7-steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu. PMID:23869782

  6. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    SciTech Connect

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  7. On the mechanism of action of cytochrome P450: evaluation of hydrogen abstraction in oxygen-dependent alcohol oxidation.

    PubMed

    Vaz, A D; Coon, M J

    1994-05-31

    The mechanisms of oxidation of primary and secondary benzylic alcohols to the corresponding carbonyl compounds by purified rabbit liver cytochrome P450 forms 2B4 and 2E1 in a reconstituted enzyme system has been examined by linear free energy relationships, intramolecular and steady-state deuterium isotope effects, and the incorporation of an O2-derived oxygen atom or solvent-derived deuterium. The kcat and Km values were found to be relatively insensitive to the presence of electronic perturbations at the para position. The Hammett reaction constants for the oxidation of benzyl alcohols by P450s 2B4 and 2E1 are -0.46 and -0.37, respectively, and with 1-phenylethyl alcohols the corresponding reaction constants are -1.41 and -1.19, respectively. With [1-2H1]benzyl alcohol, P450s 2B4 and 2E1 show similar intramolecular deuterium isotope effects of 2.6 and 2.8, respectively, whereas with [1-2H2]benzyl alcohol under steady-state conditions, the deuterium isotope effects on the catalytic constants are 2.8 and 1.3, respectively. No significant isotope effect on the catalytic constant was noted for either form of P450 with 1-phenylethyl alcohol. In D2O, acetophenone formed by either form of P450 from 1-phenylethyl alcohol does not contain a deuterium atom at the methyl group, whereas under an atmosphere of 18O2 approximately 30% of the labeled oxygen is incorporated into the carbonyl group with either form of the cytochrome. The results are consistent with a mechanism that involves stepwise oxidation of the alcohol to a carbon radical alpha to the alcohol function, followed by oxygen rebound to yield the gem-diol, dehydration of which gives the carbonyl product.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7515681

  8. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Within the Arabidopsis genome, there are 272 cytochrome P450 monooxygenase (P450) genes. However, the biological functions of the majority of these P450s remain unknown. The CYP709B family of P450s includes three gene members, CYP709B1, CYP709B2 and CYP709B3, which have high amino acid sequence similarity and lack reports elucidating biological functions. Results We identified T-DNA insertion-based null mutants of the CYP709B subfamily of genes. No obvious morphological phenotypes were exhibited under normal growth conditions. When the responses to ABA and salt stress were studied in these mutants, only the cyp709b3 mutant showed sensitivity to ABA and salt during germination. Under moderate salt treatment (150 mM NaCl), cyp709b3 showed a higher percentage of damaged seedlings, indicating a lower tolerance to salt stress. CYP709B3 was highly expressed in all analyzed tissues and especially high in seedlings and leaves. In contrast, CYP709B1 and CYP709B2 were highly expressed in siliques, but were at very low levels in other tissues. Under salt stress condition, CYP709B3 gene expression was induced after 24 hr and remained at high expression level. Expression of the wild type CYP709B3 gene in the cyp709b3 mutant fully complemented the salt intolerant phenotype. Furthermore, metabolite profiling analysis revealed some differences between wild type and cyp709b3 mutant plants, supporting the salt intolerance phenotype of the cyp709b3 mutant. Conclusions These results suggest that CYP709B3 plays a role in ABA and salt stress response and provides evidence to support the functions of cytochrome P450 enzymes in plant stress response. PMID:24164720

  9. Cloning of the Recombinant Cytochrome P450 Cyp141 Protein of Mycobacterium tuberculosis as a Diagnostic Target and Vaccine Candidate

    PubMed Central

    Rabiee-Faradonbeh, Mohammad; Darban-Sarokhalil, Davood; Feizabadi, Mohammad Mehdi; Alvandi, Amirhooshang; Momtaz, Hasan; Soleimani, Neda; Gholipour, Abolfazl

