Science.gov

Sample records for aromatic hydrocarbons indoor

  1. Source apportionment of polycyclic aromatic hydrocarbons and their derivatives in indoor air

    SciTech Connect

    Ray, B.; Mitra, S.

    1996-12-31

    The average person spends more than 80% of his time indoors, thus analysis of the sources of airborne pollutants in indoor air is an important issue. In this paper, we use factor analysis and multiple regression to identify and apportion the different sources of select indoor polycyclic aromatic hydrocarbons (PAHs), their derivatives, and nicotine in indoor air, using data gathered in eight homes in Columbus, OH during the winter of 1986/1987. These homes had different indoor PAH sources, namely, environmental tobacco smoke, gas cooking/heating, and electrical cooking stoves. We find that, of all the sources, environmental tobacco smoke appears to have the greatest impact on the total indoor PAH concentrations. In smokers` homes, more than 87% of the total PAH is due to this source. Background sources are the largest contributor to PAHs in nonsmokers` homes. Very little PAH can be attributed to gas or electric appliances in the home. 16 refs., 3 tabs.

  2. The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons.

    PubMed

    Dubowsky, S D; Wallace, L A; Buckley, T J

    1999-01-01

    A photoelectric aerosol sensor (PAS) was used to measure real-time indoor concentrations of polycyclic aromatic hydrocarbons (PAHs) at three residences. Semi-quantitative measurements of total indoor particle-bound PAH and temperature were collected continuously every minute for approximately 2 weeks at each location. The purpose of this study was to examine the effect of traffic on indoor concentrations of PAHs. This was accomplished by collecting indoor measurements at an urban, semi-urban, and suburban residential location with varying levels of, and proximity to, traffic. Since the homes were occupied, the effects of cooking, the dominant indoor source, were also examined among the three nonsmoking households. The results indicate that traffic was the main outdoor source of PAH concentrations measured indoors for all locations. In fact, a significant (p<0.001) traffic-related trend in weekday PAH concentration was detected with a geometric mean concentration at the urban location (31 ng/m3) nearly two times that at the semi-urban location (19 ng/m3) and over three times larger than the suburban location (8.0 ng/m3), once adjusted for indoor sources. Hourly average concentration profiles also revealed weekday rush hour peaks of PAHs at all locations. No pronounced peaks and significantly lower concentrations (10, 10, and 4.9 ng/m3) were seen during the weekends for all locations i.e., the urban, semi-urban and suburban locations, respectively. Indoor sources including frying/sautéing, broiling, and candle-burning were characterized by peak concentration, duration of PAH elevation, and potential dose. This analysis suggests that cooking, and especially frying/sautéing, may be an important source of indoor PAH concentrations. PMID:10489156

  3. Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China.

    PubMed

    Qi, Hong; Li, Wen-Long; Zhu, Ning-Zheng; Ma, Wan-Li; Liu, Li-Yan; Zhang, Feng; Li, Yi-Fan

    2014-09-01

    Indoor dust samples were collected across China in the winter of 2010 from 45 private domiciles and 36 public buildings. 16 polycyclic aromatic hydrocarbons (PAHs) were determined by GC-MS. Total concentrations of PAHs ranged from 1.00 μg/g to 470 μg/g with a mean value of 30.9 μg/g. High-molecular weight (HMW) PAHs (4 to 6 rings) are the predominant PAHs found in indoor dust, accounting for 68% of the total PAH concentration in private domiciles, and 84.6% in public buildings. Traffic conditions and cooking methods were the two key factors controlling PAH levels, especially for coal combustion and vehicular traffic emission sources. A significant positive correlation was observed between PAH concentrations in indoor dust and based on location (latitude and longitude). The latitudinal distribution indicated a higher usage of coal for heating in Northern China than in Southern China. The longitudinal distribution indicated that the usage of oil and mineral fuels as well as economic development and population density increased from West China to East China. In addition, diagnostic ratios and principal component analysis (PCA) were used to explore source apportion, as indicated in both the pyrogenic and petrogenic sources of PAHs in indoor dust in China. Furthermore, the BaP equivalent was applied to assess the carcinogenic risk of PAHs, which also indicated that traffic emissions and coal combustion were the two major contributions to carcinogenic risk of PAHs in indoor dust in China. PMID:24602396

  4. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  5. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ˜1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  6. Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Indoor Solid Fuel Combustion

    PubMed Central

    Shen, Guofeng; Tao, Shu; Wang, Wei; Yang, Yifeng; Ding, Junnan; Xue, Miao; Min, Yujia; Zhu, Chen; Shen, Huizhong; Li, Wei; Wang, Bin; Wang, Rong; Wang, Wentao; Wang, Xilong; Russell, Armistead G.

    2011-01-01

    Indoor solid fuel combustion is a dominant source of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) and the latter are believed to be more toxic than the former. However, there is limited quantitative information on the emissions of OPAHs from solid fuel combustion. In this study, emission factors of OPAHs (EFOPAH) for nine commonly used crop residues and five coals burnt in typical residential stoves widely used in rural China were measured under simulated kitchen conditions. The total EFOPAH ranged from 2.8±0.2 to 8.1±2.2 mg/kg for tested crop residues and from 0.043 to 71 mg/kg for various coals and 9-fluorenone was the most abundant specie. The EFOPAH for indoor crop residue burning were 1~2 orders of magnitude higher than those from open burning, and they were affected by fuel properties and combustion conditions, like moisture and combustion efficiency. For both crop residues and coals, significantly positive correlations were found between EFs for the individual OPAHs and the parent PAHs. An oxygenation rate, Ro, was defined as the ratio of the EFs between the oxygenated and parent PAH species to describe the formation potential of OPAHs. For the studied OPAH/PAH pairs, mean Ro values were 0.16 ~ 0.89 for crop residues and 0.03 ~ 0.25 for coals. Ro for crop residues burned in the cooking stove were much higher than those for open burning and much lower than those in ambient air, indicating the influence of secondary formation of OPAH and loss of PAHs. In comparison with parent PAHs, OPAHs showed a higher tendency to be associated with particulate matter (PM), especially fine PM, and the dominate size ranges were 0.7 ~ 2.1 µm for crop residues and high caking coals and < 0.7 µm for the tested low caking briquettes. PMID:21375317

  7. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    NASA Astrophysics Data System (ADS)

    Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.

    A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations

  8. Residual indoor contamination from world trade center rubble fires as indicated by polycyclic aromatic hydrocarbon profiles.

    PubMed

    Pleil, Joachim D; Funk, William E; Rappaport, Stephen M

    2006-02-15

    The catastrophic destruction of the World Trade Center (WTC) on Sept. 11, 2001 (9/11) created an immense dust cloud followed by fires that emitted smoke and soot into the air of New York City (NYC) well into December. Outdoor pollutant levels in lower Manhattan returned to urban background levels after about 200 days as the fires were put out and the debris cleanup was completed. However, particulate matter (PM) from the original collapse and fires also penetrated into commercial and residential buildings. This has created public concern because WTC dust is thought to cause adverse pulmonary symptoms including "WTC cough" and reduced lung capacity. Additionally, some recent studies have suggested a possible link between exposure to WTC contamination and other adverse health effects. Distinguishing between normal urban pollutant infiltration and residual WTC dust remaining in interior spaces is difficult; efforts are underway to develop such discriminator methods. Some progress has been made in identifying WTC dust by the content of fibers believed to be associated with the initial building collapse. There are also contaminants created by the fires that burned for 100 days in the debris piles of the building rubble. Using WTC ambient air samples, we have developed indicators for fire related PM based on the relative amounts of specific particle bound polycyclic aromatic hydrocarbons (PAHs) and the mass fraction of PAHs per mass of PM. These two parameters are combined, and we show a graphical method for discriminating between fire sources and urban particulate sources as applied to samples of settled dusts. We found that our PAHs based discriminator method can distinguish fire source contributions to WTC related particulate matter and dusts. Other major building fires or large open burn events could have similar PAHs characteristics. We found that random samples collected approximately 3.5 years after the WTC event from occupied indoor spaces (primarily residential

  9. Analysis of industrial contaminants in indoor air: part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls.

    PubMed

    Barro, Ruth; Regueiro, Jorge; Llompart, María; Garcia-Jares, Carmen

    2009-01-16

    This article reviews recent literature on the analysis of industrial contaminants in indoor air in the framework of the REACH project, which is mainly intended to improve protection of human health and the environment from the risks of more than 34 millions of chemical substances. Industrial pollutants that can be found in indoor air may be of very different types and origin, belonging to the volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) categories. Several compounds have been classified into the priority organic pollutants (POPs) class such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/PCDFs) and related polychlorinated compounds, and polycyclic aromatic hydrocarbons (PAHs). Many of these compounds are partially associated to the air gas phase, but also to the suspended particulate matter. Furthermore, settled dust can act as a concentrator for the less volatile pollutants and has become a matrix of great concern for indoors contamination. Main literature considered in this review are papers from the last 10 years reporting analytical developments and applications regarding VOCs, aldehydes and other carbonyls, PCBs, PCDDs, PCDFs, and PAHs in the indoor environment. Sample collection and pretreatment, analyte extraction, clean-up procedures, determination techniques, performance results, as well as compound concentrations in indoor samples, are summarized and discussed. Emergent contaminants and pesticides related to the industrial development that can be found in indoor air are reviewed in a second part in this volume. PMID:19019381

  10. Aromatic hydrocarbons in the atmospheric environment - Part II: univariate and multivariate analysis and case studies of indoor concentrations

    NASA Astrophysics Data System (ADS)

    Ilgen, Elke; Levsen, Karsten; Angerer, Jürgen; Schneider, Peter; Heinrich, Joachim; Wichmann, H.-Erich

    The concentrations of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) have been determined in the indoor air of 115 private non-smoker homes (˜380 individual rooms) situated in areas with an extreme traffic situation, i.e. in city streets (street canyons) with high traffic density and in rural areas with hardly any traffic at all. The influence of the traffic on the indoor concentration was apparent in the high traffic area. In order to identify other factors influencing the BTEX concentrations, the data and additional questionnaires were analyzed by univariate and multivariate analysis. The analysis was supplemented by some case studies. It is shown that meteorology (the seasons), the type of room (e.g. living room versus bedroom), the ventilation and, in particular, garages in the house strongly influence the indoor concentration of BTEX. Thus, the indoor BTEX level is significantly higher in winter than in summer. Moreover, garages with a connecting door to the living quarters lead to high indoor concentrations of aromatic hydrocarbons in these rooms. In addition, the storage of solvents and hobby materials, and also the presence of smoking guests increase the BTEX level. If rooms are directly heated by coal or wood, the BTEX level is higher compared to the use of gas heating. Surprisingly, no correlation was found between the building materials used and the BTEX level. Case studies were carried out for two homes with an integrated garage (and a connecting door to the living rooms) and for seven homes where redecoration work was carried out during sampling. In both instances, a pronounced increase was observed in the BTEX concentration.

  11. Spatiotemporal analysis and human exposure assessment on polycyclic aromatic hydrocarbons in indoor air, settled house dust, and diet: A review.

    PubMed

    Ma, Yuning; Harrad, Stuart

    2015-11-01

    This review summarizes the published literature on the presence of polycyclic aromatic hydrocarbons (PAH) in indoor air, settled house dust, and food, and highlights geographical and temporal trends in indoor PAH contamination. In both indoor air and dust, ΣPAH concentrations in North America have decreased over the past 30 years with a halving time of 6.7±1.9years in indoor air and 5.0±2.3 years in indoor dust. In contrast, indoor PAH concentrations in Asia have remained steady. Concentrations of ΣPAH in indoor air are significantly (p<0.01) higher in Asia than North America. In studies recording both vapor and particulate phases, the global average concentration in indoor air of ΣPAH excluding naphthalene is between 7 and 14,300 ng/m(3). Over a similar period, the average ΣPAH concentration in house dust ranges between 127 to 115,817ng/g. Indoor/outdoor ratios of atmospheric concentrations of ΣPAH have declined globally with a half-life of 6.3±2.3 years. While indoor/outdoor ratios for benzo[a]pyrene toxicity equivalents (BaPeq) declined in North America with a half-life of 12.2±3.2 years, no significant decline was observed when data from all regions were considered. Comparison of the global database, revealed that I/O ratios for ΣPAH (average=4.3±1.3), exceeded significantly those of BaPeq (average=1.7±0.4) in the same samples. The significant decline in global I/O ratios suggests that indoor sources of PAH have been controlled more effectively than outdoor sources. Moreover, the significantly higher I/O ratios for ΣPAH compared to BaPeq, imply that indoor sources of PAH emit proportionally more of the less carcinogenic PAH than outdoor sources. Dietary exposure to PAH ranges from 137 to 55,000 ng/day. Definitive spatiotemporal trends in dietary exposure were precluded due to relatively small number of relevant studies. However, although reported in only one study, PAH concentrations in Chinese diets exceeded those in diet from other parts of the

  12. Source Attribution of Personal Exposure to Airborne Polycyclic Aromatic Hydrocarbon Mixture Using Concurrent Personal, Indoor, and Outdoor Measurements

    PubMed Central

    Choi, Hyunok; Spengler, John

    2014-01-01

    Objectives Relative importance of multiple indoor and outdoor venues on personal exposure concentrations to pro-carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) remains poorly understood. This is particularly challenging because many c-PAHs share sources and occur as a complex mixture. Accurate and precise apportionment of personal exposure according to exposure venues could aid in understanding of human health effects due to given source. Here, we partitioned indoor and personal exposure concentrations to seven c-PAHs and pyrene according to the indoor- and outdoor- origins. Methods A simultaneous, integrated monitoring of personal, indoor and outdoor concentrations of nine PAHs was conducted in 75 homes for a consecutive 48-hour period across a two-year period in Kraków, Poland. Due to few known indoor sources for chrysene, we used this PAH species as a tracer for infiltration of outdoor PAHs. Personal and indoor concentrations of seven c-PAHs and pyrene were apportioned to home indoor, non-home indoor and outdoor origin. Results Using Chrysenein / Chryseneout as proxy for an infiltration factor, Finf, infiltrated PAHs of outdoor origin are overall higher in concentration than those emitted from the indoor origin. Average contribution by the outdoor sources on B[a]A, B[b]F, and B[k]F were 92%, 79%, and 78% across all seasons. In contrast, in homes where a household members smoked, average contribution by the outdoor sources on B[ghi]P, B[a]P, D[ah]A, and IP were lower (i.e., 67%, 65%, 67%, and 66%, respectively). Season-averaged contribution by the outdoor sources on personal exposure to B[a]A, B[b]F, and B[k]F were 92%, 74%, and 77%, respectively. On the other hand, season-averaged home indoor source contribution on personal exposure to B[a]A, B[b]F, and B[k]F were estimated at 6%, 15%, and 19%, respectively. Similar contributions by season-averaged home indoor sources on personal exposure were estimated at 28% for B[ghi]P, 31% for B[a]P, 25% for D

  13. Polycyclic Aromatic Hydrocarbons (PAHs) in Indoor Dusts of Guizhou, Southwest of China: Status, Sources and Potential Human Health Risk

    PubMed Central

    Li, Baizhan

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) were analyzed for 136 indoor dust samples collected from Guizhou province, southwest of China. The ∑18PAHs concentrations ranged from 2.18 μg•g-1 to 14.20 μg•g-1 with the mean value of 6.78 μg•g-1. The highest Σ18PAHs concentration was found in dust samples from orefields, followed by city, town and village. Moreover, the mean concentration of Σ18PAHs in indoor dust was at least 10% higher than that of outdoors. The 4–6 rings PAHs, contributing more than 70% of ∑18PAHs, were the dominant species. PAHs ratios, principal component analysis with multiple linear regression (PCA-MLR) and hierarchical clustering analysis (HCA) were applied to evaluate the possible sources. Two major origins of PAHs in indoor dust were identified as vehicle emissions and coal combustion. The mean incremental lifetime cancer risk (ILCR) due to human exposure to indoor dust PAHs in city, town, village and orefield of Guizhou province, China was 6.14×10−6, 5.00×10−6, 3.08×10−6, 6.02×10−6 for children and 5.92×10−6, 4.83×10−6, 2.97×10−6, 5.81×10−6 for adults, respectively. PMID:25719362

  14. [Indoor air pollution with polycyclic aromatic hydrocarbons caused by polycyclic aromatic hydrocarbon containing parquet floor adhesives. Report of current status for evaluating and dealing with this "new chronic pollution" of indoor air].

    PubMed

    Heudorf, U

    1999-11-01

    In 1997 so far unknown indoor contaminations were detected in a flat of former American Forces living quarters in Frankfurt/Main, Germany. Household dust samples were found to be contaminated with polycyclic aromatic hydrocarbons (PAH), respectively with benzo(a)pyrene (BaP), due to the use of a coal tar pitch parquet glue that had been standard building practice in Germany up to the 'sixties. To assess the amount of exposure, the local Health Services department organised analyses of PAH metabolites in the urine of children below 6 years of age considered to be at risk for oral exposure to BaP in household dust while playing on the floor. In addition the local Health Services informed all ministeries concerned of the problem. During the following months several meetings on this topic were held by experts in the respective spheres and recommendations for redeveloping indoor sites were outlined. In almost 3,000 analyses of samples of household dust and parquet glue and about 1,200 urine analyses for PAH-metabolites in Frankfurt/Main no correlation was seen between the BaP levels in parquet glue and the BaP levels in household dust samples, as well as with interual exposure. Recommendations for further action were made in view of the importance of the composition of parquet flooring for possible indoor contamination. PMID:10628085

  15. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools

    NASA Astrophysics Data System (ADS)

    Krugly, Edvinas; Martuzevicius, Dainius; Sidaraviciute, Ruta; Ciuzas, Darius; Prasauskas, Tadas; Kauneliene, Violeta; Stasiulaitiene, Inga; Kliucininkas, Linas

    2014-01-01

    The indoor air of schools is considered as one of the most important factors affecting the health of children. The aim of the presented research was to characterize polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of schools. The sampling campaign was conducted during the heating season of 2011/2012. Five primary schools from various urban settings in the city of Kaunas, Lithuania. 150 daily samples of particulate and vapor phases were collected during the sampling period. The ultrasonic extractions followed by the gas chromatography and mass spectroscopy (GS/MS) analyses were used for the determination of PAHs. The concentration of total PAHs in the PM2.5 fraction ranged from 20.3 to 131.1 ng m-3, while total suspended particles (TSP) fraction contained from 19.9 to 80.3 ng m-3 of total PAHs. The vapor phase concentration of PAHs ranged from 67.2 to 372.5 ng m-3. The most abundant PAH in both phases was naphthalene. In order to define sources of indoor and outdoor PAHs several source apportionment methods were applied. The analysis revealed that emissions from motor vehicles and fuel burning for heating purposes were the major sources of PAHs in the city of Kaunas.

  16. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    SciTech Connect

    Chuang, J.C.; Mack, G.A.; Kuhlman, M.R.; Wilson, N.K.

    1991-01-01

    A pilot field study was performed in Columbus, Ohio during the winter of 1986-1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOCs), and to estimate the range of concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heat, electric/gas cookstove, and absence/presence of environmental tobaccos smoke (ETS). Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined. The sampler performed well and met all design expectations.

  17. Polycyclic aromatic hydrocarbons in indoor air and environmental tobacco smoke measured with a new integrated organic vapor-particle sampler

    SciTech Connect

    Gundel, L.A.; Daisey, J.M.; Mahanama, K.R.R.; Lee, V.C. ); Stevens, R.K. . Atmospheric Research and Exposure Assessment Lab.)

    1993-01-01

    To avoid sampling artifacts, an integrated organic vapor-particle sampler (IOVPS) has been developed for polycyclic aromatic hydrocarbons (PAH). The ICIVPS is based on an XAD-4-coated annular denuder which strips gas phase species from the air stream before collection of particles on a filter. A second denuder downstream of the filter collects species desorbed ( blown off'') the particles during sampling. PAH are determined in extracts of both denuders and the filter. For indoor air with no combustion sources, the gas-phase concentrations of several semivolatile PAH measured with the IOVPS averaged about half of those found with a conventional filter-sorbent bed sampler. For envirorunental tobacco smoke the gas-phase concentrations of the same PAH from the IOVPS averaged 70% of those found with the sorbent bed sampler. Particulate-phase concentrations were correspondingly higher with the IOVPS, but measurable blow off' semivolatile PAH occurred.

  18. Evaluation of methods for simultaneous collection and determination of nicotine and polynuclear aromatic hydrocarbons in indoor air

    SciTech Connect

    Chuang, J.C.; Kuhlman, M.R.; Wilson, N.K.

    1990-01-01

    A study was performed to determine whether one sampling system and one analytical method can be used to measure both polynuclear aromatic hydrocarbons (PAH) and nicotine. The PAH collection efficiencies for both XAD-2 and XAD-4 adsorbents are very similar, but the nicotine collection efficiency was greater for XAD-4. The spiked perdeuterated PAH were retained well in both adsorbents after exposure to more than 300 cu m of air. A two-step Soxhlet extraction, dichloromethane followed by ethylacetate, was used to remove nicotine and PAH from XAD-4. The extract was analyzed by positive chemical ionization or electron impact gas chromatography/mass spectrometry (GC/MS) to determine nicotine and PAH. It is shown that one sampling system (quartz fiber filter and XAD-4 in series) and one analytical method (Soxhlet extraction and GC/MS) can be used to measure both nicotine and PAH in indoor air.

  19. Evaluation of methods for simultaneous collection and determination of nicotine and polynuclear aromatic hydrocarbons in indoor air

    SciTech Connect

    Chuang, J.C.; Kuhlman, M.R. ); Wilson, N.K. )

    1990-05-01

    A study was performed to determine whether one sampling system and one analytical method can be used to collect and measure both polynuclear aromatic hydrocarbons (PAHs) and nicotine. PAH collection efficiencies for both XAD-2 and XAD-4 adsorbents were very similar, but nicotine collection efficiency was greater for XAD-4. Spiked perdeuterated PAHs were retained well in both adsorbents after exposure to more than 300 m{sup 3} of air. A two-step Soxhlet extraction, dichloromethane followed by ethyl acetate, was used to remove nicotine and PAHs from XAD-4. The extract was analyzed by positive chemical ionization or electron impact gas chromatography/mass spectrometry (GC/MS) to determine nicotine and PAHs. It is shown that one sampling system (quartz fiber filter and XAD-4 in series) and one analytical method (Soxhlet extraction and GC/MS) can be used for both nicotine and PAHs in indoor.

  20. Cancer risk assessment of human exposure to polycyclic aromatic hydrocarbons (PAHs) via indoor and outdoor dust based on probit model.

    PubMed

    Kang, Yuan; Shao, Dingding; Li, Ning; Yang, Gelin; Zhang, Qiuyun; Zeng, Lixuan; Luo, Jiwen; Zhong, Wenfeng

    2015-03-01

    In the present study, the polycyclic aromatic hydrocarbons (PAHs) in indoor dust and outdoor dust including road and window dust around the traffic road in Hunan Province, China, were sampled and detected. The ∑PAHs in indoor dust ranged from 5007-24,236 ng g(-1), with a median of 14,049 ng g(-1). The ∑PAHs in road dust ranged from 3644-12,875 ng g(-1), with a median of 10,559 ng g(-1). The ∑PAHs in window dust ranged from 803-12,590 ng g(-1), with a median of 5459 ng g(-1). Similar pattern of PAHs was observed in road and window dust except in H3W and H4W samples, which was dominated by naphthalene (Nap), benzo(b+k)fluoranthene (B(b+k)F), phenanthrene (Phe), and fluorine (Fle). Indoor dust showed slightly different PAHs profiles, which was dominated by Nap, fluoranthene (Fla) and Phe. Risk assessment indicated that dermal contact and dust ingestion exposure pathways were more important than the inhalation pathway. Cancer risk of PAHs via dust varied from 2.73 × 10(-8)-8.04 × 10(-6), with a median of 2.06 × 10(-6) for children, and from 2 × 10(-8)-5.89 × 10(-6), with a median of 1.52 × 10(-6) for adult. Probit model showed that 76 and 71 % of samples in the sampling area would result in the risk of children and adult exposure to PAHs via dust higher than the acceptable level (1 × 10(-6)), respectively. PMID:25233919

  1. Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple.

