Science.gov

Sample records for aromatic schiff base

  1. Complete ?* intramolecular aromatic hydroxylation mechanism through O2 activation by a Schiff base macrocyclic dicopper(I) complex

    PubMed Central

    Solà, Miquel

    2013-01-01

    Summary In this work we analyze the whole molecular mechanism for intramolecular aromatic hydroxylation through O2 activation by a Schiff hexaazamacrocyclic dicopper(I) complex, [CuI 2(bsH2m)]2+. Assisted by DFT calculations, we unravel the reaction pathway for the overall intramolecular aromatic hydroxylation, i.e., from the initial O2 reaction with the dicopper(I) species to first form a CuICuII-superoxo species, the subsequent reaction with the second CuI center to form a ?-?2:?2-peroxo-CuII 2 intermediate, the concerted peroxide O–O bond cleavage and C–O bond formation, followed finally by a proton transfer to an alpha aromatic carbon that immediately yields the product [CuII 2(bsH2m-O)(?-OH)]2+. PMID:23616799

  2. Syntheses, Spectral Characterization, and Antimicrobial Studies on the Coordination Compounds of Metal Ions with Schiff Base Containing Both Aliphatic and Aromatic Hydrazide Moieties

    PubMed Central

    Kumar, Dinesh; Chadda, Silky; Sharma, Jyoti; Surain, Parveen

    2013-01-01

    An EtOH solution of 3-ketobutanehydrazide and salicylhydrazide on refluxing in equimolar ratio forms the corresponding Schiff base, LH3 (1). The latter reacts with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Zr(OH)2(IV), MoO2(VI), and UO2(VI) ions in equimolar ratio and forms the corresponding coordination compounds, [M(LH)(MeOH)3] (2, M = Mn, Co, Ni), [Cu(LH)]2 (3), [M?(LH)(MeOH)] (4, M? = Zn, Cd), [Zr(OH)2(LH)(MeOH)2] (5), [MoO2(LH)(MeOH)] (6), and [UO2(LH)(MeOH)] (7). The coordination compounds have been characterized on the basis of elemental analyses, molar conductance, spectral (IR, reflectance, 1H NMR, ESR) studies, and magnetic susceptibility measurements. They are nonelectrolytes in DMSO. The coordination compounds, except 3, are monomers in diphenyl. They are active against gram-positive bacteria (S. aureus, B. subtilis), gram-negative bacteria (E. coli, P. aeruginosa), and yeast (S. cerevisiae, C. albicans). 1 acts as a dibasic tridentate ONO donor ligand in 2–7 coordinating through its both enolic O and azomethine N atoms. The coordination compounds 2 and 3 are paramagnetic, while rest of the compounds are diamagnetic. A square-planar structure to 3, a tetrahedral structure to 4, an octahedral structure to 2, 6, and 7, and a pentagonal bipyramidal structure to 5 are proposed. PMID:24198736

  3. Mono-Schiff-base or di-Schiff-base? Synthesis, spectroscopic, X-ray structural and DFT study of a series of Schiff-bases derived from benzil dihydrazone

    NASA Astrophysics Data System (ADS)

    Tan, Xue-Jie; Hao, Xiu-Qi; Zhao, Qing-Zhe; Cheng, Shuang-Shuang; Xie, Wen-Long; Xing, Dian-Xiang; Liu, Yun; Song, Lai-Zhou

    2015-11-01

    A series of mono- and di-Schiff-bases based on Benzil Dihydrazone (BDH) were designed and synthesized to be set as the model compounds to explain which one should be the advanced product and which parameters will determine the end-product. As the first step of a series of investigations, this article presents the syntheses and characterization of five new Schiff-bases plus one preliminary reported Schiff-base, all derived from BDH. The compounds were characterized by single crystal (or conventional powder) X-ray diffractometry, elemental analysis, m.p., 1H NMR, 13C NMR, IR and UV-Vis. Structural features of the five new Schiff-bases are similar. For instance, all molecules are nonsymmetrical/symmetrical double helix with the torsion angle of two "half-parts" about 72-97°. The Ph-Cdbnd N-Ndbnd C-Ph moiety all exists in planar and anti form, indicating significant conjugation. The crystal structures appear to be stabilized by ?-stacking between the aromatic rings, as well as by intermolecular hydrogen bonds and C-H … ? stacking interactions. DFT calculations have been performed to explain the trend of the experimentally measured reaction yields. In the case of the studied systems by us, the type of Schiff-bases exhibits a clear dependence on the molar ratio of reactants if the products have similar stabilities. Otherwise the importance of reaction conditions will be weakened and the most stable product will be favored.

  4. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  5. Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors.

    PubMed

    Dalapati, Sasanka; Jana, Sankar; Guchhait, Nikhil

    2014-08-14

    This review contains extensive application of anion sensing ability of salicylidene type Schiff bases and their reduced forms having various substituents with respect to phenolic OH group. Some of these molecular systems behave as receptor for recognition or sensing of various anions in organic or aqueous-organic binary solvent mixture as well as in the solid supported test kits. Development of Schiff base or reduced Schiff base receptors for anion recognition event is commonly based on the theory of hydrogen bonding interaction or deprotonation of phenolic -OH group. The process of charge transfer (CT) or inhibition of excited proton transfer (ESIPT) or followed by photo-induced electron transfer (PET) lead to naked-eye color change, UV-vis spectral change, chemical shift in the NMR spectra and fluorescence spectral modifications. In this review we have tried to discuss about the anion sensing properties of Schiff base or reduced Schiff base receptors. PMID:24759755

  6. Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors

    NASA Astrophysics Data System (ADS)

    Dalapati, Sasanka; Jana, Sankar; Guchhait, Nikhil

    2014-08-01

    This review contains extensive application of anion sensing ability of salicylidene type Schiff bases and their reduced forms having various substituents with respect to phenolic sbnd OH group. Some of these molecular systems behave as receptor for recognition or sensing of various anions in organic or aqueous-organic binary solvent mixture as well as in the solid supported test kits. Development of Schiff base or reduced Schiff base receptors for anion recognition event is commonly based on the theory of hydrogen bonding interaction or deprotonation of phenolic -OH group. The process of charge transfer (CT) or inhibition of excited proton transfer (ESIPT) or followed by photo-induced electron transfer (PET) lead to naked-eye color change, UV-vis spectral change, chemical shift in the NMR spectra and fluorescence spectral modifications. In this review we have tried to discuss about the anion sensing properties of Schiff base or reduced Schiff base receptors.

  7. Monodentate Schiff base ligands: their structural characterization, photoluminescence, anticancer, electrochemical and sensor properties.

    PubMed

    Köse, Muhammet; Ceyhan, Gökhan; Tümer, Mehmet; Demirta?, Ibrahim; Gönül, ?lyas; McKee, Vickie

    2015-02-25

    Two Schiff base compounds, N,N'-bis(2-methoxy phenylidene)-1,5-diamino naphthalene (L(1)) and N,N'-bis(3,4,5-trimethoxy phenylidene)-1,5-diamino naphthalene (L(2)) were synthesized and characterized by the analytical and spectroscopic methods. The electrochemical and photoluminescence properties of the Schiff bases were investigated in the different conditions. The compounds L(1) and L(2) show the reversible redox processes at some potentials. The sensor properties of the Schiff bases were examined and color changes were observed upon addition of the metal cations, such as Hg(II), Cu(II), Co(II) and Al(III). The Schiff base compounds show the bathochromic shift from 545 to 585 nm. The single crystals of the compounds (L(1)) and (L(2)) were obtained from the methanol solution and characterized structurally by the X-ray crystallography technique. The molecule L(2) is centrosymmetric whereas the L(1) has no crystallographically imposed molecular symmetry. However, the molecular structures for these compounds are quite similar, differing principally in the conformation about methoxy groups and the dihedral angle between the two aromatic rings and diamine naphthalene. PMID:25238187

  8. Mechanism of base-catalyzed Schiff base deprotonation in halorhodopsin

    SciTech Connect

    Lanyi, J.K.

    1986-10-21

    It has been shown earlier that the deprotonation of the Schiff base of illuminated halorhodopsin proceeds with a much lower pK/sub a/ than that of the unilluminated pigment and the reversible protonation change is catalyzed by azide and cyanate. The authors have studied the kinetics of the proton-transfer events with flash spectroscopy and compared a variety of anionic bases with different pK/sub a/ with regard to the apparent binding constants and the catalytic activities. The results suggest a general base catalysis mechanism in which the anionic bases bind with apparently low affinity to halorhodopsin, although with some degree of size- and/or shape-dependent specificity. The locus of the catalysis is accessible from the cytoplasmic side of the membrane and is not at site I, where various anions bind and shift the pK/sub a/ of the deprotonation. Neither is it at site II, where a few specific anions (like chloride) bind to the all-trans pigment. It may be concluded that while the all-trans pigment loses its Schiff base proton very rapidly at its pK/sub a/, there is a kinetic barrier to this deprotonation in the 13-cis photointermediate that can be partially overcome by the reversible protonation of an extrinsic anionic base, which shuttles protons between the interior of the protein and the aqueous medium. The need for an extrinsic proton acceptor for efficient deprotonation of the Schiff base of halorhodopsin is one of the main differences between this pigment and the analogous retinal protein, bacteriorhodopsin.

  9. Synthesis of novel bisindolylmethane Schiff bases and their antibacterial activity.

    PubMed

    Imran, Syahrul; Taha, Muhammad; Ismail, Nor Hadiani; Khan, Khalid Mohammed; Naz, Farzana; Hussain, Memona; Tauseef, Saima

    2014-01-01

    In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 3-26 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B. PMID:25102118

  10. Synthesis and Degradation of Schiff Bases Containing Heterocyclic Pharmacophore

    PubMed Central

    Lede?i, Ionu?; Alexa, Anda; Bercean, Vasile; Vlase, Gabriela; Vlase, Titus; ?uta, Lenu?a-Maria; Fulia?, Adriana

    2015-01-01

    This paper reports on the synthesis and characterization of two Schiff bases bearing 1,2,4-triazolic moieties, namely 4H-4-(2-hydroxy-benzylidene-amino)-5-benzyl-3-mercapto-1,2,4-triazole and 4H-4-(4-nitro-benzylidene-amino)-5-benzyl-3-mercapto-1,2,4-triazole using thin layer chromatography, melting interval, elemental analysis, spectroscopy and thermal stability studies. PMID:25590299

  11. Iron(ii) spin crossover complexes with diaminonaphthalene-based Schiff base-like ligands: mononuclear complexes.

    PubMed

    Lochenie, Charles; Heinz, Julia; Milius, Wolfgang; Weber, Birgit

    2015-11-01

    The synthesis of new Schiff base-like ligands with extended ?-system and their iron complexes is described. Some of the iron(ii) complexes with N-heterocycles as axial ligands show spin crossover behaviour. The influence of the extended aromatic system on cooperative interactions is investigated by single crystal X-ray structure analysis, X-ray powder diffraction, and magnetic measurements. A combination of C-H? and C-HO interactions is made responsible for up to 10 K wide thermal hysteresis loops. PMID:26415580

  12. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  13. Synthesis of Triazole Schiff’s Base Derivatives and Their Inhibitory Kinetics on Tyrosinase Activity

    PubMed Central

    Wang, Hui-Fang; Zheng, Jing; Cui, Yi; Fang, Xin-Yu; Zhang, Lin-Min; Chen, Qing-Xi

    2015-01-01

    In the present study, new Schiff’s base derivatives: (Z)-4-amino-5-(2-(3- fluorobenzylidene)hydrazinyl)-4H-1,2,4-triazole-3-thiol (Y1), (Z)-3-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y2), (Z)-2-((2-(4-amino-5- mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y3) and 3-((Z)-(2-(4- (((E)-3-hydroxybenzylidene)amino)-5-mercapto-4H-1,2,4-triazol-3-yl)hydrazono)methyl)phenol (Y4) were synthesized and their structures were characterized by LC-MS, IR and 1H NMR. The inhibitory effects of these compounds on tyrosinase activites were evaluated. Compounds Y1, Y2 and Y3 showed potent inhibitory effects with respective IC50 value of 12.5, 7.0 and 1.5 ?M on the diphenolase activities. Moreover, the inhibition mechanisms were determined to be reversible and mixed types. Interactions of the compounds with tyrosinase were further analyzed by fluorescence quenching, copper interaction, and molecular simulation assays. The results together with the anti-tyrosinase activities data indicated that substitution on the second position of benzene ring showed superior ant-ityrosinase activities than that on third position, and that hydroxyl substitutes were better than fluorine substitutes. In addition, two benzene rings connecting to the triazole ring would produce larger steric hindrance, and affect the bonding between tyrosinase and inhibitors to decrease the inhibitory effects. The anti-tyrosinase effects of these compounds were in contrast to their antioxidant activities. In summary, this research will contribute to the development and design of antityrosinase agents. PMID:26422245

  14. Synthesis, antimicrobial and anti-biofilm activities of novel Schiff base analogues derived from methyl-12-aminooctadec-9-enoate.

    PubMed

    Mohini, Y; Prasad, R B N; Karuna, M S L; Poornachandra, Y; Ganesh Kumar, C

    2014-11-15

    A novel library of Schiff base analogues (5a-q) were synthesized by the condensation of methyl-12-aminooctadec-9-enoate and different substituted aromatic aldehydes. The synthesized compounds were thoroughly characterized by spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, ESI-MS and HRMS). The Schiff base analogues with different substitutions were screened for in vitro antibacterial activity against 7 different bacterial strains. Among these, the compounds with electron withdrawing substituent, namely chlorine (5a) and electron donating substituents, namely hydroxy (5 n) and methoxy (5 o), were found to exhibit excellent to good antimicrobial activities (MIC value 9-18 ?M) against Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS-16 MTCC 2940 and Bacillus subtilis MTCC 121. The products were also screened for anti-biofilm and MBC (Minimum Bactericidal Concentration) activities which exhibited promising activities. PMID:25304897

  15. Synthesis of cytotoxic and antioxidant Schiff's base analogs of aloin.

    PubMed

    Kumar, S; Matharasi, D Priya; Gopi, Sreeraj; Sivakumar, S; Narasimhan, S

    2010-05-01

    Aloin (10-glucopyranosyl-1,8-dihydroxy-3-hydroxymethyl-9(10H)-anthracenone), a bioactive compound in Aloe vera, although known to have an anticancer effect, has not been used in current drug research. Optimization of the lead structure could enhance the utility of this compound. Hence, aloin was modified using natural amino acids to produce Schiff's base, a potential pharmacophore, and its corresponding aglycones. The synthetic derivatives exhibited significant enhancement in their efficacy toward antioxidant (DPPH radical scavenging) and cytotoxic activities than those of the parent compound, aloin showing promise for application in cancer treatment. PMID:20496193

  16. Interaction of Schiff base ligand with tin dioxide nanoparticles: optical studies.

    PubMed

    Rani, J Suvetha; Ramakrishnan, V

    2013-10-01

    Interaction between 1,4 Bis ((2-Methyl) thio) Phenylamino methyl benzene (BMTPMB) Schiff base with tin dioxide nanoparticles (SnO2 NPs) of various concentrations in methanol have been studied using UV-Visible and Fluorescence spectroscopic techniques. The low value of Stern-Volmer quenching constant and non-linear plot of Benesi-Hildebrand equation suggests the less affinity of SnO2 NPs towards the adsorption of BMTPMB Schiff base. The Scott equation has been employed to determine molar absorptivity of the Schiff base-NPs system. PMID:23770505

  17. Tuning of spin crossover behaviour in iron(III) complexes involving pentadentate Schiff bases and pseudohalides.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Bo?a, Roman; Trávní?ek, Zden?k; Svoboda, Ingrid; Fuess, Hartmut; Linert, Wolfgang

    2011-10-21

    Investigations on a series of eight novel mononuclear iron(III) Schiff base complexes with the general formula [Fe(L(5))(L(1))]·S (where H(2)L(5) = pentadentate Schiff-base ligand, L(1) = a pseudohalido ligand, and S is a solvent molecule) are reported. Several different aromatic 2-hydroxyaldehyde derivatives were used in combination with a non-symmetrical triamine 1,6-diamino-4-azahexane to synthesize the H(2)L(5) Schiff base ligands. The consecutive reaction with iron(III) chloride resulted in the preparation of the [Fe(L(5))Cl] precursor complexes which were left to react with a wide range of the L(1) pseudohalido ligands. The low-spin compounds were prepared using the cyanido ligand: [Fe(3m-salpet)(CN)]·CH(3)OH (1a), [Fe(3e-salpet)(CN)]·H(2)O (1b), while the high-spin compounds were obtained by the reaction of the pseudohalido (other than cyanido) ligands with the [Fe(L(5))Cl] complex arising from salicylaldehyde derivatives: [Fe(3Bu5Me-salpet)(NCS)] (2a), [Fe(3m-salpet)(NCO)]·CH(3)OH (2b) and [Fe(3m-salpet)(N(3))] (2c). The compounds exhibiting spin-crossover phenomena were prepared only when L(5) arose from 2-hydroxy-1-naphthaldehyde (H(2)L(5) = H(2)napet): [Fe(napet)(NCS)]·CH(3)CN (3a, T(1/2) = 151 K), [Fe(napet)(NCSe)]·CH(3)CN (3b, T(1/2) = 170 K), [Fe(napet)(NCO)] (3c, T(1/2) = 155 K) and [Fe(napet)(N(3))], which, moreover, exhibits thermal hysteresis (3d, T(1/2)? = 122 K, T(1/2)? = 117 K). These compounds are the first examples of octahedral iron(III) spin-crossover compounds with the coordinated pseudohalides. We report the structure and magnetic properties of these complexes. The magnetic data of all the compounds were analysed using the spin Hamiltonian formalism including the ZFS term and in the case of spin-crossover, the Ising-like model was also applied. PMID:21904754

  18. Synthesis, characterization and antibacterial activity of biodegradable films prepared from Schiff bases of zein.

    PubMed

    Soliman, E A; Khalil, A A; Deraz, S F; El-Fawal, G; Elrahman, S Abd

    2014-10-01

    Pure zein is known to be very hydrophobic, but is still inappropriate for coating and film applications because of their brittle nature. In an attempt to improve the flexibility and the antimicrobial activity of these coatings and films, Chemical modification of zein through forming Schiff bases with different phenolic aldhydes was tried. Influence of this modifications on mechanical, topographical, wetting properties and antimicrobial activity of zein films were evaluated. The chemical structure of the Schiff bases films were characterized by ATR-FTIR spectroscopy. The results indicate an improvement in mechanical properties with chemically modification of zein to form Schiff bases leading to a reduction in the elastic modulus. An increase in the elongation at break has been observed, but with slight influence on tensile strength. Plasticized zein films have similar initial contact angle (?40°). An increase in reaction temperature and time increases film's affinity towards water. As shown by contact angle measurements, a noticeable relation was found between film composition and the hydrophilicity. Surface topography also varied by forming Schiff bases, becoming rougher than zein-based films. The antibacterial activities of zein and Schiff bases of zein-based films were investigated against gram-positive bacteria (Listeria innocua, Listeria monocytogenes, Bacillus cereus and Clostridium sporogenes) and gram-negative bacteria (Escherichia coli, Yersinia enterocolitica and Salmonella enterica). It was found that the antibacterial activity of the Schiff bases-based films was more effective than that of zein-based films. PMID:25328181

  19. Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells

    E-print Network

    Deng, Xunming

    Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

  20. Microplate assay for screening the antibacterial activity of Schiff bases derived from substituted benzopyran-4-one

    NASA Astrophysics Data System (ADS)

    Amin, Rehab M.; Abdel-Kader, Nora S.; El-Ansary, Aida L.

    Schiff bases (SB1-SB3) were synthesized from the condensation of 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one with 2-aminopyridine (SB1), p-phenylenediamine (SB2) and o-phenylenediamine (SB3), while Schiff bases (SB4-SB6) were synthesized by condensation of 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one with 2-aminopyridine (SB4), p-phenylenediamine (SB5) and o-phenylenediamine (SB6). Schiff bases were characterized using elemental analysis, IR, UV-Vis, 1H NMR, 13C NMR and mass spectroscopy. These compounds were screened for antibacterial activities by micro-plate assay technique. Escherichia coli and Staphylococcus capitis were exposed to different concentrations of the Schiff bases. Results showed that the antibacterial effect of these Schiff bases on Gram-negative bacteria were higher than that on Gram-positive bacteria moreover, the Schiff bases containing substituent OCH3 on position five have higher antibacterial activity than that containing hydroxy group on the same position.

  1. Studies on some iridium(III) complexes with Schiff bases derived from amino carboxylic acids.

    PubMed

    Sharma, V K; Pandey, O P; Sengupta, S K

    1988-12-01

    The reactions of iridium(III) chloride with different Schiff bases gave complexes of types [Ir(SB)3], [Ir(SB')Cl(H2O)2], [Ir(SB'')Cl2]n, [Ir(SB'' ')Cl(H2O)]n (SBH = Schiff bases derived from anthranilic acid and benzaldehyde, acetophenone, vanillin, cinnamaldehyde or m-hydroxyacetophenone; SB'H2 = Schiff bases derived from anthranilic acid and salicylaldehyde or o-hydroxyacetophenone; SB''H = Schiff bases derived from p-aminobenzoic acid and benzaldehyde, acetophenone, vanillin, cinnamaldehyde, or m-hydroxyacetophenone; SB'' 'H2 = Schiff bases derived from p-aminobenzoic acid and salicylaldehyde or o-hydroxyacetophenone). These complexes have been characterized on the basis of elemental analyses, conductance, magnetic moment, and spectral (electronic, i.r., and 1H n.m.r.) data. The electronic spectra reveals octahedral geometry for these complexes except for [Ir(SB'')Cl2]n, which is trigonal bipyramidal. The thermal behavior of these complexes has also been studied by TG, DTG, and DSC techniques. The different kinetic parameters, viz., order of reaction, activation of energy, and heat of reaction were calculated. The antifungal and antiviral activities of the complexes with Schiff bases derived from anthranilic acid have also been investigated. PMID:3267018

  2. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  3. Synthesis of Some Novel Heterocyclic and Schiff Base Derivatives as Antimicrobial Agents.

    PubMed

    Azab, Mohamed E; Rizk, Sameh A; Amr, Abd El-Galil E

    2015-01-01

    Treatment of 2,3-diaryloxirane-2,3-dicarbonitriles 1a-c with different nitrogen nucleophiles, e.g., hydrazine, methyl hydrazine, phenyl hydrazine, hydroxylamine, thiosemicarbazide, and/or 2-amino-5-phenyl-1,3,4-thiadiazole, afforded pyrazole, isoxazole, pyrrolotriazine, imidazolothiadiazole derivatives 2-5, respectively. Reacting pyrazoles 2a-c with aromatic aldehydes and/or methyl glycinate produced Schiff's bases 7a-d and pyrazolo[3,4-b]-pyrazinone derivative 8, respectively. Treating 7 with ammonium acetate and/or hydrazine hydrate, furnished the imidazolopyrazole and pyrazolotriazine derivatives 9 and 10, respectively. Reaction of 8 with chloroacetic acid and/or diethyl malonate gave tricyclic compound 11 and triketone 12, respectively. On the other hand, compound 1 was reacted with active methylene precursors, e.g., acetylacetone and/or cyclopentanone producing adducts 14a,b which upon fusion with ammonium acetate furnished the 3-pyridone derivatives 15a,b, respectively. Some of newly synthesized compounds were screened for activity against bacterial and fungal strains and most of the newly synthesized compounds showed high antimicrobial activities. The structures of the new compounds were elucidated using IR, ¹H-NMR, (13)C-NMR and mass spectroscopy. PMID:26457697

  4. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(ii) Schiff base complexes.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Svoboda, Ingrid; Bo?a, Roman; Trávní?ek, Zden?k

    2015-05-28

    A series of pentacoordinate Ni(ii) complexes of the general formula [Ni(L5)] () with various pentadentate Schiff base ligands H2L5 (originating in a condensation of aromatic ortho-hydroxy-aldehydes and aliphatic triamines) was synthesized and characterized by X-ray structure analysis and magnetometry. The alternations of substituents on the H2L parent ligand resulted in the complexes with the geometry varying between the square-pyramid and trigonal-bipyramid. In the compounds whose chromophore geometry is closer to a trigonal-bipyramid, a large and negative uniaxial anisotropy (D = -64 cm(-1)) was identified. Moreover, the simple linear expression for the axial zero-field splitting (ZFS) parameter, D/cm(-1) = 32.7(4.8) - 151(10)?, was proposed, where ? (in degrees) stands for the Addison parameter. The results of magnetic analysis were also supported by ab initio CASSCF/NEVPT2 calculations of the ZFS splitting parameters D and E, and g tensors. Despite large and negative D-values of the reported compounds, slow relaxation of magnetization was not observed either in zero or non-zero static magnetic field, thus no single-molecule magnetic behaviour was detected. PMID:25919125

  5. Synthesis, potentiometric and antimicrobial studies on metal complexes of isoxazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Prashanthi, Y.; Kiranmai, K.; Subhashini, N. J. P.; Shivaraj

    2008-06-01

    The metal complexes of Cu(II), Ni(II) and Co(II) with Schiff bases of 3-(2-hydroxy-3-ethoxybenzylideneamino)-5-methyl isoxazole [HEBMI] and 3-(2-hydroxy-5-nitrobenzylidene amino)-5-methyl isoxazole [HNBMI] which were obtained by the condensation of 3-amino-5-methyl isoxazole with substituted salicylaldehydes have been synthesized. Schiff bases and their complexes have been characterized on the basis of elemental analysis, magnetic moments, molar conductivity, thermal analysis and spectral (IR, UV, NMR and Mass) studies. The spectral data show that these ligands act in a monovalent bidentate fashion, co-ordinating through phenolic oxygen and azomethine nitrogen atoms. Chelates of Co(II), Ni(II) appear to be octahedral and Cu(II) appears to be distorted octahedral. To investigate the relationship between formation constants of binary complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in aqueous solution at 30 ± 1 °C and at 0.1 M KNO 3 ionic strength and discussed. Antimicrobial activities of the Schiff bases and their complexes were screened. The structure-activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability constants. It is observed that the activity enhances upon complexation and the order of activity is in accordance with stability order of metal ions.

  6. An extending evidence of molecular conformation on spectroscopic properties of symmetrical bis-Schiff bases

    NASA Astrophysics Data System (ADS)

    Fang, Zhengjun; Cao, Chenzhong; Chen, Jianfang; Deng, Xingchen

    2014-04-01

    The relationship between the molecular conformation and spectroscopic properties of symmetrical bis-Schiff bases, was explored experimentally. The synthesis, crystal structures, and spectroscopic behaviors of symmetrical bis-Schiff bases derived from 1,4-Phthalaldehyde, p-Ysbnd C6H4Ndbnd CHC6H4CHdbnd NC6H4sbnd p-Y (Y = OMe, Me, H, Cl, or F) were reported. The results show when the effect of distance between X or Y and the imine carbon was considered, a good correlation between the ?max or ?C(Cdbnd N) of symmetrical bis-Schiff bases and the substituent parameters was obtained. The correlation results indicate that for both symmetrical bis-Schiff bases derived from 1,4-Phenylenediamine and 1,4-Phthalaldehyde, the UV absorption spectrum is dependent on the substituent at the aniline ring and the dihedral angle ?, and the term sin(?) is suitable to modify the substituent effects on the ?max. However, experimental investigations indicate that the dihedral angle ? has a limited effect on the values of ?C(Cdbnd N). This study provides an extending evidence of molecular conformation effects on spectroscopic properties of symmetrical bis-Schiff bases.

  7. La(III) complex involving the O,N-donor environment of quinazoline-4(3H)-one Schiff’s base and their antimicrobial attributes against methicillin-resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Siddappa, K.; Mane, Sunilkumar B.; Manikprabhu, Deene

    2014-09-01

    The incidence of methicillin-resistant Staphylococcus aureus increased during the past few decades, so there is an urgent need of new antimicrobial agents if public health is concerned. Though the Schiff’s bases and La(III) complex have enormous biological activity, but less attention was given in their synthesis. In the present investigation, we synthesized a new (E)-3-((2-hydroxynaphthalen-1-yl) methyleneamino)-2-methylquinazoline-4(3H)-one HNMAMQ Schiff’s base by the condensation of 3-(2-aminophenyl) quinazolin-2-methyl-4(3H)-one and 2-hydroxy-1-naphthaldehyde. The Schiff’s base HNMAMQ and its La(III) complex were characterized by elemental analyses, IR, NMR, mass spectra, and thermal studies. The newly synthesized Schiff’s base HNMAMQ and its La(III) complex were evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus isolated from the Gulbarga region in India. The Schiff’s base HNMAMQ and its La(III) complex showed good antimicrobial activity and thus represents a potential new drug of choice.

  8. Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms

    NASA Astrophysics Data System (ADS)

    Güngör, Özlem; Gürkan, Perihan

    2014-09-01

    Schiff bases derived from 5-nitro-salicylaldehyde and 4-aminobutyric acid, 5-aminopentanoic acid and 6-aminohexanoic acid were synthesized both as monosodium salts (1a-3a) and neutral forms (1b-3b). The monosodium-Schiff bases were characterized by elemental analysis, 1H/13C NMR, IR, powder XRD, UV-vis spectra and conductivity measurements. The neutral-Schiff bases were characterized by elemental analysis, 1H/13C NMR, 2D NMR (HMQC), mass, IR, powder XRD, UV-vis spectra and conductivity measurements. The intramolecular hydrogen bonding and related tautomeric equilibria in all the Schiff bases were studied by UV-vis and 1H NMR spectra in solution. Additionally, the neutral-Schiff bases were screened against Staphylococcus aureus-EB18, S. aureus-ATCC 25923, Escherichia coli-ATCC 11230, Candida albicans-M3 and C. albicans-ATCC 16231.

  9. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin.

    PubMed

    Andruh, Marius

    2015-10-14

    Ortho-vanillin became very popular in coordination chemistry because of its Schiff bases, which generate a rich variety of complexes, ranging from oligonuclear species to coordination polymers. Some of these organic molecules are particularly useful in metallosupramolecular chemistry for assembling homo- and heterometallic helicates. The Schiff bases obtained using aminoalcohols open the door to the synthesis of homo- and heterometallic clusters with various nuclearities and surprising topologies of the metal centers. Several relevant structural types are reviewed. The heterobinuclear 3d-3d' and 3d-4f complexes are valuable building-blocks for the synthesis of heterotrimetallic systems. Beyond the richness of this chemistry, the complexes obtained from o-vanillin-based Schiff ligands show interesting properties: magnetism, luminescence, chirality, catalysis, cytotoxicity, and ferroelectricity. This paper reviews recent data that illustrate a very fertile and dynamic research field in coordination chemistry and materials science. PMID:26282536

  10. Determination of the Mechanism of Electrocatalytic Water Oxidation by a Dimanganese Tetrakis-Schiff Base Complex: Comparison of

    E-print Network

    Dinolfo, Peter H.

    to fuels.1 Photo- autotrophs combine sunlight, water, O2, and CO2 into sugars using a cascade of enzymes-Schiff Base Complex: Comparison of Density Functional Theory Calculations with Experiment James R. Buchwald have recently reported a new class of tetrakis-Schiff base macrocycles bearing a dimanganese

  11. Crossing the Traditional Boundaries: Salen-Based Schiff Bases for Thermal Protective Applications.

    PubMed

    Naik, Anil D; Fontaine, Gaëlle; Bellayer, Séverine; Bourbigot, Serge

    2015-09-30

    A broad spectrum of applications of "Salen"-based Schiff bases tagged them as versatile multifunctional materials. However, their applicability is often bounded by a temperature threshold and, thus, they have rarely been used for high temperature applications. Our investigation of a classical Schiff base, N,N'-bis(4-hydroxysalicylidene)ethylenediamine (L2), reveals that it displays an intriguingly combative response to an elevated temperature/fire scenario. L2 resists and regulates thermal degradation by forming an ablative surface, and acts as a thermal shield. A polycondensation via covalent cross-linking, which forms a hyperbranched cross-linked resin is found to constitute the origin of the ablative surface. This is a unique example of a resin formation produced with a Schiff base, that mimicks the operational strategy of a high-heat resistant phenolic resin. Further applicability of L2, as a flame retardant, was tested in an engineering polymer, polyamide-6. It was found that it reinforces the polymer against fire risks by the formation of an intumescent coating. This paves the way for a new strategic avenue in safeguarding polymeric materials toward fire risks. Further, this material represents a promising start for thermal protective applications. PMID:26348914

  12. Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde.

    PubMed

    Keshk, Sherif M A S; Ramadan, Ahmed M; Bondock, Samir

    2015-08-20

    The synthesis of two novel Schiff's bases (cellulose-2,3-bis-[(4-methylene-amino)-benzene-sulfonamide] (5) & cellulose-2,3-bis-[(4-methylene-amino)-N-(thiazol-2-yl)-benzenesulfonamide] (6) via condensation reactions of periodate oxidized developed bacterial cellulose ODBC (2) with sulfa drugs [sulfanilamide (3) & sulfathiazole (4)] was reported. The physicochemical characterization of the condensation products was performed using FTIR, (1)H NMR, (13)C NMR spectral analyses, X-ray diffraction and DTA. The ODBC exhibited the highest degree of oxidation based on the aldehyde group number percentage (82.9%), which confirms the highest reactivity of developed bacterial cellulose [DBC (1)]. The X-ray diffractograms indicated an increase in the interplanar distance of the cellulose Schiff base (6) compared to ODBC (2) due to sulfathiazole (4) inclusion between ODBC (2) sheets corresponding to the 1 1 0 plane. In addition, the aldehyde content of Schiff base (6) was (20.8%) much lower than that of Schiff base (5) (41.5%). These results confirmed the high affinity of sulfathiazole (4) to the ODBC (2) chain, and the substantial changes in the original properties of ODBC were due to these chemical modifications rather than the sulfanilamide (3). PMID:25965481

  13. Syntheses, crystal structure and biological evaluation of Schiff bases and copper complexes derived from 4-formylpyrazolone

    NASA Astrophysics Data System (ADS)

    Joseph, V. A.; Pandya, J. H.; Jadeja, R. N.

    2015-02-01

    Two new pyrazolone based Schiff base ligands 4-((2,4-dimethylphenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-ME] and 4-((3,4-difluorophenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-F] were synthesized. Using these Schiff base ligands two new Copper(II) complexes, [Cu(PTPMP-ME)2] (1) and [Cu(PTPMP-F)2] (2) were synthesized. The ligands and their copper complexes were characterized by IR, 1H NMR, mass, UV-Visible spectroscopy, molar conductivity and magnetic measurement. The molecular geometry of Schiff base ligand PTPMP-ME and copper complexes were determined by single-crystal X-ray analysis. On the basis of single crystal X-ray analysis and spectroscopic techniques, square planar geometry of the complexes was proposed. The Schiff base ligands and their metal complexes were tested for antimicrobial activity against Gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis and Gram-negative bacteria; Escherichia coli and Pseudomonas aeruginosa.

  14. Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands

    NASA Astrophysics Data System (ADS)

    Monsaert, Stijn; Voort, Pascal Van Der; Ledoux, Nele; Allaert, Bart; Drozdzak, Renata; Verpoort, Francis

    The classic Grubbs second-generation complex 2 was modified through 1. The introduction of a bidentate Schiff base ligand 2. Changes in the amino side groups of the NHC ligand Representative olefin metathesis test reactions show the effects induced by the ligand modifications and demonstrate some interesting new properties of the described catalysts. catalysts.

  15. Rapid Photodynamics of Vitamin B6 Coenzyme Pyridoxal 5-Phosphate and Its Schiff Bases in Solution

    E-print Network

    Toney, Michael

    Rapid Photodynamics of Vitamin B6 Coenzyme Pyridoxal 5-Phosphate and Its Schiff Bases in Solution, 2007; In Final Form: February 4, 2008 The active form of vitamin B6, pyridoxal 5-phosphate (PLP (absorbing at 410 nm) tautomers in solution. 1. Introduction Pyridoxal 5-phosphate (PLP), one form of vitamin

  16. Interaction of Schiff base with bovine serum albumin: site-specific photocleavage.

    PubMed

    Shrivastava, H Y; Kanthimathi, M; Nair, B U

    1999-11-19

    A Schiff-base ligand with donor/acceptor substituents viz. 2, 3-bis¿[(2-hydroxy-4-diethylamino) (phenyl) (methylene)]amino¿-2-butenedinitrile was synthesized, its binding properties with bovine serum albumin (BSA) and its site-specific photocleavage in the presence of cobaltous chloride have been evaluated. The Schiff-base ligand showed increase in absorption with a 5-nm red shift in the absorption maximum consistent with the binding of Schiff-base ligand to hydrophobic sites on the protein. The binding plot obtained from the absorption titration gives a binding constant of 6.4 +/- 0.3 x 10(4) M(-1). The CD spectrum of BSA in presence of the ligand shows that binding of the ligand leads to a change in the helicity of the protein. This ligand has been found to induce site-specific photocleavage of the protein in the presence of cobaltous chloride. The gel electrophoresis pattern of a photolyzed sample of BSA/Schiff-base ligand/cobaltous chloride shows that protein is cleaved into two polypeptide fragments, indicating site-specific binding for the ligand to the protein. PMID:10558863

  17. Towards dipyrrins: oxidation and metalation of acyclic and macrocyclic Schiff-base dipyrromethanes.

    PubMed

    Pankhurst, James R; Cadenbach, Thomas; Betz, Daniel; Finn, Colin; Love, Jason B

    2015-02-01

    Oxidation of acyclic Schiff-base dipyrromethanes cleanly results in dipyrrins, whereas the macrocyclic 'Pacman' analogues either decompose or form new dinuclear copper(ii) complexes that are inert to ligand oxidation; the unhindered hydrogen substituent at the meso-carbon allows new structural motifs to form. PMID:25563854

  18. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  19. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  20. Synthesis and spectral studies of metal complexes of a Schiff base derived from (2-amino-5-chlorophenyl)phenyl methanone.

    PubMed

    Mini, S; Sadasivan, V; Meena, S S; Bhatt, Pramod

    2015-12-01

    Some new complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Fe(III) with the Schiff base 5-chloro-2-(furan-2-yl methylamino)phenyl)phenyl methanone has been synthesized and characterized by elemental analysis, spectroscopic data including FT-IR, (1)H NMR, Electronic, ESI mass, Mössbauer & ESR. It has been found that the Schiff base behaves as a neutral bidentate N, O donor which chelates with the metal ions in 1:2 stoichiometry. Magnetic moment and electrolytic conductance data confirms this. The Schiff base and selected complexes were screened for antimicrobial activity. The complexes and the Schiff base were subjected to antioxidant study. The antitumor activity of Co(II) complex was tested by MTT assay. The result indicates the viability of the complex against tested cell lines. PMID:26163782

  1. Preparation, spectral studies, theoretical, electrochemical and antibacterial investigation of a new Schiff base and its some metal complexes

    NASA Astrophysics Data System (ADS)

    Ilhan, S.; Baykara, H.; Seyitoglu, M. S.; Levent, A.; Özdemir, S.; Dündar, A.; Öztomsuk, A.; Cornejo, M. H.

    2014-10-01

    A new Schiff base ligand, 1,6-Bis(2-(5-bromo-2-hydroxybenzylideneamino)-4-chlorophenoxy)hexane was synthesized. Some Schiff metal complexes of the new Schiff base were prepared by the reaction of some metal salts and the Schiff base. The complexes are non-electrolytes as shown by their molar conductivities (?M). The structures of metal complexes are proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, mass spectra and thermal gravimetric analysis. In addition theoretical 1H NMR, HOMO-LUMO studies of the ligand; antimicrobial and cyclic voltammetric studies of the compounds were also carried out. In this study antioxidant and antibacterial activities of the compounds were examined via in vitro methods.

  2. Schiff base ligands and their transition metal complexes in the mixtures of ionic liquid + organic solvent: a thermodynamic study.

    PubMed

    Shekaari, Hemayat; Kazempour, Amir; Khoshalhan, Maryam

    2015-01-21

    Schiff bases and their metal complexes in the mixtures of ionic liquid (IL) + organic solvent have shown great potential in attractive oxidation catalytic processes. The efficiency of such a process is strongly dependent on the various molecular interactions occurring between components. Thermodynamic properties of these systems can provide valuable information about structural interactions. Therefore, in this work, the interactions of the IL 1-hexyl-3-methylimidazolium chloride ([HMIm]Cl) with Schiff bases in organic solvents were studied through the measurements of density, viscosity, and electrical conductivity. The effect of solvent on the interactions was examined by the solutions of IL + BPIC Schiff base + solvent (C2H6O-C3H8O-C4H10O). Moreover, the influence of Schiff base ligand and Schiff base complex structures was probed by the solutions of IL + DMA + ligand (salcn/salpr/salen) and IL + DMA + complex (VO(3-OMe-salen)/VO(salophen)/VO(salen)), respectively. Using the experimental data, some important thermodynamic properties, such as standard partial molar volume (V(0)(?,IL)), experimental slope (Sv), viscosity B-coefficient, solvation number (B/V(0)(?,IL) and limiting molar conductivity (?0) were calculated and discussed in terms of solute-solvent (IL-DMF/alcohol) and solute-cosolute (IL-Schiff base) interactions. PMID:25482659

  3. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed.

  4. Docking of ethanamine Schiff base imines & metal (II) complexes, cytotoxicity & DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Sujarani, S.; Ramu, A.

    2015-01-01

    The present study deals with a series of biologically and stereo chemically important novel transition metal (II) Schiff base chelates. The Cu (II), Co (II), Mn (II) and Ni (II) ions containing complexes were synthesized by using diphenylethanamine and 2-hydroxy/2, 4-dihydroxy/2-hydroxy-4-methoxybenzaldehydes. The synthesized complexes were characterized using micro analytical, IR, NMR, ESI-Mass, UV-Visible, cyclic voltammetry and the EPR spectroscopic techniques. The spectral data evidenced the action of ligands as a neutral bidentate Schiff bases, coordinating through azomethine nitrogen and oxygen atom of hydroxyl group. The interaction studies revealed the groove binding nature of complexes with CT-DNA. The ligand and synthesized metal complexes showed cytotoxicity against cancerous cells. The strong binding affinity of the imine and metal complexes was also confirmed by molecular docking studies.

  5. Coordination chemistry, thermodynamics and DFT calculations of copper(II) NNOS Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro

    2014-12-01

    Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2";-aminoethane), (1-methyl-2";-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature ?eff values for the complexes are 1.71-1.80 B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1 M (NaClO4), at 25?C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.

  6. Photophysical study of the Schiff bases of 5'-deoxypyridoxal and n-hexylamine in cationic micelles.

    PubMed

    Vázquez Segura, M A; Donoso, J; Muñoz, F; García Blanco, F; García del Vado, M A; Echevarría, G

    1994-11-01

    The absorption and fluorescence spectra of the Schiff bases formed between 5'-deoxypyridoxal and n-hexylamine in aqueous media containing different concentrations of the cationic surfactant hexadecyltrimethylammonium bromide were recorded at 25 degrees C. The quantum yields of fluorescence of the different zwitterionic and enol forms of the chemical species of the Schiff bases occurring in media of pH 4.5-8.5 were determined. Also, the fluorescence quenching resulting from the presence of the surfactant and that of iodide ion were analyzed. From the results obtained it follows that the zwitterionic forms do not interact with the cationic surfactant, whereas the enol forms do interact with it. PMID:7800712

  7. Preparation, regulation and biological application of a Schiff base fluorescence probe

    NASA Astrophysics Data System (ADS)

    Yin, Ninghua; Diao, Haipeng; Liu, Wen; Wang, Jingru; Feng, Liheng

    2016-01-01

    A facile fluorescence switch with Schiff base units was designed and achieved by nucleophilic addition and dehydration reaction. The fluorescence of the probe can be regulated by metal ions (Al3 + and Cu2 +). The whole process shows that the weak fluorescence of the probe enhances with the addition of Al3 +, and then the strong fluorescence of the probe/Al3 + ensemble reduces by introducing Cu2 +. Meanwhile, the solution color changes of the probe with metal ions can be observed under 365 nm UV-vis light from weak light, pale green, green, pale green to weak light. Noticeably, the photo regulation processes of the probe by metal ions can be realized in the biological system and applied in cells imaging. The work provides a new strategy for designing facile regulation probe and develops a new application for Schiff base derivatives.

  8. Synthesis, fluorescence study and biological evaluation of three Zn(II) complexes with Paeonol Schiff base

    NASA Astrophysics Data System (ADS)

    Qin, Dong-dong; Yang, Zheng-yin; Qi, Gao-fei

    2009-10-01

    The synthesis of three Paeonol Schiff base ligand and their Zn(II) complexes are reported. The complexes were fully characterized by IR, 1H NMR, elemental analysis and molar conductivity. The experiment results show the three Zn(II) complexes can emit bright fluorescence at room temperature in DMF solution and solid state. The fluorescence quantum yields ( ?) of three Schiff base ligands and their Zn(II) complexes were calculated using quinine sulfate as the reference with a known ?R of 0.546 in 1.0N sulfuric acid. Furthermore, in order to develop these Zn(II) complexes' biological value, the antioxidant activities against hydroxyl radicals (OH rad ) were evaluated. The results show the three complexes possess excellent ability to scavenge hydroxyl radicals.

  9. Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes

    PubMed Central

    Neelakantan, M. A.; Esakkiammal, M.; Mariappan, S. S.; Dharmaraja, J.; Jeyakumar, T.

    2010-01-01

    Some new mixed ligand complexes (1-5) of type ML'B (M(II)=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HL'= o-vanillidene-2-aminobenzothiazole; B= 1,10-phenanthroline) and Schiff base metal complexes of types (ML2") (6-10) and (M2L") (11-15) (HL"= o-vanillidene-2-amino-N-(2-pyridyl)-benzene sulfonamide) were synthesized and characterized by elemental analysis and spectral (IR, 1H NMR and 13C NMR) studies. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria, fungi and yeast. The metal complexes show more potent activities compared with Schiff base ligands. PMID:20838526

  10. Novel polymer anchored Cr(III) Schiff base complexes: synthesis, characterization and antimicrobial properties.

    PubMed

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and (1)H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH). PMID:22622060

  11. Synthesis and characterization of modified Schiff base silatranes (MSBS) via 'Click Silylation'

    NASA Astrophysics Data System (ADS)

    Singh, Gurjaspreet; Arora, Aanchal; Mangat, Satinderpal Singh; Singh, Jandeep; Chaudhary, Sunita; Kaur, Navneet; Choquesillo-Lazarte, Duane

    2015-01-01

    Schiff bases (1a-1d) were modified into terminal alkynes (2a-2d) which on Click Silylation with 3-azidopropyltriethoxysilane (AzPTES) yielded 1,2,3-triazole capped triethoxysilanes (3a-3d). These triethoxysilanes on transesterification with triethanolamine afforded corresponding modified Schiff base silatranes (MSBS) (4a-4d) in high yield and purity. All the synthesized compounds were well characterized by IR, NMR (1H, 13C), mass spectroscopy, elemental analysis and complete structure elucidation by X-ray diffraction studies for 2b and 4b. Starting alkynes and final silatranes are further compared by their absorption spectra and TGA analysis. Synthesized MSBS are the first compounds of their kind which being hydrolytically stable can be put to further use in the field of medical and material research.

  12. Novel polymer anchored Cr(III) Schiff base complexes: Synthesis, characterization and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Selvi, Canan; Nartop, Dilek

    2012-09-01

    New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).

  13. Preparation, regulation and biological application of a Schiff base fluorescence probe.

    PubMed

    Yin, Ninghua; Diao, Haipeng; Liu, Wen; Wang, Jingru; Feng, Liheng

    2016-01-15

    A facile fluorescence switch with Schiff base units was designed and achieved by nucleophilic addition and dehydration reaction. The fluorescence of the probe can be regulated by metal ions (Al(3+) and Cu(2+)). The whole process shows that the weak fluorescence of the probe enhances with the addition of Al(3+), and then the strong fluorescence of the probe/Al(3+) ensemble reduces by introducing Cu(2+). Meanwhile, the solution color changes of the probe with metal ions can be observed under 365nm UV-vis light from weak light, pale green, green, pale green to weak light. Noticeably, the photo regulation processes of the probe by metal ions can be realized in the biological system and applied in cells imaging. The work provides a new strategy for designing facile regulation probe and develops a new application for Schiff base derivatives. PMID:26282317

  14. In vitro anticancer activities of Schiff base and its lanthanum complex.

    PubMed

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-15

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L(1))2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L(1)), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2M ratio with ligands L(1) and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L(2)) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, (1)H/(13)C NMR, thermogravimetric, XRD, and SEM analysis. PMID:26619196

  15. Two Schiff-base fluorescent sensors for selective sensing of aluminum (III): Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Qin, Jing-Can; Cheng, Xiao-ying; Fang, Ran; Wang, Ming-fang; Yang, Zheng-yin; Li, Tian-rong; Li, Yong

    2016-01-01

    Two Schiff-base fluorescent sensors have been synthesized, which both can act as fluorescent probes for Al3+, upon addition of Al3+, they exhibit a large fluorescence enhancement which might be attributed to the formation of 1:1 ligand-Al complexes which inhibit photoinduced electron transfer (PET) progress, and that the proposed binding modes of the sensors and Al3+ are identified by theoretical calculations.

  16. Two Schiff-base fluorescent sensors for selective sensing of aluminum (III): Experimental and computational studies.

    PubMed

    Qin, Jing-Can; Cheng, Xiao-Ying; Fang, Ran; Wang, Ming-Fang; Yang, Zheng-Yin; Li, Tian-Rong; Li, Yong

    2016-01-01

    Two Schiff-base fluorescent sensors have been synthesized, which both can act as fluorescent probes for Al(3+), upon addition of Al(3+), they exhibit a large fluorescence enhancement which might be attributed to the formation of 1:1 ligand-Al complexes which inhibit photoinduced electron transfer (PET) progress, and that the proposed binding modes of the sensors and Al(3+) are identified by theoretical calculations. PMID:26232579

  17. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Purtas, Savas; Güngör, Seyit Ali; Ceyhan, Gökhan; Akgün, Eyup; McKee, Vickie

    2015-02-01

    A novel Schiff base ligand was synthesized by the condensation reaction of 2,6-diformylpyridine and 4-aminoantipyrine in MeOH and characterised by its melting point, elemental analysis, FT-IR, 1H, 13C NMR and mass spectroscopic studies. Molecular structure of the ligand was determined by single crystal X-ray diffraction technique. The electrochemical properties of the Schiff base ligand were studied in different solvents at various scan rates. Sensor ability of the Schiff base ligand was investigated by colorimetric and fluorometric methods. Visual colour change of the ligand was investigated in MeOH solvent in presence of various metal ions Na+, Mg2+, Al3+, K+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+. Upon addition of Al3+ ion into a MeOH solution of the ligand, an orange colour developed which is detectable by naked eye. Fluorescence emission studies showed that the ligand showed single emission band at 630-665 nm upon excitation at 560 nm. Addition of metal ions Na+, Mg2+, K+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ (1:1 M ratio) cause fluorescence quenching, however addition of Al+3 resulted in an increase in fluorescence intensity. No significant variation was observed in the fluorescence intensity caused by Al3+ in presence of other metal ions. Therefore, the Schiff base ligand can be used for selective detection of Al3+ ions in the presence of the other metal ions studied.

  18. Keto-enol tautomerism in asymmetric Schiff bases derived from p-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Užarevi?, Krunoslav; Rub?i?, Mirta; Stilinovi?, Vladimir; Kaitner, Branko; Cindri?, Marina

    2010-12-01

    Reaction of dehydroacetic acid and p-phenylenediamine afforded a monosubstituted Schiff base, I, with the other amino group free. In further reactions with various salicylaldehyde derivatives, I served as a precursor for synthesis of asymmetric bis-Schiff bases. The synthesized compounds are thus comprised of two subunits, dehydroacetic ( dha) and salicylidene ( sal), which are bridged by the phenylene linker. All products were investigated by means of elemental analysis, FT-IR and NMR spectroscopy, thermal methods, powder X-ray diffraction and, when possible, by single crystal X-ray crystallography. Structural and spectroscopic studies revealed that in the bis-products, the dha subunit adopts the keto-amino tautomeric form, while the sal subunit adopts the enol-imino form. Tautomeric forms were not affected if a methoxo group was introduced on the salicylidene ring. Both tautomeric subunits are stabilized by strong resonance-assisted hydrogen bonds, RAHB. The two subunits of the prepared bis-Schiff bases predominantly retain in solution the same tautomeric forms as found in the solid state.

  19. Synthesis, spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff base modified chitosan

    NASA Astrophysics Data System (ADS)

    Antony, R.; Theodore David, S.; Saravanan, K.; Karuppasamy, K.; Balakumar, S.

    2013-02-01

    Three novel quadridentate Schiff base complexes, [Cu(OIAC)Cl2], [Co(OIAC)Cl2] and [Ni(OIAC)Cl2] [OIAC, a Schiff base ligand: (([2-oxo-1H-indol-3-ylidene]amino)chitosan)] have been synthesized. The molecular structure of the complexes has been characterised by elemental analyses, magnetic measurements, molar conductance studies, vibrational (FT-IR), electronic (UV-Vis) and 1H NMR spectroscopic techniques. Thermal properties of the complexes have been investigated with TG-DTG analyses. The surface morphological difference of ligand and the complexes has been explored with scanning electron microscopy. The crystallinity of the compounds was analysed by powder X-ray diffraction technique and it was found to be less for the Schiff base (OIAC) and the complexes as compared to the chitosan. The catalytic activities of the complexes have been studied in the oxidation of cyclohexane, using environmental friendly oxidant, hydrogen peroxide. Complex with rough surface has shown higher catalytic activity compared to the other complexes.

  20. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes.

    PubMed

    Shiju, C; Arish, D; Bhuvanesh, N; Kumaresan, S

    2015-06-15

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, (1)H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a=7.032(2)?, b=9.479(3)?, c=12.425(4)?, ?=101.636(3)°, ?=99.633(3)°, ?=94.040(3)°, V=795.0(4)?(3), Z=2, F(000)=352, Dc=1.405 mg/m(3), ?=0.099 mm(-1), R=0.0378, and wR=0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active. PMID:25782179

  1. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S.

    2015-06-01

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, 1H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a = 7.032(2) ?, b = 9.479(3) ?, c = 12.425(4) ?, ? = 101.636(3)°, ? = 99.633(3)°, ? = 94.040(3)°, V = 795.0(4) ?3, Z = 2, F(0 0 0) = 352, Dc = 1.405 mg/m3, ? = 0.099 mm-1, R = 0.0378, and wR = 0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active.

  2. Fluorescence sensors for Zn2+ based on conjugated indole Schiff base

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Duan, Hongdong; Wang, Xingjian; Meng, Xia; Bu, Juan

    2015-03-01

    Two novel fluorescence probes based on conjugated Schiff base for the detection of Zn2+ were developed. Corresponding molecular geometries, orbital energies, electron contributions and absorption properties of the fluorescence probes were calculated at B3LYP/6-31G? by density functional theory. The fluorescence properties of the probes were investigated by UV-vis and fluorescence spectrometer. Results indicate that the probes exhibit excellent sensitivity and selectivity for Zn2+ compared with metal ions examined. For example, the enhancement efficiency of the compound 2 for Zn2+ is up to 846%. The detection limit of the sensor toward Zn2+ could low to 1.0 × 10-7 M. Moreover, mechanisms for the high selectivity and sensitivity of the probes to Zn2+ were studied.

  3. A novel Mn(2+) PVC membrane electrode based on a recently synthesized Schiff base.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Taheri, Ehsan Pour; Sheikhshoaie, Iran

    2007-05-15

    A new PVC membrane electrode for manganese(II) ion based on a recently synthesized Schiff base of 5-[(4-nitrophenylazo)-N-hexylamine]salicylaldimine is reported. The electrode exhibits a Nernstian response for Mn(2+) ions over a wide concentration range (4.0x10(-7) to 1.8x10(-2)molL(-1)) with a slope of 30.1 (+/-1.0). The limit of detection is 1.0x10(-7)molL(-1). The electrode has a fast response time ( approximately 10s), a satisfactory reproducibility and relatively long life time. The proposed sensor revealed good selectivities over a wide variety of other cations include hard and soft metals. This electrode could be used in a pH range of 4.5-7.5. It was used as an indicator electrode in potentiometric titration of manganese(II) ions with EDTA solution. PMID:19071730

  4. Crystal structure characterization as well as theoretical study of spectroscopic properties of novel Schiff bases containing pyrazole group

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Ren, Tiegang; Zhang, Jinglai; Li, Guihui; Li, Weijie; Yang, Lirong

    2012-09-01

    A series of novel Schiff bases containing pyrazole group were synthesized using 1-aryl-3-methyl-4-benzoyl-5-pyrazolone and phenylenediamine as the starting materials. All as-synthesized Schiff bases were characterized by means of NMR, FT-IR, and MS; and the molecular geometries of two Schiff bases as typical examples were determined by means of single crystal X-ray diffraction. In the meantime, the ultraviolet-visible light absorption spectra and fluorescent spectra of various as-synthesized products were also measured. Moreover, the B3LYP/6-1G(d,p) method was used for the optimization of the ground state geometry of the Schiff bases; and the spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVTZ basis set of TD-B3LYP method. It has been found that all as-synthesized Schiff bases show a remarkable absorption peak in a wavelength range of 270-370 nm; and their maximum emission peaks are around 344 nm and 332 nm, respectively.

  5. Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions.

    PubMed

    Cambrón, G; Sevilla, J M; Pineda, T; Blázquez, M

    1996-03-01

    The present study reports on the absorption and emission properties of the Schiff bases formed by pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions. Species protonated at the imine and ring nitrogen are the most fluorescent in both Schiff bases with a quantum yield of 0.02, i.e., 20-fold the value found for species in alkaline solutions. In agreement with other studies, species protonated at the imine nitrogen shows an emission around 500 nm upon excitation at 415 nm. In contrast to previous observations on other PLP Schiff bases, emissions at 560 nm (PL-Ile) and 540 nm (PLP-Ile) are observed upon excitation at 365 and 415 nm, respectively. The emission at 470 nm found in PLP-Ile Schiff base upon excitation at 355 nm is ascribed to a multipolar monoprotonated species. An estimation for the pK a of the imine in the excited state ( ? 8.5) for both Schiff bases is also reached. Our results suggest that fast protonation reactions on the excited state are responsible for the observed fluorescence. These effects, in which the hydrogen bond and the phosphate group seem to play a role, could be extended to understanding coenzyme environments in proteins. PMID:24226991

  6. A highly sensitive C3-symmetric Schiff-base fluorescent probe for Cd2+.

    PubMed

    Jiang, Xiu-Juan; Li, Min; Lu, Hong-Lin; Xu, Lin-Hua; Xu, Hong; Zang, Shuang-Quan; Tang, Ming-Sheng; Hou, Hong-Wei; Mak, Thomas C W

    2014-12-15

    A new C3-symmetric Schiff-base fluorescent probe (L) based on 8-hydroxy-2-methylquinoline has been developed. As expected, the probe L can display high fluorescent selectivity for Cd(2+) over Zn(2+) and most other common ions in neutral ethanol aqueous medium. Moreover, the mechanism of the L-Cd(2+) complex has been confirmed by X-ray crystallography and density functional theory calculation results. More importantly, L could be used to image Cd(2+) within living cells. PMID:25456106

  7. Synthesis and characterization of chromium(III) Schiff base complexes: antimicrobial activity and its electrocatalytic sensing ability of catechol.