    2014-01-01

    Background: Tuberculosis has been announced as a global emergency by World Health Organization and the second infectious agent of mortality worldwide. The general policy in the development of new vaccines is to develop some vaccines with higher efficiency not only for infants but also for adults compared with the Bacillus Calmette-Guerin vaccine. Recently, cytochrome P450 cyp141 has been introduced as a new target for detecting Mycobacterium tuberculosis from clinical samples. Objectives: The aim of this study was to clone this gene in order to pave the way for more evaluation. Materials and Methods: M. tuberculosis H37Rv DNA was extracted by a standard phenol-chlorophorm protocol. After designing the specific primers, P450 cyp141 gene was replicated by PCR. The purified PCR products were then subcloned into the pTZ57R/T plasmid vector. After extraction, enzyme digestion, and recombinant pTZ57R/T-cyp141 plasmid vector sequencing, the aforementioned products were cloned into a pET-26b plasmid vector. Then, the recombinant pET26b-cyp141 plasmid molecules were transformed to Escherichia coli strain BL21 (DE3) using the transformation method. Next, the recombinant pET26b-cyp141 plasmids were purified and evaluated by the enzyme digestion analysis. Results: The cloning of P450 cyp141 gene was confirmed by the enzyme digestion and sequencing of the recombinant pTZ57R/T-cyp141 and pET26b-cyp141 plasmid vectors. Conclusions: The results of this study demonstrated that the P450 cyp141 gene was successfully cloned into a pET26b plasmid vector as an expression vector. In this paper, for the first time in Iran, this gene was cloned for more purposes, including the expression and purification of the recombinant cytochrome P450 cyp141 protein. PMID:25763215

  10. STRUCTURAL AND ENZYMATIC PARAMETERS THAT DETERMINE ALKYL DEHYDROGENATION/HYDROXYLATION OF CAPSAICINOIDS BY CYTOCHROME P450 ENZYMES

    PubMed Central

    Reilly, Christopher A.; Yost, Garold S.

    2008-01-01

    Previous studies on the metabolism of capsaicinoids, natural products isolated from chili peppers, demonstrated the production of unique macrocyclic, alkyl dehydrogenated, ?-, and ?-1-hydroxylated products. This study investigated the structural and enzymatic parameters that direct selective alkyl dehydrogenation and hydroxylation of capsaicinoids, using a variety of structurally related capsaicinoid analogs and cytochrome P450 (P450) enzymes. CYP2C9 preferentially catalyzed alkyl dehydrogenation, whereas CYP2E1 and 3A4 catalyzed ?- and ?-1-hydroxylation, respectively. Analysis of incubations containing various P450s and structural variants of capsaicin by liquid chromatography-tandem mass spectrometry demonstrated similarities in the rate of capsaicinoid metabolism, but marked differences in the metabolite profiles. Production of macrocyclic and ?-1-hydroxylated metabolites from the various capsaicinoids was dependent on the structure of the alkyl terminus and P450 enzyme. A tertiary carbon at the ?-1 position, coupled to an adjacent unsaturated bond at the ?-2,3 position, enhanced the formation of the macrocyclic and dehydrogenated metabolites and were requisite structural features for ?-1-hydroxylated product formation. Conversely, substrates lacking these structural features were efficiently oxidized to the ?-hydroxylated metabolite. These data were consistent with our hypothesis that metabolism of the alkyl portion of capsaicinoids was governed, in part, by the stability and propensity to form an intermediate radical and a carbocation, and a direct interaction between the alkyl terminus and the heme of many P450 enzymes. These results provided valuable insights into potential mechanisms by which P450s metabolize capsaicinoids and highlight critical chemical features that may also govern the metabolism of structurally related compounds including fatty acids, monoterpenes, and isoprenoids. PMID:15640380

  11. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs.

    PubMed

    Hlavica, Peter

    2015-01-01

    Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring. PMID:26002739

  12. Cytochrome P450 3A4-mediated bioactivation of raloxifene: irreversible enzyme inhibition and thiol adduct formation.

    PubMed

    Chen, Qing; Ngui, Jason S; Doss, George A; Wang, Regina W; Cai, Xiaoxin; DiNinno, Frank P; Blizzard, Timothy A; Hammond, Milton L; Stearns, Ralph A; Evans, David C; Baillie, Thomas A; Tang, Wei

    2002-07-01

    Raloxifene is a selective estrogen receptor modulator which is effective in the treatment of osteoporosis in postmenopausal women. We report herein that cytochrome P450 (P450)3A4 is inhibited by raloxifene in human liver microsomal incubations. The nature of the inhibition was irreversible and was NADPH- and preincubation time-dependent, with K(I) and k(inact) values estimated at 9.9 microM and 0.16 min(-1), respectively. The observed loss of P450 3A4 activity was attenuated partially by glutathione (GSH), implying the involvement of a reactive metabolite(s) in the inactivation process. Subsequently, GSH adducts of raloxifene were identified in incubations with human liver microsomes; substitution with GSH occurred at the 5- or 7-position of the benzothiophene moiety or at the 3'-position of the phenol ring, with the 7-glutathionyl derivative being most abundant based on LC/MS and NMR analyses. These adducts are postulated to derive from addition of GSH to raloxifene arene oxides followed by dehydration and aromatization. Alternatively, raloxifene may be oxidized to an extended quinone intermediate, which then is trapped by GSH conjugation. The bioactivation of raloxifene most likely is catalyzed by P450 3A4, since the formation of GSH adducts was almost abolished when liver microsomes were pretreated with ketoconazole or with an inhibitory anti-P450 3A4 IgG. The GSH adducts also were detected in incubations of raloxifene with rat or human hepatocytes, while the corresponding N-acetylcysteine adducts were identified in the bile and urine from rats treated orally with the drug at 5 mg/kg. Taken together, these data indicate that P450 3A4-mediated bioactivation of raloxifene in vitro is accompanied by loss of enzyme activity. The significance of these findings with respect to the clinical use of raloxifene remains to be determined. PMID:12119000