    PubMed

    Lin, Ta-Chang; Chang, Feng-Hsiang; Hsieh, Jue-Hsien; Chao, How-Ran; Chao, Mu-Rong

    2002-11-11

    Incense burning, a common and popular practice among many families and in most temples in Taiwan, can result in indoor pollution-related health problems. This exploratory study was aimed at characterizing human exposure to polycyclic aromatic hydrocarbons (PAHs) and total suspended particulate (TSP) inside and around a Taiwanese temple, and to compare the indoor levels with levels outside. Additionally, three types of commonly used unburned incense and incense ash were analyzed in order to evaluate the relationship between incense composition and PAH emissions.Standard methods were used to determine air concentrations of 21 PAHs and TSP inside and around a chosen temple. Indoor mean total-PAH concentration, particle-bound PAH concentration and TSP concentration were 6258 ng/m(3), 490 micro g/g and 1316 micro g/m(3), respectively; values for outdoor readings were 231 ng/m (3), 245 micro g/g and 73 micro g/m(3), for outdoors, respectively indicating PAH and TSP concentrations inside 27 and 18 times greater, respectively than outdoors. With respect to concentrations of individual PAHs (particulate+gas phase), the five highest concentrations were of acenaphthylene (AcPy) (3583 ng/m(3)), naphthalene (Nap) (1264 ng/m(3)), acenaphthene (Acp) (349 ng/m(3)), fluoranthene (FL) (243 ng/m(3)) and phenanthrene (PA) (181 ng/m(3)). Median values for indoor/outdoor (I/O) ratios of individual PAHs ranged from 5.7 to 387.9, which implied that the temple was a significant PAH source. Moreover, PAH content of the tested stick incense and ash was very low. PAH levels inside the temple were much higher than those measured in the vicinity and inside residential houses; and were in fact close to levels measured at a local traffic intersection in Tainan, Taiwan, and those in a graphite-electrode producing plant during the graphitization process. It is obvious that such substantially high concentrations of PAHs and TSP constitute a potential health hazard to people working in or visiting

  2. EVALUATION OF A METHOD FOR SAMPLING AND ANALYSIS OF NICOTINE AND POLYNUCLEAR AROMATIC HYDROCARBONS IN INDOOR AIR

    EPA Science Inventory

    A study was performed to determine whether one sampling system and one analytical method can be used to measure both polynuclear aromatic hydrocarbons (PAH) and nicotine. he PAH collection efficiencies for both XAD-2 and XAD-4 adsorbents are very similar, but the nicotine collect...

  3. Population inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk in Beijing region: Contributions of indoor and outdoor sources and exposures

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Zhao, Bin

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic air pollutants in China. Efforts in assessing population inhalation exposure to PAHs, and its contribution to lung cancer risk for Chinese residents, have been limited due to insufficient data on measured indoor concentrations. A mass-balance model to predict indoor PAH concentrations was developed, along with estimated exposures and attributable lung cancer risks for residents in the Beijing region in 2006, with a 2-stage Monte Carlo simulation framework. The exposures and risks were split into three parts, based on the sources and places of exposure, to estimate the contributions of indoor and outdoor PAH sources and exposures, in order to better understand the source and place pattern of PAH exposure. PAHs bring considerable lung cancer risk to the population of Beijing region. The population attributable fraction (PAF) of lung cancer for Beijing's overall population is 2.99% [95% confidence interval (CI): 1.71%-4.26%]. Median contribution of indoor exposure to outdoor-originated PAHs (OUT-in) is 78% (CI: 73%-81%) in the overall population, for 97% (CI: 94%-99%) of whom OUT-in is the largest contributor. Rural residents are facing considerable exposure to indoor-originated PAHs (IN-in), which dominates the total exposure in 12% (CI: 2%-24%) of the rural population. This model framework could be used in quantitative comparison of different interventions on exposure to PAHs as well as other airborne pollutants.

  4. Concentrations, particle-size distributions, and indoor/outdoor differences of polycyclic aromatic hydrocarbons (PAHs) in a middle school classroom in Xi'an, China.

    PubMed

    Xu, Hongmei; Guinot, Benjamin; Niu, Xinyi; Cao, Junji; Ho, Kin Fai; Zhao, Zhuohui; Ho, Steven Sai Hang; Liu, Suixin

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) attached to particulate matter can affect respiratory health, especially the health of children, but information on the air quality in schools is generally lacking. This study investigated the PAH concentrations in a naturally ventilated classroom in Xi'an, China, from 16 to 31 May 2012. Particulate PAH concentrations were measured for samples collected on five-stage cascade impactors deployed inside the classroom and outside. PM2.5-bound PAH concentrations were 53.2 ng m(-3) indoors and 72.9 ng m(-3) outdoors. PAHs attached to very fine particles (VFPs) accounted for ~70% of the total PAHs. The PAH concentrations indoors were affected by the students' activities, cleaning, and smoking, while outdoors, the main sources were motor vehicle emissions and contaminated road dust. Particle-bound PAHs infiltrated the classroom through open windows, but the activities of the students and staff were also associated with an increase of PAHs attached to particles larger than 1.0 µm, most likely through resuspension. Cycles in the sources led to PAH concentrations 2-3 times higher on weekdays compared to weekends, both indoors and outdoors. PAH toxicity risks inside the classroom were substantially lower than those outdoors, and the highest risks were associated with VFPs. PMID:25537162

  5. Polycyclic aromatic hydrocarbons in indoor air and environmental tobacco smoke measured with a new integrated organic vapor-particle sampler. Revision

    SciTech Connect

    Gundel, L.A.; Daisey, J.M.; Mahanama, K.R.R.; Lee, V.C.; Stevens, R.K.

    1993-01-01

    To avoid sampling artifacts, an integrated organic vapor-particle sampler (IOVPS) has been developed for polycyclic aromatic hydrocarbons (PAH). The ICIVPS is based on an XAD-4-coated annular denuder which strips gas phase species from the air stream before collection of particles on a filter. A second denuder downstream of the filter collects species desorbed (``blown off``) the particles during sampling. PAH are determined in extracts of both denuders and the filter. For indoor air with no combustion sources, the gas-phase concentrations of several semivolatile PAH measured with the IOVPS averaged about half of those found with a conventional filter-sorbent bed sampler. For envirorunental tobacco smoke the gas-phase concentrations of the same PAH from the IOVPS averaged 70% of those found with the sorbent bed sampler. Particulate-phase concentrations were correspondingly higher with the IOVPS, but measurable ``blow off` semivolatile PAH occurred.

  6. Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions

    PubMed Central

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Lv, Yan; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; Tao, Shu

    2014-01-01

    Emission factors (EFs) of parent polycyclic aromatic (pPAHs), nitrated PAHs (nPAHs), and oxygenated PAHs (oPAHs) were measured for indoor corn straw burned in a cooking brick stove in both normal and controlled burning conditions. EFs of total 28 pPAHs, 6 nPAHs and 4 oPAHs were 7.9±3.4, 6.5±1.6×10-3, and 6.1±1.4×10-1 mg/kg, respectively. By controlling the burning conditions, it was found that the influence of fuel charge size on EFs of the pPAHs and derivatives was insignificant. Measured EFs increased significantly in a fast burning mainly because of the oxygen deficient atmosphere formed in the stove chamber with a small volume. In both restricted and enhance air supply conditions, EFs of pPAHs, nPAHs and oPAHs were significantly higher than those measured in normal burning conditions. Though EFs varied in different burning conditions, the composition profiles and calculated isomer ratios were similar without significant differences. The results from the stepwise regression model showed that fuel burning rate, air supply amount, and modified combustion efficiency were three most significant influencing factors, explaining 72-85% of the total variations. PMID:24494494

  7. Effects of Heating Season on Residential Indoor and Outdoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in an Urban Birth Cohort

    PubMed Central

    Jung, Kyung Hwa; Patel, Molini M.; Moors, Kathleen; Kinney, Patrick L.; Chillrud, Steven N.; Whyatt, Robin; Hoepner, Lori; Garfinkel, Robin; Yan, Beizhan; Ross, James; Camann, David; Perera, Frederica P.; Miller, Rachel L.

    2010-01-01

    Exposure to air pollutants has been associated with adverse health effects. However, analyses of the effects of season and ambient parameters such as ozone have not been fully conducted. Residential indoor and outdoor air levels of polycyclic aromatic hydrocarbons (PAH), black carbon (measured as absorption coefficient [Abs]), and fine particulate matter <2.5 μm (PM)2.5 were measured over two-weeks in a cohort of 5–6 year old children (n=334) living in New York City’s Northern Manhattan and the Bronx between October 2005 and April 2010. The objectives were to: 1) characterize seasonal changes in indoor and outdoor levels and indoor/outdoor (I/O) ratios of PAH (gas + particulate phase; dichotomized into Σ8PAHsemivolatile (MW 178–206), and Σ8PAHnonvolatile (MW 228–278)), Abs, and PM2.5; and 2) assess the relationship between PAH and ozone. Results showed that heating compared to nonheating season was associated with greater Σ8PAHnonvolatile (p<0.001) and Abs (p<0.05), and lower levels of Σ8PAHsemivolatile (p<0.001). In addition, the heating season was associated with lower I/O ratios of Σ8PAHnonvolatile and higher I/O ratios of Σ8PAHsemivolatile (p<0.001) compared to the nonheating season. In outdoor air, Σ8PAHnonvolatile was correlated negatively with community-wide ozone concentration (p<0.001). Seasonal changes in emission sources, air exchanges, meteorological conditions and photochemical/chemical degradation reactions are discussed in relationship to the observed seasonal trends. PMID:20938487

  8. Effects of Floor Level and Building Type on Residential Levels of Outdoor and Indoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in New York City

    PubMed Central

    Jung, Kyung Hwa; Bernabé, Kerlly; Moors, Kathleen; Yan, Beizhan; Chillrud, Steven N.; Whyatt, Robin; Camann, David; Kinney, Patrick L.; Perera, Frederica P.; Miller, Rachel L.

    2011-01-01

    Consideration of the relationship between residential floor level and concentration of traffic-related airborne pollutants may predict individual residential exposure among inner city dwellers more accurately. Our objective was to characterize the vertical gradient of residential levels of polycyclic aromatic hydrocarbons (PAH; dichotomized into Σ8PAHsemivolatile (MW 178–206), and Σ8PAHnonvolatile (MW 228–278), black carbon (BC), PM2.5 (particulate matter) by floor level (FL), season and building type. We hypothesize that PAH, BC and PM2.5 concentrations may decrease with higher FL and the vertical gradients of these compounds would be affected by heating season and building type. PAH, BC and PM2.5 were measured over a two-week period outdoor and indoor of the residences of a cohort of 5–6 year old children (n = 339) living in New York City’s Northern Manhattan and the Bronx. Airborne-pollutant levels were analyzed by three categorized FL groups (0–2nd, 3rd–5th, and 6th–32nd FL) and two building types (low-rise versus high-rise apartment building). Indoor Σ8PAHnonvolatile and BC levels declined with increasing FL. During the nonheating season, the median outdoor Σ8PAHnonvolatile, but not Σ8PAHsemivolatile, level at 6th–2nd FL was 1.5–2 times lower than levels measured at lower FL. Similarly, outdoor and indoor BC concentrations at 6th–32nd FL were significantly lower than those at lower FL only during the nonheating season (p < 0.05). In addition, living in a low-rise building was associated significantly with higher levels of Σ8PAHnonvolatile and BC. These results suggest that young inner city children may be exposed to varying levels of air pollutants depending on their FL, season, and building type. PMID:21886868

  9. Effects of heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an urban birth cohort

    NASA Astrophysics Data System (ADS)

    Jung, Kyung Hwa; Patel, Molini M.; Moors, Kathleen; Kinney, Patrick L.; Chillrud, Steven N.; Whyatt, Robin; Hoepner, Lori; Garfinkel, Robin; Yan, Beizhan; Ross, James; Camann, David; Perera, Frederica P.; Miller, Rachel L.

    2010-11-01

    Exposure to air pollutants has been associated with adverse health effects. However, analyses of the effects of season and ambient parameters such as ozone have not been fully conducted. Residential indoor and outdoor air levels of polycyclic aromatic hydrocarbons (PAH), black carbon (measured as absorption coefficient [Abs]), and fine particulate matter <2.5 μm (PM) 2.5 were measured over two-weeks in a cohort of 5-6 year old children ( n = 334) living in New York City's Northern Manhattan and the Bronx between October 2005 and April 2010. The objectives were to: 1) characterize seasonal changes in indoor and outdoor levels and indoor/outdoor (I/O) ratios of PAH (gas + particulate phase; dichotomized into ∑ 8PAH semivolatile (MW 178-206), and ∑ 8PAH nonvolatile (MW 228-278)), Abs, and PM 2.5; and 2) assess the relationship between PAH and ozone. Results showed that heating compared to nonheating season was associated with greater ∑ 8PAH nonvolatile ( p < 0.001) and Abs ( p < 0.05), and lower levels of ∑ 8PAH semivolatile ( p < 0.001). In addition, the heating season was associated with lower I/O ratios of ∑ 8PAH nonvolatile and higher I/O ratios of ∑ 8PAH semivolatile ( p < 0.001) compared to the nonheating season. In outdoor air, ∑ 8PAH nonvolatile was correlated negatively with community-wide ozone concentration ( p < 0.001). Seasonal changes in emission sources, air exchanges, meteorological conditions and photochemical/chemical degradation reactions are discussed in relationship to the observed seasonal trends.

  10. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring

    SciTech Connect

    Choi, H.; Perera, F.; Pac, A.; Wang, L.; Flak, E.; Mroz, E.; Jacek, R.; Chai-Onn, T.; Jedrychowski, W.; Masters, E.; Camann, D.; Spengler, J.

    2008-11-15

    Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m{sup 3}. Based on simultaneously monitored levels, the outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city, center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1{degree}C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz(a)anthracene, benzo(k)fluoranthene, and dibenz(a,h)anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity.

  11. Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites.

    PubMed

    Li, Zheng; Sjödin, Andreas; Romanoff, Lovisa C; Horton, Kevin; Fitzgerald, Christopher L; Eppler, Adam; Aguilar-Villalobos, Manuel; Naeher, Luke P

    2011-10-01

    Burning biomass fuels such as wood on indoor open-pit stoves is common in developing regions. In such settings, exposure to harmful combustion products such as fine particulate matter (PM(2.5)), carbon monoxide (CO) and polycyclic aromatic hydrocarbons (PAHs) is of concern. We aimed to investigate if the replacement of open pit stoves by improved stoves equipped with a chimney would significantly reduce exposure to PAHs, PM(2.5) and CO. Two stove projects were evaluated in Peru. Program A was part of the Juntos National Program in which households built their own stoves using materials provided. In Program B, Barrick Gold Corporation hired a company to produce and install the stoves locally. A total of 30 and 27 homes participated in Program A and B, respectively. We collected personal and kitchen air samples, as well as morning urine samples from women tasked with cooking in the households before and after the installation of the improved stoves. Median levels of PM(2.5) and CO were significantly reduced in kitchen and personal air samples by 47-74% after the installation of the new stoves, while the median reduction of 10 urinary hydroxylate PAH metabolites (OH-PAHs) was 19%-52%. The observed OH-PAH concentration in this study was comparable or higher than the 95th percentile of the general U.S. population, even after the stove intervention, indicating a high overall exposure in this population. PMID:21524795

  12. Evaluation of sampling and analytical methods for nicotine and polynuclear aromatic hydrocarbon in indoor air. Final report, 1 February 1987-30 March 1987

    SciTech Connect

    Chuang, J.C.; Kuhlman, M.R.; Hannan, S.W.; Bridges, C.

    1987-11-01

    The objective of this project was to evaluate a potential collection medium, XAD-4 resin, for collecting nicotine and polynuclear aromatic hydrocarbon (PAH) and to determine whether one collection system and one analytical method will allow quantification of both compound classes in air. The extraction efficiency study was to determine the extraction method to quantitatively remove nicotine and PAH from XAD-4 resin. The results showed that a two-step Soxhlet extraction consisting of dichloromethane followed by ethyl acetate resulted in the best recoveries for both nicotine and PAH. In the sampling efficiency study, XAD-2 and XAD-4 resin were compared, in parallel, for collection of PAH and nicotine. Quartz fiber filters were placed upstream of both adsorbents to collect particles. Prior to sampling, both XAD-2 and XAD-4 traps were spiked with known amounts (2 microgram) of perdeuterated PAH and D3-nicotine. The experiments were performed with cigarette smoking and nonsmoking conditions. The spiked PAH were retained well in both adsorbents after exposure to more than 300 cu. m. of indoor air. The spiked XAD-4 resin gave higher recoveries for D3-nicotine than did the spiked XAD-2 resin. The collection efficiency for PAH for both adsorbents is very similar but higher levels of nicotine were collected on XAD-4 resin.

  13. Bioassay of polycyclic aromatic hydrocarbons

    SciTech Connect

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  14. POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR DERIVATIVES IN INDOOR AND OUTDOOR AIR IN AND EIGHT-HOME STUDY

    EPA Science Inventory

    A pilot field study was performed in Columbus, Ohio during the winter of 1986/1987. he objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOCs), and to estimate the r...

  15. Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  16. Indoor-outdoor levels of size segregated particulate matter and mono/polycyclic aromatic hydrocarbons among urban areas using solid fuels for heating

    NASA Astrophysics Data System (ADS)

    Kliucininkas, Linas; Krugly, Edvinas; Stasiulaitiene, Inga; Radziuniene, Inga; Prasauskas, Tadas; Jonusas, Arunas; Kauneliene, Violeta; Martuzevicius, Dainius

    2014-11-01

    Emissions from the fuel combustion in the energy production are causes of concern due to associated health risks, but little information is available on the impact of residential fuel burning on indoor air quality, where most of the human exposure occurs. In this complex study, concentrations of size-segregated particulate matter (PM), monocyclic and polycyclic aromatic compounds (MAHs and PAHs) at indoor and outdoor sites in six urban homes in the city of Kaunas, Lithuania, were determined over winter and summer sampling campaigns, specifically targeting the impact of the local fuel burning to the indoor air quality. PM levels observed in Kaunas during winter measurement campaign were higher compared to those in many other European settlements utilizing biomass for energy production. The particle size distribution analysis revealed that the major part of the PM mass in winter period consisted of fine particles (PM2.5). Both MAH and PAH levels were higher in winter. The indoor to outdoor ratios (I/O) of MAHs and PAHs revealed specific patterns depending on the presence of emissions sources indoors. Irrespectively of the season, I/O values were <1, suggesting that in case of the absence of an indoor pollution, the dominant source of organic compounds was from the outdoor environment. In homes with no PAH source inside, the I/O ratio equalled ranged from 0.05 to 0.36, suggesting the penetrated portion of outdoor combustion particles to the indoor air.

  17. THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...

  18. Deuterated polycyclic aromatic hydrocarbons: Revisited

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Candian, A.; Mori, T.; Onaka, T.; Tielens, A. G. G. M.

    2016-02-01

    Aims: The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of Hii regions in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Methods: Fifty-three Hii regions were observed in the NIR (2.5-5 μm), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. Results: We see emission features between 4.4-4.8 μm, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case of M17b, this feature is not observed at all. Based on the weak or absent PAD features in most of the observed spectra, it is suggested that the mechanism for PAH deuteration in the ISM is uncommon.

  19. Birds and polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  20. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOEpatents

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  1. PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED

    SciTech Connect

    Ricca, Alessandra; Bauschlicher, Charles W. Jr; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2011-02-01

    We reconsider the contribution that singly protonated polycyclic aromatic hydrocarbons (PAHs; HPAH{sup +}s) might make to the Class A component of the 6.2 {mu}m interstellar emission feature in light of the recent experimental measurements of protonated naphthalene and coronene. Our calculations on the small HPAH{sup +}s have a band near 6.2 {mu}m, as found in experiment. While the larger HPAH{sup +}s still have emission near 6.2 {mu}m, the much larger intensity of the band near 6.3 {mu}m overwhelms the weaker band at 6.2 {mu}m, so that the 6.2 {mu}m band is barely visible. Since the large PAHs are more representative of those in the interstellar medium, our work suggests that large HPAH{sup +}s cannot be major contributors to the observed emission at 6.2 {mu}m (i.e., Class A species). Saturating large PAH cations with hydrogen atoms retains the 6.2 {mu}m Class A band position, but the rest of the spectrum is inconsistent with observed spectra.

  2. Polycyclic aromatic hydrocarbons in gas and particulate phases of indoor environments influenced by tobacco smoke: Levels, phase distributions, and health risks

    NASA Astrophysics Data System (ADS)

    Castro, Dionísia; Slezakova, Klara; Delerue-Matos, Cristina; Alvim-Ferraz, Maria da Conceição; Morais, Simone; Pereira, Maria do Carmo

    2011-04-01

    As polycyclic aromatic hydrocarbons (PAHs) have a negative impact on human health due to their mutagenic and/or carcinogenic properties, the objective of this work was to study the influence of tobacco smoke on levels and phase distribution of PAHs and to evaluate the associated health risks. The air samples were collected at two homes; 18 PAHs (the 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) were determined in gas phase and associated with thoracic (PM 10) and respirable (PM 2.5) particles. At home influenced by tobacco smoke the total concentrations of 18 PAHs in air ranged from 28.3 to 106 ng m -3 (mean of 66.7 ± 25.4 ng m -3), ∑ PAHs being 95% higher than at the non-smoking one where the values ranged from 17.9 to 62.0 ng m -3 (mean of 34.5 ± 16.5 ng m -3). On average 74% and 78% of ∑ PAHs were present in gas phase at the smoking and non-smoking homes, respectively, demonstrating that adequate assessment of PAHs in air requires evaluation of PAHs in both gas and particulate phases. When influenced by tobacco smoke the health risks values were 3.5-3.6 times higher due to the exposure of PM 10. The values of lifetime lung cancer risks were 4.1 × 10 -3 and 1.7 × 10 -3 for the smoking and non-smoking homes, considerably exceeding the health-based guideline level at both homes also due to the contribution of outdoor traffic emissions. The results showed that evaluation of benzo[a]pyrene alone would probably underestimate the carcinogenic potential of the studied PAH mixtures; in total ten carcinogenic PAHs represented 36% and 32% of the gaseous ∑ PAHs and in particulate phase they accounted for 75% and 71% of ∑ PAHs at the smoking and non-smoking homes, respectively.

  3. Participant-Based Monitoring of Indoor and Outdoor Nitrogen Dioxide, Volatile Organic Compounds, and Polycyclic Aromatic Hydrocarbons among MICA-Air Households

    EPA Science Inventory

    The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air c...

  4. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  5. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  6. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  7. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN...

  8. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN...

  9. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN...