    PubMed

    Kumar, S Praveen; Suresh, R; Giribabu, K; Manigandan, R; Munusamy, S; Muthamizh, S; Narayanan, V

    2015-03-15

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level. PMID:25576940

  8. Synthesis and characterization of chromium(III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol

    NASA Astrophysics Data System (ADS)

    Praveen Kumar, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Muthamizh, S.; Narayanan, V.

    2015-03-01

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  9. The NMR and X-ray study of L-arginine derived Schiff bases and its cadmium complexes

    NASA Astrophysics Data System (ADS)

    Ko?odziej, B.; Grech, E.; Schilf, W.; Kamie?ski, B.; Pazio, A.; Wo?niak, K.

    2014-04-01

    The structure study of five Schiff bases derived from L-arginine (L-Arg) and 2-hydroxy carbonyl compounds were performed in both solution and solid state using NMR and X-ray methods. Both analytical methods applied to the solid state sample of two Schiff bases showed a significant difference in molecular structures of unsubstituted and 7-CH3 substituted compounds. This effect was explained as a steric interaction of methyl group. Additionally the structure of two Cd2+ complexes with some Schiff bases were determined by NMR methods in DMSO solution and in the solid state. On the base of heteronuclear NMR measurement (13C, 15N and 113Cd) it was possible to define the complexation site on nitrogen atom. The large set of spectral parameters: chemical shifts, homo- and heteronuclear coupling constants, were used in structure study.

  10. A new thio-Schiff base fluorophore with copper ion sensing, DNA binding and nuclease activity.

    PubMed

    Vikneswaran, R; Syafiq, Muhamad Syamir; Eltayeb, Naser Eltaher; Kamaruddin, Mohd Naqiuddin; Ramesh, S; Yahya, R

    2015-11-01

    Copper ion recognition and DNA interaction of a newly synthesized fluorescent Schiff base (HPyETSC) were investigated using UV-vis and fluorescent spectroscopy. Examination using these two techniques revealed that the detection of copper by HPyETSC is highly sensitive and selective, with a detection limit of 0.39 ?m and the mode of interaction between HPyETSC and DNA is electrostatic, with a binding constant of 8.97×10(4) M(-1). Furthermore, gel electrophoresis studies showed that HPyETSC exhibited nuclease activity through oxidative pathway. PMID:26046495

  11. Encapsulation of chromen-4-one Schiff's bases by C-Hexylpyrogallol[4]arene and its structure

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sowrirajan; Enoch, Israel V. M. V.

    2015-12-01

    In this paper, we report the encapsulation of Chromen-4-one Schiff's base derivatives with the host molecule C-Hexylpyrogallol[4]arene. The stoichiometry, binding constant, and the mode of association of the guest molecules with C-Hexylpyrogallol[4]arene are investigated by ultraviolet-visible absorption, steady-state and time-resolved fluorescence, and two dimensional Rotating-frame nuclear Overhauser spectroscopic techniques. The stoichiometry of the host-guest complexes is 1:2. The binding constants of the complexes are of the order of 104. The structures of the host-guest complexes are proposed.

  12. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    SciTech Connect

    Lekshmy, R. K. E-mail: tharapradeepkumar@yahoo.com; Thara, G. S. E-mail: tharapradeepkumar@yahoo.com

    2014-10-15

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  13. Synthesis, characterization and antibacterial activity of a Schiff base derived from cephalexin and sulphathiazole and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Anacona, J. R.; Rodriguez, Juan Luis; Camus, Juan

    2014-08-01

    Metal(II) coordination compounds of a cephalexin Schiff base (HL) derived from the condensation of cephalexin antibiotic with sulphathiazole were synthesized. The Schiff base ligand, mononuclear [ML(OAc)(H2O)2] (M(II) = Mn, Co, Ni, Zn) complexes and magnetically diluted trinuclear copper(II) complex [Cu3L(OH)5] were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and 1H NMR spectral studies. The analytical and molar conductance values indicated that the acetate ions coordinate to the metal ions. The Schiff base ligand HL behaves as a monoanionic tridentate NNO and tetradentate NNOO chelating agent in the mono and trinuclear complexes respectively.

  14. An electrochemical procedure coupled with a Schiff base method; application to electroorganic synthesis of new nitrogen-containing heterocycles

    NASA Astrophysics Data System (ADS)

    Dowlati, Bahram; Othman, Mohamed Rozali

    2013-11-01

    The synthesis of Nitrogen-containing heterocycles has been achieved using chemical and electrochemical methods, respectively. The direct chemical synthesis of nucleophiles proceeds through the Schiff base chemical reaction. This procedure offers an alternate reaction between dicarbonyl compounds and diamines leads to the formation of products. The results indicate that the Schiff base chemical method for synthesis of the product has successfully performed in excellent overall yield. In the electrochemical step, a series of Nitrogen-containing compounds were electrosynthesized. Various parameters such as the applied potential, pH of the electrolytic solution, cell configuration and also purification techniques, were carried out to optimize the yields of corresponding products. New Nitrogen-containing heterocycle derivatives were synthesized using an electrochemical procedure coupled with a Schiff base as a facile, efficient and practical method. The products have been characterized after purification by IR, 1H NMR, 13C NMR and ESI-MS2.

  15. An electrochemical procedure coupled with a Schiff base method; application to electroorganic synthesis of new nitrogen-containing heterocycles

    SciTech Connect

    Dowlati, Bahram; Othman, Mohamed Rozali

    2013-11-27

    The synthesis of Nitrogen-containing heterocycles has been achieved using chemical and electrochemical methods, respectively. The direct chemical synthesis of nucleophiles proceeds through the Schiff base chemical reaction. This procedure offers an alternate reaction between dicarbonyl compounds and diamines leads to the formation of products. The results indicate that the Schiff base chemical method for synthesis of the product has successfully performed in excellent overall yield. In the electrochemical step, a series of Nitrogen-containing compounds were electrosynthesized. Various parameters such as the applied potential, pH of the electrolytic solution, cell configuration and also purification techniques, were carried out to optimize the yields of corresponding products. New Nitrogen-containing heterocycle derivatives were synthesized using an electrochemical procedure coupled with a Schiff base as a facile, efficient and practical method. The products have been characterized after purification by IR, {sup 1}H NMR, {sup 13}C NMR and ESI-MS{sup 2}.

  16. Synthesis, characterization and antibacterial activity of a tridentate Schiff base derived from cephalothin and sulfadiazine, and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Anacona, J. R.; Noriega, Natiana; Camus, Juan

    2015-02-01

    Metal(II) coordination compounds of a cephalothin Schiff base (H2L) derived from the condensation of cephalothin antibiotic with sulfadiazine were synthesized. The Schiff base ligand, mononuclear [ML(H2O)3] (M(II) = Mn, Co, Ni, Zn) complexes and magnetically diluted dinuclear copper(II) complex [CuL(H2O)3]2 were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and 1H NMR spectral studies. The cephalothin Schiff base ligand H2L behaves as a dianionic tridentate NOO chelating agent. The biological applications of complexes have been studied on two bacteria strains (Escherichia coli and Staphylococcus aureus) by agar diffusion disc method.

  17. Synthesis, spectroscopic characterization and antibacterial studies of lanthanide(III) Schiff base complexes containing N, O donor atoms

    NASA Astrophysics Data System (ADS)

    Lekha, L.; Raja, K. Kanmani; Rajagopal, G.; Easwaramoorthy, D.

    2014-01-01

    A series of six Ln(III) Schiff base complexes, Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III), were synthesized using sodium salt of Schiff base, 2-[(5-bromo-2-hydroxy-benzylidene)-amino]-3-hydroxy-propionic acid, derived from L-serine and 5-bromosalicylaldehyde. These complexes having general formula [Ln(L)(NO3)2(H2O)]·NO3 were characterized by elemental analysis, conductivity measurements, UV-Vis, FT-IR, mass spectrometry and fluorescence studies. Elemental analysis and conductivity measurements suggest the complexes have a 1:1 stoichiometry. From the spectral studies it has been concluded that Ln(III) complexes display eight coordination. The Schiff base and its Ln(III) metal complexes have also been screened for their antibacterial activities by Agar diffusion method.

  18. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle.

    PubMed Central

    Brown, L S; Bonet, L; Needleman, R; Lanyi, J K

    1993-01-01

    The pK(a) values of D85 in the wild-type and R82Q, as well as R82A recombinant bacteriorhodopsins, and the Schiff base in the D85N, D85T, and D85N/R82Q proteins, have been determined by spectroscopic titrations in the dark. They are used to estimate the coulombic interaction energies and the pK(a) values of the Schiff base, D85, and R82 during proton transfer from the Schiff base to D85, and the subsequent proton release to the bulk in the initial part of the photocycle. The pK(a) of the Schiff base before photoexcitation is calculated to be in effect only 5.3-5.7 pH units higher than that of D85; overcoming this to allow proton transfer to D85 requires about two thirds of the estimated excess free energy retained after absorption of a photon. The proton release on the extracellular surface is from an unidentified residue whose pK(a) is lowered to about 6 after deprotonation of the Schiff base (Zimanyi, L., G. Varo, M. Chang, B. Ni, R. Needleman, and J.K. Lanyi, 1992. Biochemistry. 31:8535-8543). We calculate that the pK(a) of the R82 is 13.8 before photoexcitation, and it is lowered after proton exchange between the Schiff base and D85 only by 1.5-2.3 pH units. Therefore, coulombic interactions alone do not appear to change the pK(a) of R82 as much and D85 only by 1.5-2.3 pH units. Therefore, coulombic interactions alone do not appear to change the pK(a) of R82 as much as required if it were the proton release group. PMID:8369421

  19. Fluorescent "turn-on" detecting CN- by nucleophilic addition induced Schiff-base hydrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Qi; Cai, Yi; Li, Qiao; Shi, Bing-Bing; Yao, Hong; Zhang, You-Ming; Wei, Tai-Bao

    2015-04-01

    A new chemosensor Sz based on Schiff-base group as recognition site and naphthalene as the fluorescence signal group was designed and synthesised. It could fluorescent "turn-on" detect cyanide (CN-) via a novel mechanism of nucleophilic addition induced Schiff-base hydrolysis. Adding the CN- into the solution of Sz could induce Sz to emit blue fluorescence at 435 nm instantly. Moreover, Sz could also colorimetric detect CN-. Upon the addition of CN-, the Sz showed dramatic color change from yellow to colorless. These sensing procedures could not be interfered by other coexistent competitive anions such as F-, AcO-, H2PO4- and SCN-. In addition, Sz showed high sensitivity for CN-, the detection limits is 3.42 × 10-8 M of CN-, which is far lower than the WHO guideline of CN- in drinking water (less than 1.9 × 10-6 M). The CN- test strips based on Sz could act as a convenient CN- test kits.

  20. PM3 semi-empirical IR spectra simulations for metal complexes of schiff bases of sulfa drugs

    NASA Astrophysics Data System (ADS)

    Topacli, C.; Topacli, A.

    2003-06-01

    The molecular structures and infrared spectra of Co, Ni, Cu and Zn complexes of two schiff base ligands, viz N-( o-vanillinidene)sulfanilamide ( oVSaH) and N-( o-vanillinidene)sulfamerazine ( oVSmrzH) are studied in detail by PM3 method. It has been shown that the proposed structures for the compounds derived from microanalytical, magnetic and various spectral data were consistent with the IR spectra simulated by PM3 method. Coordination effects on ?(C?N) and ?(C-O) modes in the schiff base ligands are in close agreement with the observed results.

  1. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: Synthesis, characterization and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-01

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L1), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L2) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L4). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L3) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, 1H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1 M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  2. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent. PMID:24309180

  3. Synthesis and characterization of three novel Schiff base compounds: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tasl?, P. T.; Bayrakdar, A.; Karakus, O. O.; Kart, H. H.; Koc, Y.

    2015-09-01

    In this study, three novel Schiff base compounds such as N-(4-nitrobenzyl)-4-methyl bromo aniline ( 1a), N-(2,4-dimethoxybenzyl)-4-methyl bromoaniline ( 2a), SN-((1H-indol-3-yl) methylene)-4- methyl bromoaniline ( 3a) are synthesized and characterized by using the spectroscopic methods of UV, IR and 1H-NMR. Molecular geometry and spectroscopic properties of synthesized compounds are also analyzed by using ab initio calculation methods based on the density functional theory (DFT) in the ground state. The extensive theoretical and experimental FT-IR and UV-vis spectrometry studies of synthesized compounds are performed. The optimized molecular structure and harmonic vibrational frequencies are studied by using B3LYP/6-311++G(d,p) method. Moreover, electronic structures are investigated by using the time dependent density functional theory (TD-DFT) while the energy changes of the parent compounds are examined in a solvent medium by using the polarizable continuum model (PCM). Additionally, the frontier molecular orbital analysis is performed for the Schiff base compounds. The electronic properties of each compound such as; chemical hardness, chemical softness, ionization potential, electron affinity, electronegativity and chemical potential are investigated by utilizing the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies.

  4. Fast O2 Binding at Dicopper Complexes Containing Schiff-Base Dinucleating Ligands

    PubMed Central

    Company, Anna; Gómez, Laura; Mas-Ballesté, Rubén; Korendovych, Ivan V.; Ribas, Xavi; Poater, Albert; Parella, Teodor; Fontrodona, Xavier; Benet-Buchholz, Jordi; Solà, Miquel; Que, Lawrence; Rybak-Akimova, Elena; Costas, Miquel

    2008-01-01

    A new family of dicopper(I) complexes [CuI2RL](X)2, (R = H, 1X, R = tBu, 2X and R = NO2, 3X, X = CF3SO3, ClO4, SbF6 or BArF, BArF = [B{3,5-(CF3)2-C6H3}4]?), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer have been prepared, characterized, and their reaction with O2 studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid state structures of 1ClO4, 2CF3SO3, 2ClO4 and 3BArF·CH3CN have been established by single crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in solution while 2CF3SO3, 2ClO4 and 3BArF·CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes in solution. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(?-O)2(RL)]2+ 1-3(O2) and [CuIII2(?-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(?-O)2 form with respect to the CuII2(?-?2: ?2-peroxo) isomer. The reaction of 1X, X = CF3SO3 and BArF with O2 in acetone has been studied by stopped-flow exhibiting an unexpected very fast reaction rate (k = 3.82(4) × 103 M?1s?1, ?H‡ = 4.9 ± 0.5 kJ·mol?1, ?S‡ = ?148 ± 5 J·K?1·mol?1), nearly three orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X = CF3SO3 and BArF) is discussed and compared with those associated to selected examples of reported models of O2-processing copper proteins. A synergistic role of the copper ions in O2 binding and activation is clearly established from this analysis. PMID:17500512

  5. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: a comparative approach.

    PubMed

    Raman, N; Sakthivel, A; Pravin, N

    2014-05-01

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 10(2) to 10(5) indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical. PMID:24566120

  6. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  7. Syntheses, structures, and magnetic properties of homodinuclear lanthanide complexes based on dinucleating Schiff base ligands.

    PubMed

    Gao, Feng; Yang, Feng-Lei; Zhu, Guang-Zhou; Zhao, Yue

    2015-11-18

    The first two families of homodinuclear lanthanide(iii) complexes, formulated as [(LOEt)2Ln2(L1)] and [(LOEt)2Ln2(L2)] (Ln(3+) = Dy(3+), Tb(3+), Ho(3+), Gd(3+), and Y(3+); L1(4-) = 2,2',2'',2'''-[1,2,4,5-benzenetetrayltetrakis(nitrilomethylidyne)]tetrakisphenolate; L2(4-) = 2,2',2'',2'''-[[1,1'-biphenyl]-3,3',4,4'-tetrayltetrakis(nitrilomethylidyne)]tetrakis(4-chlorophenolate); LOEt(-) = (?(5)-cyclopentadienyl)tris(diethylphosphito-p)cobaltate(iii)), were successfully synthesized based on Kläui's tripodal building block NaLOEt and two dinucleating Schiff base ligands, and , respectively. Single-crystal X-ray analyses show that these lanthanide complexes have two seven-coordinated metal binding sites, linked to each other with a phenyl or biphenyl bridge. Variable temperature dc magnetic measurements reveal the weakly antiferromagnetic coupling between paramagnetic lanthanide ions, while ac magnetic data exhibit the field-induced relaxation of magnetization for the corresponding Dy2 complexes and . A further magnetic dilution study for suggests that the slow magnetic relaxation originates from the single-ion magnetic behaviour of Dy(3+) ions. PMID:26537229

  8. Ultrafast Excited State Dynamics of the Protonated Schiff Base of All-trans Retinal in Solvents

    PubMed Central

    Zgrabli?, Goran; Voïtchovsky, Kislon; Kindermann, Maik; Haacke, Stefan; Chergui, Majed

    2005-01-01

    We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500–8100 cm?1) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of ?6000 cm?1, indicating depopulation of the Franck-Condon region in ?100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S2 to the S1 state. Along with the direct excitation of S1, this relaxation populates different quasistationary states in S1, as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5–0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects. PMID:15792984

  9. Nonlinear optical analyses of organic N-(9-Anthrylmethylidene) methylamine Schiff base.

    PubMed

    Vijayalakshmi, S; Kalyanaraman, S; Krishnakumar, V

    2013-05-15

    The organic NLO Schiff base of N-(9-Anthrylmethylidene) methylamine was synthesized by condensation process. The material was characterized through Powder XRD, FT-IR, and Raman techniques. The various planes of reflection are identified from the Powder XRD pattern. The formation of Schiff base is confirmed through FT-IR and Raman analysis. The intra molecular charge transfer interaction and the existence of the first-order molecular hyperpolarizability (?) are identified from the red shift of the UV-Vis analysis. The structure of the molecule was optimized by density functional theory (DFT) using B3LYP method with 6-31G basis set. The NBO analysis is used to interpret the delocalization. The dipole moment and first hyperpolarizability values were also computed by HF/6-31G. These values indicate that the compound is a good candidate with nonlinear optical properties. This is the first time report on the existence of a second harmonic generation (SHG), ?(2), efficiency that has been identified by Powder Kurtz-Perry method. PMID:23542516

  10. Spectrophotometric investigation of interaction between iodine and pentadentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Khouba, Z.; Benabdallah, T.; Maschke, U.

    The interaction between iodine as an electron acceptor (A), and three pentadentate Schiff bases, 1,3-bis(salicylideneamino)-2-propanol (SB1), 1,3-bis(2-hydroxy-1-naphthylideneamino)-2-propanol (SB2), and 1,3-bis[1-(pyridine-2-yl)methylideneamino]-2-propanol (SB3), as electron donor systems (D), was studied spectrophotometrically in methanol at 28 °C. Equilibrium constants KAD and molar extinction coefficients ?AD of the donor-acceptor complexes (AD) were determined using the modified Benesi-Hildebrand equation in conjunction with the non linear fit analysis. The method shows the formation of 1:1 type complexes as major species in solution. The free energy changes ?G° and the energy of the charge transfer band ECT were also calculated for all complexes. The iodine complex derived from SB2 seems to be more stable than those derived from SB3 and SB1. On the other hand, the ionization potential ID of each Schiff base was estimated from the corresponding complex band energy, using an empirical equation. An inverse relationship between ID and KAD values was found. Blue and red shift observed for the 445 nm band of iodine were also discussed on the basis of theoretical considerations.

  11. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  12. Gelatin Nanofiber Matrices Derived from Schiff Base Derivative for Tissue Engineering Applications.

    PubMed

    Jaiswal, Devina; James, Roshan; Shelke, Namdev B; Harmon, Matthew D; Brown, Justin L; Hussain, Fazle; Kumbar, Sangamesh G

    2015-11-01

    Electrospinning of water-soluble polymers and retaining their mechanical strength and bioactivity remain challenging. Volatile organic solvent soluble polymers and their derivatives are preferred for fabricating electrospun nanofibers. We report the synthesis and characterization of 2-nitrobenzyl-gelatin (N-Gelatin)--a novel gelatin Schiff base derivative--and the resulting electrospun nanofiber matrices. The 2-nitrobenzyl group is a photoactivatable-caged compound and can be cleaved from the gelatin nanofiber matrices following UV exposure. Such hydrophobic modification allowed the fabrication of gelatin and blend nanofibers with poly(caprolactone) (PCL) having significantly improved tensile properties. Neat gelatin and their PCL blend nanofiber matrices showed a modulus of 9.08 ± 1.5 MPa and 27.61 ± 4.3 MPa, respectively while the modified gelatin and their blends showed 15.63 ± 2.8 MPa and 24.47 ± 8.7 MPa, respectively. The characteristic infrared spectroscopy band for gelatin Schiff base derivative at 1560 cm(-1) disappeared following exposure to UV light indicating the regeneration of free NH2 group and gelatin. These nanofiber matrices supported cell attachment and proliferation with a well spread morphology as evidenced through cell proliferation assay and microscopic techniques. Modified gelatin fiber matrices showed a 73% enhanced cell attachment and proliferation rate compared to pure gelatin. This polymer modification methodology may offer a promising way to fabricate electrospun nanofiber matrices using a variety of proteins and peptides without loss of bioactivity and mechanical strength. PMID:26554164

  13. Metal complexes of ONO donor Schiff base ligand as a new class of bioactive compounds; Synthesis, characterization and biological evolution

    NASA Astrophysics Data System (ADS)

    Kumar Naik, K. H.; Selvaraj, S.; Naik, Nagaraja

    2014-10-01

    Present work reviews that, the synthesis of (E)-N";-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide [L] ligand and their metal complexes. The colored complexes were prepared of type [M2+L]X2, where M2+ = Mn, Co, Ni, Cu, Sr and Cd, L = (7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzohydrazide, X = Cl-. Ligand derived from the condensation of 8-formyl-7-hydroxy-4-methylcoumarin and benzohydrazide in the molar ratio 1:1 and in the molar ratio 1:2 for metal complexes have been prepared. The chelation of the ligand to metal ions occurs through the both oxygen groups, as well as the nitrogen atoms of the azomethine group of the ligand. Reactions of the Schiff base ligand with Manganese(II), Cobalt(II), Nickel(II), Copper(II), Strontium(II), and Cadmium(II) afforded the corresponding metal complexes. The structures of the obtained ligand and their respective metal complexes were elucidated by infra-red, elemental analysis, Double beam UV-visible spectra, conductometric measurements, magnetic susceptibility measurements and also thermochemical studies. The metal complex exhibits octahedral coordination geometrical arrangement. Schiff base ligand and their metal complexes were tested against antioxidants, antidiabetic and antimicrobial activities have been studied. The Schiff base metal complexes emerges effective ?-glucosidase inhibitory activity than free Schiff base ligand.

  14. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  15. ``Test kit'' for detection of biologically important anions: A salicylidene-hydrazine based Schiff base

    NASA Astrophysics Data System (ADS)

    Dalapati, Sasanka; Alam, Md Akhtarul; Jana, Sankar; Karmakar, Saswati; Guchhait, Nikhil

    2013-02-01

    Test paper coated with Schiff base [(N,N/-bis(5-nitro-salicylidene)hydrazine] receptor 1 (host) can selectively detect fluoride and acetate ions (guest) by developing yellow color which can be detected by naked-eye both in aqueous-acetonitrile solution and in solid supported test kit. UV-vis spectral analysis shows that the absorption peaks at 288 and 345 nm of receptor 1 gradually decrease its initial intensity and new red shifted absorption bands at 397 nm and 455 nm gradually appear upon addition of increasing amount of F- and AcO- ions over several tested anions such as HPO4-, Cl, Br, I, NO3-, NO2-, HSO4-, HSO3-, and ClO4- in aqueous-acetonitrile solvent. The colorimetric test results and UV-vis spectral analysis are in well agreement with 1H NMR titration results in d6-DMSO solvent. The receptor 1 forms 1:2 stable complexes with F- and AcO- ions. However, similar kind of observation obtained from UV-vis titrations in presence of AcOH corresponds to 1:1 complexation ratio indicating the formation of H-bonding interaction between the receptor and anions (F- and AcO- ions). So, the observed 1:2 complexation ratio can only be explained on the basis of deprotonation (˜1 eqv.) and H-bonding (˜1 eqv.) interactions [1]. The ratiometric analysis of host-guest complexes corroborates well with the proposed theoretical model optimization at Density Functional Theory (DFT) level.

  16. Spectroscopic and electrochemical characterization of some Schiff base metal complexes containing benzoin moiety

    NASA Astrophysics Data System (ADS)

    El-Shahawi, M. S.; Al-Jahdali, M. S.; Bashammakh, A. S.; Al-Sibaai, A. A.; Nassef, H. M.

    2013-09-01

    The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru3+, Rh3+, Pd2+, Ni2+ and Cu2+ were determined. The bond length of M-N and spectrochemical parameters (10Dq, ?, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M2+/M3+ and M3+/M4+ (M = Ru3+, Rh3+) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned.

  17. Synthesis, Structural, and Biological Studies of Some Schiff Bases and Their Metal Complexes

    PubMed Central

    Mishra, A. P.; Soni, Monika

    2008-01-01

    New bidentate or tridentate Schiff bases and their VO(II) and Co(II) complexes formed by the condensation of methyl isobutyl ketone with nicotinamide (mna)/2-amino-4-chlorophenol (map) and 2-hydroxy acetophenone with nicotinamide (han)/isoniazide (hai). Physicochemical characterization has been carried out to determine the structure of the complexes. The FAB mass and thermal data show degradation pattern of the complexes. XRD analysis reveals that all the studied complexes crystallize as tetragonal crystal system. Some of the complexes have been screened for their antimicrobial activity by the well diffusion technique using DMSO as solvent on different species of pathogenic bacteria/fungi, that is, E. coli, S. aureus, S. fecalis, A. niger, T. polysporum, and their antimicrobial potency have been discussed. It has been found that all the complexes are antimicrobially active and show higher activity than the free ligand. Metal chelation affects significantly the antimicrobial/bioactive behavior of the organic ligands. PMID:18670613

  18. Synthesis, characterization, DNA interaction and in vitro cytotoxicity activities of ruthenium(II) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, Subbaiyan; Butcher, Ray J.; Jayabalakrishnan, Chinnasamy

    2012-12-01

    DNA binding, cleavage and cytotoxicity characteristics of a novel Schiff base ligand 3-(benzothiazol-2-yliminomethyl)-naphthalen-2-ol and ruthenium(II) complexes have been investigated. The DNA interaction properties of the complexes have been investigated using absorption spectra, as well as gel electrophoresis studies. Intrinsic binding constant (Kb) has been estimated under similar set of experimental conditions. Absorption spectral study indicate that the ligand and ruthenium(II) complexes has intrinsic binding constant in the range of 1.4-7.2 × 104 M-1. Ruthenium(II) complexes show more binding ability than the ligand. Further, in vitro cytotoxicity study of the ligand and the complexes exhibited antitumor activity against HeLa and HEp2 tumor cells.

  19. First X-ray structural characterization of isatin Schiff base derivative. NMR and theoretical conformational studies

    NASA Astrophysics Data System (ADS)

    Davidovich, Pavel; Novikova, Daria; Tribulovich, Vyacheslav; Smirnov, Sergey; Gurzhiy, Vlad; Melino, Gerry; Garabadzhiu, Alexander

    2014-10-01

    Isatin (1H-indole-2,3-dione) is an endogenous natural compound under intense development in medicinal chemistry. Here, we characterize isatin Schiff base derivative by X-ray crystallography. We describe a derivative that crystallizes E-isomer form in the triclinic space group P 1bar;a = 5.9580 (4) Å, b = 8.4184 (7) Å, c = 14.1801 (14) Å, ? = 73.962 (8)°, ? = 83.184 (7)°, ? = 81.143 (6)°. NMR data show that E-conformer interconverts to the Z-conformer when dissolved, this equilibrium weakly depends on the solvent type. The Z-isomer geometry and the energetics of ?EE-Z interconversion barriers were determined by quantum chemical calculations. The isomers are further characterized by means of FT-IR and UV-Vis spectroscopy.

  20. Covalent Grafting of the RGD-Peptide onto Polyetheretherketone Surfaces via Schiff Base Formation

    PubMed Central

    Becker, Marc; Lorenz, Steffen; Strand, Dennis; Vahl, Christian-Friedrich; Gabriel, Matthias

    2013-01-01

    In recent years, the synthetic polymer polyetheretherketone (PEEK) has increasingly been used in a number of orthopedic implementations, due to its excellent mechanical properties, bioinertness, and chemical resistance. For in vivo applications, the surface of PEEK, which does not naturally support cell adhesion, has to be modified to improve tissue integration. In the present work we demonstrate a novel wet-chemical modification of PEEK to modify the surface, enabling the covalent grafting of the cell-adhesive RGD-peptide. Modification of the polymer surface was achieved via Schiff base formation using an aliphatic diamine and subsequent crosslinker-mediated immobilization of the peptide. In cell culture experiments with primary osteoblasts it was shown that the RGD-modified PEEK not only significantly promoted cellular adhesion but also strongly enhanced the proliferation of osteoblasts on the modified polymer surface. PMID:24228010

  1. Spectroscopic and density functional theory investigation of novel Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Hassan, Walid M. I.; Zayed, Ehab M.; Elkholy, Asmaa K.; Moustafa, H.; Mohamed, Gehad G.

    2013-02-01

    Novel Schiff base (H2L, 1,2-bis[(2-(2-mercaptophenylimino)methyl)phenoxy] ethane) derived from condensation of bisaldehyde and 2-aminothiophenol was prepared in a molar ratio 1:2. The ligand and its metal complexes are fully characterized with analytical and spectroscopic techniques. The metal complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Th(IV) have been prepared and characterized by elemental analyses, IR and 1H-NMR spectroscopy, thermal and magnetic measurements. The results suggested that the Schiff base is a bivalent anion with hexadentate OONNSS donors derived from the etheric oxygen (O, O'), azomethine nitrogen (N, N') and thiophenolic sulphur (S, S'). The formulae of the complexes were found to be [ML]·xH2O (M = Mn(II) (x = 0), Co(II) (x = 1), Ni(II), (x = 1), Cu(II) (x = 2) and Zn(II) (x = 0)) and [ML]·nCl (M = Cr(III) (n = 1), Fe(III) (n = 1) and Th(IV) (n = 2)). The thermogravimetric analysis of the complexes shows metal oxide remaining as the final product at 700-1000 °C. Density functional theory at the B3LYP/6-31G* level of theory was used to investigate molecular geometry, Mulliken atomic charges and energetics. The synclinal-conformer was found to be responsible for complex formation. The calculation showed that ligand has weak field. Structural deformation and the dihedral angles rotation during complexation were investigated. The binding energy of each complex was calculated. The calculated results are in good agreement with experimental data.

  2. Selective inhibition of the unfolded protein response: targeting catalytic sites for Schiff base modification.

    PubMed

    Tomasio, Susana M; Harding, Heather P; Ron, David; Cross, Benedict C S; Bond, Peter J

    2013-10-01

    Constitutive protein misfolding in the endoplasmic reticulum (ER) can lead to cellular toxicity and disease. Consequently, the protein folding environment within the ER is highly optimised and tightly regulated by the unfolded protein response (UPR). The apparent convergence of myriad diseases upon proteostasis in the ER has triggered a broad effort to identify selective inhibitors of the UPR. In particular, the most ancient component of this cellular stress pathway, the transmembrane protein IRE1, represents an appealing target for pharmacological intervention. Several inhibitors of IRE1 have recently been reported, each containing an aldehyde moiety that forms an unusual, highly selective Schiff base with a single key lysine (K907) within the RNase domain. Here we review the progress made in chemical genetic manipulation of IRE1 and the unfolded protein response and discuss computational strategies to rationalise the selectivity of covalently active small molecules for their targets. As an exemplar, we provide additional evidence that K907 of IRE1 is buried within a particularly unusual environment that facilitates Schiff base formation. New free-energy calculations within a molecular dynamics (MD) simulation framework show that the pKa of K907 is reduced by ~3.6 pKa units, relative to the model pKa of lysine in water. This significant pKa perturbation provides additional insights into the precise requirements for inhibition and for RNase catalysis by IRE1. Our computational method may represent a general approach for identifying potential covalent inhibitory lysine sites within buried protein cavities. PMID:23884086

  3. Derivatives of phosphate Schiff base transition metal complexes: synthesis, studies and biological activity

    NASA Astrophysics Data System (ADS)

    El-Wahab, Z. H. Abd; El-Sarrag, M. R.

    2004-01-01

    We report the synthesis and structural characterization of series of tetra- and hexacoordinate metal chelate complexes of phosphate Schiff base ligands having the general composition LMX n·H 2O and L 2MX n (L=phosphate Schiff base ligand; M=Ag +, Mn 2+, Cu 2+, Zn 2+, Cd 2+, Hg 2+, or Fe 3+ and X=NO 3-, Br - or Cl -). The structure of the prepared compounds was investigated using elemental analysis, IR, 1H and 31P NMR, UV-vis, mass spectra, solid reflectance, magnetic susceptibility and conductance measurements as well as conductometric titration. In all the complexes studied, the ligands act as a chelate ligand with coordination involving the phosphate?O-atom and the azomethine?N-atom. IR, solid reflectance spectra and magnetic moment measurement are used to infer the structure and to illustrate the coordination capacity of ligand. IR spectra show the presence of coordinated nitrate and water molecule, the magnetic moments of all complexes show normal magnetic behavior and the electronic spectra of the metal complexes indicate a tetra- and octahedral structure for Mn 2+, octahedral structure of Fe 3+ and both square-planar and distorted octahedral structure for Cu 2+ complexes. Antimicrobial activity of the ligands and their complexes were tested using the disc diffusion method and the chosen strains include Staphylococcus aureus, Pseudomonas aereuguinosa, Klebsiella penumoniae, Escherichia coli, Microsporum canis, Trichophyton mentagrophyte and Trichophyton rubrum. Some known antibiotics are included for the sake of comparison and the chosen antibiotic are Amikacin, Doxycllin, Augmantin, Sulperazon, Unasyn, Septrin, Cefobid, Ampicillin, Nitrofurantion, Traivid and Erythromycin.

  4. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship.

    PubMed

    Xia, Lei; Xia, Yu-Fen; Huang, Li-Rong; Xiao, Xiao; Lou, Hua-Yong; Liu, Tang-Jingjun; Pan, Wei-Dong; Luo, Heng

    2015-06-01

    There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data. The structure-microbicidal activity relationship of derivatives was investigated, and the antibacterial mechanisms were investigated by gene assays for the expression of functional genes in vitro using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The active compounds were selective for certain active groups. The polar substitution of the R2 group of the amino acids in the Schiff bases, affected the antibacterial activity against E. coli and S. aureus; specific active group at the R3 or R4 groups of the acylhydrazone Schiff bases could improve their inhibitory activity against these three tested organisms. The antibacterial mechanism of the active benzaldehyde Schiff bases appeared to regulate the expression of metabolism-associated genes in E. coli, hemolysis-associated genes in B. subtilis, and key virulence genes in S. aureus. Some benzaldehyde Schiff bases were bactericidal to all the three strains and appeared to regulate gene expression associated with metabolism, hemolysis, and virulence, in vitro. The newly designed benzaldehyde Schiff bases possessed unique antibacterial activity and might be potentially useful for prophylactic or therapeutic intervention of bacterial infections. PMID:25982329

  5. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A.

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1?:?1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR (1H, 13C, and 29Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands. PMID:23983671

  6. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    SciTech Connect

    Mini, S. Sadasivan, V.; Meena, S. S. Bhatt, Pramod

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  7. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    NASA Astrophysics Data System (ADS)

    Mini, S.; Sadasivan, V.; Meena, S. S.; Bhatt, Pramod

    2014-10-01

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl3?2H2O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H2O)2] and [Fe(FAHP)Cl2(H2O)2].

  8. Crystal structures of type I dehydroquinate dehydratase in complex with quinate and shikimate suggest a novel mechanism of Schiff base formation.

    PubMed

    Light, Samuel H; Antanasijevic, Aleksandar; Krishna, Sankar N; Caffrey, Michael; Anderson, Wayne F; Lavie, Arnon

    2014-02-11

    A component of the shikimate biosynthetic pathway, dehydroquinate dehydratase (DHQD) catalyzes the dehydration of 3-dehydroquniate (DHQ) to 3-dehydroshikimate. In the type I DHQD reaction mechanism a lysine forms a Schiff base intermediate with DHQ. The Schiff base acts as an electron sink to facilitate the catalytic dehydration. To address the mechanism of Schiff base formation, we determined structures of the Salmonella enterica wild-type DHQD in complex with the substrate analogue quinate and the product analogue shikimate. In addition, we determined the structure of the K170M mutant (Lys170 being the Schiff base forming residue) in complex with quinate. Combined with nuclear magnetic resonance and isothermal titration calorimetry data that revealed altered binding of the analogue to the K170M mutant, these structures suggest a model of Schiff base formation characterized by the dynamic interplay of opposing forces acting on either side of the substrate. On the side distant from the substrate 3-carbonyl group, closure of the enzyme's ?8-?8 loop is proposed to guide DHQ into the proximity of the Schiff base-forming Lys170. On the 3-carbonyl side of the substrate, Lys170 sterically alters the position of DHQ's reactive ketone, aligning it at an angle conducive for nucleophilic attack. This study of a type I DHQD reveals the interplay between the enzyme and substrate required for the correct orientation of a functional group constrained within a cyclic substrate. PMID:24437575

  9. Comparative Study of Aluminum Complexes Bearing N,O- and N,S-Schiff Base in Ring-Opening Polymerization of ?-Caprolactone and l-Lactide.

    PubMed

    Chang, Meng-Chih; Lu, Wei-Yi; Chang, Heng-Yi; Lai, Yi-Chun; Chiang, Michael Y; Chen, Hsing-Yin; Chen, Hsuan-Ying

    2015-12-01

    A series of Al complexes bearing Schiff base and thio-Schiff base ligands were synthesized, and their application for the ring-opening polymerization of ?-caprolactone (CL) and l-lactide (LA) was studied. It was found that steric effects of the ligands caused higher polymerization rate and most importantly the Al complexes with N,S-Schiff base showed significantly higher polymerization rate than Al complexes with N,O-Schiff base (5-12-fold for CL polymerization and 2-7-fold for LA polymerization). The reaction mechanism of CL polymerization was investigated by density functional theory (DFT). The calculations predicted a lower activation energy for a process involved with an Al complex bearing an N,S-Schiff base ligand (17.6 kcal/mol) than for that of an Al complex bearing an N,O-Schiff base ligand (19.0 kcal/mol), and this magnitude of activation energy reduction is comparable to the magnitude of rate enhancement observed in the experiment. The reduction of activation energy was attributed to the catalyst-substrate destabilization effect. Using a sulfur-containing ligand to decrease the activation energy in the ring-opening polymerization process may be a new strategy to design a new Al complex with high catalytic activity. PMID:26593231

  10. Reactivity of damaged pyrimidines: formation of a Schiff base intermediate at the glycosidic bond of saturated dihydrouridine.

    PubMed

    Jian, Yajun; Lin, Gengjie; Chomicz, Lidia; Li, Lei

    2015-03-11

    DNA glycosylases catalyze the first step of the base excision repair (BER) pathway. The chemistry used by these enzymes for deglycosylation has been largely considered as the chemistry of the oxocarbenium ion, e.g., direct rupture of the C1'-N1 bond resulting in an oxocarbenium ion intermediate. Here we present mechanistic studies revealing the 2'-deoxyribose isomerization and subsequent deglycosylation processes in two pyrimidine lesions: 5,6-dihydro-2'-deoxyuridine (dHdU) and 5,6-dihydrothymidine (dHT), formed via ionizing radiation damage to 2'-deoxycytidine and thymidine, respectively, under anoxic conditions. Acid or heat treatment of these two lesions leads to the production of two pairs of C1' epimers containing a pyranose and a furanose, respectively, indicating that both lesions favor the rupture of the C1'-O4' bond, resulting in a Schiff base intermediate at the N-glycosidic bond. Such a Schiff base intermediate was trapped and characterized by either Pd-catalyzed hydrogenation or thiol-mediated addition reaction. In contrast, in undamaged 2'-deoxyuridine and thymidine, reactions at elevated temperatures lead to the release of nucleobases most likely via the traditional oxocarbenium ion pathway. DFT calculations further support the experimental findings, suggesting that the oxocarbenium ion intermediate is responsible for the deglycosylation process if the integrity of the pyrimidine ring is maintained, while the Schiff base intermediate is preferred if the C5?C6 bond is saturated. Currently, the oxocarbenium ion pathway is indicated to be solely responsible for the deglycosylation in BER enzymes, however our results suggest an alternative Schiff base mechanism which may be responsible for the repair of saturated pyrimidine damages. PMID:25671389

  11. Nitrogen and carbon CPMAS NMR investigations of keto-enol tautomerism in asymmetric o-hydroxy Schiff bases

    NASA Astrophysics Data System (ADS)

    Schilf, Wojciech; Kamie?ski, Bohdan; Užarevi?, Krunoslav

    2013-01-01

    The five Schiff bases obtained by condensation of dehydroacetic acid, p-phenylenediamine and derivatives of salicylaldehyde were investigated by 13C and 15N CPMAS NMR methods to find the structure of intramolecular hydrogen bridges. Additionally the 15N NMR spectra in CDCl3 were done. The results obtained in the solid state and in solution were compared with the X-ray previously published for some of investigated compounds. The relatively small influence of substituent in salicylaldehyde unit on proton position was found as well as only small difference in the hydrogen bridges structure in both phases, solution and solid state, which is in contrast with results acquired for Schiff bases obtained from simple aliphatic amines.

  12. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uru?, Serhan; Demirta?, ?brahim; Elmasta?, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  13. Synthesis and Characterization with Antineoplastic, Biochemical, Cytotoxic, and Antimicrobial Studies of Schiff Base Cu(II) Ion Complexes

    PubMed Central

    Haque, M. M.; Kudrat-E-Zahan, Md.; Banu, Laila Arjuman; Islam, Md. Shariful; Islam, M. S.

    2015-01-01

    Copper(II) complexes containing two Schiff base ligands derived from 2-hydroxybenzaldehyde with 2-aminophenol and 3-aminophenol have been synthesized and characterized by means of analytical, magnetic, and spectroscopic methods. Bacteria, fungus, Entamoeba histolytica, and antineoplastic activities of the synthesized complexes have been determined by monitoring the parameters cell growth inhibition, survival time of tumour mice, time-body relation, causing of intraperitoneal cells and macrophages, alkaline phosphatase activity, hematological effect, and biopsy of tumour. PMID:26294901

  14. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2?:?3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  15. Metal complexes of macrocyclic schiff-base ligand: preparation, characterisation, and biological activity.

    PubMed

    Ahmed, Riyadh M; Yousif, Enaam I; Hasan, Hasan A; Al-Jeboori, Mohamad J

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.1]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na?L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2?:?3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for Ni(II) and Cu(II) complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  16. Trien Conjugates, Schiff Bases, and Ceruloplasmin Concentrations as Markers of the Onset of the Risk of Autodermoplasty Complications

    PubMed Central

    Yarets, Y.I.; Novikova, I.A.; Rubanov, L.N.

    2009-01-01

    Summary Background. Surgical interference which includes debridement and further renewal of skin cover by autodermoplasty (ADP) is the most effective method of burn wound treatment. Skin graft failure is a serious complication of ADP procedures leading to the opening of previously closed wounds, graft loss, and an increased wound surface owing to the donor zone. Numerous factors are involved that may affect the results of the ADP procedure. When planning the terms of surgical interference, specialists have to take into consideration criteria regarding the visual readiness of the wound and the patient's objective state. Aim. We studied the possibility of using concentrations of trien conjugates, Schiff bases, and ceruloplasmin in the plasma of patients with deep local wounds as markers of the risk of autoskin graft failure. Methods. Ninety patients with local wounds of different origin and age were studied. Results and conclusions. It was found out that the amounts of trien conjugates, Schiff bases, and ceruloplasmin in plasma before the operation helped to predict the risk of autoskin graft failure with a high degree of probability (up to 92%). We established optimum cut-off points for trien conjugates, Schiff bases, and ceruloplasmin as indicators of the results of autodermoplasty operations, i.e. 350 mg/l, 0.35 units of oxidation indices (UOI), and 0.05 UOI, respectively. PMID:21991178

  17. Synthesis, characterization and experimental, theoretical, electrochemical, antioxidant and antibacterial study of a new Schiff base and its complexes

    NASA Astrophysics Data System (ADS)

    Baykara, Haci; Ilhan, Salih; Levent, Abdulkadir; Salih Seyitoglu, M.; Özdemir, Sadin; Okumu?, Veysi; Öztomsuk, Abdussamet; Cornejo, Mauricio

    2014-09-01

    A new Schiff base ligand was synthesized by reaction of salicylaldehyde with 1,6-bis(4-chloro-2-aminophenoxy)hexane. Then the Schiff base complexes were synthesized by metal salts and the Schiff base. The metal to ligand ratio of metal complexes was found to be 1:1. The Cu(II) complex is proposed to be square planar and the Co(II), Ni(II), Mn(II) and Zn(II) complexes are proposed to be tetrahedral geometry. The Ti(III) and V(III) complexes are proposed to be a capped octahedron in which a seventh ligand has been added to triangular face. The complexes are non-electrolytes as shown by their molar conductivities (?M). The structure of metal complexes is proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, Mass Spectra and thermal gravimetric analysis. In addition antimicrobial and antioxidant studies, cyclic voltammetry of the complexes, theoretical 1H NMR and HOMO-LUMO energy calculations of the new di-functional ligand were done.

  18. Synthesis, characterization and experimental, theoretical, electrochemical, antioxidant and antibacterial study of a new Schiff base and its complexes.

    PubMed

    Baykara, Haci; Ilhan, Salih; Levent, Abdulkadir; Salih Seyitoglu, M; Özdemir, Sadin; Okumu?, Veysi; Öztomsuk, Abdussamet; Cornejo, Mauricio

    2014-09-15

    A new Schiff base ligand was synthesized by reaction of salicylaldehyde with 1,6-bis(4-chloro-2-aminophenoxy)hexane. Then the Schiff base complexes were synthesized by metal salts and the Schiff base. The metal to ligand ratio of metal complexes was found to be 1:1. The Cu(II) complex is proposed to be square planar and the Co(II), Ni(II), Mn(II) and Zn(II) complexes are proposed to be tetrahedral geometry. The Ti(III) and V(III) complexes are proposed to be a capped octahedron in which a seventh ligand has been added to triangular face. The complexes are non-electrolytes as shown by their molar conductivities (?M). The structure of metal complexes is proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, Mass Spectra and thermal gravimetric analysis. In addition antimicrobial and antioxidant studies, cyclic voltammetry of the complexes, theoretical 1H NMR and HOMO-LUMO energy calculations of the new di-functional ligand were done. PMID:24792202

  19. Kinetics and thermodynamics of irreversible inhibition of matrix metalloproteinase 2 by a Co(III) Schiff base complex

    PubMed Central

    Harney, Allison S.; Sole, Laura B.

    2012-01-01

    Cobalt(III) Schiff base complexes have been used as potent inhibitors of protein function through the coordination to histidine residues essential for activity. The kinetics and thermodynamics of the binding mechanism of Co(acacen)(NH3)2Cl [Co(acacen); where H2acacen is bis(acetylacetone)ethylenediimine] enzyme inhibition has been examined through the inactivation of matrix metalloproteinase 2 (MMP-2) protease activity. Co(acacen) is an irreversible inhibitor that exhibits time- and concentration-dependent inactivation of MMP-2. Co(acacen) inhibition of MMP-2 is temperature-dependent, with the inactivation increasing with temperature. Examination of the formation of the transition state for the MMP-2/Co(acacen) complex was determined to have a positive entropy component indicative of greater disorder in the MMP-2/Co(acacen) complex than in the reactants. With further insight into the mechanism of Co(acacen) complexes, Co(III) Schiff base complex protein inactivators can be designed to include features regulating activity and protein specificity. This approach is widely applicable to protein targets that have been identified to have clinical significance, including matrix metalloproteinases. The mechanistic information elucidated here further emphasizes the versatility and utility of Co(III) Schiff base complexes as customizable protein inhibitors. PMID:22729838

  20. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds.

    PubMed

    Chityala, Vijay Kumar; Sathish Kumar, K; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4 ] and [Cu. L. A] where "L" is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and "A" is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,2(1)-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  1. Antifungal Activities of Copper(II) with Biosensitive Macrocyclic Schiff Base Ligands Derived from 4-Aminoantipyrine Derivatives

    PubMed Central

    Joseph, J.

    2009-01-01

    Novel copper(II) complexes have been synthesized from the macrocyclic Schiff bases derived from Knoevenagel condensed ?-ketoanilides (obtained by the condensation of acetoacetanilide and substituted benzaldehydes), 4-aminoantipyrine and o-phenylene diamine. The structural features have been determined from their analytical and spectral data. All the Cu(II) complexes exhibit square planar geometry. Their high molar conductance values support their 1 : 2 electrolytic nature. The magnetic moment data provide evidence for the monomeric nature of the complexes. The X-band ESR spectra of the [CuL1](OAc)2 in DMSO solution at 300 and 77 K were recorded and their salient features are reported. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by well diffusion method. A comparative study of inhibition values of the Schiff bases and their complexes indicate that complexes exhibit higher antimicrobial activity than the Schiff bases. Copper ions proved to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. PMID:23983523

  2. Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine

    PubMed Central

    Singh, Har Lal; Singh, Jangbhadur

    2014-01-01

    New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and ?-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H, 13C, and 119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gram-negative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands. PMID:25525422

  3. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands.

    PubMed

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A; Piro, Oscar E; Pis-Diez, Reinaldo; González-Baró, Ana C

    2015-02-25

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular O-H?N interactions in salicylaldehyde derivatives between the O-H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory. PMID:25255482

  4. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al Momani, Waleed; Al-Ghzawi, Abeer A.

    2011-10-01

    A tetradentate Schiff base ligand L (N,N'-bis(1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. New eight lanthanide metal complexes [Ln L(NO 3) 2(H 2O) x](NO 3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, x = 0 for Nd, Sm, 1 for La, Gd, Pr, Nd, Dy, and 2 for Tb} were prepared. The characterization and nature of bonding of these complexes were elucidated by elemental analysis, spectral analysis ( 1H NMR, FT-IR, UV-vis), molar conductivity measurements, luminescence spectra and thermogravimetric studies. Analytical and spectral data revealed that the ligand L coordinates to the central Ln(III) ions by its two imine nitrogen atoms and two phenolic oxygen atoms with 1:1 stoichiometry. Under the excitation with 329 nm at room temperature, Tb and Dy complexes exhibited characteristic luminescence of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of Ln(III) complexes found to exhibit antibacterial activities against a number of pathogenic bacteria. We found that the antioxident activity of Ln(III) complexes on DPPH rad is concentration dependent and higher than that of the free ligand L.

  5. Photoisomerization for a model protonated Schiff base in solution: Sloped/peaked conical intersection perspective

    NASA Astrophysics Data System (ADS)

    Malhado, João Pedro; Hynes, James T.

    2012-12-01

    The topographical character of conical intersections (CIs)—either sloped or peaked—has played a fundamental and important role in the discussion of the efficiency of CIs as photochemical "funnels." Here this perspective is employed in connection with a recent study of a model protonated Schiff base (PSB) cis to trans photoisomerization in solution [Malhado et al., J. Phys. Chem. A 115, 3720 (2011), 10.1021/jp106096m]. In that study, the calculated reduced photochemical quantum yield for the successful production of trans product versus cis reactant in acetonitrile solvent compared to water was interpreted in terms of a dynamical solvent effect related to the dominance, for the acetonitrile case, of S1 to S0 nonadiabatic transitions prior to the reaching the seam of CIs. The solvent influence on the quantum yield is here re-examined in the sloped/peaked CI topographical perspective via conversion of the model's two PSB internal coordinates and a nonequilibrium solvent coordinate into an effective branching space description, which is then used to re-analyze the generalized Langevin equation/surface hopping results. The present study supports the original interpretation and enriches it in terms of topographical detail.

  6. Synthesis of a novel fluorescent Schiff base as a possible Cu(II) ion selective sensor.

    PubMed

    Yildirim, Mehmet; Kaya, Ismet

    2010-05-01

    In this study a new fluorescent Schiff base; 1,1'-(4,4'-oxybis(4,1-phenylene)bis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-2-ol (2-HNA) was synthesized and characterized by FT-IR, UV-vis, and (1)H and (13)C-NMR techniques. Photoluminescent properties of 2-HNA were investigated in different solvents including methanol, THF, DMF, DMSO, acetone, acetonitrile, and dichloromethane. 2-HNA was found to have higher emission intensity and Stoke's shift value (lambda(ST)) in methanol solution. Relative emission intensity changes (I(0)-I/I(0)) of 2-HNA in methanol/water mixtures depending on different Cu(+2) ion concentrations were determined and a linearized plot was obtained. Possible interference of some other transition metal ions was also determined. Sensitivity limit of the new sensor was found to be higher than 5 x 10(-7) mol/L. 2-HNA has quite high selectivity against Cu(+2) ion and, thus, can be used as a new fluorescence Cu(+2) ion sensor in practice. PMID:20213242

  7. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D.

    2005-01-01

    The corrosion inhibition of mild steel in 1 M HCl by benzylidene-pyridine-2-yl-amine (A), (4-benzylidene)-pyridine-2-yl-amine (B) and (4-chloro-benzylidene)-pyridine-2-yl-amine (C) has been studied at 25 °C using electrochemical and weight loss measurements. Polarization curves reveal that the used compounds are mixed type inhibitors. Results show that inhibition efficiency increases when the inhibitor concentration increases. The inhibition efficiency changes with the type of functional groups substituted on benzene ring. The experimentally obtained adsorption isotherms follow the Langmuir equation. The effect of temperature on the corrosion behavior in the presence of 10 -2 M of inhibitors was studied in the temperature range of 25-43 °C. The associated activation energy of corrosion and other thermodynamic parameters have been determined. It has been found that all those schiff base compounds are excellent inhibitors. Obvious correlation was found between corrosion inhibition efficiency and quantum chemical parameters, using the linear and non-linear QSAR models. The obtained theoretical results have been compared with the experimental results.

  8. Crystal structures, spectroscopic and theoretical study of novel Schiff bases of 2-(methylthiomethyl)anilines

    NASA Astrophysics Data System (ADS)

    Olalekan, Temitope E.; Adejoro, Isaiah A.; VanBrecht, Bernardus; Watkins, Gareth M.

    2015-03-01

    New Schiff bases derived from p-methoxysalicylaldehyde and 2-(methylthiomethyl)anilines (substituted with methyl, methoxy, nitro) were synthesized and characterized by elemental analyses, FT-IR, NMR, electronic spectra and quantum chemical calculations. X-ray crystallography of two compounds showed the solid structures are stabilized by intramolecular and intermolecular H-bonds. The effect of OH⋯N interaction between the phenolic hydrogen and imine nitrogen on the proton and carbon NMR shifts, and the role of CH⋯O and CH⋯S contacts are discussed. The bond lengths and angles, 1H and 13C NMR data, ELUMO-HOMO, dipole moments and polarizability of the compounds were predicted by density functional theory, DFT (B3LYP/6-31G??) method. The experimental geometric parameters and the NMR shifts were compared with the calculated values, which gave good correlations. The electronic effects of aryl ring substituents (methyl, methoxy and nitro) on the properties of the resulting compounds, such as the color, NMR shifts, electronic spectra and the calculated energy band gaps, dipole moments and polarizability are discussed. Increase in electron density shifted the phenolic proton resonance to lower fields. The methoxy-substituted compound has a small dipole moment and subsequent large polarizability value. Highest polarity was indicated by the nitro compound which also showed high polarizability due to its larger size. The energy gaps obtained from ELUMO-HOMO calculations suggest these compounds may have applications as organic semiconducting materials.

  9. Two new heterodinuclear Schiff base complexes: synthesis, crystal structure and thermal studies.

    PubMed

    Yardan, Alper; Hopa, Cigdem; Yahsi, Yasemin; Karahan, Ahmet; Kara, Hulya; Kurtaran, Raif

    2015-02-25

    Two new heterodinuclear Schiff base complexes, [Hg(L)NiCl2(DMF)2] 1, and [Zn(L)NiCl2(DMF)2] 2, where H2L = N,N'-bis(salicylidene)-1,3-diaminopropane and DMF = dimethylformamide have been synthesized and characterized using elemental analysis, IR spectroscopy, thermal analysis and X-ray diffraction. Structural studies on 1 and 2 reveal the presence of a heterodinuclear [Ni(II)Hg(II)] unit and [Zn(II)Ni(II)] in which the central metal ions are connected to each other by two phenolate oxygen bridges. For complex 1 the Ni(II) ion adopts an elongated octahedral geometry (NiN2O4) while the Hg(II) ion assumes a distorted tetrahedral arrangement (HgO2Cl2) whereas for complex 2 the Zn(II) ion adopts an elongated octahedral geometry (ZnN2O4) while the Ni(II) ion assumes a distorted tetrahedral arrangement (NiO2Cl2). There are intermolecular C-H···Cl-M interactions among the dinuclear complexes which are interconnected for 1 and 2. These intermolecular interactions result in the formation of a three dimensional structure for 1 and one dimensional zig-zag chains for 2. PMID:25233025

  10. Colorimetric detection of in situ metal acetates and fluorides by a bipyridyl-linked Schiff base.

    PubMed

    Suganya, Sivalingam; Zo, Hye Jin; Park, Jong S; Velmathi, Sivan

    2014-12-01

    Here, we present a new bipyridyl moiety linked Schiff base (bipy-1) that is well characterized using spectroscopic techniques. Colorimetric and UV-vis titrations were used to study the photophysical properties of bipy-1 in the presence of various tetrabutyl ammonium salt of anions and metal salts containing different counter cations. bipy-1 showed selective recognition of dimethyl sulphoxide solution of tetrabutyl ammonium salt of F(-) ion accompanied with a UV-vis band at 529?nm and interesting binding of aqueous Co, Ni, and Cu acetates/fluorides, as confirmed by distinct color changes from fluorescent green to pink or orange and a strong band around 480-510?nm in the UV-vis spectrum. However, in the presence of Co, Ni, and Cu countercations, any form of metal acetate/fluorides was found to be able to respond to similar color changes from fluorescent green to pink or orange, showing a band around 480-510?nm. This type of output clearly indicates that the in situ formation of Co, Ni, and Cu acetates/fluorides also coordinates with bipyridyl nitrogen atoms. PMID:25319616

  11. Substituent effects on anion sensing of salicylidene Schiff base derivatives: Tuning sensitivity and selectivity.

    PubMed

    Zang, Libin; Jiang, Shimei

    2015-11-01

    A series of colorimetric anion sensors using the salicylidene Schiff bases with different substituents, including electron donating group (tert-butyl, in sensor 2), conjugated group (naphthyl, in sensor 3) and electron withdrawing group (chlorine, in sensor 4), respectively, have been developed. The substituents can not only impact chromogenic signal output, but also tune the sensitivity and selectivity of the anion sensing by their specific electron push-pull features. In particular, both 1 (without substituent) and 2 show high selectivity for F(-) over Cl(-), Br(-), I(-), AcO(-) and H2PO4(-), but the sensitivity of 2 is poorer than 1 due to the effect of electron donating groups. Sensor 3 exhibits higher sensitivity for F(-) than 1, but it is disturbed by the weak response to AcO(-) and H2PO4(-). Sensor 4 has the highest sensitivity for F(-), but shows the significant response to AcO(-) and H2PO4(-), which also decreases the selectivity for F(-). Finally, analytical applications of 1 for the detection of F(-) in aqueous medium and toothpaste have been studied. PMID:26112105

  12. Experimental and theoretical spectroscopic study and structural determination of nickel(II) tridentate Schiff base complexes.