  13. Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes

    Microsoft Academic Search

    George J. Hammons; Daria Milton; Kristy Stepps

    1997-01-01

    sion systems catalyzed the N-hydroxylation of 4-aminobi- phenyl and the heterocyclic amines, 2-amino-3- the initial step in the activation is N-hydroxylation and the methylimidazo(4,5-f)quinoline (IQ), 2-amino- 3,8-dimethyl- P450 enzymes P450 1A2 and P450 1A1 catalyze the reaction. imidazo(4,5-f)quinoxaline (MeIQx), and 2-amino-1- Metabolic activation and N-hydroxylation of heterocyclic methyl- 6-phenylimidazo(4,5-b)pyridine (PhIP). Rates were amines have also been demonstrated with human liver

  14. Cyp15F1: A novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite R. flavipes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...

  15. Modes of Heme-Binding and Substrate Access for Cytochrome P450 CYP74A Revealed by Crystal Structures of Allene Oxide Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates which are involved in signal and defense reactions in higher plants. The crystal structure...

  16. Characterization of a cytochrome P450 gene ( CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae

    Microsoft Academic Search

    Pedro Martínez-Paz; Mónica Morales; José Luis Martínez-Guitarte; Gloria Morcillo

    Cytochrome P450 family members participate in xenobiotic transformation as a detoxification mechanism. We have characterized a CYP gene, assigned to the 4G family, in Chironomus riparius, a reference organism in aquatic toxicology. Due to the potential interest of CYP genes and P450 proteins for monitoring pollution effects at the molecular level, the alterations in the pattern of expression of this

  17. A Self-sufficient Cytochrome P450 with a Primary Structural Organization That Includes a Flavin Domain and a [2Fe-2S] Redox Center 

    E-print Network

    Roberts, Gareth A; Celik, Ayhan; Hunter, Dominic JB; Ost, Tobias WB; White, John H; Chapman, Stephen K; Turner, Nicholas J; Flitsch, Sabine L

    2003-09-27

    P450 RhF from Rhodococcus sp. NCIMB 9784 is the first example of a new class of cytochrome P450 in which electrons are supplied by a novel, FMN- and Fe/S-containing, reductase partner in a fused arrangement. We have ...

  18. The Flavin-Containing Reductase Domain of Cytochrome P450 BM3 Acts as a Surrogate for Mammalian NADPH-P450 Reductase

    PubMed Central

    Park, Seon-Ha; Kang, Ji-Yeon; Kim, Dong-Hyun; Ahn, Taeho; Yun, Chul-Ho

    2012-01-01

    Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is a self-sufficient monooxygenase that consists of a heme domain and FAD/FMN-containing reductase domain (BMR). In this report, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by BMR was evaluated as a method for monitoring BMR activity. The electron transfer proceeds from NADPH to BMR and then to BMR substrates, MTT and CTC. MTT and CTC are monotetrazolium salts that form formazans upon reduction. The reduction of MTT and CTC followed classical Michaelis-Menten kinetics (kcat=4120 min?1, Km=77 ?M for MTT and kcat=6580 min?1, Km=51 ?M for CTC). Our continuous assay using MTT and CTC allows the simple, rapid measurement of BMR activity. The BMR was able to metabolize mitomycin C and doxorubicin, which are anticancer drug substrates for CPR, producing the same metabolites as those produced by CPR. Moreover, the BMR was able to interact with CYP1A2 and transfer electrons to promote the oxidation reactions of substrates by CYP1A2 and CYP2E1 in humans. The results of this study suggest the possibility of the utilization of BMR as a surrogate for mammalian CPR. PMID:24009851

  19. Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein

    PubMed Central

    Fernando, Harshica; Halpert, James R.; Davydov, Dmitri R.

    2008-01-01

    We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (KD = 0.48 µM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or ?-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator. PMID:18086551

  20. Cyclopropylamine inactivation of cytochromes P450: Role of metabolic intermediate complexes

    E-print Network

    Cerny, Matthew A.; Hanzlik, Robert P.

    2005-04-15

    . Herein, we report that in liver microsomes N-cyclopropylbenzylamine (1) and related compounds inactivate P450 to a large extent via formation of metabolic intermediate complexes (MICs) in which a nitroso metabolite coordinates tightly to the heme iron...