  10. Polycyclic Aromatic Hydrocarbons in Indoor Air and EnvironmentalTobacco Smoke Measured with a New Integrated Organic Vapor-ParticleSampler

    SciTech Connect

    Gundel, L.A.; Daisey, J.M.; Mahanama, K.R.R.; Lee, C.C.; Stevens,R.K.

    1993-01-01

    Sampling details. The novel aspect of the sampling equipment is the use of ground XAD-4 resin as a coating for annular denuders. Figure 1 shows a schematic diagram of one sampling configuration used for field testing the IOVPS in indoor air and ETS. Commercially available, single-channel glass denuders, 22 cm long, with a 1 mm annulus (University Research Glass, Carrboro, NC, USA were used with a Teflon- ) lined aluminum cyclone (cutoff 2.5 microns at 10 L mine ) preceding the first denuder. Three XAD-4-coated denuders were connected in series between the cyclone and a Teflon filter pack which contained a pre-extracted and pre-weighed Teflon-coated glass-fiber filter. (The three-denuder configuration was used for determining breakthrough of naphthalene and its methyl derivatives as a function of flow rate.) In some experiments, a coated denuder followed the filter pack. The parallel sorbent bed sampler used an aluminum open-face filter holder with a Teflon-coated glass-fiber filter, followed by a glass tube packed with 2.5 g cleaned XAD-4 resin. Flow rates, measured with a dry gas test meter, were 5, 10 and 20 L min-1 for field testing; sampling times varied from 3 to 22 hours. Indoor air with no combustion sources was sampled in an unoccupied room. Diluted sidestream smoke was sampled as a surrogate for ETS in an unventilated 20 m3 chamber at 5 L rnin-l for hour-long periods while a single-port smoking machine smoked 3 cigarettes. Ambient temperature varied between 22 and 26 C.

  11. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    SciTech Connect

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  12. Soot formation during pyrolysis of aromatic hydrocarbons

    SciTech Connect

    Clary, D.W.

    1985-01-01

    A study combining experimental, empirical modeling, and detailed modeling techniques has been conducted to develop a better understanding of the chemical reactions involved in soot formation during the high-temperature pyrolysis of aromatic and other unsaturated hydrocarbons. The experiments were performed behind reflected shock waves in a conventional shock-tube with soot formation monitored via attenuation of a laser beam at 633 nm. Soot-formation measurements were conducted with toluene-argon and benzene-argon mixtures. Detailed kinetic models of soot formation were developed for pyrolyzing acetylene, butadiene, ethylene and benzene. The computational results indicate the importance of compact, fused polycyclic aromatic hydrocarbons as soot intermediates and the importance of the reactivation of these intermediates by hydrogen atoms to form aromatic radicals. The overshoot by hydrogen atoms of their equilibrium concentration provides a driving kinetic force for soot formation. The results with ethylene and butadiene indicate that acetylene is an important growth species for soot formation for these fuels. The benzene model suggests that reactions between aromatic species may be important for soot formation from aromatic fuels.

  13. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  14. 40 CFR 721.10676 - Aromatic hydrocarbon mixture (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic hydrocarbon mixture (generic... Specific Chemical Substances § 721.10676 Aromatic hydrocarbon mixture (generic). (a) Chemical substance and... hydrocarbon mixture (PMN P-12-551) is subject to reporting under this section for the significant new...

  15. TRACE ANALYSIS FOR AROMATIC HYDROCARBONS IN NATURAL WATERS

    EPA Science Inventory

    A method of trace analysis of volatile aromatic hydrocarbons in natural water is described. The method is based on sparging water samples with nitrogen, adsorption of hydrocarbons on activated charcoal, followed by desorption into carbon disulfide and gas chromatographic analysis...

  16. THE UPTAKE OF AROMATIC AND BRANCHED CHAIN HYDROCARBONS BY YEAST

    EPA Science Inventory

    Studies of the hydrocarbon utilizing yeasts, Candida maltosa and C. lipolytica, have shown that both were capable of reducing recoverable amounts of branched chain and aromatic hydrocarbons in a mixture of naphthalene, tetradecane, hexadecane, pristane (tetra-methylpentadecane). ...

  17. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  18. Polycyclic aromatic hydrocarbons and cancer in man.

    PubMed Central

    Mastrangelo, G; Fadda, E; Marzia, V

    1996-01-01

    Various substances and industrial processes, surrogates of exposure to polycyclic aromatic hydrocarbons (PAHs), are currently classified as human carcinogens. This paper reviews recent epidemiological studies reporting direct evidence of the carcinogenic effects of PAHs in occupationally exposed subjects. Risks of lung and bladder cancer were dose dependent when PAHs were measured quantitatively and truly nonexposed groups were chosen for comparison. These new findings suggest that the current threshold limit value of 0.2 mg/m3 of benzene soluble matter (which indicates PAH exposure) is unacceptable because, after 40 years of exposure, it involves a relative risk of 1.2-1.4 for lung cancer and 2.2 for bladder cancer. Images p1166-a PMID:8959405

  19. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    PubMed

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared. PMID:25257517

  20. Polycyclic aromatic hydrocarbons and cancer in man

    SciTech Connect

    Mastrangelo, G.; Marzia, V.; Fadda, E.

    1996-11-01

    Various substances and industrial processes, surrogates of exposure to polycyclic aromatic hydrocarbons (PAHs), are currently classified as human carcinogens. This paper reviews recent epidemiological studies reporting direct evidence of the carcinogenic effects of PAHs in occupationally exposed subjects. Risks of lung and bladder cancer were dose dependent when PAHs were measured quantitatively and truly nonexposed groups were chosen for comparison. These new findings suggest that the current threshold limit value of 0.2 mg/m{sup 3} of benzene soluble matter (which indicates PAH exposure) is unacceptable because, after 40 years of exposure, it involves a relative risk of 1.2-1.4 for lung cancer and 2.2 for bladder cancer. 33 refs., 2 tabs.

  1. Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity.

    PubMed

    Wheat, P E; Tumeo, M A

    1997-01-01

    An investigation to determine the ability of ultrasonic radiation to chemically alter polycyclic aromatic hydrocarbons (PAHs) in aqueous solution has been conducted. The data indicate that chemical alteration of PAHs can be induced under intense ultrasonic treatment. The extent and outcome of reaction is a function of irridation time and aqueous solution parameters. Reaction products were analysed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Reaction products from ultrasonic treatment of aqueous solutions of biphenyl include ortho, meta, and para-1,1 biphenols. The principal product from ultrasonic treatment of aqueous phenanthrene solutions appears to be a phenanthrene-diol. The number and composition of reaction products for both PAHs tested suggest that a free radical mechanism is likely during aqueous high intensity ultrasonic treatment. The use of ultrasound to treat PAH contaminated aqueous solutions in tandem with other methodologies appears promising. However, the toxicity of reaction products produced by treatment remains to be determined. PMID:11233926

  2. Polycyclic aromatic hydrocarbons in interstellar chemistry

    SciTech Connect

    Lepp, S.; Dalgarno, A.

    1988-01-01

    Interstellar chemistry modifications resulting form the presence of large molecules such as polycyclic aromatic hydrocarbons (PAHs) are investigated. For abundances of PAH relative to hydrogen of greater than 10 to the -8th, free electrons attach to PAH molecules to yield PAH(-) ions, and qualitative interstellar chemistry changes are shown to result as atomic and molecular ions undergo nondestructive mutual neutralization reactions with these negative ions. An increase in the steady state abundances of carbon-bearing molecules is also noted. For a PAH abundance ratio relative to hydrogen of 10 to the -7th, the equilibrium densities of C3H2 and neutral atomic C are found to be enhanced by two orders of magnitude. 18 references.

  3. Molecular dynamics studies of aromatic hydrocarbon liquids

    SciTech Connect

    McLaughlin, E.; Gupta, S.

    1990-01-01

    This project mainly involves a molecular dynamics and Monte Carlo study of the effect of molecular shape on thermophysical properties of bulk fluids with an emphasis on the aromatic hydrocarbon liquids. In this regard we have studied the modeling, simulation methodologies, and predictive and correlating methods for thermodynamic properties of fluids of nonspherical molecules. In connection with modeling we have studied the use of anisotropic site-site potentials, through a modification of the Gay-Berne Gaussian overlap potential, to successfully model the aromatic rings after adding the necessary electrostatic moments. We have also shown these interaction sites should be located at the geometric centers of the chemical groups. In connection with predictive methods, we have shown two perturbation type theories to work well for fluids modeled using one-center anisotropic potentials and the possibility exists for extending these to anisotropic site-site models. In connection with correlation methods, we have studied, through simulations, the effect of molecular shape on the attraction term in the generalized van der Waals equation of state for fluids of nonspherical molecules and proposed a possible form which is to be studied further. We have successfully studied the vector and parallel processing aspects of molecular simulations for fluids of nonspherical molecules.

  4. Theoretical studies of the structures and local aromaticity of conjugated polycyclic hydrocarbons using three aromatic indices

    NASA Astrophysics Data System (ADS)

    Sakai, Shogo; Kita, Yuki

    2013-07-01

    The structures and local aromaticity of some conjugated polycyclic hydrocarbons (from the butadienoid, acene, and phenylene series) are studied using ab initio MO and density functional methods. The aromaticities of the molecules are estimated using three indices: the nucleus-independent chemical shift (NICS), the harmonic oscillator model of aromaticity (HOMA), and the index of deviation from aromaticity (IDA). Assessment of the relationships between the structures and the aromatic indices shows that the IDA values correspond best to the characteristics of the conjugated polycyclic hydrocarbon structures.

  5. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  6. Polycyclic Aromatic Hydrocarbons in Interstellar Medium Dust

    NASA Astrophysics Data System (ADS)

    Malsberger, Rosalie; Chiar, J. E.; Tielens, A. G. G. M.; Sloan, G. C.

    2009-01-01

    We obtained spectra from the Spitzer Space Telescope Infrared Spectrometer (IRS) of lines of sight that probe large columns of diffuse interstellar medium (ISM) dust (PID 3616, J. Chiar). An absorption feature at 6.2 μm, that we attribute to polycyclic aromatic hydrocarbons (PAHs) in the cold ISM, is detected in nine of our spectra. PAHs are normally observed in emission near an exciting source, rather than in the cold ISM dust, however, Schutte et al. (1998, A&A, 337, 261) found the 6.2 μm absorption feature in spectra of WC-type Wolf-Rayet stars that probed moderate columns of diffuse ISM dust. However, it was later shown by Chiar et al. (2001, ApJ, 550, 207) that the feature could be attributed to circumstellar dust around these objects. A low limit was set on lack of detection in the diffuse ISM. Our new Spitzer spectra provide the first indisputable detections of the 6.2 μm PAH absorption feature toward stars that are not associated with circumstellar dust. Based on our nine detections and twenty detection limits, a positive correlation is suggested between the optical depth of the 6.2 μm absorption feature and visual extinction. If verified (with higher signal-to-noise data), this relationship would imply that PAHs are widespread components of cold ISM dust, similar to the well-known aliphatic hydrocarbons that peak at 3.4 μm. Assuming an elemental carbon abundance of C/H=3.7 x 10-4, we estimate that 30 to 40% of the interstellar carbon can be tied up in PAH dust. Future high signal-to-noise observations with SOFIA and/or the James Webb Space Telescope will be crucial to verify the nature and distribution of PAHs in cold ISM dust. This material is based upon work supported by the National Science Foundation under Grant No. 0552751.

  7. POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN

    EPA Science Inventory

    We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...

  8. ENGINEERED ANTIBODIES FOR MONITORING OF POLYNUCLEAR AROMATIC HYDROCARBONS

    EPA Science Inventory

    The objective of this multidisciplinary project is to use molecular biological techniques to derive a set of antibodies with useful affinities and selectivities for recovery and detection of polynuclear aromatic hydrocarbons (PAHs) in environmental and biological samples. The lon...

  9. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  10. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons

    EPA Science Inventory

    Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...

  11. ORIGINS OF POLYCYCLIC AROMATIC HYDROCARBONS IN ESTUARINE SEDIMENTS

    EPA Science Inventory

    In order to determine the origin of polycyclic aromatic hydrocarbons (PAHs) in sediments from Narragansett Bay, Rhode Island, the PAH assemblages from the sediments and from possible origin materials were analyzed by gas chromatographic and gas chromatographic-mass spectrometric ...

  12. [Polycyclic aromatic hydrocarbons exposure and birth defects].

    PubMed

    Lin, S S; Huang, Y; Wang, C Y; Ren, A G

    2016-06-01

    Birth defects are one of the most common adverse birth outcomes, which create a heavy economic burden to the country, society and family. And they are also one of the biggest problems facing public health today. Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic pollutants existing in the environment widely, resulting from incomplete organic matter combustion, and can be taken into the body through various ways including the digestive tract, respiratory tract and so on. Recent researches suggest that the exposure of PAHs may be associated with various birth defects, while the special mechanism isn't very clear. This paper is a review of the relationship between PAHs and birth defects from the aspects of epidemiological data, experimental evidence on animals, which indicates that exposure of PAHs during pregnancy may be associated with birth defects including congenital heart defects, neural tube defects and cleft lip/plate. Furthermore, we explored the possible mechanism, including oxidative stress, oxidative damage and the changes of signal transduction pathway in order to provide some recommendations and suggestions on the future work. PMID:27256742

  13. Polycyclic aromatic hydrocarbon molecules in astrophysics

    NASA Astrophysics Data System (ADS)

    Rastogi, Shantanu; Pathak, Amit; Maurya, Anju

    2013-06-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are responsible for the mid-infrared emission features. Their ubiquitous presence in almost all types of astrophysical environments and related variations in their spectral profilesmake them an important tool to understand the physics and chemistry of the interstellar medium. The observed spectrum is generally a composite superposition of all different types of PAHs possible in the region. In the era of space telescopes the spectral richness of the emission features has enhanced their importance as probe and also the need to understand the variations with respect to PAH size, type and ionic state. Quantum computational studies of PAHs have proved useful in elucidating the profile variations and put constraints on the possible types of PAHs in different environments. The study of PAHs has also significantly contributed to the problems of diffuse interstellar bands (DIBs), UV extinction and understanding the chemistry of the formation of complex organics in space. The review highlights the results of various computational models for the understanding of infrared emission features, the PAH-DIB relation, formation of prebiotics and possible impact in the understanding of far-infrared features.

  14. Polynuclear aromatic hydrocarbons in the water environment*

    PubMed Central

    Andelman, Julian B.; Suess, Michael J.

    1970-01-01

    Many polynuclear aromatic hydrocarbons (PAH) are known to be carcinogenic to animals and probably to man. This review is concerned with carcinogenic and non-carcinogenic PAH in the water environment, with emphasis on 3,4-benzpyrene (BP) because it is ubiquitous, is one of the most potent of the carcinogenic PAH and has been widely studied. Although PAH are formed in combustion and other high-temperature processes, there is also evidence for their endogenous formation in plants, which may explain their ubiquity therein. Although the solubility of these compounds in pure water is very low, they may be solubilized by such materials as detergents, or they may otherwise occur in aqueous solution associated with or adsorbed on to a variety of colloidal materials or biota, and thereby be transported through the water environment. A notable characteristic of PAH is their sensitivity to light. PAH have been found in industrial and municipal waste effluents, and occur in soils, ground waters and surface waters, and their sediments and biota. With the exception of filtration or sorption by activated carbon, conventional water treatment processes do not efficiently remove them, and they have been found in domestic water supplies. Because of the ubiquity of PAH in the environment, it is impossible to prevent completely man's exposure to them; nevertheless their surveillance should be continued and their concentrations in the environment should be reduced where practicable. PMID:4100719

  15. Polycyclic aromatic hydrocarbons and childhood asthma.

    PubMed

    Karimi, Parisa; Peters, Kamau O; Bidad, Katayoon; Strickland, Paul T

    2015-02-01

    Asthma is the most common chronic illness in children living in developed countries and the leading cause of childhood hospitalization and school absenteeism. Prevalence rates of asthma are increasing and show disparities across gender, geographic regions, and ethnic/racial groups. Common risk factors for developing childhood asthma include exposure to tobacco smoke, previous allergic reactions, a family history of asthma, allergic rhinitis or eczema, living in an urban environment, obesity and lack of physical exercise, severe lower respiratory tract infections, and male gender. Asthma exacerbation in children can be triggered by a variety of factors, including allergens (e.g., pollen, dust mites, and animal dander), viral and bacterial infections, exercise, and exposure to airway irritants. Recent studies have shown that exposure to polycyclic aromatic hydrocarbons (PAHs), a major component of fine particulate matter from combustion sources, is also associated with onset of asthma, and increasing asthmatic symptoms. In this paper, we review sources of childhood PAH exposure and the association between airborne PAH exposure and childhood asthma prevalence and exacerbation. PMID:25600297

  16. Emission of polycyclic aromatic hydrocarbons in China

    SciTech Connect

    Shanshan Xu; Wenxin Liu; Shu Tao

    2006-02-01

    Emission of 16 polycyclic aromatic hydrocarbons (PAHs) listed as U.S. Environmental Protection Agency (U.S. EPA) priority pollutants from major sources in China were compiled. Geographical distribution and temporal change of the PAH emission, as well as emission profiles, are discussed. It was estimated that the total PAH emission in China was 25,300 tons in 2003. The emission profile featured a relatively higher portion of high molecular weight (HMW) species with carcinogenic potential due to large contributions of domestic coal and coking industry. Among various sources, biomass burning, domestic coal combustion, and the coking industry contributed 60%, 20%, and 16% of the total emission, respectively. Total emission, emission density, emission intensity, and emission per capita showed geographical variations. In general, the southeastern provinces were characterized by higher emission density, while those in western and northern China featured higher emission intensity and population-normalized emission. Although energy consumption in China went up continuously during the past two decades, annual emission of PAHs fluctuated depending on the amount of domestic coal consumption, coke production, and the efficiency of energy utilization. 47 refs., 6 figs.

  17. Mechanism of aromatic hydrocarbon formation in FCC naphtha

    SciTech Connect

    Mota, C.J.A.; Rawet, R.

    1995-12-01

    A microactivity test study of the FCC naphtha composition at increasing conversions was carried out. At low conversions (ca. 10--20%), the naphtha is rich in olefinic and aromatic hydrocarbons. As the conversion increases, the composition changes dramatically. The olefins initially increase and then decrease sharply. The paraffins increase continually, and the aromatics initially decrease and then increase slightly. The naphthenics remain constant in the conversion range studied. These results indicate that, at low conversions, the aromatics in the gasoline are mainly formed by dealkylation of heavy aromatic molecules present in the feed. At higher conversions, however, the aromatics in the naphtha are mainly formed by cyclization followed by hydrogen transfer of the olefins formed during cracking. This reaction also increases the relative concentration of paraffinic hydrocarbons. The distribution of C9 aromatics showed that, as the conversion increases, there occurs an isomerization of the alkyl chain, to increase the branching of the ring.

  18. Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China.

    PubMed

    Zhang, Yanli; Li, Chunlei; Wang, Xinming; Guo, Hai; Feng, Yanli; Chen, Jianmin

    2012-01-01

    Air samples were collected simultaneously at platform, mezzanine and outdoor in five typical stations of subway system in Shanghai, China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3 +/- 2.1), (38.7 +/- 9.0), (19.4 +/- 10.1) and (30.0 +/- 11.1) microg/m3, respectively; while trichloroethylene (TrCE), tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB), vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 +/- 1.3), (1.3 +/- 0.5), (4.1 +/- 1.1), (2.2 +/- 1.1) and (1.2 +/- 0.3) microg/m3, respectively. Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1-9.5, whereas no significant indoor/outdoor differences were found except for benzene and TrCE. The highly significant mutual correlations (p < 0.01) for BTEX between indoor and outdoor and their significant correlation (p < 0.05) with methyl tert-butyl ether (MTBE), a marker of traffic-related emission without other indoor and outdoor sources, indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source. TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air, especially in the mezzanines. PMID:22783624

  19. Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons.

    PubMed

    Bultinck, Patrick

    2007-01-01

    A large number of local aromaticity indices for the benzenoid rings in polyaromatic hydrocarbons is computed. The results are interpreted, supporting Clar's hypothesis, and mutual correlations are investigated. It is shown that there are good correlations between all indices that strictly allow comparing benzenoid character. Poor correlations are found with NICS. A rationale is offered, yielding the conclusion that NICS and ring current maps follow a fundamentally different path to local aromaticity. In this sense the lack of correlation is not due to a real multidimensional character of aromaticity but rather to confusion and vagueness of the aromaticity concept. PMID:17328438

  20. In vitro toxicity of polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons to cetacean cells and tissues

    SciTech Connect

    Carvan, M.J. III.

    1993-01-01

    Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentation analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.

  1. AROMATIC AND POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN A LAMINAR PREMIXED N-BUTANE FLAME. (R825412)

    EPA Science Inventory

    Abstract

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...

  2. Polycyclic Aromatic Hydrocarbon Far-infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bauschlicher, C. W., Jr.; Ricca, A.; Mattioda, A. L.; Peeters, E.; Tielens, A. G. G. M.; Allamandola, L. J.

    2011-03-01

    The far-IR characteristics of astrophysically relevant polycyclic aromatic hydrocarbons (PAHs) averaging in size around 100 carbon atoms have been studied using the theoretical spectra in the NASA Ames PAH IR Spectroscopic Database. These spectra were calculated using density functional theory. Selections of PAH species are made, grouped together by common characteristics or trends, such as size, shape, charge, and composition, and their far-IR spectra compared. The out-of-plane modes involving the entire molecule are explored in detail, astronomical relevance is assessed, and an observing strategy is discussed. It is shown that PAHs produce richer far-IR spectra with increasing size. PAHs also produce richer far-IR spectra with increasing number of irregularities. However, series of irregular-shaped PAHs with the same compact core have common "Jumping-Jack" modes that "pile up" at specific frequencies in their average spectrum. For the PAHs studied here, around 100 carbon atoms in size, this band falls near 50 μm. PAH charge and nitrogen inclusion affect band intensities but have little effect on far-IR band positions. Detailed analysis of the two-dimensional, out-of-plane bending "drumhead" modes in the coronene and pyrene "families" and the one-dimensional, out-of-plane bending "bar" modes in the acene "family" show that these molecular vibrations can be treated as classical vibrating sheets and bars of graphene, respectively. The analysis also shows that the peak position of these modes is very sensitive to the area of the emitting PAH and does not depend on the particular geometry. Thus, these longest wavelength PAH bands could provide a unique handle on the size of the largest species in the interstellar PAH family. However, these bands are weak. Observing highly excited regions showing the mid-IR bands in which the emission from classical dust peaks at short wavelengths offers the best chance of detecting PAH emission in the far-IR. For these regions

  3. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons.

    PubMed

    Hayakawa, Kazuichi

    2016-01-01

    Airborne particulate matter (PM) has been collected at four cities in Japan starting in the late 1990s, at five or more major cities in China, Korea and Russia starting in 2001 and at the Noto Peninsula starting in 2004. Nine polycyclic aromatic hydrocarbons (PAHs) and eleven nitropolycyclic aromatic hydrocarbons (NPAHs) were determined by HPLC with fluorescence and chemiluminescence detections, respectively. Annual concentrations of PAHs and NPAHs were in the order, China>Russia≫Korea=Japan, with seasonal change (winter>summer). During the observation period, concentrations of PAHs and NPAHs in Japanese cities significantly decreased but the increases in the PAH concentration were observed in Chinese and Russian cities. Concentrations of PAHs and NPAHs were higher in the Northern China than those in the Southern China. At the Noto peninsula, which is in the main path of winter northwest winds and a year-round jet stream that blow from the Asian continent to Japan, the concentrations were high in winter and low in summer every year. A cluster analysis and back trajectory analysis indicated that PAHs and NPAHs were long-range transported from Northeastern China, where coal burning systems such as coal-heating boilers are considered to be the major contributors of PAHs and NPAHs. A dramatic change in atmospheric concentrations of PAHs and NPAHs in East Asia suggests the rapid and large change of PM2.5 pollution in East Asia. Considering the adverse health effects of PM2.5, continuous monitoring of atmospheric PAHs and NPAHs is necessary in this area. PMID:26833435

  4. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  5. Exposure to polycyclic aromatic hydrocarbons among Dutch children.