    PubMed

    Kianfar, Ali Hossein; Farrokhpour, Hossein; Dehghani, Parin; Khavasi, Hamid Reza

    2015-11-01

    Some new complexes of [NiL(PR3)] (where L=(E)-1-[(2-amino-5-nitrophenyl)iminio-methyl]naphthalene-2-olate (L(1)), (E)-1-[(2-hydroxiphenyl)iminio-methyl]naphthalene-2-olate (L(2)), R=Bu and Ph) containing tridentate ONN and ONO Schiff bases were synthesized and characterized by IR, UV-Vis, (1)H-NMR spectroscopy and elemental analysis. The geometry of [NiL(1)(PBu3)] and [NiL(2)(PBu3)] complexes were determined by X-ray crystallography. It was indicated that the complexes have a square planar structure and four coordinates in the solid state. Theoretical calculations were also performed to optimize the structures of the ligands and complexes in the gas phase and ethanol solvent, separately to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of the complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. PMID:26051644

  13. Photoisomerization for a model protonated Schiff base in solution: Sloped/peaked conical intersection perspective

    SciTech Connect

    Malhado, Joao Pedro; Hynes, James T.

    2012-12-14

    The topographical character of conical intersections (CIs)-either sloped or peaked-has played a fundamental and important role in the discussion of the efficiency of CIs as photochemical 'funnels.' Here this perspective is employed in connection with a recent study of a model protonated Schiff base (PSB) cis to trans photoisomerization in solution [Malhado et al., J. Phys. Chem. A 115, 3720 (2011)]. In that study, the calculated reduced photochemical quantum yield for the successful production of trans product versus cis reactant in acetonitrile solvent compared to water was interpreted in terms of a dynamical solvent effect related to the dominance, for the acetonitrile case, of S{sub 1} to S{sub 0} nonadiabatic transitions prior to the reaching the seam of CIs. The solvent influence on the quantum yield is here re-examined in the sloped/peaked CI topographical perspective via conversion of the model's two PSB internal coordinates and a nonequilibrium solvent coordinate into an effective branching space description, which is then used to re-analyze the generalized Langevin equation/surface hopping results. The present study supports the original interpretation and enriches it in terms of topographical detail.

  14. Two new heterodinuclear Schiff base complexes: Synthesis, crystal structure and thermal studies

    NASA Astrophysics Data System (ADS)

    Yardan, Alper; Hopa, Cigdem; Yahsi, Yasemin; Karahan, Ahmet; Kara, Hulya; Kurtaran, Raif

    2015-02-01

    Two new heterodinuclear Schiff base complexes, [Hg(L)NiCl2(DMF)2] 1, and [Zn(L)NiCl2(DMF)2] 2, where H2L = N,N?-bis(salicylidene)-1,3-diaminopropane and DMF = dimethylformamide have been synthesized and characterized using elemental analysis, IR spectroscopy, thermal analysis and X-ray diffraction. Structural studies on 1 and 2 reveal the presence of a heterodinuclear [NiIIHgII] unit and [ZnIINiII] in which the central metal ions are connected to each other by two phenolate oxygen bridges. For complex 1 the Ni(II) ion adopts an elongated octahedral geometry (NiN2O4) while the Hg(II) ion assumes a distorted tetrahedral arrangement (HgO2Cl2) whereas for complex 2 the Zn(II) ion adopts an elongated octahedral geometry (ZnN2O4) while the Ni(II) ion assumes a distorted tetrahedral arrangement (NiO2Cl2). There are intermolecular Csbnd H···Clsbnd M interactions among the dinuclear complexes which are interconnected for 1 and 2. These intermolecular interactions result in the formation of a three dimensional structure for 1 and one dimensional zig-zag chains for 2.

  15. Photoisomerization action spectrum of retinal protonated Schiff base in the gas phase

    SciTech Connect

    Coughlan, N. J. A.; Catani, K. J.; Adamson, B. D.; Wille, U.; Bieske, E. J.

    2014-04-28

    The photophysical behaviour of the isolated retinal protonated n-butylamine Schiff base (RPSB) is investigated in the gas phase using a combination of ion mobility spectrometry and laser spectroscopy. The RPSB cations are introduced by electrospray ionisation into an ion mobility mass spectrometer where they are exposed to tunable laser radiation in the region of the S{sub 1} ? S{sub 0} transition (420–680 nm range). Four peaks are observed in the arrival time distribution of the RPSB ions. On the basis of predicted collision cross sections with nitrogen gas, the dominant peak is assigned to the all-trans isomer, whereas the subsidiary peaks are assigned to various single, double and triple cis geometric isomers. RPSB ions that absorb laser radiation undergo photoisomerization, leading to a detectable change in their drift speed. By monitoring the photoisomer signal as a function of laser wavelength an action spectrum, extending from 480 to 660 nm with a clear peak at 615 ± 5 nm, is obtained. The photoisomerization action spectrum is related to the absorption spectrum of isolated retinal RPSB molecules and should help benchmark future electronic structure calculations.

  16. Synthesis of novel Schiff's bases of highly potential biological activities and their structure investigation

    NASA Astrophysics Data System (ADS)

    Zayed, Ehab M.; Zayed, M. A.

    2015-05-01

    Novel bisaldehyde-hydrazide Schiff's bases AS1 (2,2?-(ethane-1,2-diylbis(oxy))dibenzaldehyde terephthalohydrazide) and AS2 (N?,N??-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(benzohydrazide)) were prepared as new macrocyclic compounds via condensation reactions. AS1 had been prepared by condensation between (2,2?-(ethane-1,2-diylbis(oxy))dibenzaldehyde) bisaldehyde and terephthalohydrazide in a ratio1:1. AS2 had been obtained by condensation between (2,2?-(ethane-1,2-diylbis(oxy))dibenzaldehyde) bisaldehyde and benzohydrazide in ratio 1:2. The structures of AS1 and AS2 were characterized by elemental analysis (EA), mass (MS), FT-IR and 1H-NMR spectra, and thermal analyses (TG, DTG). The activation thermodynamic parameters such as ?E?, ?H?, ?S? and ?G? were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bonds responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities had been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillus subtilis and Staphylococcus aurous bacteria in order to assess their anti-microbial potential.

  17. Synthesis, molecular structure, and properties of a neutral Schiff base phenolic complex of magnesium

    SciTech Connect

    Polyakov, V.R.; Sharma, V.; Crankshaw, C.L.; Piwnica-Worms, D.

    1998-09-07

    Multidrug resistance (MDR) in cancer mediated by the MDR1 P-glycoprotein (Pgp), a 140--180 kDa plasma membrane protein, renders chemotherapeutic treatment ineffective by pumping a variety of natural product cytotoxic agents and xenobiotic compounds out of cancer cells. Pgp has been a major target for synthesis and development of both therapeutic antagonists that block its transport function and diagnostic radiopharmaceuticals that are transported by the protein for use in functional imaging of Pgp transport activity in tumors in vivo. Most, but not all, compounds that interact with Pgp are hydrophobic and cationic at physiological pH. To further understand the Pgp targeting properties, the authors sought to directly evaluate the effect of charge of the complex on Pgp interactions. This could be done by comparing the cytotoxicity profile of a neutral complex to that of an identical, but positively charged, complex in both drug-sensitive and multidrug-resistant cancer cells. Thus, a neutral analogue of the Ga(III) and Fe(III) complexes was desired. Herein the authors describe the synthesis and structure of a novel neutral Schiff base Mg complex and evaluate its cytotoxic potency in human drug-sensitive KB-3-1 and multi-drug-resistant KB-8-5 tumor cells.

  18. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones

    SciTech Connect

    Bozell, J.J.; Hames, B.R.; Dimmel, D.R.

    1995-04-21

    Para-substituted phenolics, serving as models for lignin (a renewable source of carbon), are oxidized to the corresponding benzoquinone with oxygen in the presence of catalytic amounts of Co-Schiff base complexes. The reaction products observed depend on the structure of the catalyst. The 5-coordinate catalysts (pyridine)[bis(salicylidene)ethylenediamine]cobalt[(pyr)Co(salen)]and[bis(salicylideneamino)ethylamine]cobalt [Co(n-Me salpr)] convert syringyl alcohol (3,5-dimethoxy-4-hydroxybenzyl alcohol) to 2,6-dimethoxybenzoquinone in high yield. In contrast, syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) is unreactive toward these catalysts. However, the 4-coordinate Co(salen) converts syringaldehyde to 2,6-dimethoxybenzoiquinone in 72% isolated yield. Phenols bearing a single methoxy group on the ring are unreactive toward any catalyst in MeOH. However, vanillyl alcohol (3-methoxy-4-hydroxybenzyl alcohol) is converted to 2-methoxybenzo-quinone with Co(N-Me salpr) and oxygen in 43% yield in CH{sub 2}Cl{sub 2} and 58% yield in CH{sub 2}Cl{sub 2} in the presence of 1% CuCl{sub 2}. The success of the oxidations appears to be related to the ease of removal of the phenolic hydrogen by the Co/O{sub 2} complex. Competitive deactivation of the catalyst occurs with substrates of lower reactivity. 84 tabs.

  19. A high performance Schiff-base fluorescent probe for monitoring Au(3+) in zebrafish based on BODIPY.

    PubMed

    Wang, Enze; Pang, Lanfang; Zhou, Yanmei; Zhang, Junli; Yu, Fang; Qiao, Han; Pang, Xiaobin

    2016-03-15

    We designed and synthesized a mono-Schiff-base fluorescent probe (Probe 1) based on a boron-dipyrromethene (BODIPY) dye. By investigating the recognition of Au(3+) through an irreversible C=N bond hydrolysis reaction, Probe 1 exhibited higher properties such as acting as a "naked eye" probe, stability to pH, fast-response of 90s, a lower detection limit of 60nM, stronger antijamming capability, and better live-cells imaging with low cytotoxicity compared with other probes. Even in relatively high temperatures, Probe 1 maintained its own excellent characteristic. More importantly, this is the first time that one chemosensor could be successfully applied to Au(3+) imaging in zebrafish, which demonstrated the performance that Probe 1 exhibited wonderful organism permeability. PMID:26513288

  20. Isatin based Schiff bases as inhibitors of ?-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies.

    PubMed

    Rahim, Fazal; Malik, Fazal; Ullah, Hayat; Wadood, Abdul; Khan, Fahad; Javid, Muhammad Tariq; Taha, Muhammad; Rehman, Wajid; Ur Rehman, Ashfaq; Khan, Khalid Mohammed

    2015-06-01

    Isatin base Schiff bases (1-20) were synthesized, characterized by (1)H NMR and EI/MS and evaluated for ?-glucosidase inhibitory potential. Out of these twenty (20) compounds only six analogs showed potent ?-glucosidase inhibitory potential with IC50 value ranging in between 2.2±0.25 and 83.5±1.0?M when compared with the standard acarbose (IC50=840±1.73?M). Among the series compound 2 having IC50 value (18.3±0.56?M), 9 (83.5±1.0?M), 11 (3.3±0.25?M), 12 (2.2±0.25?M), 14 (11.8±0.15?M), and 20 (3.0±0.15?M) showed excellent inhibitory potential many fold better than the standard acarbose. The binding interactions of these active analogs were confirmed through molecular docking. PMID:25955493

  1. Design of nanostructures based on aromatic peptide amphiphiles.

    PubMed

    Fleming, Scott; Ulijn, Rein V

    2014-12-01

    Aromatic peptide amphiphiles are gaining popularity as building blocks for the bottom-up fabrication of nanomaterials, including gels. These materials combine the simplicity of small molecules with the versatility of peptides, with a range of applications proposed in biomedicine, nanotechnology, food science, cosmetics, etc. Despite their simplicity, a wide range of self-assembly behaviours have been described. Due to varying conditions and protocols used, care should be taken when attempting to directly compare results from the literature. In this review, we rationalise the structural features which govern the self-assembly of aromatic peptide amphiphiles by focusing on four segments, (i) the N-terminal aromatic component, (ii) linker segment, (iii) peptide sequence, and (iv) C-terminus. It is clear that the molecular structure of these components significantly influences the self-assembly process and resultant supramolecular architectures. A number of modes of assembly have been proposed, including parallel, antiparallel, and interlocked antiparallel stacking conformations. In addition, the co-assembly arrangements of aromatic peptide amphiphiles are reviewed. Overall, this review elucidates the structural trends and design rules that underpin the field of aromatic peptide amphiphile assembly, paving the way to a more rational design of nanomaterials based on aromatic peptide amphiphiles. PMID:25199102

  2. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, ?-hydroxyketones, ?-diketones, and ?-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054

  3. Probing the carbonyl functionality of a petroleum resin and asphaltene through oximation and schiff base formation in conjunction with N-15 NMR

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, ?-hydroxyketones, ?-diketones, and ?-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  4. New platinum and ruthenium Schiff base complexes for water splitting reactions.

    PubMed

    Wang, Chuanjun; Chen, Yong; Fu, Wen-Fu

    2015-08-28

    New platinum(ii) and ruthenium(ii) mononuclear complexes with naphthalene-based Schiff base ligands L1 (H2-selnaph) and L2 (H2-selnaph-COOH) were synthesized: Pt-selnaph (), Pt-selnaph-COOH (), Ru-selnaph(4-picoline)2 (), and Ru-selnaph(isoquinoline)2 (). The complexes were characterized by NMR spectroscopy, matrix-assisted laser desorption/ionization time-of-flight spectrometry, and elemental analysis, and their electrochemical and photophysical properties were investigated. The luminescent complexes and were used as photosensitizers for visible-light driven hydrogen production reactions in the presence of sacrificial electron donor triethylamine and cocatalyst precursor K2PtCl4 aqueous solution. When complex was attached to the surface of TiO2 by a carboxyl group, enhanced hydrogen photogeneration was achieved compared with complex alone, with turnover numbers of about 84 after 12 h irradiation. Calculations based on electrochemical and spectroscopic data also confirmed the feasibility of electron injection through the carboxyl group of complex into the conduction band of TiO2 for hydrogen production reactions. Complexes and were found to be efficient stable water oxidation (NH4)2Ce(NO3)6-driven catalysts with a first-order reaction behavior. A turnover frequency of 5.34 min(-1) was achieved for complex , while complex exhibited an enhanced turnover frequency of 11.9 min(-1) in pH 1.0 aqueous solution. Turnover numbers up to 1400 and 2060 were obtained after 6.5 h of reaction for and , respectively. Unique mechanistic information for water splitting is also presented through electrochemical, spectroscopic and ESI-MS high-valent ruthenium-oxo intermediate investigations. PMID:26205430

  5. Electronic-structure and quantum dynamical study of the photochromism of the aromatic Schiff base salicylideneaniline

    SciTech Connect

    Ortiz-Sanchez, Juan Manuel; Gelabert, Ricard; Moreno, Miquel; Lluch, Jose M.

    2008-12-07

    The ultrafast proton transfer dynamics of salicylideneaniline has been theoretically analyzed in the ground and first singlet excited electronic states using density functional theory (DFT) and time-dependent DFT calculations, which predict a ({pi},{pi}*) barrierless excited state intramolecular proton transfer (ESIPT). In addition to this, the photochemistry of salicylideneaniline is experimentally known to present fast depopulation processes of the photoexcited species before and after the proton transfer reaction. Such processes are explained by means of conical intersections between the ground and first singlet ({pi},{pi}*) excited electronic states. The electronic energies obtained by the time-dependent density functional theory formalism have been fitted to a monodimensional potential energy surface in order to perform quantum dynamics study of the processes. Our results show that the proton transfer and deactivation of the photoexcited species before the ESIPT processes are completed within 49.6 and 37.7 fs, respectively, which is in remarkable good agreement with experiments.

  6. A triazole Schiff base-based selective and sensitive fluorescent probe for Zn(2+): A combined experimental and theoretical study.

    PubMed

    Yuan, Caixia; Liu, Xinyu; Wu, Yanbo; Lu, Liping; Zhu, Miaoli

    2016-02-01

    A triazole-Schiff base, 4-(5-Chloro-2-hydroxybenzylideneamino)-1H-1,2,4-triazole-5(4H)-thione (HL), exhibits the high selectivity and sensitivity for Zn(2+) in the fluorescence spectrometry over other common metal ions, especially Cd(2+) in DMSO:H2O (1:9, v/v) solution. A 1:1 binding ratio of Zn(2+)/L for the complex has been obtained by Uv-Vis titration experiments and Job's plot with the detection limit of 51nmol/L. The coordination mode of the complex in solution was further confirmed by density functional theory (DFT) calculations. Time-dependent density functional theory (TD-DFT) calculations indicate that a chelation-enhanced fluorescence (CHEF) effect occurs in the process of detecting Zn ion. PMID:26529638

  7. A colorimetric and turn-on fluorescent chemosensor for Al(III) based on a chromone Schiff-base

    NASA Astrophysics Data System (ADS)

    Fan, Long; Li, Tian-rong; Wang, Bao-dui; Yang, Zheng-yin; Liu, Chun-jiao

    2014-01-01

    A simple Schiff-base receptor 7-methoxychromone-3-carbaldehyde-(pyridylformyl) hydrazone (MCNH) was prepared. It exhibits an “off-on-type” mode with high sensitivity in the presence of Al3+. This compound could be used as Al3+ probe in ethanol and it features visible light excitation (433 nm) and emission (503 nm) profiles. Upon binding of Al3+, a significant fluorescence enhancement with a turn-on ratio over 800-fold was triggered. However, other metal ions had no such significant effect on the fluorescence. MCNH can also be used as a colorimetric chemosensor for Al3+, which is easily observed from colorless to yellow-green by the naked-eye. The detection limit of MCNH for Al3+ was as low as 1.9 × 10-7 M.

  8. A colorimetric and turn-on fluorescent chemosensor for Al(III) based on a chromone Schiff-base.

    PubMed

    Fan, Long; Li, Tian-rong; Wang, Bao-dui; Yang, Zheng-yin; Liu, Chun-jiao

    2014-01-24

    A simple Schiff-base receptor 7-methoxychromone-3-carbaldehyde-(pyridylformyl) hydrazone (MCNH) was prepared. It exhibits an "off-on-type" mode with high sensitivity in the presence of Al(3+). This compound could be used as Al(3+) probe in ethanol and it features visible light excitation (433 nm) and emission (503 nm) profiles. Upon binding of Al(3+), a significant fluorescence enhancement with a turn-on ratio over 800-fold was triggered. However, other metal ions had no such significant effect on the fluorescence. MCNH can also be used as a colorimetric chemosensor for Al(3+), which is easily observed from colorless to yellow-green by the naked-eye. The detection limit of MCNH for Al(3+) was as low as 1.9×10(-7) M. PMID:24140792

  9. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H 2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial ( Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  10. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Abdulnabi, Zuhair A.; Bolandnazar, Zeinab

    2014-01-01

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, 13C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical 13C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  11. Two fluorescent Schiff base sensors for Zn(2+): the Zn(2+)/Cu(2+) ion interference.

    PubMed

    Jiménez-Sánchez, Arturo; Ortíz, Benjamín; Ortiz Navarrete, Vianney; Farfán, Norberto; Santillan, Rosa

    2015-09-01

    Two simple and low cost 2,4-di-tert-butyl-6-[(1-hydroxycyclohexylmethylimino)methyl]phenol (L1) and 2-[{(1-hydroxycyclohexyl)methylimino}methyl]phenol (L2) Schiff base sensors exhibiting selectivity for Zn(2+) in water:methanol (95:5, v/v, 10 mM HEPES) are described. L1 and L2 display an "off-on" fluorescence effect forming the L1·Zn and L2·Zn complexes, respectively. In the case of L1·Zn, the emission response is quenched by the addition of Cu(2+) forming the respective L1·Cu complex; in spite of that, the fluorescence signal can be completely restored only by the addition of tartrate anions (C4H4O6(2-)) forming again L1·Znvia the "off-on" displacement approach. However, in the case of L2·Zn no Cu(2+) interference is observed, which is a typical problem for Zn(2+) sensors. Here we describe that a very subtle structural change in the ligand during transition from the enol-imine tautomer in L1 to the keto-enamine tautomer in L2 is enough to modulate the Zn(2+)/Cu(2+) selectivity. Also, the Zn(2+)vs. Cd(2+) discrimination for L1 and L2 is proved. Moreover, we found that the interaction between both L·Zn complexes and tartrate anions completely restored the free ligands by the ligand substitution mechanism even in a more efficient association than phosphate anions. Further, a second colorimetric response channel upon addition of Fe(2+) was observed for L1 and L2. Then, TD-DFT theoretical calculations were conducted in order to study the efficiency of the sensors to give different responses in the presence of such metal ions. Finally, the L2 sensor successfully detects Zn(2+) in Jurkat cells cultured with and without Zn(2+) enriched medium. PMID:26192046

  12. A Schiff base derivative for effective treatment of diethylnitrosamine-induced liver cancer in vivo.

    PubMed

    Demirci, Selami; Do?an, Ay?egül; Ba?ak, Ne?e; Telci, Dilek; Dede, Bülent; Orhan, Cemal; Tuzcu, Mehmet; ?ahin, Kazm; ?ahin, Nurhan; Özercan, ?brahim Hanifi; ?ahin, Fikrettin

    2015-06-01

    Hepatocellular carcinoma is one of the most prevalent cancers, with a high morbidity rate, even in developed countries. In the present study, the curative effect of the Schiff base (SB) heterodinuclear copper(II)Mn(II) complex on diethylnitrosamine (DEN)-induced liver carcinoma was investigated. Hepatocarcinoma was initiated by an injection of DEN and promoted by phenobarbital (0.05%) in the diet. In addition, the potential nephrotoxicity of SB was evaluated in a cisplatin-induced nephrotoxicity model. Rats were administered the SB complex (1 and 2 mg/kg body weight/day) for 24 weeks, and cancer progression was investigated by macroscopic, histopathological, and western blot examinations. The administration of SB decreased the incidence and the number of hepatic nodules in a dose-dependent manner by regulating inflammation response and the apoptotic pathway. Western blot analyses from the livers of rats treated with SB after DEN induction showed significantly enhanced Bax and caspase-3 levels, with a marked decrease in the levels of Bcl-2, NF-?B p65 and cyclooxygenase (COX)-2. Results from the nephrotoxicity study showed that, whereas cisplatin increased serum urea nitrogen and creatinine levels, no increase in serum biochemical parameters was detected in SB-treated animals. Moreover, protein levels of NF-E2-related factor-2 (Nrf2) and heme oxygenase-1 were lower, whereas nuclear factor-?B (NF-?B p65) and activator protein-1 levels were higher in the kidneys of cisplatin-treated animals compared with that of the SB groups. Therefore, the SB complex could be an alternative chemotherapeutic option for liver cancer treatment once its safety in clinical applications has been examined. PMID:25714251

  13. Syntheses, crystal structure, Hirshfeld surfaces, fluorescence properties, and DFT analysis of benzoic acid hydrazone Schiff bases

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2015-06-01

    Two hydrazone Schiff base analogues, namely, (E)-N?-(4-hydroxy-3-methoxybenzylidene)benzohydrazide (3a) and (E)-N?-(4-methoxybenzylidene)benzohydrazide (3b), were synthesized using a mild, efficient method and characterized by 1H NMR, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. X-ray analysis of a single crystal of 3a revealed a tetragonal, space group I4(1)/a structure, with an E-configuration around the azomethine (sbnd C8dbnd N2sbnd) double bond. In this structure, the sbnd NHsbnd and sbnd OH groups act as proton donors and the >Cdbnd O and sbnd Ndbnd groups as proton acceptors, and these facilitate hydrogen bond formation in the crystal state. Plausible intermolecular interactions were studied using 3D Hirshfeld surfaces and related 2D fingerprint plots. The optimized geometry, vibrational frequencies, Mulliken charge distribution, molecular electrostatic potential (MEP) maps, frontier molecular orbitals (FMOs), and associated energies of the ground state and the first single excited state were calculated using density functional theory (DFT) and time-dependant DFT calculations using the B3LYP/6-311G method. Vibrational frequencies calculated in the gaseous phase compared with experimental values measured in the solid state and showed good agreement with each other. The chemical reactivities of 3a and 3b were predicted by mapping MEP surface over optimized geometries and comparing these with MEP map generated over crystal structures. Mulliken charge distribution analysis and MEP map of 3a and 3b revealed that N(1), O(1), O(2) and O(3) atoms could act as electron donors and coordinate with metals and that these represented the most suitable sites for electrophilic attack. In fluorescence spectra, the absorption and emission spectra of 3a and 3b were similar in different polar solvents with few exceptions. In addition, both compounds exhibited dual emission spectra in acetone due to keto-enol tautomerism induced by photoexcitation.

  14. Protonation States of the Tryptophan Synthase Internal Aldimine Active Site from Solid-State NMR Spectroscopy: Direct Observation of the Protonated Schiff Base Linkage to Pyridoxal-5?-Phosphate

    PubMed Central

    2015-01-01

    The acid–base chemistry that drives catalysis in pyridoxal-5?-phosphate (PLP)-dependent enzymes has been the subject of intense interest and investigation since the initial identification of PLP’s role as a coenzyme in this extensive class of enzymes. It was first proposed over 50 years ago that the initial step in the catalytic cycle is facilitated by a protonated Schiff base form of the holoenzyme in which the linking lysine ?-imine nitrogen, which covalently binds the coenzyme, is protonated. Here we provide the first 15N NMR chemical shift measurements of such a Schiff base linkage in the resting holoenzyme form, the internal aldimine state of tryptophan synthase. Double-resonance experiments confirm the assignment of the Schiff base nitrogen, and additional 13C, 15N, and 31P chemical shift measurements of sites on the PLP coenzyme allow a detailed model of coenzyme protonation states to be established. PMID:25148001

  15. Design of chiral urea-quaternary ammonium salt hybrid catalysts for asymmetric reactions of glycine Schiff bases

    PubMed Central

    Tiffner, Maximilian; Novacek, Johanna; Busillo, Alfonso; Gratzer, Katharina; Massa, Antonio; Waser, Mario

    2015-01-01

    Bifunctional chiral urea-containing quaternary ammonium salts can be straightforwardly synthesised in good yield and with high structural diversity via a scalable and operationally simple highly telescoped sequence starting from trans-1,2-cyclohexanediamine. These novel hybrid catalysts were systematically investigated for their potential to control glycine Schiff bases in asymmetric addition reactions. It was found that Michael addition reactions and the herein presented aldol-initiated cascade reaction can be carried out to provide enantiomeric ratios up to 95 : 5 and good yields under mild conditions at room temperature. PMID:26504516

  16. Synthesis, characterization, crystal structures, computational studies, and antibacterial activities of two new Schiff bases derived from isophthalaldehyde

    NASA Astrophysics Data System (ADS)

    Salehi, Mehdi; Amoozadeh, Ali; Salamatmanesh, Arefe; Kubicki, Maciej; Dutkiewicz, Grzegorz; Samiee, Sepideh; Khaleghian, Ali

    2015-07-01

    Two new Schiff bases, N,N?-(1,3-phenylenebis(methanylylidene))bis(4-bromoaniline) (1) and N,N?-(1,3-phenylenebis(methanylylidene))bis(4-methoxyaniline) (2), have been synthesized by the reaction between isophthalaldehyde and appropriate aniline derivatives, and characterized by physico-chemical and spectroscopic methods. The structures of new compounds 1 and 2 have been characterized crystallographically. Moreover, structural optimization by DFT calculations have been performed and compared with the experimental data. The compounds were also screened for in vitro antibacterial activities against four human pathogenic bacteria and their minimum inhibitory concentrations showed moderate antibacterial activities.

  17. A novel Schiff base bearing dopamine groups with tripodal structure. Synthesis and its salen/salophen-bridged Fe/Cr(III) capped complexes

    NASA Astrophysics Data System (ADS)

    Kocyigit, Ozcan

    2013-02-01

    This work presents the synthesis of a novel Schiff base and its complexation properties with Fe(III) and Cr(III). A Schiff base bearing dopamine (TRDPA) was synthesized using dopamine hydrochloride and 1,3,5-tris (formylphenoxymethyl)benzene in methanol media. The prepared TRDPA was then reacted with four new trinuclear Fe(III) and Cr(III) complexes involving tetradenta Schiff bases N,N-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophenH2). The structures of these compounds were characterized through 1H NMR, 13C NMR, FT-IR, thermal analysis (TG), elemental analysis, and magnetic susceptibility measurements. The complexes were also characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by a catechol group.

  18. Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A.

    PubMed

    Rath, P; Marti, T; Sonar, S; Khorana, H G; Rothschild, K J

    1993-08-25

    The bacteriorhodopsin (bR) mutants Asp-85-->Asn (D85N) and Asp-85-->Ala (D85A) have a red-shifted chromophore absorption and exhibit no proton pumping (Otto, H., Marti, T., Holz, M., Mogi, T., Stern, L., Engel, F., Khorana, H. G., and Heyn, M. P. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1018-1022) consistent with the hypothesis that Asp-85 functions as a counterion and proton acceptor for the retinal Schiff base (Braiman, M. S., Mogi, T., Marti, T., Stern, L. J., Khorana, H. G., and Rothschild, K. J. (1988) Biochemistry 27, 8516-8520). Resonance Raman spectroscopy reveals that these mutants contain a mixture of all-trans and 13-cis/C = N syn chromophores, similar to dark-adapted purple membrane and acid-induced or deionized blue membrane. At high NaCl concentrations, both mutants adopt a predominantly all-trans chromophore structure similar to acid purple membrane. A comparison of the Schiff base C = NH+ stretch frequency (vC = N) and deuterium isotope shift for D85N, D85A as well as various forms of bR, including light-adapted bR, blue membrane, and acid purple membrane, provides information about hydrogen bonding interactions to the Schiff base. D85N has as strong a hydrogen bond as light-adapted bR despite the loss of the negative charge at residue 85. In contrast, D85A has a weaker hydrogen bond. These results can be explained if a direct interaction exists between the Schiff base and Asn-85 in D85N and between the Schiff base and a substituted water molecule in D85A. Many of the properties of wild type bR, D85N, D85A, blue membrane, and acid purple membrane can be explained on the basis of changes in the local hydrogen bonding near the Schiff base. PMID:8349659

  19. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra

    2014-12-01

    Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.

  20. Effect of molecular conformation on spectroscopic properties of symmetrical Schiff bases derived from 1,4-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Fang, Zhengjun; Cao, Chenzhong

    2013-03-01

    The relationship between the molecular conformation and spectroscopic properties of symmetrical bis-Schiff bases was explored experimentally. Seven samples of compounds p-X-C6H4CHdbnd NC6H4Ndbnd CHC6H4-p-X (X = OMe, Me, Et, Cl, F, CF3, or CN) were prepared for this study, and their crystal structures were measured by X-ray diffraction. Their ?max values in ethanol, acetonitrile, chloroform and cyclohexane solvents were measured, and their ?C(Cdbnd N) values in chloroform-d were determined. The results show that the ?max is dependent on the substituents at the benzylidene ring and the dihedral angle ? of the titled molecules, and the term sin(?) is suitable to modify the substituent effects on the ?max. However, experimental investigations indicate that the dihedral angle ? has a limited effect on the values of ?C(Cdbnd N). This study provides a new understanding for the molecular conformation on spectroscopic properties of symmetrical Schiff bases.

  1. A new tetranuclear copper(II) Schiff base complex containing Cu 4O 4 cubane core: Structural and spectral characterizations

    NASA Astrophysics Data System (ADS)

    Shit, Shyamapada; Rosair, Georgina; Mitra, Samiran

    2011-04-01

    A new tetra-nuclear coordination complex [Cu 4(HL) 4] ( 1) containing Cu 4O 4 cubane core has been synthesized by using Schiff base ligand [(OH)C 6H 4CH dbnd N sbnd C(CH 3)(CH 2OH) 2] (H 3L), obtained by the 1:1 condensation of 2-amino-2-methyl-1,3-propanediol with salicylaldehyde and thoroughly characterized by micro-analytical, FT-IR, UV-Vis, thermal and room temperature magnetic susceptibility measurements. Structural characterization of the complex has been done by single crystal X-ray diffraction analysis. Structural elucidation reveals versatile coordination modes for two identical alkoxo oxygen atoms of the Schiff base ligand; one in its deprotonated form exhibits ? 3-bridging to bind three similar copper(II) centers whilst the protonated one remains as monodentate or non-coordinating. Structural analysis also shows that the Cu 4O 4 cubane core in 1 consists of four ? 3-alkoxo oxygen bridged copper(II) atoms giving an approximately cubic array of alternating oxygen atoms and copper(II) atoms where the metal centers display both distorted square pyramidal and distorted octahedral geometries.

  2. Experimental and theoretical investigation of a novel mononuclear copper(II) azido compound with tridentate (NNO) Schiff base

    NASA Astrophysics Data System (ADS)

    Karahan, Ahmet; Karabulut, Sedat; Dal, Hakan; Kurtaran, Raif; Leszczynski, Jerzy

    2015-08-01

    The tridentate (NNO) Schiff base (HL), has been prepared by the condensation of 2-(aminomethyl)pyridine with 5-chloro-salicylaldehyde. The mononuclear [N-(2-pyridylmethyl)-3-chloro-salicylaldiminato] (azido) copper(II) complex of general formula [Cu(L)(N3)] (1) has been synthesized by the treatment of HL and CuCl2·2H2O with sodium azide. The ligand and complex have been investigated by various methods including IR, TG-DTA and X-ray diffraction techniques. The complex crystallizes in monoclinic space group P21/c, with unit cell dimensions a = 6.7369(4), b = 11.6058(8), c = 17.1379(11) Å, ? = 93.823(2)°. The distorted square-planar Cu(II) ion in complex is chelated by one imino N, one phenolic O and one pyridine N atoms of Schiff base ligand and one N atom of azide ion. The electrochemical behavior of the mononuclear copper azido complex was studied with cyclic voltammetry. Tautomer stability of the ligand and the complex has been determined by molecular modeling techniques. It has been concluded that the HL is more stable than its tautomeric form (THL) both as ligand and complex structures.

  3. Biologically active and thermally stable polymeric Schiff base and its metal polychelates: Their synthesis and spectral aspects.

    PubMed

    Rasool, Raza; Hasnain, Sumaiya

    2015-09-01

    New metal polychelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) obtained by the interaction of metal acetates with polymeric Schiff base containing formaldehyde and piperazine, have been investigated. Structural and spectroscopic properties have been evaluated by elemental analysis, FT-IR and (1)H-NMR. Geometry of the chelated polymers was confirmed by magnetic susceptibility measurements, UV-Visible spectroscopy and Electron Spin Resonance. The molecular weight of the polymer was determined by gel permeation chromatography (GPC). Thermogravimetric analysis indicated that metal polychelates were more thermally stable than their corresponding ligand. All compounds were screened for their antimicrobial activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, (bacteria) and Candida albicans, Microsporum canis, Cryptococcus neoformans (fungi) by agar well diffusion method. Interestingly, the polymeric Schiff base was found to be antimicrobial in nature but less effective as compared to the metal polychelates. On the basis of thermal and antimicrobial behavior, these polymers hold potential applications as thermally resistant antimicrobial and antifouling coating materials as well as antimicrobial packaging materials. PMID:25955762

  4. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand.

    PubMed

    Belal, A A M; El-Deen, I M; Farid, N Y; Zakaria, Rosan; Refat, Moamen S

    2015-10-01

    The main target of this paper is to get an interesting data for the preparation and characterizations of metal oxide (MO) nanoparticles using H2L Schiff base complexes as precursors through the thermal decomposition procedure. Five Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were synthesized from 2-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-benzoic acid new adduct (H2L). Theses complexes were characterized using infrared, electronic, mass and (1)H NMR spectroscopic techniques. The elemental analysis data was confirmed that the stoichiometry of (metal:H2L) is 1:1 molar ratio. The molar conductance indicates that all of complexes are non electrolytic. The general chemical formulas of these complexes is [M(L)(NH3)]·nH2O. All complexes are tetrahedral geometry. The thermal decomposition behavior of H2L hydrated and anhydrous complexes has been discussed using thermogravimetric analysis (TG/DTG) and differential thermal analyses (DTA) under nitrogen atmosphere. The crystalline phases of the reaction products were checked using X-ray diffractometer (XRD) and scanning electron microscopy (SEM). PMID:25989615

  5. Modern spectroscopic technique in the characterization of biosensitive macrocyclic Schiff base ligand and its complexes: Inhibitory activity against plantpathogenic fungi

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Akhtar, Jameel; Chand, Dinesh

    2014-01-01

    Complexes of the type [M(L)Cl2], where M = Co(II), Ni(II) and Cu(II) have been synthesized with a macrocyclic Schiff base ligand (1,4,5,7,10,11,12,15-octaaza,5,11,16,18-tetraphenyl, 3,4,12,13-tetramethyl cyclo-octadecane) derived from Schiff base (obtained by the condensation of 4-aminoantipyrine and dibenzoyl methane) and ethylenediamine. The ligand was characterized on the basis of elemental analysis, IR, 1H NMR, EI Mass and molecular modeling studies while the complexes were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, IR, electronic and EPR spectral studies. All the complexes are non-electrolyte in nature. The covalency factor (?) and coefficient factor (?) suggest the covalent nature of the complexes. The ligand and its metal complexes have shown antifungal activity with their LD50 values determined by probit analysis against two economically important fungal plant pathogens i.e. Macrophomina phaseolina and Fusarium solani.

  6. Biologically active and thermally stable polymeric Schiff base and its metal polychelates: Their synthesis and spectral aspects

    NASA Astrophysics Data System (ADS)

    Rasool, Raza; Hasnain, Sumaiya

    2015-09-01

    New metal polychelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) obtained by the interaction of metal acetates with polymeric Schiff base containing formaldehyde and piperazine, have been investigated. Structural and spectroscopic properties have been evaluated by elemental analysis, FT-IR and 1H-NMR. Geometry of the chelated polymers was confirmed by magnetic susceptibility measurements, UV-Visible spectroscopy and Electron Spin Resonance. The molecular weight of the polymer was determined by gel permeation chromatography (GPC). Thermogravimetric analysis indicated that metal polychelates were more thermally stable than their corresponding ligand. All compounds were screened for their antimicrobial activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, (bacteria) and Candida albicans, Microsporum canis, Cryptococcus neoformans (fungi) by agar well diffusion method. Interestingly, the polymeric Schiff base was found to be antimicrobial in nature but less effective as compared to the metal polychelates. On the basis of thermal and antimicrobial behavior, these polymers hold potential applications as thermally resistant antimicrobial and antifouling coating materials as well as antimicrobial packaging materials.

  7. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3,5-dibromosalicylaldehyde.

    PubMed

    Cui, Yongming; Dong, Xiongwei; Li, Yuguang; Li, Zuowen; Chen, Wu

    2012-12-01

    Eleven mononuclear copper(II), nickel(II), zinc(II) and cobalt(II) complexes of Schiff base ligands derived from 3,5-dibromosalicylaldehyde/3,5-dichlorosalicylaldehyde were synthesized and determined by single crystal X-ray analysis. The crystal structures of complexes 1, 2, 4, 5, 6, 8 and 11 present the square-planar coordination geometry at the metal center and complexes 7, 9 and 10 show the distorted tetrahedral geometry. While one copper center in 3 has a square-planar geometry, the other copper is slightly distorted square-planar. The inhibitory activities of all the obtained complexes were tested in vitro against jack bean urease. It was found that Schiff base copper(II) complexes 1, 3, 5, 8 and 11 showed strong urease inhibitory activities (IC(50) = 1.51-3.52 ?M) compared with acetohydroxamic acid (IC(50) = 62.52 ?M), which was a positive reference. Their structure-activity relationships were further discussed. PMID:23142672

  8. Spectral characterization, electrochemical and anticancer studies on some metal(II) complexes containing tridentate quinoxaline Schiff base

    NASA Astrophysics Data System (ADS)

    Chellaian, Justin Dhanaraj; Johnson, Jijo

    2014-06-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of a tridentate ONO donor Schiff base ligand derived from 3-(2-aminoethylamino)quinoxalin-2(1H)-one were synthesized. The ligand and its metal complexes were characterized using elemental analysis, molar conductance, IR, 1H NMR, mass, magnetic susceptibility, electronic spectra and ESR spectral studies. Electrochemical behavior of the synthesized compounds was studied using cyclic voltammetry. The grain size of the synthesized compounds was determined by powder XRD. The Schiff base and its complexes have been screened for their antimicrobial activities against the bacterial species E. coli, K. pneumoniae, P. aeruginosa and S. aureus; fungal species include, A. niger, and C. albicans by disc diffusion method. The results show that the complexes have higher activity than the free ligand. The interaction of the complexes with calf thymus DNA (CT DNA) has been investigated by electronic absorption method. Furthermore, the DNA cleavage activity of the complexes was studied using agarose gel electrophoresis. In vitro anticancer studies of the ligand and its complexes using MTT assay was also done.

  9. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Sundararajan, M. L.; Jeyakumar, T.; Anandakumaran, J.; Karpanai Selvan, B.

    2014-10-01

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, 1H NMR, 13C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  10. SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes.

    PubMed

    Çay, Sevim; Köse, Muhammet; Tümer, Ferhan; Gölcü, Ay?egül; Tümer, Mehmet

    2015-12-01

    4-Methoxy-2,6-bis(hydroxymethyl)phenol (1) was prepared from the reaction of 4-methoxyphenol and formaldehyde. The compound (1) was then oxidized to the 4-methoxy-2,6-diformylphenol (2) compound. Molecular structure of compound (2) was determined by X-ray diffraction method. A new symmetric porphyrin Schiff base ligand 4-methoxy-2,6-bis[5-(4-iminophenyl)-10,15,20-triphenylporphyrin]phenol (L) was prepared from the reaction of the 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (TTP-NH2) and the compound (2) in the toluene solution. The metal complexes (Cu(II), Fe(III), Mn(III), Pt(II) and Zn(II)) of the ligand (L) were synthesized and characterized by the spectroscopic and analytical methods. The DNA (fish sperm FSdsDNA) binding studies of the ligand and its complexes were performed using UV-vis spectroscopy. Additionally, superoxide dismutase activities of the porphyrin Schiff base metal complexes were investigated. Additionally, electrochemical, photoluminescence and thermal properties of the compounds were investigated. PMID:26172470

  11. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N?-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N?-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L?=?L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G?) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  12. Co(II) and Cd(II) complexes derived from heterocyclic Schiff-Bases: synthesis, structural characterisation, and biological activity.

    PubMed

    Ahmed, Riyadh M; Yousif, Enaam I; Al-Jeboori, Mohamad J

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L¹) and N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L²) are reported. Schiff-base ligands L¹ and L² were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)?]Cl? (where M = Co(II) or Cd(II), L?=?L¹ or L²) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, ¹H, and ¹³C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G-) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  13. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]·nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 ?g/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  14. In vitro activity of taurine-5-bromosalicylaldehyde Schiff base against planktonic and biofilm cultures of methicillin-resistant Staphylococcus aureus.

    PubMed

    Yuan, Ruqiang; Diao, Yunpeng; Zhang, Wenli; Lin, Yuan; Huang, Shanshan; Zhang, Houli; Ma, Li

    2014-08-01

    Staphylococcus aureus is a major human pathogen, implicated in both community and hospital acquired infections. The therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult because of multidrug resistance and strong biofilmforming properties. Schiff bases have attracted attention as promising antibacterial agents. In this study, we investigated the in vitro activity of taurine-5-bromosalicylaldehyde Schiff base (TBSSB) against MRSA. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) were determined using a microtiter broth dilution method. TBSSB effectively inhibited planktonic MRSA, with an MIC of 32 ?g/ml. The time-kill curve confirmed that TBSSB exhibited bactericidal activity against MRSA. TBSSB was also found to significantly inhibit MRSA biofilm formation at 24 h, especially at 1×MIC and sub-MIC levels. Furthermore, scanning electron microscopy and transmission electron microscopy showed remarkable morphological and ultrastructural changes on the MRSA cell surface, due to exposure to TBSSB. This study indicated that TBSSB may be an effective bactericidal agent against MRSA. PMID:24759427

  15. A highly sensitive and selective fluorescent chemosensor for detection of Zn2+ based on a Schiff base

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Pramanik, Harun A. R.; Paul, Pradip C.; Singh, T. Sanjoy

    2015-04-01

    A Schiff-base fluorescent probe - 2-((E)-(quinolin-8-ylimino)methyl)quinolin-8-ol (H7L) was synthesized and evaluated as a chemoselective Zn2+ sensor. Upon treatment with Zn2+, the complexation of H7L with Zn2+ resulted in a red shift with a pronounced enhancement in the fluorescence emission intensity in ethanol solution. Moreover, other common alkali, alkaline earth and transition metal ions failed to induce response or minimal spectral changes. Notably, this chemosensor could distinguish clearly Zn2+ from Cd2+. Fluorescence studies on H7L and H7L-Zn2+ complex reveal that the quantum yield strongly increases upon coordination. The stoichiometric ratio and association constant were evaluated using Benesi-Hildebrand relation giving 1:1 stoichiometry. This further corroborated 1:1 complex formation based on Job's plot analyses. This chemosensor exhibits a very good fluorescence sensing ability to Zn2+ over a wide range of pH.

  16. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.

    2015-06-01

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  17. Synthesis, spectral, thermal, fluorescence, antimicrobial, anthelmintic and DNA cleavage studies of mononuclear metal chelates of bi-dentate 2H-chromene-2-one Schiff base.

    PubMed

    Prabhakara, Chetan T; Patil, Sangamesh A; Kulkarni, Ajaykumar D; Naik, Vinod H; Manjunatha, M; Kinnal, Shivshankar M; Badami, Prema S

    2015-07-01

    The Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff base (HL), derived from 8-formyl-7-hydroxy-4-methylcoumarin with benzylamine. The Schiff base and its metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The complexes are completely soluble in DMF and DMSO. The molar conductance values indicate that, all synthesized metal complexes are non-electrolytic in nature. Elemental analysis reveals [ML2(H2O)2] stoichiometry, here MCo(II), Ni(II) and Cu(II), L=deprotonated ligand. The coordination between metal ion and Schiff base was supported by IR data, through deprotonation of phenolic oxygen of coumarin and azomethine nitrogen atoms. Solution electronic spectral results unveiled that all the synthesized complexes posses six coordinated geometry around metal ion. Thermal studies suggest the presence of coordinated water molecules. The Schiff base and its metal complexes have been screened for their antibacterial (Escherichia coli, Pseudomonas aureginosa, Klebsiella pneumoniae and Staphylococcus aureus) and antifungal (Penicillium chrysogenum and Aspergillus niger), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. PMID:26002539

  18. Synthesis, characterization and electrochemical study of synthesis of a new Schiff base (H2cdditbutsalen) ligand and their two asymmetric Schiff base complexes of Ni(II) and Cu(II) with NN'OS coordination spheres

    NASA Astrophysics Data System (ADS)

    Menati, Saeid; Azadbakht, Azadeh; Taeb, Abbas; Kakanejadifard, Ali; Khavasi, Hamid Reza

    2012-11-01

    A novel Schiff base (H2cdditbutsalen) ligand was prepared via condensation of Methyl-2-{N-(2'-aminoethane)}-amino-1-cyclopentenedithiocarboxylate(Hcden) and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. The ligand and Ni(II) and Cu(II) complexes were characterized based on elemental analysis, IR, 1H NMR, 13C NMR, UV-Vis spectrometry and cyclic voltammetry. The structure of copper{methyl-2-{N-[2-(3,5-di-tert-butyl-2-hydroxyphenyl)methylidynenitrilo]ethyl}amino-1-cyclopentedithiocarboxylate has been determined by X-ray crystallography. The X-ray results confirm that the geometry of the complex is slightly distorted square-planar structure. The copper(II) ion coordinates to two nitrogen atoms from the imine moiety of the ligand, a sulfur atom the methyl dithiocarboxylate moiety and phenolic oxygen atom.

  19. Spectroscopic, colorimetric and theoretical investigation of Salicylidene hydrazine based reduced Schiff base and its application towards biologically important anions

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Alam, Md. Akhtarul; Guchhait, Nikhil

    A reduced Schiff base anionic receptor 1 [N,N'-bis-(2-hydroxy-5-nitro-benzyl)hydrazine] has been synthesized, characterized and reported as a selective chromogenic receptor for fluoride, acetate and phosphate anions over the other tested anions such as chloride, bromide, iodide and hydrogensulphite. Colorimetric naked-eye detection and UV-vis absorption spectroscopic techniques were used to distinguish the recognition behaviours towards various anions. The receptor-anion complexation mainly occurs via hydrogen bonding interactions which facile to generate the charge transfer band in the UV-vis spectra and cause large bathochromic shift as well as naked-eye colour change. Complexation stoichiometry, binding constant and free energy change due to complex formation were determined from Benesi-Hildebrand plot. The binding constant and the free energy change values are well interactive for spontaneous complexation. The experimental results have been correlated with the theoretical calculations using B3LYP hybrid functional and 6-311++G(d,p) basis set for both the receptor and complex by Density Functional Theory (DFT) method.

  20. Nickel analysis in real samples by Ni2+ selective PVC membrane electrode based on a new Schiff base.

    PubMed

    Tomar, Praveen Kumar; Chandra, Sulekh; Malik, Amrita; Kumar, Ankit

    2013-12-01

    A newly synthesized Schiff base 3-aminoacetophenonesemicarbazone (AAS) has been used for the preparation of Ni(2+) selective PVC membrane electrode. The proposed electrode exhibits a Nernstian response over the nickel concentration range of 1.0×10(-7) to 1.0×10(-2)mol L(-1) with a slope of 30.0±0.3 mV/decade of concentration. The limit of detection as determined from the intersection linear segment of the calibration plot is 5.1×10(-8) mol L(-1). The electrode shows good selectivity towards nickel with respect to several alkali, alkaline earth, transition and heavy metal ions. The response time of the electrode is very fast (?10 s) and can be used for 17 weeks in the pH range of 2.0-9.8. The electrode can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. To investigate the analytical applicability of the electrode, it was successfully applied as an indicator electrode in Ni(2+) ion potentiometric titration with EDTA, and in direct determination of nickel(II) in real samples. PMID:24094213

  1. Antimicrobial efficacy of phenanthrenequinone based Schiff base complexes incorporating methionine amino acid: Structural elucidation and in vitro bio assay

    NASA Astrophysics Data System (ADS)

    Arun, Thesingu Rajan; Raman, Natarajan

    2014-06-01

    This work focuses the synthesis and characterization of few novel mixed ligand Schiff base metal complexes and their biological activities. For deriving the structural aspects, spectral techniques such as FT-IR, UV-Vis., 1H NMR, Raman, EPR and the physicochemical characterizations including elemental analysis, molar conductance and magnetic susceptibility method have been involved. All the complexes adopt square planar geometry. DNA binding ability of these complexes has been explored using diverse techniques viz. UV-Vis. absorption, fluorescence spectroscopy, viscometry and cyclic voltammetry. These studies prove that CT-DNA binding of the complexes follows the intercalation mode. Comparative DNA oxidative cleavage ability of the complexes has been done under ultraviolet photo radiation on pUC19 DNA. In addition, the biocidal action of the complexes has been investigated against few pathogenic bacteria and fungi by disc diffusion method. Importantly, the amylase inhibition activity of Cu(II) complex has been explored. The amylase inhibition property has been found to be increased upon increasing the complex concentration.

  2. Metal based photosensitizers of tetradentate Schiff base: Promising role in anti-tumor activity through singlet oxygen generation mechanism

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Ravikumar Naik, T. R.; Prabhakara, M. C.

    2013-11-01

    In the present investigation, a Schiff base N?1,N?3-bis[(Z)-(2-hydroxynapthyl)methylidene]benzene-1,3-dicarbodihydrazide (L1) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized as novel photosensitizing agents for photodynamic therapy (PDT). The interaction of these complexes with calf thymus DNA (CT DNA) has been explored using absorption, thermal denaturation and viscometric studies. The experimental results revealed that Co(II) and Ni(II) complexes on binding to CT DNA imply a covalent mode, most possibly involving guanine N7 nitrogen of DNA, with an intrinsic binding constant Kb of 4.5 × 104 M-1 and 4.2 × 104 M-1, respectively. However, interestingly, the Cu(II) complex is involved in the surface binding to minor groove via phosphate backbone of DNA double helix with an intrinsic binding constant Kb of 5.7 × 104 M-1. The Co(II), Ni(II) and Cu(II) complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to UV-visible light of 365 nm, through 1O2 generation with quantum yields of 0.28, 0.25 and 0.30, respectively. Further, these complexes are cytotoxic in A549 lung cancer cells, showing an enhancement of cytotoxicity upon light irradiation.

  3. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  4. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes.

    PubMed

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-15

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s(-1) scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, (1)H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction. PMID:24681321

  5. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand.

    PubMed

    Abou-Hussein, A A; Linert, Wolfgang

    2015-04-15

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, (1)H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, (1)H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. PMID:25681806

  6. Synthesis, spectroscopic, cytotoxic aspects and computational study of N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base and some of its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Abd El-Aziz, Dina M.; Etaiw, Safaa Eldin H.; Ali, Elham A.

    2013-09-01

    N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base (L) and its Cu(II), Fe(III), Co(II), Ni(II) and Zn(II) complexes were synthesized and characterized by a set of chemical and spectroscopic measurements using elemental analysis, electrical conductance, mass spectra, magnetic susceptibility and spectral techniques (IR, UV-Vis, 1H NMR). Elemental and mass spectrometric data are consistent with the proposed formula. IR spectra confirm the bidentate nature of the Schiff base ligand. The octahedral geometry around Cu(II), Fe(III), Ni(II) and Zn(II) as well as tetrahedral geometry around Co(II) were suggested by UV-Vis spectra and magnetic moment data. The thermal degradation behavior of the Schiff base and its complexes was investigated by thermogravimetric analysis. The structure of the Schiff base and its transition metal complexes was also theoretically studied using molecular mechanics (MM+). The obtained structures were minimized with a semi-empirical (PM3) method. The in vitro antitumor activity of the synthesized compounds was studied. The Zn-complex exhibits significant decrease in surviving fraction of breast carcinoma (MCF 7), liver carcinoma (HEPG2), colon carcinoma (HCT116) and larynx carcinoma (HEP2) cell lines human cancer.

  7. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials.

    PubMed

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm(-1), 28.20 emu g(-1), 16.66 emu g(-1) and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  8. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    PubMed Central

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908?S?cm?1, 28.20?emu?g?1, 16.66?emu?g?1 and 3604.79?Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  9. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Pandey, O. P.; Sengupta, S. K.

    New Zn(II) complexes have been synthesized by the reactions of zinc(II) acetate with Schiff bases derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde, 2-hydroxyacetophenone or indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [ZnL(H 2O) 2], [ZnL'(OAc) 2(H 2O) 2] (L = dianionic Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and 2-hydroxyacetophenone or indoline-2,3-dione; L' = neutral Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde) and they were characterized by FT-IR, 1H NMR, 13C NMR and FAB mass. All these Schiff bases and their complexes have also been screened for their antibacterial activities against Bacillus subtilis, Escherichia coli and antifungal activities against Colletotrichum falcatum, Aspergillus niger, Fusarium oxysporium and Carvularia pallescence by petriplates methods.

  10. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-07-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908?S?cm-1, 28.20?emu?g-1, 16.66?emu?g-1 and 3604.79?Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed.

  11. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  12. Zinc(II)- and copper(I)-mediated large two-photon absorption cross sections in a bis-cinnamaldiminato Schiff base.

    PubMed

    Das, Sanjib; Nag, Amit; Goswami, Debabrata; Bharadwaj, Parimal K

    2006-01-18

    A Schiff base ligand has been synthesized by condensing 1,2-diaminobenzene with 4-(dimethylamino)cinnamaldehyde to give a donor-pi-acceptor-pi-donor system which does not show any two-photon absorption cross section but which does, upon complexation with Zn(II) or Cu(I), exhibit very high two-photon absorption cross sections. PMID:16402814

  13. An efficient method for solution-phase parallel synthesis of 2-quinoxalinol salen Schiff-base ligands.

    PubMed

    Wu, Xianghong; Gorden, Anne E V

    2007-01-01

    A solution-phase parallel method for the synthesis of 2-quinoxalinol salen ligands was designed and optimized. The synthesis begins with commercially available 1,5-difluoro-2, 4-dinitrobenzene (DFDNB) and employs a sequence of five straightforward and high-yielding reaction steps. Simple laboratory techniques with low sensitivity to water or air for solution-phase parallel reactions were coupled with convenient workup and purification procedures to give high-purity and yield a small ligand library of 20 compounds. The final step, a Schiff-base condensation of an aldehyde with the diaminoquinoxaline results in a new category of ligands for metal coordination or of potential bioactivity, based on the skeleton 2,2'-(1E,1'E)-(quinoxaline-6,7-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol. The approach described here is easily adaptable for parallel synthesis of a larger library. PMID:17497932

  14. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Torabi, Susan; Lotfi, Najmeh

    Four new complexes, [M(Salpyr)] where Salpyr = N,N'-bis(Salicylidene)-2,3- and 3,4-diiminopyridine and M = Co, Cu, Mn, Ni and Zn were synthesized and characterized by 1H NMR, IR spectroscopy, elemental analysis and UV-vis spectrophotometry. UV-vis spectrophotometric study of the adduct formation of the zinc(II) complexes, [Zn(2,3-Salpyr)] and [Zn(3,4-Salpyr)], as donor with R2SnCl2 (R = methyl, phenyl, n-butyl), PhSnCl3 and Bu3SnCl as acceptors has been investigated in methanol, as solvent. The formation constants and the thermodynamic free energies were measured using UV-vis spectrophotometry. Titration of the organotin chlorides with Zn(II) complexes at various temperatures (T = 283-313 K) leads to 1:1 adduct formation. The results show that the formation constants were decreased by increasing the temperature. The trend of the reaction of RnSnCl4-n as acceptors toward given zinc complexes was as follows: PhSnCl3 > Me2SnCl2 > Ph2SnCl2 > Bu2SnCl2 > Bu3SnCl By considering the formation constants and the ?G° of the complex formation for the Schiff base as donor and the M(II) as acceptor, the following conclusion was drawn: the formation constant for a given Schiff base changes according to the following trend: Ni > Cu > Co > Zn > Mn

  15. DNA nanostructures based biosensor for the determination of aromatic compounds.

    PubMed

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds. PMID:25982727

  16. Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially N2O2 Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2013-12-01

    Metal complexes of a new potentially tetradentate symmetrical Schiff base ligand (H2L) with Cu(II), Ni(II), Co(II), VO(IV), Zn(II), Cd(II), Ce(III), Fe(III) and UO2(VI) metal ions have been synthesized and characterized based on their elemental analyses, spectral (IR, UV-Vis, 1H NMR and mass spectra), magnetic and molar conductance studies as well as thermal gravimetric analysis (TGA). The synthesized complexes have the general formula [MHxL(H2O)yXn]: x = 0-1, y = 0-4 and n = 0-1; where: L = dianion of 6-hydroxy-5-[N-(2-{[(1E)-1-(6-hydroxy-2,4-dioxo-3,4-dihydro-2H-1,3-thiazin-5-yl)ethylidene]amino}ethyl) ethanimidoyl]-2H-1,3-thiazine-2,4(3H)-dione and X = nitrate or sulphate anion. The ligand behaves as diabasic tetradentate N2O2 sites, except in cases of Co(II), VO(IV) and UO2(VI) metal ions, it behaves as monobasic tetradentate Schiff base ligand. The metal complexes exhibited square planar, square-pyramidal and octahedral geometrical arrangements except for Ce(III) and UO2(VI) complexes, they are octa-coordinated. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition stages of some complexes. Structural parameters of the ligand and its metal complexes have been theoretically computed on the basis of semiemperical PM3 level, and the results were correlated with their experimental data. The antimicrobial activities of the ligand and its metal complexes were tested against some Gram-positive and Gram-negative bacteria; and fungus strain and the results were discussed.