  1. Catalytically relevant electrostatic interactions of cytochrome P450c17 (CYP17A1) and cytochrome b5.

    PubMed

    Peng, Hwei-Ming; Liu, Jiayan; Forsberg, Sarah E; Tran, Hong T; Anderson, Sean M; Auchus, Richard J

    2014-12-01

    Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: (84)EVLIKK(89)-b5: (53)EQAGGDATENFEDVGHSTDAR(73) and CYP17A1-R347K: (341)TPTISDKNR(349)-b5: (40)FLEEHPGGEEVLR(52). Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis. PMID:25315771

  2. Molecular Cloning and Sequence Analysis of Novel Cytochrome P450 cDNA Fragments from Dastarcus helophoroides

    PubMed Central

    Wang, Hai-Dong; Li, Fei-Fei; He, Cai; Cui, Jun; Song, Wang; Li, Meng-Lou

    2014-01-01

    The predatory beetle Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is a natural enemy of many longhorned beetles and is mainly distributed in both China and Japan. To date, no research on D. helophoroides P450 enzymes has been reported. In our study, for the better understanding of P450 enzymes in D. helophoroides, 100 novel cDNA fragments encoding cytochrome P450 were amplified from the total RNA of adult D. helophoroides abdomens using five pairs of degenerate primers designed according to the conserved amino acid sequences of the CYP6 family genes in insects through RT-PCR. The obtained nucleotide sequences were 250 bp, 270 bp, and 420 bp in length depending on different primers. Ninety-six fragments were determined to represent CYP6 genes, mainly from CYP6BK, CYP6BQ, and CYP6BR subfamilies, and four fragments were determined to represent CYP9 genes. Twenty-two fragments, submitted to GenBank, were selected for further homologous analysis, which revealed that some fragments of different sizes might be parts of the same P450 gene. PMID:25373175

  3. Drug metabolism by cytochrome p450 enzymes: what distinguishes the pathways leading to substrate hydroxylation over desaturation?

    PubMed

    Ji, Li; Faponle, Abayomi S; Quesne, Matthew G; Sainna, Mala A; Zhang, Jing; Franke, Alicja; Kumar, Devesh; van Eldik, Rudi; Liu, Weiping; de Visser, Sam P

    2015-06-15

    Cytochrome P450 enzymes are highly versatile biological catalysts in our body that react with a broad range of substrates. Key functions in the liver include the metabolism of drugs and xenobiotics. One particular metabolic pathway that is poorly understood relates to the P450 activation of aliphatic groups leading to either hydroxylation or desaturation pathways. A DFT and QM/MM study has been carried out on the factors that determine the regioselectivity of aliphatic hydroxylation over desaturation of compounds by P450 isozymes. The calculations establish multistate reactivity patterns, whereby the product distributions differ on each of the spin-state surfaces; hence spin-selective product formation was found. The electronic and thermochemical factors that determine the bifurcation pathways were analysed and a model that predicts the regioselectivity of aliphatic hydroxylation over desaturation pathways was established from valence bond and molecular orbital theories. Thus, the difference in energy of the O?H versus the O?C bond formed and the ?-conjugation energy determines the degree of desaturation products. In addition, environmental effects of the substrate binding pocket that affect the regioselectivities were identified. These studies imply that bioengineering P450 isozymes for desaturation reactions will have to include modifications in the substrate binding pocket to restrict the hydroxylation rebound reaction. PMID:25924594

  4. Double electron–electron resonance shows cytochrome P450cam undergoes a conformational change in solution upon binding substrate

    PubMed Central

    Stoll, Stefan; Lee, Young-Tae; Zhang, Mo; Wilson, Richard F.; Britt, R. David; Goodin, David B.

    2012-01-01

    Although cytochrome P450cam from Pseudomonas putida, the archetype for all heme monooxygenases, has long been known to have a closed active site, recent reports show that the enzyme can also be crystallized in at least two clusters of open conformations. This suggests that the enzyme may undergo significant conformational changes during substrate binding and catalytic turnover. However, these conformations were observed in the crystalline state, and information is needed about the conformations that are populated in solution. In this study, double electron–electron resonance experiments were performed to observe substrate-induced changes in distance as measured by the dipolar coupling between spin labels introduced onto the surface of the enzyme on opposite sides of the substrate access channel. The double electron–electron resonance data show a decrease of 0.8 nm in the distance between spin labels placed at S48C and S190C upon binding the substrate camphor. A rotamer distribution model based on the crystal structures adequately describes the observed distance distributions. These results demonstrate conclusively that, in the physiologically relevant solution state, the substrate-free enzyme exists in the open P450cam-O conformation and that camphor binding results in conversion to the closed P450cam-C form. This approach should be useful for investigating many other P450s, including mammalian forms, in which the role of conformational change is of central importance but not well understood. PMID:22826259

  5. Selective inhibition by chloramphenicol of pregnenolone-16. cap alpha. -carbonitrile-inducible rat liver cytochrome P-450 isozymes

    SciTech Connect

    Graves, P.E.; Kaminsky, L.S.; Halpert, J.