    PubMed Central

    van Wijnen, J H; Slob, R; Jongmans-Liedekerken, G; van de Weerdt, R H; Woudenberg, F

    1996-01-01

    We determined the urinary 1-hydroxypyrene (1-HP) concentration and the creatinine-adjusted 1-HP concentration in 644 randomly selected Dutch children, aged 1-6 years and living in five areas with roughly different levels of polycyclic aromatic hydrocarbons (PAHs) in soil and ambient air. The presence of other factors that might influence the exposure to PAHs was studied using a questionnaire. To evaluate the reliability of a single urinary 1-HP determination, measurements were repeated after 3 weeks for approximately 200 children. The mean urinary 1-HP content of the total study population was 2.06 nmol/l. This varied from 1.58 nmol/l in the reference area (Flevoland) to 2.71 nmol/l in the valley of the Geul. Only indoor sources of PAHs showed a small, positive association with urinary 1-HP. The urinary 1-HP concentrations of children from the valley of the Geul were higher (p < 0.01) and those of children from a suburb of Amsterdam were lower (p < 0.01) than those of children from the reference area. The possible ambient environment-related differences were probably too small to be detected in the variations of the intake of PAHs from the daily diet. The reliability of a single 1-HP measurement was low. Similar results were obtained with the creatinine-adjusted data. In one neighborhood built on coal-mine tailings, the urinary 1-HP content in children was weakly but positively associated with the PAH content in the upper soil layer of the garden of their homes. However, this association was not found for the children from the other neighborhood built on coal-mine tailings and with similar PAH levels in soil. PMID:8743441

  6. Tendencies of aromatization in steam cracking of hydrocarbons

    SciTech Connect

    Kopinke, F.D.; Zimmermann, G.; Ondruschka, B.

    1987-11-01

    The formation of aromatics from nonaromatics during steam cracking of naphtha is described quantitatively. To get realistic data, the tracer technique was used on the basis of about 40 /sup 14/C-labeled hydrocarbons as constituents of a naphtha fraction. These model compounds are representative of pyrolysis feedstocks, reaction intermediates, and reaction products. Characteristic aromatization yields are given for different types of C atoms and essential molecules.

  7. Determination of the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants.

    PubMed

    Uematsu, Yoko; Suzuki, Kumi; Ogimoto, Mami

    2016-03-01

    A method was developed to determine the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants; a survey was also conducted of commercial lubricants. Hydrocarbons in lubricants were separated from the matrix components of lubricants using a silica gel solid phase extraction (SPE) column. Normal-phase liquid chromatography (NPLC) coupled with an evaporative light-scattering detector (ELSD) was used to determine the aromatic hydrocarbon to total hydrocarbon ratio. Size exclusion chromatography (SEC) coupled with a diode array detector (DAD) and a refractive index detector (RID) was used to estimate carbon numbers and the presence of aromatic hydrocarbons, which supplemented the results obtained by NPLC/ELSD. Aromatic hydrocarbons were not detected in 12 lubricants specified for use for incidental food contact, but were detected in 13 out of 22 lubricants non-specified for incidental food contact at a ratio up to 18%. They were also detected in 10 out of 12 lubricants collected at food factories at a ratio up to 13%. The centre carbon numbers of hydrocarbons in commercial lubricants were estimated to be between C16 and C50. PMID:26730677

  8. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame

    SciTech Connect

    Castaldi, M.J.; Marinov, N.M.; Melius, C.F.

    1996-02-01

    Experimental and detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in a rich, sooting, ethylene-oxygen-argon premixed flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer (GC/MS) technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings. The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon growth involve the combination of resonantly stabilized radicals. In particular, propargyl and 1-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl radicals and fused rings that have a shared C{sub 5} side structure. Naphthalene production through the reaction step of cyclopentadienyl self-combination and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be important in the flame modeling study. The removal of phenyl by O{sub 2} leading to cyclopentadienyl formation is expected to play a pivotal role in the PAH or soot precursor growth process under fuel-rich oxidation conditions.

  9. AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...

  10. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    PubMed

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site. PMID:27245129

  11. METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...

  12. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    NASA Astrophysics Data System (ADS)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, A.; Hellén, H.; Laakso, L.; Hakola, H.

    2014-07-01

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were

  13. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... AGENCY Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was... of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures''...

  14. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  15. SCREENING POLYNUCLEAR AROMATIC POLLUTANTS IN AMBIENT AND INDOOR AIR BY SYNCHRONOUS LUMINESCENCE

    EPA Science Inventory

    Polynuclear aromatic (PNA) pollutants are of concern in indoor and outdoor air monitoring because many PNAs are carcinogenic in laboratory animal biotesting. For comprehensive exposure studies, which usually involve large population distributions and extended assessment periods (...

  16. Exciton properties of selected aromatic hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Mahns, Benjamin; Hampel, Silke; Nohr, Markus; Berger, Helmuth; Büchner, Bernd; Knupfer, Martin

    2013-02-01

    We have examined the singlet excitons in two representatives of acene-type (tetracene and pentacene) and phenacene-type (chrysene and picene) molecular crystals, respectively, using electron energy-loss spectroscopy at low temperatures. We show that the excitation spectra of the two hydrocarbon families significantly differ. Moreover, close inspection of the data indicates that there is an increasing importance of charge-transfer excitons at lowest excitation energy with increasing length of the molecules.

  17. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    NASA Astrophysics Data System (ADS)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, A.; Hellén, H.; Laakso, L.; Hakola, H.

    2014-02-01

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. Benzene levels did not exceed local air quality standards. Toluene was the most abundant species, with an annual median concentration of 0.63 ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  18. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    SciTech Connect

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  19. Phenalenyl-based open-shell polycyclic aromatic hydrocarbons.

    PubMed

    Kubo, Takashi

    2015-02-01

    The phenalenyl radical is a polycyclic aromatic hydrocarbon (PAH) radical. Owing to its widely distributed spin structure, phenalenyl is relatively stable compared to other hydrocarbon radicals and has been studied from the viewpoint of its application to electroconductive and magnetic materials. In addition, a strong intermolecular spin-spin coupling nature is another feature of phenalenyl. This account summarizes my studies so far into PAH radicals containing the phenalenyl scaffold in terms of their amphoteric redox properties and singlet biradical character, which strongly rely on the characteristic electronic structure, that is, non-bonding character and sixfold symmetry of a singly occupied molecular orbital of the phenalenyl radical. PMID:25345729

  20. Determination of nitrated polycyclic aromatic hydrocarbons in tree bark

    SciTech Connect

    Douce, D.S.; Clench, M.R.; Cooke, M.

    1995-12-31

    Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are released into the environment from a variety of sources, including the combustion of diesel, gasoline and other organic fuels. The most important source or nitro`PAHs, is believed to be the emissions from diesel fuelled vehicles. Monitoring of this class of compound is important due to their carcinogenicity and mutagenicity. Sturaro et al have shown that tree bark acts as a passive absorbent for polycyclic aromatic hydrocarbons (PAHs). They proposed that the use of a natural and passive sampler such as tree bark might lead to a less complex overall analytical strategy for environmental measurements. It was decided to modify the method proposed by Sturaro et al, in an attempt to monitor nitro-PAH levels absorbed into the tree bark from diesel emissions.

  1. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    SciTech Connect

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  2. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Lovley, D.R.

    1996-01-01

    [14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.

  3. Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications.

    PubMed

    d'Hendecourt, L; Ehrenfreund, P

    1997-01-01

    PAHs (polycyclic aromatic hydrocarbons) are probably present as a mixture of neutral and ionized species and are responsible for the set of infrared emission bands in the 2-15 microns regions, which are observed in many different objects like reflection and planetary nebulae and external galaxies. PAHs are suggested to be the most abundant free organic molecules and ubiquitous in space. PAHs might also exist in the solid phase, included in interstellar ices in dense clouds. A complex aromatic network is expected on interstellar grains in the diffuse interstellar medium. The existence of an aromatic kerogen-like structure in carbonaceous meteorites and its similarity with interstellar spectra suggests a link between interstellar matter and primitive Solar System bodies. PMID:11541329

  4. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    SciTech Connect

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare; Zonca, Alberto E-mail: silvia@oa-cagliari.inaf.it E-mail: azonca@oa-cagliari.inaf.it

    2013-07-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  5. Modeling Galactic Extinction with Dust and "Real" Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mulas, Giacomo; Zonca, Alberto; Casu, Silvia; Cecchi-Pestellini, Cesare

    2013-07-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually "bumpless" profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 × 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  6. Ambient air pollution by aromatic hydrocarbons in Algiers

    NASA Astrophysics Data System (ADS)

    Kerbachi, Rabah; Boughedaoui, Ménouèr; Bounoua, Lahouari; Keddam, Malika

    The analysis of the C 6-C 16 semi-volatile organic compounds reveals the presence of numerous aromatic hydrocarbons in the ambient air of Algiers. Three representative sites were chosen for sample collection at roadside, urban background and semi-rural areas. The following major monocyclic aromatic hydrocarbons were found: benzene, toluene, ethylbenzene, ( m, p)- and o-xylene, also referred to as BTEX. Near the road traffic, benzene and toluene mean concentrations were 27 and 39 μg m -3, respectively, with benzene concentration values higher than 40 μg m -3 often observed. At the urban site, the benzene concentration often exceeds the European regulatory limit of 10 μg m -3 while the compositional ratios of toluene to benzene and ( m- p) xylene to ethylbenzene are within the typical range of values observed in urban atmospheres worldwide. The seasonal variation indicates a decrease in concentration during summer of the reactive o-xylene compound. It is suggested that Algiers' source of high-level air pollution by aromatic hydrocarbons is related to car traffic emissions.

  7. Analogs of solid nanoparticles as precursors of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gadallah, K. A. K.; Mutschke, H.; Jäger, C.

    2013-06-01

    Context. Aromatic =CH and C=C vibrational bands have been observed within shocked interstellar regions, indicating the presence of aromatic emission carriers such as PAHs, which may have been created from adjacent molecular cloud material by interaction with a shock front. Aims: We investigate the evolution of the aromatic =CH and C=C vibrational modes at 3.3 and 6.2 μm wavelength in heated HAC materials, PAHs and mixed PAHs and HACs, respectively, aiming at an explanation of the evolution of carbonaceous dust grains in the shocked regions. Methods: Materials used in these analogs (HAC and PAH materials) were prepared by the laser ablation and the laser pyrolysis methods, respectively. The transmission electron microscopy (TEM) in high-resolution mode was used as an analytical technique to characterize the aromatic layers in HACs. Spectroscopic analysis was prformed in the mid-IR range. Results: A remarkable destruction of aliphatic structures in HACs has been observed with the thermal processing, while aromatic structures become dominating by increasing the diameters of the graphene layers. The aromatic bands at 3.3 and 6.2 μm, observed in the laboratory spectra of PAHs and of the combination of the PAHs and HAC materials, are also clearly observed in the spectrum of the heated HACs. These bands agree with those of aromatic bands observed in astronomical observations. Conclusions: Aromatization of HACs could be a pre-stage in the decomposition process of hydrocarbons that form PAH-clusters in such hot interstellar medium.

  8. INDOOR AIR ASSESSMENT - INDOOR CONCENTRATIONS OF ENVIRONMENTAL CARCINOGENS

    EPA Science Inventory

    In this report, indoor concentration data are presented for the following general categories of air pollutants: adon-222, environmental tobacco smoke (ETS), asbestos, gas phase organic compounds, formaldehyde, polycyclic aromatic hydrocarbons (PAN), pesticides, and inorganic comp...

  9. EVALUATION OF SAMPLING AND ANALYTICAL METHODOLOGY FOR POLYNUCLEAR AROMATIC COMPOUNDS IN INDOOR AIR

    EPA Science Inventory

    The objective of this project was to develop a generic sampling and analytical methodology to characterize the polynuclear aromatic hydrocarbon (PAH) concentrations in air within various microenvironments. The following three studies were performed: evaluation of analytical metho...

  10. Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: SOA Yield and Chemical Composition

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Qi, Li; Kacarab, Mary; Cocker, David

    2016-04-01

    Aromatic hydrocarbons account for 20%-30% of urban atmospheric VOCs and are major contributors to anthropogenic secondary organic aerosol (SOA). However, prediction of SOA from aromatic hydrocarbons as a function of structure, NOx concentration, and OH radical levels remains elusive. Innovative SOA yield and chemical composition evaluation approaches are developed here to investigate SOA formation from aromatic hydrocarbons. SOA yield is redefined in this work by adjusting the molecular weight of all aromatic precursors to the molecular weight of benzene (Yield'= Yieldi×(MWi/MWBenzene); i: aromatic hydrocarbon precursor). Further, SOA elemental ratio is calculated on an aromatic ring basis rather than the classic mole basis. Unified and unique characteristics in SOA formed from aromatic hydrocarbons with different alkyl groups (varying in carbon number and location on aromatic ring) are explored by revisiting fifteen years of UC Riverside/CE-CERT environmental chamber data on 129 experiments from 17 aromatic precursors at urban region relevant low NOx conditions (HC:NO 11.1-171 ppbC:ppb). Traditionally, SOA mass yield of benzene is much greater than that of other aromatic species. However, when adjusting for molecular weight, a similar yield is found across the 17 different aromatic precursors. More importantly, four oxygens per aromatic ring are observed in the resulting SOA regardless of the alkyl substitutes attached to the ring, which majorly affect H/C ratio in SOA. Therefore, resulting SOA bulk composition from aromatic hydrocarbons can be predicted as C6+nH6+2nO4 (n: alkyl substitute carbon number). Further, the dominating role of the aromatic ring carbons is confirmed by studying the chemical composition of SOA formed from the photooxidation of an aromatic hydrocarbon with a 13C isotopically labeled alkyl carbon. Overall, this study unveils the similarity in SOA formation from aromatic hydrocarbons enhancing the understanding of SOA formation from

  11. The high-temperature oxidation of aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Brezinsky, K.

    1986-01-01

    Chemical mechanisms of the atmospheric pressure, high-temperature (875-1500 K) gas-phase oxidation of benzene, toluene, ethylbenzene, and propylbenzene are described and discussed. Oxidation trends evident from turbulent flow reactor experiments serve as the basis for the mechanisms of the oxidation of benzene and alkylated aromatics. The potential effects of very high temperatures and pressures on the chemistry of oxidation of aromatics are described. The oxidation of benzene and phenyl radical has been found to proceed in a stepwise C6-C5-C4 sequence. Species profiles obtained from flow-reactor experiments suggest that the oxidation of benzene and phenyl radical follows the generalized route via phenoxy, cyclopentadienyl and butadienyl radical. The oxidation of the C4 species branches into multiple pathways that yield copious amounts of ethylene and acetylene. Certain major trends are evident: the alkylated aromatics on initial attack either form styrene, benzyl radical or benzene. The styrene reacts further to produce a benzyl radical or benzene. The oxidation of an alkylated aromatic hydrocarbon appears eventually to reduce to the oxidation of either phenyl radical or benzene.

  12. Are Aromatic Hydrocarbons Generated from the Atmospheric Oxidation of Biogenic Hydrocarbons?

    NASA Astrophysics Data System (ADS)

    Gratien, A.; Johnson, S. N.; Ezell, M. J.; Wingen, L. M.; Perraud, V. M.; Dawson, M.; Bennett, R.; Finlayson-Pitts, B. J.

    2010-12-01

    Biogenic volatile organic compounds (BVOCs) are estimated to account for approximately 90% of total hydrocarbon emissions. When released into the troposphere, these BVOC undergo chemical oxidation, e.g. by hydroxyl radicals (OH) and ozone (O3) during daytime, and by nitrate radicals (NO3) and ozone at night. Anthropogenic sources release into the troposphere a wide range of volatile organic compounds (VOC), also including aromatic hydrocarbons. Their major source is believed to be the combustion and the evaporation of the fuels. One question is while there are others sources of aromatics in air. For example, an aromatic hydrocarbon, p-cymene, was recently reported in air above a forest canopy that had significant emissions of terpenes (isoprene, α-pinene, β-pinene, limonene…), and its concentration increased as a function of altitude, suggesting its possible formation in the atmosphere. The goal of the present study was to determine whether p-cymene can be generated from reactions of biogenic hydrocarbons in air. The oxidations of isoprene, α-pinene, β-pinene and limonene by O3, NO3 and OH have been studied at 1 atm air under dry conditions, at high relative humidity (70% RH), or with deliquesced sodium bisulfate (acid source) on the walls of a Teflon reaction chamber. A search for the generation of aromatic hydrocarbons products was made using GC-MS and PTR-MS. p-cymene has been observed from the reactions of α-pinene and limonene. Possible mechanisms will be presented and the atmospheric implications discussed.

  13. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China.

    PubMed

    Fu, S; Li, K; Xia, X J; Xu, X B

    2009-02-01

    This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 microg g(-1). Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites. PMID:18773130

  14. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    PubMed Central

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  15. Effects of ozonation on mutagenic activity of polycyclic aromatic hydrocarbons

    SciTech Connect

    Fouillet, B.; Chambon, P.; Chambon, R. ); Castegnaro, M. ); Weill, N. )

    1991-07-01

    In this study, four polycyclic aromatic hydrocarbons were tested. Benzo(a)pyrene (B(a)P), Chrysene (CH), 7,12-dimethylbenzo(a)-anthracene (DMBA) and 3-methylcholanthrene (MCA) in hexane were treated with ozone to determine the effectiveness of degradation and to evaluate the genetic properties of ozone byproducts. Two types of ozonation were carried out: partial ozonation and total ozonation. The disappearance of parent compounds and the appearance of ozone byproducts were measured by high performance liquid chromatography (HPLC) coupled with spectrofluorimetry and U.V. spectrophotometry. Plate incorporation mutagenicity assay, using a Salmonella typhimurium strain, was used to test the ozone byproducts with and without metabolic activation.

  16. Capillary and microchip electrophoretic analysis of polycyclic aromatic hydrocarbons.

    PubMed

    Ferey, Ludivine; Delaunay, Nathalie

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants which can reach the environment and food in different ways. Because of their high toxicity, two international regulatory institutions, the US Environmental Protection Agency and the European Food Safety Authority, have classified PAHs as priority pollutants, generating an important demand for the detection and identification of PAHs. Thus, sensitive, fast, and cheap methods for the analysis of PAHs in environmental and food samples are urgently needed. Within this context, electrophoresis, in capillary or microchip format, displays attractive features. This review presents and critically discusses the published literature on the different approaches to capillary and microchip electrophoresis analysis of PAHs. PMID:25542576

  17. Supercritical water oxidation for destruction of polycyclic aromatic hydrocarbons

    SciTech Connect

    Kocher, B.S.; Fullerton, K.L.; Lee, S.

    1994-12-31

    Polycyclic aromatic hydrocarbons (PAHs) represent a large class of hydrocarbons that are considered hazardous to the environment. Large amount of PAHs have been dumped onto open ground in cases such as Town gas sites. These sites represent a major environmental liability due to the difficulty in removing them by conventional methods and the large amount of sites, more than 2,000. Supercritical water oxidation offers a unique method of both removing the contaminates and destroying them in a single stage processing step. The process utilizes the single phase mixture of water and oxygen at supercritical water conditions. This allows for the PAHs to be extracted and destroyed simultaneously. The reaction produces an effluent stream rich in carbon dioxide and water. Town gas soil containing 3.37 wt% contamination was ultra-cleaned in a 1-liter pilot plant to an environmentally acceptable level of less than 200 ppm.

  18. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  19. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries.

    PubMed Central

    Bauer, J E; Capone, D G

    1988-01-01

    Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both. PMID:3415231

  20. Polynuclear Aromatic Hydrocarbons in Port Valdez Shrimp and Sediment.

    PubMed

    Carls, Mark G; Holland, Larry; Pihl, Erik; Zaleski, Marilyn A; Moran, John; Rice, Stanley D

    2016-07-01

    Polynuclear aromatic hydrocarbons (PAHs) from oil were present in some shrimp from Port Valdez, site of a ballast water treatment facility at the Alyeska Alaska Marine Terminal (AMT). Low-level petrogenic PAH concentrations were generally restricted to shrimp eggs in the vicinity of the AMT and extended along the southern shore of Port Valdez to Anderson Bay. Eggs had greater lipid content than other tissues and thus were the most vulnerable biological compartment to hydrocarbon accumulation. Petrogenic hydrocarbons were not observed in shrimp muscle and cephalothoraxes; thus, these tissues do not pose a human health risk. Risk for children older than age 2 years and adults consuming eggs also was low except for two unusual samples (of 32), collected about 17 km west of the treatment facility. In general, PAH loads were consistent with local time series data in other species. We infer that the accumulation mechanism was dissolved uptake from water, consistent with passive sampler observations completed more than a decade earlier. Hydrocarbon levels in the majority of samples were below toxic thresholds. Total PAH accumulation was substantially greater in some pink shrimp than in other species, thus differences in habitat utilization (muddy vs. rocky substrate) are potentially important. PMID:27033098

  1. Polynuclear aromatic hydrocarbons in oyster tissue around three coastal marinas

    SciTech Connect

    Marcus, J.M.; Stokes, T.P.

    1985-12-01

    Marinas present the potential for introduction of various pollutants into the surrounding waters such as coliform bacteria, primary pathogens, heavy metals, and petroleum hydrocarbons. Little data have been presented specifically addressing the effects of recreational marinas on petroleum hydrocarbon levels or, for that matter, other constituent levels in oysters near those marinas. In order to obtain such data, a comprehensive assessment of water and oyster quality around three coastal marinas was conducted by the South Carolina Department of Health and Environmental control (SCDHEC) during 1983. Polynuclear aromatic hydrocarbons (PAH) were selected as the petroleum hydrocarbon fraction of interest since they are mainly of pyrogenic origin; have been shown to be the most toxic/carcinogenic fraction of oil; have been shown to affect the respiration and heart rates of mussels; and have been shown to be linked to neoplasia in clams and proliferative disorders in mussels. C. virginica was chosen as the mollusc of interest because of its widespread distribution in the estuaries of South Carolina, its importance as an economic and recreational resource, and its suitability as a sentinel organism for monitoring coastal pollution.

  2. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    NASA Astrophysics Data System (ADS)

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C6-C10 fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  3. Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components.

    PubMed

    Groen, Joost; Deamer, David W; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C(6)-C(10) fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane. PMID:22798228

  4. Relative rates of coke formation from hydrocarbons in steam cracking of naphtha: 3. Aromatic hydrocarbons

    SciTech Connect

    Kopinke, F. . Section of Remediation Research); Zimmermann, G. ); Reyniers, G.C.; Froment, G.F. )

    1993-11-01

    Relative rate constants of coke formation (k) from 18 aromatic hydrocarbons during steam cracking of naphtha at 810 C were determined by application of [sup 14]C-labeled compounds. Benzene is a poor coke precursor (k = 0.3), whereas polycyclic structures like acenaphthylene, anthracene, and chrysene have a high coking potential in the pyrolysis reactor (k = 4.5--6) as well as in the TLE section (k = 12--30). The relation between structure and coke formation rate of aromatic hydrocarbons can be interpreted on the basis of their reactivity in radical reactions. Constituents of the fuel fraction ([ge] C[sub 9]) derived from nonaromatic feed components are more efficient in the TLE fouling than those stemming from benzene derivatives.