  17. Fluorescence properties of Schiff base - N,N?-bis(salicylidene) - 1,2-Phenylenediamine in presence of bile acid host

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy

    2015-05-01

    Fluorescence properties of Schiff base - N,N?-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.

  18. Adsorption and inhibitive properties of a Schiff base for the corrosion control of carbon steel in saline water.

    PubMed

    Samide, Adriana; Tutunaru, Bogdan

    2011-01-01

    A Schiff base, namely N-(2-hydroxybenzylidene) thiosemicarbazide (HBTC), was investigated as inhibitor for carbon steel in saline water (SW) using electrochemical measurements such as: potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The morphology of the surfaces before and after corrosion was examined by Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDS). The results showed that HBTC acts as corrosion inhibitor in SW by suppressing simultaneously the cathodic and anodic processes via adsorption on the surface which followed the Langmuir adsorption isotherm; the polarization resistance (R(p)) and inhibition efficiency (IE) increased with each HBTC concentration increase. SEM/EDS analysis showed at this stage that the main product of corrosion is a non-stoichiometric amorphous Fe(3+) oxyhydroxide, consisting of a mixture of Fe(3+) oxyhydroxides, ?-FeOOH and/or ?-FeOOH, ?-FeOOH/?-FeOOH and Fe(OH)(3). PMID:22175875

  19. Synthesis and characterization of metal complexes of Schiff base ligand derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine

    NASA Astrophysics Data System (ADS)

    Selwin Joseyphus, R.; Shiju, C.; Joseph, J.; Justin Dhanaraj, C.; Arish, D.

    2014-12-01

    The Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine were synthesized. These compounds were characterized by elemental analysis, IR, mass, 1H NMR, electronic spectra, magnetic moment, molar conductance, thermal analysis, powder XRD and SEM. The analytical data show that the metal to ligand ratio is 1:1. The IR results show that the ligand acts as a bidentate donor coordinating through the azomethine nitrogen and imidazole nitrogen atoms. From the electronic spectra and magnetic moment value predicts the geometry of the complexes. The surface morphology of the compounds was studied by SEM. The compounds were screened for their antibacterial activity and antifungal activity using Kirby Bayer disc diffusion method. The DNA cleavage and superoxide dismutase activities of the compounds were investigated. The anticancer activities of the complexes have been carried out towards HeLa and HCT116 cancer cells.

  20. Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases

    PubMed Central

    Sumrra, Sajjad Hussain; Ambreen, Sabahat; Imran, Muhammad; Danish, Muhammad; Rehmani, Fouzia Sultana

    2014-01-01

    New series of three bidentate N, O donor type Schiff bases (L1)–(L3) were prepared by using ethylene-1,2-diamine with 5-methyl furfural, 2-anisaldehyde, and 2-hydroxybenzaldehyde in an equimolar ratio. These ligands were further complexed with Co(II), Cu(II), Ni(II), and Zn(II) metals to produce their new metal complexes having an octahedral geometry. These compounds were characterized on the basis of their physical, spectral, and analytical data. Elemental analysis and spectral data of the uncomplexed ligands and their metal(II) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. All ligands and their metal complexes were screened for antimicrobial activity. The results of antimicrobial activity indicated that metal complexes have significantly higher activity than corresponding ligands. This higher activity might be due to chelation process which reduces the polarity of metal ion by coordinating with ligands. PMID:25147493

  1. Solution combustion synthesis using Schiff-base aluminum complex without fuel and optical property investigations of alumina nanoparticles

    NASA Astrophysics Data System (ADS)

    Salehi, Mehdi; Arabsarhangi, Ehsan

    2015-05-01

    Synthesis of alumina nanomaterials via a solution combustion technique using Schiff base aluminum (III) complex at 820 and 950 °C for 4 h was performed successfully. The synthesis procedure was performed using the complex in the absence and presence of urea and glycine as fuel for comparison. The obtained data showed that the procedure without using fuel resulted in a better phase and morphology. To investigate the phase formation, powder X-ray diffraction technique was used. Also, SEM micrographs were used to investigate the morphology of the obtained materials. The optical properties of the obtained materials were studied by FTIR spectra. According to the PXRD data, it was found that with annealing at 950 °C, the phase formation of the obtained materials showed cubic crystal structure with cell parameter a = 3.14 Å for gamma phase. Also, by annealing at 820 °C using fuels for 4 h, the main phase was found to be in gamma.

  2. Lanthanide(III) compounds with the N2O4-donor Schiff base - Synthesis, spectral, thermal, magnetic and luminescence properties

    NASA Astrophysics Data System (ADS)

    Cristóvão, Beata; Hnatejko, Zbigniew

    2015-05-01

    New Schiff base complexes [Ln(NO3)3H2L] (where: Ln = Gd (1), Tb (2), Dy (3), Ho (4) and Er (5), H2L = N,N?-bis(5-bromo-3-methoxysalicylidene)propylene-1,3-diamine have been synthesized and characterized using elemental analysis, FTIR spectroscopy, thermogravimetric methods (TG-DSC), magnetic measurements, UV-Vis and luminescence studies. The compounds 1-5 follow the Curie-Weiss law all through the investigated temperature range 1.8-300 K. The 1 shows behavior characteristic for the well-isolated mononuclear system whereas the magnetic properties of 2-5 are dominated by the crystal field effect on the Ln(III) site, masking the magnetic interaction between the paramagnetic centers. The Tb(III) complex 2 emits the characteristic metal centered luminescence.

  3. Control of biofilm formation in marine environment using some N{sub 2}O{sub 2} donor Schiff bases

    SciTech Connect

    Dubey, R.S.; Dubey, R.S.; Upadhyay, S.N.; Namboodhiri, T.K.G.

    1997-08-01

    The adhesion of microorganisms onto materials surface mediated by extracellular polymeric substances (EPS) lead to an important modification of the metal-solution interface. The requirement of modern civilization with the heightened sense of environmental responsibilities and quality of life can be met by using some eco-friendly microbiocides with different spectra of activity. Some N{sub 2}O{sub 2} donor Schiff base compounds were synthesized and characterized by IR, NMR and ESR spectroscopy. These compounds were found effective in controlling the growth of biofilm of E. coli, Pseudomonas fluorescens and Thiobacillus thiooxidans on copper surface. The optimum concentration of these compounds are in the range of 1--10 ppm. Various electrochemical, microbiological and surface-analytical techniques were used to monitor the biofilm in the presence of microbiocides.

  4. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L1-L4), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL1?DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < Cl. We also studied the thermodynamics of formation of the complexes and kinetic aspects of their thermal decomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe > 5-H > 5-Br > 5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL1?DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L1 ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex.

  5. Crystal Structure, Cytotoxicity and Interaction with DNA of Zinc (II) Complexes with o-Vanillin Schiff Base Ligands

    PubMed Central

    Niu, Mei-Ju; Li, Zhen; Chang, Guo-Liang; Kong, Xiang-Jin; Hong, Min; Zhang, Qing-fu

    2015-01-01

    Two new zinc complexes, Zn(HL1)2 (1) and [Zn2(H2L2)(OAc)2]2 (2) [H2L1 = Schiff base derived from o-vanillin and (R)-(+)-2-amino-3-phenyl-1-propanol, H3L2 = Schiff base derived from o-vanillin and 2-amino-2-ethyl-1,3-propanediol], have been synthesized and characterized by single crystal X-ray diffraction, elemental analyses, TG analyses, solid fluorescence, IR, UV-Vis and circular dichroism spectra. The structural analysis shows that complex 1 has a right-handed double helical chain along the crystallographic b axis. A homochiral 3D supramolecular architecture has been further constructed by intermolecular C-H··· ?, O-H···O and C-H···O interactions. Complex 2 includes two crystallographically independent binuclear zinc molecules. The two binuclear zinc molecules are isostructural. The 2-D sheet supramolecular structure was formed by intermolecular hydrogen bonding interaction. The fluorescence of ligands and complexes in DMF at room temperature are studied. The interactions of two complexes with calf thymus DNA (CT-DNA) are investigated using UV-Vis, CD and fluorescence spectroscopy. The results show that complex 1 exhibits higher interaction with CT-DNA than complex 2. In addition, in vitro cytotoxicity of the complexes towards four kinds of cancerous cell lines (A549, HeLa, HL-60 and K562) were assayed by the MTT method. Investigations on the structures indicated that the chirality and nuclearity of zinc complexes play an important role on cytotoxic activity. PMID:26114437

  6. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition.

    PubMed

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L(1)-L(4)), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL(1)?DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO5-H>5-Br>5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL(1)?DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L(1) ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex. PMID:25448962

  7. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.

    PubMed Central

    Brown, L S; Dioumaev, A K; Needleman, R; Lanyi, J K

    1998-01-01

    In the recently proposed local-access model for proton transfers in the bacteriorhodopsin transport cycle (Brown et al. 1998. Biochemistry. 37:3982-3993), connection between the retinal Schiff base and Asp85 (in the extracellular direction) and Asp96 (in the cytoplasmic direction)is maintained as long as the retinal is in its photoisomerized state. The directionality of the proton translocation is determined by influences in the protein that make Asp85 a proton acceptor and, subsequently, Asp96 a proton donor. The idea of concurrent local access of the Schiff base in the two directions is now put to a test in the photocycle of the D115N/D96N mutant. The kinetics had suggested that there is a single sequence of intermediates, L<-->M1<-->M2<-->N, and the M2-->M1 reaction depends on whether a proton is released to the extracellular surface. This is now confirmed. We find that at pH 5, where proton release does not occur, but not at higher pH, the photostationary state created by illumination with yellow light contains not only the M1 and M2 states, but also the L and the N intermediates. Because the L and M1 states decay rapidly, they can be present only if they are in equilibrium with later intermediates of the photocycle. Perturbation of this mixture with a blue flash caused depletion of the M intermediate, followed by its partial recovery at the expense of the L state. The change in the amplitude of the C=O stretch band at 1759 cm-1 demonstrated protonation of Asp85 in this process. Thus, during the reequilibration the Schiff base lost its proton to Asp85. Because the N state, also present in the mixture, arises by protonation of the Schiff base from the cytoplasmic surface, these results fulfill the expectation that under the conditions tested the extracellular access of the Schiff base would not be lost at the time when there is access in the cytoplasmic direction. Instead, the connectivity of the Schiff base flickers rapidly (with the time constant of the M1<-->M2 equilibration) between the two directions during the entire L-to-N segment of the photocycle. PMID:9726947

  8. Novel tandem synthesis of bis(?-NN'-tetrazolate) bridged dinuclear nickel(ii) Schiff base complex via [3 + 2] cyclo-addition at ambient condition.

    PubMed

    Das, Mithun; Harms, Klaus; Chattopadhyay, Shouvik

    2014-04-21

    A novel bis(?-NN'-tetrazolate) bridged centrosymmetric dinuclear nickel(ii) Schiff base complex [Ni2(L)2(PTZ)2]·2H2O·2CH3CN (HL is a tridentate Schiff base, 2-((2-(ethylamino)ethylimino)methyl)-6-methoxyphenol and HPTZ is 5-pyrazinyltetrazole) has been synthesized via [3 + 2] cyclo-addition reaction of 2-cyanopyrazine and sodium azide in presence of nickel(ii) acetate tetrahydrate and HL. The structure of the complex is confirmed by single crystal X-ray diffraction analysis. The combination of H-bonding and C-H? interactions creates a 3(6)-hxl topological supramolecular network. The acetonitrile molecules are encapsulated as a hydrophobic guest within the 2D supramolecular network. PMID:24577138

  9. Chiral discrimination asserted by enantiomers of Ni (II), Cu (II) and Zn (II) Schiff base complexes in DNA binding, antioxidant and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Khan, Noor-ul Hasan; Pandya, Nirali; Prathap, K. Jeya; Kureshy, Rukhsana Ilays; Abdi, Sayed Hasan Razi; Mishra, Sandhya; Bajaj, Hari Chandra

    2011-10-01

    Chiral Schiff base ligands ( S)-H 2L and ( R)-H 2L and their complexes ( S-Ni-L, R-Ni-L, S-Cu-L, R-Cu-L, S-Zn-L and R-Zn-L) were synthesized, characterized and examined for their DNA binding, antioxidant and antibacterial activities. The complexes showed higher binding affinity to calf thymus DNA with binding constant ranging from 2.0 × 10 5 to 4.5 × 10 6 M -1. All the complexes also exhibited remarkable superoxide (56-99%) and hydroxyl scavenging (45-89%) activities as well as antibacterial activities against gram (+) and gram (-) bacteria. However, none of the complexes showed antifungal activity. Conclusively, S enantiomers of the complexes were found to be relatively more efficient for DNA interaction, antioxidant and antibacterial activities than their R enantiomers. This study reveals the possible utilization of chiral Schiff base complexes for pharmaceutical applications.

  10. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 2-hydroxy-1-naphthaldehyde and 2-oxo-2H-chromene-3-carbohydrazide/6-bromo-2-oxo-2H-chromene-3-carbohydrazide. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV-Vis, 1H NMR, ESR, FAB-mass and fluorescence), magnetic and thermal studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of the complexes was investigated with electrochemical method by using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial ( Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The DNA cleavage is studied by agarose gel electrophoresis method.

  11. Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    ?ahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, U?ur

    2013-02-01

    New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.

  12. In vitro antibacterial, antifungal & cytotoxic activity of some isonicotinoylhydrazide Schiff's bases and their cobalt (II), copper (II), nickel (II) and zinc (II) complexes.

    PubMed

    Chohan, Zahid H; Arif, M; Shafiq, Zahid; Yaqub, Muhammad; Supuran, Claudiu T

    2006-02-01

    Isonicotinoylhydrazide Schiff's bases formed by the reaction of substituted and unsubstituted furyl-2-carboxaldehyde and thiophene-2-carboxaldehyde with isoniazid and, their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against Mycobacterium tuberculosis, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The results of these studies show the metal complexes to be more antibacterial and antifungal against one or more bacterial/fungal strains as compared to the uncomplexed compounds. The brine shrimp bioassay indicated Schiff's bases, L3 and L6 and, their Cu (II) and Ni (II) metal complexes to be cytotoxic against Artemia salina, while all other compounds were inactive (LD50 > 1000). PMID:16570512

  13. Mn(II) and Cu(II) complexes of a bidentate Schiff's base ligand: Spectral, thermal, molecular modelling and mycological studies

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Tyagi, Prateek

    2014-01-01

    Complexes of manganese(II) and copper(II) of general composition M(L)2X2 have been synthesized [L = 2-acetyl thiophene thiosemicarbazone and X = Cl- and NO3-]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a bidentate manner. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Mn(II) and tetragonal geometry for Cu(II) complexes. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modelling the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31g(d,p) basis set. The mycological studies of the compounds were examined against the plant pathogenic fungi i.e. Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium odum.

  14. Synthesis Characterization and Biological Activity Study of New Schiff and Mannich Bases and Some Metal Complexes Derived from Isatin and Dithiooxamide

    PubMed Central

    Abdulghani, Ahlam J.; Abbas, Nada M.

    2011-01-01

    Two new Schiff and Mannich bases, namely, 1-Morpholinomethyl-3(1? -N-dithiooxamide)iminoisatin (LIH) and 1-diphenylaminomethyl-3-1?-N-dithiooxamide)iminoisatin (LIIH), were prepared from condensation reaction of new Schiff base 3-(1?-N-dithiooxamide)iminoisatin (SBH) with morpholine or diphenylamine respectively in presence of formaldehyde . The structures were characterized by IR, 1HNMR, mass spectrometry, and CHN analyses. Metal complexes of the two ligands were synthesized, and their structures were characterized by elemental analyses, atomic absorption, IR and UV-visible spectra, molar conductivity, and magnetic moment determination. All complexes showed octahedral geometries except palladium complexes which were square planar. The biological activity of the prepared compounds and some selected metal complexes was tested against three types of bacteria and against cell line of human epidermoid larynx carcinoma (Hep-2). PMID:21949661

  15. Base sequence effects on interactions of aromatic mutagens with DNA

    SciTech Connect

    Geacintov, N.E.

    1992-09-30

    The chemical binding of bulky, mutagenic and carcinogenic polynuclear aromatic compounds to certain base-sequences in genomic DNA is known to inhibit DNA replication, and to induce mutations and cancer. In particular, sequences that contain multiple consecutive guanines appear to be hot spots of mutation. The objectives of this research are to determine how the base sequence around the mutagen-modified target bases influences the local DNA conformation and gives rise to mispairing of bases, or deletions, near the lesion. Oligonucleotides containing one, two, or three guanines were synthesized and chemically reacted with the mutagen anti-7,8-dihydroxy-9,10-epoxy-benzo(a)pyrene (BPDE), one of the most mutagenic and tumorigenic metabolites of benzo(a)pyrene. Adducts are formed in which only one of the guanines is modified by trans or cis addition to the exocyclic amino group. The BPDE-oligonucleotides are separated chromatographically, and the site of modification is established by Maxam-Gilbert high resolution gel electrophoresis techniques. The thermodynamic properties of duplexes using complementary, or partially complementary strands were examined. In the latter, the base opposite the modified guanine was varied in order to investigate the probability of mispairing of the modified G with A,T and G. The successful synthesis of stereospecific and site-specific mutagen-oligonucleotide adducts opens new possibilities for correlating adduct structure-biological activity relationships, and thus lead to a better understanding of base-sequence effects in mutagenesis induced by energy-related bulky polynuclear aromatic chemicals.

  16. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria

    NASA Astrophysics Data System (ADS)

    Sobha, S.; Mahalakshmi, R.; Raman, N.

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H2O2. The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands.

  17. Synthesis, spectral characterization, catalytic and antibacterial studies of new Ru(III) Schiff base complexes containing chloride/bromide and triphenylphosphine/arsine as co-ligands

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Padma Priya, N.; Jayabalakrishnan, C.; Chinnusamy, V.

    2009-10-01

    A new Ru(III) Schiff base complexes of the type [RuX(EPh 3)L] (X = Cl/Br; E = P/As; L = dianion of the Schiff bases were derived by the condensation of 1,4-diformylbenzene with o-aminobenzoic acid/ o-aminophenol/ o-aminothiophenol in the 1:2 stoichiometric ratio) have been synthesized from the reactions of [RuX 3(EPh 3) 3] with appropriate Schiff base ligands in benzene in the 2:1 stoichiometric ratio. The new complexes have been characterized by analytical, spectral (IR, electronic, 1H, 13C NMR and ESR), magnetic moment and electrochemical studies. An octahedral structure has been tentatively proposed for all these new complexes. All the new complexes have been found to be better catalyst for the oxidation of alcohols using molecular oxygen as co-oxidant at ambient temperature and aryl-aryl coupling reactions. These complexes were also subjected to antibacterial activity studies against Escherichia coli, Aeromonas hydrophilla and Salmonella typhi.

  18. Newer mixed ligand Schiff base complexes from aquo-N-(2?-hydroxy acetophenone) glycinatocopper(II) as synthon: DFT, antimicrobial activity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2014-02-01

    Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2?-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]·H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]·H2O, L = N-(2?-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2? hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.

  19. Synthesis and characterization of an azo dibenzoic acid Schiff base and its Ni(II), Pb(II), Zn(II) and Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Kakanejadifard, Ali; Esna-ashari, Fatemeh; Hashemi, Payman; Zabardasti, Abedin

    2013-04-01

    The new Schiff base 4,4'-(1E,1'E)-(3,3'-(1E,1'E)-(pyridine-2,6-diylbis(azan-1-yl-1-ylid ene))bis(methan-1-yl-1-ylidene)bis(4-hydroxy-3,1-phenylene))bis(diazene-2,1-diyl)dibenzoic acid (1) was prepared from the condensation reaction of 2,6-diaminopyridine with 4-((3-formyl-4-hydroxyphenyl)diazenyl)benzoic acid in methanol. The compound 1 is potentially an N, O multidentate chelating ligand which could form stable complexes with metal ions in 1:1 up to 1:3 mol ratio of metal to ligand. The 1:1 complexes of Schiff base 1 with Ni(II), Pb(II), Zn(II) and Cd(II) have been synthesized by its condensation reaction with appropriate salts of metal ions. Structures of Schiff base (1) as well as its complexes with abovementioned metal ions were characterized by elemental analysis, mass, IR, UV-vis., 1H and 13? NMR spectroscopy.

  20. Synthesis and characterization of an azo dibenzoic acid Schiff base and its Ni(II), Pb(II), Zn(II) and Cd(II) complexes.

    PubMed

    Kakanejadifard, Ali; Esna-ashari, Fatemeh; Hashemi, Payman; Zabardasti, Abedin

    2013-04-01

    The new Schiff base 4,4'-(1E,1'E)-(3,3'-(1E,1'E)-(pyridine-2,6-diylbis(azan-1-yl-1-ylid ene))bis(methan-1-yl-1-ylidene)bis(4-hydroxy-3,1-phenylene))bis(diazene-2,1-diyl)dibenzoic acid (1) was prepared from the condensation reaction of 2,6-diaminopyridine with 4-((3-formyl-4-hydroxyphenyl)diazenyl)benzoic acid in methanol. The compound 1 is potentially an N, O multidentate chelating ligand which could form stable complexes with metal ions in 1:1 up to 1:3mol ratio of metal to ligand. The 1:1 complexes of Schiff base 1 with Ni(II), Pb(II), Zn(II) and Cd(II) have been synthesized by its condensation reaction with appropriate salts of metal ions. Structures of Schiff base (1) as well as its complexes with abovementioned metal ions were characterized by elemental analysis, mass, IR, UV-vis., (1)H and (13)? NMR spectroscopy. PMID:23376263

  1. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety

    PubMed Central

    Yernale, Nagesh Gunvanthrao; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2014-01-01

    A novel Schiff base ligand N-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR, 1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand (L) behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand (L) and its metal complexes have been screened in vitro for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties for the ligand and its metal complexes against Artemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation. PMID:24729778

  2. Synthesis and Fluorescence Properties of Novel indol-3yl-thiazolo[3,2-a][1,3,5]triazines and indole-3-carbaldehyde Schiff Bases.

    PubMed

    Sravanthi, T V; Manju, S L

    2015-11-01

    Novel photoactive 4-(4-chlorophenyl)-2-(1H-indol-3-yl)-6-substituted phenyl-2H-thiazolo[3,2-a][1,3,5]triazines were synthesized by the conjugate addition of ammonia to the indole-3-carbaldehyde Schiff bases followed by the condensation with 4-chlorobenzaldehyde. All the synthesized compounds were characterized by FT-IR, NMR, mass spectra and elemental analyses. Their antioxidant property, electrochemical and photophysical properties in different organic solvents were investigated. Comparative discussion on the photophysical properties of indole-3-carbaldehyde Schiff bases and 4-(4-chlorophenyl)-2-(1H-indol-3-yl)-6-substituted phenyl-2H-thiazolo[3,2-a][1,3,5]triazines has been described. The fluorescence quantum yield of Schiff bases (?f?=?0.66-0.70 in DMSO) found to be interestingly higher. High fluorescence quantum yield, large molar extinction coefficient, high stokes shift and smaller optical band gap positioning these new derivatives as an efficient metal free organic fluorescent and semiconductor material. Graphical Abstract ?. PMID:26432553

  3. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2014-11-01

    Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.

  4. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations.

    PubMed

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-14

    Schiff base disulfide ligands (H2L(1-6)) were synthesized from the condensation of cystamine with salicylaldehyde(H2L(1)), 5-chlorosalicylaldehyde(H2L(2)), o-vanillin(H2L(3)), 2-hydroxyacetophenone(H2L(4)), 3-methyl-2-hydroxyacetophenone(H2L(5)), and 2-hydroxy-1-naphthaldehyde(H2L(6)). H2L(1-6) reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L(1-6)]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR ((1)H and (13)C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed. PMID:24747860

  5. Synthesis, spectral characterization and DNA bindings of tridentate N2O donor Schiff base metal(II) complexes.

    PubMed

    Kathiresan, Sellamuthu; Anand, Thangavel; Mugesh, Subramanian; Annaraj, Jamespandi

    2015-07-01

    To evaluate the biological preference of synthetic small drugs towards DNA target, new metal based chemotherapeutic agents of Cu(II), Co(II), Ni(II) and Zn(II), 2,4-diiodo-6-((pyridin-2-ylmethylimino)methyl)phenol (L) Schiff base complexes (1, 2, 3 &4) having N,N,O donor system respectively were synthesized and thoroughly characterized. The IR results confirmed the tridentate binding of the ligand with metal centre during complexation and reflects the proposed structure. The density function theory calculations were also used to further investigate the electronic structure and properties of ligand and complexes. The preliminary investigation of herring Sperm (HS-DNA) interaction propensity of complexes 1-4 were carried out in Tris-HCl buffer at pH 7.1 to demonstrate their mode of interactions. The obtained results reveal that these complexes significantly interact with DNA on the grooves, further, this observed mode of interactions was also confirmed by molecular docking evaluations. The complexes 1-4 were also screened for antimicrobial evaluations which demonstrated that their significant activity against various human pathogens. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1 as compared to other complexes. PMID:26000741

  6. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    NASA Astrophysics Data System (ADS)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  7. Mechanism of isomerization of 11-cis-retinal in lipid dispersions by aromatic amines

    SciTech Connect

    Fulton, B.S.; Rando, R.R.

    1987-01-13

    It has previously been shown that retinotoxic, primary aromatic amines catalyze the isomerization of 11-cis-retinal to its all-trans congener after Schiff base formation. This process led to the short-circuiting of the visual cycle and the observed retinotoxicity when it occurred in vivo. The catalysis was also observed to occur in vitro in phosphatidylcholine-based vesicles but not in hydrocarbon solutions. The rate of isomerization of an aromatic amine Schiff base of 11-cis-retinal in the phospholipid vesicles was typically 10/sup 3/-fold more rapid than in hydrocarbon solutions. In this article, the mechanistic basis of this apparently membrane-specific catalysis is described. It was found that the rate enhancement effect observed was independent of the lipid used. Moreover, a bilayer structure was not important because rate enhancements were also observed in micelles. The rapid isomerization rates observed in lipid dispersions appear not be free radical initiated because free radical quenching agents, such as ..cap alpha..-tocopherol and BETA-carotene, had little effect on the isomerization rates. It was further found that aliphatic amines, such as n-dodecylamine, could be substituted for the aromatic amines in phospholipid. Finally, and most importantly, it was found that the isomerization of the aromatic amine retinal Schiff bases in phospholipid vesicles was acid-catalyzed. It is concluded that the rate enhancements observed for the isomerization of 11-cis-retinal aromatic amine Schiff bases in lipid dispersions over that in hydrocarbon solvents are due to the occurrence of acid-base catalysis in the former.

  8. Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and their biological activities

    NASA Astrophysics Data System (ADS)

    Belal, Arafa A. M.; Zayed, M. A.; El-Desawy, M.; Rakha, Sh. M. A. H.

    2015-03-01

    Three Schiff's bases AI (2(1-hydrazonoethyl)phenol), AII (2, 4-dibromo 6-(hydrazonomethyl)phenol) and AIII (2(hydrazonomethyl)phenol) were prepared as new hydrazone compounds via condensation reactions with molar ratio (1:1) of reactants. Firstly by reaction of 2-hydroxy acetophenone solution and hydrazine hydrate; it gives AI. Secondly condensation between 3,5-dibromo-salicylaldehyde and hydrazine hydrate gives AII. Thirdly condensation between salicylaldehyde and hydrazine hydrate gives AIII. The structures of AI-AIII were characterized by elemental analysis (EA), mass (MS), FT-IR and 1H NMR spectra, and thermal analyses (TG, DTG, and DTA). The activation thermodynamic parameters, such as, ?E?, ?H?, ?S? and ?G? were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bond responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their anti-microbial potential.

  9. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety

    NASA Astrophysics Data System (ADS)

    Justin Dhanaraj, Chellaian; Johnson, Jijo

    2014-01-01

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and 1H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77 K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  10. Structure and aggregation properties of a Schiff-base zinc(II) complex derived from cis-1,2-diaminocyclohexane.

    PubMed

    Consiglio, Giuseppe; Oliveri, Ivan Pietro; Punzo, Francesco; Thompson, Amber L; Di Bella, Santo; Failla, Salvatore

    2015-08-01

    This contribution explores the effect of the bridging diamine upon the aggregation properties of a Zn(II) Schiff-base complex, , both in the solid state and in solution. The X-ray structure of , resulting from the harvest of good quality crystals using chloroform and diethyl ether as solvents, shows the presence of a densely packed dimer in the solid state which pentacoordinates two Zn atoms involved in a ?-phenoxo bridge. Detailed studies in solution, through (1)H NMR, DOSY NMR, and optical spectroscopic investigations, indicate the typical aggregation/deaggregation behaviour on switching from non-coordinating to coordinating solvents, in relation to the Lewis acidic character of such Zn(II) complexes. Thus, while in DMSO-d6 both (1)H NMR and DOSY studies suggest the existence of monomeric species, in chloroform solution experimental data support the existence of aggregates. However, unlike our previous studies, (1)H NMR data in chloroform solution indicate the existence of an asymmetric dimer, as observed in the X-ray crystal structure. This further evidences a very rigid backbone of the dimeric aggregate and can be related to the defined stereochemistry of the chelate cis-1,2-diaminocyclohexane bridge. PMID:26103462

  11. Cu(II) and Pd(II) complexes of water soluble O-carboxymethyl chitosan Schiff bases: Synthesis, characterization.

    PubMed

    Baran, Talat; Mente?, Ayfer

    2015-08-01

    This study reports the synthesis of two new water soluble O-carboxymethyl chitosan Schiff bases (OCMCS-5 and OCMCS-6a) and their Cu(II) and Pd(II) complexes. Characterizations of these complexes were carried out with FTIR, elemental analysis, (13)C CPMAS, UV-vis, magnetic moment and molar conductivity techniques. The degrees of substitution (DS) for OCMCS-5a and OCMCS-6a were determined to be 0.48 and 0.44 in elemental analysis. The solubility test revealed that OCMCS-5a and OCMCS-6a dissolved thoroughly in water. The surface morphologies of chitosan (CS), OCMCS-5a, OCMCS-6a and their complexes were studied with SEM-EDAX. Thermal stability of the synthesized compounds was evaluated by TG/DTG and their crystallinity values were investigated with powder X-ray diffraction. Cu(II) and Pd(II) contents of the complexes were estimated with ICP-OES. The characterization studies demonstrated that the thermal stability and crystallinity values of the OCMCS-5a and OCMCS-6a were lower than those of CS. PMID:26021275

  12. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases

    NASA Astrophysics Data System (ADS)

    Kavitha, P.; Saritha, M.; Laxma Reddy, K.

    2013-02-01

    Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.

  13. Potential bioactive Schiff base compounds: Synthesis, characterization, X-ray structures, biological screenings and interaction with Salmon sperm DNA

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Muhammad; Uddin, Noor; Ali, Saqib; Tahir, Muhammad Nawaz

    2013-12-01

    Three Schiff base compounds ofN?-substituted benzohydrazide and sulfonohydrazide derivatives: N?-(2-hydroxy-3-methoxybenzylidene)-4-tert-butyl- benzohydrazide (1), N?-(5-bromo-2-hydroxybenzylidene)-4-tert-butylbenzohydrazide (2) and N?-(2-hydroxy-3-methoxybenzylidene)-4-methylbenzenesulfonohydrazide (3) were synthesized and characterized by elemental analysis, FT-IR, 1H, 13C NMR spectroscopy and single crystal analysis. The title compounds have been screened for their biological activities including, antibacterial, antifungal, antioxidant, cytotoxic, enzymatic activities as well as interaction with SS-DNA which showed remarkable activities in each area of research. The DNA binding of the compounds 1-3 with SS-DNA has been carried out with absorption spectroscopy, which reveals the binding propensity towards SS-DNA via intercalation mode of interaction. The intercalative mode of interaction is also supported by viscometric results. The synthesized compounds were also found to be effective against alkaline phosphatase enzyme. They also show significant to good antimicrobial activity against six bacterial and five fungal strains. The MIC (minimum inhibitory concentration) for antibacterial activity ranges from 1.95-500 ?g/mL. Compounds 1-3 show cytotoxic activity comparable to the control. At higher conc. (100 ?g/L) compound 3 shows 100% activity means that it has killed all brine shrimps. They were also found to be effective antioxidant of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and show almost comparable antioxidant activity to that of the standard and known antioxidant, ascorbic acid.

  14. Experimental, theoretical and docking studies of 2-hydroxy Schiff base type compounds derived from 2-amino-4-chlorobenzenethiol

    NASA Astrophysics Data System (ADS)

    Kusmariya, Brajendra S.; Mishra, A. P.

    2015-12-01

    We report here synthesis, DFT, Docking and Fluorescence studies of three Schiff base organic compounds viz. 2-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol (1); 2,4-dichloro-6-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol (2) and 2-{(E)-[(5-chloro-2-sulfanylphenyl) imino] methyl}-5-(diethylamino) phenol (3). These compounds have been characterized by elemental, FTIR, electronic and 1H NMR spectral techniques. Spectroscopic studies reveal that all the compounds exist in enol-form in the solid state whereas keto and enol, both forms exist in solution. The fluorescence behavior has been studied in DMF solvents and 1 &2 compound exhibit more efficient fluorescence properties. The molecular geometry of all the compounds in the ground state has been computed using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31++G basis set. The theoretical electronic absorption spectra of the compounds have been predicted using TD-DFT and TD-HF methods and compared with experimental spectral results. The predicted nonlinear optical properties of all the compounds are higher than those of urea. In addition to DFT calculations; frequency calculations, mulliken charge distribution, HOMO-LUMO and molecular electrostatic potential (MEP) have also been computed at the same level of theory. Molecular docking studies of the compounds in the active site of CAII (PDB code: 1CNX) have been performed to predict their possible binding modes in the active site of target carbonic anhydrase II enzyme.

  15. Synthesis, structure, protein binding of Cu(II) complexes with a tridentate NNO Schiff-base ligand.

    PubMed

    Li, Mei; Huang, ShuJuan; Ye, Cheng; Xie, YongRong

    2015-11-01

    Four new Cu(II) complexes (1, 2, 3 and 4) in the presence of different anions (Cl(-), Br(-), I(-) and ClO4(-)) have been prepared by tridentate NNN Schiff-base ligand (N,N-dimethyl-N'-[phenyl(2-pyridyl)methylene]ethane-1,2-diamine) and well characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV-Vis spectroscopy. The interactions of complexes 1-4 with human serum albumin (HSA) have been investigated in Tris-HCl buffer solution at pH 7.4 by spectroscopic methods and a molecular docking technique. Experimental results proved that the four complexes quench the fluorescence of HSA through a static quenching mechanism. Thermodynamic parameters were calculated from Van't Hoff equation. The distance r between the donor (HSA) and acceptor (complexes 1-4) has been obtained by means of Förester resonance energy transfer (FRET). Molecular docking results indicated that the main active binding sites for complexes 1, 2 and 4 are site III in subdomain IB and for complex 3 is site II in subdomain III A. The combination of molecular docking results and fluorescence experimental results indicate that the interaction between 1-4 and HSA are dominated by hydrophobic forces as well as hydrogen bonds. PMID:26056979

  16. Schiff base - Chitosan grafted l-monoguluronic acid as a novel solid-phase adsorbent for removal of congo red.

    PubMed

    Yuan, Bo; Qiu, Li-Gan; Su, Hong-Zhen; Cao, Cheng-Liang; Jiang, Ji-Hong

    2016-01-01

    A novel modified chitosan adsorbent (GL-SBCS) was synthesized by covalently grafting a Schiff base-chitosan (SBCS) onto the surface of l-monoguluronic acid. Physico-chemical investigation on the adsorption of congo red, an anionic azo dye by GL-SBCS has been carried out. The effect of different weight contents of chitosan in GL-SBCS composite, adsorbent dosage, initial pH and contract time were studied in detail using batch adsorption. Results showed that GL-SBCS exhibited better than normal CS and l-monoguluronic acid. Further investigation demonstrated that the adsorption pattern fitted well with the Langmuir model (R(2)>0.99) but less-satisfied the Freundlich model. Both ionic interaction as well as physical forces is responsible for binding of congo red with GL-SBCS as determined by zeta potential measurement Both sodium chloride and sodium dodecyl sulfate significantly influenced the adsorption process. SBCS would be a good method and resource to increase absorption efficiency for the removal of anionic dyes in a wastewater treatment process. PMID:26432372

  17. Synthesis, spectroscopy, X-ray crystallography, DFT calculations, DNA binding and molecular docking of a propargyl arms containing Schiff base.

    PubMed

    Balakrishnan, C; Subha, L; Neelakantan, M A; Mariappan, S S

    2015-11-01

    A propargyl arms containing Schiff base (L) was synthesized by the condensation of 1-[2-hydroxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone with trans-1,2-diaminocyclohexane. The structure of L was characterized by IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by single crystal X-ray diffraction analysis. The UV-Visible spectral behavior of L in different solvents exhibits positive solvatochromism. Density functional calculation of the L in gas phase was performed by using DFT (B3LYP) method with 6-31G basis set. The computed vibrational frequencies and NMR signals of L were compared with the experimental data. Tautomeric stability study inferred that the enolimine is more stable than the ketoamine form. The charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Electronic absorption and emission spectral studies were used to study the binding of L with CT-DNA. The molecular docking was done to identify the interaction of L with A-DNA and B-DNA. PMID:26093117

  18. Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(II) complexes.

    PubMed

    Baran, Talat; Mente?, Ayfer; Arslan, Hülya

    2015-01-01

    In this study, mono-imine was synthesized (3a and 4a) via a condensation reaction between 2,4-pentadion and aminobenzoic acid (meta or para) in alcohol (1:1). The second-imine (CS-3a and CS-4a) was obtained as a result of the reaction of the free oxo groups of mono-imine (3a and 4a) with the amino groups on the chitosan (CS). Their structures were characterized with FTIR and (13)C CP-MAS. Then, the water soluble forms of CS-3a and CS-4a were obtained through oxidation of the hydroxide groups on the chitosan to carboxymethyl groups using monochloracetic acid ([O-CMCS-3a] · 2H2O and [O-CMCS-4a] · 2H2O). Thus, the solubility problem of chitosan in an aqueous media was overcome and Cu(II) complexes could be synthesized more easily. Characterization of the synthesized O-carboxymethyl chitosan Schiff base derivatives and their metal complexes, [O-CMCS-3a-Cu(OAc)2] · 2H2O and [O-CMCS-4a-Cu(OAc)2] · 2H2O, was conducted using FTIR, UV-Vis, TG/DTA, XRD, SEM, elemental analysis, conductivities and magnetic susceptibility measurements. PMID:25128824

  19. Conical intersections of free energy surfaces in solution: Effect of electron correlation on a protonated Schiff base in methanol solution

    NASA Astrophysics Data System (ADS)

    Mori, Toshifumi; Nakano, Katsuhiro; Kato, Shigeki

    2010-08-01

    The minimum energy conical intersection (MECI) optimization method with taking account of the dynamic electron correlation effect [T. Mori and S. Kato, Chem. Phys. Lett. 476, 97 (2009)] is extended to locate the MECI of nonequilibrium free energy surfaces in solution. A multistate electronic perturbation theory is introduced into the nonequilibrium free energy formula, which is defined as a function of solute and solvation coordinates. The analytical free energy gradient and interstate coupling vectors are derived, and are applied to locate MECIs in solution. The present method is applied to study the cis-trans photoisomerization reaction of a protonated Schiff base molecule (PSB3) in methanol (MeOH) solution. It is found that the effect of dynamic electron correlation largely lowers the energy of S1 state. We also show that the solvation effect strongly stabilizes the MECI obtained by twisting the terminal C?N bond to become accessible in MeOH solution, whereas the conical intersection is found to be unstable in gas phase. The present study indicates that both electron correlation and solvation effects are important in the photoisomerization reaction of PSB3. The effect of counterion is also examined, and seems to be rather small in solution. The structures of free energy surfaces around MECIs are also discussed.

  20. Conical intersections of free energy surfaces in solution: effect of electron correlation on a protonated Schiff base in methanol solution.

    PubMed

    Mori, Toshifumi; Nakano, Katsuhiro; Kato, Shigeki

    2010-08-14

    The minimum energy conical intersection (MECI) optimization method with taking account of the dynamic electron correlation effect [T. Mori and S. Kato, Chem. Phys. Lett. 476, 97 (2009)] is extended to locate the MECI of nonequilibrium free energy surfaces in solution. A multistate electronic perturbation theory is introduced into the nonequilibrium free energy formula, which is defined as a function of solute and solvation coordinates. The analytical free energy gradient and interstate coupling vectors are derived, and are applied to locate MECIs in solution. The present method is applied to study the cis-trans photoisomerization reaction of a protonated Schiff base molecule (PSB3) in methanol (MeOH) solution. It is found that the effect of dynamic electron correlation largely lowers the energy of S(1) state. We also show that the solvation effect strongly stabilizes the MECI obtained by twisting the terminal C=N bond to become accessible in MeOH solution, whereas the conical intersection is found to be unstable in gas phase. The present study indicates that both electron correlation and solvation effects are important in the photoisomerization reaction of PSB3. The effect of counterion is also examined, and seems to be rather small in solution. The structures of free energy surfaces around MECIs are also discussed. PMID:20707561

  1. The oxidation of Schiff bases of pyridoxal and pyridoxal phosphate with amino acids by manganous ions and peroxidase

    PubMed Central

    Hill, J. M.; Mann, P. J. G.

    1966-01-01

    1. Oxygen was taken up rapidly when pyridoxal or pyridoxal phosphate was added to mixtures of pea-seedling extracts and Mn2+ ions. 2. The increases in total oxygen uptake were proportional to the pyridoxal or pyridoxal phosphate added and were accompanied by the disappearance of these compounds. 3. In addition to Mn2+ ions, the reactions depended on two factors in the extracts, a thermolabile one in the non-diffusible material and a thermostable one in the diffusate; these factors could be replaced in the reactions by horse-radish peroxidase (donor–hydrogen peroxide oxidoreductase, EC 1.11.1.7) and amino acids respectively. 4. When pyridoxal phosphate was added to mixtures of amino acids and Mn2+ ions oxygen uptake was rapid after a lag period of 30–90min.; the lag period was shortened to a few minutes by peroxidase, particularly in the presence of traces of p-cresol, or by light. 5. When pyridoxal replaced pyridoxal phosphate relatively high concentrations were required and peroxidase had only a small activating effect. 6. Pyridoxal or pyridoxal phosphate disappeared during the reactions and carbon dioxide and ammonia were formed. 7. With phenylalanine as the amino acid present, benzaldehyde was identified as a reaction product. 8. It is suggested that the reactions are oxidations of the Schiff bases formed between pyridoxal or pyridoxal phosphate and amino acids, mediated by a manganese oxidation–reduction cycle, and resulting in oxidative decarboxylation and deamination of the amino acids. PMID:5947150

  2. Chemical Kinetic Analysis of Thermal Decay of Rhodopsin Reveals Unusual Energetics of Thermal Isomerization and Hydrolysis of Schiff Base*

    PubMed Central

    Liu, Jian; Liu, Monica Yun; Fu, Li; Zhu, Gefei Alex; Yan, Elsa C. Y.

    2011-01-01

    The thermal properties of rhodopsin, which set the threshold of our vision, have long been investigated, but the chemical kinetics of the thermal decay of rhodopsin has not been revealed in detail. To understand thermal decay quantitatively, we propose a kinetic model consisting of two pathways: 1) thermal isomerization of 11-cis-retinal followed by hydrolysis of Schiff base (SB) and 2) hydrolysis of SB in dark state rhodopsin followed by opsin-catalyzed isomerization of free 11-cis-retinal. We solve the kinetic model mathematically and use it to analyze kinetic data from four experiments that we designed to assay thermal decay, isomerization, hydrolysis of SB using dark state rhodopsin, and hydrolysis of SB using photoactivated rhodopsin. We apply the model to WT rhodopsin and E181Q and S186A mutants at 55 °C, as well as WT rhodopsin in H2O and D2O at 59 °C. The results show that the hydrogen-bonding network strongly restrains thermal isomerization but is less important in opsin and activated rhodopsin. Furthermore, the ability to obtain individual rate constants allows comparison of thermal processes under various conditions. Our kinetic model and experiments reveal two unusual energetic properties: the steep temperature dependence of the rates of thermal isomerization and SB hydrolysis in the dark state and a strong deuterium isotope effect on dark state SB hydrolysis. These findings can be applied to study pathogenic rhodopsin mutants and other visual pigments. PMID:21921035

  3. Stereospecificity in vanadium Schiff base complexes: Formation, crystallization and epimerization processes.

    PubMed

    Krivosudský, Lukáš; Schwendt, Peter; Šimunek, Ján; Gyepes, Róbert

    2015-06-01

    The structures of two stereoisomers of the chiral anion [VO2(N-salicylidene-isoleucinato)](-) possessing three centers of chirality, the vanadium atom (configuration A/C) and the isoleucine moiety (configuration R/S on alpha and beta carbons), are presented. The absolute configuration of all available stereosiomers, CSS, ARR, CSR and ARS, was determined by electronic circular dichroism (ECD), which allows distinguishing between diastereomers, and by vibrational circular dichroism (VCD) capable of differentiating between all four stereoisomers. The comparison of experimental VCD and infrared (IR) spectra with simulated spectra for band assignment revealed the IR spectra of the diastereomers differing significantly in the CH stretching region of the aromatic part in the molecule. Crystallization from binary systems composed of equal ratio of two stereoisomers of isoleucine, unveiled the lower solubility of CSS and ARR stereoisomers, while a longer crystallization time of the CSR and ARS stereoisomers allowed proceeding the vanadium-catalyzed epimerization, leading to the subsequent presence of the CSS and ARR stereoisomers in the product obtained. PMID:25680458

  4. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: Effect of acid/base, oxidant, surfactant and morphology

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Mathur, Pavan

    2015-02-01

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the ?-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3- bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency.

  5. Triphenylamine-based Schiff bases as the High sensitive Al(3+) or Zn(2+) fluorescence turn-on probe: Mechanism and application in vitro and in vivo.

    PubMed

    Li, Wei; Tian, Xiaohe; Huang, Bei; Li, Huijuan; Zhao, Xiaoyu; Gao, Shan; Zheng, Jun; Zhang, Xiuzhen; Zhou, Hongping; Tian, Yupeng; Wu, Jieying

    2016-03-15

    Two novel similar structural triphenylamine-based Schiff base fluorescent probes (L1/L2) were designed, prepared and characterized. Distinctive recognition mechanisms of L1 and L2 toward Al(3+) and Zn(2+) have been established by UV/vis, fluorescence spectra, mass spectra and (1)H NMR studies, respectively. To further explore their utility in biological system, L2 was selected as a probe for live cell endogenous Zn(2+) indicator and showed superb sensitivity on Zn(2+) intracellular distribution. Furthermore, L2 was employed to selectively detect Zn(2+) in live tissues at both extracellular and intracellular level, qualitatively indicated varies zinc concentration as a function of different organs. PMID:26469730

  6. Excited state proton transfer reaction of two new intramolecularly hydrogen bonded Schiff bases at room temperature and 77K

    NASA Astrophysics Data System (ADS)

    Koll, A.; Filarowski, A.; Fitzmaurice, D.; Waghorne, E.; Mandal, A.; Mukherjee, S.

    2002-01-01

    Two new orthohydroxy Schiff bases, 7-phenylsalicylidene benzylamine (PSBA) and 7-ethylsalicylideneaniline (ESA) have been synthesized. The excited state intramolecular proton transfer (ESIPT) and the structure of PSBA and ESA in its crystalline form and in the solvents n-hexane, n-heptane and 1,4-dioxane have been investigated by means of absorption, emission and nanosecond spectroscopy at room temperature and 77K. One ground state species has been detected both in neutral and basic solutions of both PSBA and ESA: the cis-enol form with an intramolecular hydrogen bond. The ESIPT and formation of keto tautomer are evidenced by a large Stokes shifted emission (˜12?000 cm -1) at room temperature only in the case of ESA. On the other hand the keto tautomer is the predominant species at 77K in a solid matrix and as a solid sample at room temperature both in the case of ESA and PSBA. In the case of both ESA and PSBA the more intense, higher energy emission is due to the species which has not undergone ESIPT and attributed mainly due to cis-enol form. The trans-enol form is also observed by changing the excitation wavelength. Both the compounds are found to undergo a structural change to a zwitterionic and intermolecular hydrogen bonded form in the presence of a strong base like triethylamine. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rates of proton transfer reaction in the case of PSBA. Our theoretical calculation at the AM1 level of approximation shows that the ground singlet state has a rather large activation barrier both in the case of PSBA and ESA. The barrier height is much lower on the corresponding excited singlet surface only in the case of ESA. The process is predicted to be endothermic in the ground state and exothermic in the excited singlet state.

  7. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Elerman, Yalcin; Buyukgungor, Orhan

    2013-01-01

    A new potentially hexadentate N2O4 Schiff base ligand, H2L derived from condensation reaction of an aromatic diamine and salicylaldehyde, and its metal complexes were characterized by elemental analyses, IR, UV-Vis, EI-MS, 1H and 13C NMR spectra, as well as conductance measurements. It has been originated that the Schiff base ligand with Cu(II), Ni(II), Co(II), Cd(II) and Zn(II) ions form mononuclear complexes on 1:1 (metal:ligand) stoichiometry. The conductivity data confirm the non-electrolytic nature of the complexes. Also the crystal structures of the complexes [ZnL] and [CoL] have also been determined by using X-ray crystallographic technique. The Zn(II) and Co(II) complexes show a tetrahedral configuration. Electronic absorption spectra of the Cu(II) and Ni(II) complexes suggest a square-planar geometry around the central metal ion. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Bacillus cereus, Enterococcus faecalis and Listeria monocytogenes and also against the three Gram-negative bacteria: Salmonella paraB, Citrobacter freundii and Enterobacter aerogenes. The results showed that in some cases the antibacterial activity of complexes were more than nalidixic acid and amoxicillin as standards.

  8. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.

    PubMed

    Huang, Na; Zhang, Si; Yang, Liuqing; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-08-19

    In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future. PMID:26222894

  9. Four-coordinate nickel(ii) and copper(ii) complex based ONO tridentate Schiff base ligands: synthesis, molecular structure, electrochemical, linear and nonlinear properties, and computational study.

    PubMed

    Novoa, Néstor; Roisnel, Thierry; Hamon, Paul; Kahlal, Samia; Manzur, Carolina; Ngo, Hoang Minh; Ledoux-Rak, Isabelle; Saillard, Jean-Yves; Carrillo, David; Hamon, Jean-René

    2015-11-01

    We report the synthesis, characterization, crystal structures, nonlinear-optical (NLO) properties, and density functional theory (DFT) calculations of nickel(ii) and copper(ii) complex based ONO tridentate Schiff base ligands: two mononuclear compounds, [Ni(An-ONO)(NC5H5)] (5) and [Cu(An-ONO)(4-NC5H4C(CH3)3)] (6), and two heterobimetallic species, [M(Fc-ONO)(NC5H5)] (M = Ni, 7; Cu, 8), where An-ONOH2 (3) and Fc-ONOH2 (4) are the 1?:?1 condensation products of 2-aminophenol and p-anisoylacetone and ferrocenoylacetone, respectively. These compounds were characterised by microanalysis, FT-IR and X-ray crystallography in the solid state and in solution by UV-vis and (1)H and (13)C NMR spectroscopy. The crystal structures of 3-5, 7 and 8 have been determined and show for Schiff base complexes 5, 7 and 8 a four-coordinated square-planar environment for nickel and copper ions. The electrochemical behavior of all derivatives 3-8 was investigated by cyclic voltammetry in dichloromethane, and discussed on the basis of DFT-computed electronic structures of the neutral and oxidized forms of the compounds. The second-order NLO responses of 3-8 have been determined by harmonic light scattering measurements using a 10(-2) M solution of dichloromethane and working with a 1.91 ?m incident wavelength, giving rather high ?1.91 values of 350 and 290 × 10(-30) esu for the mononuclear species 5 and 6, respectively. The assignment and the nature of the electronic transitions observed in the UV-vis spectra were analyzed using time-dependent (TD) DFT calculations. They are dominated by LMCT, MLCT and ?-?* transitions. PMID:26412689

  10. Spectral, electrochemical, thermal, DNA binding ability, antioxidant and antibacterial studies of novel Ru(III) Schiff base complexes.

    PubMed

    Abdel Aziz, Ayman A; Elbadawy, Hemmat A

    2014-04-24

    Four new air stable low spin Ru(III) complexes of the type [Ru(L(1-4))(H2O)2]Cl have been synthesized, where L=dianion of the tetradentate Schiff base ligands namely N,N'bis(salicylaldehyde)4,5-dimethy-l,2-phenylendiammine (L(1)H2), N,N'bis(salicylaldehyde)4,5-dichloro 1,2-phenylendiammine (L(2)H2), N,N'bis(o-vanillin)4,5-dimethy-1,2-phenylendiammine (L(3)H2) and N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylendiammine (L(4)H2). The complexes have been fully characterized by elemental analysis, infrared spectroscopy, electronic spectroscopy, magnetic susceptibility and electron spin resonance spectroscopy. Elemental analyses and spectroscopic data have been showed that, the stoichiometries of complexes were 1:1 with an octahedral geometry for all the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. The redox behavior of the complexes has been investigated by the cyclic voltammetric technique. The interaction of these complexes with calf thymus DNA (CT-DNA) was explored by different techniques which revealed that the complexes could bind to CT-DNA through an intercalative mode. Furthermore, the antioxidant activity of the Ru(III) complexes against superoxide and hydroxyl radicals was evaluated by using spectrophotometer methods in vitro. The experiments on antioxidant activity show that the complexes were found to possess potent antioxidant activity. Additionally, as a potential application the antibacterial activity of the complexes was assessed by testing their effect on the growth of various strains of bacteria. PMID:24508879

  11. Mononuclear and tetranuclear compounds of yttrium and dysprosium ligated by a salicylic schiff-base derivative: synthesis, photoluminescence, and magnetism.

    PubMed

    Yadav, Munendra; Mereacre, Valeriu; Lebedkin, Sergei; Kappes, Manfred M; Powell, Annie K; Roesky, Peter W

    2015-02-01

    The Schiff-base (2-aminoethyl)hydroxybenzoic acid (H(2)L) as a proligand was prepared in situ from 3-formylsalicylic acid and ethanolamine (ETA). The mononuclear {[Y(HL)(4)][ETAH]·H(2)O} (1) and {[Dy(HL)(4)] [ETAH]·3MeOH·H(2)O} (2) and tetranuclear {[Y(4)(HL)(2)(L)(4)(?(3)-OH)(2)]·4MeOH·4H(2)O} (3), {[Dy4(HL)(2)(L)(4)(?(3)-OH)(2)]·5(MeOH)(2)·7H(2)O (4), and {[Dy(4)(HL)(8)(L)(2)]·4MeOH·(2)H(2)O}(5) rare-earth metal complexes of this ligand could be obtained as single-crystalline materials by the treatment of H(2)L in the presence of the metal salts [Ln(NO(3))(3)·(H(2)O)m] (Ln = Y, Dy). In the solid state, the tetranuclear compounds 3 and 4 exhibit butterfly structures, whereas 5 adopts a rectangular arrangement. Electrospray ionization mass spectrometry data of the ionic compounds 1 and 2 support single-crystal X-ray analysis. The yttrium compounds 1 and 3 show fluorescence with 11.5% and 13% quantum yield, respectively, whereas the quantum yield of the dysprosium complex 4 is low. Magnetic studies on the dysprosium compounds 4 and 5 suggest the presence of weak antiferromagnetic interactions between neighboring metal centers. Compound 4 shows single-molecule-magnet behavior with two relaxation processes, one with the effective energy barrier U(eff) = 84 K and the preexponential factor ?(0) = 5.1 × 10(-9) s. PMID:25238652

  12. Synergistic therapeutic effects of Schiff's base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model.

    PubMed

    Wu, Xilong; He, Chaoliang; Wu, Yundi; Chen, Xuesi

    2016-01-01

    In situ formed hydrogels based on Schiff base reaction were formulated for the co-delivery of metformin (ME) and 5-fluorouracil (5FU). The reactive aldehyde-functionalized four-arm polyethylene glycol (PFA) was synthesized by end-capping of 4-arm PEG with 4-formylbenzoic acid (FA) and used as a cross-linking agent. The injectable hydrogels are designed through the quick gelation induced by the formation of covalent bonds via Schiff-base reaction of PFA with 4-arm poly (ethylene glycol)-b-poly (L-lysine) (PPLL). This formulation eliminated the need for metal catalysts and complicated processes in the preparation of in situ-forming hydrogels. In vitro degradation and drug release studies demonstrated that both ME and 5FU were released through PFA/PPLL hydrogels in a controlled and pH-dependent manner. When incubated with mouse colon adenocarcinoma cells (C26), the ME/5FU-incorporated PFA/PPLL hydrogels had synergistic inhibitory effects on the cell cycle progression and cell proliferation in colon cancer cells. After a single subcutaneous injection of the hydrogel containing ME/5FU beside the tumors of BALB/c mice inoculated with C26 cells, the dual-drug-loaded hydrogels displayed superior therapeutic activity resulted from a combination of p53-mediated G1 arrest and apoptosis in C26 cells. Hence, the Schiff's base cross-linked hydrogels containing ME and 5FU may have potential therapeutic applications in the treatments of colon cancer. PMID:26497429

  13. Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide(III) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand.