    1986-03-01

    Pregnenolone-16 ..cap alpha..-carbonitrile (PCN) has been shown to induce, in male rats, cytochrome P-450 isozymes responsible for the formation of R-10-hydroxywarfarin and R-dehydrowarfarin. Antibodies to the major PCN-inducible isozyme (PB/PCN-E) inhibit both activities in microsomal preparations. Recently the authors have shown that PCN treatment of female rats also induces the formation of both R-warfarin metabolites. However, in both sexes chloramphenicol (CAP) treatment selectively inhibits only the rate of formation of the R-dehydrowarfarin. A decrease in microsomal P-450 content occurs after in vivo administration of CAP to PCN-treated rats of both sexes. This is in contrast to the lack of effect of CAP on P-450 levels in phenobarbital-treated rats. Covalent binding of /sup 14/C-CAP to microsomal protein in vitro was increased 3 to 4-fold following PCN treatment. Chromatographic evidences suggests the presence of at least two PCN-induced isozymes of similar molecular weights in both male and female rat liver microsomes. These data are consistent with the multiplicity of PCN-inducible P-450 in rat liver.

  6. Reduced Oxy Intermediate Observed in D251N Cytochrome P450cam David E. Benson, Kenneth S. Suslick,* and Stephen G. Sligar*

    E-print Network

    Suslick, Kenneth S.

    Reduced Oxy Intermediate Observed in D251N Cytochrome P450cam David E. Benson, Kenneth S. Suslick paramagnetic resonance; DPPH, R,R-diphenyl- -picrylhydra- zyl; GC, gas chromatography; CO, carbon monoxide; Oxy

  7. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    EPA Science Inventory

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  8. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  9. GENE ENGINEERING IN YEAST FOR BIODEGRADATION: IMMUNOLOGICAL CROSS-REACTIVITY AMONG CYTOCHROME P-450 SYSTEM PROTEINS OF SACCHAROMYCES CEREVISIAE AND CANDIDA TROPICALIS

    EPA Science Inventory

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monoxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. e are examining the molecular genetic properties of strains of bakers yeast, Sa...

  10. Electron Paramagnetic Resonance Study of the High- and Low-Spin Forms of Cytochrome P-450 in Liver and in Liver Microsomes from a Methylcholanthrene-Treated Rabbit*

    PubMed Central

    Peisach, J.; Blumberg, W. E.

    1970-01-01

    The high- and low-spin forms of cytochrome P-450 were observed by electron paramagnetic resonance (epr) in a liver slice and in hepatic microsomes from a rabbit injected with methylcholanthrene. Quantitation of the epr absorption of these two chemical species and comparison with a preparation from a control rabbit showed that the single injection of drug increased the concentration of cytochrome P-450 to more than ten times its control value. Analysis of the epr spectrum for the high-spin compound showed that it is the most rhombically distorted ferric heme iron site yet observed (E/D = 0.10). It is suggested that microsomal cytochrome P-450 can exist in two interconvertible forms, in which the heme iron can either be high-spin or low-spin, depending upon the nature of the nonporphyrin ligands of the metal. There seems to be no need to postulate the existence of two different cytochrome P-450 proteins. PMID:4318775

  11. Relation among cytochrome P450, Ah-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    Microsoft Academic Search

    Barnett A. Rattner; Jeff S. Hatfield; Mark J. Melancon; Thomas W. Custer; Donald E. Tillitt

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P450-associated mono-oxygenates and cytochrome P450 proteins, induced up to 85-fold relative to the reference

  12. Evaluation of Octamethylcyclotetrasiloxane (D 4) as an Inducer of Rat Hepatic Microsomal Cytochrome P450, UDP-Glucuronosyltransferase, and Epoxide Hydrolase: A 28Day Inhalation Study

    Microsoft Academic Search

    James M. McKim; Paul C. Wilga; Gary B. Kolesar; Supratim Choudhuri; Ajay Madan; Leland W. Dochterman; John G. Breen; Andrew Parkinson; Richard W. Mast; Robert G. Meeks

    1998-01-01

    Repeated inhalation exposure to octamethylcyclotetrasiloxane (D4) produces a reversible and dose-related hepatomegaly and proliferation of hepatic endoplasmic reticulum in rats. However, the effects of D4on the expression of cytochrome P450 enzymes have not been evaluated. In the present study, the time course for changes in hepatic microsomal cytochrome P450 enzyme expression following repeated inhalation exposure to D4vapors was determined in