  5. Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures

    SciTech Connect

    Swartz, R.C.

    1999-04-01

    Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in their original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.

  6. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Frenklach, Michael; Feigelson, Eric D.

    1989-06-01

    Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants.

  7. Exploratory study of particle-bound polycyclic aromatic hydrocarbons in different environments of Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, Erik; Siegmann, Philip; Siegmann, Hans C.

    2004-09-01

    Several studies regarding particulate matter in air pollution have been performed in Mexico City, but none have focused on environment exposure to particle-bound polycyclic aromatic hydrocarbons (PPAH), which are related to the occurrence of cardiopulmonary diseases and mortality. On this account, this study presents measurements of personal exposure to PPAH in different outdoor and indoor environments, as well as along roadways in Mexico City. The measurements were done with portable sensors based on photoelectric charging and diffusion charging to determine the PPAH concentrations and the joint active surface of all particles, respectively. The use of these two sensors in parallel is a useful tool to qualitatively identify the major sources and to describe the physical and chemical characteristics of the particles. The highest exposures were found in ambient air near traffic sources, mainly at sites with great influence of diesel vehicles, such as urban transfer bus stations. Roadway measurements showed that Mexican PPAH pollution levels are between those in large cities in Europe and USA. For indoor environments such as residences, shopping centers, restaurants and hospitality venues, it was found that secondhand smoke is the major contributor, however badly calibrated pilot stoves, inefficient ventilation and faulty air-conditioning systems can be additional sources of PPAH.

  8. Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes

    DOEpatents

    Reilly, Peter T. A.

    2004-10-19

    The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.

  9. CHEMICAL INDUCTION OF TUMORS IN OYSTERS BY A MIXTURE OF AROMATIC AND CHLORINATED HYDROCARBONS, AMINES, AND METALS

    EPA Science Inventory

    Tumors were induced in eastern oysters (Crassotrea virginica) by a mixture f aromatic hydrocarbons, an aromatic amine, polychlori-nated biphenyls, chlorinated hydrocarbons, a nitrosoamine and heavy metals. idney and nteric tumors developed in oysters following exposure to a mixtu...

  10. Aliphatic hydrocarbon and polycyclic aromatic hydrocarbon geochemistry of twelve major rivers in the Northwest Territories

    SciTech Connect

    Backus, S.; Swyripa, M.; Peddle, J.; Jeffries, D.S.

    1995-12-31

    Suspended sediment and water samples collected from twelve major rivers in the Northwest Territories were analyzed for aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) to assess the sources and transport of hydrocarbons entering the Arctic Ocean. Three stations on the Mackenzie River and one station near the mouth of eleven other northern rivers were selected for sampling. Samples were collected on the Mackenzie River on four occasions to characterize spring, summer and fall flow conditions and once on the remaining eleven rivers during high flow conditions. The Mackenzie River is distinctively different then the other eleven rivers. Naturally occurring hydrocarbons predominate in the river. These hydrocarbons include biogenic alkanes, diagenic PAHs, petrogenic alkanes, and PAHs from oil seeps and/or bitumens. Anthropogenic inputs of PAHs are low as indicated by low concentrations of combustion PAHs. Alkyl PAH distributions indicate that a significant component of the lower molecular weight PAH fraction is petrogenic. The majority of the high molecular weight PAHs, together with the petrogenic PAHs have a principal source in the Mackenzie River.

  11. Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons.

    PubMed

    Isola, Daniela; Selbmann, Laura; de Hoog, G Sybren; Fenice, Massimiliano; Onofri, Silvano; Prenafeta-Boldú, Francesc X; Zucconi, Laura

    2013-06-01

    Black fungi reported as degraders of volatile aromatic compounds were isolated from hydrocarbon-polluted sites and indoor environments. Several of the species encountered are known opportunistic pathogens or are closely related to pathogenic species causing severe mycoses, among which are neurological infections in immunocompetent individuals. Given the scale of the problem of environmental pollution and the phylogenetic relation of aromate-degrading black fungi with pathogenic siblings, it is of great interest to select strains able to mineralize these substrates efficiently without any risk for public health. Fifty-six black strains were obtained from human-made environments rich in hydrocarbons (gasoline car tanks, washing machine soap dispensers) after enrichment with some phenolic intermediates of toluene and styrene fungal metabolism. Based on ITS sequencing identification, the majority of the obtained isolates were members of the genus Exophiala. Exophiala xenobiotica was found to be the dominant black yeast present in the car gasoline tanks. A higher biodiversity, with three Exophiala species, was found in soap dispensers of washing machines. Strains obtained were screened using a 2,6-dichlorophenol-indophenol (DCPIP) assay, optimized for black fungi, to assess their potential ability to degrade toluene. Seven out of twenty strains tested were able to use toluene as carbon source. PMID:23475324

  12. Polycyclic aromatic hydrocarbons in the soils of Moscow

    NASA Astrophysics Data System (ADS)

    Belinskaya, E. A.; Zykova, G. V.; Semenov, S. Yu.; Finakov, G. G.

    2015-06-01

    The contents of polycyclic aromatic hydrocarbons (PAHs) in soil samples taken in the city of Moscow have been determined. A sixfold excess of the maximum permissible concentration (MPC) for benzo[ a]pyrene has been found in 66% of the studied samples; an excess of the European standard for benzo[ a]pyrene has been observed in 31% of the samples. The found weight fraction of benzo[ a]pyrene in soil samples varies in the range of 10-740 μg/kg. The content of the ecotoxicant in the soil increases from west to east. The total concentrations of 10 indicative PAH compounds in the soils of Moscow are usually lower than the European standard. An excess of the European standard by 2-6 times has been noted in the Southeastern, Eastern, and Central administrative districts of Moscow, with separate sites of high contamination up to 6118 μg/kg.

  13. INFRARED SPECTRA OF ISOLATED PROTONATED POLYCYCLIC AROMATIC HYDROCARBON MOLECULES

    SciTech Connect

    Knorke, Harald; Langer, Judith; Dopfer, Otto; Oomens, Jos

    2009-11-20

    Gas-phase infrared (IR) spectra of larger protonated polycyclic aromatic hydrocarbon molecules, H{sup +}PAH, have been recorded for the first time. The ions are generated by electrospray ionization and spectroscopically assayed by IR multiple-photon dissociation (IRMPD) spectroscopy in a Fourier transform ion cyclotron resonance mass spectrometer using a free electron laser. IRMPD spectra of protonated anthracene, tetracene, pentacene, and coronene are presented and compared to calculated IR spectra. Comparison of the laboratory IR spectra to an astronomical spectrum of the unidentified IR emission (UIR) bands obtained in a highly ionized region of the interstellar medium provides for the first time compelling spectroscopic support for the recent hypothesis that H{sup +}PAHs contribute as carriers of the UIR bands.

  14. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    SciTech Connect

    Furlong, E.T.; Cessar, L.R.; Hites, R.A. )

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in {sup 210}Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S, and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States, and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion production deposition.

  15. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    NASA Astrophysics Data System (ADS)

    Furlong, Edward T.; Cessar, Linda Roll; Hites, Ronald A.

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in 210Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion product deposition.

  16. Polycyclic aromatic hydrocarbon removal from water by natural fiber sorption.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Rotwiron, Paritta

    2007-08-01

    The use of two natural sorbents, kapok and cattail fibers, were investigated for polycyclic aromatic hydrocarbon (PAH) removal from water. Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and fluoranthene were the PAHs studied. For comparative purposes, a commercial polyester fiber sorbent was included in the investigation. The PAH sorption and retention capabilities of the three fibers were determined through batch and continuous-flow experiments under non-competitive and competitive conditions. In the batch experiments, cattail fiber was the most effective sorbent. Kapok fiber provided the lowest PAH retention, while cattail fiber had slightly less PAH retention than polyester fiber. When two PAHs were present in the same system, a competitive effect on the much less hydrophobic PAH was observed. Similar results were obtained in the column experiments, except that polyester fiber performed much poorer on naphthalene. Cattail fiber is a promising sorbent for treating PAH-contaminated water, such as urban runoff. PMID:17824537

  17. Determination of polycyclic aromatic hydrocarbons in roasted coffee.

    PubMed

    Jimenez, Angelica; Adisa, Afolabi; Woodham, Cara; Saleh, Mahmoud

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g(-1) for naphthalene, 0 to 512 ng g(-1) for acenaphthylene, 60 to 459 ng g(-1) for pyrene and 56 to 371 ng g(-1) for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557

  18. Distribution of polycyclic aromatic hydrocarbons (PAH's) in marsh sediments, Iraq

    SciTech Connect

    Al-Saad, H.T.; Al-Timari, A.A. )

    1989-12-01

    Recently there has been a growing concern in the release of harmful organics into the environment. Carcinogenic polycyclic aromatic hydrocarbons (PAH's) are a class of compounds of interset due to their possible harmful effects to man as well as organisms. Anthropogenic PAH's may reach aquatic environment as a result of both industrial and domestic effluents, deposition of airborne particles, surface runoff and oil spillage. Having a relatively low water solubility and high affinity to sorb to the suspended particulate matter, most of the PAH's introduced to the aquatic environment tend to accumulate in bottom sediments. Sedimentary PAH's may thus provide a record of the input and history of these pollutants. Consequently, the distribution of PAH's in aquatic sediments have received considerable attention. The purpose of the present work was to establish the distribution of PAH's in the sediments of the marsh region located in southern Iraq.

  19. Magnetic instability and pair binding in aromatic hydrocarbon superconductors.

    PubMed

    Huang, Zhongbing; Zhang, Chao; Lin, Hai-Qing

    2012-01-01

    Understanding magnetism and electron correlation in many unconventional superconductors is essential to explore mechanism of superconductivity. In this work, we perform a systematic numerical study of the magnetic and pair binding properties in recently discovered polycyclic aromatic hydrocarbon (PAH) superconductors including alkali-metal-doped picene, coronene, phenanthrene, and dibenzopentacene. The π-electrons on the carbon atoms of a single molecule are modelled by the one-orbital Hubbard model, and the energy difference [Formula: see text] between carbon atoms with and without hydrogen bonds is taking into account. We demonstrate that the spin polarized ground state is realized for charged molecules in the physical parameter regions, which provides a reasonable explanation of local spins observed in PAHs. In alkali-metal-doped dibenzopentacene, our results show that electron correlation may produce an effective attraction between electrons for the charged molecule with one or three added electrons. PMID:23213358

  20. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  1. Emission of polycyclic aromatic hydrocarbons in China by county.

    PubMed

    Zhang, Yanxu; Tao, Shu; Cao, Jun; Coveney, Raymond M

    2007-02-01

    Quantitative relationships among social, economic, and climate parameters, and energy consumption for Chinese provinces, provide data for regression models' estimated rates of energy consumption and emission of polycyclic aromatic hydrocarbons (PAHs) by county. A nonlinear model was used for domestic coal combustion with total population and annual mean temperature as independent variables. Linear regression models were utilized for all other types of fuel consumption. Monte Carlo simulation demonstrated that emission factors, rather than the regression modeling, constitute the main source of uncertainty in prediction. Models were validated using available energy data of several northern and southern counties of China from the literature. The total PAHs produced by each county is approximately equivalent to the sum of the total emission from energy, coke, and aluminum production. PMID:17328170

  2. Transport of Polycyclic Aromatic Hydrocarbons in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Chahal, Maninder; Flury, Markus

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex organic molecules containing 2 or more fused benzene rings. Being hydrophobic and non-polar, PAHs tend to partition to the organic matter in the soil from bulk aqueous phase. Though transport of these contaminants has been well studied in saturated environment, interactive mechanisms of these fluorescent compounds in unsaturated (identified by presence of air-water interface) porous media is still not well understood. We studied is the transport of fluoranthene in unsaturated porous media as facilitated by moving air-water interfaces. Confocal microscopy was used to visualize the interactions of fluoranthene particles in a glass channel packed with quartz glass beads. The packed glass channel was used to mimic a porous media and effects of an advancing and receding capillary fringe on the detachment of fluoranthene.

  3. Polycyclic aromatic hydrocarbons in sediments of China Sea.

    PubMed

    Li, Yanxia; Duan, Xiaoyong

    2015-10-01

    Increasing pollution pressures were placed in the coastal and estuarine ecosystems in China because of the elevated pollutants discharged from various sources. Polycyclic aromatic hydrocarbons (PAHs) in the environment were closely linked to human activities, which have been intensively studied for their geochemical interest as markers. In this review, the status of PAH contamination in China Sea was assessed by comprehensive reviews of the concentrations, sources, and fates of PAHs in sediments of China Sea. PAH concentrations in China Sea sediments decreased from north to south due to the higher emissions in North China. Atmosphere was probably the main carrier of PAHs in the north due to the higher contents of atmospheric fine particles and higher wind speeds. However, riverine inputs were probably the most important sources of PAHs in the coastal sediments of South China due to higher rainfall. PMID:26341340

  4. Polycyclic aromatic hydrocarbons in cereal products on the Turkish market.

    PubMed

    Kacmaz, Sibel

    2016-09-01

    The contamination level of four EU marker polycyclic aromatic hydrocarbons (PAHs) in some cereal-derived products was surveyed in this study. Thirty-eight samples, 20 bread and 18 breakfast cereals, were purchased from retail shops and local markets of East Black sea region in Turkey. The samples were analysed for four EU marker PAHs, using ultrasonic extraction, solid-phase extraction (SPE) clean up and stable-isotope dilution gas chromatography with mass-spectrometric (GC/MS) detection. The method was validated with the parameters linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ) and uncertainty. Total content of the four PAHs in bread varied from 0.19 to 0.46 µg kg(-1) and in breakfast cereals from 0.10 to 0.87 µg kg(-1). PMID:26986946

  5. [Polycyclic aromatic hydrocarbons (PAH) in cereal breakfast products].

    PubMed

    Ciemniak, Artur; Chrachol, Lucyna

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants formed by incomplete combustion (pyrolysis) of several organic materials. PAHs occur as complex mixtures, never as individual components. They are chemically stable and highly lipophilic in nature and occur as contaminants in different food categories: vegetables, fruit, cereals, oils and fats, especially barbecued and smoked food. The present study was carried out to determine 16 PAHs in cereal products: musli, corn, oats and barley flakes, and crunchy. The analytical procedure was based on alkaline digestion, extraction with n-hexane and cleaned up in a florisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The levels of PAHs in most samples were generally low and excepting one sample of bred varied between 4.2 to 169 microg/kg. Benzo[a]pyrene, was detected in all samples, at level 0.02 microg/kg to 16 microg/kg. PMID:19143427

  6. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  7. Carcinogenic classification of polycyclic aromatic hydrocarbons through theoretical descriptors

    NASA Astrophysics Data System (ADS)

    Troche, Karla S.; Braga, Scheila F.; Coluci, Vitor R.; Galvão, Douglas S.

    Polycyclic aromatic hydrocarbons (PAHs) constitute an important family of molecules capable of inducing chemical carcinogenesis. In this work we report a comparative structure-activity relationship (SAR) study for 81 PAHs using different methodologies. The recently developed electronic indices methodology (EIM) with quantum descriptors obtained from different semiempirical methods (AM1, PM3, and PM5) was contrasted against more standard pattern recognition methods (PRMs), principal component analysis (PCA), hierarchical cluster analysis (HCA), Kth nearest neighbor (KNN), soft independent modeling of class analogies (SIMCA), and neural networks (NN). Our results show that PRMs validate the statistical value of electronic parameters derived from EIM analysis and their ability to identify active compounds. EIM outperformed more standard SAR methodologies and does not appear to be significantly Hamiltonian-dependent.

  8. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    PubMed

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed. PMID:26776034

  9. Phototoxicity of polycyclic aromatic hydrocarbons at varying light intensities

    SciTech Connect

    Ankley, G.T.; Phipps, G.L.; Mattson, V.R.; Erickson, R.J.; Kosian, P.A.; Cox, J.S.; Sheedy, B.R.; Mount, D.R.

    1994-12-31

    Conceptual models suggest that the toxicity of photoactivated polycyclic aromatic hydrocarbons (PAHs) should be a function both of chemical (PAH) dose, and intensity of the ultraviolet (UV) light to which the organism is exposed (photon dose). However, there have been no systematic studies with aquatic organisms to quantify the relationship between PAH dose and UV intensity in producing phototoxicity. In these studies, oligochaetes (Lumbriculus variegatus) were exposed, via the water, to multiple concentrations of individual PAHs known to be photoactivated (fluoranthene, pyrene, anthracene), and then placed under UV light of three different intensities. The resultant phototoxicity clearly was a function both of PAH dose and light intensity. A joint toxicity model relating toxicity to PAH concentrations and light intensity will be presented.

  10. Study of ionic equilibria of indotricarbocyanines in aromatic hydrocarbons

    SciTech Connect

    Dyadyusha, G.G.; Ishchenko, A.A.; Derevyanko, N.A.; Tolmachev, A.I.

    1982-05-01

    Study of the equilibria in nonpolar solvents is very complicated by the poor solubility of the salt-like dyes. Indotricarbocyanines I and II were found to be fairly soluble in aromatic hydrocarbons for solving these problems by means of electronic spectra. In the present work, their absorption spectra were studied in benzene, toluene, and m-xylene (the absorption spectra were measured on the SF-8 spectrophotometer). It was shown that the dyes studied in these solvents have spectral bands of unusual form of polymethine dyes. At the long wave edge of the spectra of indotricarbocyanines, a distinct band appears, whose intensity is very dependent on the nature of the anion. In the case of perchlorate I, it has a lower intensity, and in the case of iodide II, the intensity is higher.

  11. Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.

  12. Simulated transport of polycyclic aromatic hydrocarbons in artificial streams

    SciTech Connect

    Bartell, S.M.; Landrum, P.F.; Giesy, J.P.; Leversee, G.J.

    1981-01-01

    A model was constructed to predict the pattern of flow and accumulation of three polycyclic aromatic hydrocarbons (PAH) (anthracene, naphthalene, and benzo(a)pyrene) in artificial streams located on the Savannah River Plant near Aiken, South Carolina. Predictions were based upon the premise that the fundamental chemistry of individual PAH contains useful information for predictive purposes. Model processes included volatilization, photolysis, sorption to sediments and particulates, and net accumulation by biota. Simulations of anthracene transport were compared to results of an experiment conducted in the streams. The model realistically predicted the concentration of dissolved anthracene through time and space. Photolytic degradation appeared to be a major pathway of anthracene flux from the streams.

  13. Polynuclear aromatic hydrocarbons (PAHs) in fish from the Arabian Gulf

    SciTech Connect

    DouAbdul, A.A.Z.; Abaychi, J.K.; Al-Edanee, T.E.; Ghani, A.A.; Al-Saad, H.T.

    1987-03-01

    Emphasis has been placed upon the identification and qualification of compounds with potential adverse health effects on humans. Prominent among this group are polynuclear aromatic hydrocarbons (PAHs), several of which are known or suspected carcinogens. PAHs enter the marine environment from a variety of sources including petroleum pollution, industrial and domestic effluents, atmospheric particles, and biosynthesis by plants and microorganisms. Although one-third of the world's oil is produced around the Arabian Gulf, no detailed analysis have been conducted to determine PAHs in this region. Nevertheless, numerous investigations have shown the ability of marine organisms including fish to accumulation PAHs from solution or dispersion in seawater. When fish are harvested, a human health hazard may result. In the present communication, high performance liquid chromatography (HPLC) was used to identify and measure sixteen PAHs priority pollutants issued by US Environmental Protection Agency (EPA) in fourteen species of commercially significant fish from the NW Arabian Gulf.

  14. In situ groundwater aeration of polycyclic aromatic hydrocarbons

    SciTech Connect

    Symons, B.D.; Linkenheil, R.; Pritchard, D.; Shanke, C.A.; Seep, D.

    1995-12-31

    At a former wood treating site in Minnesota, the feasibility of in situ groundwater aeration was investigated in a laboratory treatability setting, to evaluate biodegradability and optimal operation conditions of the site aquifer. After concluding that an aeration system would increase the dissolved oxygen concentrations in the groundwater enough to sustain microbial life, a field demonstration system was designed and installed. The system was operated for 1 year, during which groundwater quality at upgradient and downgradient wells was monitored to evaluate the system`s effectiveness. The groundwater aeration system successfully reduced groundwater polycyclic aromatic hydrocarbon (PAH) concentrations, especially naphthalene. Naphthalene concentrations were reduced from 1,319 {micro}g/L to below the laboratory detection limit of 0.5 {micro}g/L. Cumulative concentrations of other PAH compounds were reduced from 98 {micro}g/L to 23 {micro}g/L during the 1-year test.

  15. Determination of polycyclic aromatic hydrocarbons in roasted coffee

    PubMed Central

    JIMENEZ, ANGELICA; ADISA, AFOLABI; WOODHAM, CARA; SALEH, MAHMOUD

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g−1 for naphthalene, 0 to 512 ng g−1 for acenaphthylene, 60 to 459 ng g−1 for pyrene and 56 to 371 ng g−1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557

  16. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    SciTech Connect

    Thonhauser, Timo; Ceresoli, Davide; Marzari, Nicola N.

    2009-09-03

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13C shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  17. Emission of polycyclic aromatic hydrocarbons in China by county

    SciTech Connect

    Yanxu Zhang; Shu Tao; Jun Cao; Raymond M. Coveney III

    2007-02-15

    Quantitative relationships among social, economic, and climate parameters, and energy consumption for Chinese provinces, provide data for regression models' estimated rates of energy consumption and emission of polycyclic aromatic hydrocarbons (PAHs) by county. A nonlinear model was used for domestic coal combustion with total population and annual mean temperature as independent variables. Linear regression models were utilized for all other types of fuel consumption. Monte Carlo simulation demonstrated that emission factors, rather than the regression modeling, constitute the main source of uncertainty in prediction. Models were validated using available energy data of several northern and southern counties of China from the literature. The total PAHs produced by each county is approximately equivalent to the sum of the total emission from energy, coke, and aluminum production. 25 refs., 8 figs.

  18. A Shape-Persistent Cryptand for Capturing Polycyclic Aromatic Hydrocarbons.

    PubMed

    Zhang, Rui-Feng; Hu, Wen-Jing; Liu, Yahu A; Zhao, Xiao-Li; Li, Jiu-Sheng; Jiang, Biao; Wen, Ke

    2016-07-01

    A shape-persistent cryptand 1, containing two face-to-face oriented electron-deficient 2,4,6-triphenyl-1,3,5-triazine units separated by approximately 7 Å, and bridged by two rigid 1,8-naphthyridine linkers and a pentaethylene oxide loop, is created for capturing polycyclic aromatic hydrocarbons. Cryptand 1 formed 1:1 complexes with PAH guest molecules, such as phenanthrene (6), anthracene (7), pyrene (8), triphenylene (9), and tetraphene (10). The single-crystal structure of complex 6⊂1 revealed that 6 was included in the cavity of 1 via face-to-face π···π stacking interactions. Soaking crystalline 1 in a toluene solution of anthracene resulted in anthracene from the toluene solution being picked up by the crystalline solid of 1. PMID:27258531

  19. Polycyclic aromatic hydrocarbons in lake sediments from the High Tatras.

    PubMed

    van Drooge, Barend L; López, Jordi; Fernández, Pilar; Grimalt, Joan O; Stuchlík, Evzen

    2011-05-01

    European alpine lake systems are used as indicators of air quality over the continent. Preliminary data showed high polycyclic aromatic hydrocarbons (PAH) loads in the High Tatras (Eastern Europe) in comparison to other mountain regions. Here, insight on the spatial distribution of PAH is provided from analysis of top-core sediments of 27 alpine lakes distributed along the High Tatras. Top-core sediment concentrations were higher than those in deep-cores, and they were higher than those observed in other European high mountain regions. The PAH profiles were uniform and comparable to those observed in aerosols and snow, indicating that atmospheric deposition was the predominant PAH input pathway to the lakes. Good agreement between estimated atmospheric deposition and sedimentation fluxes was observed. However, in several lakes in the western range higher sediment fluxes may correspond to higher PAH depositions levels. The higher concentrations may also reflect inputs from potential emission source areas. PMID:21353356

  20. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  1. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  2. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  3. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    PubMed

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (<100 nm), which are referred to as nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC. PMID:26588181

  4. Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons

    SciTech Connect

    Bouchez, M.; Besnaienou, B.; Blanchet, D.; Vandecasteele, J.P.

    1995-12-31

    Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weight or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.

  5. Autothermal reforming of aliphatic and aromatic hydrocarbon liquids

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, M.; Voecks, G. E.

    1983-01-01

    Results are presented from a study of the autothermal reforming of paraffins and aromatics over nickel catalysts. The trials were performed to examine the carbon products that appear when steam is passed over hydrocarbon liquids to form H2-rich gases, i.e., the autothermal process (ATR). Attention was given to n-hexane, n-tetradecane, benzene, and benzene solutions of naphthalene with reactant preheat to 1000-1150 F. The carbon-formation limit was sought as a function of the steam-to-carbon and oxygen to carbon molar ratios at constant pressure and the preheat temperatures. The catalyst bed was examined after each trial to identify the locations and types of carbon formed using SEM, thermal gravimetric analysis, and X ray diffraction techniques. The hydrocarbon fuels each had a separate temperature and reaction profile, as well as carbon formation characteristics. No carbon formation was observed in the upper layer of the reactor bed, while both gas phase and surface-grown deposits were present in the lower part. The results are concluded of use in the study of No. 2 fuel oil for ATR feedstock.

  6. Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil

    SciTech Connect

    Wang, Xiaoping; Yu, Xiaobing; Bartha, R. )

    1990-07-01

    Soil contamination (60 mg/g of soil) by a diesel oil (DO) spill was simulated in outdoor lysimeter units and the effect of bioremediation treatment consisting of liming, fertilization, and tilling on the persistence of polycyclic aromatic hydrocarbon (PAH) components of DO was measured. After solvent extraction from soil and class separation on silica gel, PAH components were identified and partially quantified by GC-ITD analysis. Residual mutagenicity and acute toxicity of the contaminated soil was also assessed by Ames and Microtox tests. Bioremediation treatment, while increasing the rate of total hydrocarbon degradation, had an even greater effect on PAH persistence, almost completely eliminating these compounds in 12 weeks. Without bioremediation, 12.5-32.5% of the higher molecular weight PAH were still present at 12 weeks. Mutagenicity and toxicity tests corroborated the above results. After substantial initial mutagenicity and toxicity, the contaminated soil approached the background level of uncontaminated soil after 12 weeks of bioremediation. Detoxification was complete in 20 weeks.

  7. Reduction of Aromatic Hydrocarbons by Zero-Valent Iron and Palladium Catalyst

    SciTech Connect

    Kim, Young-Hun; Shin, Won Sik; Ko, Seok-Oh; Kim, Myung-Chul

    2004-03-31

    Permeable reactive barrier (PRB) is an alternative technology for soil and groundwater remediation. Zero valent iron, which is the most popular PRB material, is only applicable to halogenated aliphatic organics and some heavy metals. The objective of this study was to investigate reductive dechlorination of halogenated compounds and reduction of non-halogenated aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for PRBs. A group of small aromatic hydrocarbons such as monochlorophenols, phenol and benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. The current study demonstrates reduction of aromatic compounds by ZVMs and modified catalysts and implicates that PRB is applicable not only for halogenated organic compounds but nonhalogenated aromatic compounds such as PAHs.

  8. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter.

    PubMed

    Sagan, C; Khare, B N; Thompson, W R; McDonald, G D; Wing, M R; Bada, J L; Vo-Dinh, T; Arakawa, E T

    1993-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites are identified, with net abundance approximately 10(-4) g g-1 (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins. Solid state 13C NMR spectroscopy suggests approximately equal to 25% of the total C in both tholins is tied up in aromatic and/or aliphatic alkenes. IR spectra indicate an upper limit in both tholins of approximately equal to 6% by mass in benzenes, heterocyclics, and PAHs with more than four rings. Condensed PAHs may contribute at most approximately 10% to the observed detached limb haze layers on Titan. As with interstellar PAHs, the synthesis route of planetary PAHs is likely to be via acetylene addition reactions. PMID:11539501

  9. Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles

    NASA Astrophysics Data System (ADS)

    de Abrantes, Rui; Vicente de Assunção, João; Pesquero, Célia Regina; Bruns, Roy Edward; Nóbrega, Raimundo Paiva

    The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 μg km -1 to 612 μg km -1 in the gasohol vehicle, and from 11.7 μg km -1 to 27.4 μg km -1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo( a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km -1 to 4.61 μg TEQ km -1 for the gasohol vehicle and from 0.0117 μg TEQ km -1 to 0.0218 μg TEQ km -1 in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed

  10. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer

    PubMed Central

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J.

    2015-01-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds. PMID:25911656

  11. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  12. The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered

  13. METHODOLOGY FOR DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND OTHER SEMIVOLATILE ORGANIC COMPOUNDS IN HOUSE DUST

    EPA Science Inventory

    Analytical methods were validated to determine polycyclic aromatic hydrocarbons (PAH) and other semivolatile organic compounds in house dust. e also examined the storage stability of three potential markers (solanesol, nicotine, and continine) for particulate-phase environmental ...

  14. DIGESTIVE BIOAVAILABILITY TO A DEPOSIT FEDDER (ARENICOLA MARINA) OF POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH ANTHRPOGENIC PARTICLES

    EPA Science Inventory

    Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic hydrocarbons (PAHs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we determined the digestive bioavailability ...

  15. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  16. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  17. EPA (ENVIONMENTAL PROTECTION AGENCY) METHOD STUDY 20, METHOD 610--PNA'S (POLYNUCLEAR AROMATIC HYDROCARBONS)

    EPA Science Inventory

    Sixteen laboratories participated in an interlaboratory study conducted to provide precision and accuracy statements for the proposed EPA Method 610 for 16 selected polynuclear aromatic hydrocarbons(PNA's) which may be present in municipal and industrial aqueous discharges. Metho...

  18. QSARS FOR PREDICTING REDUCTIVE TRANSFORMATION RATE CONSTANTS OF HALOGENATED AROMATIC HYDROCARBONS IN ANOXIC SEDIMENT SYSTEMS

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are developed relating initial and final pseudo-first-order disappearance rate constants of 45 halogenated aromatic hydrocarbons in anoxic sediments to four readily available molecular descriptors: the carbon-halogen bond stre...

  19. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  20. Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001.

    PubMed

    Clemett, S J; Dulay, M T; Gillette, J S; Chillier, X D; Mahajan, T B; Zare, R N

    1998-01-01

    Possible sources of terrestrial contamination are considered for the observation of polycyclic aromatic hydrocarbons (PAHs) in the Martian meteorite ALH84001. Contamination is concluded to be negligible. PMID:9809015

  1. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil

    EPA Science Inventory

    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...

  2. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  3. COMPUTATIONAL METHODS FOR STUDYING THE INTERACTION BETWEEN POLYCYCLIC AROMATIC HYDROCARBONS AND BIOLOGICAL MACROMOLECULES

    EPA Science Inventory

    Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .

    The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...

  4. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    SciTech Connect

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  5. ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS

    EPA Science Inventory

    Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...

  6. Polycyclic aromatic hydrocarbons: primitive pigment systems in the prebiotic environment.

    PubMed

    Deamer, D W

    1992-01-01

    Polycyclic aromatic hydrocarbons (PAH) in the form of polymerized derivatives represent over 90% of the organic material of carbonaceous chondrites. It now appears likely that there was substantial survival of the organic content of meteoritic and cometary infall during late accretion, so that PAH would presumably be major components of the organic inventory present on the prebiotic Earth. An important question relative to chemical evolution and energy transduction is the nature of pigments which could be available to make light energy available to the earliest cellular forms of life. PAH and their derivatives all absorb light in the near UV and blue wavelengths, and are candidates for primitive pigments. We have explored this possibility in a model system consisting of mixtures of pyrene, fluoranthene and pyrene derivatives with hexadecane, dispersed in dilute salt solutions. Upon illumination, photochemical oxidation of the hexadecane occurs, with long-chain amphiphiles such as 2-hexadecanone and 2-hexadecanol as products. Because the reaction proceeds under strictly anaerobic conditions, the source of oxygen is apparently water. We also observed acid pH shifts during illumination. Photochemical production of hydrogen ion is significant, in that chemiosmotic proton gradients across membranes are used by all contemporary cells as a source of energy for ATP synthesis and nutrient transport. To test whether the protons could be used to transduce light energy into a useful form, PAH derivatives were included in lipid bilayer membranes (liposomes). Upon illumination, protons (or acidic products) were produced and accumulated inside the vesicles, so that substantial pH gradients were established across the membranes, acid inside. We conclude that PAH dissolved in aliphatic hydrocarbons absorb light energy and use it to oxidize the hydrocarbon to long-chain amphiphilic molecules. The oxidation is accompanied by release of protons. If PAH derivatives are included in the

  7. Polycyclic aromatic hydrocarbons from wood pyrolyis in charcoal production furnaces.

    PubMed

    Barbosa, Joyce Mara dos Santos; Ré-Poppi, Nilva; Santiago-Silva, Mary

    2006-07-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in smoke samples from wood carbonization during charcoal production, in both particulate matter (PM) and gaseous phases. Samples were acquired using a medium-volume air sampler at 1.5 m distance from the furnace. Particle-bound PAH were collected on Fluoropore polytetrafluoroethylene filters and gas-phase PAH were collected into sorbent tubes with XAD-2 resin. PAH were extracted with dichloromethane-methanol and analyzed using gas chromatography-mass spectrometry. The results showed total emission from the furnace of 26 microg/m3 for the 16 PAH and 2.8 microg/m3 for the 10 genotoxic PAH (from fluoranthene to benzo[g,h,i]perylene). High emission of 16 PAH in the first 8 h of wood carbonization was detected (64 microg/m3; 56% of the total emission). Associated with PM, 11% of the total emission of 16 PAH (in both phases) and 60% of 10 genotoxic PAH were found. Relative ratios (for example, [Phe]/[Phe]+[Ant]) for the PAH of the same molecular weight were obtained and compared with the published data. The concentrations of benzo[a]pyrene equivalent (BaP(eq)) were estimated using the list of toxic equivalent factors suggested by . The values of 0.30 and 0.06 mg/m3 were obtained for the total concentrations of BaP(eq) in PM and gaseous phase, respectively. PMID:16499903

  8. Coarse-graining the structure of polycyclic aromatic hydrocarbons clusters.

    PubMed

    Hernández-Rojas, J; Calvo, F; Wales, D J

    2016-05-18

    Clusters of polycyclic aromatic hydrocarbons (PAHs) are essential components of soot and may concentrate a significant fraction of carbon matter in the interstellar medium. In this contribution, coarse-grained potentials are parameterized using all-atom reference data to model PAH molecules, such as coronene (C24H12) or circumcoronene (C54H18), and their aggregates. Low-energy structures of pure coronene or circumcoronene clusters obtained using basin-hopping global optimization are found to agree with atomistic results, and consist of finite 1D columnar motifs, sometimes juxtaposed in larger clusters. The structures are only weakly perturbed when quadrupolar interactions are included. π-Stacking also dominates in binary coronene/circumcoronene aggregates, although intriguing motifs are predicted in which one or more molecules are sandwiched between the other PAH species. The coarse-grained model is also extended to account for interaction with a flat graphitic substrate. In this case, binding is stronger with the substrate than with other molecules, and the PAHs are predicted to arrange into a flat triangular monolayer. PMID:27055581

  9. Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed

    NASA Astrophysics Data System (ADS)

    Lee, Jong Hoon; Gigliotti, Cari L.; Offenberg, John H.; Eisenreich, Steven J.; Turpin, Barbara J.

    2004-11-01

    Sources of polycyclic aromatic hydrocarbons (PAHs) to the Hudson River Estuary Airshed were investigated using positive matrix factorization (PMF). A three-city dataset was used to obtain common factor profiles. The contributions of each factor on each sampling day and site were then determined, and a sensitivity analysis was conducted. A stable eight-factor solution was identified. PMF was able to identify a factor associated with air-surface exchange. This factor contains low-molecular weight PAHs and was a dominant contributor to the measured PAHs concentrations. Factors linked to motor vehicle use (diesel and gasoline vehicle emissions and evaporative/uncombusted petroleum) and natural gas combustion were also major contributors. Motor vehicle combustion and oil combustion factors were the predominant contributors to particle-phase PAHs, while natural gas combustion, air-surface exchange, and evaporative/uncombusted petroleum factors made substantial contributions to gas-phase PAH concentrations. In contrast to fine particulate matter (PM2.5), which is dominated by regional transport, spatial variations in PAH concentrations suggest that PAH concentrations in the Hudson River Estuary Airshed are dominated by sources within the New York-New Jersey urban-industrial complex.

  10. Oxidation of polynuclear aromatic hydrocarbons in water. 1: Ozonation

    SciTech Connect

    Beltran, F.J.; Encinar, J.M.; Rivas, J.; Ovejero, G.

    1995-05-01

    The oxidation of three polynuclear aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and acenaphthene, in aqueous solution with ozone has been studied. The influence of hydroxyl radical inhibitors, pH, ozone partial pressure, and temperature was investigated. All the PAHs studied show high oxidation rates with ozone. The ozonation of fluorene seems to be due to both direct and hydroxyl radical reactions while for the rest of the PAHs the ozonation develops only through direct reactions with ozone. Rate constants for the direct reaction between these PAHs and ozone have also been calculated. The reactivity with ozone goes in the following order: fluorene < phenanthrene < acenaphthene. The contribution of radical reactions represents more than 90% in the ozonation of fluorene in most cases except in the presence of hydroxyl radical inhibitors. In a standard agitated reactor the kinetic regime of the absorption of ozone corresponds to a slow reaction in the case of fluorene and phenanthrene and to a fast reaction in the case of acenaphthene.

  11. Magnetic Beads-based Bioelectrochemical Immunoassay of Polycyclic Aromatic Hydrocarbons

    SciTech Connect

    Lin, Ying-Ying; Liu, Guodong; Wai, Chien M.; Lin, Yuehe

    2007-07-01

    A simple, rapid, and sensitive bioelectrochemical immunoassay method based on magnetic beads (MBs) has been developed to detect polycyclic aromatic hydrocarbons (PAHs). The principle of this bioassay is based on a direct competitive enzyme-linked immunosorbent assay using PAH-antibody-coated MBs and horseradish peroxidase (HRP)-labeled PAH (HRP-PAH). A magnetic process platform was used to mix and shake the samples during the immunoreactions and to separate free and unbound reagents after the liquid-phase competitive immunoreaction among PAH-antibody-coated MBs, PAH analyte, and HRP-PAH. After a complete immunoassay, the HRP tracers attached to MBs were transferred to a substrate solution containing 3, 3´, 5, 5´- tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) for electrochemical detection. The voltammetric characteristics of the substrate were investigated, and the reduction peak current of TMB was used to quantify the concentration of PAH. The different parameters, including the amount of HRP-PAH conjugates, the enzyme catalytic reaction time, and the pH of the supporting electrolyte that governs the analytical performance of the immunoassay have been studied in detail and optimized. The detection limit of 50 pg mL-1 was obtained under optimum experimental conditions. The performance of this bioelectrochemical magnetic immunoassay was successfully evaluated with tap water spiked with PAHs, indicating that this convenient and sensitive technique offers great promise for decentralized environmental applications.

  12. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil

    SciTech Connect

    Schwab, A.P.; Banks, M.K.; Arunachalam, M.

    1995-12-31

    Increased contaminant biodegradation in soil in the presence of plants has been demonstrated for several classes of organic compounds. Although enhanced dissipation of polycyclic aromatic hydrocarbons (PAHs) was observed previously in the rhizosphere of several plant species, the mechanism of this effect has not been assessed. A laboratory experiment was conducted to test the importance of cometabolism and the presence of common rhizosphere organic acids on the loss of PAHs (pyrene and phenanthrene) from soil. The role of cometabolism in the mineralization of pyrene was tested by observing the impact of adding phenanthrene to soil containing {sup 14}C-pyrene and observing the effects on {sup 14}CO{sub 2} generation. Adding phenanthrene apparently induced cometabolism of pyrene, particularly in the presence of organic acids. In a subsequent experiment, mineralization of pyrene to {sup 14}CO{sub 2} was significantly greater in soil from the rhizospheres of warm-season grasses, sorghum (Sorghum bicolor L.) and bermuda grass (Cynodon dactylon L.), compared to soil from alfalfa (Medicago sativa L.), which did not differ from sterilized control soil. A highly branched, fine root system appears to be more effective in enhancing biodegradation than taproots, and the presence of organic acids increases rates of PAH mineralization.

  13. Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Houston, Douglas; Wu, Jun; Yang, Dongwoo; Jaimes, Guillermo

    2013-06-01

    This study is one of the first case studies to characterize the exposure of urban residents to traffic-related air pollution across locations and transportation microenvironments during everyday activities. Twenty-four adult residents of Boyle Heights, a neighborhood near downtown Los Angeles, carried a portable air pollution monitor and a Global Positioning Systems (GPS) tracking device for a total of 96 days. We found significant spatial and temporal variation in the particle-bound polycyclic aromatic hydrocarbon (pPAH) concentrations in transportation microenvironments. Average pPAH concentrations were higher while walking outdoors (190 ng m-3) compared to traveling in private passenger vehicles (138-155 ng m-3) or traveling in public transportation (61-124 ng m-3). Although travel comprised 5% of participant days, it was associated with 27% of overall daily pPAH exposure. Regression models explained 40-55% of the variation in daily average pPAH concentrations, and 40-44% of the variation in 1-min interval concentrations. Important factors included time spent traveling, travel speed, meteorological and nearby land use factors, time of day, and proximity to roadways. Although future research is needed to develop stronger predictive models, our study demonstrates portable tracking devices can provide a more complete, diurnal characterization of air pollution exposures for urban populations.

  14. Polycyclic aromatic hydrocarbons and pesticides in milk powder.

    PubMed

    Dobrinas, Simona; Soceanu, Alina; Popescu, Viorica; Coatu, Valentina

    2016-05-01

    This Research Communication reports analysis of 37 compounds comprising polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphate pesticides (OCPS and OPPS) in milk powder (one brand each of commercial infant formulae, follow-on formulae and baby formulae purchased from a local supermarket in Romania). The selected analytes were investigated using gas chromatography-mass spectrometry (GC-MS), gas chromatography with electron capture detector (GC-ECD) and gas chromatography with thermionic sensitive detection (GC-TSD). The estimated limits of detection for most target analytes were in the μg/kg level (range 0·001-0·320 µg/kg). The purpose of the study was to determine the selected analytes, to assess the exposure of babies and infants and to produce data for comparison with tolerable limits according to the European Union Regulations. In most of the samples the organochlorine pesticides values were under the limit of detection. Exceptions were heptachlor epoxide and endosulfan sulphate, the last of which was found in all analysed samples at low concentrations. We also found detectable levels of ethoprophos, parathion-methyl, chlorpyrifos, prothiofos, guthion, disulfoton and fenchlorphos in most of the analysed samples. Benzo[a]pyrene, which is used as an indicator for the presence of PAHs, was not detected in selected samples. The low level of exposure to contaminants indicates that there are no health risks for the infants and babies that consume this brand of milk powder formulae. PMID:27210498

  15. Association of polycyclic aromatic hydrocarbons in housewives' hair with hypertension.

    PubMed

    Wang, Bin; Li, Zhiwen; Ma, Yiqiu; Qiu, Xinghua; Ren, Aiguo

    2016-06-01

    The relationship between polycyclic aromatic hydrocarbons (PAHs) and hypertension remains a subject of debate. The aims of this study were to determine an association of concentrations of PAHs in housewives' hair with hypertension risk and the modification effect of single nucleotide polymorphisms (SNPs) related to Phase I metabolism of PAHs. We recruited 405 women for a cross-sectional study in Shanxi Province, China, including 170 with hypertension (the case group) and 235 without hypertension (the control group). We analyzed 26 individual PAHs in hair samples and the SNPs of the genes including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2, CYP1B1 and CYP2E1. Our results showed that seven PAHs in hair samples were measured with detection rate >70%. Only acenaphthylene was found to be associated with an increased risk of hypertension with adjustment for the potential confounders following Bonferroni correction, whereas others not. No SNPs of the concerned genes were found to be associated with the risk of hypertension. A multiple interaction effect of PAHs in housewives' hair and SNPs on hypertension risk was not observed. It was concluded that PAHs tended to contribute to the formation of hypertension. PMID:27023119

  16. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-01

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. PMID:26117194

  17. Aqueous leaching of polycyclic aromatic hydrocarbons from bitumen and asphalt.

    PubMed

    Brandt, H C; de Groot, P C

    2001-12-01

    The application of bitumen in, e.g. asphalt roads, roofs and hydraulic applications will lead to the leaching of compounds from the bitumen/asphalt into the environment. Because polycyclic aromatic hydrocarbons (PAHs) are present in bitumen, static and dynamic leach tests have been performed to study the leaching behaviour of this class of compounds. Nine petroleum bitumens covering a representative range of commercially available products and one asphalt made from one of the bitumens have been tested in a static leach test. The asphalt has been also subjected to a dynamic leach test. The main conclusions are that a 30h dynamic leach test is sufficient to determine the equilibrium concentration that will be reached after bitumen or asphalt has been in contact with the water for more than 3-6 days. As an alternative to performing a leach test, this concentration can be calculated from the PAH concentrations in the bitumen, and their distribution coefficients, as calculated here, or from their aqueous solubilities. The equilibrium PAH concentrations in the leach water from bitumens stay well below the surface water limits that exist in several EEC-countries and are also more than an order of magnitude lower than the current EEC limits for potable water. PMID:11791850

  18. Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment.

    PubMed

    Wang, Zhen; Chen, Jingwen; Yang, Ping; Qiao, Xianliang; Tian, Fulin

    2007-02-01

    Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils collected from Dalian, China, for examination of distributions and composition profiles and their potential toxicity. The sum of 15 PAHs (SigmaPAHs) ranged from 190 to 8595 ng g(-1) dry weight, and showed an apparent urban-suburban-rural gradient in both SigmaPAHs and composition profiles. Using hierarchical cluster analysis (HCA), the sampling sites were grouped into four clusters corresponding to traffic area, park/residential area, suburban and rural areas. The ratios of naphthalene (Nap) and fluorene (Fl) versus fluoranthene (Flu), pyrene (Pyr) and indeno(1,2,3-cd)pyrene (InP) in the four clusters provided evidence of local distillation. The diagnostic ratios indicated the prevalent PAH sources were petroleum combustion and coal combustion in Dalian, and a cross plot of diagnostic ratios distinguished the urban samples from suburban and rural ones. Toxic potency assessment of soil PAHs presented a good relationship with benzo(a)pyrene (BaP) levels, toxic equivalent concentrations based on BaP (TEQ(BaP)) and dioxin-like toxic equivalent concentrations (TEQ(TCDD)). The study highlights that BaP is a good indicator for assessing the potential toxicity of PAHs, and presents a promising toxicity assessment method for soil PAHs. PMID:17285163

  19. Polycyclic aromatic hydrocarbons and fatal ischemic heart disease

    SciTech Connect

    Burstyn, I.; Kromhout, H.; Partanen, T.; Svane, O.; Langard, S.; Ahrens, W.; Kauppinen, T.; Stucker, I.; Shaham, J.; Heederik, D.; Ferro, G.; Heikkila, P.; Hooiveld, M.; Johansen, C.; Randem, B.G.; Boffetta, P.

    2005-11-01

    Several toxicologic and epidemiologic studies have produced evidence that occupational exposure to polycyclic aromatic hydrocarbons (PAH) is a risk factor for ischemic heart disease (IHD). However, a clear exposure-response relation has not been demonstrated. We studied a relation between exposure to PAH and mortality from IHD (418 cases) in a cohort of 12,367 male asphalt workers from Denmark, Finland, France, Germany, Israel, The Netherlands and Norway. Exposures to benzo(a)pyrene were assessed quantitatively using measurement-driven exposure models. Exposure to coal tar was assessed in a semiquantitative manner on the basis of information supplied by company representatives. We carried out sensitivity analyses to assess potential confounding by tobacco smoking. Both cumulative and average exposure indices for benzo(a)pyrene were positively associated with mortality from IHD. The highest relative risk for fatal IHD was observed for average benzo(a)pyrene exposures of 273 ng/m{sup 3} or higher, for which the relative risk was 1.64(95% confidence interval = 1.13-2.38). Similar results were obtained for coal tar exposure. Sensitivity analysis indicated that even in a realistic scenario of confounding by smoking, we would observe approximately 20% to 40% excess risk in IHD in the highest PAH-exposure categories. Our results lend support to the hypothesis that occupational PAH exposure causes fatal IHD and demonstrate a consistent exposure-response relation for this association.

  20. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis

    PubMed Central

    Harris, Kelly L; Banks, Leah D; Mantey, Jane A; Huderson, Ashley C; Ramesh, Aramandla

    2014-01-01

    Introduction Bioaccessibility is a growing area of research in the field of risk assessment. As polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, they are the toxicants of focus to establish cancer risks in humans. Orally ingested PAHs also cause toxicity and even affect the pharmacokinetic behavior of some therapeutic agents. Toward this end, bioaccessibility is being used as a tool to assess the risk of PAHs via dietary exposures. Areas covered This review covers some in vitro bioaccessibility models for PAHs that have been used for the past one-and-a-half decade. This review also considers the factors that influence bioaccessibility and debates the merits and limitations of using a bioaccessibility concept for estimating risk from ingestion of PAH-contaminated soil and food. Finally, the authors discuss the implications of bioaccessibility for PAH-induced toxicity and cancers in the context of risk assessment. Expert opinion So far, much of the focus on PAH bioaccessibility is centered on soil as a preferential matrix. However, ingestion of PAHs through diet far exceeds the amount accidentally ingested through soil. Therefore, bioaccessibility could be exploited as a tool to assess the relative risk of various dietary ingredients tainted with PAHs. While bioaccessibility is a promising approach for assessing PAH risk arising from various types of contaminated soils, none of the models proposed appears to be valid. Bioaccessibility values, derived from in vitro studies, still require validation from in vivo studies. PMID:23898780

  1. Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil

    SciTech Connect

    Tang, J.; Alexander, M.

    1999-12-01

    A study was conducted to determine the relationship between bioavailability of unaged and aged polycyclic aromatic hydrocarbons (PAHs) in soil and the amounts detected by mild solvent extraction. More aged than unaged anthracene remained in Lima loam following introduction of earthworms (Eisenia foetida), a mixed culture containing anthracene-degrading microorganisms, or earthworms or wheat after bacterial biodegradation of the compound. Aging decreased the percentage of anthracene recovered by mild extraction with n-butanol from soil following introduction of earthworms, growth of wheat, biodegradation by bacteria, or when maintained sterile. Biodegradation resulted in a marked decrease in the percentage of aged and unaged anthracene recovered from soil by mild extraction with n-butanol or ethyl acetate. Aging of fluoranthene and pyrene decreased the amount removed by mild extraction with n-butanol, ethyl acetate, and propanol. The uptake of aged and unaged anthracene, fluoranthene, and pyrene by earthworms was correlated with the amounts recovered from soil by mild extraction with n-butanol, propanol, and ethyl acetate. The retention of aged and unaged anthracene by wheat and barley was correlated with the amounts recovered from soil by the same procedure. The authors suggest that mild extraction with organic solvents can be used to predict the bioavailability of PAHs in soil.

  2. Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.

    PubMed

    Burmistrz, Piotr; Burmistrz, Michał

    2013-01-01

    The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively. PMID:24334890

  3. Polycyclic aromatic hydrocarbons and esophageal squamous cell carcinoma.

    PubMed

    Roshandel, Gholamreza; Semnani, Shahryar; Malekzadeh, Reza; Dawsey, Sanford M

    2012-11-01

    Esophageal cancer (EC) is the 8th most common cancer and the 6th most frequent cause of cancer mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common type of EC. Exposure to polycyclic aromatic hydrocarbons (PAHs) has been suggested as a risk factor for developing ESCC. In this paper we will review different aspects of the relationship between PAH exposure and ESCC. PAHs are a group of compounds that are formed by incomplete combustion of organic matter. Studies in humans have shown an association between PAH exposure and development of ESCC in many populations. The results of a recent case-control study in a high risk population in northeastern Iran showed a dramatic dose-response relationship between PAH content in non-tumor esophageal tissue (the target tissue for esophageal carcinogenesis) and ESCC case status, consistent with a causal role for PAH exposure in the pathogenesis of ESCC.  Identifying the main sources of exposure to PAHs may be the first and most important step in designing appropriate PAH-reduction interventions for controlling ESCC, especially in high risk areas. Coal smoke and drinking mate have been suggested as important modifiable sources of PAH exposure in China and Brazil, respectively. But the primary source of exposure to PAHs in other high risk areas for ESCC, such as northeastern Iran, has not yet been identified. Thus, environmental studies to determining important sources of PAH exposure should be considered as a high priority in future research projects in these areas. PMID:23102250

  4. Polycyclic aromatic hydrocarbons in Bangladeshi vegetables and fruits.

    PubMed

    Hossain, M Amzad; Hoque, Mohammad Zahirul

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) occur as contaminants in different types of food predominantly from environmental pollution, food packaging and food processing and the levels found depend on the source of the contamination. PAHs emissions from automobile traffic and industry activities were shown to influence the PAHs levels and profiles in vegetables and fruits grown nearby. The present study was carried out to determine the levels of PAHs in samples of tomato, cabbage and apple, collected from six different places of urban and rural areas of plantation in Dhaka city. Eight PAHs listed in the priority pollutant of US Environment Protection Agency and regarded as carcinogens were analyzed in this study. The analytical method involved saponification with methanolic KOH, liquid-liquid extraction with cyclohexane, clean-up on silica gel column and determination by Gas chromatography and mass spectrometry. The mean levels of total PAHs were 9.50 μg/kg in tomato, 8.86 μg/kg in cabbage and 4.05 μg/kg in apple. Of the carcinogenic PAHs, benzo(a)anthracene was the most representative, being found in 89% of all samples analysed. Chrysene was not detected in any sample. PMID:21056073

  5. Polycyclic Aromatic Hydrocarbons Transformations in an Urban Fog

    NASA Astrophysics Data System (ADS)

    Valsaraj, K.; Wornat, M. J.; Chen, J.; Ehrenhauser, F.

    2010-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are generated from incomplete combustion of fuels, coal-fired power plants and other anthropogenic activities. These are ubiquitous in all environments, especially the atmosphere. PAHs generally are found in the gaseous form and associated with the particles in the atmosphere. They are also found in the atmospheric water present in the form of fog, mist, rain, snow and ice. Particles (aerosols) in the atmosphere invariably contain a thin film of water which tends to have a high affinity for the adsorption of gaseous PAHs. Molecular dynamic simulations clearly show that the air-water interface is a preferable surface for adsorption of large molecular weight PAHs and atmospheric oxidants (e.g., O3, OH, 1O2, NO3). Thus, photochemical transformation of adsorbed PAHs in fog droplets is a possibility in the atmosphere. This could lead to the formation of water-soluble oxy-PAHs which are potential precursors for secondary organic aerosols (SOAs). Field work in Baton Rouge and Houston combined with laboratory work in thin film reactors have shown that this hypothesis is substantially correct. Field data on fog and aerosols (pre- and post-fog) will be enumerated. Laboratory work and their implications will be summarized. The thin film surface environment resulted in enhanced reaction kinetics compared to bulk phase kinetics. The influence of surface reactions on the product compositions is evaluated by performing experiments with different film thicknesses.

  6. Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran

    PubMed Central

    2013-01-01

    Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health. PMID:24499505

  7. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  8. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo(e)pyrene, benzo-(ghi)perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo(ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  9. Molecular Spectroscopy in Astrophysics: The Case of Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincent, Donald L. (Technical Monitor)

    2000-01-01

    The role of molecular spectroscopy in astrophysics and astrochemistry is discussed in the context of the study of large, complex, carbon-bearing molecules, namely, Polycyclic Aromatic Hydrocarbons or PAHs. These molecular species are now thought to be widespread in the interstellar medium in their neutral and ionized forms. Identifying the carriers responsible for unidentified interstellar spectral bands will allow to derive important information on cosmic elemental abundances as well as information on the physical conditions (density, temperature) reigning in specific interstellar environments. These, in turn, are key elements for a correct understanding of the energetic mechanisms that govern the origin and the evolution of the interstellar medium. A multidisciplinary approach - combining astronomical observations with laboratory simulations and theoretical modeling - is required to address these complex issues. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices or seeded in a supersonic jet expansion, are discussed here and compared to the astronomical spectra of reddened, early type, stars. The electronic spectroscopy of PAHs in the ultraviolet, visible, and near-infrared domains is reviewed and an assessment of the potential contribution of PAHs to the interstellar extinction in the ultraviolet and in the visible is discussed.

  10. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  11. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust

    NASA Astrophysics Data System (ADS)

    Huynh, C. K.; Schüpfer, P.; Boiteux, P.

    2009-02-01

    Sino-nasal cancer (SNC) represents approximately 3% of Oto-Rhino-Laryngology (ORL) cancers. Adenocarcinoma SNC is an acknowledged occupational disease affecting certain specialized workers such as joiners and cabinetmakers. The high proportion of woodworkers contracting a SNC, subjected to an estimated risk 50 to 100 times higher than that affecting the general population, has suggested various study paths to possible causes such as tannin in hardwood, formaldehyde in plywood and benzo(a)pyrene produced by wood when overheated by cutting tools. It is acknowledged that tannin does not cause cancer to workers exposed to tea dust. Apart from being an irritant, formaldehyde is also classified as carcinogenic. The path involving carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) emitted by overheated wood is attractive. In this study, we measured the particle size and PAHs content in dust emitted by the processing of wood in an experimental chamber, and in field situation. Quantification of 16 PAHs is carried out by capillary GC-ion trap Mass Spectrometric analysis (GC-MS). The materials tested are rough fir tree, oak, impregnated polyurethane (PU) oak. The wood dust contains carcinogenic PAHs at the level of μg.g-1 or ppm. During sanding operations, the PU varnish-impregnated wood produces 100 times more PAHs in dust than the unfinished wood.

  12. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China.

    PubMed

    Lang, Chang; Tao, Shu; Liu, Wenxin; Zhang, Yanxu; Simonich, Staci

    2008-07-15

    A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.7% remained within the boundary of mainland China. The geographic distribution of PRIFs within China was similar to the geographic distribution of the source regions, with high values in the North China Plain, Sichuan Basin, Shanxi, and Guizhou province. The Tarim basin and Sichuan basin had unfavorable meteorological conditions for PAH outflow. Of the PAH outflow from China (8092 tons or 7.1% of the total annual PAH emission), approximately 69.9% (5655 tons) reached no further than the offshore environment of mainland China and the South China Sea. Approximate 227, 71, 746, and 131 tons PAHs reached North Korea, South Korea, Russia-Mongolia region, and Japan, respectively, 2-4 days after the emission. Only 1.4 tons PAHs reached North America after more than 9 days. Interannual variation in the eastward PAH outflow was positively correlated to cold episodes of El Niño/Southern Oscillation. However, trans-Pacific atmospheric transport of PAHs from China was correlated to Pacific North America index (PNA) which is associated with the strength and position of westerly winds. PMID:18754369

  13. Polycyclic aromatic hydrocarbons in olive oils on the Italian market.

    PubMed

    Menichini, E; Bocca, A; Merli, F; Ianni, D; Monfredini, F

    1991-01-01

    The six olive oils and seven virgin olive oils which are most consumed in Italy were analysed for 28 polycyclic aromatic hydrocarbons (PAHs). The aim was to evaluate whether a carcinogenic hazard for the general population can derive from the dietary intake of this food, which is consumed particularly highly in the Mediterranean area. The analytical method involved extraction by liquid-liquid partition, filtration on silica gel, clean-up by thin-layer chromatography on silica gel, and analysis by high-resolution gas chromatography with a flame ionization detector. The 3- and 4-ring PAHs which are most abundant in the environment were found in all samples, at individual levels up to ca. 40 micrograms/kg (for phenanthrene); no important difference was observed between olive oils and virgin olive oils. PAHs which are most suspected of being carcinogenic for humans were not detected (limit of detection, ca. 3 micrograms/kg). The average yearly intake of the detected PAHs through this food was estimated at ca. 0.56 mg per capita. PMID:1778272

  14. Polycyclic aromatic hydrocarbons in Italian preserved food products in oil.

    PubMed

    Sannino, Anna

    2016-06-01

    A method based on gas chromatography/ tandem mass spectrometry was used to assess levels of 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in 48 preserved food products in oil including foods such as vegetables in oil, fish in oil and oil-based sauces obtained from the Italian market. The benzo[a]pyrene concentrations ranged from <0.04 to 0.40 µg kg(-1), and 72.9% of the samples showed detectable levels of this compound. The highest contamination level was observed for chrysene with three additional PAHs (benzo[a]anthracene, benzo[b]fluoranthene and benzo[c]fluorene) giving mean values higher than the mean value for benzo[a]pyrene. Chrysene was detected in all the samples at concentrations ranging from 0.07 to 1.80 µg kg(-1) (median 0.31 µg kg(-1)). The contamination expressed as PAH4 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene), for which the maximum tolerable limit has been set by Commission Regulation (EU) No. 835/2011, varied between 0.10 and 2.94 µg kg(-1). PMID:26886159

  15. Bioavailability of polycyclic aromatic hydrocarbons in the North Sea

    SciTech Connect

    Utvik, T.I.R. . Environmental Section); Johnsen, S. )

    1999-06-15

    Semipermeable membrane devices (SPMDs) and blue mussels (Mytilus edulis) were used to determine the bioavailable fraction of polycyclic aromatic hydrocarbons (PAHs) from oil field produced water in the North Sea. The SPMDs and mussels were deployed at 5, 10, and 50 m depth; 100 and 300 m downstream the discharge point; and at a reference site 16 km away. In both SPMDs and mussels, the concentration of PAHs increased significantly toward the discharge point, with the strongest contribution from the lower molecular weight compounds (naphthalene, phenanthrene, dibenzothiophene, and their C1-C3 alkyl homologues). The relative increase in PAH concentration from the reference site to the site at 100 m was higher for mussels than for the SPMDs. The SPMDs reflect the water-soluble fraction of the PAHs, which is probably the most important route of exposure for organisms at lower trophic levels and presumably also the fraction available for uptake by a respiratory route. Residues in the mussels represent both the water-soluble and particle-bound fraction and give information about bioavailability of the PAHs for organisms at higher trophic levels. The results of this study suggest that both techniques give important information about the bioavailability of PAHs to marine organisms.

  16. Multiphoton ionization mass spectrometry of nitrated polycyclic aromatic hydrocarbons.

    PubMed

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2015-08-01

    In order to suppress the fragmentation and improve the sensitivity for determination of nitrated polycyclic aromatic hydrocarbons (NPAHs), the mechanism of multiphoton ionization was studied for the following representative NPAHs, 9-nitroanthracene, 3-nitrofluoranthene, and 1-nitropyrene. The analytes were extracted from the PM2.5 on the sampling filter ultrasonically, and were measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry with a femtosecond tunable laser in the range from 267 to 405 nm. As a result, a molecular ion was observed as the major ion and fragmentation was suppressed at wavelengths longer than 345 nm. Furthermore, the detection limit measured at 345 nm was measured to be the subpicogram level. The organic compounds were extracted from a 2.19 mg sample of particulate matter 2.5 (PM2.5), and the extract was subjected to multiphoton ionization mass spectrometry after gas chromatograph separation. The background signals were drastically suppressed at 345 nm, and the target NPAHs, including 9-nitroanthracene and 1-nitropyrene, were detected, and their concentrations were determined to be 5 and 3 pg/m(3), respectively. PMID:26048831

  17. Cardiac Autonomic Dysfunction from Occupational Exposure to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Lee, Mi-Sun; Magari, Shannon; Christiani, David C.

    2013-01-01

    Objectives Polycyclic aromatic hydrocarbons (PAHs) exposures have been associated with cardiopulmonary mortality and cardiovascular events. This study investigated the association between a biological marker of PAHs exposure, assessed by urinary 1-hydroxypyrene (1-OHP), and heart rate variability (HRV) in an occupational cohort of boilermakers. Methods Continuous 24-hour monitoring of the ambulatory electrocardiogram (ECG) and pre and post shift urinary 1-OHP were repeated over extended periods of the work week. Mixed effects models were fit for the 5-minute standard deviation of normal-to-normal intervals (SDNN) in relation to urinary 1-OHP levels pre and post workshift on the day they wore the monitor, controlling for potential confounders. Results We found a significant decrease in 5-min SDNN during work of −13.6% (95% confidence interval, −17.2% to −9.8%) for every standard deviation (0.53 microgram/gram [μg/g] creatinine) increase in the next-morning pre-shift 1-OHP levels. The magnitude of reduction in 5-min SDNN were largest during the late night period after work and increased with every standard deviation (0.46 μg/g creatinine) increase in post-shift 1-OHP levels. Conclusion This is the first report providing evidence that occupational exposure to PAHs is associated with altered cardiac autonomic function. Acute exposure to PAHs may be an important predictor of cardiovascular disease risk in the work environment. PMID:21172795

  18. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    SciTech Connect

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  19. [Comparison of polycyclic aromatic hydrocarbons (PAHS) contents in bakery products].

    PubMed

    Ciemniak, Artur; Witczak, Agata

    2010-01-01

    Polycyclic aromatic hydrocarbons are a group of well-known chemical carcinogens with a wide distribution in the environment and formed by the incomplete combustion of organic substances. PAHs have attracted most attention because of their carcinogenic potential. PAHs have been found as contaminants in different food categories such as dairy products, smoked and barbecued meat, vegetables, fruits, oils, coffee, tea, and cereals. Processing of food at high temperatures increases the amount of PAHs in the food Diet is the major source of human exposure to PAHs. The major dietary source of PAH are oils and fats, cereals products and vegetables. The aims of this study were to determine the content levels of 23 PAHs in various sorts of bread. The analytical procedure was based Soxhlet extraction with n--hexane and cleaned up in aflorisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The total concentration of PAHs was low end varied between 2.61 microg/kg to 43.4 microg/kg. Furthermore, the results revealed differences in concentrations of PAHs between rind and bread-crumb. PMID:20839459

  20. Polycyclic aromatic hydrocarbon biodegradation by a mixed bacterial culture

    SciTech Connect

    Dreyer, G.; Koenig, J.; Ringpfeil, M.

    1995-12-31

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs), which are a complex mixture of organic compounds, was demonstrated using a bacterial mixed culture selected from a contaminated site by the BIOPRACT GmbH. The investigations were carried out in a laboratory fermenter using emulsified tar oil as the substrate to determine the following: (1) concentration of the single PAH and of the sum of PAHs relative to fermentation time, (2) carbon dioxide (CO{sub 2}) and oxygen (O{sub 2}) content in the outflowing air during fermentation, (3) chemical oxygen demand (COD) of the broth, and (4) toxicity of the broth before and after fermentation according to the bioluminescence test (DIN 38412, part 34/1). The results of this model experiment indicated that the investigated mixed culture is able to effectively metabolize the PAHs contained in tar oil, including the higher condensed compounds such as benzo(a)pyrene. In the first 8 days of fermentation, the PAH sum decreased to below 5% of the starting concentration connected with a five-fold reduction of the toxic effect on Vibrio fischeri. The PAH degradation rate correlated with the rate of COD decrease, the rate of evolving CO{sub 2}, and the consumption of O{sub 2}.

  1. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    PubMed

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol. PMID:17585293

  2. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    PubMed

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015. PMID:26820781

  3. Role of iron catalyst on hydroconversion of aromatic hydrocarbons

    SciTech Connect

    Ogata, E.; Horie, Kazuyuki; Wei, Xain-Yong

    1995-12-31

    A symposium on iron-based catalysts for coal liquefaction was held at the 205th ACS National Meeting, and some of the papers have been published in Energy & Fuels. Reviews of the development of catalysts for coal liquefaction were also published in Journal of the Japan institute of Energy, and Ozaki reviewed the results of the studies of upgrading residual oils by means of thermal cracking and coking under reduced pressures, catalytic cracking over nickel ores and iron oxides, and hydrodesulfurization, as well as hydrodemetallization. We reported that catalysis of metallic iron and iron-sulfide catalysts were affected by the S/Fe ratio; the activity increased with pyrrhotite formation and the activity was accelerated by the presence of excess sulfur. Activity of pyrite FeS{sub 2} for phenanthrene hydrogenation and activity of natural ground pyrites for cow liquefaction decreased with storage under air. On the other hand, the NEDOL process for a coal liquefaction pilot plant of 150 t/d which is one of the national projects in Japan, will use pyrites as one of the catalysts for the first-stage because FeS{sub 2} has high activity and is low in price. In this paper, we describe in detail the role of iron catalysts in hydroconversion of aromatic hydrocarbons.

  4. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions

    NASA Astrophysics Data System (ADS)

    Bozek, Frantisek; Huzlik, Jiri; Pawelczyk, Adam; Hoza, Ignac; Naplavova, Magdalena; Jedlicka, Jiri

    2016-02-01

    This article is directed to evaluating the proportion of polycyclic aromatic hydrocarbons (PAHs) captured on particulate matter (PM) classified as PM2.5-10 and PM2.5, i.e. particulate matter of aerodynamic diameter 2.5-10 μm and 2.5 μm. During three week-long and one 2-day campaigns, 22 paired air samples were taken in parallel of PM10 and PM2.5 fractions inside the Mrázovka tunnel in Prague, Czech Republic. Following sample preparation, concentrations of individual PAHs were determined using gas chromatography combined with mass spectrometry. Concentrations of individual pairs of each PAH were tested by the nonparametric method using Spearman's rank correlation coefficient. At significance level p < 0.01, it was demonstrated that all individual PAHs, including their totals, were bound to the PM2.5 fraction. Exceptions were seen in the cases of acenaphthylene, acenaphthene, and indeno[1,2,3-cd]pyrene, the concentrations of which fluctuated around the detection limit, where increased measurement error can be expected.

  5. Chemical Kinetics of Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Tran, T.; Chiar, J.; Tielens, A. G. G. M.

    2012-05-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise about 10% of the carbon in the interstellar medium. There is evidence of modification of PAHs in protoplanetary disks. What happens to these molecules as they are incorporated into protoplanetary disks? We address this question by investigating the chemical kinetics of PAHs in the disk environment. Kress et al. (2010) investigated the chemical behavior of PAHs at temperatures from 1000 to 2000 K at a pressure of 1e-6 bar, and proposed the concept of the 'soot line', analogous to the 'snow line' in the solar nebula. Inside of the soot line, PAHs are irreversibly destroyed via thermally-driven reactions. We will extend this study to more realistic disk conditions and timescales. In a related project (see poster by Tran, Chiar, et al.), we are investigating the differences in the PAH physical characteristics in quiescent dense clouds versus the environment around embedded protostars. Together, these studies will help us understand (1) the fate of interstellar PAHs in planet-forming disks and (2) the relationship between interstellar and solar system PAHs. We also will investigate the soot line in disks around sub-solar mass stars (e.g. M dwarfs). This work has been supported by the NASA Astrobiology Institute's Virtual Planetary Laboratory (PI: V. Meadows) and the NASA/EPOESS program (PI: C. Phillips).

  6. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China

    SciTech Connect

    Chang Lang; Shu Tao; Wenxin Liu; Yanxu Zhang; Staci Simonich

    2008-07-15

    A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.7% remained within the boundary of mainland China. The geographic distribution of PRIFs within China was similar to the geographic distribution of the source regions, with high values in the North China Plain, Sichuan Basin, Shanxi, and Guizhou province. The Tarim basin and Sichuan basin had unfavorable meteorological conditions for PAH outflow. Of the PAH outflow from China (8092 tons or 7.1% of the total annual PAH emission), approximately 69.9% (5655 tons) reached no further than the offshore environment of mainland China and the South China Sea. Approximate 227, 71, 746, and 131 tons PAHs reached North Korea, South Korea, Russia-Mongolia region, and Japan, respectively, 2-4 days after the emission. Only 1.4 tons PAHs reached North America after more than 9 days. Interannual variation in the eastward PAH outflow was positively correlated to cold episodes of El Nino/Southern Oscillation. However, trans-Pacific atmospheric transport of PAHs from China was correlated to Pacific North America index (PNA) which is associated with the strength and position of westerly winds. 38 refs., 4 figs.

  7. Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites

    NASA Astrophysics Data System (ADS)

    Auras, Stefan; Wilde, Volker; Scheffler, Kay; Hoernes, Stephan; Kerp, Hans; Püttmann, Wilhelm

    2006-12-01

    Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian (≡ Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian Stephanian (≈Kasimovian Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.

  8. Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.

    1993-01-01

    We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.

  9. Polynuclear Aromatic Hydrocarbons Concentrations in Char-Broiled Meat Suya

    NASA Astrophysics Data System (ADS)

    Duke, Okoro; Albert, Ikolo O.

    Polynuclear aromatic hydrocarbons (PNAs) concentrations in char-broiled meat suya have been determined in samples obtained from four different selling points in Warri Metropolis of Nigeria. The sixteen EPA priority PNAs were detected using Gas Chromatography and Flame Ionization Detector. Concentrations of total PNAs determined in the four sampling points were: EF1 (134.82< ±8.53 μg kg-1), EF2 (113.83< ±7.93 μg kg-1), WR3 (115.14< ±7.77 μg kg-1), WR4 (81.95< ±6.76 μg kg-1). Benzo(a)pyrene, which is often used as a reference indicator for PNAs carcinogenicity, was determined at levels above 5 μg kg-1 recommended as maximum limit by Commission of European Communities for smoked meat and smoked meat products. It was however, observed that the 2-3 rings PNAs including naphthalene, fluorene, acenaphthylene, acenaphthene, phenanthrene and anthracene were more abundant owing to their high percentage composition in the matrix of the charbroiled meat. Although the levels observed for benzo(a)pyrene in the beef suya exceeded standard guidelines of European Commission, it may take the diet to consist of frequent consumption of barbecued meat before a significant contributions of PNAs contaminant to the human system can be thoroughly assessed.

  10. DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES

    SciTech Connect

    McCormick, Alexander; Veilleux, Sylvain; Rupke, David S. N. E-mail: veilleux@astro.umd.edu

    2013-09-10

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of {approx}0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  11. Assessment of vascular function in Mexican women exposed to polycyclic aromatic hydrocarbons from wood smoke.

    PubMed

    Ruiz-Vera, Tania; Pruneda-Álvarez, Lucia G; Ochoa-Martínez, Ángeles C; Ramírez-GarcíaLuna, José L; Pierdant-Pérez, Mauricio; Gordillo-Moscoso, Antonio A; Pérez-Vázquez, Francisco J; Pérez-Maldonado, Iván N

    2015-09-01

    The use of solid fuels for cooking and heating is likely to be the largest source of indoor air pollution on a global scale; these fuels emit substantial amounts of toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs) when used in simple cooking stoves (such as open "three-stone" fires). Moreover, indoor air pollution from biomass fuels is considered an important risk factor for human health. The aim of this study was to evaluate the relationship between exposure to PAHs from wood smoke and vascular dysfunction; in a group of Mexican women that use biomass combustion as their main energy source inside their homes. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to PAHs and it was assessed using high performance liquid chromatography. The endothelium-dependent vasodilation was assessed through a vascular reactivity compression test performed with a pneumatic cuff under visualization of the brachial artery using high resolution ultrasonography (HRU). Assessment of the carotid intima-media thickness (CIMT) was used as an atherosclerosis biomarker (also assessed using HRU); and clinical parameters such as anthropometry, blood pressure, glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, among others were also evaluated. The mean concentration of urinary 1-OHP found in exposed women was 0.46±0.32μmol/mol Cr (range: 0.086-1.23μmol/mol Cr). Moreover, vascular dysfunction (diminished endothelium dependent vasodilation) was found in 45% of the women participating in the study. Association between vascular function and 1-OHP levels was found to be significant through a logistic regression analysis (p=0.034; r(2)=0.1329). Furthermore, no association between CIMT and clinical parameters, urinary 1-OHP levels or vascular dysfunction was found. Therefore, with the information obtained in this study, we advocate for the need to implement programs to reduce the risk of exposure to PAHs in communities that use biomass fuels as a main

  12. Direct Determination of the Phase Distributions of Semi-VolatilePolycyclic Aromatic Hydrocarbons Using Annular Denuders

    SciTech Connect

    Gundel, L.A.; Lee, V.C.; Mahanama, K.R.R.; Stevens, R.K.; Daisey,J.M.

    1994-06-01

    An annular denuder-based sampler, here called the integrated organic vapor/particle sampler (IOVPS), has been developed for direct determination of both gas and particulate semi-volatile organic species. The IOVPS uses a cyclone inlet for removal of particles greater than 2.5 micrometers from the airstream, followed by two or three sandblasted glass annular denuders coated with ground particles of an adsorbent resin. The denuders trap the gas phase species of interest before the airstream passes through a filter and a backup denuder. Extracts of the denuders and filters are analyzed for the semi-volatile species of interest. The IOVPS has been tested and validated for sampling semi-volatile polycyclic aromatic hydrocarbons (PAH) in indoor laboratory room air and environmental tobacco smoke (ETS). Ground XAD-4 was the adsorbent for these initial studies. Gas- and particulate-phase concentrations of semi-volatile PAH are presented for these two environments. The new sampler provides the means for directly determining phase distributions of PAH and other classes of semi-volatile organic species, rather than by difference or by techniques that are subject to large positive and negative artifacts. For example, the results obtained with the IOVPS indicate that the volatilization artifact ('blow-off') from particulate PAH collected in indoor laboratory room air with a conventional filter-sorbent bed sampler at face velocity of 33 cm sec-1 led to three-fold underestimation of the particulate fractions of phenanthrene, pyrene and chrysene. Phase distributions for PAH in ETS are also reported here.

  13. Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Abakumov, E. V.; Tomashunas, V. M.; Lodygin, E. D.; Gabov, D. N.; Sokolov, V. T.; Krylenkov, V. A.; Kirtsideli, I. Yu.

    2015-12-01

    The content and individual component compositions of polycyclic aromatic hydrocarbons in polar soils of the Russian Arctic sector have been studied. The contamination of soils near research stations is identified from the expansion of the range of individual polycyclic aromatic hydrocarbons, the abrupt increase in the content of heavy fractions, and the accumulation of benzo[ a]pyrene. Along with heavy hydrocarbons, light hydrocarbons (which are not only natural compounds, but also components of organic pollutants) are also accumulated in the contaminated soils. Heavy polycyclic aromatic hydrocarbons are usually of technogenic origin and can serve as markers of anthropogenic impact in such areas as Cape Sterligov, Cape Chelyuskin, and the Izvestii TsIK Islands. The content of benzo[ a]pyrene, the most hazardous organic toxicant, appreciably increases in soils around the stations, especially compared to the control; however, the level of MPC is exceeded only for the soils of Cape Chelyuskin.

  14. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  15. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  16. Levels of Polycyclic Aromatic Hydrocarbons in Maternal Serum and Risk of Neural Tube Defects in Offspring

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and have been reported to be a risk factor for human neural tube defects (NTDs). We investigated the relationship between PAH concentrations in maternal serum and NTD risk in offspring using a case-control study design, and explored the link between PAH concentrations to household energy usage characteristics and life styles. One hundred and seventeen women who had NTD-affected pregnancies (cases) and 121 women who delivered healthy infants (controls) were recruited in Northern China. Maternal blood samples were collected at pregnancy termination or at delivery. Twenty-seven PAHs were measured by gas chromatography–mass spectrometry. The concentrations of 13 individual PAHs detected were significantly higher in the cases than in the controls. Clear dose–response relationships between concentrations of most individual PAHs and the risk of total NTDs or subtypes were observed, even when potential covariates were adjusted for. High-molecular-weight PAHs (H-PAHs) showed higher risk than low-molecular-weight PAHs (L-PAHs). No associations between PAH concentrations and indoor life styles and energy usage characteristics were observed. It was concluded that maternal exposure to PAHs was associated with an increased risk of NTDs, and H-PAHs overall posed a higher risk for NTDs than L-PAHs. PMID:25488567

  17. Exposure to polycyclic aromatic hydrocarbons and assessment of potential risks in preschool children.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2015-09-01

    As children represent one of the most vulnerable groups in society, more information concerning their exposure to health hazardous air pollutants in school environments is necessary. Polycyclic aromatic hydrocarbons (PAHs) have been identified as priority air pollutants due to their mutagenic and carcinogenic properties that strongly affect human health. Thus, this work aims to characterize levels of 18 selected PAHs in preschool environment, and to estimate exposure and assess the respective risks for 3-5-year-old children (in comparison with adults). Gaseous PAHs (mean of 44.5 ± 12.3 ng m(-3)) accounted for 87% of the total concentration (ΣPAHs) with 3-ringed compounds being the most abundant (66% of gaseous ΣPAHs). PAHs with 5 rings were the most abundant ones in the particulate phase (PM; mean of 6.89 ± 2.85 ng m(-3)) being predominantly found in PM1 (78% particulate ΣPAHs). Overall child exposures to PAHs were not significantly different between older children (4-5 years old) and younger ones (3 years old). Total carcinogenic risks due to particulate-bound PAHs indoors were higher than outdoor ones. The estimated cancer risks of both preschool children and the staff were lower than the United States Environmental Protection Agency (USEPA) threshold of 10(-6) but slightly higher than WHO-based guideline. PMID:25943510

  18. Quantitative determination of hydroxy polycylic aromatic hydrocarbons as a biomarker of exposure to carcinogenic polycyclic aromatic hydrocarbons.

    PubMed

    Woudneh, Million B; Benskin, Jonathan P; Grace, Richard; Hamilton, M Coreen; Magee, Brian H; Hoeger, Glenn C; Forsberg, Norman D; Cosgrove, John R

    2016-07-01

    A high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) method was developed for quantitative analysis of hydroxy polycyclic aromatic hydrocarbons (OH-PAHs). Four hydroxy metabolites of known and suspected carcinogenic PAHs (benzo[a]pyrene (B[a]P), benz[a]anthracene (B[a]A), and chrysene (CRY)) were selected as suitable biomarkers of PAH exposure and associated risks to human health. The analytical method included enzymatic deconjugation, liquid - liquid extraction, followed by derivatization with methyl-N-(trimethylsilyl) trifluoroacetamide and instrumental analysis. Photo-induced oxidation of target analytes - which has plagued previously published methods - was controlled by a combination of minimizing exposure to light, employing an antioxidant (2-mercaptoethanol) and utilizing a nitrogen atmosphere. Stability investigations also indicated that conjugated forms of the analytes are more stable than the non-conjugated forms. Accuracy and precision of the method were 77.4-101% (<4.9% RSD) in synthetic urine and 92.3-117% (<15% RSD) in human urine, respectively. Method detection limits, determined using eight replicates of low-level spiked human urine, ranged from 13 to 24pg/mL. The method was successfully applied for analysis of a pooled human urine sample and 78 mouse urine samples collected from mice fed with PAH-contaminated diets. In mouse urine, greater than 94% of each analyte was present in its conjugated form. PMID:27266337

  19. Influence of humic substances on the formation of chlorinated polycyclic aromatic hydrocarbons during chlorination of polycyclic aromatic hydrocarbon polluted water

    SciTech Connect

    Johnsen, S.; Gribbestad, I.S.

    1988-08-01

    Chlorinated polycyclic aromatic hydrocarbons (PAH) are present at nanogram per liter levels in lake water. Some of these compounds are known to be mutagenic in the Ames Salmonella test. The PAH compounds fluorene, anthracene, fluoranthene, and benzo(a)pyrene were dissolved in lake water with low humus content and in humus water with 9.17 mg of total organic carbon/L, followed by sodium hypochlorite chlorination at different concentrations. Reaction of PAH and formation of chlorinated PAH were measured by cyclohexane extraction of the samples 3 days after chlorination and gas chromatography/mass spectrometry analyses of the extracts. The PAH-chlorine reaction was found to be dependent upon the concentration of free active chlorine in the water, and the presence of humic substances was found to affect the formation of chlorinated PAH. Chlorinated PAH were formed in the lake water samples of fluoranthene and benzo(a)pyrene, but no chlorinated PAH were detected in the presence of humic substances.

  20. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290...

  1. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range(degrees F) Criteria Reactivityfactor (g O3/g VOC) 21...

  2. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range(degrees F) Criteria Reactivityfactor (g O3/g VOC) 21...

  3. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290...

  4. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range(degrees F) Criteria Reactivityfactor (g O3/g VOC) 21...

  5. Aryl hydrocarbon receptor expression is associated with a family history of upper gastrointestinal tract cancer in a high-risk population exposed to aromatic hydrocarbons

    SciTech Connect

    Roth, M.J.; Wei, W.Q.; Baer, J.; Abnet, C.C.; Wang, G.Q.; Sternberg, L.R.; Warner, A.C.; Johnson, L.L.; Lu, N.; Giffen, C.A.; Dawsey, S.M.; Qiao, Y.L.; Cherry, J.

    2009-09-15

    Polycyclic aromatic hydrocarbon (PAH) exposure is a risk factor for esophageal squamous cell carcinoma, and PAHs are ligands of the aryl hydrocarbon receptor (AhR). This study measured the expression of AhR and related genes in frozen esophageal cell samples from patients exposed to different levels of indoor air pollution, who did or did not have high-grade squamous dysplasia and who did or did not have a family history of upper gastrointestinal tract (UGI) cancer. 147 samples were evaluated, including 23 (16%) from patients with high-grade dysplasia and 48 (33%) from patients without dysplasia who heated their homes with coal, without a chimney (a 'high' indoor air pollution group), and 27 (18%) from patients with high-grade dysplasia and 49 (33%) from patients without dysplasia who did not heat their homes at all (a 'low' indoor air pollution group). Sixty-four (44%) had a family history of UGI cancer. RNA was extracted and quantitative PCR analysis was done. AhR gene expression was detectable in 85 (58%) of the samples and was >9-fold higher in those with a family history of UGI cancer (median expression (interquartile range), -1,964 (-18,000, -610) versus -18,000 (-18,000, -1036); P = 0.02, Wilcoxon rank-sum test). Heating status, dysplasia category, age, gender, and smoking were not associated with AhR expression (linear regression; all P values {ge} 0.1). AhR expression was higher in patients with a family history of UGI cancer. Such individuals may be more susceptible to the deleterious effects of PAH exposure, including PAH-induced cancer.

  6. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.

  7. Background'' soil concentration of polycyclic aromatic hydrocarbons from Burlington, Vermont

    SciTech Connect

    Parker, R.L.; Sparks, M.K. )

    1993-03-01

    Polycyclic Aromatic Hydrocarbons (PAH's) were identified in soils from waterfront industrial land in Burlington prior to conversion to a park. PAH's ranged from 2,457 to 16,005 ppb. As a result, this area was placed on the Vt. DEC list of active'' hazardous sites. The few studies available regarding background concentrations of PAH's (i.e. ATSDR, 1990), suggested that the waterfront PAH values were low for urban soils. To provide a context for evaluating the waterfront PAH concentrations, a background study of soils in the City of Burlington was conducted. Twelve composite soil samples were collected from within a 1-mile radius of the proposed park; an area that encompasses a large portion of the City. To correlate PAH concentrations with land-uses, three samples were collected from each of four zones: industrial, mixed commercial-residential, residential and recreational. Samples (and one field blank) were analyzed via EPA method 8100. Total PAH's from the study ranged from 105.7 to 122,035 ppb. The minimum value was from a baseball field; the maximum value from a residential lawn. The arithmetic mean for the Burlington study was 19,380 ppb (compared to 10,530 ppb for the waterfront). The background'' values indicate that the waterfront park soils are below the study background'' mean. It is difficult to assess the origin of the elevated PAH values because of the numerous contributors of environmental PAH. One common element that appears to characterize soils with the highest background'' PAH values is linkage to recent or historic building fires. In many instances building combustion may be a dominant local source of soil PAH's.

  8. Human Colon Microbiota Transform Polycyclic Aromatic Hydrocarbons to Estrogenic Metabolites

    PubMed Central

    Van de Wiele, Tom; Vanhaecke, Lynn; Boeckaert, Charlotte; Peru, Kerry; Headley, John; Verstraete, Willy; Siciliano, Steven

    2005-01-01

    Ingestion is an important exposure route for polycyclic aromatic hydrocarbons (PAHs) to enter the human body. Although the formation of hazardous PAH metabolites by human biotransformation enzymes is well documented, nothing is known about the PAH transformation potency of human intestinal microbiota. Using a gastrointestinal simulator, we show that human intestinal microbiota can also bioactivate PAHs, more in particular to estrogenic metabolites. PAH compounds are not estrogenic, and indeed, stomach and small intestine digestions of 62.5 nmol naphthalene, phenanthrene, pyrene, and benzo(a)pyrene showed no estrogenic effects in the human estrogen receptor bioassay. In contrast, colon digests of these PAH compounds displayed estrogenicity, equivalent to 0.31, 2.14, 2.70, and 1.48 nmol 17α-ethynylestradiol (EE2), respectively. Inactivating the colon microbiota eliminated these estrogenic effects. Liquid chromatography–mass spectrometry analysis confirmed the microbial PAH transformation by the detection of PAH metabolites 1-hydroxypyrene and 7-hydroxybenzo(a)pyrene in colon digests of pyrene and benzo(a)pyrene. Furthermore, we show that colon digests of a PAH-contaminated soil (simulated ingestion dose of 5 g/day) displayed estrogenic activity equivalent to 0.58 nmol EE2, whereas stomach or small intestine digests did not. Although the matrix in which PAHs are ingested may result in lower exposure concentrations in the gut, our results imply that the PAH bioactivation potency of colon microbiota is not eliminated by the presence of soil. Moreover, because PAH toxicity is also linked to estrogenicity of the compounds, the PAH bioactivation potency of colon microbiota suggests that current risk assessment may underestimate the risk from ingested PAHs. PMID:15626640

  9. Polycyclic Aromatic Hydrocarbons and digestive tract cancers - a perspective

    PubMed Central

    Diggs, Deacqunita L.; Huderson, Ashley C.; Harris, Kelly L.; Myers, Jeremy N.; Banks, Leah D.; Rekhadevi, Perumalla V.; Niaz, Mohammad S.; Ramesh, Aramandla

    2011-01-01

    Cancers of the colon are most common in the Western world. In majority of these cases, there is no familial history and sporadic gene damage seems to play an important role in the development of tumors in the colon. Studies have shown that environmental factors, especially diet, play an important role in susceptibility to GI tract cancers. Consequently, environmental chemicals that contaminate food or diet during its preparation becomes important in the development of GI cancers. Polycyclic aromatic hydrocarbons (PAHs) are one such family of ubiquitous environmental toxicants. These pollutants enter the human body through consumption of contaminated food, drinking water, inhalation of cigarette smoke, automobile exhausts, and contaminated air from occupational settings. Among these pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs and their ability to cause toxicity and breast or lung cancer have been published, aspects on contribution of diet, smoking and other factors towards development of digestive tract cancers and strategies to assess risk from exposure to PAHs have received much less attention. This review, therefore, focuses on dietary intake of PAHs in humans, animal models, and cell cultures used for GI cancer studies along with epidemiological findings. Bioavailability and biotransformation processes, which influence the disposition of PAHs in body and the underlying causative mechanisms of GI cancers, are also discussed. The existing data gaps and scope for future studies is also emphasized. This information is expected to stimulate research on mechanisms of sporadic GI cancers caused by exposure to environmental carcinogens. PMID:22107166

  10. Simulation of polycyclic aromatic hydrocarbons transport in multimedia

    SciTech Connect

    Chen, L.; Chu, C.J.

    1999-07-01

    Many studies have indicated that the threat from toxic air pollutants such as VOCs comes not through inhalation by humans while the pollutants are in a gaseous state but through absorption when the pollutants are in a solid state such as in an aerosol or particulate form. Pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) usually exist in a semi-volatile state. To assess the risk of the PAHs, one needs to estimate the dose of the pollutants to which a human would be exposed through various pathways. In this study, the authors modified a Spatial Multimedia Compartmental Model (SMCM) originally developed by UCLA Professor Cohen to predict the PAHs distribution among multimedia such as air, water, soil and sediment in the Taipei metropolitan area. Three PAHs were considered in this study. They are Benzo(a)pyrene, Pyrene and Chrysene. When PAHs are emitted into atmosphere, physical and chemical mechanisms may redistribute the PAHs among multimedia. Five cases of PAHs distribution in multimedia were simulated: (1) PAHs distribution in a dry condition, (2) PAHs distribution when there are different dry deposition velocities, (3) PAHs distribution under a single rainfall event, (4) PAHs distribution when there are different soil properties, (5) PAHs distribution under a random rainfall case. The simulation results are concluded: (1) In the dry case, the PAHs accumulate mostly in soil and air compartments, (2) Different dry depositing velocities will affect the PAHs distribution among compartments. (3) Different soil properties affect the PAHs concentration in the soil and sediment compartments, (4) The soil PAHs concentrations usually increase for those PAHs with a high solid/gas ratio. (5) The random rainfall only affects the PAHs concentration in the soil.