    PubMed

    Wang, Wen-Min; Zhang, Hong-Xia; Wang, Shi-Yu; Shen, Hai-Yun; Gao, Hong-Ling; Cui, Jian-Zhong; Zhao, Bin

    2015-11-16

    New dinuclear lanthanide(III) complexes based on an 8-hydroxyquinoline Schiff base derivative and ?-diketonate ligands, [Ln2(hfac)4(L)2] (Ln(III) = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)), [Ln2(tfac)4(L)2] (Ln(III) = Gd (6), Tb (7), Dy (8), Ho (9)), and [Dy(bfac)4(L)2·C7H16] (10) (L = 2-[[(4-fluorophenyl)imino] methyl]-8-hydroxyquinoline, hfac = hexafluoroacetylacetonate, tfac = trifluoroacetylacetonate, and bfac = benzoyltrifluoroacetone), have been synthesized. The single-crystal X-ray diffraction data show that complexes 1-10 are phenoxo-O-bridged dinuclear complexes; each eight-coordinated center Ln(III) ion is in a slightly distorted dodecahedral geometry with two bidentate ?-diketonate coligands and two ?2-O bridging 8-hydroxyquinoline Schiff base derivative ligands. The magnetic study reveals that 1 and 6 display cryogenic magnetic refrigeration properties, whereas complexes 3, 8, and 10 show different SMM behaviors with energy barriers of 6.77 K for 3, 19.83 K for 8, and 25.65 K for 10. Meanwhile, slow magnetic relaxation was observed in 7, while no out-of-phase alternating-current signals were found for 2. The different dynamic magnetic behaviors of two Tb2 complexes and the three Dy2 complexes mainly derive from the tiny crystal structure changes around the Ln(III) ions. It is also proved that the ?-diketonate coligands can play an important role in modulating magnetic dynamics of the lanthanide 8-hydroxyquinoline Schiff base derivative system. PMID:26516660

  14. Some new nano-structure zinc(II) coordination compounds of an imidazolidine Schiff base: Spectral, thermal, antimicrobial properties and DNA interaction

    NASA Astrophysics Data System (ADS)

    Montazerozohori, Morteza; Musavi, Sayed Alireza; Naghiha, Asghar; Zohour, Mostafa Montazer

    2014-08-01

    Some novel nano-sized structure zinc complexes of a new Schiff base ligand entitled as (3-nitro-benzylidene)-{2-[2-(3-nitro-phenyl)-imidazolidine-1-yl]-ethyl}-amine(L) with general formula of ZnLX2 wherein X = Cl-, Br-, I-, SCN- and N3- have been synthesized under ultrasonic conditions. The ligand and its complexes have been characterized by elemental analysis, molar conductance measurements, FT-IR, 1H and 13C NMR and UV-Visible spectroscopy. The resulting data from spectral investigation especially 1H and 13C NMR well confirmed formation of an imidazolidine ring in the ligand structure. Transmission electron microscopy (TEM) showed nano-size structures with average particle sizes of 21.80-78.10 nm for the zinc(II) Schiff base complexes. The free Schiff base and its Zn(II) complexes have been screened in vitro both for antibacterial activity against some gram-positive and gram-negative bacteria and also for antifungal activity. The metal complexes were found to be more active than the free Schiff base ligand. The results showed that ZnL(N3)2 is the most effective inhibitor against Escherichia coli, Pseudomonas aereuguinosa, Staphylococcus aureus and Candida albicans while ZnLBr2 was found to be more effective against Bacillus subtillis than other compounds. Moreover, DNA cleavage potential of all compounds with plasmid DNA was investigated. The results showed that the ligand and ZnLCl2 complex cleave DNA more efficiently than others. In final, thermal analysis of ligand and its complexes revealed that they are decomposed via 2-3 thermal steps in the range of room temperature to 1000 °C. Furthermore some activation kinetic parameters such as A, E*, ?H*, ?S* and ?G* were calculated based on TG/DTA plots by use of coats - Redfern relation. Positive values of activation energy evaluated for the compounds confirmed the thermal stability of them. In addition to, the positive ?H*, and ?G* values suggested endothermic character for the thermal decomposition steps.

  15. A series of transition and non-transition metal complexes from a N 4O 2 hexadentate Schiff base ligand: Synthesis, spectroscopic characterization and efficient antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Dey, Kamalendu

    2010-11-01

    Some transition and non-transition metal complexes of the hexadentate N 4O 2 donor Schiff base ligand 1,8- N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine, abbreviated to H 4fsatrien, have been synthesized. All the 14 metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic (UV-Vis, IR, NMR, ESR) data. The analytical data helped to elucidate the structures of the metal complexes. The Schiff base, H 4fsatrien, is found to act as a dibasic hexadentate ligand using N 2N 2O 2 donor set of atoms (leaving the COOH group uncoordinated) leading to an octahedral geometry for the complexes around all the metal ions except VO 2+ and UO 22+. However, surprisingly the same ligand functions as a neutral hexadentate and neutral tetradentate one towards UO 22+ and VO 2+, respectively. In case of divalent metal complexes they have the general formula [M(H 2fsatrien)] (where M stands for Cu, Co, Hg and Zn); for trivalent metal complexes it is [M(H 2fsatrien)]X· nH 2O (where M stands for Cr, Mn, Fe, Co and X stands for CH 3COO, Cl, NO 3, ClO 4) and for the complexes of VO 2+ and UO 22+, [M(H 4fsatrien)]Y (where M = VO and Y = SO 4; M = UO 2 and Y = 2 NO 3). The Schiff base ligand and most of the complexes have been screened in vitro to judge their antibacterial ( Escherichia coli and Staphylococcus aureus) and antifungal ( Aspergillus niger and Pencillium chrysogenum) activities.

  16. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 ?g/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  17. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  18. Novel tetranuclear Ni(II) Schiff base complex containing Ni4O4 cubane core: Synthesis, X-ray structure, spectra and magnetic properties

    NASA Astrophysics Data System (ADS)

    Jana, Mahendra Sekhar; Priego, José L.; Jiménez-Aparicio, Reyes; Mondal, Tapan Kumar

    2014-12-01

    Novel tetranuclear nickel(II) Schiff base complex having symmetric Ni4O4 cubane-core, [Ni4O2(OAc)2(L)2] (1) has been synthesized. Single crystal of the complex exhibits four nickel atoms in the alternate corner of the cubane and other four sites are occupied by phenolate-O and ?3-O2-. Variable temperature magnetic moment data suggests the Ni centres are weakly antiferromagnetically coupled with J1 = -4.82 cm-1 and J2 = -4.83 cm-1. The electronic spectra, emission properties and life time measurement of ligand, HL and complex 1 have been studied.

  19. Study of Discocytes, oblates and organized particles in vesicles of Schiff base amphiphile-3-cyano- N-benzylidene 4 '-(hexadecylamino) benzylamine

    NASA Astrophysics Data System (ADS)

    Dhathathreyan, Aruna; Hemakanthi, G.

    2003-04-01

    Vesicles of a novel single chain amphiphile with a rigid Schiff base segment: 3-cyano- N-benzylidene 4 '-(hexadecylamino) benzylamine (CNBHB) and its cobalt and manganese complexes have been studied using the Langmuir-Blodgett films (LB films). The aggregation behavior of the vesicle and its complexes were studied using differential scanning calorimetry and turbidity measurements. Transmission electron microscopy (TEM) analysis showed fusion of regular vesicles. String like structures were seen in the cobalt complex whereas no morphological changes took place in the manganese complex. Vesicular fusion could be due to the metal ions binding to the polar groups causing a partial destruction of the surface hydration shell.

  20. Synthesis of novel p-tert-butylcalix[4]arene Schiff bases and their complexes with C60, potential HIV-Protease inhibitors

    NASA Astrophysics Data System (ADS)

    Khadra, Khalid Abu; Mizyed, Shehadeh; Marji, Deeb; Haddad, Salim F.; Ashram, Muhammad; Foudeh, Ayat

    2015-02-01

    Some p-tert-butylcalix[4]arene Schiff base crown ethers were synthesized, characterized using 1H, 13C-NMR, DEPT 135 and Mass spectrometry. Their complexes with C60 were isolated and characterized. The inhibition effect of these complexes on HIVP was studied and found that complexes of 9 and 10 have comparable Ki values to Pepstatine which is known as HIVP inhibitor and used as a control. The synthesis of the ligands, complexes and the inhibition behavior are discussed in this article.

  1. New tetradentate Schiff bases of 2-amino-3,5-dibromobenzaldehyde with aliphatic diamines and their metal complexes: synthesis, characterization and thermal stability.

    PubMed

    Mohammadi, Khosro; Azad, Seyyedeh Sedigheh; Amoozegar, Ameneh

    2015-07-01

    The tetradentate Schiff base ligands (L(1)-L(4)), were synthesized by reaction between 2-amino-3,5-dibromobenzaldehyde and aliphatic diamines. Then, nickel and oxovanadium(IV) complexes of these ligands were synthesized and characterized by (1)H NMR, Mass, IR, UV-Vis spectroscopy and thermogravimetry. The kinetic parameters of oxovanadium(IV) complexes were calculated from thermal studies. According to the results of thermogravimetric data, the thermal stability of oxovanadium(IV) complexes is as follow: [Formula: see text]. PMID:25813179

  2. Catalytic asymmetric endo-selective [3+2] cycloaddition reactions of Schiff bases of ?-aminophosphonates with olefins using chiral metal amides.

    PubMed

    Yamashita, Yasuhiro; Nam, Liang Cheng; Dutton, Mark J; Yoshimoto, Susumu; Kobayashi, Sh?

    2015-12-14

    Catalytic asymmetric endo-selective [3+2] cycloaddition reactions of Schiff bases of ?-aminophosphonates with olefins are described. While the efficient asymmetric synthesis of several phosphonate analogues of proline derivatives is important in bioorganic chemistry, a direct catalytic method to prepare optically active endo [3+2] cycloadducts of ?-aminophosphonates with olefins has never been developed. We found for the first time that catalyst systems prepared from Group 11 metal amides with the (R)-FeSulphos ligand were effective for the asymmetric endo-selective [3+2] cycloaddition to afford the desired proline phosphonate analogues in high yields with high endo- and high enantioselectivities. PMID:26389539

  3. Apoptotic effect of novel Schiff based CdCl?(C??H??N?O?) complex is mediated via activation of the mitochondrial pathway in colon cancer cells.

    PubMed

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72?h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-?B translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  4. Metal complexes of Schiff base derived from sulphametrole and o-vanilin . Synthesis, spectral, thermal characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Sharaby, Carmen M.

    2007-04-01

    Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [ N1-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H 2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M 2X 3(HL)(H 2O) 5]· yH 2O (where M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl, y = 0-3); [Fe 2Cl 5(HL)(H 2O) 3]·2H 2O; [(FeSO 4) 2(H 2L)(H 2O) 4] and [(UO 2) 2(NO 3) 3(HL)(H 2O)]·2H 2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H 2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ? H*, ? S* and ? G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi ( Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.

  5. Auxiliary Ligand-Dependent Assembly of Several Ni/Ni-Cd Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand

    SciTech Connect

    Ge, Ying Ying; Li, Guo-Bi; Fang, Hua-Cai; Zhan, Xu Lin; Gu, Zhi-Gang; Chen, Jin Hao; Sun, Feng; Cai, Yue-Peng; Thallapally, Praveen K.

    2010-09-18

    Several low-dimensional Ni/Ni-Cd complexes containing N2O2 donor tetradentate symmetrical Schiff base ligand bis(acetylacetone)ethylene-diamine (sy-H2L2), namely, [Ni(sy-L2)]2?HLa?ClO4 (2), (HLa)2?(ClO4)?(NO3) (3), [Ni(sy-L2)X]2](4,4’-bipy) (where La = 5,7-dimethyl-3,6-dihydro-2H-1,4-diazepine, X = ClO4 (4), X=NO3 (5), [Ni(sy-L2)Cd(SCN)2]n (6) and [Ni(sy-L2)?Cd(N3)2]n (7) have been synthesized from [Ni(sy-L2)]2?H2O (1). Complex 2, is three component discrete assembly generated from (HLa)+ moiety bridged with [Ni(sy-L2)] unit and ClO4- anion. A solution containing complex 2 and Cd(NO3)2 results in a mixture of 1 and 3. Further re-crystallization of 1 and 3 with various auxiliary ligands, provides coordination complexes 4 – 7 stabilized by weak hydrogen bonds in which 6 and 7 represent the first 1D heteronuclear complexes based on symmetric acacen-base Schiff base ligand.

  6. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  7. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: Synthesis, characterization, fluorescence and corrosion inhibitors of ligands

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.

    2014-11-01

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans.

  8. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: synthesis, characterization, fluorescence and corrosion inhibitors of ligands.

    PubMed

    Ali, Omyma A M

    2014-11-11

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans. PMID:24858346

  9. Experimental and Theoretical Investigations of Magnetic Exchange Pathways in Structurally Diverse Iron(III) Schiff-Base Complexes.

    PubMed

    Herchel, Radovan; Nemec, Ivan; Machata, Marek; Trávní?ek, Zden?k

    2015-09-01

    The synthesis, and the structural and magnetic properties, of the following new iron(III) Schiff base complexes with the {O',N,O?}-chelating ligand H2L (2-hydroxyphenylsalicylaldimine) are reported: K[FeL2]·H2O (1), (Pr3NH)[FeL2]·2CH3OH (2), [FeL(bpyO2) (CH3OH)][FeL2]·CH3OH (3), [Fe2L3(CH3OH)]·2CH3OH·H2O (4), and [{Fe2L2}(?-OH)2{FeL(bpyO2)}2][BPh4]2·2H2O (5), where Pr3NH(+) represents the tripropylammonium cation and bpyO2 stands for 2,2'-bipyridine-N-dioxide. A thorough density functional theory (DFT) study of magnetic interactions (the isotropic exchange) at the B3LYP/def-TZVP level of theory was employed, and calculations have revealed superexchange pathways through intramolecular/intermolecular noncovalent contacts (?-? stacking, C-H···O and O-H···O hydrogen bonds, diamagnetic metal cations) and/or covalent bonds ((?-O(Ph), ?-OH) or bis(?-O(Ph)) bridging modes), which helped us to postulate trustworthy spin Hamiltonians for magnetic analysis of experimental data. Within the reported family of compounds 1-5, the mediators of the antiferromagnetic exchange can be sorted by their increasing strength as follows: ?-? stacking (J(DFT) = -0.022 cm(-1)/J(mag) = -0.025(4) cm(-1) in 2) < C-H···O contacts and ?-? stacking (J(DFT) = -0.19 cm(-1)/J(mag) = -0.347(9)cm(-1) in 1) < O-H···O hydrogen bonds (J(DFT) = -0.53 cm(-1)/J(mag) = -0.41(1) cm(-1) in 3) < bis(?-O(Ph)) bridge (J(DFT) = -13.8 cm(-1)/J(mag) = -12.3(9) cm(-1) in 4) < (?-O(Ph), ?-OH) bridge (J(DFT) = -18.0 cm(-1)/J(mag) = -17.1(2) cm(-1) in 5), where J(DFT) and J(mag) are the isotropic exchange parameters derived from DFT calculations, and analysis of the experimental magnetic data, respectively. The good agreement between theoretically calculated and experimentally derived isotropic exchange parameters suggests that this procedure is applicable also for other chemical and structural systems to interpret magnetic data properly. PMID:26262499

  10. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  11. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands.

    PubMed

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s(-1) scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction. PMID:25613693

  12. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  13. A new series of Schiff bases derived from sulfa drugs and indole-3-carboxaldehyde: Synthesis, characterization, spectral and DFT computational studies

    NASA Astrophysics Data System (ADS)

    Ebrahimi, H.; Hadi, J. S.; Al-Ansari, H. S.

    2013-05-01

    A new series of Schiff bases were synthesized for the first time by the condensation of indole-3-carboxaldehyde with various sulfa drugs including sulfanilamide, sulfapyridine, sulfadiazine, sulfamerazine, sulfamethoxazole, sulfamethoxypyridazine and sulfacetamide sodium in ethanol (1:1). The structure of Schiff bases were experimentally characterized by using IR, 1H NMR, 13C NMR and mass spectroscopic methods. The structural and electronic properties of the studied molecules were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and Mulliken atomic charges of the studied molecules have been calculated at the B3LYP method and standard 6-31 + G(d,p) basis set starting from optimized geometry. The theoretical 13C chemical shift results were also calculated using the gauge independent atomic orbital (GIAO) approach and their respective linear correlations were obtained. The comparison of the results indicates that B3LYP/6-31 + G(d,p) yields good agreement with the observed chemical shifts.

  14. Spectroscopic and biological activities studies of bivalent transition metal complexes of Schiff bases derived from condensation of 1,4-phenylenediamine and benzopyrone derivatives

    NASA Astrophysics Data System (ADS)

    Sherif, Omaima E.; Abdel-Kader, Nora S.

    2014-01-01

    Many tools of analysis such as elemental analyses, infrared, ultraviolet-visible, electron spin resonance (ESR) and thermal analysis, as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared Co(II), Ni(II) and Cu(II) complexes with Schiff bases derived from the condensation of 1,4-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one (H2L) or 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one (H4L). The data showed that all formed complexes are 1:1 or 2:2 (M:L) and non-electrolyte chelates. The Co(II) and Cu(II) complexes of the two Schiff bases were screened for antibacterial activities by the disk diffusion method. The antibacterial activity was screened using Escherichia coli and Staphylococcus capitis but the antifungal activity was examined by using Aspergillus flavus and Candida albicans. The Results showed that the tested complexes have antibacterial, except Cusbnd H4L, but not antifungal activities.

  15. Synthesis, spectroscopic and catalytic studies of Cu(II), Co(II) and Ni(II) complexes immobilized on Schiff base modified chitosan

    NASA Astrophysics Data System (ADS)

    Antony, R.; Theodore David Manickam, S.; Saravanan, K.; Karuppasamy, K.; Balakumar, S.

    2013-10-01

    A new class of bidentate (N, O) Schiff base ligand (L) has been derived from the functional biopolymer (chitosan) and 1,2-diphenylethanedione in 1:1 M ratio. This ligand has been used to synthesise the new first row transition metal complexes of Cu(II), Co(II) and Ni(II). The structural properties of the ligand and the synthesized tetra-coordinated complexes have been investigated by elemental analysis, magnetic study, molar conductance measurement and spectroscopic methods viz. FT-IR, UV-Vis., 1H NMR, 13C NMR and XRD. The spectral evidences strongly suggested the square planar geometry to the complexes. The XRD studies proved that crystallinity of chitosan has been diminished after Schiff base formation and metal complexation of L. Thermal and surface properties of the complexes have been also discussed from the investigation of their TG-DTG curves and SEM images, respectively. In addition, the catalytic efficiency of these complexes has been studied in the cyclohexane oxidation reaction using H2O2 as oxidant at 70 °C.

  16. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges

    NASA Astrophysics Data System (ADS)

    Bahaffi, Saleh O.; Abdel Aziz, Ayman A.; El-Naggar, Maher M.

    2012-08-01

    A novel series of four copper(II) complexes were synthesized by thermal reaction of copper acetate salt with symmetrical tetradentate Schiff bases, N,N'bis(o-vanillin)4,5-dimethyl-l,2-phenylenediamine (H2L1), N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L2), N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylenediamine (H2L3) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L4), respectively. All the new synthesized complexes were characterized by using of microanalysis, FT-IR, UV-Vis, magnetic measurements, ESR, and conductance measurements, respectively. The data revealed that all the Schiff bases (H2L1-4) coordinate in their deprotonated forms and behave as tetradentate NOON coordinated ligands. Moreover, their copper(II) complexes have square planar geometry with general formula [CuL1-4]. The binding of the complexes with calf thymus DNA (CT-DNA) was investigated by UV-Vis spectrophotometry, fluorescence quenching and viscosity measurements. The results indicated that the complexes bind to CT-DNA through an intercalative mode. From the biological activity view, the copper(II) complexes and their parent ligands were screened for their in vitro antibacterial activity against the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosai by well diffusion method. The complexes showed an increased activity in comparison to some standard drugs.

  17. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between ?as(COO) and ?s(COO), ? ? ( ?as(COO) - ?s(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  18. Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N 2O 2 Schiff base ligand derived from 4,6-diacetylresorcinol and benzylamine

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy

    2008-09-01

    A tetradentate N 2O 2 donor Schiff base ligand, H 2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl -, NO 3-, AcO -, ClO 4- and SO 42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO 4- anion as compared to the strongly coordinating power of SO 42- and Cl - anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.

  19. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    NASA Astrophysics Data System (ADS)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  20. Spectral characterization, optical band gap calculations and DNA binding of some binuclear Schiff-base metal complexes derived from 2-amino-ethanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hussien, Mostafa A.; Nawar, Nagwa; Radwan, Fatima M.; Hosny, Nasser Mohammed

    2015-01-01

    Bi-nuclear metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-ethanoic acid (glycine) and acetylacetone have been synthesized and characterized by elemental analyses, Raman spectra, FT-IR, ES-MS, UV-Vis., 1H NMR, ESR, thermal analyses (TG, DTG and DTA) and magnetic measurements. The results showed that, the Schiff base ligand can bind two metal ions in the same time. It coordinates to the first metal ion as mono-negative bi-dentate through azomethine nitrogen and enolic carbonyl after deprotonation. At the same time, it binds to the second metal ion via carboxylate oxygen after deprotonation. The thermodynamic parameters E?, ?H?, ?G? and ?S? have been calculated by Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The optical band gaps of the isolated complexes have been calculated from absorption spectra and the results indicated semi-conducting nature of the investigated complexes. The interactions between the copper (II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA.

  1. DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2?-methylacetoacetanilide

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Pothiraj, Krishnan; Baskaran, Thanasekaran

    2011-08-01

    A new Schiff base ligand (HL) was synthesized by the condensation reaction between 2'-methyleacetoacetanilide and 2-amino-3-hydroxypyridine. Its Co(II), Ni(II), Cu(II) and Zn(II) complexes were prepared by the interaction of the ligand with metal(II) chloride. They were characterized by elemental analysis, IR, 1H NMR, EPR, UV-Vis, magnetic susceptibility measurements, conductivity measurements and FAB-mass spectra. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption, viscosity and cyclic voltammetry methods, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. It was found to be oxidative hydroxyl radical cleavage in the presence of 3-mercaptopropionic acid (MPA). The Schiff base and its complexes have been screened for their antibacterial ( Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal ( Aspergillus niger, Rhizopus stolonifer, Rhizoctonia bataicola and Candida albicans) activities and the data reveal that the complexes have higher activity than the free ligand.

  2. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

    PubMed Central

    Karekal, Mahendra Raj; Biradar, Vivekanand; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2013-01-01

    A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL), and its Cu(II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized in the light of microanalytical, IR, H1 NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II), Co(II), and Ni(II) complexes were octahedral, whereas Zn(II), Cd(II), and Hg(II) complexes were tetrahedral in nature. The redox behavior of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:24194692

  3. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic ?-diketone with various primary amine and 2,2'-bipyridyl

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.

    2011-06-01

    The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO 4 was synthesized by reaction of Mn(OAc) 3·2H 2O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO 4 with ethylenediamine, ethanolamine and glycine (where HPMFP = 1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy = 2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and 1H and 13C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change ? S*, enthalpy change ? H* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.

  4. Ru(II) complexes of N 4 and N 2O 2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng

    2009-07-01

    Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.

  5. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N 3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.

    2010-09-01

    The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  6. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes

    NASA Astrophysics Data System (ADS)

    Reddy, P. Muralidhar; Shanker, K.; Srinivas, V.; Krishna, E. Ravi; Rohini, R.; Srikanth, G.; Hu, Anren; Ravinder, V.

    2015-03-01

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies.

  7. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes.

    PubMed

    Reddy, P Muralidhar; Shanker, K; Srinivas, V; Krishna, E Ravi; Rohini, R; Srikanth, G; Hu, Anren; Ravinder, V

    2015-03-15

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies. PMID:25554950

  8. Engineered Microtissues Formed by Schiff Base Crosslinking Restore the Chondrogenic Potential of Aged Mesenchymal Stem Cells.

    PubMed

    Millan, Christopher; Cavalli, Emma; Groth, Thomas; Maniura-Weber, Katharina; Zenobi-Wong, Marcy

    2015-06-24

    A universal method for reproducibly directing stem cell differentiation remains a major challenge for clinical applications involving cell-based therapies. The standard approach for chondrogenic induction by micromass pellet culture is highly susceptible to interdonor variability. A novel method for the fabrication of condensation-like engineered microtissues (EMTs) that utilizes hydrophilic polysaccharides to induce cell aggregation is reported here. Chondrogenesis of mesenchymal stem cells (MSCs) in EMTs is significantly enhanced compared to micromass pellets made by centrifugation measured by type II collagen gene expression, dimethylmethylene blue assay, and histology. MSCs from aged donors that fail to differentiate in pellet culture are successfully induced to synthesize cartilage-specific matrix in EMTs under identical media conditions. Furthermore, the EMT polysaccharides support the loading and release of the chondroinduction factor transforming growth factor ?3 (TGF-?3). TGF-?-loaded EMTs (EMT(+TGF) ) facilitate cartilaginous tissue formation during culture in media not supplemented with the growth factor. The clinical potential of this approach is demonstrated in an explant defect model where EMT(+TGF) from aged MSCs synthesize de novo tissue containing sulfated glycosaminoglycans and type II collagen in situ. PMID:25866187

  9. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: antimicrobial evaluation and anticancer studies.

    PubMed

    Dhahagani, K; Mathan Kumar, S; Chakkaravarthi, G; Anitha, K; Rajesh, J; Ramu, A; Rajagopal, G

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by (1)H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M=Cu(II), Co(II)), Zn(II), or VO(IV); MPMP=2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X=Cl, (L1H), X=Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines. PMID:23985482

  10. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  11. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2?(OOCCH3)2(H2O)2](L? = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  12. New nickel(II) and copper(II) complexes with unsymmetrical Schiff bases derived from (1R,2R)(-)cyclohexanediamine and the application of Cu(II) complexes for hybrid thin layers deposition.

    PubMed

    Barwiolek, M; Szlyk, E; Surdykowski, A; Wojtczak, A

    2013-08-28

    New unsymmetrical Schiff bases obtained by condensation of (1R,2R)(-)cyclohexanediamine with 2-hydroxy-3,5-di-tert-butylbenzaldehyde (3,5-(t)bba) and 2-hydroxy-3-methoxybenzaldehyde (3-metoxba) or 2-hydroxy-5-nitrobenzaldehyde (5-nba) and 2-hydroxyacetophenone (hacphen) were used for the synthesis of Cu(ii) and Ni(ii) complexes. The ligands and complexes were characterized by circular dichroism (CD), UV-vis, IR, (1)H (NOE diff) (ligand) and (13)C NMR (ligand) spectra. The X-ray crystal structures solved for Ni(II)(1R,2R)(-)chxn(3,5-(t)bba)(hacphen) exhibit distortion of the coordination sphere towards tetrahedral in the solid phase. The complex crystallized in the orthorhombic non-centrosymmetric P2(1)2(1)2(1) space group. Thin layers of copper(II) complexes were deposited on Si(111) by a spin coating technique and characterized by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. Layer deposition conditions were studied and optimal parameters were found (1500 rpm, time 30 s). For copper(ii) layers the most intensive fluorescence band from intraligand transition at 514 nm was observed. CD spectra of complexes in MeCN suggest the tetrahedral distortion from the square planar geometry of the central ion of the coordination sphere in solution. The (1)H NMR NOE diff. spectra of ligands were measured and the positions of the nearest hydrogen atoms in the cyclohexane and aromatic rings were discussed. PMID:23831645

  13. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling.

    PubMed

    Xu, Lirong; Zhou, Xin; Yu, Yanxia; Tian, Wei Quan; Ma, Jun; Lei, Shengbin

    2013-09-24

    We performed a co-condensation reaction between aromatic aldehyde and aromatic diamine monomers on a highly oriented pyrolytic graphite surface either at a solid/liquid interface at room temperature or in low vacuum with moderate heating. With this simple and moderate methodology, we have obtained surface-confined 2D covalent organic frameworks (COFs) with few defects and almost entire surface coverage. The single crystalline domain can extend to more than 1 ?m(2). By varying the backbone length of aromatic diamines the pore size of 2D surface COFs is tunable from ?1.7 to 3.5 nm. In addition, the nature of the surface COF can be modified by introducing functional groups into the aromatic amine precursor, which has been demonstrated by introducing methyl groups to the backbone of the diamine. Formation of small portions of bilayers was observed by both scanning tunneling microscopy (STM) and AFM, which clearly reveals an eclipsed stacking manner. PMID:23924203

  14. Phenalenyl-based open-shell polycyclic aromatic hydrocarbons.

    PubMed

    Kubo, Takashi

    2015-02-01

    The phenalenyl radical is a polycyclic aromatic hydrocarbon (PAH) radical. Owing to its widely distributed spin structure, phenalenyl is relatively stable compared to other hydrocarbon radicals and has been studied from the viewpoint of its application to electroconductive and magnetic materials. In addition, a strong intermolecular spin-spin coupling nature is another feature of phenalenyl. This account summarizes my studies so far into PAH radicals containing the phenalenyl scaffold in terms of their amphoteric redox properties and singlet biradical character, which strongly rely on the characteristic electronic structure, that is, non-bonding character and sixfold symmetry of a singly occupied molecular orbital of the phenalenyl radical. PMID:25345729

  15. New selective solvents of aromatic hydrocarbons based on petroleum sulfides

    SciTech Connect

    Nikitin, Yu.E.; Baikova, A.Ya.; Vakhitova, N.G.; Khorosheva, S.I.; Murinov, Yu.I.

    1985-01-01

    The present work examines the extractive properties of petroleum sulfoxides (PSO) and their mixtures with other industrial extraction agents. Substitutes are tested to find inexpensive, high-boiling selective solvents and as extractive rectification agents for aromatic hydrocarbons. Effective extraction agents were proposed for the recovery of benzene and toluene from hydrocarbon mixtures during extractive rectification. Petroleum sulfoxides and their synergistic mixtures with diethylene glycol and dimethylformamide, enabled benzene and toluene to be recovered to the extent of 91-99% with a purity of 92-98%; when recovery is from a mixture enriched with benzene, purity increases to 99.5%.

  16. Spectroscopy studies on Schiff base N,N?-bis(salicylidene)-1,2-phenylenediamine by NMR, infrared, Raman and DFT calculations

    NASA Astrophysics Data System (ADS)

    de Toledo, T. A.; Pizani, P. S.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.

    2015-10-01

    N,N?-bis(salicylidene)-1,2-phenylenediamine, also known as Salophen, is a Schiff base which crystallizes in monoclinic structure and space group P21/c, with four molecules per unit cell. It has been intensely studied in last decades because of its excellent properties with many potential applications. In the present study, the structural and vibrational properties of the Salophen were investigated combining scanning electronic microscopy (SEM), Raman, infrared, nuclear magnetic resonance (NMR) spectroscopy as experimental techniques and theoretical calculation based on density functional theory (DFT). The interpretation of the vibrational modes was carried out by means of potential energy distribution (PED). The theoretical results are in good agreement with experimental ones.

  17. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  18. DNA binding, photoactivated DNA cleavage and cytotoxic activity of Cu(II) and Co(II) based Schiff-base azo photosensitizers

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Prabhakara, M. C.

    2015-04-01

    A new class of Cu(II) and Co(II) complexes of azo-containing Schiff base of the type [Cu(L1)2] and [Co(L1)2], where L1 = 4-[(E)-{2-hydroxy-3-[(E)-(4-bromophenyl)diazenyl]benzylidene}amino]benzoic acid have been synthesized and characterized. Extension of conjugation and the presence of free carboxylic acid group of the ligand L1 increased the wavelength of the complexes from visible region to the near IR region (620-850 nm). The Cu(II) and Co(II) complexes interacted with CT-DNA via intercalative mode with the respective Kb value of 3.2 × 104 M-1 and 2.9 × 104 M-1 and acted as proficient photocleavers of SC pUC19 DNA in UV-A light, forming 1O2 as the reactive oxygen species with the quantum yield of 0.38 and 0.36, respectively. Furthermore, the Cu(II) and Co(II) complexes showed photocytotoxicity toward two selected tumor cell lines MCF-7 and A549 by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) method, and the Cu(II) complex exhibits higher photocytotoxicity than Co(II) complex against each of the selected cell lines, this result is identical with their DNA binding ability order.

  19. DNA binding, photoactivated DNA cleavage and cytotoxic activity of Cu(II) and Co(II) based Schiff-base azo photosensitizers.

    PubMed

    Pradeepa, S M; Bhojya Naik, H S; Vinay Kumar, B; Indira Priyadarsini, K; Barik, Atanu; Prabhakara, M C

    2015-04-15

    A new class of Cu(II) and Co(II) complexes of azo-containing Schiff base of the type [Cu(L1)2] and [Co(L1)2], where L1=4-[(E)-{2-hydroxy-3-[(E)-(4-bromophenyl)diazenyl]benzylidene}amino]benzoic acid have been synthesized and characterized. Extension of conjugation and the presence of free carboxylic acid group of the ligand L1 increased the wavelength of the complexes from visible region to the near IR region (620-850 nm). The Cu(II) and Co(II) complexes interacted with CT-DNA via intercalative mode with the respective Kb value of 3.2×10(4) M(-1) and 2.9×10(4) M(-1) and acted as proficient photocleavers of SC pUC19 DNA in UV-A light, forming (1)O2 as the reactive oxygen species with the quantum yield of 0.38 and 0.36, respectively. Furthermore, the Cu(II) and Co(II) complexes showed photocytotoxicity toward two selected tumor cell lines MCF-7 and A549 by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) method, and the Cu(II) complex exhibits higher photocytotoxicity than Co(II) complex against each of the selected cell lines, this result is identical with their DNA binding ability order. PMID:25659740

  20. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    PubMed

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. PMID:25546393

  1. Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities

    NASA Astrophysics Data System (ADS)

    Zayed, Ehab M.; Zayed, M. A.; El-Desawy, M.

    2015-01-01

    Two novel Schiff's bases (EB1 and L1) as new macrocyclic compounds were prepared via condensation reactions between bisaldehyde (2,2?-(ethane-1,2-diylbis(oxy))dibenzaldehyde): firstly with hydrazine carbothioamide to give (EB1), secondly with 4,6-diaminopyrimidine-2-thiol to give (L1). EB1 has a general formula C18H20N6O2S2 of mole mass = 416.520, and IUPAC name ((N,N?Z,N,N?E)-N,N?-(((ethane1,2diylbis(oxy))bis(2,1phenylene))bis(methanylylidene))bis(1hydrazinylmethanethioamide). L1 has a general formula C20H16N4O2S of mole mass = 376.10; and IUPAC name 1,2-bis(2-vinylphenoxy)ethane4,6-diaminopyrimidine-2-thiol). The structures of the compounds obtained were characterized based on elemental analysis, FT-IR and 1H NMR spectra, mass, and thermogravimetric analysis (TG, DTG). The activation thermodynamic parameters, such as, ?E*, ?H*, ?S* and ?G* were calculated from the TG curves using Coats-Redfern method. It is important to investigate their structures to know the active groups and weak bond responsible for their biological activities. The obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculation using PM3 procedure, on the neutral and positively charged forms of these novel Schiff bases. Therefore, comparison between MS and TA helps in selection of the proper pathway representing the decomposition of these compounds to give indication about their structures and consequently their biological activities. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their antimicrobial potential.

  2. An unexpected Schiff base-type Ni(II) complex: synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities.

    PubMed

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-25

    An unexpected Schiff base-type Ni(II) complex, [Ni(L(2))2]?CH3OH (HL(2) = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL(1) (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL(1) and its corresponding Ni(II) complex were characterized by IR, (1)H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL(1) and Ni(II) complex were also investigated. PMID:25247838

  3. An unexpected Schiff base-type Ni(II) complex: Synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities

    NASA Astrophysics Data System (ADS)

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-01

    An unexpected Schiff base-type Ni(II) complex, [Ni(L2)2]?CH3OH (HL2 = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL1 (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL1 and its corresponding Ni(II) complex were characterized by IR, 1H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL1 and Ni(II) complex were also investigated.

  4. Structural evidence of an intramolecular proton transfer leading to keto-amine tautomer in the crystals of Schiff bases derived from tyrosine and histidine esters

    NASA Astrophysics Data System (ADS)

    Núñez-Montenegro, Ara; Pino-Cuevas, Arantxa; Carballo, Rosa; Vázquez-López, Ezequiel M.

    2014-03-01

    Three Schiff bases derived from of 2,4-dihydroxybenzaldehyde or 2,4-dihydroxyacetophenone and esters of tyrosine and histidine have been synthesized and the crystal and molecular structures determined by single crystal X-ray diffraction. The molecular structures of the three compounds are dominated by short intramolecular hydrogen bonds with distances N⋯O ranging from 2.536(2) to 2.588(2) Å and the hydrogen atom is bonded to the nitrogen. In the solid state, the structures are characterized by the keto-amine tautomer, whereas in the solution the phenol-imine form was detected by 1H NMR spectroscopy. Intermolecular interactions influencing crystal packing are discussed.

  5. Anticonvulsant Activity of Schiff Bases of 3-Amino-6,8-dibromo-2-phenyl-quinazolin-4(3H)-ones

    PubMed Central

    Paneersalvam, P.; Raj, T.; Ishar, M. P. S.; Singh, B.; Sharma, V.; Rather, B. A.

    2010-01-01

    Schiff bases (9a-l) of 3-amino-6,8-dibromo-2-phenyl-quinazolin-4-(3H)-ones (8) with various substituted aldehydes were obtained by refluxing 1:1 molar equivalents of the reactants in dry ethanol for 6 h. The aminoquinazoline (8) was inturn obtained from 3,5-dibromoantharlinic acid via intermediate (7). All the synthesized compounds (9a-l) were evaluated for their anticonvulsant activity on albino mice by maximal electroshock method using phenytoin as a standard. The compound (9l) bearing a cinnamyl function displays a very high activity (82.74 %) at dose level of 100 mg/kg b.w. PMID:21188051

  6. Syntheses and structures of two new bis-N,O-bidentate Schiff base ligands and their respective copper(II) complexes with dinuclear double-helical configuration

    NASA Astrophysics Data System (ADS)

    Chu, Zhaolian; Huang, Wei

    2007-06-01

    Two flexible Schiff base ligands bis-[( N, N'-3,5-di- tert-butylsalicylidene)-4,4'-diaminodiphenyl] ether (H 2L 1) and bis-[( N, N'-3- tert-butyl-5-methylsalicylidene)-4,4'-diaminodiphenyl] ether (H 2L 2) were prepared in high yields and their structures were determined by X-ray single-crystal diffraction. Different packing modes were observed in H 2L 1 and H 2L 2 due to the different spacial hindrance of substituted groups bonded to the phenol rings. Reaction of ligands H 2L 1 and H 2L 2 with Cu(ClO 4) 2 · 6H 2O in hot methanol yielded neutral double-helical dinuclear complexes [Cu2L21]·2H2O ( 1) and [Cu2L22]·2H2O ( 2) where each Cu(II) center has a pseudo-tetrahedral coordination sphere with two-wrapped ligands.

  7. Synthesis and structure elucidation of a copper(II) Schiff-base complex: in vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies.

    PubMed

    Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K

    2014-11-01

    New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H?L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. PMID:25222146

  8. A new hydrogen-bonded pseudo-dimer Mn(III) Schiff base complex. The synthesis, X-ray structure and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gungor, Elif; Kara, Hulya

    2011-11-01

    A new hydrogen-bonded pseudo-dimer, [Mn(III)L1(CH 3CH 2OH)] 2(ClO 4) ( 1) (L1 = N, N'-bis(2-hydroxy-1-naphthalidenato)-1,2-diaminopropane) has been synthesized and characterized by UV-vis, IR, elemental analysis and crystal structure analysis. The single crystal X-ray diffraction reveals that the structure affords an elongated octahedral MnN 2O 4 coordination environment, geometry with the four donor atoms of the tetradentate Schiff base in the equatorial plane and with two ethanol molecule in axial positions with Mn-O = 2.265(2) and 2.266(2) Å.

  9. Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Irandoost, Amene

    2013-04-01

    Synthesis and evaluation of three new oxovanadium(IV) complexes, formed by the interaction of vanadyl acetylacetonate and the Schiff bases: 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (L1), 3,4-bis-((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (L2) and 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (L3) in methanol. The complexes have been characterized and studied by IR spectra, UV-Vis spectroscopy and thermogravimetry in order to evaluate their thermal stability and thermal decomposition. According to the results discussed from TG curves, the order of thermal stability for the complexes is VOL3 > VOL1 > VOL2. Their formation constants (Kf) were obtained by UV-Vis spectroscopic titration at 15, 25, 35 and 45 °C in methanol by SQUAD software. The trend of formation constants of the complexes as follows: VOL3 > VOL2 > VOL1.

  10. Crystal structure of 2-{(R)-[1-(4-bromo­phen­yl)eth­yl]imino­meth­yl}-4-(phenyl­diazen­yl)phenol, a chiral photochromic Schiff base

    PubMed Central

    Moriwaki, Ryoji; Akitsu, Takashiro

    2015-01-01

    The title chiral photochromic Schiff base compound, C21H18BrN3O, was synthesized from (R)-(+)-1-(4-bromo­phen­yl)ethyl­amine and the salicyl­aldehyde of an azo­benzene derivative. The mol­ecule corresponds to the phenol–imine tautomer, the C=N and N—C bond distances being 1.285?(3) and 1.470?(3)?Å, respectively. The diazenyl group adopts a trans form, with an N=N distance of 1.256?(3)?Å. The hy­droxy group is involved in intra­molecular O—H?N hydrogen bonding. In the crystal, C—H?? inter­actions consolidate the crystal packing of one-dimensional chains, which exhibits short inter­molecular Br?C contacts of 3.400?(3)?Å. PMID:26594580

  11. Crystal structure of 2-{(R)-[1-(4-bromo-phen-yl)eth-yl]imino-meth-yl}-4-(phenyl-diazen-yl)phenol, a chiral photochromic Schiff base.

    PubMed

    Moriwaki, Ryoji; Akitsu, Takashiro

    2015-11-01

    The title chiral photochromic Schiff base compound, C21H18BrN3O, was synthesized from (R)-(+)-1-(4-bromo-phen-yl)ethyl-amine and the salicyl-aldehyde of an azo-benzene derivative. The mol-ecule corresponds to the phenol-imine tautomer, the C=N and N-C bond distances being 1.285?(3) and 1.470?(3)?Å, respectively. The diazenyl group adopts a trans form, with an N=N distance of 1.256?(3)?Å. The hy-droxy group is involved in intra-molecular O-H?N hydrogen bonding. In the crystal, C-H?? inter-actions consolidate the crystal packing of one-dimensional chains, which exhibits short inter-molecular Br?C contacts of 3.400?(3)?Å. PMID:26594580

  12. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Noureldeen, Amani F. H.

    2014-11-01

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.

  13. Immobilized molybdenum-thiosemicarbazide Schiff base complex on the surface of magnetite nanoparticles as a new nanocatalyst for the epoxidation of olefins

    NASA Astrophysics Data System (ADS)

    Mohammadikish, M.; Masteri-Farahani, M.; Mahdavi, S.

    2014-03-01

    In this work, a new magnetically recoverable nanocatalyst was developed by immobilization of thiosemicarbazide ligand on the surface of silica coated magnetite nanoparticles (SCMNPs) through Schiff base condensation and followed complexation with MoO2(acac)2. Characterization of the prepared nanocatalyst was performed with different physicochemical methods such as Fourier transform infrared (FT-IR) and atomic absorption spectroscopies, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The prepared catalyst catalyzed the epoxidation of olefins and allyl alcohols with tert-butyl hydroperoxide (TBHP) and cumene hydroperoxide (CHP) quantitatively with excellent selectivity toward the corresponding epoxides under mild reaction conditions.

  14. Weakly-bridged dimeric diorganotin(IV) compounds derived from pyruvic acid hydrazone Schiff base ligands: Synthesis, characterization and crystal structures

    NASA Astrophysics Data System (ADS)

    Hong, Min; Yin, Han-Dong; Cui, Ji-Chun

    2011-03-01

    We report the synthesis of four diorganotin(IV) compounds of Schiff base pyruvic acid hydrazone derivatives formulated as [R 2SnLY] 2, where L 1 is 2-SC 4H 3CON 2C(CH 3)CO 2 with Y = CH 3CH 2CH 2CH 2OH, R = n-Bu ( 1); L 2 is C 6H 5CON 2C(CH 3)CO 2 with Y = CH 3CH 2OH, R = p-F-Bz ( 2); L 3 is 2-HOC 6H 4CON 2C(CH 3)CO 2 with Y dbnd H 2O, R = p-CN -Bz ( 3); and L 4 is 4-NO 2-C 6H 4CON 2C(CH 3)CO 2 with Y dbnd CH 3CH 2OH, R = Bz ( 4). The structures of all compounds have been established by a combination of single-crystal X-ray diffraction analysis, 1H and 119Sn NMR spectroscopy, IR spectroscopy, and elemental analysis. Studies reveal that four ligands present the same coordination mode with tin center, which all present tridentate ONO donor Schiff bases and coordinate to the tin center in an enolic form. In compounds 1- 4, each tin atom is seven-coordinated and exhibits a distorted pentagonal bipyramid with a planar SnO 4N unit and two apical alkyl carbon atoms, thus forming a weakly-bridged dimeric molecule. Additionally, the distance of Sn⋯O bridge in each compound is obviously affected by the choice of different alkyl groups and coordination solvent molecules, which fluctuates in the range of 2.571(5)-2.839(4) Å. Furthermore, the supramolecular structure analysis show that there are two types of supramolecular infrastructures, 1D chain or 2D network, which are formed by intermolecular O-H···N or C-H⋯X (X = O, N or F) hydrogen bonds.

  15. Study of the hydrolysis and ionization constants of Schiff base from pyridoxal 5'-phosphate and n-hexylamine in partially aqueous solvents. An application to phosphorylase b.

    PubMed

    Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F

    1986-08-15

    Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764

  16. Synthesis, characterization, equilibrium study and biological activity of Cu(II), Ni(II) and Co(II) complexes of polydentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.

    2012-10-01

    Schiff base ligand, 1,4-bis[(2-hydroxybenzaldehyde)propyl]piperazine (BHPP), and its Cu(II), Ni(II) and Co(II) metal complexes were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance and spectral (IR and UV-vis) studies. The ground state of BHPP ligand was investigated using the BUILDER module of MOE. Metal complexes are formed in the 1:1 (M:L) ratio as found from the elemental analysis and found to have the general formula [ML]·nH2O, where M = Co(II), Ni(II) and Cu(II), L = BHPP. In all the studied complexes, the (BHPP) ligand behaves as a hexadentate divalent anion with coordination involving the two azomethine nitrogen's, the two nitrogen atoms of piperazine ring and the two deprotonated phenolic OH-groups. The magnetic and spectral data indicates octahedral geometry of metal(II) complexes. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. Protonation constants of (BHPP) ligand and stability constants of its Cu2+, Co2+ and Ni2+ complexes were determined by potentiometric titration method in 50% DMSO-water solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the protonated Schiff base ligand (BHPP) have four protonation constants. The divalent metal ions Cu2+, Ni2+ and Co2+ form 1:1 complexes.

  17. Syntheses, crystallographic, mass-spectroscopic determination and antioxidant studies of Co(II), Ni(II) and Cu(II) complexes of a new imidazol based Schiff base.

    PubMed

    Demir, Serkan; Güder, Aytaç; Yaz?c?lar, Turan K; Ça?lar, Sema; Büyükgüngör, Orhan

    2015-11-01

    A new imidazole-based Schiff base, 2-((1H-imidazol-4-yl)methyleneamino)benzylalcohol (HL) and corresponding analogous bis(2-((1H-imidazol-4-yl)methyleneimino)benzylalcohol)metal(II) perchlorates (M: Co(1), Ni(2), Cu(3)) have prepared and characterized by elemental analyses, ESI-MS, IR, UV-Vis spectroscopies and conductivity measurements. X-ray single crystal structures of 1 and 2 have been also determined. Elemental analyses, spectroscopic and conductance data of 3 demonstrated similar structural features with these of crystallographically characterized complexes and based upon this relevances, HL ligands are neutrally coordinated to metal(II) ions in tridentate mode and all complexes are isostructural, dicathionic, contain perchlorate anions as complementary ions and, are in octahedral geometry with the formulae of [M(HL)2](ClO4)2 (for 3) and [M(HL)2](ClO4)2·H2O (for 1 and 2). Radical scavenging activities of the complexes have been evaluated by using DPPH, DMPD(+), and ABTS(+) assays. SC50 values (?g/mL) of the complexes and standards on DPPH, DMPD(+), ABTS(+) follow the sequences, BHA (9.06±0.33)>CMPD3 (15.62±0.52)>CMPD2 (17.43±0.29)>Rutin (21.65±0.60)>CMPD1 (25.67±0.51)>Trolox (28.57±0.37), Rutin>BHA>CMPD3>CMPD2>Trolox>CMPD1, and Trolox>BHA>CMPD3>CMPD2>Rutin>CMPD1 respectively. PMID:26112106

  18. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(ii) complexes.

    PubMed

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Koch, Biplob; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2015-11-18

    A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of with Cu(NO3)2·2.5H2O led to the corresponding copper(ii) complexes [Cu(L)(NO3)] . All the compounds were characterized by conventional analytical techniques and, for and , also by single-crystal X-ray analysis. The interactions of complexes with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (Kb) are in the range of 3.5 × 10(5) M(-1)-3.2 × 10(5) M(-1). Complexes effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of > > , which is also in accord with the calculated LUMOcomplex energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of has also been evaluated by a reactive oxygen species (ROS) generation study. PMID:26523453

  19. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  20. Supramolecular aromaticity

    NASA Astrophysics Data System (ADS)

    Karab?y?k, Hande; Sevinçek, Resul; Karab?y?k, Hasan

    2014-05-01

    We report experimental and theoretical evidences for supramolecular aromaticity as a new concept to be widely used in researches about molecular crystals. CSD survey regarding frequently encountered resonance-assisted H-bonds (RAHBs) in formic acid, formamide, formimidamide, formic acid-formamide, and formamide-formimidamide dimers shows that supramolecular quasirings formed by RAHBs have remarkable electronic delocalization within themselves, which is reminiscent of aromaticity at supramolecular level. This study criticizes and reevaluates the validity of conventional judgment which states that ring systems formed by intermolecular H-bonds cannot be aromatic. Thus, the term aromaticity can be extended to supramolecular systems formed by RAHBs. Supramolecular aromaticity has a multi-fold nature involving both ?- and ?-delocalization, and ?-delocalization through RAHBs takes on a task of compensating ?-deficiency within quasirings. Atomic composition in donor-acceptor set of the dimers is descriptive for supramolecular aromaticity. We revised bond-valence parameters for RAHBs and they suggest that hypervalent character of H atoms is more pronounced than their hypovalent character in RAHBs. The ?-delocalized bonding within H-bonded quasirings necessitates hypervalent character of H atoms. Quantum chemical calculations based on adiabatic Hydrogen Atom Transfer (HAT) between the monomers reveal that topological parameters at ring critical points (RCPs) of the quasirings correlate well with Shannon's entropic aromaticity index. The presence of additional LP orbital on O atoms implying more diffused LP-orbitals in donor-acceptor set leads to the formation of resonance-disabling states reducing supramolecular aromaticity of a quasiring and energetic cost of the electron transfer between the monomers. There is a nonignorable electron transfer between the monomers even in the cases where H atoms are close to donor or acceptor atom. NBO analyses have revealed that formally vacant LP* orbitals on H-atoms in TS geometries mediate intermolecular electron transfer as a result of the hyperconjugative stereoelectronic interactions.

  1. Structural and spectral comparisons between isomeric benzisothiazole and benzothiazole based aromatic heterocyclic dyes

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ge; Wang, Yue-Hua; Tao, Tao; Qian, Hui-Fen; Huang, Wei

    2015-09-01

    A pair of isomeric heterocyclic compounds, namely 3-amino-5-nitro-[2,1]-benzisothiazole and 2-amino-6-nitrobenzothiazole, are used as the diazonium components to couple with two N-substituted 4-aminobenzene derivatives. As a result, two pairs of isomeric aromatic heterocyclic azo dyes have been produced and they are structurally and spectrally characterized and compared including single-crystal structures, electronic spectra, solvatochromism and reversible acid-base discoloration, thermal stability and theoretically calculations. It is concluded that both benzisothiazole and benzothiazole based dyes show planar molecular structures and offset ?-? stacking interactions, solvatochromism and reversible acid-base discoloration. Furthermore, benzisothiazole based aromatic heterocyclic dyes exhibit higher thermal stability, larger solvatochromic effects and maximum absorption wavelengths than corresponding benzothiazole based ones, which can be explained successfully by the differences of their calculated isomerization energy, dipole moment and molecular band gaps.

  2. Design of unique composites based on aromatic thermosetting copolyesters

    NASA Astrophysics Data System (ADS)

    Parkar, Zeba

    Aromatic thermosetting copolyester (ATSP) has promise in high-temperature applications. It can be employed as a bulk polymer, as a coating and as a matrix for carbon fiber composites (ATSP/C composites). This work focuses on the applications of high performance ATSP/C composites. The morphology of the ATSP matrix in the presence of carbon fiber was studied. The effect of liquid crystalline character of starting oligomers used to prepare ATSP on the final crystal structure of the ATSP/C composite was evaluated. Matrices obtained by crosslinking of both liquid crystalline oligomers (ATSP2) and non-liquid crystalline oligomers (ATSP1) tend to crystallize in presence of carbon fibers. The crystallite size of ATSP2 is 4 times that of ATSP1. Composites made from ATSP2 yield tougher matrices compared to those made from ATSP1. Thus toughened matrices could be achieved without incorporating any additives by just changing the morphology of the final polymer. The flammability characteristics of ATSP were also studied. The limiting oxygen index (LOI) of bulk ATSP was found to be 40% whereas that of ATSP/C composites is estimated to be 85%. Thus, ATSP shows potential to be used as a flame resistant material, and also as an aerospace reentry shield. Mechanical properties of the ATSP/C composite were characterized. ATSP was observed to bond strongly with reinforcing carbon fibers. The tensile strength, modulus and shear modulus were comparable to those of conventionally used high temperature epoxy resins. ATSP shows a unique capability for healing of interlaminar cracks on application of heat and pressure, via the Interchain Transesterification Reaction (ITR). ITR can also be used for reduction in void volume and healing of microcracks. Thus, ATSP resin systems provide a unique intrinsic repair mechanism compared to any other thermosetting systems in use today. Preliminary studies on measurement of residual stresses for ATSP/C composites indicate that the stresses induced are much lower than that in epoxy/C composites. Thermal fatigue testing suggests that ATSP shows better resistance to microcracking compared to epoxy resins.

  3. Synthesis, spectroscopy and thermal study of some nickel(II) complexes containing tridentate Schiff bases and substituted amine ligands, X-ray crystal structure of nickel(II) complex

    NASA Astrophysics Data System (ADS)

    Kianfar, Ali Hossein; Bahramian, Masomeh; Khavasi, Hamid Reza

    Some new tridentate ONO and ONS Schiff base complexes of [NiL(amine)] (L = Salicylidene2-aminophenol and Salicylidene2-aminothiophenol, amine = benzylamine, morpholine, pyrrolidine and piperidine) were synthesized and characterized by IR, UV-vis, 1H NMR spectroscopy and elemental analysis. The geometry of [NiL2(bzlan)] determined by X-ray crystallography indicates that the complex has planar structure and has four coordinate in the solid state. The thermogravimmetry (TG) and differential thermoanalysis (DTA) of the synthesized complexes were carried out in the range of 20-700 °C, leading to decomposition of ONO type in two stages and of ONS type in three stages. The ONO and ONS complexes were decomposed to NiO and NiS respectively. Thermal decomposition of the complexes is closely the depends upon nature of the Schiff base ligands and proceeds via first order kinetics.

  4. Spectral, magnetic, biocidal screening, DNA binding and photocleavage studies of mononuclear Cu(II) and Zn(II) metal complexes of tricoordinate heterocyclic Schiff base ligands of pyrazolone and semicarbazide/thiosemicarbazide based derivatives

    NASA Astrophysics Data System (ADS)

    Raman, N.; Selvan, A.; Manisankar, P.

    2010-07-01

    We depict the synthesis and characterization of copper(II) and zinc(II) coordination compounds of 4-(3',4'-dimethoxybenzaldehydene)2-3-dimethyl-1-phenyl-3-pyrazolin-5-semicarbazone ( 1a), 4-(3',4'-dimethoxybenzaldehydene)2-3-dimethyl-1-phenyl-3-pyrazolin-5-thiosemicarbazone ( 1b), 4-(3'-hydroxy-4'-nitrobenzaldehydene)2-3-dimeth yl-1-phenyl-3-pyrazolin-5-semicarbazone ( 1c) and 4-(3'-hydroxy-4'-nitrobenzal dehydene)2-3-dimethyl-1-phenyl-3-pyrazolin-5-thiosemicarbazone ( 1d). All the remote compounds have the general composition [ML 2] (M = Cu(II) and Zn(II)); L = Schiff base ( 1a- 1d). All the complexes were characterized by elemental analysis, molar conductivity, IR, 1H NMR, UV-vis, ESI-Mass, magnetic susceptibility measurements, cyclic voltammetric measurements, and EPR spectral studies. It has been originated that the Schiff bases with Cu(II) and Zn(II) ions form mononuclear complexes on 1:2 (metal:ligand) stoichiometry. Distorted octahedral environment is suggested for the metal complexes. The conductivity data confirm the non-electrolytic nature of the complexes. The interaction of CuL 21a- 1d complexes with CT DNA was investigated by spectroscopic, electrochemical and viscosity measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode. Moreover, the complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The Schiff bases and their metal complexes were screened for their antifungal and antibacterial activities against different species of pathogenic fungi and bacteria and their biopotency has been discussed.

  5. Two groups control light-induced schiff base deprotonation and the proton affinity of asp(85) in the Arg(82)His mutant of bacteriorhodopsin

    PubMed Central

    Imasheva, ES; Balashov, SP; Ebrey, TG; Chen, N; Crouch, RK; Menick, DR

    1999-01-01

    Arg(82) is one of the four buried charged residues in the retinal binding pocket of bacteriorhodopsin (bR). Previous studies show that Arg(82) controls the pK(a)s of Asp(85) and the proton release group and is essential for fast light-induced proton release. To further investigate the role of Arg(82) in light-induced proton pumping, we replaced Arg(82) with histidine and studied the resulting pigment and its photochemical properties. The main pK(a) of the purple-to-blue transition (pK(a) of Asp(85)) is unusually low in R82H: 1.0 versus 2.6 in wild type (WT). At pH 3, the pigment is purple and shows light and dark adaptation, but almost no light-induced Schiff base deprotonation (formation of the M intermediate) is observed. As the pH is increased from 3 to 7 the M yield increases with pK(a) 4.5 to a value approximately 40% of that in the WT. A transition with a similar pK(a) is observed in the pH dependence of the rate constant of dark adaptation, k(da). These data can be explained, assuming that some group deprotonates with pK(a) 4.5, causing an increase in the pK(a) of Asp(85) and thus affecting k(da) and the yield of M. As the pH is increased from 7 to 10.5 there is a further 2.5-fold increase in the yield of M and a decrease in its rise time from 200 &mgr;s to 75 &mgr;s with pK(a) 9. 4. The chromophore absorption band undergoes a 4-nm red shift with a similar pK(a). We assume that at high pH, the proton release group deprotonates in the unphotolyzed pigment, causing a transformation of the pigment into a red-shifted "alkaline" form which has a faster rate of light-induced Schiff base deprotonation. The pH dependence of proton release shows that coupling between Asp(85) and the proton release group is weakened in R82H. The pK(a) of the proton release group in M is 7.2 (versus 5.8 in the WT). At pH < 7, most of the proton release occurs during O --> bR transition with tau approximately 45 ms. This transition is slowed in R82H, indicating that Arg(82) is important for the proton transfer from Asp(85) to the proton release group. A model describing the interaction of Asp(85) with two ionizable residues is proposed to describe the pH dependence of light-induced Schiff base deprotonation and proton release. PMID:10545374

  6. Synthesis, characterization and X-ray crystal structures of Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes derived from an asymmetric bidentate Schiff-base ligand at ambient temperature

    NASA Astrophysics Data System (ADS)

    Khorshidifard, Mahsa; Amiri Rudbari, Hadi; Kazemi-Delikani, Zahra; Mirkhani, Valiollah; Azadbakht, Reza

    2015-02-01

    An asymmetric bidentate Schiff-base ligand (HL: 2-((allylimino)methyl)phenol) was prepared from reaction of salicylaldehyde and Allylamine. Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes, VOL2, CoL3, CuL2 and ZnL2 were synthesized from the reaction of VO(acac)2, CoCl2·6H2O, CuCl2·2H2O and Zn(NO3)2·6H2O with the bidentate Schiff base ligand (HL: 2-allyliminomethyl-phenol) in methanol at ambient temperature. The ligand and its metal complexes were characterized by elemental analysis (CHN), FT-IR spectroscopy. In addition, 1H and 13C NMR techniques were employed for characterization of the ligand (HL) and diamagnetic complex ZnL2. The molecular structures of all complexes were determined by single crystal X-ray diffraction technique. In the ZnL2 and CuL2 complexes, the metal ion is coordinated by two nitrogen and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. In the Vanadium(IV) complex, VOL2, the vanadium center in this structure has a distorted tetragonal pyramidal N2O3 coordination sphere and for Cobalt(III) complex, CoL3, the CoIII ion is six coordinated by three bidentate Schiff base ligands in a distorted octahedral environment.

  7. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base

    SciTech Connect

    Otto, H.; Marti, T.; Holz, M.; Mogi, T.; Stern, L.J.; Engel, F.; Khorana, H.G.; Heyn, M.P. )

    1990-02-01

    Photocycle and flash-induced proton release and uptake were investigated for bacteriorhodopsin mutants in which Asp-85 was replaced by Ala, Asn, or Glu; Asp-212 was replaced by Asn or Glu; Asp-115 was replaced by Ala, Asn, or Glu; Asp-96 was replaced by Ala, Asn, or Glu; and Arg-82 was replaced by Ala or Gln in dimyristoylphosphatidylcholine/3-((3-cholamidopropyl)dimethylammonio)-1- propanesulfonate micelles at pH 7.3. In the Asp-85----Ala and Asp-85----Asn mutants, the absence of the charged carboxyl group leads to a blue chromophore at 600 and 595 nm, respectively, and lowers the pK of the Schiff base deprotonation to 8.2 and 7, respectively, suggesting a role for Asp-85 as counterion to the Schiff base. The early part of the photocycles of the Asp-85----Ala and Asp-85----Asn mutants is strongly perturbed; the formation of a weak M-like intermediate is slowed down about 100-fold over wild type. In both mutants, proton release is also slower but clearly precedes the rise of M. The amplitude of the early reversed photovoltage component in the Asp-85----Asn mutant is very large, and the net charge displacement is close to zero, indicating proton release and uptake on the cytoplasmic side of the membrane. The data suggest an obligatory role for Asp-85 in the efficient deprotonation of the Schiff base and in the proton release phase, probably as proton acceptor. In the Asp-212----Asn mutant, the rise of the absorbance change at 410 nm is slowed down to 220 microsecond, its amplitude is small, and the release of protons is delayed to 1.9 ms. The absorbance changes at 650 nm indicate perturbations in the early time range with a slow K intermediate. Thus Asp-212 also participates in the early events of charge translocation and deprotonation of the Schiff base.

  8. Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Y?ld?z, Mustafa; Karpuz, Özge; Zeyrek, Celal Tu?rul; Boyac?o?lu, Bahad?r; Dal, Hakan; Demir, Neslihan; Y?ld?r?m, Nuray; Ünver, Hüseyin

    2015-08-01

    Synthesis, biological activity, spectroscopic and crystallographic characterization and density functional theory (DFT) studies of the Schiff base 3,5-bis(triflouromethyl)aniline and salicylaldehyde are reported. It crystallizes as a monoclinic space group P21/c with a = 7.7814(3) Å, b = 26.8674(9) Å, c = 7.4520(2) Å, V = 1379.98(8), Z = 4, Dc = 1.6038 g cm-3, and ? = 0.156 mm-1. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state was compared using Hartree-Fock (HF) and density functional theory (DFT) with the functionals B3LYP and B1B95 using the 6-311++G(d,p) basis set. The antimicrobial activities of the compound were investigated for its minimum inhibitory concentration (MIC). The interaction of the Schiff base with calf thymus DNA was investigated using UV-visible spectra. The colorimetric response of the Schiff base receptors in DMSO was investigated before and after the addition of an equivalent amount of each anion to evaluate the anion recognition properties.

  9. Synthesis and characterization of novel Cu (II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: A new route to CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Aly, Hisham M.; Moustafa, Moustafa E.; Nassar, Moustafa Y.; Abdelrahman, Ehab A.

    2015-04-01

    Cu (II) complexes, were synthesized with newly derived biologically active 1,2,4-triazole Schiff bases. The Schiff bases were synthesized by condensation of 3-substituted-4-amino-5-mercapto-1,2,4-triazole with dibenzoylmethane. The synthesized compounds were characterized using elemental analysis, magnetic moment, thermal analysis and spectral tools (FT-IR, 1HNMR, ESR, and UV-Vis spectroscopy). All the synthesized complexes are nonelectrolytes in N,N-dimethylformamide. The synthesized Schiff bases and their Cu (II) complexes have been screened for antibacterial (Escherichia coli &Staphylococcus aureus) and antifungal (Aspergillus flavus &Candida albicans) activity using a modified Bauer-Kirby method. Interestingly, the synthesized Cu (II) complexes were used as precursors for CuO nanoparticles which were characterized using XRD, HR-TEM, FT-IR and UV-Vis spectroscopy. The photocatalytic activity of the prepared CuO nanoparticles was studied by performing the degradation of methylene blue dye under UV illumination in the presence of H2O2 and the results showed that the maximum percent of the degradation of methylene blue dye (MB) was found 96.18% after 360 min.

  10. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  11. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6.

    PubMed

    Mukherjee, Tirtha; Costa Pessoa, João; Kumar, Amit; Sarkar, Asit R

    2013-02-21

    Three new complexes of Cu(II) and Ni(II), [Cu(II)(H(2)pydmedpt)](2+)·2Cl(-) (1), [Ni(II)(H(2)pydmedpt)](2+)·2Cl(-) (2) and [Ni(II)(pydmedpt)(OH)](-)·K(+) (3) of the Schiff base ligand [H(2)pydmedpt](2+)·2Cl(-) were synthesized by the in situ reaction of pyridoxal (pyd), a vitamer of vitamin B(6), N,N-bis[3-aminopropyl]methylamine (medpt) and copper(II) acetate or nickel(II) acetate, respectively. The molecular structures of 1 and 2 were determined by single crystal X-ray diffraction studies. The structure of 3 in the solid state was inferred by elemental analysis, diffuse reflectance spectrum, variable temperature magnetic moment studies and DFT calculations. The binding of the Schiff base ligand to the metal centers involves two phenolato oxygens, two imine nitrogens and one amine nitrogen. The coordination geometry around Cu in 1 is distorted square pyramidal and that around the Ni atom in 2 is intermediate between square-pyramidal and trigonal-bipyramidal. In the crystals the compounds form supramolecular one dimensional chain structures stabilized by hydrogen bonding and ?-? stacking interactions. Variable temperature magnetic moment data of 2 indicate the presence of a momomeric high spin Ni(II) centre in the complex. The solid state diffuse reflectance spectrum, conductance and elemental analysis suggest that 3 is a Ni(II) complex with a tetragonally distorted octahedral field, the sixth position being occupied by the oxygen atom of a hydroxyl group. The variable temperature magnetic moment of 3 indicates the presence of a ferromagnetic dinuclear species (29.2%) along with the major monomeric species, the intra-dimer exchange term J value being 14.3 cm(-1). The competitive binding of 1 and 2 with DNA was studied in the concentration range 40 to 400 ?M, the apparent binding constants being K = 2.9 × 10(3) and 6.7 × 10(3) M(-1), respectively. Human Serum Albumin (HSA) binding studies were carried out at concentrations of 800-1000 ?M and 400-500 ?M for the complexes and HSA, respectively, in PBS buffer at pH 7.4. Complex 1 binds to HSA, while no binding is observed in case of 2, instead, the complex hydrolyses under the experimental conditions used and the resulting Ni(2+) ions bind with HSA. PMID:23223610

  12. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases.

    PubMed

    Gupta, Vinod K; Al Khayat, Maysoon; Singh, Ashok K; Pal, Manoj K

    2009-02-16

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene))bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-ylidene)diphenol (L(1)) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L(2)) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L(1)) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10(-9) to 1.0 x 10(-1)M Cd(2+) with limit of detection 3.1 x 10(-9), performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants. PMID:19154807

  13. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach.

    PubMed

    Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S

    2015-02-25

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. PMID:25244297

  14. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  15. sup 15 N and sup 13 C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate

    SciTech Connect

    Jaffe, E.K.; Rajagopalan, J.S. ); Markham, G.D. )

    1990-09-11

    Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through {sup 13}C and {sup 15}N NMR. The authors knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by {sup 13}C or {sup 15}N NMR. Here they extend their {sup 13}C NMR studies to PBGS complexes with (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA and report {sup 15}N NMR studies of ({sup 15}N)ALA bound to PBGS. As in their previous {sup 13}C NMR studies, observation of enzyme-bound {sup 15}N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pK{sub a} is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent. For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C{sub 4} of ALA and an active-site lysine. The {sup 13}C chemical shift of (3,3-{sup 2}H{sub 2},3-{sup 13}C)ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between ({sup 15}N)ALA and hydrazine or hydroxylamine, the {sup 15}N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C{sub 4} of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.

  16. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.

    PubMed

    Otto, H; Marti, T; Holz, M; Mogi, T; Stern, L J; Engel, F; Khorana, H G; Heyn, M P

    1990-02-01

    Photocycle and flash-induced proton release and uptake were investigated for bacteriorhodopsin mutants in which Asp-85 was replaced by Ala, Asn, or Glu; Asp-212 was replaced by Asn or Glu; Asp-115 was replaced by Ala, Asn, or Glu; Asp-96 was replaced by Ala, Asn, or Glu; and Arg-82 was replaced by Ala or Gln in dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate micelles at pH 7.3. In the Asp-85----Ala and Asp-85----Asn mutants, the absence of the charged carboxyl group leads to a blue chromophore at 600 and 595 nm, respectively, and lowers the pK of the Schiff base deprotonation to 8.2 and 7, respectively, suggesting a role for Asp-85 as counterion to the Schiff base. The early part of the photocycles of the Asp-85----Ala and Asp-85----Asn mutants is strongly perturbed; the formation of a weak M-like intermediate is slowed down about 100-fold over wild type. In both mutants, proton release is also slower but clearly precedes the rise of M. The amplitude of the early (less than 0.2 microseconds) reversed photovoltage component in the Asp-85----Asn mutant is very large, and the net charge displacement is close to zero, indicating proton release and uptake on the cytoplasmic side of the membrane. The data suggest an obligatory role for Asp-85 in the efficient deprotonation of the Schiff base and in the proton release phase, probably as proton acceptor. In the Asp-212----Asn mutant, the rise of the absorbance change at 410 nm is slowed down to 220 microsecond, its amplitude is small, and the release of protons is delayed to 1.9 ms. The absorbance changes at 650 nm indicate perturbations in the early time range with a slow K intermediate. Thus Asp-212 also participates in the early events of charge translocation and deprotonation of the Schiff base. In the Arg-82----Gln mutant, no net transient proton release was observed, whereas, in the Arg-82----Ala mutant, uptake and release were reversed. The pK shift of the purple-to-blue transition in the Asp-85----Glu, Arg-82----Ala, and Arg-82----Gln mutants and the similarity in the photocycle and photoelectrical signals of the Asp-85----Ala, Asp-85----Asn, and Asp-212----Asn mutants suggest the interaction between Asp-85, Arg-82, Asp-212, and the Schiff base as essential for proton release. PMID:2153966

  17. Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, Ayman A.; Badr, Ibrahim H. A.; El-Sayed, Ibrahim S. A.

    2012-11-01

    Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)2·2H2O and anhydrous AlCl3 with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L1) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L2). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, 1H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the ?-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.

  18. Template synthesis of square-planar Ni(II) complexes with new thiophene appended Schiff base ligands: Characterization, X-ray structure and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Biswas, Sujan; Mondal, Apurba Sau; Roy, Puspendu; Mondal, Tapan Kumar

    2015-11-01

    The square planar nickel(II) complexes have been synthesized by the reaction of nickel(II) chloride hexahydrate and the in situ condensed thiophene appended Schiff base ligands of thiophene-2-ethylamine with 3,5-dimethyl-2-hydroxybenzaldehyde or 3,5-dichloro-2-hydroxybenzaldehyde for [Ni(L1)2] (1) and [Ni(L2)2] (2) respectively. The complexes have been characterized by several spectroscopic techniques, viz. FT-IR, 1H NMR, absorption and emission spectroscopy. The complexes crystallize in monoclinic crystal system with C2/c space group for 1 and triclinic crystal system with P-1 space group for 2. In complex 1 the nickel sits on an inversion centre with symmetry -x, 2-y, -z. Cyclic voltammgrams of the complexes show quasi-reversible NiII/NiIII oxidation couple along with irreversible NiII/NiI reduction. Electronic structure and spectral properties are well interpreted by DFT and TDDFT calculations.

  19. Electrochemical and quantum chemical studies of N,N'-bis(4-hydroxybenzaldehyde)-2,2-dimethylpropandiimine Schiff base as corrosion inhibitor for low carbon steel in HCl solution.

    PubMed

    Jafari, Hojat; Danaee, Iman; Eskandari, Hadi; Rashvandavei, Mehdi

    2013-01-01

    A synthesized Schiff base N,N'-bis(4-hydroxybenzaldehyde)-2,2-dimethylpropandiimine (p-HBDP) was studied as green inhibitor for the corrosion of low carbon steel in 1 M HCl solution using electrochemical, surface and quantum chemical methods. Results showed that the inhibition occurs through the adsorption of the inhibitor molecules on the metal surface. The inhibition efficiency was found to increase with increasing inhibitor concentration and de-creased with increasing temper-ature, which is due to the fact that the rate of corrosion of steel is higher than the rate of adsorption. Thermodynamic parameters for adsorp-tion and activation processes were determined. Polarization data indicated that this compound act as mixed-type inhibitors and the adsorption isotherm basically obeys the Langmuir adsorption isotherm. The calculations of reactivity indices of p-HBDP such as softness and natural charge distributions together with local reactivity by means of Fukui indices were used to explain the electron transfer mechanism between the p-HBDP molecules and the steel surface. PMID:23947700

  20. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  1. 2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90 inhibitors: rational identification of a new anticancer lead.

    PubMed

    Dutta Gupta, Sayan; Revathi, B; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, C V S; Gowrishankar, N L; Raghavendra, N M

    2015-04-01

    Hsp90 is a molecular chaperone that heals diverse array of biomolecules ranging from multiple oncogenic proteins to the ones responsible for development of resistance to chemotherapeutic agents. Moreover they are over-expressed in cancer cells as a complex with co-chaperones and under-expressed in normal cells as a single free entity. Hence inhibitors of Hsp90 will be more effective and selective in destroying cancer cells with minimum chances of acquiring resistance to them. In continuation of our goal to rationally develop effective small molecule azomethines against Hsp90, we designed few more compounds belonging to the class of 2,4-dihydroxy benzaldehyde derived imines (1-13) with our validated docking protocol. The molecules exhibiting good docking score were synthesized and their structures were confirmed by IR, (1)H NMR and mass spectral analysis. Subsequently, they were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The antiproliferative effect of the molecules were examined on PC3 prostate cancer cell lines by adopting 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay methodology. Finally, schiff base 13 emerged as the lead molecule for future design and development of Hsp90 inhibitors as anticancer agents. PMID:25727264

  2. Phenol—retinal schiff base hydrogen bonds—influence of steric hindrance and phenol acidity on the thermodynamic data of formation and proton transfer

    NASA Astrophysics Data System (ADS)

    Brzezinski, Bogumi?; Olejnik, Jerzy; Zundel, G.

    1990-10-01

    CD 2Cl 2 solutions of four trans-retinal Schiff base (containing methylamine, n-butylamine, t-butylamine and 5-butyl-nonylamine), their perchlorates and their 1:1 complexes with 3,4-disubstituted and 4-monosubstituted phenols were studied as a function of temperature using Fourier transform infrared (FTIR) spectroscopy. The thermodynamic quantities ? H0F and ? S0F of hydrogen-bond formation and ? H0PT and ? S0PT of the proton transfer process across the hydrogen bonds were determined. All (I) OH⋯N?O -⋯H +N (II) bonds show large proton polarizability as indicated by continua in the IR spectra. In all the systems studied, the ? H0PT and ? S0PT values of the (I) OH⋯N?O -⋯H +N (II) equilibrium were negative. This is a result of the highly ordered arrangement of the solvent molecules around these complexes. ? H0F and ? S0F of formation of the OH⋯N?O -⋯H +N bond and ? H0PT and ? S0PT decrease significantly with decreasing acidity of the phenol. Furthermore, ? H0PT and ? S0PT decrease significantly with increasing screening of the hydrogen bonds from the solvent environment by bulky groups. This indicates that the ? H0PT and ? S0PT values are determined by the interaction of the hydrogen bonds with their environment.

  3. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent.

    PubMed

    Ejidike, Ikechukwu P; Ajibade, Peter A

    2016-01-01

    The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2',4'-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl?·3H?O lead to the formation of neutral complexes of the type [Ru(L)Cl?(H?O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl?] > [(BZEBOD)RuCl?] > [(MOABOD)RuCl?] > [Vit. C] > [rutin] > [(METBOD)RuCl?], and ABTS radical in the order: [(PAEBOD)RuCl?] < [(MOABOD)RuCl?] < [(BZEBOD)RuCl?] < [(METBOD)RuCl?]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay. PMID:26742030

  4. Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N,O-chelating Schiff's base ligand incorporating azo and sulfonamide Moieties

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Bayoumi, Hoda A.; Ammar, Yousry A.; Aldhlmani, Sharah A.

    2013-03-01

    Chromium(III), Manganese(II), Cobalt(II), nickel(II), copper(II) and cadmium(II) complexes of 4-[4-hydroxy-3-(phenyliminomethyl)-phenylazo]benzenesulfonamide, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Dimeric complexes are obtained with 2:2 molar ratio except chromium(III) complex is monomeric which is obtained with 1:1 molar ratios. The IR spectra of the prepared complexes were suggested that the Schiff base ligand(HL) behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. Thermal studies suggest a mechanism for degradation of HL and its metal complexes as function of temperature supporting the chelation modes. Also, the activation thermodynamic parameters, such as ?E*, ?H*, ?S* and ?G* for the different thermal decomposition steps of HL and its metal complexes were calculated. The pathogenic activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024) as Gram positive bacteria, Klebsiella pneumonia (RCMB 010093), Shigella flexneri (RCMB 0100542), as Gram negative bacteria and Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035) as fungus strain, and the results are discussed.

  5. Experimental (XRD, FT-IR and UV-Vis) and theoretical modeling studies of Schiff base (E)-N'-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline.

    PubMed

    Tanak, Hasan; A?ar, Ay?en Alaman; Büyükgüngör, Orhan

    2014-01-24

    The Schiff base compound (E)-N'-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline has been synthesized and characterized by IR, UV-Vis, and X-ray diffraction (XRD) methods. The molecular geometry from X-ray experiment in the ground state has been compared using the density functional theory (DFT) with the 6-311++G(d,p) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure, and the theoretical vibrational frequency values show good agreement with experimental values. By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6-311++G(d,p) basis set by applying the Onsager and the integral equation formalism polarizable continuum model (IEF-PCM). The predicted nonlinear optical properties of the title compound are greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), natural bond orbital (NBO) and thermodynamic properties were performed at B3LYP/6-311++G(d,p) level of theory. PMID:24096063

  6. Selective recognition of cobalt (II) ion by a new cryptand compound with N2O2S2 donor atom possessing 2-hydroxy-1-naphthylidene Schiff base moiety.

    PubMed

    Ba?o?lu, Aysel; Parlayan, Semanur; Ocak, Miraç; Alp, Hakan; Kantekin, Halit; Ozdemir, Mustafa; Ocak, Ummühan

    2009-07-01

    A new cryptand compound carrying 2-hydroxy-1-naphthylidene Schiff base moiety (3) was designed and synthesized by reaction of the corresponding macrobicyclic amine compound (1) and 2-hydroxy-1-naphthaldehyde (2). The influence of metal cations such as Mg2+, Ca2+, Sr2+, Fe2+,Co2+, Mn2+, Zn2+, Cd2+, Hg2+, Al3+ and Pb2+ on the spectroscopic properties of the new fluoroionophore was investigated in acetonitrile-dichloromethane solution (9.5/0.5) by means of absorption and emission spectrometry. The blue shifts on the fluorescence spectrum were observed for all metal cations at 504 nm. At the same time the fluorescence spectrum of the ligand showed quenching in the intensity of the signal at 504 nm for all metal cations except for Zn2+. Interaction of Co2+ with the ligand caused quenching of naphtyl fluorescence higher than 84%. The method showed good selectivity and sensitivity for Co2+ with respect to other metal cations with linear range and detection limit of 1.5 x 10(-7) to 3.3 x 10(-6) M and 4.8 x 10(-8) M respectively. PMID:19132516

  7. Water soluble and efficient amino acid Schiff base receptor for reversible fluorescence turn-on detection of Zn2+ ions: Quantum chemical calculations and detection of bacteria

    NASA Astrophysics Data System (ADS)

    Subha, L.; Balakrishnan, C.; Natarajan, Satheesh; Theetharappan, M.; Subramanian, Balanehru; Neelakantan, M. A.

    2016-01-01

    An amino acid Schiff base (R) capable of recognizing Zn2+ ions selectively and sensitively in an aqueous medium was prepared and characterized. Upon addition of Zn2+ ions, the receptor exhibits fluorescence intensity enhancements (~ 40 fold) at 460 nm (quantum yield, ? = 0.05 for R and ? = 0.18 for R-Zn2+) and can be detected by naked eye under UV light. The receptor can recognize the Zn2+ (1.04 × 10- 8 M) selectively for other metal ions in the pH range of 7.5-11. The Zn2+ chelation with R decreases the loss of energy through non-radiative transition and leads to fluorescence enhancement. The binding mode of the receptor with Zn2+ was investigated by 1H NMR titration and further validated by ESI-MS. The elemental color mapping and SEM/EDS analysis were also used to study the binding of R with Zn2+. Density functional theory calculations were carried out to understand the binding mechanism. The receptor was applied as a microbial sensor for Escherichia coli and Staphylococcus aureus.

  8. Synthesis, characterization, fluorescence and catalytic activity of some new complexes of unsymmetrical Schiff base of 2-pyridinecarboxaldehyde with 2,6-diaminopyridine

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Ahmed, Doaa A.; Nassar, Doaa A.

    2015-06-01

    The Schiff base, 2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L) was synthesized by 1:1 condensation of 2-pyridinecarboxaldehyde and 2,6-diaminopyridine. The ligand and its complexes were characterized by different physicochemical studies. The analytical and spectroscopic tools indicated that the synthesized complexes have the general formulae: [M(L)Cl2]·2H2O (M = Cu(II), Ni(II) and Co(II)), [La(L)3](NO3)3·3H2O and [Sm(L)(ClO4)3]·3H2O. Vibrational spectra indicated the coordination of L to metal ions through its pyridyl and azomethine nitrogen atoms. The presence of water molecules in all reported complexes has been supported by TG/DTA studies. Kinetic and thermodynamic parameters were computed using Coats and Redfern method. The prepared ligand and its complexes exhibited intraligand (?-??) fluorescence and can potentially serve as photoactive materials. The catalytic activity of the complexes toward the decomposition of hydrogen peroxide was investigated. Both the ligand and its complexes have been screened for antibacterial activities.

  9. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  10. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( ?eff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (? Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  11. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes.

    PubMed

    Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (?(eff)?5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (?E(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. PMID:21345718

  12. Photoluminescence properties of a cationic trinuclear zinc(II) complex with the tetradentate Schiff base ligand 6-methyl-2-({[(pyridin-2-yl)methyl]imino}methyl)phenolate.

    PubMed

    Kim, Young Inn; Song, Young Kwang; Kim, Daeyoung; Kang, Sung Kwon

    2015-10-01

    Metal complexes with Schiff base ligands have been suggested as potential phosphors in electroluminescent devices. In the title complex, tetrakis[6-methyl-2-({[(pyridin-2-yl)methyl]imino}methyl)phenolato-1:2?(8)N,N',O:O;3:2?(8)N,N',O:O]trizinc(II) hexafluoridophosphate methanol monosolvate, [Zn3(C14H13N2O)4](PF6)2·CH3OH, the Zn(II) cations adopt both six- and four-coordinate geometries involving the N and O atoms of tetradentate 6-methyl-2-({[(pyridin-2-yl)methyl]imino}methyl)phenolate ligands. Two terminal Zn(II) cations adopt distorted octahedral geometries and the central Zn(II) cation adopts a distorted tetrahedral geometry. The O atoms of the phenolate ligands bridge three Zn(II) cations, forming a dicationic trinuclear metal cluster. The title complex exhibits a strong emission at 469?nm with a quantum yield of 15.5%. PMID:26422221

  13. Microwave assisted synthesis, characterization and biocidal activities of some new chelates of carbazole derived Schiff bases of cadmium and tin metals

    NASA Astrophysics Data System (ADS)

    Yadav, Manju; Mishra, Neelima; Sharma, Nutan; Chandra, Sulekh; Kumar, Dinesh

    2014-11-01

    This study is planned to report the advancement of green microwave approach in the fabrication of a new series of biologically potent (N^X, where X = O/S) donor Schiff bases and their cadmium(II) and tin(II) complexes. The ligands and their metal complexes have been characterized in terms of elemental analysis, molar ionic conductance, magnetic moment and spectral (IR, UV-Vis, NMR (1H, 119Sn), FAB-mass, thermal and XRD) data. The data revealed that the ligands coordinated to the metal center via nitrogen and oxygen/sulfur atoms and form an octahedral arrangement of the ligands around central metal atom. All compounds were evaluated for their in vitro antimicrobial activities against two pathogenic bacteria Bacillus subtilis and Escherichia coli and two fungi Aspergillus niger and Aspergillus flavus by standard disc diffusion method. The discs were stored in an incubator at 37 °C. The compounds were dissolved in DMF at 500 and 1000 ppm concentrations for screening biocidal activity. The compounds were dissolved in DMF to get the 100 and 200 ppm concentration of test solutions for screening fungicidal activity. The inhibition zone around each disc was measured (in mm) after 24 h and 96 h for biocidal and fungicidal activities respectively.

  14. Water soluble and efficient amino acid Schiff base receptor for reversible fluorescence turn-on detection of Zn(2+) ions: Quantum chemical calculations and detection of bacteria.

    PubMed

    Subha, L; Balakrishnan, C; Natarajan, Satheesh; Theetharappan, M; Subramanian, Balanehru; Neelakantan, M A

    2016-01-15

    An amino acid Schiff base (R) capable of recognizing Zn(2+) ions selectively and sensitively in an aqueous medium was prepared and characterized. Upon addition of Zn(2+) ions, the receptor exhibits fluorescence intensity enhancements (~40 fold) at 460nm (quantum yield, ?=0.05 for R and ?=0.18 for R-Zn(2+)) and can be detected by naked eye under UV light. The receptor can recognize the Zn(2+) (1.04×10(-8)M) selectively for other metal ions in the pH range of 7.5-11. The Zn(2+) chelation with R decreases the loss of energy through non-radiative transition and leads to fluorescence enhancement. The binding mode of the receptor with Zn(2+) was investigated by (1)H NMR titration and further validated by ESI-MS. The elemental color mapping and SEM/EDS analysis were also used to study the binding of R with Zn(2+). Density functional theory calculations were carried out to understand the binding mechanism. The receptor was applied as a microbial sensor for Escherichia coli and Staphylococcus aureus. PMID:26318699

  15. Dicynamide bridged two new zig-zag 1-D Zn(II) coordination polymers of pyrimidine derived Schiff base ligands: Synthesis, crystal structures and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Konar, Saugata

    2015-07-01

    Two new zigzag 1-D polymeric Zn(II) coordination polymers {[Zn(L1)(?1,5-dca)](H2O)}n (1), {[Zn(L2)(?1,5-dca)](ClO4)}n (2) of two potentially tridentate NNO-, NNN-, donor Schiff base ligands [2-(2-(4,6-dimethylpyrimidin-2-yl)hydrazono)methyl)phenol] (L1), [1-(4,6-dimethylpyrimidin-2-yl)-2-(dipyridin-2ylmethylene)hydrazine] (L2) have been synthesized and characterized by elemental analyses, IR and 1H NMR, fluorescence spectroscopy and single crystal X-ray crystallography. The dicyanamide ions act as linkers (?1,5 mode) in the formation of these coordination polymers. Both the complexes 1 and 2 have same distorted square pyramidal geometry around the Zn(II) centres. The weak forces like ?⋯?, Csbnd H⋯?, anion⋯? interactions lead to various supramolecular architectures. Complex 1 shows high chelation enhanced fluorescence compared to that of 2. The fluorescence spectral changes observed high selectivity towards Zn(II) over other metal ions such as Mn(II), Co(II), Ni(II), Cu(II).

  16. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  17. Synthesis, characterization and cytotoxicity of rare earth metal ion complexes of N,N?-bis-(2-thiophenecarboxaldimine)-3,3?-diaminobenzidene, Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Abbasi, Ambreen; Faraz, Mohammad; Sherwani, Asif

    2015-12-01

    Lanthanide complexes of La3+, Pr3+, Nd3+, Gd3+, Er3+ of general formula [Ln2 L(H2O)4(NO3)4](NO3)2·2H2O have been synthesized from Schiff base, N,N?-bis-(2-thiophenecarboxaldimine)-3,3?-diaminobenzidene. The complexes were characterized by elemental analysis, molar conductance, UV-Vis, fluorescence, FT-IR,1H NMR, mass spectroscopy, EDX, SEM and thermal analysis. FT-IR spectral data suggested that ligand coordinate with metal ions through azomethine nitrogen and uncondensed amino group. Molar conductance data revealed 1:2 electrolytic nature of complexes. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (ligand:metal). Thephysico-chemical data suggested eight coordination number for Ln(III)Schiffbase complexes. SEM analysis shows morphological changes in the surfaces of complexes as compared to free ligand. Thermal decomposition profiles were consistent with proposed formulations. The anticancer activity of the complexes and theSchiffbase ligand has been studied towards human cervical cancer celllines (HeLa) and human breast cancer cell lines (MCF-7) and it was found that complexes exhibited greater activity than theSchiffbase.

  18. Synthesis and characterization of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based azo-linked Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Johnson Raja, S.

    2012-12-01

    Azo-Schiff-base complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, mass spectra, molar conductance, magnetic susceptibility measurement, electron spin resonance (EPR), CV, fluorescence, NLO and SEM. The conductance data indicate the nonelectrolytic nature of the complexes, except VO(II) complex which is electrolytic in nature. On the basis of electronic spectra and magnetic susceptibility octahedral geometry has been proposed for the complexes. The EPR spectra of copper and oxovanadium complexes in DMSO at 300 and 77 K were recorded and its salient features are reported. The redox behavior of the copper(II) complex was studied using cyclic voltammetry. The in vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella enterica typhi, Bacillus subtilis and Candida strains was studied and compared with that of free ligand by well-diffusion technique. The azo Schiff base exhibited fluorescence properties originating from intraligand (?-??) transitions and metal-mediated enhancement is observed on complexation and so the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. On the basis of the optimized structures, the second-order nonlinear optical properties (NLO) are calculated by using second-harmonic generation (SHG) and also the surface morphology of the complexes was studied by SEM.

  19. Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling and analysis of some oxovanadium(IV) complexes involving the O, N-donor environment of pyrazolone-based sulfa drug Schiff bases

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Rajput, S.

    2006-08-01

    Four new oxovanadium(IV) complexes, formed by the interaction of vanadyl sulfate pentahydrate and the Schiff bases derived from 3-methyl-1-phenyl-4-valeryl-2-pyrazolin-5-one and the sulfa drugs, N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulfadiazine (L 1H), N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-)sulfaguanidine (L 2H), N-(3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulphanilamide (L 3H) and N'(-3'-methyl-1'-phenyl-4'-valerylidene-2'-pyrazolin-5'-one)sulphamethoxazole (L 4H) in aqueous ethanol are described. The resulting complexes were characterized by elemental analyses, molar conductances, magnetic and decomposition temperature measurements, cyclic voltammetry, electron spin resonance, infrared and electronic spectral studies. They have the composition [VO(L) 2]·H 2O, where LH=Schiff base L 1H, L 2H, L 3H or L 4H mentioned above. A square-pyramidal structure having a slight ⋯V dbnd6 O⋯V dbnd6 O⋯ type interaction has been proposed for these complexes.

  20. Immunoaffinity-based biosensor for polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Bargeron, C. Brent; Benson, Richard C.; Phillips, Terry E.; Scholl, Peter F.; Abubaker, Sala; Groopman, John D.; Strickland, Paul T.

    2001-05-01

    An automated biosensor for 1-hydroxypyrene-glucuronide (OHPG) has been developed using a sensor platform initially designed for aflatoxin. The platform is based on the properties of immunoaffinity for sample purification and concentration, and fluorescence for detection. Experiments have demonstrated capture, wash, elution, and quantitation with very good results. The device is handheld and battery- driven, and can be miniaturized further. The bed volume of the column was 0.1 ml with a capacity of about 400 ng of the OHPG. Analysis time was 10 - 11 minutes. The sensitivity was about 0.5 ppb. The antibodies for the system were developed previously and recognize OHPG. The biosensor relies upon microprocessor-controlled minifluidics and fluorometry.

  1. Transition-Metal-Free Synthesis of Carbazoles and Indoles by an SN Ar-Based "Aromatic Metamorphosis" of Thiaarenes.

    PubMed

    Bhanuchandra, M; Murakami, Kei; Vasu, Dhananjayan; Yorimitsu, Hideki; Osuka, Atsuhiro

    2015-08-24

    Dibenzothiophene dioxides, which are readily prepared through oxidation of the parent dibenzothiophenes, undergo nucleophilic aromatic substitution with anilines intermolecularly and then intramolecularly to yield the corresponding carbazoles in a single operation. The "aromatic metamorphosis" of dibenzothiophenes into carbazoles does not require any heavy metals. This strategy is also applicable to the synthesis of indoles. Since electron-deficient thiaarene dioxides exhibit interesting reactivity, which is not observed for that the corresponding electron-rich azaarenes, a combination of a thiaarene-dioxide-specific reaction with the SN Ar-based aromatic metamorphosis allows transition-metal-free construction of difficult-to-prepare carbazoles. PMID:26183910

  2. Synthesis, characterization and comparative study of a series of fluorinated Schiff bases containing different orientation sbnd CHdbnd Nsbnd spacers

    NASA Astrophysics Data System (ADS)

    Pang, Wan; Zhao, Jing-Wei; Zhao, Lei; Zhang, Zhi-Kai; Zhu, Shi-Zheng

    2015-09-01

    Investigation of the crystal structures of three pairs of multi-fluorinated compounds with bridge-flipped isomeric character, which on the molecular level differ only in the orientation of the bridging bond sbnd CHdbnd Nsbnd connecting two larger parts of the molecule, offers a useful context for the examination and evaluation of supramolecular assembly in the case. The results show that the orientation of the bridging bond sbnd CHdbnd Nsbnd determines the conformation of six organic molecules 1a-b, 2a-b and 3a-b, thus further influencing intermolecular weak interactions and final supramolecular arrangements. Accordingly, each molecule of six multi-fluorinated compounds as supramolecular building block unit, via strong intermolecular interactions, including interactions between fluorine atoms and aromatic ring hydrogen atoms, between fluorine atoms, and between hydroxyl groups and fluorine atoms, as well as interaromatic ?⋯? stacking interactions etc., constructs a series of different and attractive crystal packings. These results demonstrate that by changing sbnd CHdbnd Nsbnd orientation, we can obtain different hydrogen-bonded supramolecular structures through different interactions.

  3. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    PubMed Central

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species. PMID:25785229

  4. Nano structure zinc (II) Schiff base complexes of a N3-tridentate ligand as new biological active agents: Spectral, thermal behaviors and crystal structure of zinc azide complex

    NASA Astrophysics Data System (ADS)

    Montazerozohori, M.; Mojahedi Jahromi, S.; Masoudiasl, A.; McArdle, P.

    2015-03-01

    In this work, synthesis of some new five coordinated zinc halide/pseudo-halide complexes of a N3-tridentate ligand is presented. All complexes were subjected to spectroscopic and physical methods such as FT-IR, UV-visible, 1H and 13C NMR spectra, thermal analyses and conductivity measurements for identification. Based on spectral data, the general formula of ZnLX2 (X = Cl-, Br-, I-, SCN- and N3-) was proposed for the zinc complexes. Zinc complexes have been also prepared in nano-structure sizes under ultrasonic irradiation. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for confirmation of nano-structure character for the complexes. Among the complexes, zinc azide complex structure was analyzed by X-ray crystallography. This complex crystallizes as a triplet in trigonal system with space group of P31. The coordination sphere around the zinc center is well shown as a distorted trigonal bipyramidal with three nitrogen atoms from Schiff base ligand and two terminal azide nitrogen atoms attached to zinc ion. Various intermolecular interactions such as Nsbnd H⋯N, Csbnd H⋯N and Csbnd H⋯? hydrogen bonding interactions stabilize crystalline lattice so that they causes a three dimensional supramolecular structure for the complex. In vitro screening of the compounds for their antimicrobial activities showed that ZnLI2, ZnL(N3)2, ZnLCl2 and ZnL(NCS)2 were found as the most effective compound against bacteria of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli respectively. Also ZnLI2 and ZnLCl2 complexes were found more effective against two selected fungi than others. Finally, thermal behaviors of the zinc complexes showed that they are decomposed via 2-4 thermal steps from room temperature up to 1000 °C.

  5. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, ?-cation and hydrophobic interactions.

  6. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Valsson, Omar; Filippi, Claudia; Casida, Mark E.

    2015-04-01

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer ? criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.

  7. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory.

    PubMed

    Valsson, Omar; Filippi, Claudia; Casida, Mark E

    2015-04-14

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer ? criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction. PMID:25877559

  8. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  9. Spectroscopic, thermal characterization and cytotoxic activity of bi-, tri- and tetra-nuclear Pd(II) and Pt(II) complexes with diSchiff base ligands

    NASA Astrophysics Data System (ADS)

    Hegazy, Wael Hussein

    2014-10-01

    In this paper; new di-, tri-, and tetra-nuclear Pd(II) and Pt(II) complexes of N,N?-bis(3,4-dihydroxybenzylidene)ethan-1,2-diamine (EDH4), N,N?-bis(3,4-dihydroxy-benzylidene)-benzene-1,2-diamine (PDH4) and N,N?-bis-(3,4-dihydroxybenzylidene)-4,5-dimethyl-1,2-diamine (MPDH4) ligands were synthesized by two different methods. The first method involve the synthesis of the three ligands from condensation reaction of 3,4-dihydroxybenzaldehyde (L?H2) with ethylenediamine (en), o-phenylenediamine (o-PD), or 4,5-dimethyl-1,2-phenylendiamine (DMPD) in a mole ratio of 2:1 followed by the reaction of the resulting Schiff bases ligands with Pd(II) or Pt(II) ions in the presence of 2,2?-dipyridyl (L) to form the di- and tri-nuclear metal complexes. The second method involve the condensation of the Pd complex LPd(II)L?, (L = 2,2?-dipyridyl, L? = 4-formylbenzene-1,2-bis(olate)) with en, o-PD, or DMPD in a mole ratio of 2:1, respectively, followed by reaction with PdCl2 to form di-, tri-, and tetra-nuclear palladium(II) complexes, respectively. Structures of ligands and metal complexes are characterized by physical properties, FT-IR spectra and nuclear magnetic resonance. The geometries of metal complexes are suggested according to elemental analysis, electronic absorption spectra, thermal analysis, atomic absorption, magnetic susceptibility and molar conductance. Cytotoxic activity against lung large cell carcinoma (H460), prostate carcinoma (DU145), breast adenocarcinoma (MCF-7), amelanotic melanoma (M-14), colon adenocarcinoma (HT-29), and chronic myelogenous leukemia (K562) is also reported.

  10. Spectroscopic and structural studies of new mononucleating tetradentate Schiff base metal chelates derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 1,3-diaminopropane

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2015-08-01

    Metal complexes with the general formula Some newly transition metal complexes, [ML(H2O)x(NO3)y], x = 1-2 and y = 0-1, [M = Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Ce(III), Cd(II), Zn(II) or UO2(VI)], L= of the Schiff base (H2L) derived from the reaction of 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione with 1,3-diaminopropane have been prepared and characterized by physical, spectral and analytical data. The structure of the Schiff - base acts as dibasic tetradentate N2O2 for the complexation reaction with Cr(III), Fe(III), Co(II), Cu(II), Ni(II), Ce(III), Cd(II), and UO2(II) ions via phenolates oxygen and nitrogen of azomethine groups. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for the synthesized complexes except cerium(III) complex which has pentagonal bipyramidal arrangement. The low values of the molar conductance indicate non-electrolyte nature of complexes, while 1:1 electrolyte for cerium(III)- and chromium(III)-complexes. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. All the synthesized compounds were tested for in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria, yeast and fungus. Molecular structure of the Schiff base ligand and its complexes were optimized for the proposed structures on the basis of semiempirical PM3 method.

  11. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  12. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: synthesis, spectral characterization, antimicrobial and nuclease studies.

    PubMed

    Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. PMID:23981416

  13. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72?h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-?B translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  14. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide.

    PubMed

    Gomathi, Ramadoss; Ramu, Andy; Murugan, Athiappan

    2014-01-01

    One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N'-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1?:?2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. PMID:24744691

  15. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide

    PubMed Central

    Gomathi, Ramadoss; Ramu, Andy; Murugan, Athiappan

    2014-01-01

    One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N?-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1?:?2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. PMID:24744691

  16. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: synthesis, spectral, cyclic voltammetry and biological activity studies.

    PubMed

    Mohamed, Rania G; Elantabli, Fatma M; Helal, Nadia H; El-Medani, Samir M

    2015-04-15

    Thermal reaction of M(CO)6 (M=Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2'-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, (1)H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated. PMID:25670089

  17. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Rania G.; Elantabli, Fatma M.; Helal, Nadia H.; El-Medani, Samir M.

    2015-04-01

    Thermal reaction of M(CO)6 (M = Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2?-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, 1H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated.

  18. Theoretical characterization of a series of N5-based aromatic hyperhalogen anions.

    PubMed

    Sun, Wei-Ming; Hou, Dan; Wu, Di; Li, Xiang-Hui; Li, Ying; Chen, Jing-Hua; Li, Chun-Yan; Li, Zhi-Ru

    2015-11-18

    Hyperhalogens are a class of highly electronegative molecules whose electron affinities even exceed those of their superhalogen ligands. Such species can serve as new oxidizing agents, biocatalysts, and building blocks of unusual salts, and hence are important to the chemical industry. Utilizing stable N5(-) as the ligand, a series of aromatic hyperhalogen anions, namely mononuclear M(N5)k+1(-) (M = Li, Be, B) and dinuclear M2(N5)2k+1(-) (M = Li, Be), have been reported here for the first time. Calculation results based on the density functional theory revealed that all the N5(-) subunits preserve their structural and electronic integrity as well as aromatic characteristics in these anions. Especially, these anionic molecules exhibit larger vertical electron detachment energies (6.76-7.86 eV) than that of the superhalogen ligand N5(-), confirming their hyperhalogen nature. The stability of these studied anions is guaranteed by their large HOMO-LUMO gaps, and positive dissociation energies of predetermined fragmentation pathways. We hope this work will not only provide evidence of a new type of hyperhalogen molecule but also stimulate more research interest and efforts in the amazing superatom realm. PMID:26513608

  19. Predicting adsorption of aromatic compounds by carbon nanotubes based on quantitative structure property relationship principles

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Akhoondi, Reza; Pourmortazavi, Seied Mahdi; Ahmadi, Farhad

    2015-11-01

    Quantitative structure property relationship (QSPR) models were developed to predict the adsorption of aromatic compounds by carbon nanotubes (CNTs). Five descriptors chosen by combining self-organizing map and stepwise multiple linear regression (MLR) techniques were used to connect the structure of the studied chemicals with their adsorption descriptor (K?) using linear and nonlinear modeling techniques. Correlation coefficient (R2) of 0.99 and root-mean square error (RMSE) of 0.29 for multilayered perceptron neural network (MLP-NN) model are signs of the superiority of the developed nonlinear model over MLR model with R2 of 0.93 and RMSE of 0.36. The results of cross-validation test showed the reliability of MLP-NN to predict the K? values for the aromatic contaminants. Molar volume and hydrogen bond accepting ability were found to be the factors much influencing the adsorption of the compounds. The developed QSPR, as a neural network based model, could be used to predict the adsorption of organic compounds by CNTs.

  20. The relationship between the strength of hydrogen bonding and spin crossover behaviour in a series of iron(III) Schiff base complexes.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Trávní?ek, Zden?k

    2015-03-14

    X-ray crystal structures and magnetic properties of an isostructural series of iron(III) Schiff base complexes with the general formula [Fe(L(5))(NCX)]·Solv (where H2L(5) = N,N'-bis(2-hydroxy-naphthylidene)-1,6-diamino-4-azahexane, X = S, Solv = tetrahydrofuran, 1a; X = S, Solv = methanol and 0.5 pyrazine, 1b; X = S, Solv = butanone, 1c; Solv = N,N'-dimethylformamide, X = S (1d) or X = Se (1d'); X = S, Solv = dimethyl sulfoxide, 1e) are reported. In the crystals, the individual [Fe(L(5))(NCX)] molecules are connected through weak C-H···O, C-H···? or C-H···S non-covalent contacts into 2D supramolecular networks, while the guest-solvent (Solv) molecules are trapped in the cavities between two adjacent layers, which are furthermore stabilized by N-H···O hydrogen bonds connecting the Solv oxygen atom with the amine group of the [Fe(L(5))(NCX)] molecule, with the N···O distances varying from 2.921(6) Å (in 1d') to 3.295(2) Å (in 1a). The magnetic properties of the complexes were tuned by the different Solv molecules and as a result of this, four new spin crossover (SCO) compounds with cooperative spin transitions are reported, which are accompanied by thermal hysteresis in two cases (1d and 1e): , T1/2 = 84 K; 1d, T1/2? = 232 K, T1/2? = 235 K and 1e, T1/2? = 127 K, T1/2? = 138 K. The role of the N-H···O hydrogen bonding in the occurrence and tuning of SCO was also computationally studied using a topological analysis, and also by evaluation of non-covalent interaction (NCI) indexes. Both theoretical approaches showed a clear relationship between the strength of the N-H···O hydrogen bonds and T1/2, as already inferred from X-ray structural and magnetic data. PMID:25645590

  1. Proton induced tautomeric switching in N-rich aromatics with tunable acid-base character

    NASA Astrophysics Data System (ADS)

    Centore, Roberto; Manfredi, Carla; Fusco, Sandra; Maglione, Cira; Carella, Antonio; Capobianco, Amedeo; Peluso, Andrea; Colonna, Daniele; Di Carlo, Aldo

    2015-08-01

    The acid-base properties of selected derivatives of the [1,2,4]triazolo[3,2-c][1,2,4]triazole fused aromatic system have been investigated by UV-vis spectroscopy. Neutral heterobicycles (HL) exhibit amphoteric behavior (they can deliver the N-H proton forming the conjugated base L- and can accept up to two protons, forming the species H2L+ and H3L++) and show an unprecedented tautomeric switching upon protonation, as revealed by single crystal X-ray analysis and confirmed by theoretical calculations. By varying the groups attached at the heterocycle, a remarkable shift of pKai values, up to 5-6 units, is observed. In particular, with strong electron attractor groups at position 7 (e.g. p-nitrophenyl or pentafluorophenyl) the neutral compounds are stronger acids than phenol or p-nitrophenol.

  2. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  3. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene.

    PubMed

    El-Sherif, Ahmed A; Eldebss, Taha M A

    2011-09-01

    Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO3. PMID:21705267

  4. Development of a dipodal Schiff base ligand with N-imine and O-naphtholate donors: A potential chelator towards Cu(II) metal ion established through potentiometric and spectrophotometric studies

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2015-08-01

    A novel hydroxynaphthaldehyde derived Schiff base ligand N,N'-bis-[2-[(2-hydroxy-1-naphthyl)methyleneamino]ethyl]propanediamide (DOTA2HNAP) containing nitrogen and oxygen donor atoms has been developed. The lowest energy molecular structure of DOTA2HNAP and its complexes with Cu (II) metal ion were examined by molecular mechanics using MM+ force which later was re-optimized by semi-empirical method. The theoretical IR and UV spectra of the ligand were obtained using semi empirical/ZINDO/PM3 and were compared with the experimental ones. The coordinating ability of DOTA2HNAP with H+ and Cu(II) ions was investigated in 1:99 (DMSO: water) binary solvent mixture at 25±1°C by potentiometric and spectrophotometric method. The electronic spectra of the ligand show three distinct peaks (253nm, 320nm and 360nm) implicating existence of the Schiff base in quinone form that was well supported by theoretical spectral studies. Out of various complex species forming in solution, all the metal ions show higher stability of complexes when in 1:1 metal-ligand stoichiometry, binding through two N-imine and two O-naphtholate groups.

  5. Spectral Characterization and 3D Molecular Modeling Studies of Metal Complexes Involving the O, N-Donor Environment of Quinazoline-4(3H)-one Schiff Base and Their Biological Studies

    PubMed Central

    Siddappa, Kuruba; Mane, Sunilkumar B.

    2014-01-01

    A simple condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde produced new tridentate ONO donor Schiff base ligand with efficient yield. The structural characterization of ligand and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were achieved by the aid of elemental analysis, spectral characterization such as (UV-visible, IR, NMR, mass, and ESR), and magnetic data. The analytical and spectroscopic studies suggest the octahedral geometries of Cu(II), Co(II), Ni(II) and Mn(II) complexes and tetrahedral geometry of Zn(II) and Cd(II) complexes with the tridentate ONO Schiff base ligand. Furthermore, the conclusions drawn from these studies afford further support to the mode of bonding discussed on the basis of their 3D molecular modeling studies by considering different bond lengths, bond angles, and bond distance. The ligand and its metal complexes evaluated for their antimicrobial activity against Staphylococcus aureus (MTCC number 7443), Bacillus subtilis (MTCC number 9878), Escherichia coli (MTCC number 1698), Aspergillus niger (MTCC number 281), and Aspergillus flavus (MTCC number 277). The MIC of these compounds was found to be most active at 10??g/mL concentration in inhibiting the growth of the tested organisms. The DNA cleavage activity of all the complexes was studied by gel electrophoresis method. PMID:24678278

  6. Synthesis and Characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) Complexes of Schiff Base Derived from Isonicotinoyl Hydrazone.

    PubMed

    Gawande, Pranita U; Mandlik, P R; Aswar, A S

    2015-01-01

    2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoyl hydrazone as a Schiff base ligand and its complexes with Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) metal ions have been synthesized. The ligands as well as their metal complexes were well characterized using various physicochemical techniques such as elemental analyses, molar conductance measurements, magnetic measurements, thermal analysis, electronic and IR spectral studies. On the basis of these studies, square pyramidal stereochemistry for Mn(III) and VO(IV) complexes while octahedral stereochemistry for all the other complexes have been suggested. The complexes were found to be stable up to 60-70° and thermal decomposition of the complexes ended with respective metal oxide as a final product. The thermal data have been analyzed for kinetic parameters using Broido and Horowitz-Metzger methods. The synthesized Schiff base ligand and its complexes were also tested for their antimicrobial activity using various microorganisms. PMID:26664052

  7. Synthesis and Characterization of Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) Complexes of Schiff Base Derived from Isonicotinoyl Hydrazone

    PubMed Central

    Gawande, Pranita U.; Mandlik, P. R.; Aswar, A. S.

    2015-01-01

    2-hydroxy-5-chloro-3-nitroacetophenone isonicotinoyl hydrazone as a Schiff base ligand and its complexes with Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(VI) metal ions have been synthesized. The ligands as well as their metal complexes were well characterized using various physicochemical techniques such as elemental analyses, molar conductance measurements, magnetic measurements, thermal analysis, electronic and IR spectral studies. On the basis of these studies, square pyramidal stereochemistry for Mn(III) and VO(IV) complexes while octahedral stereochemistry for all the other complexes have been suggested. The complexes were found to be stable up to 60-70° and thermal decomposition of the complexes ended with respective metal oxide as a final product. The thermal data have been analyzed for kinetic parameters using Broido and Horowitz-Metzger methods. The synthesized Schiff base ligand and its complexes were also tested for their antimicrobial activity using various microorganisms. PMID:26664052

  8. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Eldebss, Taha M. A.

    2011-09-01

    Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML 2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu 2+, Co 2+, Mn 2+, Zn 2+ and Ni 2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO 3.

  9. Dual-channel detection of Cu2+ and F- with a simple Schiff-based colorimetric and fluorescent sensor

    NASA Astrophysics Data System (ADS)

    Na, Yu Jeong; Choi, Ye Won; Yun, Jin Yeong; Park, Kyung-Min; Chang, Pahn-Shick; Kim, Cheal

    2015-02-01

    A simple and easily synthesized colorimetric and fluorescent receptor 1, based on 4-diethylaminosalicylaldehyde moieties as a binding and signaling unit, has been synthesized and characterized. The receptor 1 has a selective colorimetric sensing ability for copper (II) ion by changing color from colorless to yellow in aqueous solution, and could be utilized to monitor Cu(II) over a wide pH range of 4-11. In addition, the detection limit (12 ?M) of 1 for Cu2+ is much lower than that (30 ?M) recommended by WHO in drinking water, and its copper complex could be reversible simply through treatment with a proper reagent such as EDTA. Moreover, receptor 1 exhibited both a color change from colorless to yellow and fluorescence enhancement with a red shift upon addition to F- in DMSO. The recognition mechanism was attributed to the intermolecular proton transfer between the hydroxyl group of the receptor and the fluoride.

  10. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus. PMID:25920352

  11. Polyurethane networks from fatty-acid-based aromatic triols: synthesis and characterization.

    PubMed

    Lligadas, Gerard; Ronda, Joan C; Galià, Marina; Cadiz, Virginia

    2007-06-01

    Novel biobased aromatic triols (1,3,5-(9-hydroxynonyl)benzene and 1,3,5-(8-hydroxyoctyl)-2,4,6-octylbenzene) were synthesized through the transition-metal-catalyzed cyclotrimerization of two alkyne fatty acid methyl esters (methyl 10-undecynoate and methyl 9-octadecynoate) followed by the reduction of the ester groups to give terminal primary hydroxyl groups. A series of biobased segmented polyurethanes based on these triols, 1,4-butanediol as a chain extender and 4,4'-methylenebis(phenyl isocyanate) as a coupling agent, were synthesized. Samples were prepared with hard-segment contents up to 50%. The morphologies and thermal properties of these polyurethanes were studied by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis. Partial crystallinity and phase separation were detected in samples with hard-segment content of 50%. PMID:17472338

  12. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution.

    PubMed

    Zou, Yonghong; Wang, Lixia; Christensen, Erik R

    2015-10-01

    This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). PMID:26208321

  13. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  14. Protonated thiophene-based oligomers as formed within zeolites: understanding their electron delocalization and aromaticity.

    PubMed

    Valencia, Diego; Whiting, Gareth T; Bulo, Rosa E; Weckhuysen, Bert M

    2016-01-21

    In an earlier work, protonated thiophene-based oligomers were identified inside ZSM-5 zeolites. The novel compounds exhibited ?-?* absorption wavelengths deep within the visible region, earmarking them for possible use as chromophores in a variety of applications. In this computational study, we determine the factors that cause such low-energy transitions, and describe the electronic structure of these remarkable compounds. DFT calculations of conjugated thiophene-based oligomers with up to five monomer units reveal that the main absorption band of each protonated oligomer is strongly red-shifted compared to the unprotonated form. This effect is counterintuitive, since protonation is expected to diminish aromaticity, and thereby increase the HOMO-LUMO gap. We find that upon protonation the ?-electrons remain delocalized over the entire ?-conjugated molecule, but the positive charge is localized predominantly on the protonated side of the molecule. A possible explanation for this ground-state charge localization is the participation of the C-H bond in the ?-system of the protonated ring, locally providing aromatic stabilization for the positive charge. The addition of the proton stabilizes all electronic orbitals, but due to the ground state ?-electron distribution away from the added nucleus, the HOMO is stabilized less than the LUMO. The main absorption peak upon protonation corresponds to the charge transfer excitation involving the frontier orbitals, and the small band gap explains the observed red shift. Analogue calculations on thiophene within a ZSM-5 zeolite cluster model confirm the same trends upon protonation as observed in the non-interacting compounds. Understanding the electronic structure of these compounds is very relevant to correlate UV-Vis bands with acidic strength and possibly environment in zeolites and to improve their performance in catalytic and energy related applications. PMID:26685895

  15. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.; Yadav, Deepak

    2015-06-01

    A series of two biologically active Schiff base ligands L1, L2 have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by 1H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7.

  16. A new oxovanadium(IV) complex containing an O,N-bidentate Schiff base ligand: Synthesis at ambient temperature, characterization, crystal structure and catalytic performance in selective oxidation of sulfides to sulfones using H2O2 under solvent-free conditions

    NASA Astrophysics Data System (ADS)

    Menati, Saeid; Rudbari, Hadi Amiri; Khorshidifard, Mahsa; Jalilian, Fariba

    2016-01-01

    A new bidentate ON Schiff base ligand, HL, was synthesized by simple condensation reaction of isopropylamine and salicylaldehyde. Then by reaction of HL and VO(acac)2 in the ratio of 2:1 at ambient temperature, a new oxovanadium(IV) Schiff base complex, VOL2, was synthesized. The Schiff base ligand and its oxovanadium(IV) complex were characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR and UV-visible spectroscopies. The crystal structure of oxovanadium(IV) complex, VOL2, was also determined by single crystal X-ray analysis. The vanadium center in this structure is coordinated to two bidentate Schiff base ligands with the two nitrogen and two phenolate oxygen atoms in equatorial positions and one oxo oxygen in the axial position to complete the distorted trigonal bipyramidal N2O3 coordination sphere. Catalytic performance of the VOL2 complex was studied in the selective oxidation of thioanisole with the green oxidant 35% aqueous H2O2 under solvent-free conditions and under organic solvents (EtOH, CHCl3, CH2Cl2, DMF, CH3CN, EtOAc) as a model. Due to better catalytic performance of the VOL2 complex under solvent-free conditions, this complex used for the oxidation of the different sulfides to the corresponding sulfones under solvent-free conditions. The use of hydrogen peroxide as oxidant and the absence of solvent makes these reactions interesting from environmental and economic points of view.

  17. Development and understanding of new membranes based on aromatic polymers and heterocycles for fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Wen

    Direct methanol fuel cells (DMFC) are appealing as a power source for portable devices as they do not require recharging with an electrical outlet. However, the DMFC technology is confronted with the high crossover of methanol fuel from the anode to the cathode through the currently used Nafion membrane, which not only wastes the fuel but also poisons the cathode platinum catalyst. With an aim to overcome the problems encountered with the Nafion membrane, this dissertation focuses on the design and development of new polymeric membrane materials for DMFC and a fundamental understanding of their structure-property-performance relationships. Several polymeric blend membranes based on acid-base interactions between an aromatic acidic polymer such as sulfonated ploy(ether ether ketone) (SPEEK) and an aromatic basic polymer such as heterocycle tethered poly(sulfone) (PSf) have been explored. Various heterochylces like nitro-benzimidazole (NBIm), 1H-Perimidine (PImd), and 5-amino-benzotriazole (BTraz) have been tethered to PSf to understand the influence of pKa values and the size of the hetrocycles. The blend membranes show lower methanol crossover and better performance in DMFC than plain SPEEK due to an enhancement in proton conductivity through acid-base interactions and an insertion of the heterocycle side groups into the ionic clusters of SPEEK as indicated by small angle X-ray scattering and TEM data. The SPEEK/PSf-PImd blend membrane shows the lowest methanol crossover due to the larger size of the side groups, while the SPEEK/PSf-BTraz blend membrane shows the highest proton conductivity and maximum power density. To further investigate the methanol-blocking effect of the heterocycles, N,N'-Bis-(1H-benzimidazol-2-yl)-isophthalamide (BBImIP) having two amino-benzimidazole groups bonded to a phenyl ring has been incorporated into sulfonated polysulfone (SPSf) and SPEEK membranes. With two 2-amino-benzimidazole groups, which could greatly increase the proton transfer sites, and three phenyl rings, which are compatible with the aromatic polymers, the BBImIP/SPSf and BBImIP/SPEEK blend membranes show suppressed methanol crossover and increased fuel cell performance in DMFC. Novel sulfonated copolymers based on poly(aryl ether sulfone) (SPS-DP) that exhibit low methanol crossover have been synthesized and explored as a methanol-barrier center layer in a multilayer membrane configuration having SPEEK as the outer layers. These multilayer membranes exhibit better performance in DMFC than plain SPEEK and Nafion 115 membranes due to suppressed methanol crossover. To address the issue of incompatibility between the new hydrocarbon-based membranes synthesized and the Nafion ionomer used in the catalyst layer in fabricating membrane-electrode assemblies (MEAs), the MEAs have been fabricated with the SPEEK membranes and 10 to 30% SPEEK ionomer in the catalyst layer. These MEAs exhibit better performance in DMFC compared to the MEAs fabricated with the SPEEK membranes and Nafion ionomer in the catalyst layer due to lower interfacial resistance.

  18. Polybenzimidazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1994-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  19. Synthesis and X-ray structure analysis of a new binuclear Schiff base Co(II) complex with the ligand N,N'-bis(3-methoxysalicylidene)-1,4-butanediamine

    SciTech Connect

    Nasr-Esfahani, M.

    2009-12-15

    The title binuclear complex, tris[N,N-bis(3-methoxysalicylidene)-1,4-diaminobutane] dicobalt(II), C{sub 60}H{sub 70}Co{sub 2}N{sub 6}O{sub 15}, was prepared by the reaction of the tetradentate Schiff base ligand bis(3-methoxysalicylidene)-1,4-diaminobutane and Co(CH{sub 3}COO){sub 2} . 4H{sub 2}O in a ethanol solution and structurally characterized by single-crystal X-ray diffraction. This complex has a dinuclear structure where two Co(II) ions are bridged by one N{sup 0},N'-bis(3-methoxysalicylidene)-1,4-diaminobutane. The two Co(II) ions, have two distorted octahedral coordination involving two O and two N atoms.

  20. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    SciTech Connect

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.

  1. Radiation induced effects in segmented poly(siloxaneurethaneureas) based on aliphatic and aromatic diisocyanates

    NASA Astrophysics Data System (ADS)

    Przybytniak, Gra?yna; Kornacka, Ewa; Kozakiewicz, Janusz; Przybylski, Jaros?aw

    2007-12-01

    Poly(siloxaneurethaneureas) (PSURURs) prepared from aromatic and aliphatic isocyanates were investigated upon exposure to ionising radiation. Radicals are formed both in siloxane and urethane segments. In comparison with aliphatic analogues it was found that in aromatic PSURURs: (1) concentration of all radicals is lower, (2) relative concentration of methylene radicals formed in siloxane units is higher, (3) the radiation yield of H 2 is more than three times smaller and (4) it seems that efficiency of cross-linking is less significant.

  2. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P.

    2011-11-01

    Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV-Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 ?m.

  3. AC and DC Light-Emitting Devices Based on Heterocyclic Aromatic Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.

    1996-03-01

    Electroluminescent (EL) devices can operate in DC and/or AC modes. Inorganic p-n junction based light-emitting diodes are the most common and successful DC devices. The existing AC EL devices, on the other hand, have considerable drawbacks, e.g. high fabrication cost and high operating voltage. Most conjugated polymer based light-emitting devices has been shown to be tunnel diodes and only operate under forward DC field.(I. D. Parker, J. Appl. Phys.75), 1656 (1994) Recently, we have demonstrated a new class of polymer EL device: symmetrically configured AC light-emitting (SCALE) device.footnote Y. Z. Wang et al., to be published; Y. Z. Wang et al., SPIE proceedings 2528, 54 (1995) In the SCALE devices, an ``insulating'' polymer layer, such as emeraldine base (EB) form of polyaniline, is inserted on both side of the emitting polymer. This configuration enables the SCALE devices to work under both forward and reverse DC bias as well as in AC modes. Under AC driving, light pulses with double the driving frequency are produced. Here we discuss several DC and AC devices based on the pyridine-containing heterocyclic aromatic conjugated polymers. The DC device operation mechanism has been analyzed by double charge injection theory footnote K. C. Kao, J. Phys. D: Appl. Phys. 17, 1433 (1984); K. C. Kao, ibid 17, 1449 (1984) with non-ohmic contacts. For the SCALE devices, it has been shown that interfaces, rather than the electrode workfunctions, play a more important role in the device operation, which enables the use of stable high workfunction metals, such as gold, as electrodes. The role of the insulating polymer will be examined and a model that emphasizing the interface states will be proposed for the SCALE device operation. Supported in part by ONR and OSU Center for Materials Research. Work performed in collaboration with D. D. Gebler, A. J. Epstein (OSU) and A. G. MacDiarmid, T. M. Swager (U. Penn.).

  4. Detection of nitro-aromatic compounds by optical gas sensors based on sensitive or photoluminescent polymers

    NASA Astrophysics Data System (ADS)

    Lamarque, T.; Le Barny, P.; Obert, E.; Chastaing, E.; Loiseaux, B.; Leray, I.

    2006-04-01

    In the first part of this paper, we use a specially developed sensitive polymer (PLG) which belongs to the polysiloxane family. Thin layers of this polymer are deposited onto the surface of the optical transducers. Results will be presented on the response of diffraction-based optical transducers such as gratings and also on interferometric transducers and especially integrated Mach-Zehnder (MZ) interferometers. In the first case, a relief grating is coated with the sensitive polymer. A small variation of the refractive index of this layer, due to the presence of pollutant, induces a variation of the intensity of the diffracted orders which can be measured. In the second case, one arm of the integrated MZ interferometers is coated with the polymer. The variation of the refractive index of the polymer causes a phase shift in the measuring arm which can be measured by the modification of the output intensity. Assessment of sensitivity for the detection of nitro-aromatic compounds using a PLG sensitive layer on both sensors are presented and are also compared to the response of a SAW-based sensor coated with the same polymer. In the second part of this paper, synthesis, spectroscopy and fluorescence quenching behaviour of a N-(2,5-ditertio-butylphenyl)-1,8-naphthalimide functionalised polystyrene (PST-NI) are reported. PST-NI was synthesized by free radical polymerisation of the corresponding monomer. The molecular weight (Mn) is 43 000 g.mol-1. Introduction of a bulky moiety on the naphthalimide chromophores avoids P-stacking of the polymer side chains as well as excimer formation and hence leads to very high fluorescence quantum yields in thin solid films (up to 60%). Upon 1 minute exposure to DNT vapour, it was shown that a 5.5 nm thick film of PST-NI exhibits a 45% drop in its fluorescence intensity, which makes this polymer very attractive for sensing applications.

  5. Concept of chemical bond and aromaticity based on quantum information theory

    E-print Network

    Szilvási, T; Legeza, Ö

    2015-01-01

    Quantum information theory (QIT) emerged in physics as standard technique to extract relevant information from quantum systems. It has already contributed to the development of novel fields like quantum computing, quantum cryptography, and quantum complexity. This arises the question what information is stored according to QIT in molecules which are inherently quantum systems as well. Rigorous analysis of the central quantities of QIT on systematic series of molecules offered the introduction of the concept of chemical bond and aromaticity directly from physical principles and notions. We identify covalent bond, donor-acceptor dative bond, multiple bond, charge-shift bond, and aromaticity indicating unified picture of fundamental chemical models from ab initio.

  6. Aromaticity-induced changes in the electronic properties of size-expanded DNA bases: Case of xC.

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Lipkowski, Pawel; Huertas, Oscar; Sumpter, Bobby G; Orozco, Modesto; Luque, Javier; Wells, Jack C; Leszczynski, Jerzy

    2006-01-01

    Size-expanded DNA bases are analogues of natural bases that can be described as a synthesis between benzene and a natural base. Size-expanded bases have been combined with natural bases to form xDNA and yDNA, a new class of synthetic nucleic acids. We are interested in xDNA and yDNA because they might function as molecular wires. Recently, we also became intrigued by the possibility of altering the electronic conductivity of xDNA and yDNA by means of structural changes in the constituent bases. This possibility appeared after we noticed that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of the base yG can be increased dramatically, {approx}0.73 eV, by changing the aromaticity of its benzene ring. Therefore, if one is able to alter the HOMO-LUMO gap of size-expanded bases, it should be possible to change the electronic conductivity of xDNAs and yDNAs as well. In the present work, we extend our study on aromaticity-induced changes on the electronic properties of size-expanded bases by investigating the HOMO-LUMO gap of all possible tautomers of xC. We have found that, as for yG, the HOMO-LUMO gap of xC can be modified by {approx} 0.74 eV, and that this can be accomplished by changing the aromaticity of its benzene ring.

  7. A Green, Guided-Inquiry Based Electrophilic Aromatic Substitution for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Eby, Eric; Deal, S. Todd

    2008-01-01

    We developed an alternative electrophilic aromatic substitution reaction for the organic chemistry teaching laboratory. The experiment is an electrophilic iodination reaction of salicylamide, a popular analgesic, using environmentally friendly reagents--sodium iodide and household bleach. Further, we designed the lab as a guided-inquiry…

  8. Synthesis and structural features of U VI and V IV chelate complexes with (hhmmbH)Cl·H 2O [hhmmb = {3-hydroxyl-5-(hydroxymethyl)-2-methylpyridine-4-yl-methylene}benzohydrazide], a new Schiff base ligand derived from vitamin B6

    NASA Astrophysics Data System (ADS)

    Back, Davi Fernando; Ballin, Marco Aurélio; de Oliveira, Gelson Manzoni

    2009-10-01

    The Schiff base ligand {3-hydroxyl-5-(hydroxymethyl)-2-methylpyridine-4-yl-methylene}benzohydrazide hydrochloride monohydrated {(hhmmbH)Cl·H 2O} ( 1) was prepared by reaction of pyridoxine hydrochloride with benzoic acid hydrazide. The reaction of 1 with [VO(acac) 2] and triethylamine yields the neutral vanadium IV complex [VO 2(hhmmb)]·Py ( 2), with a distorted quadratic pyramidal configuration. The Schiff base 1 reacts also with UO 2(NO 3) 2·6H 2O and triethylamine under deprotonation giving the uranium VI cationic complexes [UO 2(hhmmb)(H 2O)Cl] + ( 3) and [UO 2(hhmmb)(CH 3OH)Cl] + ( 4), both showing the classical pentagonal bipyrimidal geometry of UO22+ complexes. The structural features of all compounds are discussed.

  9. Spectroscopic, thermal, antimicrobial and molecular modeling studies of mononuclear pentafunctional Schiff base metal chelates derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2015-03-01

    A new pentafunctional N3O2 Schiff base, H2L ligand, and its metal chelates with Cu(II), Ni(II), Co(II), VO(IV), Zn(II), Cd(II), Ce(III), Cr(III), Fe(III) and UO2(VI) have been synthesized and characterized by elemental analysis, spectral, molar conductance, magnetic and thermal gravimetric studies. The results showed that the complexes have octahedral geometry except UO2 complex which has pentagonal bipyramidal arrangement. The TGA analyses suggest high stability for most complexes followed by thermal decomposition in different steps. The kinetic and thermodynamic parameters for decomposition steps of metal complexes thermograms have been calculated. Molecular orbital calculations were performed for the ligand and its metal complexes by means of hyperchem 7.52 program on the bases of semiempirical PM3 level and the results were correlated with the experimental data. The antimicrobial activity of the synthesized compounds were tested in vitro against some Gram-positive and Gram-negative bacteria; yeast and fungus strains and the results were discussed in terms of extended Lewis acid-base interactions.

  10. Structural Analysis of Aliphatic vs. Aromatic Substrate Specificity in a Copper Amine Oxidase from Hansenula polymorpha†,‡

    PubMed Central

    Klema, Valerie J.; Solheid, Corinne J.; Klinman, Judith P.; Wilmot, Carrie M.

    2013-01-01

    Copper amine oxidases (CAOs) are responsible for the oxidative deamination of primary amines to their corresponding aldehydes. The CAO catalytic mechanism can be divided into two half-reactions: a reductive half-reaction, in which a primary amine substrate is oxidized to its corresponding aldehyde with the concomitant reduction of the organic cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ), and an oxidative half-reaction, in which reduced TPQ is re-oxidized with the reduction of molecular oxygen to hydrogen peroxide. The reductive half-reaction proceeds via Schiff base chemistry, in which the primary amine substrate first attacks the C5 carbonyl of TPQ, forming a series of covalent Schiff base intermediates. The X-ray crystal structures of copper amine oxidase-1 from the yeast Hansenula polymorpha (HPAO-1) in complex with ethylamine and benzylamine have been solved to resolutions of 2.18 and 2.25 Å, respectively. These structures reveal the two amine substrates bound at the back of the active site coincident with TPQ in its two-electron reduced aminoquinol form. Rearrangements of particular amino acid side chains within the substrate channel and specific protein-substrate interactions provide insight into substrate specificity in HPAO-1. These changes begin to account for this CAO’s kinetic preference for small, aliphatic amines over the aromatic amines or whole peptides preferred by some of its homologs. PMID:23452079

  11. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 ?m.

  12. Fe(II)(pap-5NO2)2 and Fe(II)(qsal-5NO2)2 Schiff-base spin-crossover complexes: a rare example with photomagnetism and room-temperature bistability.

    PubMed

    Iasco, Olga; Rivière, Eric; Guillot, Régis; Buron-Le Cointe, Marylise; Meunier, Jean-François; Bousseksou, Azzedine; Boillot, Marie-Laure

    2015-02-16

    We focus here on the properties of Fe complexes formed with Schiff bases involved in the chemistry of Fe(III) spin-transition archetypes. The neutral Fe(pap-5NO2)2 (1) and Fe(qsal-5NO2)2·Solv (2 and 2·Solv) compounds (Solv = 2H2O) derive from the reaction of Fe(II) salts with the condensation products of pyridine-2-carbaldehyde with 2-hydroxy-5-nitroaniline (Hpap-5NO2) or 5-nitrosalicylaldehyde with quinolin-8-amine (Hqsal-5NO2), respectively. While the Fe(qsal-5NO2)2·Solv solid is essentially low spin (S = 0) and requires temperatures above 300 K to undergo a S = 0 ? S = 2 spin-state switching, the Fe(pap-5NO2)2 one presents a strongly cooperative first-order transition (T? = 291 K, T? = 308 K) centered at room temperature associated with a photomagnetic effect at 10 K (TLIESST = 58 K). The investigation of these magnetic behaviors was conducted with single-crystal X-ray diffraction (1, 100 and 320 K; 2, 100 K), Mössbauer, IR, UV-vis (1 and 2·Solv), and differential scanning calorimetry (1) measurements. The Mössbauer analysis supports a description of these compounds as Fe(II) Schiff-base complexes and the occurrence of a metal-centered spin crossover process. In comparison with Fe(III) analogues, it appears that an expanded coordination sphere stabilizes the valence 2+ state of the Fe ion in both complexes. Strong hydrogen-bonding interactions that implicate the phenolato group bound to Fe(II) promote the required extra-stabilization of the S = 2 state and thus determines the spin transition of 1 centered at room temperature. In the lattice, the hydrogen-bonded sites form infinite chains interconnected via a three-dimensional network of intermolecular van der Waals contacts and ?-? interactions. Therefore, the spin transition of 1 involves the synergetic influence of electrostatic and elastic interactions, which cause the enhancement of cooperativity and result in the bistability at room temperature. PMID:25590643

  13. An investigation of substituted aromatic isocyanide based molecular-level wires on metal surfaces

    NASA Astrophysics Data System (ADS)

    Habeeb, Zeeshan

    Ever since hemiquinone was presented as the first potential conductor having an electron donor catechol moiety and an electron acceptor quinone component separated by an aliphatic insulator, thus behaving as a rectifier. However, due to experimental limitations, it was not until 1988 that this rectifying behavior could be confirmed by scanning tunneling microscopic measurements, but even then these early experiments were marred by irreproducibility. Since then, with rapidly improving technology, different strategies were developed to probe the conducting properties of different kinds of molecules with much improved reducibility. With these experimental probes the design of a molecular-level conductor essentially consists of selecting a combination of the backbone of the molecule, its functional anchoring groups and the choice of the metal electrode that all complement each other. In this study, the conduction properties of aromatic isocyanide-based molecules were studied on different metal surfaces. 1,4 phenyldiisocyanide (PDI), 2,3,5,6-Tetrachloro 1,4-phenyldiisocyanide (TMPDI) and 2,3,5,6-Tetramethyl 1,4-phenyldiisocyanide (TMPDI) are the simplest molecular-level linker conductors used in this study. Organometallic polymers of varying lengths were also studied; (CNC6H4NC)2W(DPPE) 2 (1W), (CNC6H4NC)3(W(DPPE)2) 2 (2W) and (CNC6H4NC)4(W(DPPE) 2)3 (3W) were probed for their conduction properties. Before the conduction properties can be investigated, the surface manner in which the linker molecules bond to the surface of a metal electrode is investigated. Such a study has been performed on solution self-assembled monolayers (SAMs) of the linker and organometallic polymer molecules on evaporated meal films. In order to perform a more systematic study, the linker molecules were adsorbed onto single crystal Pd(111) surfaces and ultra high vacuum surface science techniques were used to investigate the surface chemistry. Reflection-Absorption Infrared Spectroscopy, (RAIRS), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption spectroscopy (TPD) were the surface science techniques used in this study.

  14. A ceramic matrix composite based on polymerization and pyrolysis of ethynylated aromatics

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.

    1985-01-01

    A number of ethynylated aromatic monomers recently have been synthesized which thermally homopolymerize and copolymerize to produce rigid, highly cross-linked polymers with high thermal stability (Tg of about 450 C). On pyrolysis, these polymers lose few volatiles (more than 85 percent char yield) to yield carbon bodies of relatively low porosity. These properties render the ethynylated aromatics of significant interest as matrices for high temperature composites. Incorporation of a SiC particle filler in the matrix improves the rheology of the system and minimizes shrinkage during pyrolysis. Several unidirectional composites have been fabricated combining a graphite or boria-alumina-silica continuous reinforcement with an ethynylated aromatic polymer matrix and SiC filler. Thermogravimetric analysis of composite pyrolysis behavior was used to determine reaction kinetics and to establish a composite fabrication cycle. Composites retained 95 percent of their green weight on pyrolysis. Microstructure of the green and pyrolyzed composites is characterized for materials pyrolyzed at 600 C in vacuum and argon as well as for laminates heated at 1200 C in argon following pyrolysis.

  15. Enantiomeric fluoro-substituted benzothiazole Schiff base-valine Cu(II)/Zn(II) complexes as chemotherapeutic agents: DNA binding profile, cleavage activity, MTT assay and cell imaging studies.

    PubMed

    Alizadeh, Rahman; Yousuf, Imtiyaz; Afzal, Mohd; Srivastav, Saurabh; Srikrishna, Saripella; Arjmand, Farukh

    2015-02-01

    To evaluate the biological preference of chiral drugs toward DNA target, new metal-based chemotherapeutic agents of Cu(II) and Zn(II), l-/d-fluorobenzothiazole Schiff base-valine complexes 1 &2 (a and b), respectively were synthesized and thoroughly characterized. Preliminary in vitro DNA binding studies of ligand L and complexes 1 &2 (a and b) were carried out in Tris-HCl buffer at pH 7.2 to demonstrate the chiral preference of l-enantiomeric complexes over the d-analogues. The extent of DNA binding propensity was ascertained quantitatively by Kb, K and Ksv values which revealed greater binding propensity by l-enantiomeric Cu(II) complex 1a and its potency to act as a chemotherapeutic agent. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1a as compared to 2avia hydrolytic cleavage mechanism. The complexes 1 &2 (a and b) were also screened for antimicrobial activity which demonstrated significantly good activity for l-enantiomeric complexes. Furthermore, cytotoxicity of the complexes 1a and 1b was evaluated by the MTT assay on human HeLa cancer cell line which implicated that more than 50% cells were viable at 15?M. These results were further validated by cell imaging studies which demonstrated the nuclear blebbing. PMID:25600265

  16. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    PubMed

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-01

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. Between 25000 and 35000 cm(-1), the low-temperature MCD spectra are dominated by two very intense, oppositely signed pseudo-A terms, referred to as "double pseudo-A terms", which change their signs within the [Mn(acen)X] series dependent on the axial ligand X. Based on molecular orbital (MO) and symmetry considerations, these features are assigned to ?(n.b.)(s, a) ? yz, z(2) ligand-to-metal charge transfer transitions. The individual MCD signs are directly determined from the calculated MOs of the [Mn(acen)X] complexes. The observed sign change is explained by an inversion of symmetry among the ?(n.b.)(s, a) donor orbitals which leads to an interchange of the positive and negative pseudo-A terms constituting the "double pseudo-A term". PMID:23410227

  17. Predictive Carcinogenicity: A Model for Aromatic Compounds, with Nitrogen-Containing Substituents, Based on Molecular Descriptors Using an Artificial

    E-print Network

    Gini, Giuseppina

    Predictive Carcinogenicity: A Model for Aromatic Compounds, with Nitrogen-Containing Substituents to predict the carcinogenicity of aromatic nitrogen compounds was developed. The inputs were molecular parameter expressing carcinogenicity. From the tens of descriptors calculated, principal component analysis

  18. Aromatic molecules as spintronic devices

    SciTech Connect

    Ojeda, J. H.; Orellana, P. A.; Laroze, D.

    2014-03-14

    In this paper, we study the spin-dependent electron transport through aromatic molecular chains attached to two semi-infinite leads. We model this system taking into account different geometrical configurations which are all characterized by a tight binding Hamiltonian. Based on the Green's function approach with a Landauer formalism, we find spin-dependent transport in short aromatic molecules by applying external magnetic fields. Additionally, we find that the magnetoresistance of aromatic molecules can reach different values, which are dependent on the variations in the applied magnetic field, length of the molecules, and the interactions between the contacts and the aromatic molecule.

  19. Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M(II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH2)

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, Ayman A.; Salem, Abdel Naby M.; Sayed, Mostafa A.; Aboaly, Mohamed M.

    2012-02-01

    The reactions of acetate salts of M(II) (M = Mn, Co, Ni, Cu and Zn) with N-salicylidene-o-aminophenol (saphH2) in ethyl alcohol afforded new four coordinated complexes with the general formula [M(II)(saph)(H2O)]. The complexes have been fully characterized by microanalysis, molar conductance, magnetic susceptibility, 1H NMR, IR, UV-Vis, ESR, mass spectra and thermogravimetric analysis (TGA). The experimental data have been shown that all complexes are mononuclear with the M(II) being coordinated by a dianionic tridentate Schiff base ligand, through the deprotonated two enolic oxygen and the azomethine nitrogen atoms. UV-Vis spectra and magnetic moments have been suggested square planar stereochemistry for Co(II) and Cu(II) complexes, and tetrahedral geometry has been suggested for Mn(II), Ni(II) and Zn(II) complexes. The new complexes have been tested for their abilities to catalyze aerial oxidation of benzaldehyde to benzoic acid. Finally, in view of the biological activity, antibacterial and antifungal tests of the ligand and its complexes have been carried out and the results were compared with some known antibiotics.

  20. Synthesis and characterization of a nickel(II) complex of 9-methoxy-2,3-dihydro-1,4-benzoxyzepine derived from a Schiff base ligand and its ligand substitution reaction

    NASA Astrophysics Data System (ADS)

    Saha, Sudeshna; Kottalanka, Ravi K.; Bhowmik, Prasanta; Jana, Subrata; Harms, Klaus; Panda, Tarun K.; Chattopadhyay, Shouvik; Nayek, Hari Pada

    2014-03-01

    A Schiff base ligand (2-{(E)-[2-bromoethyl)imino]methyl}-6-methoxy phenol (LH) has been synthesized and characterized by NMR, IR spectroscopy and elemental analysis. The reaction of LH with nickel acetate tetrahydrate results in the formation of a nickel(II) complex (1). The ligand (LH) has been converted into a heterocyclic moiety, 9-methoxy-2,3-dihydro-1,4-benzoxyzepine (L) in 1 and coordinated to nickel(II) ion. Ligand substitution reaction of 1 with 3-aminopyridine leads to the formation of 3-aminopyridine derivative of complex 1, [{3-(NH2-Py)}4Ni(H2O)2]Br2?2(CH2Cl2) (2). Complexes 1 and 2 were characterized by using standard analytical techniques and their solid-state structures were confirmed by single crystal X-ray diffraction studies. Complex 1 crystallizes in orthorhombic space group Pccn with cell dimensions of a = 7.8483(10) Å, b = 30.662(3) Å, c = 9.3872(11) Å, Z = 4 and complex 2 crystallizes in orthorhombic space group Fddd with cell dimensions of a = 8.8108(4) Å, b = 21.0583(11) Å, c = 34.1913(17) Å, Z = 8. The optical properties and thermogravimetric analyses of complexes 1 and 2 are also reported.

  1. Chemoprevention of Colonic Aberrant Crypt Foci by Novel Schiff Based Dichlorido(4-Methoxy-2-{[2-(Piperazin-4-Ium-1-Yl)Ethyl]Iminomethyl}Phenolate)Cd Complex in Azoxymethane-Induced Colorectal Cancer in Rats

    PubMed Central

    Hajrezaie, Maryam; Shams, Keivan; Moghadamtousi, Soheil Zorofchian; Karimian, Hamed; Hassandarvish, Pouya; Emtyazjoo, Mozhgan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    Schiff-based complexes as a source of cancer chemotherapeutic compounds have been subjected to the variety of anticancer studies. The in-vitro analysis confirmed the CdCl2(C14H21N3O2) complex possess cytotoxicity and apoptosis induction properties in colon cancer cells, so lead to investigate the inhibitory efficiency of the compound on colonic aberrant crypt foci (ACF). Five groups of adult male rats were used in this study: Vehicle, cancer control, positive control groups and the groups treated with 25 and 50?mg/kg of complex for 10 weeks. The rats in vehicle group were injected subcutaneously with 15?mg/kg of sterile normal saline once a week for 2 weeks and orally administered with 5% Tween-20 (5?ml/kg) for 10 weeks, other groups were injected subcutaneously with 15?mg/kg azoxymethane once a week for 2 weeks. The rats in positive groups were injected intra-peritoneally with 35?mg/kg 5-Flourouracil four times in a month. Administration of the complex suppressed total colonic ACF formation up to 73.4% (P?

  2. Syntheses, crystal structure, spectroscopic and photoluminescence studies of mononuclear copper(II), manganese(II), cadmium(II), and a 1D polymeric Cu(II) complexes with a pyrimidine derived Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Ray, Sangita; Konar, Saugata; Jana, Atanu; Das, Kinsuk; Dhara, Anamika; Chatterjee, Sudipta; Kar, Susanta Kumar

    2014-01-01

    The complexation behaviour of Schiff base ligand 2-((2-(4,6-dimethylpyrimidin-2-yl)hydrazono)methyl)phenol [HL] towards different metal centres is reported by the syntheses and characterization of three mononuclear Cu(II), Mn(II) and Cd(II) complexes, [Cu(L)(H2O)2](NO3)(H2O) (1), [Mn(L)2](CH3OH) (2), [Cd(L)2](CH3OH) (3) and a 1D polymeric Cu(II) complex, [Cu(L)(ClO4)(C2N2O2H)]n(CH3OH) (4) respectively. In the complexes 1-4 the deprotonated uninegative tridentate ligand serves as NNO donor where one pyrimidine ring N, the azomethine N and the salicyl hydroxyl oxygen atoms are coordinatively active. The complex 1 has almost square pyramidal geometry [? = 0.2081] whereas the metal centres maintain distorted octahedral geometry in the remaining three complexes 2-4. All the complexes are characterized by X-ray crystallography. The Cd(II) complex has considerable fluorescence while the rest of the complexes and the ligand molecule are fluorescent silent.

  3. Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    The novel Schiff base ligand 2-(4-(dimethylamino)benzylidene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 4-dimethylaminobenzaldehyde and its newly synthesized Cu(II), Co(II), Ni(II) and Zn(II) complexes have been characterized by microanalysis, magnetic susceptibility, molar conductance, thermal analysis, FT-IR, 1H NMR, ESI mass, UV-Visible, ESR spectroscopy and powder X-ray diffraction data. The newly synthesized ligand behaves as a bidentate ON donor. The IR results confirmed the bidentate binding of the ligand involving oxygen atom of amide carbonyl and azomethine nitrogen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of all the compounds against Artemia salina. Furthermore, the antioxidant activity of the ligand (L) and its metal complexes were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH), the ligand exhibited potent in vitro - antioxidant activity than its metal complexes.

  4. Synthesis, spectral characterization and antimicrobial studies of nano-sized oxovanadium(IV) complexes with Schiff bases derived from 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazole and indoline-2,3-dione

    NASA Astrophysics Data System (ADS)

    Sahani, M. K.; Yadava, U.; Pandey, O. P.; Sengupta, S. K.

    A new class of oxovanadium(IV) complexes with Schiff bases derived by the condensation of 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazoles and indoline-2,3-dione have been prepared in ethanol in the presence of sodium acetate. Micro-analytical data, magnetic susceptibility, UV-Vis, IR, EPR and XRD spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-pyramidal geometry. The oxovanadium(IV) complexes have monoclinic crystal system and particle sizes were found to be in the range 18.0 nm to 24.0 nm (nano-size). In vitro antifungal activity of synthesized compounds was determined against fungi Aspergillus niger, Colletotrichum falcatum and Colletotrichum pallescence and in vitro antibacterial activity was determined by screening the compounds against Gram-negative (Escherichia coli and Salmonella typhi) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains. The oxovanadium(IV) complexes have higher antimicrobial effect than free ligands.

  5. Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds.

    PubMed

    Gorczy?ski, Adam; Pakulski, Dawid; Szyma?ska, Martyna; Kubicki, Maciej; Bu?at, Kornela; ?uczak, Teresa; Patroniak, Violetta

    2016-03-01

    Facile and efficient template synthesis of new manganese(II) complex [Mn2(H2L)2](ClO4)2 (1) and its crystal structure are reported. Self-assembly leads to the formation of dinuclear, phenoxo-bridged closed species via exploitation of both binding subunits of the in situ formed new Schiff-base ligand. Gold electrode modified with self-assembled monolayers (SAMs) composed of synthesized complex 1 was applied as a voltammetric sensor for quantitative determination of dopamine (DA) in the presence of ascorbic (AA) and uric acids (UA). The linear relationship between the current response of dopamine at the potential of peak maximum and the concentration was found over a wide analyte concentration range (R(2)?0.993, 1×10(-10)-8.5×10(-4)M) with a very good sensitivity (4.11Acm(-2)M(-1) at dE/dt=0.1Vs(-1)), high detection limit (6.8×10(-9)M) and excellent reproducibility. It has been proven that current peaks of dopamine, ascorbic and uric acids were clearly separated from each other, thus enabling selective detection of these compounds coexisting in a mixture. PMID:26717851

  6. Synthesis, characterization, X-ray crystal structure and conductometry studying of a number of new Schiff base complexes; a new example of binuclear square pyramidal geometry of Cu(II) complex bridged with an oxo group

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Alavipour, Ehsan

    2015-11-01

    Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.

  7. Aromatic nitrogen mustard-based prodrugs: activity, selectivity, and the mechanism of DNA cross-linking.

    PubMed

    Chen, Wenbing; Han, Yanyan; Peng, Xiaohua

    2014-06-10

    Three novel H2O2-activated aromatic nitrogen mustard prodrugs (6-8) are reported. These compounds contain a DNA alkylating agent connected to a H2O2-responsive trigger by different electron-withdrawing linkers so that they are inactive towards DNA but can be triggered by H2O2 to release active species. The activity and selectivity of these compounds towards DNA were investigated by measuring DNA interstrand cross-link (ICL) formation in the presence or absence of H2O2. An electron-withdrawing linker unit, such as a quaternary ammonia salt (6), a carboxyamide (7), and a carbonate group (8), is sufficient to deactivate the aromatic nitrogen mustard resulting in less than 1.5?% cross-linking formation. However, H2O2 can restore the activity of the effectors by converting a withdrawing group to a donating group, therefore increasing the cross-linking efficiency (>20?%). The stability and reaction sites of the ICL products were determined, which revealed that alkylation induced by 7 and 8 not only occurred at the purine sites but also at the pyrimidine site. For the first time, we isolated and characterized the monomer adducts formed between the canonical nucleosides and the aromatic nitrogen mustard (15) which supported that nitrogen mustards reacted with dG, dA, and dC. The activation mechanism was studied by NMR spectroscopic analysis. An in vitro cytotoxicity assay demonstrated that compound 7 with a carboxyamide linker dramatically inhibited the growth of various cancer cells with a GI50 of less than 1??M, whereas compound 6 with a charged linker did not show any obvious toxicity in all cell lines tested. These data indicated that a neutral carboxyamide linker is preferable for developing nitrogen mustard prodrugs. Our results showed that 7 is a potent anticancer prodrug that can serve as a model compound for further development. We believe these novel aromatic nitrogen mustards will inspire further and effective applications. PMID:24806710

  8. Base sequence effects on interactions of aromatic mutagens with DNA. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Geacintov, N.E.

    1992-09-30

    The chemical binding of bulky, mutagenic and carcinogenic polynuclear aromatic compounds to certain base-sequences in genomic DNA is known to inhibit DNA replication, and to induce mutations and cancer. In particular, sequences that contain multiple consecutive guanines appear to be hot spots of mutation. The objectives of this research are to determine how the base sequence around the mutagen-modified target bases influences the local DNA conformation and gives rise to mispairing of bases, or deletions, near the lesion. Oligonucleotides containing one, two, or three guanines were synthesized and chemically reacted with the mutagen anti-7,8-dihydroxy-9,10-epoxy-benzo[a]pyrene (BPDE), one of the most mutagenic and tumorigenic metabolites of benzo[a]pyrene. Adducts are formed in which only one of the guanines is modified by trans or cis addition to the exocyclic amino group. The BPDE-oligonucleotides are separated chromatographically, and the site of modification is established by Maxam-Gilbert high resolution gel electrophoresis techniques. The thermodynamic properties of duplexes using complementary, or partially complementary strands were examined. In the latter, the base opposite the modified guanine was varied in order to investigate the probability of mispairing of the modified G with A,T and G. The successful synthesis of stereospecific and site-specific mutagen-oligonucleotide adducts opens new possibilities for correlating adduct structure-biological activity relationships, and thus lead to a better understanding of base-sequence effects in mutagenesis induced by energy-related bulky polynuclear aromatic chemicals.

  9. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum: Preliminary separation and analysis of acid, base, saturate, and neutral-aromatic fractions

    SciTech Connect

    Green, J.B.; Sturm, G.P. Jr.; Reynolds, J.W.; Thomson, J.S.; Yu, S.K-T.; Grigsby, R.D.; Tang, S.Y.; Shay, J.Y.; Hirsch, D.E.; Sanchez, V.

    1988-10-01

    Cerro Negro 200-425/degree/, 425-550/degree/, and 550-700/degree/C distillates and >700/degree/C residue were separated into acid, base, and neutral concentrates using an improved nonaqueous ion exchange liquid chromatographic procedure. Neutral concentrates were further separated into neutral aromatic and saturated hydrocarbon fractions. A dual column, normal phase high performance liquid chromatographic method was developed for the saturate-aromatic separation. Mass and elemental balances are given for separations of all distillates and the residue. In addition, fractions from the 200-425/degree/C and 425-550/degree/C distillates were analyzed by high resolution mass spectrometry. The applicability of published separation approaches and methods to heavy oil analysis is critically reviewed; the bulk of the available methodology developed for conventional petroleum and synfuels was found to be unproven or unsuitable for heavy oil analysis. Cerro Negro was found to contain 18.2 weight percent acids, 17.6 weight percent bases, 46.9 weight percent neutral aromatics, and 14.7 weight percent saturated hydrocarbons. Saturate fractions contained predominantly cycloparaffins, neutral-aromatics were largely comprised of aromatic hydrocarbons and sulfur compounds, bases were largely nitrogen-containing compounds, and acids were mostly oxygen-containing compounds and nitrogen compounds of pyrrolic type. 145 refs., 24 figs., 21 tabs.

  10. Aromatic-Aromatic Interactions Database, A(2)ID: an analysis of aromatic ?-networks in proteins.

    PubMed

    Chourasia, Mukesh; Sastry, G Madhavi; Sastry, G Narahari

    2011-05-01

    The geometrical arrangement of the aromatic rings of phenylalanine, tyrosine, tryptophan and histidine has been analyzed at a database level using the X-ray crystal structure of proteins from PDB in order to find out the aromatic-aromatic (?-?) networks in proteins and to understand how these aromatic rings are connected with each-other in a specific ?-? network. A stringent examination of the 7848 proteins indicates that close to 89% of the proteins have occurrence of at least a network of 2? or a higher ?-? network. The occurrence of ?-? networks in various protein superfamilies based on SCOP, CATH and EC classifiers has also been probed in the present work. In general, we find that multidomain and membrane proteins as well as lyases show a more number of these networks. Analysis of the distribution of angle between planes of two proximal aromatic rings (?) distribution indicates that at a larger cutoff distance (between centroid of two aromatic rings), above 5?, C-H?? interactions (T-shaped orientation) are more prevalent, while ?-? interactions (stacked orientation) are more prevalent at a smaller cutoff distance. The connectivity patterns of ?-? networks propose strong propensity of finding arrangement of aromatic residues as clusters rather than linear arrangement. We have also made a public domain database "Aromatic-Aromatic Interactions Database" (A(2)ID) comprising of all types of ?-? networks and their connectivity pattern present in proteins. It can be accessed by url http://203.199.182.73/gnsmmg/databases/aidb/aidb.html. PMID:21255607

  11. Fire- and heat-resistant laminating resins based on maleimido-substituted aromatic cyclotriphosphazenes

    NASA Technical Reports Server (NTRS)

    Kumar, D.; Fohlen, G. M.; Parker, J. A.

    1983-01-01

    A novel class of flame- and heat-resistant polymers has been synthesized by the thermal polymerization of maleimido-substituted aromatic cyclotriphosphazenes. The polymer obtained from tris-(aminophenoxy)tris(maleimidophenoxy)cyclotriphosphazene has good thermal stability and is noteworthy for its high char yield, viz., 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates prepared with this polymer did not burn in pure oxygen, even at 300 C, and were tested for mechanical properties. Hexakis(4-maleimidophenoxy)cyclotriphosphazene and some fluorine-containing monomers have also been synthesized. The structures of these cyclic phosphazene precursors and polymers were characterized by FT IR spectrophotometry, H-1 NMR, F-19 NMR, and P-31 solid-state magic angle spinning NMR spectroscopy, and mass spectrometry. The curing behavior of the polymer precursors and the thermal stabilities of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA).

  12. Construction of Identical [2 + 2] Schiff-Base Macrocyclic Ligands by Ln(III) and Zn(II) Template Ions Including Efficient Yb(III) Near-Infrared Sensitizers.

    PubMed

    Zhang, Kun; Zhang, Lei; Zhang, Song; Hu, Yong; Zheng, Youxuan; Huang, Wei

    2015-06-01

    Identical 34-membered [2 + 2] pendent-armed Schiff-base macrocyclic ligands (H4La and H4Lb) can be constructed via the condensation reactions between rigid o-phenylenediamine and extended dialdehydes (H2hpdd/H2pdd) in the presence of either Ln(III) or Zn(II) template with remarkable distinction on the ion radii and charge. X-ray single-crystal diffraction analyses reveal the formation of mononuclear Ln(III) complexes (1-4 and 7) and dinuclear Zn(II) complexes (5 and 6). It is noted that Ln(III) macrocyclic complexes have eight-coordinate sandwich-like mononuclear structures fully surrounded by flexible and large-sized macrocyclic ligands. Photophysical studies have demonstrated that both H4La and H4Lb can serve as effective sensitizers for the Yb(III) ion (2 and 7) exhibiting near-infrared emission at 974 nm with high quantum yields in solution (C2H5OH and CH3OH, ?1%). Moreover, the quantum yields of two Yb(III) complexes 2 and 7 could be increased ?15% in CH3OH under weak alkaline condition (pH = 8-9), while no significant changes are observed in C2H5OH by contrast. We think the unique sandwich-like macrocyclic structures of Yb(III) complexes 2 and 7 play important roles in simultaneously guaranteeing the effective match of the energy levels of Yb(III) centers as well as shielding from the solvent molecules and counterions. PMID:25955805

  13. Synthesis, spectroscopic, thermal and antimicrobial studies of some novel metal complexes of Schiff base derived from [ N1-(4-methoxy-1,2,5-thiadiazol-3-yl)sulfanilamide] and 2-thiophene carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Sharaby, Carmen M.

    2007-04-01

    Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO 2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M 2X 4(HL)(H 2O) 4] (where M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl, [Fe 2Cl 6(HL)(H 2O) 2], [(FeSO 4) 2(HL)(H 2O) 4] and [(UO 2) 2(HL) (NO 3) 4]·H 2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as ? E*, ? H*, ? S*, and ? G* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.

  14. The new Schiff base 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: Experimental, DFT calculational studies and in vitro antimicrobial activity

    NASA Astrophysics Data System (ADS)

    ?skeleli, Nazan Ocak; Alpaslan, Yelda Bingöl; Direkel, ?ahin; Ertürk, Aliye Gediz; Süleymano?lu, Nevin; Ustaba?, Re?at

    2015-03-01

    The synthesized Schiff base, 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (I), has been characterized by 13C NMR, 1H NMR, 2D NMR (1H-1H COSY and 13C APT), FT-IR, UV-vis and X-ray single-crystal techniques. Molecular geometry of the compound I in the ground state, vibrational frequencies and chemical shift values have been calculated by using the density functional method (DFT) with 6-311++G(d,p) basis set. The obtained results indicate that optimized geometry can well reflect the crystal structural parameters. The differences between experimental and calculated results of FT-IR and NMR have supported the existence of intermolecular (O-H⋯O type) and intramolecular (C-H⋯O type) hydrogen bonds in the crystal structure. Molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO) and electronic absorption spectra were carried out at B3LYP/6-311G++(d,p). HOMO-LUMO electronic transition of 3.92 eV is due to contribution of the bands the n ? ??. The antimicrobial activity of the compound I was determined against the selected 11 bacteria and 8 fungi by microdilution broth assay with Alamar Blue. In vitro studies showed that the compound I has no antifungal effect for selected fungal isolates. However, the compound I shows remarkable antibacterial effect for the bacteria; Streptococcus pneumoniae, Haemophilus influenzae and Enterococcus faecalis.

  15. Molecular structure and electrochemical behavior of uranyl(VI) complex with pentadentate Schiff base ligand: prevention of uranyl(V) cation-cation interaction by fully chelating equatorial coordination sites.

    PubMed

    Takao, Koichiro; Kato, Masaru; Takao, Shinobu; Nagasawa, Akira; Bernhard, Gert; Hennig, Christoph; Ikeda, Yasuhisa

    2010-03-01

    The U(VI) complex with a pentadentate Schiff base ligand (N,N'-disalicylidenediethylenetriaminate = saldien(2-)) was prepared as a starting material of a potentially stable U(V) complex without any possibility of U(V)O(2)(+)...U(V)O(2)(+) cation-cation interaction and was found in three different crystal phases. Two of them had the same composition of U(VI)O(2)(saldien) x DMSO in orthorhombic and monoclinic systems (DMSO = dimethyl sulfoxide, 1a and 1c, respectively). The DMSO molecule in both 1a and 1c does not show any coordination to U(VI)O(2)(saldien), but it is just present as a solvent in the crystal structures. The other isolated crystals consisted only of U(VI)O(2)(saldien) without incorporation of solvent molecules (1b, orthorhombic). A different conformation of the coordinated saldien(2-) in 1c from those in 1a and 1b was observed. The conformers exchange each other in a solution through a flipping motion of the phenyl rings. The pentagonal equatorial coordination of U(VI)O(2)(saldien) remains unchanged even in strongly Lewis-basic solvents, DMSO and N,N-dimethylformamide. Cyclic voltammetry of U(VI)O(2)(saldien) in DMSO showed a quasireversible redox reaction without any successive reactions. The electron stoichiometry determined by the UV-vis-NIR spectroelectrochemical technique is close to 1, indicating that the reduction product of U(VI)O(2)(saldien) is [U(V)O(2)(saldien)](-), which is stable in DMSO. The standard redox potential of [U(V)O(2)(saldien)](-)/U(VI)O(2)(saldien) in DMSO is -1.584 V vs Fc/Fc(+). This U(V) complex shows the characteristic absorption bands due to f-f transitions in its 5f(1) configuration and charge-transfer from the axial oxygen to U(5+). PMID:20108945

  16. Mechanism-based Inactivation by Aromatization of the Transaminase BioA Involved in Biotin Biosynthesis in Mycobaterium tuberculosis

    SciTech Connect

    Shi, Ce; Geders, Todd W.; Park, Sae Woong; Wilson, Daniel J.; Boshoff, Helena I.; Abayomi, Orishadipe; Barry, III, Clifton E.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2011-11-16

    BioA catalyzes the second step of biotin biosynthesis, and this enzyme represents a potential target to develop new antitubercular agents. Herein we report the design, synthesis, and biochemical characterization of a mechanism-based inhibitor (1) featuring a 3,6-dihydropyrid-2-one heterocycle that covalently modifies the pyridoxal 5'-phosphate (PLP) cofactor of BioA through aromatization. The structure of the PLP adduct was confirmed by MS/MS and X-ray crystallography at 1.94 {angstrom} resolution. Inactivation of BioA by 1 was time- and concentration-dependent and protected by substrate. We used a conditional knock-down mutant of M. tuberculosis to demonstrate the antitubercular activity of 1 correlated with BioA expression, and these results provide support for the designed mechanism of action.

  17. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes.

    PubMed

    Han, Juanjuan; Liu, Qiong; Li, Xueqi; Pan, Jing; Wei, Ling; Wu, Ying; Peng, Hanqing; Wang, Ying; Li, Guangwei; Chen, Chen; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2015-02-01

    Aromatic ether-based alkaline polymer electrolytes (APEs) are one of the most popular types of APEs being used in fuel cells. However, recent studies have demonstrated that upon being grafted by proximal cations some polar groups in the backbone of such APEs can be attacked by OH(-), leading to backbone degradation in an alkaline environment. To resolve this issue, we performed a systematic study on six APEs. We first replaced the polysulfone (PS) backbone with polyphenylsulfone (PPSU) and polyphenylether (PPO), whose molecular structures contain fewer polar groups. Although improved stability was seen after this change, cation-induced degradation was still obvious. Thus, our second move was to replace the ordinary quaternary ammonia (QA) cation, which had been closely attached to the polymer backbone, with a pendant-type QA (pQA), which was linked to the backbone through a long side chain. After a stability test in a 1 mol/L KOH solution at 80 °C for 30 days, all pQA-type APEs (pQAPS, pQAPPSU, and pQAPPO) exhibited as low as 8 wt % weight loss, which is close to the level of the bare backbone (5 wt %) and remarkably lower than those of the QA-type APEs (QAPS, QAPPSU, and QAPPO), whose weight losses under the same conditions were >30%. The pQA-type APEs also possessed clear microphase segregation morphology, which led to ionic conductivities that were higher, and water uptakes and degrees of membrane swelling that were lower, than those of the QA-type APEs. These observations unambiguously indicate that designing pendant-type cations is an effective approach to increasing the chemical stability of aromatic ether-based APEs. PMID:25594224

  18. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment.

    PubMed

    Sponer, Ji?í; Sponer, Judit E; Mládek, Arnošt; Jure?ka, Petr; Banáš, Pavel; Otyepka, Michal

    2013-12-01

    Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific ?-? energy term associated with the delocalized ? electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 978-988, 2013. PMID:23784745

  19. Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray.

    PubMed

    Hirano, Minoru; Tanaka, Shiho; Asami, Osamu

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogenomics in the recent years. To evaluate the mutagenicity of PAHs and constituents of environmental pollutants in lung tissue, including metabolic activation, human alveolar epithelial type II cells (A549) were treated with nonmutagenic PAH pyrene and with the mutagenic PAHs benzo-[a]-pyrene, 1-nitropyrene, or 1,8-dinitropyrene. Comparison of genome-wide microarray expression profiles between a nonmutagenic and a mutagenic PAH-treated group revealed that xenobiotic response genes such as CYP1B1 were commonly upregulated in two groups and that DNA damage induced genes, especially p53-downstream genes such as p21 (CDKN1A) were upregulated only in the mutagenic PAH-treated group. Pretreatment with cytochrome P450 inhibitor ?-naphthoflavone or p53 inhibitor pifithrin-? inhibited the benzo-[a]-pyrene-induced p21 expression. These data suggest that when PAHs enter the cells, lung epithelium induces PAH metabolic activating enzymes, and then the DNA damages-recognition signal is converged with p53 downstream genes. This metabolic activation and DNA damage is induced in lung epithelium, and the mutagenicity of PAHs can be classified by DNA microarray expression profiles. PMID:21887816

  20. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles.

    PubMed

    Fleming, Scott; Debnath, Sisir; Frederix, Pim W J M; Hunt, Neil T; Ulijn, Rein V

    2014-04-14

    The coassembly of small molecules is a useful means of increasing the complexity and functionality of their resultant supramolecular constructs in a modular fashion. In this study, we explore the assembly and coassembly of serine surfactants and tyrosine-leucine hydrogelators, capped at the N-termini with either fluorenyl-9-methoxycarbonyl (Fmoc) or pyrene. These systems all exhibit self-assembly behavior, which is influenced by aromatic stacking interactions, while the hydrogelators also exhibit ?-sheet-type arrangements, which reinforce their supramolecular structures. We provide evidence for three distinct supramolecular coassembly models; cooperative, disruptive, and orthogonal. The coassembly mode adopted depends on whether the individual constituents (I) are sufficiently different, such that effective segregation and orthogonal assembly occurs; (II) adhere to a communal mode of self-assembly; or (III) act to compromise the assembly of one another via incorporation and disruption. We find that a greater scope for controllable coassembly exists within orthogonal systems; which show minimal relative changes in the native gelator's supramolecular structure by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and fluorescence spectroscopy. This is indicative of the segregation of orthogonal coassembly constituents into distinct domains, where surfactant chemical functionality is presented at the surface of the gelator's supramolecular fibers. Overall, this work provides new insights into the design of modular coassembly systems, which have the potential to augment the chemical and physical properties of existing gelator systems. PMID:24568678

  1. Skin Reactions to Pine Processionary Caterpillar Thaumetopoea pityocampa Schiff

    PubMed Central

    Foti, Caterina; Vestita, Michelangelo; Angelini, Gianni

    2013-01-01

    Pine caterpillar, Thaumetopoea pityocampa Schiff, is a phyto- and xylophagous lepidopteran, responsible for the delay in the growth or the death of various types of pines. Besides nature damage, pine caterpillar causes dermatological reactions in humans by contact with its irritating larvae hairs. Although the dermatitis occurs among outdoor professionals, it is primarily extraprofessional. Contamination generally occurs in pinewoods, rarely in cities. Means of contamination comprise direct contact with the nest or the processional caterpillar and indirect contact with air dispersed hairs. The dermatitis is generally observed in late spring and particularly from April to June, among campers and tourers. The eruption has its onset 1–12 hours after contact with the hairs and presents with intense and continuous itching. Morphologically, it is strophulus-like and consists of papulous, excoriated, and pinkish lesions on an oedematous base. Diagnosis is usually straightforward. The pathogenetic mechanism of the affection is mechanical, pharmacological, and allergic in nature. Besides skin, T. pityocampa Schiff can involve the eyes and rarely the airways. Despite the considerable damages to humans and nature, pine caterpillar infestation is an underestimated problem; medical literature lists few studies, and often relevant information is referred to local media and popular wisdom. PMID:23781164

  2. Synthesis, reactivity, and coordination chemistry relevant to the copolymerization of CO2 and epoxides by first row transition metal schiff base complexes 

    E-print Network

    Frantz, Eric Benjamin

    2009-05-15

    Excepting agricultural based products, which themselves require a great deal of energy to produce, our supply of natural resources such as minerals, metal ore, fresh water, coal, oil and natural gas are all limited in ...

  3. Inhibition of rabbit muscle aldolase by phosphorylated aromatic compounds.

    PubMed Central

    Blonski, C; De Moissac, D; Périé, J; Sygusch, J

    1997-01-01

    The interactions of the phosphorylated derivatives of hydroquinone (HQN-P2), resorcinol (RSN-P2), 4-hydroxybenzaldehyde (HBA-P) and 2, 4-dihydroxybenzaldehyde (DHBA-P; phosphate group at position 4) with fructose bisphosphate aldolase were analysed by enzyme kinetics, UV/visible difference spectroscopy and site-directed mutagenesis. Enzyme activity was competitively inhibited in the presence of HQN-P2, RSN-P2 and HBA-P, whereas DHBA-P exhibited slow-binding inhibition. Inhibition by DHBA-P involved active-site Schiff-base formation and required a phenol group ortho to the aldehyde moiety. Rates of enzyme inactivation and of Schiff-base formation by DHBA-P were identical, and corresponded to 3.2-3.5 DHBA-P molecules covalently bound per aldolase tetramer at maximal inactivation. Site-directed mutagenesis of the active-site lysine residues at positions 107, 146 and 229 was found to be consistent with Schiff-base formation between DHBA-P and Lys-146, and this was promoted by Lys-229. Mutation of Glu-187, located vicinally between Lys-146 and Lys-229 in the active site, perturbed the rate of Schiff-base formation, suggesting a functional role for Glu-187 in Schiff-base formation and stabilization. The decreased cleavage activity of the active-site mutants towards fructose 1, 6-bisphosphate is consistent with a proton-transfer mechanism involving Lys-229, Glu-187 and Lys-146. PMID:9173904

  4. A simple and rapid analysis for gas-phase polycyclic aromatic hydrocarbons using an organic-solvent-based method

    NASA Astrophysics Data System (ADS)

    Jin, Guangzhu; Cong, Linlin; Wang, Hao; He, Miao; Li, Junlin; Piao, Xiangfan; Zhu, Weihong; Li, Donghao

    2014-06-01

    Monitoring of atmospheric organic pollutants is usually conducted by means of active or passive air samplers. In this study, we developed a simple, conventional, economic and fast sampling method for volatile and semivolatile compounds that is based on a liquid-phase organic solvent. Laboratory tests showed the feasibility of the method, and the major parameters of the method, such as temperature, organic solvent, carrier gas and air flow rate, were preliminarily optimized. For 16 kinds of polycyclic aromatic hydrocarbons (PAHs), the recovery, relative standard deviation and detection limit were ranged from 87.0 to 104.4%, 2.6 to 15.6% and 0.08 to 0.45 ng mL-1, respectively. Field application of the new method also showed good sampling efficiency for PAHs in real air samples, comparable to the results with an XAD-2 resin-based method. The similarity was closed to 1, suggesting that the new method is suitable for sampling of volatile and semivolatile organic pollutants in air and has great potential for air-pollution monitoring.

  5. Uncertainty analysis for an equilibrium partitioning-based estimator of polynuclear aromatic hydrocarbon bioaccumulation potential in sediments

    SciTech Connect

    Clarke, J.U.; McFarland, V.A.

    2000-02-01

    In regulatory evaluations of contaminated sediments, an equilibrium partitioning-based screening test called theoretical bioaccumulation potential (TBP) is often performed to estimate the probable concentrations of neutral organic contaminants that would eventually accumulate in aquatic organisms from continuous exposure to a sediment. The TBP is calculated from contaminant concentration and organic carbon content of the sediment, lipid content of target organisms, and a partition coefficient, usually the biota-sediment accumulation factor (BSAF). However, routine applications of TBP have not included analysis of uncertainty. This paper demonstrates two methods for uncertainty analysis of TBP: a computational method that incorporates random and systematic error and a simulation method using bootstrap resampling of replicated model input parameters to calculate statistical uncertainty measures. For prediction of polynuclear aromatic hydrocarbon (PAH) bioaccumulation in bivalves exposed to contaminated sediments, uncertainty as a factor of TBP ranged from 1.2 to 4.8 using the computational method and 0.5 to 1.9 based on bootstrap 95% confidence intervals. Sensitivity analysis indicated that BSAF parameters, especially tissue contaminant concentration and lipid content, contributed most to TBP uncertainty. In bootstrap tests of significance, TBP significantly over- or underestimated actual PAH bioaccumulation in bivalves in 41% and 10% of comparisons, respectively.

  6. Polyphenylquinoxalines via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1991-01-01

    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents during alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.

  7. Synthesis and characterization of substituted Schiff-base ligands and their d(10) metal complexes: structure-induced luminescence tuning behaviors and applications in co-sensitized solar cells.

    PubMed

    Dong, Yu-Wei; Fan, Rui-Qing; Wang, Ping; Wei, Li-Guo; Wang, Xin-Ming; Zhang, Hui-Jie; Gao, Song; Yang, Yu-Lin; Wang, Yu-Lei

    2015-03-28

    Nine IIB group complexes, [ZnL1Cl2] (Zn1), [CdL1Cl2]2 (Cd1), [HgL1Cl2] (Hg1), [ZnL2Cl2] (Zn2), [CdL2Cl2] (Cd2), [HgL2Cl2] (Hg2), [ZnL3Cl2] (Zn3), [CdL3Cl2] (Cd3) and [HgL3Cl2] (Hg3), have been synthesized from the corresponding ortho-(6-methoxy-pyridyl)(CH[double bond, length as m-dash]NAr) (where Ar = 2,6-iPr2C6H3, L1; 4-MeC6H4, L2; 2-OMeC6H4, L3) Schiff base and structurally characterized by elemental analysis, FT-IR, (1)H NMR and X-ray single-crystal analysis. Crystallographic studies reveal that the center metal of the complexes adopts a distorted tetrahedron geometry (except for Cd1 and Cd3, which display square pyramidal geometry) and C-HCl hydrogen bonds and ?? stacking interactions contribute to three-dimensional supramolecular structures. The series of complexes exhibit tunable luminescence from blue, through green, to light yellow by varying the temperature (298 K and 77 K), both in solution and in the solid state. Moreover, the quantum yields range from 0.027 to 0.422, and decrease according to the order of the periodic table (Zn > Cd > Hg). These results indicate that the center atom of the complexes leads to the geometry differences and hence to the tunable luminescence properties. Because Zn1-Zn3 exhibited higher molar extinction coefficients and a distinct absorption region, they were employed as co-sensitizers in ruthenium dye N719-sensitized photoanodes to deliver light-electricity efficiency enhancement, being assembled with counter-electrodes and electrolyte to prepare ZnX/N719 (where ZnX = Zn1, Zn2, and Zn3) co-sensitized dye sensitized solar cell (DSSC) devices. The prepared co-absorbent could overcome the deficiency of N719 absorption in the low-wavelength region of the visible spectrum, and offset competitive visible-light absorption of I3(-). Application of these prepared complexes in N719-sensitized solar cells enhanced their performance by 10-36%, which indicated a potential application of these types of complexes in DSSCs. PMID:25597537

  8. Polybenzimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (inventor); Hergenrother, Paul M. (inventor); Smith, Joseph G., Jr. (inventor)

    1995-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  9. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  10. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China.

    PubMed

    Duan, Yonghong; Shen, Guofeng; Tao, Shu; Hong, Jianping; Chen, Yuanchen; Xue, Miao; Li, Tongchao; Su, Shu; Shen, Huizhong; Fu, Xiaofang; Meng, Qingchun; Zhang, Jing; Zhang, Bing; Han, Xiaoying; Song, Kang

    2015-05-01

    There is wide concern about polycyclic aromatic hydrocarbons (PAHs) because of their carcinogenic and mutagenic potential. The coking industry is an important source of PAHs. In this study, 36 arable soil samples, a sensitive medium from the perspective of food safety and health, were collected from one of the largest coke production bases in China. The concentration of total 21 PAHs ranged from 294 to 1665 ng g(-1), with a mean of 822±355 ng g(-1). Approximately 60% of the soil samples were heavily polluted with the level higher than 600 ng g(-1). Particularly high abundances of high molecular weight PAHs were found, and the calculated BaPeq was as high as 54.3 ng g(-1). Soil PAH levels were positively correlated with soil organic matter content. The soil PAHs were from complex mixture sources, and high-temperature pyrogenic sources were most likely responsible for the heavy PAH contamination. Effective control strategies and probable remediation approaches should be proposed to improve soil quality. PMID:25655699

  11. Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons

    SciTech Connect

    Audebert, M.; Zeman, F.; Beaudoin, R.; Péry, A.; Cravedi, J.-P.; Université de Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toxalim, F-31076 Toulouse

    2012-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) constitute a family of over one hundred compounds and can generally be found in complex mixtures. PAHs metabolites cause DNA damage which can lead to the development of carcinogenesis. Toxicity assessment of PAH complex mixtures is currently expressed in terms of toxic equivalents, based on Toxicity Equivalent Factors (TEFs). However, the definition of new TEFs for a large number of PAH could overcome some limitations of the current method and improve cancer risk assessment. The current investigation aimed at deriving the relative potency factors of PAHs, based on their genotoxic effect measured in vitro and analyzed with mathematical models. For this purpose, we used a new genotoxic assay (?H2AX) with two human cell lines (HepG2 and LS-174T) to analyze the genotoxic properties of 13 selected PAHs at low doses after 24 h treatment. The dose–response for genotoxic effects was modeled with a Hill model; equivalency between PAHs at low dose was assessed by applying constraints to the model parameters. In the two cell lines tested, we observed a clear dose–response for genotoxic effects for 11 tested compounds. LS-174T was on average ten times more sensitive than HepG2 towards PAHs regarding genotoxicity. We developed new TEFs, which we named Genotoxic Equivalent Factor (GEF). Calculated GEF for the tested PAHs were generally higher than the TEF usually used. Our study proposed a new in vitro based method for the establishment of relevant TEFs for PAHs to improve cancer risk assessment. -- Highlights: ? Examination of the genotoxic properties of 13 PAHs on two human cell lines. ? Modelization with a Hill model of the genotoxic dose–response. ? First investigation of the genotoxicity of benzo[c]fluorene on human cell lines. ? Establishment of relevant TEFs for PAHs to improve cancer risk assessment.

  12. Compactness Aromaticity of Atoms in Molecules

    PubMed Central

    Putz, Mihai V.

    2010-01-01

    A new aromaticity definition is advanced as the compactness formulation through the ratio between atoms-in-molecule and orbital molecular facets of the same chemical reactivity property around the pre- and post-bonding stabilization limit, respectively. Geometrical reactivity index of polarizability was assumed as providing the benchmark aromaticity scale, since due to its observable character; with this occasion new Hydrogenic polarizability quantum formula that recovers the exact value of 4.5 a03 for Hydrogen is provided, where a0 is the Bohr radius; a polarizability based–aromaticity scale enables the introduction of five referential aromatic rules (Aroma 1 to 5 Rules). With the help of these aromatic rules, the aromaticity scales based on energetic reactivity indices of electronegativity and chemical hardness were computed and analyzed within the major semi-empirical and ab initio quantum chemical methods. Results show that chemical hardness based-aromaticity is in better agreement with polarizability based-aromaticity than the electronegativity-based aromaticity scale, while the most favorable computational environment appears to be the quantum semi-empirical for the first and quantum ab initio for the last of them, respectively. PMID:20480020

  13. Quantification of polycyclic aromatic hydrocarbons based on comprehensive two-dimensional gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Amador-Muñoz, Omar; Villalobos-Pietrini, Rafael; Aragón-Piña, Antonio; Tran, Tin C; Morrison, P; Marriott, Philip J

    2008-08-01

    Comprehensive two-dimensional gas chromatography (GCxGC) offers favourable resolution and sensitivity compared with conventional one-dimensional gas chromatography (1D-GC), as reported in many studies. These characteristics are of major interest when analytes are in trace concentration, and are present in complex mixtures, as is the case of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate samples. Whilst GCxGC has been widely applied to identification of different types of analytes in several matrices, less seldom has it been used for quantification of these analytes. Although several quantitative methods have been proposed, they may be tedious and/or require considerable user development. Whereas quantification in 1D-GC is a routine and well-established procedure, in GCxGC, it is not so straightforward, especially where novel or untested procedures have yet to be incorporated into software packages. In the present study, it is proposed that a subset of the modulated peaks generated for each solute may be summed, based on the specific target ion mass of each compound present in a certified standard reference material (SRM) 1649a (urban dust). The ratio between a PAH and its corresponding deuterated (PAH-d) form showed that there is no statistical loss of sensitivity when this ratio is calculated based on whether the total sum of modulated peaks, or if only the two or the three most intense modulated peaks, are employed. Manual integration may be required, and here was found to give more acceptable values than automatic integration. Automated integration has been shown here to underestimate the modulated peak responses when low concentrations of PAHs were analyzed. Although for most PAHs good agreement with the certified values were observed, the analytical method needs to be further optimized for some of the other PAH, as can be see with those PAH with high variability in the range of urban dust analyzed. PMID:18620359

  14. The effect of sorption on the degradation of aromatic acids and bases

    SciTech Connect

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound's binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  15. The effect of sorption on the degradation of aromatic acids and bases

    SciTech Connect

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound`s binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  16. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  17. Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro

    2015-09-01

    Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m3 for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m3.

  18. Radical based strategy toward the synthesis of 2,3-dihydrofurans from aryl ketones and aromatic olefins.

    PubMed

    Naveen, Togati; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-17

    A copper-mediated annulation of aryl ketones with a wide range of aromatic olefins has been developed. This strategy allowed convenient access to 2,3-dihydrofuran derivatives. The versatility of the protocol is shown by synthesizing ?-methyl dihydrofurans, which serve as an intermediate for the synthesis of vitamin B1. In addition, the applicability of the protocol in conjugated systems is demonstrated. A radical pathway was presumed and supported for annulation of aryl ketones with olefins. PMID:25275799

  19. Bosonic pair creation and the Schiff-Snyder-Weinberg effect

    E-print Network

    Q. Z. Lv; Heiko Bauke; Q. Su; C. H. Keitel; R. Grobe

    2015-10-19

    Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing specific external field configurations, two bound states can become pseudo degenerate, which is commonly referred to as Schiff-Snyder-Weinberg effect. These pseudo degenerate bound states, which have complex energy eigenvalues, are related to the pseudo hermiticity of the Klein-Gordon Hamiltonian. In this work, the influence of the Schiff-Snyder-Weinberg effect on pair production is studied. A generalized Schiff-Snyder-Weinberg effect, where several pairs of pseudo degenerate states appear, is found in combined electric and magnetic fields. The generalized Schiff-Snyder-Weinberg effect likewise triggers pair creation. The particle number in these situations obeys an exponential growth law in time enhancing the creation of bosons, which cannot be found in fermionic systems.

  20. Free energy profiles of base flipping in intercalative polycyclic aromatic hydrocarbon-damaged DNA duplexes: energetic and structural relationships to nucleotide excision repair susceptibility.

    PubMed

    Cai, Yuqin; Zheng, Han; Ding, Shuang; Kropachev, Konstantin; Schwaid, Adam G; Tang, Yijin; Mu, Hong; Wang, Shenglong; Geacintov, Nicholas E; Zhang, Yingkai; Broyde, Suse

    2013-07-15

    The crystal structure of Rad4/Rad23, the yeast homolog of the human nucleotide excision repair (NER) lesion recognition factor XPC-RAD23B ( Min , J. H. and Pavletich , N. P. ( 2007 ) Nature 449 , 570 - 575 ) reveals that the lesion-partner base is flipped out of the helix and binds to amino acids of the protein. This suggests the hypothesis that the flipping of this partner base must overcome a free energy barrier, which constitutes one element contributing to changes in the thermodynamic properties induced by the DNA damage and sensed by the recognition protein. We explored this hypothesis by computing complete flipping free energy profiles for two lesions derived from the procarcinogenic polycyclic aromatic hydrocarbons (PAHs), dibenzo[a,l]pyrene (DB[a,l]P) and benzo[a]pyrene (B[a]P), R-trans-anti-DB[a,l]P-N(6)-dA (R-DB[a,l]P-dA) and R-trans-anti-B[a]P-N(6)-dA (R-B[a]P-dA), and the corresponding unmodified duplex. The DB[a,l]P and B[a]P adducts differ in number and organization of their aromatic rings. We integrate these results with prior profiles for the R-trans-anti-DB[a,l]P-dG adduct ( Zheng , H. et al. ( 2010 ) Chem. Res. Toxicol. 23 , 1868 - 1870 ). All adopt conformational themes involving intercalation of the PAH aromatic ring system into the DNA duplex; however, R-DB[a,l]P-dA and R-B[a]P-dA intercalate from the major groove, while R-DB[a,l]P-dG intercalates from the minor groove. These structural differences produce different computed van der Waals stacking interaction energies between the flipping partner base with the lesion aromatic ring system and adjacent bases; we find that the better the stacking, the higher the relative flipping free energy barrier and hence lower flipping probability. The better relative NER susceptibilities correlate with greater ease of flipping in these three differently intercalated lesions. In addition to partner base flipping, the Rad4/Rad23 crystal structure shows that a protein-?-hairpin, BHD3, intrudes from the major groove side between the DNA strands at the lesion site. We present a molecular modeling study for the R-DB[a,l]P-dG lesion in Rad4/Rad23 showing BHD3 ?-hairpin intrusion with lesion eviction, and we hypothesize that lesion steric effects play a role in the recognition of intercalated adducts. PMID:23758590

  1. Contorted polycyclic aromatics.

    PubMed

    Ball, Melissa; Zhong, Yu; Wu, Ying; Schenck, Christine; Ng, Fay; Steigerwald, Michael; Xiao, Shengxiong; Nuckolls, Colin

    2015-02-17

    CONSPECTUS: This Account describes a body of research in the design, synthesis, and assembly of molecular materials made from strained polycyclic aromatic molecules. The strain in the molecular subunits severely distorts the aromatic molecules away from planarity. We coined the term "contorted aromatics" to describe this class of molecules. Using these molecules, we demonstrate that the curved pi-surfaces are useful as subunits to make self-assembled electronic materials. We have created and continue to study two broad classes of these "contorted aromatics": discs and ribbons. The figure that accompanies this conspectus displays the three-dimensional surfaces of a selection of these "contorted aromatics". The disc-shaped contorted molecules have well-defined conformations that create concave pi-surfaces. When these disc-shaped molecules are substituted with hydrocarbon side chains, they self-assemble into columnar superstructures. Depending on the hydrocarbon substitution, they form either liquid crystalline films or macroscopic cables. In both cases, the columnar structures are photoconductive and form p-type, hole- transporting materials in field effect transistor devices. This columnar motif is robust, allowing us to form monolayers of these columns attached to the surface of dielectrics such as silicon oxide. We use ultrathin point contacts made from individual single-walled carbon nanotubes that are separated by a few nanometers to probe the electronic properties of short stacks of a few contorted discs. We find that these materials have high mobility and can sense electron-deficient aromatic molecules. The concave surfaces of these disc-shaped contorted molecules form ideal receptors for the molecular recognition and assembly with spherical molecules such as fullerenes. These interfaces resemble ball-and-socket joints, where the fullerene nests itself in the concave surface of the contorted disc. The tightness of the binding between the two partners can be increased by creating more hemispherically shaped contorted molecules. Given the electronic structure of these contorted discs and the fullerenes, this junction is a molecular version of a p-n junction. These ball-and-socket interfaces are ideal for photoinduced charge separation. Photovoltaic devices containing these molecular recognition elements demonstrate approximately two orders of magnitude increase in charge separation. The ribbon-shaped, contorted molecules can be conceptualized as ultranarrow pieces of graphene. The contortion causes them to wind into helical ribbons. These ribbons can be formed into the active layer of field effect transistors. We substitute the ribbons with di-imides and therefore are able to transport electrons. Furthermore, these materials absorb light strongly and have ideal energetic alignment of their orbitals with conventional p-type electronic polymers. In solar cells, these contorted ribbons with commercial donor polymers have record efficiencies for non-fullerene-based solar cells. An area of interest for future exploration is the merger of these highly efficient contorted ribbons with the well-defined interfaces of the ball-and-socket materials. PMID:25523150

  2. A selective recognition mode of a nucleic acid base by an aromatic amino acid: L-phenylalanine-7-methylguanosine 5'-monophosphate stacking interaction.

    PubMed Central

    Ishida, T; Doi, M; Inoue, M

    1988-01-01

    The conformation of 7-methylguanosine 5'-monophosphate (m7GMP) and its interaction with L-phenylalanine (Phe) have been investigated by X-ray crystallographic, 1H-nuclear magnetic resonance, and energy calculation methods. The N(7) methylation of the guanine base shifts m7GMP toward an anti--gauche, gauche conformation about the glycosyl and exocyclic C(4')-C(5') bonds, respectively. The prominent stacking observed between the benzene ring of Phe and guanine base of m7GMP is primarily due to the N(7) guarternization of the guanine base. The formation of a hydrogen bonding pair between the anionic carboxyl group and the guanine base further stabilizes this stacking interaction. The present results imply the importance of aromatic amino acids as a hallmark for the selective recognition of a nucleic acid base. PMID:3399389

  3. The Role of Aromaticity, Hybridization, Electrostatics, and Covalency in Resonance-Assisted Hydrogen Bonds of Adenine-Thymine (AT) Base Pairs and Their Mimics.

    PubMed

    Guillaumes, L; Simon, S; Fonseca Guerra, C

    2015-06-01

    Hydrogen bonds play a crucial role in many biochemical processes and in supramolecular chemistry. In this study, we show quantum chemically that neither aromaticity nor other forms of ? assistance are responsible for the enhanced stability of the hydrogen bonds in adenine-thymine (AT) DNA base pairs. This follows from extensive bonding analyses of AT and smaller analogs thereof, based on dispersion-corrected density functional theory (DFT). Removing the aromatic rings of either A or T has no effect on the Watson-Crick bond strength. Only when the smaller mimics become saturated, that is, when the hydrogen-bond acceptor and donor groups go from sp (2) to sp (3), does the stability of the resulting model complexes suddenly drop. Bonding analyses based on quantitative Kohn-Sham molecular orbital theory and corresponding energy decomposition analyses (EDA) show that the stronger hydrogen bonds in the unsaturated model complexes and in AT stem from stronger electrostatic interactions as well as enhanced donor-acceptor interactions in the ?-electron system, with the covalency being responsible for shortening the hydrogen bonds in these dimers. PMID:26246994

  4. Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and Azaarenes in Runoff from Freshly Applied Coal-Tar-Based Pavement Sealcoat

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Van Metre, P. C.

    2013-12-01

    Coal-tar-based sealcoat (CT-sealcoat) is extensively applied to asphalt parking lots and driveways in the U.S. and Canada. Toxicity to fish and invertebrates of runoff from pavement to which CT-sealcoat has been freshly applied has been reported, but relatively little is known about how concentrations of chemicals in runoff change in the hours to days following sealcoat application. We measured the concentrations of 16 U.S. Environmental Protection Agency Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) and 7 azaarenes in 9 samples of simulated runoff from a coal-tar-sealed test plot collected at increasing intervals from 5 hours to 16 weeks following application. Azaarenes, several of which are common constituents in coal-tar pitch, and their oxidized derivatives, azaarones, are an emerging group of little-studied heterocyclic chemicals. Runoff samples were collected by spraying 25 L of a diluted groundwater to 10 m2 on sealed pavement and retrieving the runoff downgradient where the runoff pooled against spill berms. Unfiltered samples were analyzed by GC/MS following liquid-liquid extraction. In the first sample (t=5 hr), phenanthrene had the highest concentration (130 ?g/L) among the 16 PAHs. Concentrations of the lower molecular weight (LMW) PAHs (2 and 3 ring) decreased during the 16 weeks following application, and concentrations of the higher molecular weight (HMW) PAHs (4 to 6 ring) increased, coincident with an increase in the concentration of suspended particulates. In the final sample (t=16 weeks), fluoranthene had the highest concentration (36 ?g/L) among the 16 PAHs. Of the azaarenes measured, concentrations of acridine and carbazole (107 and 750 ?g/L, respectively) in the initial sample exceeded those of any of the PAHs measured except phenanthrene; acridine and carbazole concentrations decreased over the 5 weeks to <5% of their initial values. Samples of dried sealcoat were analyzed the day of application and 5 weeks later. Samples were scraped from aluminum roofing disks that had been placed on the pavement prior to sealant application, and analyzed by GC/MS. Total PAH concentrations (sum of the 16 PAHs, ?PAH16) in the dried sealcoat decreased from 93,000 mg/kg several hours after application to 46,000 mg/kg 5 weeks after application; the loss of about 50% is consistent with that reported previously and attributed to volatilization. As in the runoff water, concentrations of PAHs in dried sealcoat collected on the day of application were dominated by phenanthrene (25% of ?PAH16); 5 weeks following application, as a result of volatilization of the lower molecular weight PAH, the PAH assemblage was dominated by fluoranthene (24% of ?PAH16). Concentrations of carbazole and dibenzothiophene, the two heterocyclic compounds measured in the dried sealcoat, were equivalent to 4% and 1% of ?PAH16. Results of the runoff sampling demonstrate that the chemistry of runoff from pavement with CT-sealcoat changes in the days to weeks following application, from a profile dominated by the more soluble and volatile LMW PAHs to one dominated by the more persistent HMW PAHs. The shift from the more bioavailable LMW PAHs to the more carcinogenic HMW PAHs indicates that modes of toxicity might change with time.

  5. Experimental and DFT studies on the aggregation behavior of imidazolium-based surface-active ionic liquids with aromatic counterions in aqueous solution.

    PubMed

    Xu, Wenwen; Wang, Tao; Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Gong, Yanjun; Yu, Li

    2015-02-01

    Two imidazolium-based surface-active ionic liquids with aromatic counterions, namely, 1-dodecyl-3-methylimidazolium salicylate (C12mimSal) and 1-dodecyl-3-methylimidazolium 3-hydroxy-2-naphthoate (C12mimHNC), were synthesized, and their aggregate behavior in aqueous solutions was systematically explored. Surface tension and conductivity measurements indicate that both C12mimSal and C12mimHNC show superior surface activity compared to the common imidazolium-based SAIL with the same hydrocarbon chain length, 1-dodecyl-3-methylimidazolium bromide (C12mimBr). This result demonstrates that the incorporation of aromatic counterions favors the formation of micelles. C12mimHNC displays a higher surface activity than C12mimSal, resulting from the different hydrophobicities of the counterions. In comparison with C12mimBr, C12mimSal not only can form hexagonal liquid-crystalline phase (H1) in aqueous solution, but also exhibits a broad region of cubic liquid-crystalline phase (V2) at higher concentration. As for the C12mimHNC/H2O system, a lamellar liquid-crystalline (L(?)) phase was observed. These lyotropic liquid crystals (LLCs) were characterized by polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS). Structural parameters calculated from SAXS patterns suggest that a higher concentration of the SAIL leads to a denser arrangement whereas a higher temperature results in the opposite effect. The rheological results manifest that the formed H1 phase in the C12mimSal/H2O system exhibits an impressive viscoelastic behavior, indicated by a modulus (G' and G?) that is 1 order of magnitude higher than that of C12mimBr. Density functional theory (DFT) calculations reveal that C12mimSal has a more negative interaction energy with a water molecule and the Sal(-) counterion presents a stronger electronegativity than the HNC(-) counterion. The specific phase behavior of the C12mimSal/H2O and C12mimHNC/H2O systems can be attributed to the strong synergic interaction between the imidazolium cation and the aromatic counterion, including electrostatic attraction, hydrophobic interaction, and especially ?-? interaction. PMID:25580540

  6. Batch and Flow Photochemical Benzannulations Based on the Reaction of Ynamides and Diazo Ketones. Application to the Synthesis of Polycyclic Aromatic and Heteroaromatic Compounds

    PubMed Central

    Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.

    2013-01-01

    Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731

  7. Hybrid Ionosilica containing aromatic groups

    NASA Astrophysics Data System (ADS)

    Thach, U. D.; Prelot, B.; Hesemann, P.

    2015-07-01

    Ionosilicas are defined as mesostructured silica based materials bearing covalently bound ionic groups. These materials, situated at the interface of ionic liquids and structured silica mesophases, are usually synthesized following template directed hydrolysis-polycondensation procedures starting from silylated ionic compounds. Here, we report new ammonium type hybrid ionosilicas containing aromatic groups which can serve as a new platform for the design of functional materials, for applications in the areas of ion exchange reactions, drug delivery or wastewater treatment.

  8. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  9. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-01

    Three new metal-organic coordination polymers [Co(4-bbc)2(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H2O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H2pdc=3,5-pyridinedicarboxylic acid, 1,4-H2ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and CoII ions. Polymer 2 exhibits a 2D network with a (3·4·5)(32·4·5·62·74) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1-3. Moreover, the thermal stability, electrochemical and luminescent properties of 1-3 were investigated.

  10. Characterizing priority polycyclic aromatic hydrocarbons (PAH) in particulate matter from diesel and palm oil-based biodiesel B15 combustion

    NASA Astrophysics Data System (ADS)

    Rojas, Nestor Y.; Milquez, Harvey Andrés; Sarmiento, Hugo

    2011-11-01

    A set of 16 priority polycyclic aromatic hydrocarbons (PAH) associated with particulate matter (PM), emitted by a diesel engine fueled with petroleum diesel and a 15%-vol. palm oil methyl ester blend with diesel (B15), were determined. PM was filtered from a sample of the exhaust gas with the engine running at a steady speed and under no load. PAH were extracted from the filters using the Soxhlet technique, with dichloromethane as solvent. The extracts were then analyzed by gas chromatography using a flame ionization detector (FID). No significant difference was found between PM mass collected when fueled with diesel and B15. Ten of the 16 PAH concentrations were not reduced by adding biodiesel: Benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene and phenanthrene. The acenaphthene, acenaphthylene and anthracene concentrations were 45%-80% higher when using diesel, whereas those for benzo(k)fluoranthene, benzo(g,h,i)perylene and pyrene were 30%-72% higher when using the B15 blend. Even though the 16 priority-PAH cumulative concentration increased when using the B15 blend, the total toxic equivalent (TEQ) concentration was not different for both fuels.

  11. Noncovalent Binding of Polycyclic Aromatic Hydrocarbons with Genetic Bases Reducing the in Vitro Lateral Transfer of Antibiotic Resistant Genes.

    PubMed

    Kang, Fuxing; Hu, Xiaojie; Liu, Juan; Gao, Yanzheng

    2015-09-01

    In current studies of noncovalent interactions of polycyclic aromatic hydrocarbons (PAHs) with genetic units, the impact of such interactions on gene transfer has not been explored. In this study, we examined the association of some widely occurring PAHs (phenanthrene, pyrene, benzo[g,h,i]perylene, and other congeners) with antibiotic resistant plasmids (pUC19). Small molecular PAHs (e.g., phenanthrene) bind effectively with plasmids to form a loosely clew-like plasmid-PAH complex (16.5-49.5 nm), resulting in reduced transformation of ampicillin resistance gene (Ampr). The in vitro transcription analysis demonstrated that reduced transformation of Ampr in plasmids results from the PAH-inhibited Ampr transcription to RNA. Fluorescence microtitration coupled with Fourier transform infrared spectroscopy (FTIR) and theoretical interaction models showed that adenine in plasmid has a stronger capacity to sequester small Phen and Pyre molecules via a ?-? attraction. Changes in Gibbs free energy (?G) suggest that the CT-PAH model reliably depicts the plasmid-PAH interaction through a noncovalently physical sorption mechanism. Considering the wide occurrence of PAHs and antibiotic resistant genes (ARGs) in the environment, our findings suggest that small-sized PAHs can well affect the behavior of ARGs via above-described noncovalent interactions. PMID:26262891

  12. Pro-aromatic and anti-aromatic ?-conjugated molecules: an irresistible wish to be diradicals.

    PubMed

    Zeng, Zebing; Shi, Xueliang; Chi, Chunyan; López Navarrete, Juan T; Casado, Juan; Wu, Jishan

    2015-09-21

    Aromaticity is an important concept to understand the stability and physical properties of ?-conjugated molecules. Recent studies on pro-aromatic and anti-aromatic molecules revealed their irresistible tendency to become diradicals in the ground state. Diradical character thus becomes another very important concept and it is fundamentally correlated to the physical (optical, electronic and magnetic) properties and chemical reactivity of most of the organic optoelectronic materials. Molecules with distinctive diradical character show unique properties which are very different from those of traditional closed-shell ?-conjugated systems, and thus they have many potential applications in organic electronics, spintronics, non-linear optics and energy storage. This critical review first introduces the fundamental electronic structure of Kekulé diradicals within the concepts of anti-aromaticity and pro-aromaticity in the context of Hückel aromaticity and diradical character. Then recent research studies on various stable/persistent diradicaloids based on pro-aromatic and anti-aromatic compounds are summarized and discussed with regard to their synthetic chemistry, physical properties, structure-property relationships and potential material applications. A summary and personal perspective is given at the end. PMID:25994857

  13. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

  14. The AHA Moment: Assessment of the Redox Stability of Ionic Liquids Based on Aromatic Heterocyclic Anions (AHAs) for Nuclear Separations and Electric Energy Storage.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W

    2015-11-19

    Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N ?-radical or as an N ?-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich ?-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes. PMID:26506410

  15. Synthesis, Characterization, and Bioactivity of Schiff Bases and Their Cd2+, Zn2+, Cu2+, and Ni2+ Complexes Derived from Chloroacetophenone Isomers with S-Benzyldithiocarbazate and the X-Ray Crystal Structure of S-Benzyl-?-N-(4-chlorophenyl)methylenedithiocarbazate

    PubMed Central

    Break, Mohammed Khaled bin; Tahir, M. Ibrahim M.; Crouse, Karen A.; Khoo, Teng-Jin

    2013-01-01

    Two bidentate Schiff base ligands having nitrogen sulphur donor sequence were derived from the condensation of S-benzyldithiocarbazate (SBDTC) with 2-chloroacetophenone and 4-chloroacetophenone to give S-benzyl-?-N-(2-chlorophenyl)methylenedithiocarbazate (NS2) and S-benzyl-?-N-(4-chlorophenyl)methylenedithiocarbazate (NS4) isomers. Each of the ligands was then chelated with Cd2+, Zn2+, Cu2+, and Ni2+. The compounds were characterized via IR spectroscopy and melting point while the structure of NS4 was revealed via X-ray crystallography. Finally, the compounds were screened for antimicrobial activity to investigate the effect that is brought by the introduction of the chlorine atom to the benzene ring. X-ray crystallographic analysis showed that the structure of NS4 is planar with a phenyl ring that is nearly perpendicular to the rest of the molecules. The qualitative antimicrobial assay results showed that NS4 and its complexes lacked antifungal activity while Gram-positive bacteria were generally inhibited more strongly than Gram-negative bacteria. Furthermore, NS4 metal complexes were inhibited more strongly than the ligand while the opposite was seen with NS2 ligand and its complexes due to the partial solubility in dimethyl sulfoxide (DMSO). It was concluded that generally NS2 derivatives have higher bioactivity than that of NS4 derivatives and that the Cd complexes of both ligands have pronounced activity specifically on K. rhizophila. PMID:24319401

  16. The nuclear Schiff moment and time invariance violation in atoms

    E-print Network

    V. V. Flambaum; J. S. M. Ginges

    2002-03-13

    Parity and time invariance violating (P,T-odd) nuclear forces produce P,T-odd nuclear moments. In turn, these moments can induce electric dipole moments (EDMs) in atoms through the mixing of electron wavefunctions of opposite parity. The nuclear EDM is screened by atomic electrons. The EDM of an atom with closed electron subshells is induced by the nuclear Schiff moment. Previously the interaction with the Schiff moment has been defined for a point-like nucleus. No problems arise with the calculation of the electron matrix element of this interaction as long as the electrons are considered to be non-relativistic. However, a more realistic model obviously involves a nucleus of finite-size and relativistic electrons. In this work we have calculated the finite nuclear-size and relativistic corrections to the Schiff moment. The relativistic corrections originate from the electron wavefunctions and are incorporated into a ``nuclear'' moment, which we term the local dipole moment. For mercury these corrections amount to about 25%. We have found that the natural generalization of the electrostatic potential of the Schiff moment for a finite-size nucleus corresponds to an electric field distribution which, inside the nucleus, is well approximated as constant and directed along the nuclear spin, and outside the nucleus is zero. Also in this work the plutonium atomic EDM is estimated.

  17. Synthesis of N4 donor macrocyclic Schiff base ligands and their Ru (II), Pd (II), Pt (II) metal complexes for biological studies and catalytic oxidation of didanosine in pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Ravi krishna, E.; Muralidhar Reddy, P.; Sarangapani, M.; Hanmanthu, G.; Geeta, B.; Shoba Rani, K.; Ravinder, V.

    2012-11-01

    A series of tetraaza (N4 donor) macrocyclic ligands (L1-L4) were derived from the condensation of o-phthalaldehyde (OPA) with some substituted aromatic amines/azide, and subsequently used to synthesize the metal complexes of Ru(II), Pd(II) and Pt(II). The structures of macrocyclic ligands and their metal complexes were characterized by elemental analyses, IR, 1H &13C NMR, mass and electronic spectroscopy, thermal, magnetic and conductance measurements. Both the ligands and their complexes were screened for their antibacterial activities against Gram positive and Gram negative bacteria by MIC method. Besides, these macrocyclic complexes were investigated as catalysts in the oxidation of pharmaceutical drug didanosine. The oxidized products were further treated with sulphanilic acid to develop the colored products to determine by spectrophotometrically. The current oxidation method is an environmentally friendly, simple to set-up, requires short reaction time, produces high yields and does not require co-oxidant.

  18. Trimerization of aromatic nitriles

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (inventor)

    1977-01-01

    Triazine compounds and cross-linked polymer compositions were made by heating aromatic nitriles to a temperature in the range of about 100 C to about 700 C, in the presence of a catalyst or mixture of catalysts. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers were made which were trimerized with or without a filler by the aforementioned catalytic trimerization process.

  19. A novel thermally stable hydroperoxo-copper(II) complex in a Cu(N2O2) chromophore of a potential N4O2 donor Schiff base ligand: synthesis, structure and catalytic studies.

    PubMed

    Biswas, Surajit; Dutta, Arpan; Debnath, Mainak; Dolai, Malay; Das, Kalyan K; Ali, Mahammad

    2013-09-28

    The generation and study of metal-hydroperoxo/metal-peroxo (LCu(II)-OOH or LCu(II)-OO?) complexes is a fascinating area of research of many chemical and biochemical researchers, because of their involvement as active intermediates in many biological and industrial catalytic oxidation processes. For this purpose we have designed a bulky hexa-coordinating ligand with potential N4O2 donor atoms which could provide an opportunity to synthesize a mononuclear Cu(II) complex with an aim to utilize it in the catalytic oxidation of aromatic hydrocarbons by an environmentally benign oxidant, H2O2. The Cu(II) complex (1) was structurally characterized and found to have square-planar geometry with the two pyrazolyl groups remaining in dangling mode. A novel mononuclear complex [Et3NH][LCu(II)-OOH] (2) was found to form in the reaction between 1 and H2O2 in the presence of Et3N. The presence of this dangling groups favours the stability of hydroperoxo species, [LCu-OOH](-) (2) through H-bonding with the coordinated phenoxo oxygen atom, which was confirmed by ESI-MS(+) and MS(-) (m/z) mass analysis and DFT calculations. This complex was found to be thermally stable at room temperature [k(d) = (5.67 ± 0.03) × 10(-5) s(-1) at 25 °C] and may be due to the formation of O-O-H···O(phenoxo) H-bonding as delineated by the DFT calculations. Complex 1 was found to be an efficient catalyst for the oxidation of aromatic hydrocarbons to the corresponding aldehyde and alcohol in 2:1 mole ratio with TON ~300. PMID:23884097

  20. Aromatic Polyimide Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2000-01-01

    A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/cu.ft to about 20 pounds/cu.ft; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235 C to about 400 C; and a thermal stability of 0 to about 1% weight loss at 204 C as determined by thermogravinietric analysis (TGA). The aromatic polyimide foam has utility as foam insulation and as structural foam, for example, for aeronautical, aerospace and maritime applications.

  1. A polyoxometalate-based inorganic-organic hybrid polymer constructed from silver-Schiff base building block and Keggin-type cluster: Synthesis, crystal structure and photocatalytic performance for the degradation of rhodamine B.

    PubMed

    Li, Lei; Cheng, Meng; Bai, Yan; An, Bing; Dang, Dongbin

    2015-11-01

    One polyoxometalate-based inorganic-organic hybrid polymer [Ag3L4(PMo12O40)(CH3OH)]·CH3OH (1), where L is N,N'-bis(furan-2-ylmethylene)hydrazine, has been synthesized at room temperature and structurally characterized by infrared spectroscopy, ultraviolet-visible spectroscopy, elemental analysis, X-ray powder diffraction and X-ray single-crystal crystallography. The structure of 1 exhibits a crystalline one-dimensional polymer constructed by the connections of Keggin-type [PMo12O40](3-) anions and [Ag3L4](3+) units, in which each Ag(I) center adopted a distorted square pyramidal environment. The spectroscopic experiments show that polymer 1 not only is potential semiconductor materials but also displays the obvious photocatalytic performance for the degradation of rhodamine B. PMID:26116995

  2. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds.

    PubMed

    Yuan, Ruixia; Ramjaun, Sadiqua N; Wang, Zhaohui; Liu, Jianshe

    2011-11-30

    Sodium chloride is a common salt used during textile wet processes. Here a dual effect of chloride (i.e. inhibitory and accelerating effect) on azo dye (Acid Orange 7, AO7) degradation in an emerging cobalt/peroxymonosulfate (Co/PMS) advanced oxidation process (AOP) was reported. Compared to OH-based AOPs, high concentrations of chloride (>5mM) can significantly enhance dye decoloration independent of the presence of the Co(2+) catalyst, but did greatly inhibit dye mineralization to an extent which was closely dependent upon the chloride content. Both UV-vis absorbance spectra and AOX determination indicated the formation of some refractory byproducts. Some chlorinated aromatic compounds, including 3-chloroisocoumain, 2-chloro-7-hydroxynaphthalene, 1,3,5-trichloro-2-nitrobenzene and tetrachlorohydroquione, were identified by GC-MS measurement in both Co/PMS/Cl(-) and PMS/Cl(-) reaction systems. Based on those experimental results, two possible branched (SO(4)(-)radical-based and non-radical) reaction pathways are proposed. This is one of the very few studies dealing with chlorinated organic intermediates formed via chlorine radical/active chlorine species (HOCl/Cl(2)) attack on dye compounds. Therefore, this finding may have significant technical implications for utilizing Co/PMS regent to detoxify chloride-rich azo dyes wastewater. PMID:21968121

  3. Dimensional modulation and magnetic properties of triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates

    SciTech Connect

    Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin; Luan, Jian; Qu, Yun; Wang, Xiu-Li

    2014-04-01

    Five new metal–organic coordination polymers ([Cu{sub 3}(?{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(?{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(?{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D framework with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.

  4. Optimization of ultrasonic-assisted extraction for determination of polycyclic aromatic hydrocarbons in biochar-based fertilizer by gas chromatography-mass spectrometry.

    PubMed

    Chen, Ping; Sun, Mingxing; Zhu, Zhixiu; Zhang, Jidong; Shen, Guoqing

    2015-08-01

    Application of biochar-based fertilizers is increasingly being considered for its potential agronomic and environmental benefits. However, biochar may contain residues of polycyclic aromatic hydrocarbons (PAHs) as a result of its production by pyrolysis. The strong adsorption of PAHs to biochar makes extraction and analysis of biochar-based fertilizers difficult. This study optimizes the extraction of PAHs in biochar-based fertilizer samples by using an ultrasonic bath for quantification by gas chromatography-mass spectrometry. Among 12 solvents, acetone-cyclohexane (1:1) mixture was selected as the optimum solvent for extraction. Three variables affecting the extraction were studied by Box-Behnken design. The optimum conditions were 57 °C extraction temperature, 81 min extraction time, and two extraction cycles, which were validated by assessing the linearity of analysis, LOD, LOQ, recovery, and levels of PAHs in real biochar-based fertilizer samples. Results revealed that the 16 U.S. EPA PAHs had good linearity, with squared correlation coefficients greater than 0.99. LODs were low, ranging from 2.2 ng g(-1) (acenaphthene) to 23.55 ng g(-1) (indeno[1,2,3-cd]perylene), and LOQs varied from 7.51 ng g(-1) to 78.49 ng g(-1). The recoveries of 16 individual PAHs from the three biochar-based fertilizer samples were 81.8-109.4 %. Graphical Abstract Use of RSM to optimize UAE for extraction of the PAHs in biochar-based fertilizer. PMID:26048058

  5. Luminescent Di- and Trinuclear Boron Complexes Based on Aromatic Iminopyrrolyl Spacer Ligands: Synthesis, Characterization, and Application in OLEDs.

    PubMed

    Suresh, D; Gomes, Clara S B; Lopes, Patrícia S; Figueira, Cláudia A; Ferreira, Bruno; Gomes, Pedro T; Di Paolo, Roberto E; Maçanita, António L; Duarte, M Teresa; Charas, Ana; Morgado, Jorge; Vila-Viçosa, Diogo; Calhorda, Maria José

    2015-06-15

    New bis- and tris(iminopyrrole)-functionalized linear (1,2-(HNC4 H3 -C(H)?N)2 -C6 H4 (2), 1,3-(HNC4 H3 -C(H)?N)2 -C6 H4 (3), 1,4-(HNC4 H3 -C(H)?N)2 -C6 H4 (4), 4,4'-(HNC4 H3 -C(H)?N)2 -(C6 H4 -C6 H4 ) (5), 1,5-(HNC4 H3 C-(H)?N)2 -C10 H6 (6), 2,6-(HNC4 H3 C-(H)?N)2 -C10 H6 (7), 2,6-(HNC4 H3 C-(H)?N)2 -C14 H8 (8)) and star-shaped (1,3,5-(HNC4 H3 -C(H)?N-1,4-C6 H4 )3 -C6 H3 (9)) ?-conjugated molecules were synthesized by the condensation reactions of 2-formylpyrrole (1) with several aromatic di- and triamines. The corresponding linear diboron chelate complexes (Ph2 B[1,3-bis(iminopyrrolyl)-phenyl]BPh2 (10), Ph2 B[1,4-bis(iminopyrrolyl)-phenyl]BPh2 (11), Ph2 B[4,4'-bis(iminopyrrolyl)-biphenyl]BPh2 (12), Ph2 B[1,5-bis(iminopyrrolyl)-naphthyl]BPh2 (13), Ph2 B[2,6-bis(iminopyrrolyl)-naphthyl]BPh2 (14), Ph2 B[2,6-bis(iminopyrrolyl)-anthracenyl]BPh2 (15)) and the star-shaped triboron complex ([4',4'',4'''-tris(iminopyrrolyl)-1,3,5-triphenylbenzene](BPh2 )3 (16)) were obtained in moderate to good yields, by the treatment of 3-9 with B(C6 H5 )3 . The ligand precursors are non-emissive, whereas most of their boron complexes are highly fluorescent; their emission color depends on the ?-conjugation length. The photophysical properties of the luminescent polyboron compounds were measured, showing good solution fluorescence quantum yields ranging from 0.15 to 0.69. DFT and time-dependent DFT calculations confirmed that molecules 10 and 16 are blue emitters, because only one of the iminopyrrolyl groups becomes planar in the singlet excited state, whereas the second (and third) keeps the same geometry. Compound 13, in which planarity is not achieved in any of the groups, is poorly emissive. In the other examples (11, 12, 14, and 15), the LUMO is stabilized, narrowing the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO), and the two iminopyrrolyl groups become planar, extending the size of the ?-system, to afford green to yellow emissions. Organic light-emitting diodes (OLEDs) were fabricated by using the new polyboron complexes and their luminance was found to be in the order of 2400?cd?m(-2) , for single layer devices, increasing to 4400?cd?m(-2) when a hole-transporting layer is used. PMID:25965317

  6. Batch and Flow Photochemical Benzannulations Based on the Reaction of Ynamides and Diazo Ketones. Application to the Synthesis of Polycyclic Aromatic and Heteroaromatic Compounds

    E-print Network

    Willumstad, Thomas P.

    Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism ...

  7. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) ?-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ?15% for Kxpicene and Rbxpicene, and it is often ?1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  8. Magnetic criteria of aromaticity.

    PubMed

    Gershoni-Poranne, Renana; Stanger, Amnon

    2015-09-21

    This review describes the current state of magnetic criteria of aromaticity. The introduction contains the fundamentals of ring currents in aromatic and antiaromatic systems, followed by a brief description of experimental and computational tools: NMR, diamagnetic susceptibility exaltation, current density analyses (CDA) and nucleus independent chemical shifts (NICS). This is followed by more comprehensive chapters: NMR - focusing on the work of R. Mitchell - NICS and CDA - describing the progress and development of the methods to their current state and presenting some examples of representative work. PMID:26035305

  9. Development of a new sorptive extraction method based on simultaneous direct and headspace sampling modes for the screening of polycyclic aromatic hydrocarbons in water samples.

    PubMed

    Triñanes, Sara; Pena, Ma Teresa; Casais, Ma Carmen; Mejuto, Ma Carmen

    2015-01-01

    A new straightforward and inexpensive sample screening method for both EPA and EU priority polycyclic aromatic hydrocarbons (PAHs) in water has been developed. The method is based on combined direct immersion and headspace (DIHS) sorptive extraction, using low-cost disposable material, coupled to ultraperformance liquid chromatography with fluorescence and UV detection (UPLC-FD-UV). Extraction parameters, such as the sampling mode, extraction time and ionic strength were investigated in detail and optimized. Under optimized conditions, water samples (16 mL) were concentrated in silicone disks by headspace (HS) and direct immersion (DI) modes simultaneously, at room temperature for 9h for the majority of the 24 studied compounds. Ultrasound-assisted desorption of extracted analytes in acetonitrile was carried out also at room temperature. The optimized chromatographic method provided a good linearity (R?0.9991) and a broad linear range for all studied PAHs. The proposed analytical procedure exhibited a good precision level with relative standard deviations below 15% for all analytes. Quantification limits between 0.7 and 2.3 µg L(-1) and 0.16 and 3.90 ng L(-1) were obtained for compounds analyzed by UV (acenaphtylene, cyclopenta[c,d]pyrene and benzo[j]fluoranthene) and fluorescence, respectively. Finally, the proposed method was applied to the determination of PAHs in different real tap, river and wastewater samples. PMID:25476328

  10. Emulsification liquid-liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2015-12-18

    In this study, for the first time, a simple, inexpensive and sensitive method named emulsification liquid-liquid microextraction based on deep eutectic solvent (ELLME-DES) was used for the extraction of benzene, toluene, ethylbenzene (BTE) and seven polycyclic aromatic hydrocarbons (PAHs) from water samples. In a typical experiment, 100?L of DES (as water-miscible extraction solvent) was added to 1.5mL of sample solution containing target analytes. A homogeneous solution was formed immediately. Injection of 100?L of THF (as emulsifier agent) into homogeneous solution provided a turbid state. After extraction, phase separation (aqueous phase/DES rich phase) was performed by centrifugation. DES rich phase was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the calibration graphs were linear in the concentration range from 10 to 200?g/L for benzene, 10-400?g/L for toluene, 1-400?g/L for ethylbenzene, biphenyl, chrysene and fluorene, and 0.1-400?g/L for anthracene, benzo[a]pyrene, phenanthrene and pyrene. The coefficients of determination (r(2)) and limits of detection were 0.9924-0.9997 and 0.02-6.8?g/L, respectively. This procedure was successfully applied to the determination of target analytes in spiked water samples. The relative mean recoveries ranged from 93.1 to 103.3%. PMID:26614169

  11. Advanced sample pretreatment for the monitoring of polycyclic aromatic hydrocarbons and extractable organic halogens in waste water. Flow based procedures with chromatomembrane cells.

    PubMed

    Simon, Jürgen; Kirchhoff, Annette; Gültzow, Oliver

    2002-12-01

    Polycyclic aromatic hydrocarbons (PAH) and extractable organic halogens (EOX) pollute industrial waste waters and need to be controlled continuously by automated procedures. Their sample pretreatment requires extraction first from complex matrices containing surfactants, humic acids, urine and electrolytes besides. When using chromatomembrane cells (CMC) for the extraction with pentane or hexane a flow based system can be established which preconcentrates the pollutants up to ratios of 100:1 at the same time. The extracted compounds become supplied to a gas chromatograph (PAH) using the split/splitless injection or to a combustion furnace (EOX), respectively. An aqueous solution later extracts the hydrogen halides from the exhaust gas for their simultaneous detection with an ion-chromatograph. The limits of lowest detection are attainable in the lower mugl(-1) range by matrix adjusted calibration. The CMC is a novel device containing a bloc of biporous PTFE which enables the contact of two immiscible phases. Polar liquids fill the macropores whereas the micropores remain available for non-polar liquids or gases. PMID:18968873

  12. Eggshell membrane-based biotemplating of mixed hemimicelle/admicelle as a solid-phase extraction adsorbent for carcinogenic polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Weidong; Chen, Bo; Huang, Yuming

    2014-08-13

    A new solid-phase extraction (SPE) format was demonstrated, based on eggshell membrane (ESM) templating of the mixed hemimicelle/admicelle of linear alkylbenzenesulfonates (LAS) as an adsorbent for the enrichment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. The LAS mixed hemimicelle/admicelle formation and SPE of the target PAHs were conducted simultaneously by adding the organic target and LAS through a column filled with 500 mg of ESM. The effect of various factors, including LAS concentration, solution pH, ionic strength, and humic acid concentration on the recoveries of PAHs were investigated and optimized. The results showed that LAS concentration and solution pH had obvious effect on extraction of PAHs, and the recoveries of PAHs compounds decreased in the presence of salt and humic acid. Under the optimized analytical conditions, the present method could respond down to 0.1-8.6 ng/L PAHs with a linear calibration ranging from 0.02 to 10 ?g/L, showing a good PAHs enrichment ability with high sensitivity. The developed method was used satisfactorily for the detection of PAHs in environmental water samples. The mixed hemimicelle/admicelle adsorbent exhibited high extraction efficiency to PAHs and good selectivity with respect to natural organic matter and was advantageous over commercial C?? adsorbent, for example, high extraction yield, high breakthrough volume, and easy regeneration. PMID:25025712

  13. Time-reversal-violating Schiff moment of {sup 199}Hg

    SciTech Connect

    Jesus, J.H. de; Engel, J.

    2005-10-01

    We calculate the Schiff moment of the nucleus {sup 199}Hg, created by {pi}NN vertices that are odd under parity (P) and time-reversal (T). Our approach, formulated in diagrammatic perturbation theory with important core-polarization diagrams summed to all orders, gives a close approximation to the expectation value of the Schiff operator in the odd-A Hartree-Fock-Bogoliubov ground state generated by a Skyrme interaction and a weak P- and T-odd pion-exchange potential. To assess the uncertainty in the results, we carry out the calculation with several Skyrme interactions, the quality of which we test by checking predictions for the isoscalar-E1 strength distribution in {sup 208}Pb, and estimate most of the important diagrams we omit.

  14. Nanostructured alkyl carboxylic acid-based restricted access solvents: Application to the combined microextraction and cleanup of polycyclic aromatic hydrocarbons in mosses.

    PubMed

    Caballero-Casero, N; Çabuk, H; Martínez-Sagarra, G; Devesa, J A; Rubio, S

    2015-08-26

    Alkyl carboxylic acid-based nanostructured solvents, synthesized in mixtures of tetrahydrofuran (THF) and water through self-assembly and coacervation, were proved to behave as restricted access liquids. Both physical and chemical mechanisms were found responsible for exclusion of macromolecules such as proteins and polysaccharides. The potential of these solvents for extracting small molecules from complex solid samples, without interference from large biomolecules, was here evaluated. For this purpose, they were applied to the extraction of 14 priority polycyclic aromatic hydrocarbons (PAHs) from mosses prior to their separation by liquid chromatography and fluorescence detection (LC-FLD). Sample treatment involved the vortex shaking of 200 mg of moss with 200 ?L of decanoic acid-based solvent for 5 min, subsequent centrifugation for 8 min and analysis of the extract by LC-FLD using external calibration. Proteins precipitated during extraction because of both the decrease of the dielectric constant of the solution caused by THF and the formation of macromolecular complexes with decanoic acid. Polysaccharides were not solubilized in the aqueous cavities of the solvent because of their size exclusion. In-house method validation was performed according to the recommendations of the European Commission Decision 202/657/EC. Method detection and quantification limits for the different PAHs were in the ranges 0.04-0.24 and 0.14-0.80 ?g kg(-1), respectively. The method was applied to the determination of different moss species collected in both polluted and unpolluted sites in the South of Spain. Recoveries were within the range 71-110%. The results obtained show that solvents with restricted access properties have the potential to expand the scope of application of restricted access materials to areas other than biological fluids because of their suitability to combine analyte isolation and sample cleanup of solid samples in a single step. PMID:26347174

  15. Use of physiologically-based pharmacokinetic modeling to simulate the profiles of 3-hydroxybenzo(a)pyrene in workers exposed to polycyclic aromatic hydrocarbons.

    PubMed

    Heredia Ortiz, Roberto; Maître, Anne; Barbeau, Damien; Lafontaine, Michel; Bouchard, Michèle

    2014-01-01

    Biomathematical modeling has become an important tool to assess xenobiotic exposure in humans. In the present study, we have used a human physiologically-based pharmacokinetic (PBPK) model and an simple compartmental toxicokinetic model of benzo(a)pyrene (BaP) kinetics and its 3-hydroxybenzo(a)pyrene (3-OHBaP) metabolite to reproduce the time-course of this biomarker of exposure in the urine of industrially exposed workers and in turn predict the most plausible exposure scenarios. The models were constructed from in vivo experimental data in rats and then extrapolated from animals to humans after assessing and adjusting the most sensitive model parameters as well as species specific physiological parameters. Repeated urinary voids from workers exposed to polycyclic aromatic hydrocarbons (PAHs) have been collected over the course of a typical workweek and during subsequent days off work; urinary concentrations of 3-OHBaP were then determined. Based on the information obtained for each worker (BaP air concentration, daily shift hours, tasks, protective equipment), the time courses of 3-OHBaP in the urine of the different workers have been simulated using the PBPK and toxicokinetic models, considering the various possible exposure routes, oral, dermal and inhalation. Both models were equally able to closely reproduce the observed time course of 3-OHBaP in the urine of workers and predicted similar exposure scenarios. Simulations of various scenarios suggest that the workers under study were exposed mainly by the dermal route. Comparison of measured air concentration levels of BaP with simulated values needed to obtain a good approximation of observed time course further pointed out that inhalation was not the main route of exposure for most of the studied workers. Both kinetic models appear as a useful tool to interpret biomonitoring data of PAH exposure on the basis of 3-OHBaP levels. PMID:25032692

  16. Use of Physiologically-Based Pharmacokinetic Modeling to Simulate the Profiles of 3-Hydroxybenzo(a)pyrene in Workers Exposed to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Heredia Ortiz, Roberto; Maître, Anne; Barbeau, Damien; Lafontaine, Michel; Bouchard, Michèle

    2014-01-01

    Biomathematical modeling has become an important tool to assess xenobiotic exposure in humans. In the present study, we have used a human physiologically-based pharmacokinetic (PBPK) model and an simple compartmental toxicokinetic model of benzo(a)pyrene (BaP) kinetics and its 3-hydroxybenzo(a)pyrene (3-OHBaP) metabolite to reproduce the time-course of this biomarker of exposure in the urine of industrially exposed workers and in turn predict the most plausible exposure scenarios. The models were constructed from in vivo experimental data in rats and then extrapolated from animals to humans after assessing and adjusting the most sensitive model parameters as well as species specific physiological parameters. Repeated urinary voids from workers exposed to polycyclic aromatic hydrocarbons (PAHs) have been collected over the course of a typical workweek and during subsequent days off work; urinary concentrations of 3-OHBaP were then determined. Based on the information obtained for each worker (BaP air concentration, daily shift hours, tasks, protective equipment), the time courses of 3-OHBaP in the urine of the different workers have been simulated using the PBPK and toxicokinetic models, considering the various possible exposure routes, oral, dermal and inhalation. Both models were equally able to closely reproduce the observed time course of 3-OHBaP in the urine of workers and predicted similar exposure scenarios. Simulations of various scenarios suggest that the workers under study were exposed mainly by the dermal route. Comparison of measured air concentration levels of BaP with simulated values needed to obtain a good approximation of observed time course further pointed out that inhalation was not the main route of exposure for most of the studied workers. Both kinetic models appear as a useful tool to interpret biomonitoring data of PAH exposure on the basis of 3-OHBaP levels. PMID:25032692

  17. Catalytic conversion of polycyclic aromatic hydrocarbons: Mechanistic investigations of hydrogen transfer from an iron-based catalyst to alkylarenes

    SciTech Connect

    Autrey, T.; Linehan, J.C.; Camaioni, D.M.

    1995-12-31

    The mechanisms of hydrogen transfer from iron/sulfur-based catalysts to a series of coal model compounds have been investigated. The iron oxyhydroxides catalyst precursors are produced by the RTDS method with the actual catalytic species, an iron/sulfur catalyst, generated in situ by addition of sulfur and a hydrogen donor solvent. These catalysts promote the selective scission of thermally stable carbon-carbon bonds. Both the rate and the selectivity of catalytic induced bond scission are enhanced relative to the thermal hydrogen transfer pathways in 9,10-dihydrophenanthrene donor solvent. The reactivity of alkylated diphenylmethanes and derivatives of 1,2-diphenylethanol support a non-ionic free radical hydrogen transfer pathway. The selectivity of catalytic engendered bond scission is rationalized by an ipso displacement mechanism competing with a back-hydrogen transfer to the catalytic surface. This mechanism explains the scission of thermal stable coal linkages without the formation of light gases.

  18. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring

    SciTech Connect

    Choi, H.; Perera, F.; Pac, A.; Wang, L.; Flak, E.; Mroz, E.; Jacek, R.; Chai-Onn, T.; Jedrychowski, W.; Masters, E.; Camann, D.; Spengler, J.

    2008-11-15

    Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m{sup 3}. Based on simultaneously monitored levels, the outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city, center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1{degree}C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz(a)anthracene, benzo(k)fluoranthene, and dibenz(a,h)anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity.

  19. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    PubMed Central

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-01-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2?-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4?-dimethyl-2,2?-bipyridine (Me2bpy), or dipyrido-[3,2-f:2?,3?-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (?20.6 to ?20.3?ppm) are more upfield than those with C2^C^C2 (?19.5 and ?19.2?ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (??=?340–530?nm (????103?dm3 mol?1 cm?1)) originate from a d?(IrIII)????*(N^N) metal-to-ligand charge transfer transition, where the d?(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604?nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10?3–10?1. PMID:26487542

  20. Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines

    NASA Astrophysics Data System (ADS)

    Chung, Lai-Hon; Lo, Hoi-Shing; Ng, Sze-Wing; Ma, Dik-Lung; Leung, Chung-Hang; Wong, Chun-Yuen

    2015-10-01

    Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene)phenyl anion (C2^C^C2) and aromatic diimine (2,2?-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4?-dimethyl-2,2?-bipyridine (Me2bpy), or dipyrido-[3,2-f:2?,3?-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir–CNHC distances are 2.043(5)–2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (?20.6 to ?20.3?ppm) are more upfield than those with C2^C^C2 (?19.5 and ?19.2?ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and time-dependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (??=?340–530?nm (????103?dm3 mol?1 cm?1)) originate from a d?(IrIII)????*(N^N) metal-to-ligand charge transfer transition, where the d?(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellow-spectral region (553–604?nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10?3–10?1.