  13. Aldrin epoxidase activity and cytochrome P-450 content of sawfly larvae, Pergagrapta polita Leach (Hymenoptera: Pergidae) feeding on two Eucalyptus species

    Microsoft Academic Search

    H. A. Rose

    1987-01-01

    Aldrin epoxidase and cytochrome P-450 levels were determined in sawfly larvae,Pergagrapta polita Leach. Of the tissues examined the anterior portion of the midgut had the highest levels of aldrin epoxidase activity and cytochrome P-450 content, 3.56 nmol dieldrin produced\\/min\\/mg protein and 1.28 nmol\\/mg protein, respectively. No significant differences in aldrin epoxidase activities were observed between groups of larvae representing the

  14. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis : Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray

    Microsoft Academic Search

    Yoshihiro narusaka; Mari Narusaka; Motoaki Seki; Taishi Umezawa; Junko Ishida; Maiko Nakajima; Akiko Enju; Kazuo Shinozaki

    2004-01-01

    From Arabidopsis full-length cDNA libraries, we collected ca. 7000 (7K) independent full-length cDNAs to prepare a cDNA microarray. The 7K cDNA collection contains 49 cytochrome P450 genes. In this study, expression patterns of these cytochrome P450 genes were analyzed by a full-length cDNA microarray under various treatments, such as hormones (salicylic acid, jasmonic acid, ethylene, abscisic acid), pathogen-inoculation (Alternaria brassicicola,

  15. Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum.

    PubMed Central

    Kahn, R A; Bak, S; Svendsen, I; Halkier, B A; Møller, B L

    1997-01-01

    A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic detergents, and isolated by ion-exchange chromatography, Triton X-114 phase partitioning, and dye-column chromatography. P450ox has an apparent molecular mass of 55 kD, its N-terminal amino acid sequence is -ATTATPQLLGGSVP, and it contains the internal sequence MDRLVADLDRAAA. Reconstitution of P450ox with NADPH-P450 oxidoreductase in micelles of L-alpha-dilauroyl phosphatidylcholine identified P450ox as a multifunctional P450 catalyzing dehydration of (Z)-oxime to p-hydroxyphenylaceto-nitrile (nitrile) and C-hydroxylation of p-hydroxyphenylacetonitrile to nitrile. P450ox is extremely labile compared with the P450s previously isolated from sorghum. When P450ox is reconstituted in the presence of a soluble uridine diphosphate glucose glucosyltransferase, oxime is converted to dhurrin. In vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine was accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase. The catalysis of the conversion of Tyr into nitrile by two multifunctional P450s explains why all intermediates in this pathway except (Z)-oxime are channeled. PMID:9414567

  16. Effect of colchicine on rat hepatic cytochrome P450 enzymes by cocktail probe drugs.

    PubMed

    Xu, Bei-Bei; Xu, Zhi-Sheng; Zheng, Shuang-Li; Tang, Cong-Rong

    2014-01-01

    Colchicine (COL), an alkaloid derived from plants, has been used to treat gout, pseudogout and familial Mediterranean fever for several decades. The purpose of this study was to investigate the in vivo effect of COL on rat cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2C19 and CYP2D6) to assess its potential to interact with co-administered drugs. This was a randomized, double-blind, two-way crossover study with a 4-week washout period between the phases. Rats received COL via an irrigation stomach needle at a dose of 0.4 mg/kg once daily for consecutive 10 days. On the eleventh day, a cocktail solution at a dose of 4 ml/kg, which contained phenacetin (15.0 mg/kg), tolbutamide (3.0 mg/kg), omeprazole (15.0 mg/kg) and dextromethorphan (15.0mg/kg), was oral administered to all rats. Then 0.3 ml blood samples were collected at a set of time-points. The plasma concentrations of probe drugs were simultaneously determined by HPLC-MS/MS. Pharmacokinetic parameters simulated by DAS software were used for the evaluation of COL on the activities of rat CYP1A2, CYP2C9, CYP2C19 and CYP2D6 enzymes. Our study showed that COL administration induced CYP2C9 activity, causing a significant decrease in AUC(0-infinity) (P < 0.01) and t1/2 (P < 0.05) of tolbutamide, and a distinct increase in CL (P<0.01). Many pharmacokinetic parameters of dextromethorphan in COL-treated rats were affected significantly, which indicated that the metabolism of dextromethorphan in these treatment groups was evidently slowed down. However, there was no significant influence of pharmacokinetic parameters of phenacetin and omeprazole in COL-treated rats. The results from the present in vivo study suggested that COL showed no effects on rat CYP1A2 and CYP2C19, however, it demonstrated potential inductive effects on CYP2C9 and inhibitory effects on CYP2D6. Therefore, caution is needed when COL is co-administered with drugs metabolized by CYP2C9 or CYP2D6, which may result in altered plasma concentrations of these drugs and relevant drug-drug interactions. PMID:24601222

  17. Cytochrome P450 1A1 Regulates Breast Cancer Cell Proliferation and Survival

    PubMed Central

    Rodriguez, Mariangellys; Potter, David A.

    2013-01-01

    Cytochrome P450 1A1 (CYP1A1) is an extrahepatic phase I metabolizing enzyme whose expression is suppressed under physiologic conditions, but can be induced by substrates via the aryl hydrocarbon receptor (AhR). Nonetheless, recent studies show that the majority of breast tumors constitutively express CYP1A1. These findings led us to test the hypothesis that CYP1A1 promotes breast cancer progression by evaluating the effects of CYP1A1 knock down on the proliferation and survival of the MCF7 and MDA-MB-231 lines. Independently of estrogen receptor status, CYP1A1 knock down decreases cell proliferation, decreases colony formation, blocks the cell cycle at G0/G1 associated with reduction of cyclin D1, and increases apoptosis associated with reduction of survivin. CYP1A1 knock down markedly increases phosphorylation of AMP-activated protein kinase (AMPK) and decreases phosphorylation of AKT, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and 70kDa ribosomal protein S6 kinase (P70S6K). AMPK inhibition by compound C partially abrogates the pro-apoptotic effects of CYP1A1siRNA, suggesting that CYP1A1siRNA effects are mediated, in part, through AMPK signaling. Consistent with CYP1A1 knock down results, pharmacologic reduction of CYP1A1 levels by the phytopolyphenol carnosol also correlates with impaired proliferation and induced AMPK phosphorylation. These results indicate that reduction of basal CYP1A1 expression is critical for inhibition of proliferation, which is not affected by alpha-naphthoflavone-mediated inhibition of CYP1A1 activity nor modulated by AhR silencing. This study supports that CYP1A1 may promote breast cancer proliferation and survival, at least in part, through AMPK signaling and that reduction of CYP1A1 levels is a potential strategy for breast cancer therapeutics. PMID:23576571

  18. Inhibitory effects of silibinin on cytochrome P-450 enzymes in human liver microsomes.

    PubMed

    Beckmann-Knopp, S; Rietbrock, S; Weyhenmeyer, R; Böcker, R H; Beckurts, K T; Lang, W; Hunz, M; Fuhr, U

    2000-06-01

    Silibinin, the main constituent of silymarin, a flavonoid drug from silybum marianum used in liver disease, was tested for inhibition of human cytochrome P-450 enzymes. Metabolic activities were determined in liver microsomes from two donors using selective substrates. With each substrate, incubations were carried out with and without silibinin (concentrations 3.7-300 microM) at 37 degrees in 0.1 M KH2PO4 buffer containing up to 3% DMSO. Metabolite concentrations were determined by HPLC or direct spectroscopy. First, silibinin IC50 values were determined for each substrate at respective K(M) concentrations. Silibinin had little effect (IC50>200 microM) on the metabolism of erythromycin (CYP3A4), chlorzoxazone (CYP2E1), S(+)-mephenytoin (CYP2C19), caffeine (CYP1A2) or coumarin (CYP2A6). A moderate effect was observed for high affinity dextromethorphan metabolism (CYP2D6) in one of the microsomes samples tested only (IC50=173 microM). Clear inhibition was found for denitronifedipine oxidation (CYP3A4; IC50=29 microM and 46 microM) and S(-)-warfarin 7-hydroxylation (CYP2C9; IC50=43 microM and 45 microM). When additional substrate concentrations were tested to assess enzyme kinetics, silibinin was a potent competitive inhibitor of dextromethorphan metabolism at the low affinity site, which is not CYP2D6 (Ki.c=2.3 microM and 2.4 microM). Inhibition was competitive for S(-)-warfarin 7-hydroxylation (Ki,c=18 microM and 19 microM) and mainly non-competitive for denitronifedipine oxidation (Ki,n=9 microM and 12 microM). With therapeutic silibinin peak plasma concentrations of 0.6 microM and biliary concentrations up to 200 microM, metabolic interactions with xenobiotics metabolised by CYP3A4 or CYP2C9 cannot be excluded. PMID:10895987

  19. Inhibitory effects of trospium chloride on cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Beckmann-Knopp, S; Rietbrock, S; Weyhenmeyer, R; Böcker, R H; Beckurts, K T; Lang, W; Fuhr, U

    1999-12-01

    Trospium chloride, an atropine derivative used for the treatment of urge incontinence, was tested for inhibitory effects on human cytochrome P450 enzymes. Metabolic activities were determined in liver microsomes from two donors using the following selective substrates: dextromethorphan (CYP2D6), denitronifedipine (CYP3A4), caffeine (CYP1A2), chlorzoxazone (CYP2E1), S-(+)-mephenytoin (CYP2C19), S-(-)-warfarin (CYP2C9) and coumarin (CYP2A6). Incubations with each substrate were carried out without a possible inhibitor and in the presence of trospium chloride at varying concentrations (37-3000 microM) at 37 degrees in 0.1 M KH2PO4 buffer containing up to 3% DMSO. Metabolite concentrations were determined by high-performance liquid chromatography (HPLC) in all cases except CYP2A6 where direct fluorescence spectroscopy was used. First, trospium chloride IC50 values were determined for each substrate at respective K(M) concentrations. Trospium chloride did not show relevant inhibitory effects on the metabolism of most substrates (IC50 values considerably higher than 1 mM). The only clear inhibition was seen for the CYP2D6-dependent high-affinity O-demethylation of dextromethorphan, where IC50 values of 27 microM and 44 microM were observed. Therefore, additional dextromethorphan concentrations (0.4-2000 microM) were tested. Trospium chloride was a competitive inhibitor of the reaction with Ki values of 20 and 51 microM, respectively. Thus, trospium chloride has negligible inhibitory effects on CYP3A4, CYP1A2, CYP2E1, CYP2C19, CYP2C9 and CYP2A6 activity but is a reasonably potent inhibitor of CYP2D6 in vitro. Compared to therapeutic trospium chloride peak plasma concentrations below 50 nM, the 1000-times higher competitive inhibition constant Ki however suggests that inhibition of CYP2D6 by trospium chloride is without any clinical relevance. PMID:10628907

  20. Cytochrome P450 enzymes contributing to demethylation of maprotiline in man.

    PubMed

    Brachtendorf, Lars; Jetter, Alexander; Beckurts, K Tobias; Hölscher, Arnulf H; Fuhr, Uwe

    2002-03-01

    From case reports of patients treated with the tetracyclic antidepressant drug maprotiline, it appears that this drug is subject to polymorphic metabolism. Thus, we studied formation of the major maprotiline metabolite desmethylmaprotiline to identify the human cytochrome P-450 enzymes (CYP) involved. In incubations with human liver microsomes from two different donors, the substrate maprotiline was used at five different concentrations (5 to 500 microM). For selective inhibition of CYPs, quinidine (0.5-50 microM; CYP2D6), furafylline (0.3-30 microM; CYP1A2), ketoconazole (0.2-20 microM; CYP3A4), mephenytoin (20-200 microM; CYP2C19), chlorzoxazone (1-100 microM; CYP2E1), sulphaphenazole (0.2-100 microM; CYP2C9) and coumarin (0.2-100 microM; CYP2A6) were used. Desmethylmaprotiline concentrations were measured by HPLC, and enzyme kinetic parameters were estimated using extended Michaelis-Menten equations with non-linear regression. Relevant inhibition of the desmethylmaprotiline formation rate was observed in incubations with quinidine, furafylline and ketoconazole only. Formation rates of desmethylmaprotiline were consistent with a two enzyme model with a high (K(M)=71 and 84 microM) and a low (K(M)=531 and 426 microM) affinity site for maprotiline in the two samples, respectively. The high affinity site was competitively inhibited by quinidine (K(i,nc) 0.13 and 0.61 microM), the low-affinity site was non-competitively inhibited by furafylline (K(i,nc) 0.11 and 1.3 microM). Thus it appears that CYP2D6 and CYPIA2 contribute to maprotiline demethylation. Based on the parameters obtained, for plasma concentrations of 1 microM 83% (mean) of desmethylmaprotiline formation in vivo is expected to be mediated by CYP2D6 while 17% only may be attributed to CYPIA2 activity. PMID:12071336

  1. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    SciTech Connect

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR induces CYP2A5 mRNA and protein expression. • BR increases CYP2A5 transcription via Nrf2 activation. • CYP2A5 overexpression increases BR clearance and reduces caspase-3 activation.

  2. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    SciTech Connect

    Wilderman, P. Ross, E-mail: pwilderman@ucsd.edu [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Jang, Hyun-Hee [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Malenke, Jael R. [Department of Biology, University of Utah, Salt Lake City, UT (United States); Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Dearing, M. Denise [Department of Biology, University of Utah, Salt Lake City, UT (United States); Halpert, James R. [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States)

    2014-02-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-?-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalyt