Sample records for arsenic promotes progressive

  1. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina

    2007-08-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei,more » L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.« less

  2. Environmentally relevant concentration of arsenic trioxide and humic acid promoted tumor progression of human cervical cancer cells: In vivo and in vitro studies.

    PubMed

    Tsai, Min-Ling; Yen, Cheng-Chieh; Lu, Fung-Jou; Ting, Hung-Chih; Chang, Horng-Rong

    2016-09-01

    In a previous study, treatment at higher concentrations of arsenic trioxide or co-exposure to arsenic trioxide and humic acid was found to be inhibited cell growth of cervical cancer cells (SiHa cells) by reactive oxygen species generation. However, treatment at lower concentrations slightly increased cell viability. Here, we investigate the enhancement of progression effects of environmentally relevant concentration of humic acid and arsenic trioxide in SiHa cell lines in vitro and in vivo by measuring cell proliferation, migration, invasion, and the carcinogenesis-related protein (MMP-2, MMP-9, and VEGF-A) expressions. SiHa cells treated with low concentrations of humic acid and arsenic trioxide alone or in co-exposure significantly increased reactive oxygen species, glutathione levels, cell proliferation, scratch wound-healing activities, migration abilities, and MMP-2 expression as compared to the untreated control. In vivo the tumor volume of either single drug (humic acid or arsenic trioxide) or combined drug-treated group was significantly larger than that of the control for an additional 45 days after tumor cell injection on the back of NOD/SCID mice. Levels of MMP-2, MMP-9, and VEGF-A, also significantly increased compared to the control. Histopathologic effects of all tumor cells appeared round in cell shape with high mitosis, focal hyperkeratosis and epidermal hyperplasia in the skin, and some tumor growth in the muscle were observed. Our results may indicate that exposure to low concentrations of arsenic trioxide and humic acid is associated with the progression of cervical cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1121-1132, 2016. © 2015 Wiley Periodicals, Inc.

  3. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Taylor J.; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724; Novak, Petr

    2009-12-01

    Aberrant DNA methylation participates in carcinogenesis and is a molecular hallmark of a tumor cell. Tumor cells generally exhibit a redistribution of DNA methylation resulting in global hypomethylation with regional hypermethylation; however, the speed in which these changes emerge has not been fully elucidated and may depend on the temporal location of the cell in the path from normal, finite lifespan to malignant transformation. We used a model of arsenical-induced malignant transformation of immortalized human urothelial cells and DNA methylation microarrays to examine the extent and temporal nature of changes in DNA methylation that occur during the transition from immortalmore » to malignantly transformed. Our data presented herein suggest that during arsenical-induced malignant transformation, aberrant DNA methylation occurs non-randomly, progresses gradually at hundreds of gene promoters, and alters expression of the associated gene, and these changes are coincident with the acquisition of malignant properties, such as anchorage independent growth and tumor formation in immunocompromised mice. The DNA methylation changes appear stable, since malignantly transformed cells removed from the transforming arsenical exhibited no reversion in DNA methylation levels, associated gene expression, or malignant phenotype. These data suggest that arsenicals act as epimutagens and directly link their ability to induce malignant transformation to their actions on the epigenome.« less

  4. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    PubMed

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  5. Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties

    PubMed Central

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16–293%. Soil chemical and enzymatic properties varied from 20–222% and 34–760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145

  6. Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties.

    PubMed

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16-293%. Soil chemical and enzymatic properties varied from 20-222% and 34-760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils.

  7. A Phytoremediation Strategy for Arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousandmore » pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic

  8. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchialmore » epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a

  9. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low)more » or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals

  10. Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein.

    PubMed

    Sheldon, Lynn A

    2017-01-01

    The regulation of cell cycle progression by steroid hormones and growth factors is important for maintaining normal cellular processes including development and cell proliferation. Deregulated progression through the G1/S and G2/M cell cycle transitions can lead to uncontrolled cell proliferation and cancer. The transcription factor E2F1, a key cell cycle regulator, targets genes encoding proteins that regulate cell cycle progression through the G1/S transition as well as proteins important in DNA repair and apoptosis. E2F1 expression and activity is inhibited by inorganic arsenic (iAs) that has a dual role as a cancer therapeutic and as a toxin that leads to diseases including cancer. An understanding of what underlies this dichotomy will contribute to understanding how to use iAs as a more effective therapeutic and also how to treat cancers that iAs promotes. Here, we show that quiescent breast adenocarcinoma MCF-7 cells treated with 17-β estradiol (E2) progress through the cell cycle, but few cells treated with E2 + iAs progress from G1 into S-phase due to a block in cell cycle progression. Our data support a model in which iAs inhibits the dissociation of E2F1 from the tumor suppressor, retinoblastoma protein (pRB) due to changes in pRB phosphorylation which leads to decreased E2F1 transcriptional activity. These findings present an explanation for how iAs can disrupt cell cycle progression through E2F1-pRB and has implications for how iAs acts as a cancer therapeutic as well as how it may promote tumorigenesis through decreased DNA repair.

  11. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  12. Arsenic Promotes NF-Kb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function

    PubMed Central

    Zhang, Changqing; Ferrari, Ricardo; Beezhold, Kevin; Stearns-Reider, Kristen; D’Amore, Antonio; Haschak, Martin; Stolz, Donna; Robbins, Paul D.; Barchowsky, Aaron; Ambrosio, Fabrisia

    2016-01-01

    Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior. PMID:26537186

  13. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17.

    PubMed

    Wang, Q; Xiong, D; Zhao, P; Yu, X; Tu, B; Wang, G

    2011-11-01

    Bioremediation of highly arsenic (As)-contaminated soil is difficult because As is very toxic for plants and micro-organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth-promoting rhizobacterium (PGPR). A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05-17) grown on As-amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg(-1)) inhibited its growth. With the bacterial inoculation, in the 300 mg kg(-1) As-amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above-ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation. © 2011 The Authors. Journal of Applied Microbiology ©2011 The Society for Applied

  14. Arsenic in private well water part 2 of 3: Who benefits the most from traditional testing promotion?

    PubMed

    Flanagan, Sara V; Spayd, Steven E; Procopio, Nicholas A; Chillrud, Steven N; Ross, James; Braman, Stuart; Zheng, Yan

    2016-08-15

    Arsenic, a toxic element naturally found in groundwater, is a public health concern for households drinking from wells. Private well water is not regulated to meet the federal drinking water arsenic Maximum Contaminant Level (MCL) of 10μg/L, or the more protective 5μg/L New Jersey (NJ) state MCL. In the absence of consistent private well regulation, public health efforts have relied on promoting testing in affected communities to various degrees of success. Few interventions publish results, and more often focus on the outcome of tested wells rather than who completed a test, and more importantly, who did not. Through our survey of randomly selected addresses (n=670) in 17 NJ towns we find higher rates of arsenic testing in areas with a history of testing promotion. However, we also see a stronger correlation of testing behavior with income and education in high promotion areas, suggesting that community engagement activities may be exacerbating socioeconomic status (SES) testing disparities. Well owners with a bachelor's degree had ten times greater odds of participating in our direct mail testing intervention than those with less education when tests cost $40. After all households (n=255) were offered free tests to overcome many of the usual testing barriers - awareness, convenience, and cost - only 47% participated and those who chose to return water samples were of higher income and education than those who did not. Our findings highlight that while efforts to promote and provide arsenic testing succeed in testing more wells, community testing interventions risk increasing SES disparities if those with more education and resources are more likely to take advantage of testing programs. Therefore, testing interventions can benefit by better targeting socially vulnerable populations in an effort to overcome SES-patterned self-selection when individuals are left alone with the responsibility of managing their drinking water quality. Copyright © 2016 Elsevier B

  15. Low doses of arsenic, via perturbing p53, promotes tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapathy, Suthakar, E-mail: s.ganapathy@neu.edu

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest thatmore » low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure.« less

  16. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii.

    PubMed

    Das, Joyati; Sarkar, Priyabrata

    2018-05-15

    Arsenic, a carcinogenic and toxic contaminant of soil and water, affects human health adversely. During last few decades, it has been an important global environmental issue. Among several arsenic detoxification methods remediation using arsenic resistant microbes is proved to be environment-friendly and cost-effective. This study aimed to test the effects of arsenic utilizing bacterial strain Acinetobacter lwoffii (RJB-2) on arsenic uptake and growth of mung bean plants (Vigna radiata). RJB-2 exhibited tolerance up to 125mM of arsenic (V) and 50mM of arsenic (III). RJB-2 produced plant growth promoting substances e.g. indole acetic acid (IAA), siderophores, exopolysaccharide (EPS) and phosphate solubilization in the absence and in presence of arsenic. Pot experiments were used to scrutinize the role of RJB-2 on arsenic uptake and growth of mung bean plants grown in soil amended with 22.5mgkg -1 of sodium arsenate (Na 2 HAsO 4 ·7H 2 O). RJB-2 could arrest arsenic uptake in just 7days and increase plant growth, number of plants per pot, chlorophyll and carotenoid content of the mung bean plants. RJB-2 formed biofilm and its root-association helped to abate arsenic uptake in mung bean. Confocal and light microscopic studies also revealed the abatement of arsenic uptake and increase in chlorophyll content in mung bean plants in presence of RJB-2. RJB-2 was also responsible for less production of reactive oxygen species (ROS) in mung bean plants reducing the oxidative damage caused by arsenic. The lower percentage of electrolytic leakage (EL) in RJB-2 inoculated mung bean plants proved arsenic abatement. The study also reported the distribution of arsenic in various parts of mung bean plant. RJB-2 owing to its intrinsic abilities of plant growth promotion even in presence of high concentrations of arsenic could inhibit arsenic uptake completely and therefore it could be used in large-scale cultivation for phytostabilization of plants. Copyright © 2017 Elsevier B

  17. Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water.

    PubMed

    Kumasaka, Mayuko Y; Yamanoshita, Osamu; Shimizu, Shingo; Ohnuma, Shoko; Furuta, Akio; Yajima, Ichiro; Nizam, Saika; Khalequzzaman, Md; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2013-03-01

    Various carcinomas including skin cancer are explosively increasing in arsenicosis patients who drink arsenic-polluted well water, especially in Bangladesh. Although well drinking water in the cancer-prone areas contains various elements, very little is known about the effects of elements except arsenic on carcinogenicity. In order to clarify the carcinogenic effects of coexposure to arsenic and iron, anchorage-independent growth and invasion in human untransformed HaCaT and transformed A431 keratinocytes were examined. Since the mean ratio of arsenic and iron in well water was 1:10 in cancer-prone areas of Bangladesh, effects of 1 μM arsenic and 10 μM iron were investigated. Iron synergistically promoted arsenic-mediated anchorage-independent growth in untransformed and transformed keratinocytes. Iron additionally increased invasion in both types of keratinocytes. Activities of c-SRC and ERK that regulate anchorage-independent growth and invasion were synergistically enhanced in both types of keratinocytes. Our results suggest that iron promotes arsenic-mediated transformation of untransformed keratinocytes and progression of transformed keratinocytes. We then developed a low-cost and high-performance adsorbent composed of a hydrotalcite-like compound for arsenic and iron. The adsorbent rapidly reduced concentrations of both elements from well drinking water in cancer-prone areas of Bangladesh to levels less than those in WHO health-based guidelines for drinking water. Thus, we not only demonstrated for the first time increased carcinogenicity by coexposure to arsenic and iron but also proposed a novel remediation system for well drinking water.

  18. Arsenic disulfide induced apoptosis and concurrently promoted erythroid differentiation in cytokine-dependent myelodysplastic syndrome-progressed leukemia cell line F-36p with complex karyotype including monosomy 7.

    PubMed

    Hu, Xiao-mei; Tanaka, Sachiko; Onda, Kenji; Yuan, Bo; Toyoda, Hiroo; Ma, Rou; Liu, Feng; Hirano, Toshihiko

    2014-05-01

    Acute myeloid leukemia progressed from myelodysplastic syndrome (MDS/AML) is generally incurable with poor prognosis for complex karyotype including monosomy 7 (-7). Qinghuang Powder (, QHP), which includes Qing Dai (Indigo naturalis) and Xiong Huang (realgar) in the formula, is effective in treating MDS or MDS/AML even with the unfavorable karyotype, and its therapeutic efficacy could be enhanced by increasing the Xiong huang content in the formula, while Xiong huang contains > 90% arsenic disulfide (As2S2). F-36p cell line was established from a MDS/AML patient with complex karyotype including -7, and was in cytokine-dependent. The present study was to investigate the effects of As2S2 on F-36p cells. Cell proliferation was measured by an 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis was identified by Annexin V-staining. Cell viability was determined by a propidium iodide (PI) exclusion. Erythroid differentiation was evaluated by the expression of cell surface antigen CD235a (GpA). After treatment with As2S2 at concentrations of 0.5 to 16 μmol/L for 72 h, As2S2 inhibited the proliferation of F-36p cells. The 50% inhibitory concentrations (IC50) of As2S2 against the proliferation of F-36p cells was 6 μmol/L. The apoptotic cells significantly increased in a dose-dependent mannar (P<0.05). The cell viabilities were significantly inhibited by As2S2 dose-dependent in a dose-dependent manner (P<0.05). Significant increases of CD235a-positive cells were concurrently observed (P<0.05) also in a dose-dependent manner. As2S2 could inhibit proliferation and viability, induce apoptosis, and concurrently promote erythroid differentiation dose-dependently in F-36p cells. As2S2 can inhibit proliferation and viability, induce apoptosis, and concurrently promote erythroid differentiation in cytokine-dependent MDS-progressed human leukemia cell line F-36p with complex karyotype including -7. The data suggest that QHP and/or As2S2 could

  19. Oncogenomic disruptions in arsenic-induced carcinogenesis

    PubMed Central

    Ng, Kevin W.; Stewart, Greg L.; Dummer, Trevor J.B.; Lam, Wan L.; Martinez, Victor D

    2017-01-01

    Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process. PMID:28179585

  20. Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the apoE−/− Mouse Model and the Role of As3mt-Mediated Methylation

    PubMed Central

    Negro Silva, Luis Fernando; Lemaire, Maryse; Lemarié, Catherine A.; Plourde, Dany; Bolt, Alicia M.; Chiavatti, Christopher; Bohle, D. Scott; Slavkovich, Vesna; Graziano, Joseph H.; Lehoux, Stéphanie

    2017-01-01

    Background: Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. Objectives: Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. Methods: We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. Results: We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. Conclusion: Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806 PMID:28728140

  1. Arsenic trioxide-mediated growth inhibition in gallbladder carcinoma cells via down-regulation of Cyclin D1 transcription mediated by Sp1 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, Zhilong; Lu, Weiqi; Ton, Saixiong

    2007-08-31

    Gallbladder carcinoma (GBC), an aggressive and mostly lethal malignancy, is known to be resistant to a number of drug stimuli. Here, we demonstrated that arsenic trioxide inhibited the proliferation of gallbladder carcinoma in vivo and in vitro as well as the transcription of cell cycle-related protein Cyclin D1. And, Cyclin D1 overexpression inhibited the negative role of arsenic trioxide in cell cycle progression. We further explored the mechanisms by which arsenic trioxide affected Cyclin D1 transcription and found that the Sp1 transcription factor was down-regulated by arsenic trioxide, with a corresponding decrease in Cyclin D1 promoter activity. Taken together, thesemore » results suggested that arsenic trioxide inhibited gallbladder carcinoma cell proliferation via down-regulation of Cyclin D1 transcription in a Sp1-dependent manner, which provided a new mechanism of arsenic trioxide-involved cell proliferation and may have important therapeutic implications in gallbladder carcinoma patients.« less

  2. Worldwide occurrences of arsenic in ground water

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2002-01-01

    Numerous aquifers worldwide carry soluble arsenic at concentrations greater than the World Health Organization--and U.S. Environmental Protection Agency--recommended drinking water standard of 10 mg per liter. Sources include both natural (black shales, young sediments with low flushing rates, gold mineralization, and geothermal environments) and anthropogenic (mining activities, livestock feed additives, pesticides, and arsenic trioxide wastes and stockpiles). Increased solubility and mobility of arsenic is promoted by high pH (>8.5), competing oxyanions, and reducing conditions. In this Policy Forum, Nordstrom argues that human health risks from arsenic in ground water can be minimized by incorporating hydrogeochemical knowledge into water management decisions and by more careful monitoring for arsenic in geologically high-risk areas.

  3. Availability of arsenic in human milk in women and its correlation with arsenic in urine of breastfed children living in arsenic contaminated areas in Bangladesh.

    PubMed

    Islam, Md Rafiqul; Attia, John; Alauddin, Mohammad; McEvoy, Mark; McElduff, Patrick; Slater, Christine; Islam, Md Monirul; Akhter, Ayesha; d'Este, Catherine; Peel, Roseanne; Akter, Shahnaz; Smith, Wayne; Begg, Stephen; Milton, Abul Hasnat

    2014-12-04

    Early life exposure to inorganic arsenic may be related to adverse health effects in later life. However, there are few data on postnatal arsenic exposure via human milk. In this study, we aimed to determine arsenic levels in human milk and the correlation between arsenic in human milk and arsenic in mothers and infants urine. Between March 2011 and March 2012, this prospective study identified a total of 120 new mother-baby pairs from Kashiani (subdistrict), Bangladesh. Of these, 30 mothers were randomly selected for human milk samples at 1, 6 and 9 months post-natally; the same mother baby pairs were selected for urine sampling at 1 and 6 months. Twelve urine samples from these 30 mother baby pairs were randomly selected for arsenic speciation. Arsenic concentration in human milk was low and non-normally distributed. The median arsenic concentration in human milk at all three time points remained at 0.5 μg/L. In the mixed model estimates, arsenic concentration in human milk was non-significantly reduced by -0.035 μg/L (95% CI: -0.09 to 0.02) between 1 and 6 months and between 6 and 9 months. With the progression of time, arsenic concentration in infant's urine increased non-significantly by 0.13 μg/L (95% CI: -1.27 to 1.53). Arsenic in human milk at 1 and 6 months was not correlated with arsenic in the infant's urine at the same time points (r = -0.13 at 1 month and r = -0.09 at 6 month). Arsenite (AsIII), arsenate (AsV), monomethyl arsonic acid (MMA), dimethyl arsinic acid (DMA) and arsenobetaine (AsB) were the constituents of total urinary arsenic; DMA was the predominant arsenic metabolite in infant urine. We observed a low arsenic concentration in human milk. The concentration was lower than the World Health Organization's maximum permissible limit (WHO Permissible Limit 15 μg/kg-bw/week). Our findings support the safety of breastfeeding even in arsenic contaminated areas.

  4. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Katharine J.; Holloway, Adele; Cook, Anthony L.

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylationmore » of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with

  5. Effects of Chlorine Promoted Oxidation on Arsenic Release from Sulfide Minerals

    NASA Astrophysics Data System (ADS)

    West, N.; Schreiber, M.; Gotkowitz, M.

    2007-12-01

    High arsenic concentrations (>100 ppb) have been measured in wells completed in the Ordovician St. Peter sandstone aquifer of eastern Wisconsin. The primary source of arsenic is As-bearing sulfide minerals within the aquifer. Periodic disinfection of wells by chlorination may facilitate arsenic release to groundwater by increasing the rate of sulfide mineral oxidation. During typical well disinfection procedures, aquifer solids exposed along uncased portions of wells remain in direct contact with chlorine disinfection solutions for up to twenty-four hours. Due to the redox sensitivity of arsenic mobility in groundwater, it is important to evaluate the effect of repeatedly adding oxidizers to an arsenic impacted aquifer system. This study focuses on abiotic processes that mobilize arsenic from the solid phase during controlled exposure to chlorinated solutions. Two St. Peter samples with As concentrations of 21 and 674 ppm were selected for the experiments. Before reaction, the aquifer mineralogy is characterized using scanning electron microscopy (SEM) and electron microprobe analysis (EMPA). The samples are then reacted with solutions of 60 mg/L free chlorine, 1200 mg/L free chlorine, or nanopure water (control) at pH 7.0 and pH 8.5. These parameters represent typical solution chemistries present within the wells after disinfection. Solutions are sampled periodically during the experiments and analyzed for As, Fe, other trace metals such as Co, Mo, Cr, and Ni, and sulfate. Analysis of the post-reaction solids using SEM, EMPA, laser ablation ICP-MS and Raman techniques are used to document the changes in mineralogy due to chlorination and to document which solid phases contain As.

  6. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective

    PubMed Central

    Lampis, Silvia; Santi, Chiara; Ciurli, Adriana; Andreolli, Marco; Vallini, Giovanni

    2015-01-01

    A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community. PMID:25741356

  7. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective.

    PubMed

    Lampis, Silvia; Santi, Chiara; Ciurli, Adriana; Andreolli, Marco; Vallini, Giovanni

    2015-01-01

    A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community.

  8. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. Published by Elsevier Ltd.

  9. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress.

    PubMed

    Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Uy, Davin; Sengupta, Arup K

    2012-01-01

    Millions of people around the world are currently living under the threat of developing serious health problems owing to ingestion of dangerous concentrations of arsenic through their drinking water. In many places, treatment of arsenic-contaminated water is an urgent necessity owing to a lack of safe alternative sources. Sustainable production of arsenic-safe water from an arsenic-contaminated raw water source is currently a challenge. Despite the successful development in the laboratory of technologies for arsenic remediation, few have been successful in the field. A sustainable arsenic-remediation technology should be robust, composed of local resources, and user-friendly as well as must attach special consideration to the social, economic, cultural, traditional, and environmental aspects of the target community. One such technology is in operation on the Indian subcontinent. Wide-scale replication of this technology with adequate improvisation can solve the arsenic crisis prevalent in the developing world.

  10. A high-selenium lentil dietary intervention in Bangladesh to counteract arsenic toxicity: study protocol for a randomized controlled trial.

    PubMed

    Krohn, Regina M; Raqib, Rubhana; Akhtar, Evana; Vandenberg, Albert; Smits, Judit E G

    2016-04-27

    Millions of people worldwide are exposed to dangerous levels of arsenic (above the WHO water standard of 10 ppb) in drinking water and food. Lack of nutritious foods exacerbates the adverse health effects of arsenic poisoning. The micronutrient selenium is a known antagonist to arsenic, promoting the excretion of arsenic from the body. Studies are in progress examining the potential of using selenium supplement pills to counteract arsenic toxicity. We are planning a clinical trial to test whether high-selenium lentils, as a whole food solution, can improve the health of arsenic-exposed Bangladeshi villagers. A total of 400 participants (about 80 families) will be divided into two groups via computer-generated block randomization. Eligibility criteria are age (≥14) years) and arsenic concentration in the household tube well (≥100 ppb). In this double-blind study, one group will eat high-selenium lentils grown in western Canada; the other will consume low-selenium lentils grown in Idaho, USA. Each participant will consume 65 g of lentils each day for 6 months. At the onset, midterm, and end of the trial, blood, urine and stool, plus hair (day 1 and at 6 months only) samples will be collected and a health examination conducted including assessment of acute lung inflammation, body mass and height, and blood pressure. The major outcome will be arsenic excretion in urine and feces, as well as arsenic deposition in hair and morbidity outcomes as assessed by a biweekly questionnaire. Secondary outcomes include antioxidant status, lipid profile, lung inflammation status, and blood pressure. Selenium pills as a treatment for arsenic exposure are costly and inconvenient, whereas a whole food approach to lower the toxic burden of arsenic may be a practical remedy for Bangladeshi people while efforts to provide safe drinking water are continuing. If high-selenium lentils prove to be effective in counteracting arsenic toxicity, agronomic partnerships between Canada and

  11. The arsenic exposure hypothesis for Alzheimer disease.

    PubMed

    Gong, Gordon; OʼBryant, Sid E

    2010-01-01

    Prior research has shown that arsenic exposure induces changes that coincide with most of the developmental, biochemical, pathologic, and clinical features of Alzheimer disease (AD) and associated disorders. On the basis of this literature, we propose the Arsenic Exposure Hypothesis for AD that is inclusive of and cooperative with the existing hypotheses. Arsenic toxicity induces hyperphosphorylation of protein tau and overtranscription of the amyloid precursor protein, which are involved in the formation of neurofibrillary tangles and brain amyloid plaques, consistent with the amyloid hypothesis of AD. Arsenic exposure has been associated with cardiovascular diseases and associated risk factors, which is in agreement with the vascular hypothesis of AD. Arsenic exposure invokes brain inflammatory responses, which resonates with the inflammatory hypotheses of AD. Arsenic exposure has been linked to reduced memory and intellectual abilities in children and adolescents, which provides a biologic basis for the developmental origin of health and disease hypothesis for AD. Arsenic and its metabolites generate free radicals causing oxidative stress and neuronal death, which fits the existing oxidative stress hypothesis. Taken together, the arsenic exposure hypothesis for AD provides a parsimonious testable hypothesis for the development and progression of this devastating disease at least for some subsets of individuals.

  12. Monitoring and evaluation of plant and hydrological controls on arsenic transport across the water sediment interface

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; MacDonald, L. H.; Paull, J.

    2009-12-01

    Plants and hydrology influence the transport of arsenic in wetlands by changing the dominant redox chemistry in the subsurface, and different plant and hydrological regimes can serve as effective barriers or promoters of metal transport. Inorganic arsenic, especially arsenate, binds to iron oxides in wetlands. In flooded wetland sediments, organic carbon from plants consumes oxygen and promotes reductive iron dissolution, which leads to arsenic release, while plants simultaneously create microoxic regimes around root hairs that oxidize and precipitate iron, promoting arsenic capture. Hydrology influences arsenic mobility by promoting wetting and drying cycles. Such cycles can lead to rapid shifts from anaerobic to aerobic conditions, and vice versa, with lasting impact on the oxidation state of iron and, by extension, the mobility of arsenic. Remediation strategies should take these competing conditions into account, and to help inform these strategies this study examines the chemistry of an industrially contaminated wetland when the above mechanisms aggregate. The study tests whether, in bulk, plants promote iron reduction or oxidation in intermittently flooded or consistently flooded sediments, and how this impacts arsenic mobility. This research uses a novel dialysis-based monitoring technique to examine the macro-properties of arsenic transport at the sediment water interface and at depth. Dialysis-based monitoring allows long-term seasonal trends in anaerobic porewater and allows active hypothesis testing on the influence of plants on redox chemistry. This study finds that plants promote iron reduction and that iron-reducing zones tend to correlate with zones with mobile arsenic. However, one newly reported and important finding of this study is that a brief summer drought that dried and oxidized sediments with a long history of iron-reduction zone served to effectively halt iron reduction for many months, and this corresponded to a lasting decline in

  13. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L.

    PubMed

    Zhao, Junying; Guo, Huaming; Ma, Jie; Shen, Zhaoli

    2015-01-01

    High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F- in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F- concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F-. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F(-) promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F- had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.

  14. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    PubMed Central

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes. PMID:24724102

  15. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    PubMed

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  16. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation.

    PubMed

    Mallick, Ivy; Bhattacharyya, Chandrima; Mukherji, Shayantan; Dey, Dhritiman; Sarkar, Somesh Chandra; Mukhopadhyay, Ujjal Kumar; Ghosh, Abhrajyoti

    2018-01-01

    Arsenic (As) uptake by plants is largely influenced by the presence of microbial consortia and their interactions with As. In the coastal region of Bengal deltaic plain of Eastern India, the As-contaminated groundwater is frequently used for irrigation purposes resulting in an elevated level of soil As in agricultural lands. The health hazards associated with As necessitates development of cost-effective remediation strategies to reclaim contaminated agricultural lands. Among the available technologies developed in recent times, bioremediation using bacteria has been found to be the most propitious. In this study, two As-resistant halophilic bacterial strains Kocuria flava AB402 and Bacillus vietnamensis AB403 were isolated, identified and characterized from mangrove rhizosphere of Sundarban. The isolates, AB402 and AB403, could tolerate 35mM and 20mM of arsenite, respectively. The effect of As on the exopolysaccharide (EPS) synthesis, biofilm formation, and root association was evaluated for both the bacterial strains. Arsenic adsorption on the cell surfaces and intracellular accumulation in both the bacterial strains were promising under culture conditions. Moreover, both the strains when used as inoculum, not only promoted the growth of rice seedlings but also decreased As uptake and accumulation in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh.

    PubMed Central

    Van Geen, Alexander; Ahsan, Habibul; Horneman, Allan H.; Dhar, Ratan K.; Zheng, Yan; Hussain, Iftikhhar; Ahmed, Kazi Matin; Gelman, Andrew; Stute, Martin; Simpson, H. James; Wallace, Sean; Small, Christopher; Parvez, Faruque; Slavkovich, Vesna; Loiacono, Nancy J.; Becker, Marck; Cheng, Zhongqi; Momotaj, Hassina; Shahnewaz, Mohammad; Seddique, Ashraf Ali; Graziano, Joseph H.

    2002-01-01

    OBJECTIVE: To survey tube wells and households in Araihazar upazila, Bangladesh, to set the stage for a long-term epidemiological study of the consequences of chronic arsenic exposure. METHODS: Water samples and household data were collected over a period of 4 months in 2000 from 4997 contiguous tube wells serving a population of 55000, the position of each well being determined to within +/- 30 m using Global Positioning System receivers. Arsenic concentrations were determined by graphite-furnace atomic-absorption spectrometry. In addition, groundwater samples collected every 2 weeks for an entire year from six tube wells were analysed for arsenic by high-resolution inductively coupled plasma-mass spectrometry. FINDINGS: Half of the wells surveyed in Araihazar had been installed in the previous 5 years; 94% were privately owned. Only about 48% of the surveyed wells supplied water with an arsenic content below 50 micro g/l, the current Bangladesh standard for drinking-water. Similar to other regions of Bangladesh and West Bengal, India, the distribution of arsenic in Araihazar is spatially highly variable (range: 5-860 micro g/l) and therefore difficult to predict. Because of this variability, however, close to 90% of the inhabitants live within 100 m of a safe well. Monitoring of six tube wells currently meeting the 50 micro g/l standard showed no indication of a seasonal cycle in arsenic concentrations coupled to the hydrological cycle. This suggests that well-switching is a viable option in Araihazar, at least for the short term. CONCLUSIONS: Well-switching should be more systematically encouraged in Araihazar and many other parts of Bangladesh and West Bengal, India. Social barriers to well-switching need to be better understood and, if possible, overcome. PMID:12378292

  18. OXIDATIVE STRESS AS A POSSIBLE MODE OF ACTION FOR ARSENIC CARCINOGENESIS

    EPA Science Inventory

    Abstract

    Many modes of action for arsenic carcinogenesis have been proposed, but few theories have a substantial mass of supporting data. Three stronger theories of arsenic carcinogenesis are production of chromosomal abnormalities, promotion of carcinogenesis and oxidati...

  19. Nanomaterial-based electrochemical sensors for arsenic - A review.

    PubMed

    Kempahanumakkagari, Sureshkumar; Deep, Akash; Kim, Ki-Hyun; Kumar Kailasa, Suresh; Yoon, Hye-On

    2017-09-15

    The existence of arsenic in the environment poses severe global health threats. Considering its toxicity, the sensing of arsenic is extremely important. Due to the complexity of environmental and biological samples, many of the available detection methods for arsenic have serious limitations on selectivity and sensitivity. To improve sensitivity and selectivity and to circumvent interferences, different electrode systems have been developed based on surface modification with nanomaterials including carbonaceous nanomaterials, metallic nanoparticles (MNPs), metal nanotubes (MNTs), and even enzymes. Despite the progress made in electrochemical sensing of arsenic, some issues still need to be addressed to realize cost effective, portable, and flow-injection type sensor systems. The present review provides an in-depth evaluation of the nanoparticle-modified electrode (NME) based methods for the electrochemical sensing of arsenic. NME based sensing systems are projected to become an important option for monitoring hazardous pollutants in both environmental and biological media. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2012-01-01

    Inorganic arsenic, an early life carcinogen in humans and mice, can initiate lesions promotable by other agents in later life. The biomethylation product of arsenic, dimethylarsinic acid (DMA), is a multi-site tumor promoter. Thus, pregnant CD1 mice were given drinking water (0 or 85 ppm arsenic) from gestation day 8 to 18 and after weaning male offspring received DMA (0 or 200 ppm; drinking water) for up to 2 years. No renal tumors occurred in controls or DMA alone treated mice while gestational arsenic exposure plus later DMA induced a significant renal tumor incidence of 17% (primarily renal cell carcinoma). Arsenic plus DMA or arsenic alone also increased renal hyperplasia over control but DMA alone did not. Arsenic alone, DMA alone and arsenic plus DMA all induced urinary bladder hyperplasia (33–35%) versus control (2%). Compared to control (6%), arsenic alone tripled hepatocellular carcinoma (20%), and arsenic plus DMA doubled this rate again (43%), but DMA alone had no effect. DMA alone, arsenic alone, and arsenic plus DMA increased lung adenocarcinomas and adrenal adenomas versus control. Overall, DMA in adulthood promoted tumors/lesions initiated by prenatal arsenic in the kidney and liver, but acted independently in the urinary bladder, lung and adrenal. PMID:22230260

  1. Transplacental Arsenic Carcinogenesis in Mice

    PubMed Central

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation, and the offspring were observed for up to two years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans and

  2. ARSENIC MINERALS AS INDICATORS OF CONDITIONS OF GOLD DEPOSITION IN CARLIN-TYPE GOLD DEPOSITS.

    USGS Publications Warehouse

    Rytuba, James J.

    1984-01-01

    Arsenic minerals commonly occurring in Carlin-type gold deposits include orpiment and realgar and, more rarely, native arsenic and arsenopyrite. Other arsenic-bearing phases present include arsenian pyrite and stibnite and a number of thallium and mercury sulfides. Under conditions of constant temperature and pressure, the relative stability of arsenic minerals is a function of sulfur activity. At high sulfur activity, orpiment is the stable phase. As sulfur activity is decreased, more sulfur-deficient arsenic phases become stable with the progressive formation of realgar, native arsenic, arsenopyrite, and finally, loellingite at very low sulfur activity. Three univariant equilibrium assemblages: orpiment plus realgar, realgar plus native arsenic and native arsenic plus arsenopyrite are useful indicators of sulfur activity and commonly occur in the epithermal environment.

  3. The die is cast - Arsenic exposure in early life and disease susceptibility

    EPA Science Inventory

    Abstract Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for development and progression of disease in bo...

  4. Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations.

    PubMed

    Roberge, Jason; O'Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L; Harris, Robin B

    2012-04-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  5. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    PubMed Central

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  6. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    PubMed

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  7. Arsenic Concentrations and Speciation in Shellfishes from Korea

    NASA Astrophysics Data System (ADS)

    Yoon, C.; Yoon, H.

    2005-12-01

    Speciation of arsenic has received significant attention over the past 20 years in both mechanistic and exposure assessment research. Because the toxicity of arsenic is related to its oxidation state and its chemical forms, the determination of the total arsenic contents in a sample is not adequate to allow its impact on living organisms to be estimated. The inorganic arsenic species, arsenite (As3+) and arsenate (As5+), have been classified as carcinogenic and the methylated forms, monomethyl arsonic acid (MMA) and dimethyl arsinic acid (DMA) have recently been identified as cancer promoters. The highly methylated compounds like as arsenobetaine (AsB) and arsenocholine (AsC) are considered to be nontoxic. Although organisms in marine environment contain high amounts of total arsenic (ppm level), it is not usually present as inorganic arsenic or simple methylated forms well known as one of the toxic species. Arsenobetaine is the dominant species in marine animals and arsenosugars are most abundant in marine algae. This study aims to clarify those arsenic species present in the whole body of eleven different shellfishes from Korea. And those arsenic species were separated and measured by characterization using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) coupled system. The separation of arsenic species was achieved on anion exchange column and cation exchange column using phosphate and pyridine eluent, respectively. The ultrasonic extraction was employed for extraction of arsenic from whole body of shellfishes. The method was validated by analyzing three certified reference materials (DORM-2, TORT-2, 1566b). Total arsenic concentrations ranged from 0.1 mg/kg dry mass to 21.7 mg/kg dry mass. Most marine shellfishes contained higher arsenobetaine and arsenocholine with the exception of two shellfishes living in river. The lower amounts of inorganic arsenic species were also found in the some sample extracts

  8. Reduction and Coordination of Arsenic in Indian Mustard1

    PubMed Central

    Pickering, Ingrid J.; Prince, Roger C.; George, Martin J.; Smith, Robert D.; George, Graham N.; Salt, David E.

    2000-01-01

    The bioaccumulation of arsenic by plants may provide a means of removing this element from contaminated soils and waters. However, to optimize this process it is important to understand the biological mechanisms involved. Using a combination of techniques, including x-ray absorption spectroscopy, we have established the biochemical fate of arsenic taken up by Indian mustard (Brassica juncea). After arsenate uptake by the roots, possibly via the phosphate transport mechanism, a small fraction is exported to the shoot via the xylem as the oxyanions arsenate and arsenite. Once in the shoot, the arsenic is stored as an AsIII-tris-thiolate complex. The majority of the arsenic remains in the roots as an AsIII-tris-thiolate complex, which is indistinguishable from that found in the shoots and from AsIII-tris-glutathione. The thiolate donors are thus probably either glutathione or phytochelatins. The addition of the dithiol arsenic chelator dimercaptosuccinate to the hydroponic culture medium caused a 5-fold-increased arsenic level in the leaves, although the total arsenic accumulation was only marginally increased. This suggests that the addition of dimercaptosuccinate to arsenic-contaminated soils may provide a way to promote arsenic bioaccumulation in plant shoots, a process that will be essential for the development of an efficient phytoremediation strategy for this element. PMID:10759512

  9. The die is cast: arsenic exposure in early life and disease susceptibility.

    PubMed

    Thomas, David J

    2013-12-16

    Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for the development and progression of disease in both species. Mode of action and dosimetric studies in the mouse may help assess the role of age at exposure as a factor in susceptibility to the toxic and carcinogenic effects of arsenic in humans.

  10. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting <6 μg AsL(-1) in finished water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (p<0.001) increased dissolved and total As concentrations to levels up to 16 and 95 μg L(-1), respectively. Similar treatments in the presence of biofilm (SBC) resulted in significant (p<0.001) increase in dissolved and total recoverable As up to 20 and 47 μg L(-1), respectively, exceeding the regulatory As limit. Whether or not, our laboratory-based results truly represent mechanisms operating in disinfected finished water in pipe networks remains to be investigated in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Folic Acid Supplementation Promotes Mammary Tumor Progression in a Rat Model

    PubMed Central

    Deghan Manshadi, Shaidah; Ishiguro, Lisa; Sohn, Kyoung-Jin; Medline, Alan; Renlund, Richard; Croxford, Ruth; Kim, Young-In

    2014-01-01

    Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression

  12. GT-repeat polymorphism in the heme oxygenase-1 gene promoter is associated with cardiovascular mortality risk in an arsenic-exposed population in northeastern Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meei-Maan, E-mail: mmwu@tmu.edu.t; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan

    2010-11-01

    Inorganic arsenic has been associated with increased risk of atherosclerotic vascular disease and mortality in humans. A functional GT-repeat polymorphism in the heme oxygenase-1 (HO-1) gene promoter is inversely correlated with the development of coronary artery disease and restenosis after clinical angioplasty. The relationship of HO-1 genotype with arsenic-associated cardiovascular disease has not been studied. In this study, we evaluated the relationship between the HO-1 GT-repeat polymorphism and cardiovascular mortality in an arsenic-exposed population. A total of 504 study participants were followed up for a median of 10.7 years for occurrence of cardiovascular deaths (coronary heart disease, cerebrovascular disease, andmore » peripheral arterial disease). Cardiovascular risk factors and DNA samples for determination of HO-1 GT repeats were obtained at recruitment. GT repeats variants were grouped into the S (< 27 repeats) or L allele ({>=} 27 repeats). Relative mortality risk was estimated using Cox regression analysis, adjusted for competing risk of cancer and other causes. For the L/L, L/S, and S/S genotype groups, the crude mortalities for cardiovascular disease were 8.42, 3.10, and 2.85 cases/1000 person-years, respectively. After adjusting for conventional cardiovascular risk factors and competing risk of cancer and other causes, carriers with class S allele (L/S or S/S genotypes) had a significantly reduced risk of cardiovascular mortality compared to non-carriers (L/L genotype) [OR, 0.38; 95% CI, 0.16-0.90]. In contrast, no significant association was observed between HO-1 genotype and cancer mortality or mortality from other causes. Shorter (GT)n repeats in the HO-1 gene promoter may confer protective effects against cardiovascular mortality related to arsenic exposure.« less

  13. Arsenic

    MedlinePlus

    ... and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can ... Breathing sawdust or burning smoke from arsenic-treated wood Living in an area with high levels of ...

  14. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    PubMed

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  15. Role of Aspergillus niger acrA in Arsenic Resistance and Its Use as the Basis for an Arsenic Biosensor

    PubMed Central

    Choe, Se-In; Gravelat, Fabrice N.; Al Abdallah, Qusai; Lee, Mark J.; Gibbs, Bernard F.

    2012-01-01

    Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter). PMID:22467499

  16. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  17. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  18. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Tain-Junn; Department of Neurology, Chi Mei Medical Center, 901 Chung-Hwa Road, Tainan 710, Taiwan; Department of Occupational Medicine, Chi Mei Medical Center, 901 Chung-Hwa Road, Yongkang, Tainan 710, Taiwan

    2011-10-15

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoproteinmore » cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor {beta} (LXR{beta}) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXR{beta} activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXR{beta} and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: > Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. > Arsenic may promote atherosclerosis with transient

  19. [Chronic arsenicism].

    PubMed

    Bourgeais, A M; Avenel-Audran, M; Le Bouil, A; Bouyx, C; Allain, P; Verret, J L

    2001-04-01

    Arsenic is an ubiquitous natural element. Chronic and low level ingestion or inhalation may result in chronic arsenicism first characterized by skin changes. A 75 year old man, non-insulin-dependent diabetic, presented a diffuse hyperpigmentation with scattered white spots on the trunk. He complained of asthenia. Clinical diagnosis of chronic arsenicism was confirmed by arsenic determination in urine, plasma and phaneres. Thorough investigations led to discover very high arsenic levels in the own wine of the patient. This was probably the result of a wrong use of sodium arsenite-based fungicide, for cultivating his vine yard. Chronic arsenicism has become rare but it should always be kept in mind. Clinical presentation, with particular cutaneous features and routes of exposure are reviewed. Treatment is symptomatic. As arsenic is known to be a strong carcinogenic agent, patients with chronic arsenicism have to be followed up during a long time.

  20. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  1. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation.

    PubMed

    Kofroňová, Monika; Mašková, Petra; Lipavská, Helena

    2018-05-07

    This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.

  2. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

    PubMed

    Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza

    2013-10-01

    In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.

  3. Influence of Sulfur on the Arsenic Phytoremediation Using Vallisneria natans (Lour.) Hara.

    PubMed

    Chen, Guoliang; Feng, Tao; Li, Zhixian; Chen, Zhang; Chen, Yuanqi; Wang, Haihua; Xiang, Yanci

    2017-09-01

    Influences of sulfur (S) on the accumulation and detoxification of arsenic (As) in Vallisneria natans (Lour.) Hara, an arsenic hyperaccumulating submerged aquatic plant, were investigated. At low sulfur levels (<20 mg/L), the thiols and As concentrations in the plant increased significantly with increasing sulfate nutrient supply. If sulfur levels were above 20 mg/L, the thiols and As concentrations in the plant did not increase further. There was a significant positive correlation between thiols and As in the plant. As(III) is the main form (>75%) present in the plant after exposure to As(V). Sulfur plays an important role in the arsenic translocation and detoxification, possibly through stimulating the synthesis of thiols and complexation of arsenite-phytochelatins. This suggests that addition of sulfur to the arsenic-contaminated water may provide a way to promote arsenic bioaccumulation in plants for phytoremediation of arsenic pollution.

  4. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    PubMed

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  5. Arsenic (+3 Oxidation State) Methyltransferase and the Methylation of Arsenicals

    PubMed Central

    Thomas, David J.; Li, Jiaxin; Waters, Stephen B.; Xing, Weibing; Adair, Blakely M.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav

    2008-01-01

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme’s role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway. PMID:17202581

  6. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    NASA Astrophysics Data System (ADS)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key

  7. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico.

    PubMed

    Ortega-Guerrero, Adrián

    2017-10-01

    High arsenic concentrations in groundwater have been documented in La Laguna Region (LLR) in arid northern Mexico, where arsenic poisoning is both chronic and endemic. A heated debate has continued for decades on its origin. LLR consisted of a series of ancient connected lakes that developed at the end of a topographic depression under closed basin conditions. This study addresses the isotopic, chemical composition of the groundwater and geochemical modeling in the southeasternmost part of the LLR to determine the origin of arsenic. Groundwater samples were obtained from a carbonate and granular aquifers and from a clayey aquitard at terminal Viesca Lake. Results show that groundwater originated as meteoric water that reached the lakes mainly via abundant springs in the carbonate aquifer and perennial flooding of the Nazas-Aguanaval Rivers. Paleo-lake water underwent progressive evaporation as demonstrated by the enrichment of δ 18 O, δ 2 H and characteristic geochemical patterns in the granular aquifer and aquitard that resulted in highly saline (>90,000 mS/cm), arsenic-rich (up to 5000 μg/L) paleo-groundwater (>30,000 years BP). However, adsorption or co-precipitation on iron oxides, clay-mineral surfaces and organic carbon limited arsenic concentration in the groundwater. Arsenic-rich groundwater and other solutes are advancing progressively from the lacustrine margins toward the main granular aquifer, due to reversal of hydraulic gradients caused by intensive groundwater exploitation and the reduction in freshwater runoff provoked by dam construction on the main rivers. Desorption of arsenic will incorporate additional concentrations of arsenic into the groundwater and continue to have significant negative effects on human health and the environment.

  8. Possible mechanisms for arsenic-induced proliferative diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A.

    1996-12-31

    Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hourmore » of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.« less

  9. [Effect of glutathione and sodium selenite on the metabolism of arsenic in mice exposed to arsenic through drinking water].

    PubMed

    Yu, Xiao-Yun; Zhong, Yuan; Niu, Yu-Hong; Qu, Chun-Qing; Li, Ge-Xin; Lü, Xiu-Qiang; Sun, Gui-Fan; Jin, Ya-Ping

    2008-09-01

    To explore the effect of glutathione (GSH) and sodium selenite on the metabolism of arsenic in the liver, kidney and blood of mice exposed to iAsIII through drinking water. The mice were randomly divided into control, arsenic, GSH and sodium selenite group, respectively. And each group had eight mice and the mice were exposed to 50 mg/L arsenite by drinking water for 4 weeks. Mice were intraperitoneally injected with GSH (600 mg/kg) and sodium selenite (1 mg/kg) for seven days from the beginning of the fourth week. At the end of the fourth week, liver, kidney and blood were sampled to assess the concentrations of inorganic arsenic (iAs), monomethylarsenic acid (MMA), dimethylarsenic acid (DMA) by hydride generation trapping by ultra-hypothermia coupled with atomic absorption spectrometry. The liver DMA (233.76 +/- 60.63 ng/g) concentration in GSH group was significantly higher than the arsenic group (218.36 +/- 42.71 ng/g). The concentration of DMA (88.52 +/- 30.86 ng/g) and total arsenic (TAs) (162.32 +/- 49.45 ng/g) in blood of GSH group was significantly higher than those [(45.32 +/- 12.19 ng/g), (108.51 +/- 18.00 ng/g), respectively] of arsenic groups(q values were 3.06, 6.40, 10.72 respectively, P < 0.05). The primary methylated index (PMI) (0.65 +/- 0.050) and secondary methylated index (SMI) (0.55 +/- 0.050) in liver sample of GSH group were significantly higher than those (0.58 +/- 0.056, 0.44 +/- 0. 093) in arsenic group. In blood samples, the PMI (0.85 +/- 0.066) in GSH group was significantly higher than that (0.54 +/- 0.113) in arsenic group (q values were 3.75, 5.26, 4.21 respectively, P < 0.05). However, no significant difference was identified between sodium selenite and arsenic groups in liver, kidney or blood samples. And no significant difference was detected in kidney samples among all arsenic exposing groups. Exogenous GSH could promote the methylated metabolism of iAsIII, but sodium selenite showed no significant effects.

  10. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.

    PubMed

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Foster, Neil

    2014-01-01

    The discovery of the arsenic hyperaccumulator, Pteris vittata (Chinese brake fern), has contributed to the promotion of its application as a means of phytoremediation for arsenic removal from contaminated soils and water. Understanding the mechanisms involved in arsenic tolerance and accumulation of this plant provides valuable tools to improve the phytoremediation efficiency. In this review, the current knowledge about the physiological and molecular mechanisms of arsenic tolerance and accumulation in P. vittata is summarized, and an attempt has been made to clarify some of the unresolved questions related to these mechanisms. In addition, the capacity of P. vittata for remediation of arsenic-contaminated soils is evaluated under field conditions for the first time, and possible solutions to improve the remediation capacity of Pteris vittata are also discussed.

  11. Prenatal Arsenic Exposure and DNA Methylation in Maternal and Umbilical Cord Blood Leukocytes

    PubMed Central

    Baccarelli, Andrea; Hoffman, Elaine; Tarantini, Letizia; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Wright, Robert O.; Christiani, David C.

    2012-01-01

    Background: Arsenic is an epigenetic toxicant and could influence fetal developmental programming. Objectives: We evaluated the association between arsenic exposure and DNA methylation in maternal and umbilical cord leukocytes. Methods: Drinking-water and urine samples were collected when women were at ≤ 28 weeks gestation; the samples were analyzed for arsenic using inductively coupled plasma mass spectrometry. DNA methylation at CpG sites in p16 (n = 7) and p53 (n = 4), and in LINE-1 and Alu repetitive elements (3 CpG sites in each), was quantified using pyrosequencing in 113 pairs of maternal and umbilical blood samples. We used general linear models to evaluate the relationship between DNA methylation and tertiles of arsenic exposure. Results: Mean (± SD) drinking-water arsenic concentration was 14.8 ± 36.2 μg/L (range: < 1–230 μg/L). Methylation in LINE-1 increased by 1.36% [95% confidence interval (CI): 0.52, 2.21%] and 1.08% (95% CI: 0.07, 2.10%) in umbilical cord and maternal leukocytes, respectively, in association with the highest versus lowest tertile of total urinary arsenic per gram creatinine. Arsenic exposure was also associated with higher methylation of some of the tested CpG sites in the promoter region of p16 in umbilical cord and maternal leukocytes. No associations were observed for Alu or p53 methylation. Conclusions: Exposure to higher levels of arsenic was positively associated with DNA methylation in LINE-1 repeated elements, and to a lesser degree at CpG sites within the promoter region of the tumor suppressor gene p16. Associations were observed in both maternal and fetal leukocytes. Future research is needed to confirm these results and determine if these small increases in methylation are associated with any health effects. PMID:22466225

  12. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposuremore » decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the

  13. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    PubMed

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  14. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  15. ARSENIC REMOVAL

    EPA Science Inventory

    Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

  16. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.

    PubMed

    Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs

    2015-12-22

    This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.

  17. Policy intervention for arsenic mitigation in drinking water in rural habitations in India: achievements and challenges.

    PubMed

    Shrivastava, Brajesh K

    2016-10-01

    This article provides updated status of the arsenic affected rural habitations in India, summarizes the policy initiatives of the Ministry of Drinking Water & Sanitation (Government of India), reviews the technologies for arsenic treatment and analyses the progress made by states in tackling arsenic problems in rural habitations. It also provides a list of constraints based on experiences and recommends suggested measures to tackle arsenic problems in an holistic manner. It is expected that the paper would be useful for policy formulators in states, non-government organizations, researchers of academic and scientific institutions and programme managers working in the area of arsenic mitigation in drinking water, especially in developing countries, as it provides better insights compared to other available information in India on mitigating arsenic problems in drinking water in rural areas.

  18. Arsenic surveillance program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background information about arsenic is presented including forms, common sources, and clinical symptoms of arsenic exposure. The purpose of the Arsenic Surveillance Program and LeRC is outlined, and the specifics of the Medical Surveillance Program for Arsenic Exposure at LeRC are discussed.

  19. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    PubMed

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. Arsenic in ground-water under oxidizing conditions, south-west United States

    USGS Publications Warehouse

    Robertson, F.N.

    1989-01-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may

  1. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence.

    PubMed

    Harkin, Benjamin; Webb, Thomas L; Chang, Betty P I; Prestwich, Andrew; Conner, Mark; Kellar, Ian; Benn, Yael; Sheeran, Paschal

    2016-02-01

    Control theory and other frameworks for understanding self-regulation suggest that monitoring goal progress is a crucial process that intervenes between setting and attaining a goal, and helps to ensure that goals are translated into action. However, the impact of progress monitoring interventions on rates of behavioral performance and goal attainment has yet to be quantified. A systematic literature search identified 138 studies (N = 19,951) that randomly allocated participants to an intervention designed to promote monitoring of goal progress versus a control condition. All studies reported the effects of the treatment on (a) the frequency of progress monitoring and (b) subsequent goal attainment. A random effects model revealed that, on average, interventions were successful at increasing the frequency of monitoring goal progress (d+ = 1.98, 95% CI [1.71, 2.24]) and promoted goal attainment (d+ = 0.40, 95% CI [0.32, 0.48]). Furthermore, changes in the frequency of progress monitoring mediated the effect of the interventions on goal attainment. Moderation tests revealed that progress monitoring had larger effects on goal attainment when the outcomes were reported or made public, and when the information was physically recorded. Taken together, the findings suggest that monitoring goal progress is an effective self-regulation strategy, and that interventions that increase the frequency of progress monitoring are likely to promote behavior change. (c) 2016 APA, all rights reserved).

  2. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Taylor J.; Wozniak, Ryan J.; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724

    2009-02-15

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modificationsmore » and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.« less

  3. Cancer in Experimental Animals Exposed to Arsenic and Arsenic Compounds

    PubMed Central

    Tokar, Erik J.; Benbrahim-Tallaa, Lamia; Ward, Jerold M.; Lunn, Ruth; Sams, Reeder L.; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic is a ubiquitous environmental contaminant that has long been considered a human carcinogen. Recent studies raise further concern about the metalloid as a major, naturally occurring carcinogen in the environment. However, during this same period it has proven difficult to provide experimental evidence of the carcinogenicity of inorganic arsenic in laboratory animals and, until recently, there was considered to be a lack of clear evidence for carcinogenicity of any arsenical in animals. More recent work with arsenical methylation metabolites and early life exposures to inorganic arsenic has now provided evidence of carcinogenicity in rodents. Given that tens of millions of people worldwide are exposed to potentially unhealthy levels of environmental arsenic, in vivo rodent models of arsenic carcinogenesis are a clear necessity for resolving critical issues, like mechanisms of action, target tissue specificity, and sensitive subpopulations, and in developing strategies to reduce cancers in exposed human populations. This work reviews the available rodent studies considered relevant to carcinogenic assessment of arsenicals, taking advantage of the most recent review by the International Agency for Research on Cancer (IARC) that has not yet appeared as a full monograph but has been summarized (IARC 2009). Many valid studies show that arsenic can interact with other carcinogens/agents to enhance oncogenesis, and help elucidate mechanisms, and these too are summarized in this review. Finally, this body of rodent work is discussed in light of its impact on mechanisms and in the context of the persistent argument that arsenic is not carcinogenic in animals. PMID:20812815

  4. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives

    PubMed Central

    Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs

    2015-01-01

    This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested. PMID:26703687

  5. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  6. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phookphan, Preeyaphan; Navasumrit, Panida

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylationmore » of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is

  7. Spectral reflectance as an indicator of foliar concentrations of arsenic in common sunflower (Helianthus annuus)

    NASA Astrophysics Data System (ADS)

    Gandy, Yuridia Patricia Peralta De

    Studies were conducted to investigate the use of spectral reflectance by foliage of common sunflower as a potential indicator of arsenic contamination of soil. Germination method was developed for sunflower seeds, and cohorts of sunflower seedlings in hydroponic tanks were established. The cohorts were exposed to 0 ppm, 5 ppm, 7.5 ppm, and 10 ppm treatments of As (V) and reflectance measurements of foliage were collected using a spectroradiometer during two experiments. Results demonstrated the feasibility of using spectral reflectance by foliage of common sunflower as a potential indicator of arsenic contamination. In both experiments, arsenic concentrations in leaf tissues were directly proportional to arsenic concentrations in hydroponic solutions in which such plants were grown. Although the effect(s) of arsenic accumulation had minimal impact on reflectance of visible wavelengths, the effects on NIR reflectance were substantial and resulted in a progressive decrease in reflectance as arsenic concentrations in foliage increased.

  8. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  9. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    PubMed Central

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  10. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water

    PubMed Central

    2013-01-01

    Background Limited data exist on the contribution of dietary sources of arsenic to an individual’s total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Methods Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. Results As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). Conclusions This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential

  11. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water.

    PubMed

    Cottingham, Kathryn L; Karimi, Roxanne; Gruber, Joann F; Zens, M Scot; Sayarath, Vicki; Folt, Carol L; Punshon, Tracy; Morris, J Steven; Karagas, Margaret R

    2013-11-16

    Limited data exist on the contribution of dietary sources of arsenic to an individual's total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential health risk.

  12. Arsenic contamination of the environment: a new perspective from central-east India.

    PubMed

    Pandey, Piyush Kant; Yadav, Sushma; Nair, Sumita; Bhui, Ashish

    2002-09-01

    This paper reports a regional contamination of the environment in central-east India that does not share geology or boundary with the Bengal Delta Plain. About 30,000 people residing in 30 villages and towns are directly exposed to arsenic and more than 200,000 people are "at risk." Complete geographical extent of this contamination is being established, and this newly reported contaminated area could be quite large. This paper further reports that the mechanisms involved in arsenic mobilisation are complex and the two theories of arsenic mobilisation, i.e., pyrite oxidation and oxyhydroxides reduction, do not fully explain the high levels of arsenic contamination. This paper also proposes the "oxidation-reduction theory" for arsenic mobilisation where the arsenic originates from the arsenopyrite oxidation and the arsenic thus mobilised forms the minerals and gets reduced underground in favourable Eh conditions. The stoppage of water withdrawal from the contaminated sources did not result in lowering of arsenic levels as expected according to the heavy groundwater extraction theory (pyrite oxidation theory). Cases of arsenicosis in the region are on the rise and the switchover to less contaminated water has not reversed the arsenicosis progression in the affected persons even after 2 years. Surface water of the rivers is also being contaminated because of the probable dislocation of contaminated groundwater due to the heavy rains in monsoon season, which indicates that the river water could be a major carrier of arsenic in dissolved or adsorbed forms that may be a cause of contamination of the delta plains.

  13. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design.

    PubMed

    Tanboonchuy, Visanu; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2012-02-29

    This study describes the removal of arsenic species in groundwater by nano zero-valent iron process, including As(III) and As(V). Since the background species may inhibit or promote arsenic removal. The influence of several common ions such as phosphate (PO4(3-)), bicarbonate (HCO3-)), sulfate (SO4(2-)), calcium (Ca2+), chloride (Cl-), and humic acid (HA) were selected to evaluate their effects on arsenic removal. In particular, a 2(6-2) fractional factorial design (FFD) was employed to identify major or interacting factors, which affect arsenic removal in a significant way. As a result of FFD evaluation, PO4(3-) and HA play the role of inhibiting arsenic removal, while Ca2+ was observed to play the promoting one. As for HCO3- and Cl-, the former one inhibits As(III) removal, whereas the later one enhances its removal; on the other hand, As(V) removal was affected only slightly in the presence of HCO3- or Cl-. Hence, it was suggested that the arsenic removal by the nanoiron process can be improved through pretreatment of PO4(3-) and HA. In addition, for the groundwater with high hardness, the nanoiron process can be an advantageous option because of enhancing characteristics of Ca2+. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Hydrologically Controlled Arsenic Release in Deltaic Wetlands and Coastal Riparian Zones

    NASA Astrophysics Data System (ADS)

    Stuckey, J.; LeMonte, J. J.; Yu, X.; Schaefer, M.; Kocar, B. D.; Benner, S. G.; Rinklebe, J.; Tappero, R.; Michael, H. A.; Fendorf, S. E.; Sparks, D. L.

    2016-12-01

    groundwater. Land and water management decisions that increase the duration of wetland inundation may promote arsenic release to groundwater.

  15. Specific histone modification responds to arsenic-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Lu

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showedmore » that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.« less

  16. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    PubMed Central

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  17. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    PubMed

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  18. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen?

    PubMed

    Ceja-Galicia, Zeltzin A; Daniel, Alberto; Salazar, Ana María; Pánico, Pablo; Ostrosky-Wegman, Patricia; Díaz-Villaseñor, Andrea

    2017-09-05

    The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes. Thus, the known effects of arsenic on WAT/adipocytes were integrated based on the diverse metabolic and physiological processes that occur in WAT and are altered in obesity, specifically: adipocyte growth, adipokine secretion, lipid metabolism, and glucose metabolism. The currently available information suggests that arsenic can negatively affect WAT metabolism, resulting in arsenic being a potential obesogen. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Arsenic removal from water

    DOEpatents

    Moore, Robert C [Edgewood, NM; Anderson, D Richard [Albuquerque, NM

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  20. CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression

    PubMed Central

    Li, Linna; Liu, Chunping; Amato, Robert J.; Chang, Jeffrey T.; Du, Guangwei; Li, Wenliang

    2014-01-01

    The epithelial–mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by epithelial cancer cells. To identify novel regulators of EMT, we carried out cDNA screens that covered 500 human kinases. Subsequent characterization of candidate kinases led us to uncover cyclin-dependent kinase-like 2 (CDKL2) as a novel potent promoter for EMT and breast cancer progression. CDKL2-expressing human mammary gland epithelial cells displayed enhanced mesenchymal traits and stem cell-like phenotypes, which was acquired through activating a ZEB1/E-cadherin/β-catenin positive feedback loop and regulating CD44 mRNA alternative splicing to promote conversion of CD24high cells to CD44high cells. Furthermore, CDKL2 enhanced primary tumor formation and metastasis in a breast cancer xenograft model. Notably, CDKL2 is expressed significantly higher in mesenchymal human breast cancer cell lines than in epithelial lines, and its over-expression/amplification in human breast cancers is associated with shorter disease-free survival. Taken together, our study uncovered a major role for CDKL2 in promoting EMT and breast cancer progression. PMID:25333262

  1. Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line

    PubMed Central

    2012-01-01

    Background Accumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro. Methods For the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 μM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 μM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis (COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII. Results Results showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53

  2. RESEARCH TOWARD THE DEVELOPMENT OF A BIOLOGICALLY BASED DOSE RESPONSE ASSESSMENT FOR INORGANIC ARSENIC CARCINOGENICITY: A PROGRESS REPORT

    EPA Science Inventory

    Cancer risk assessments for inorganic arsenic have been based on human epidemiological data, assuming a linear dose-response below the range of observation of tumors. Part of the reason for the continued use of the linear approach in arsenic risk assessments is the lack of an ad...

  3. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    PubMed Central

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-01-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60–1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21–0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: −0.57; 95% CI: −0.80–−0.31; p< 0.0001), primary methylation index (SMD: −0.57; 95% CI: −0.94–−0.20; p = 0.002), and secondary methylation index (SMD: −0.27; 95% CI: −0.46–−0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process. PMID:26861378

  4. Arsenic | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  6. Role of complex organic arsenicals in food in aggregate exposure to arsenic.

    PubMed

    Thomas, David J; Bradham, Karen

    2016-11-01

    For much of the world's population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels may be linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important in assessing risk and developing strategies that protect public health. Although most emphasis has been placed on inorganic arsenic as human carcinogen and toxicant, an array of arsenic-containing species are found in plants and animals used as foods. Here, we 2evaluate the contribution of complex organic arsenicals (arsenosugars, arsenolipids, and trimethylarsonium compounds) that are found in foods and consider their origins, metabolism, and potential toxicity. Commonalities in the metabolism of arsenosugars and arsenolipids lead to the production of di-methylated arsenicals which are known to exert many toxic effects. Evaluating foods as sources of exposure to these complex organic arsenicals and understanding the formation of reactive metabolites may be critical in assessing their contribution to aggregate exposure to arsenic. Copyright © 2016. Published by Elsevier B.V.

  7. METHYLATION INACTIVATES PENTAVALENT ARSENIC SPECIES BUT ACTIVATES TRIVALENT ARSENIC SPECIES TO POTENT GENOTOXICANTS

    EPA Science Inventory

    Methylation Inactivates Pentavalent Arsenic Species but Activates Trivalent Arsenic Species to Potent Genotoxicants

    The sensitivity ofhumans to arsenic-induced cancer is thought to be related in part to the limited ability of humans to detoxify arsenic. Recently, methyl- ...

  8. The need for congressional action to finance arsenic reductions in drinking water.

    PubMed

    Levine, Rebecca Leah

    2012-11-01

    Many public water systems in the U.S. are unsafe because the communities cannot afford to comply with the current 10 parts per billion (ppb) federal arsenic standard for drinking water. Communities unable to afford improvements remain vulnerable to adverse health effects associated with higher levels of arsenic exposure. Scientific and bipartisan political consensus exists that the arsenic standard should not be less stringent than 10 ppb, and new data suggest additional adverse health effects related to arsenic exposure through drinking water. Congress has failed to reauthorize the Drinking Water State Revolving Fund program to provide reliable funding to promote compliance and reduce the risk of adverse health effects. Congress's recent ad hoc appropriations do not allow long-term planning and ongoing monitoring and maintenance. Investing in water infrastructure will lower health care costs and create American jobs. Delaying necessary upgrades will only increase the costs of improvements over time.

  9. The ecology of arsenic

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.

    2003-01-01

    Arsenic is a metalloid whose name conjures up images of murder. Nonetheless, certain prokaryotes use arsenic oxyanions for energy generation, either by oxidizing arsenite or by respiring arsenate. These microbes are phylogenetically diverse and occur in a wide range of habitats. Arsenic cycling may take place in the absence of oxygen and can contribute to organic matter oxidation. In aquifers, these microbial reactions may mobilize arsenic from the solid to the aqueous phase, resulting in contaminated drinking water. Here we review what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature.

  10. ARSENIC TREATMENT TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the state-of-the-art technology for removal of arsenic from drinking water. Presentation also includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research st...

  11. Arsenic induces functional re-expression of estrogen receptor α by demethylation of DNA in estrogen receptor-negative human breast cancer.

    PubMed

    Du, Juan; Zhou, Nannan; Liu, Hongxia; Jiang, Fei; Wang, Yubang; Hu, Chunyan; Qi, Hong; Zhong, Caiyun; Wang, Xinru; Li, Zhong

    2012-01-01

    Estrogen receptor α (ERα) is a marker predictive for response of breast cancers to endocrine therapy. About 30% of breast cancers, however, are hormone- independent because of lack of ERα expression. New strategies are needed for re-expression of ERα and sensitization of ER-negative breast cancer cells to selective ER modulators. The present report shows that arsenic trioxide induces reactivated ERα, providing a target for therapy with ER antagonists. Exposure of ER-negative breast cancer cells to arsenic trioxide leads to re-expression of ERα mRNA and functional ERα protein in in vitro and in vivo. Luciferase reporter gene assays and 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays show that, upon exposure to arsenic trioxide, formerly unresponsive, ER-negative MDA-MB-231 breast cancer cells become responsive to ER antagonists, 4-hydroxytamoxifen and ICI 182,780. Furthermore, methylation- specific PCR and bisulfite-sequencing PCR assays show that arsenic trioxide induces partial demethylation of the ERα promoter. A methyl donor, S-adenosylmethionine (SAM), reduces the degree of arsenic trioxide-induced re-expression of ERα and demethylation. Moreover, Western blot and ChIP assays show that arsenic trioxide represses expression of DNMT1 and DNMT3a along with partial dissociation of DNMT1 from the ERα promoter. Thus, arsenic trioxide exhibits a previously undefined function which induces re-expression ERα in ER-negative breast cancer cells through demethylation of the ERα promoter. These findings could provide important information regarding the application of therapeutic agents targeting epigenetic changes in breast cancers and potential implication of arsenic trioxide as a new drug for the treatment of ER-negative human breast cancer.

  12. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    PubMed

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks.

  13. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    PubMed Central

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh. PMID:22984214

  14. Approaches to increase arsenic awareness in Bangladesh: an evaluation of an arsenic education program.

    PubMed

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H

    2013-06-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh.

  15. NEVADA ARSENIC STUDY

    EPA Science Inventory

    The effects of exposure to arsenic in U.S. drinking water at low levels are difficult to assess. In particular, studies of sufficient sample size on US populations exposed to arsenic in drinking water are few. Churchill County, NV (population 25000) has arsenic levels in drinki...

  16. Arsenic Detoxification by Geobacter Species.

    PubMed

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found

  17. Arsenic Detoxification by Geobacter Species

    PubMed Central

    Walker, David J. F.; Vautour, Kaitlin E.; Dixon, Steven

    2016-01-01

    ABSTRACT Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. IMPORTANCE This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different

  18. Predicting water consumption habits for seven arsenic-safe water options in Bangladesh.

    PubMed

    Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim

    2013-05-01

    In Bangladesh, 20 million people are at the risk of developing arsenicosis because of excessive arsenic intake. Despite increased awareness, many of the implemented arsenic-safe water options are not being sufficiently used by the population. This study investigated the role of social-cognitive factors in explaining the habitual use of arsenic-safe water options. Eight hundred seventy-two randomly selected households in six arsenic-affected districts of rural Bangladesh, which had access to an arsenic-safe water option, were interviewed using structured face-to-face interviews in November 2009. Habitual use of arsenic-safe water options, severity, vulnerability, affective and instrumental attitudes, injunctive and descriptive norms, self-efficacy, and coping planning were measured. The data were analyzed using multiple linear regressions. Linear regression revealed that self-efficacy (B = 0.42, SE = .03, p < .001), the instrumental attitude towards the safe water option (B = 0.24, SE = .04, p < .001), the affective attitude towards contaminated tube wells (B = -0.04, SE = .02, p = .024), vulnerability (B = -0.20, SE = .02, p < .001), as well as injunctive (B = 0.08, SE = 0.04, p = .049) and descriptive norms (B = 0.34, SE = .03, p < .001) primarily explained the habitual use of arsenic-safe water options (R2 = 0.688). This model proved highly generalizable to all seven arsenic-safe water options investigated, even though habitual use of single options were predicted on the basis of parameters estimated without these options. This general model for the habitual use of arsenic-safe water options may prove useful to predict other water consumption habits. Behavior-change interventions are derived from the model to promote the habitual use of arsenic-safe water options.

  19. Predicting water consumption habits for seven arsenic-safe water options in Bangladesh

    PubMed Central

    2013-01-01

    Background In Bangladesh, 20 million people are at the risk of developing arsenicosis because of excessive arsenic intake. Despite increased awareness, many of the implemented arsenic-safe water options are not being sufficiently used by the population. This study investigated the role of social-cognitive factors in explaining the habitual use of arsenic-safe water options. Methods Eight hundred seventy-two randomly selected households in six arsenic-affected districts of rural Bangladesh, which had access to an arsenic-safe water option, were interviewed using structured face-to-face interviews in November 2009. Habitual use of arsenic-safe water options, severity, vulnerability, affective and instrumental attitudes, injunctive and descriptive norms, self-efficacy, and coping planning were measured. The data were analyzed using multiple linear regressions. Results Linear regression revealed that self-efficacy (B = 0.42, SE = .03, p < .001), the instrumental attitude towards the safe water option (B = 0.24, SE = .04, p < .001), the affective attitude towards contaminated tube wells (B = −0.04, SE = .02, p = .024), vulnerability (B = −0.20, SE = .02, p < .001), as well as injunctive (B = 0.08, SE = 0.04, p = .049) and descriptive norms (B = 0.34, SE = .03, p < .001) primarily explained the habitual use of arsenic-safe water options (R2 = 0.688). This model proved highly generalizable to all seven arsenic-safe water options investigated, even though habitual use of single options were predicted on the basis of parameters estimated without these options. Conclusions This general model for the habitual use of arsenic-safe water options may prove useful to predict other water consumption habits. Behavior-change interventions are derived from the model to promote the habitual use of arsenic-safe water options. PMID:23634950

  20. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    PubMed

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  1. Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys

    NASA Astrophysics Data System (ADS)

    Xin, Wen-bin; Song, Bo; Huang, Chuan-gen; Song, Ming-ming; Song, Gao-yang

    2015-07-01

    The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.

  2. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, R.S.; Wang, F.T.

    1996-08-13

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

  3. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, Ravindra S.; Wang, Francis T.

    1996-01-01

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.

  4. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    PubMed

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhanced Detoxification of Arsenic Under Carbon Starvation: A New Insight into Microbial Arsenic Physiology.

    PubMed

    Nandre, Vinod S; Bachate, Sachin P; Salunkhe, Rahul C; Bagade, Aditi V; Shouche, Yogesh S; Kodam, Kisan M

    2017-05-01

    Nutrient availability in nature influenced the microbial ecology and behavior present in existing environment. In this study, we have focused on isolation of arsenic-oxidizing cultures from arsenic devoid environment and studied effect of carbon starvation on rate of arsenite oxidation. In spite of the absence of arsenic, a total of 40 heterotrophic, aerobic, arsenic-transforming bacterial strains representing 18 different genera were identified. Nineteen bacterial species were isolated from tannery effluent and twenty-one from tannery soil. A strong co-relation between the carbon starvation and arsenic oxidation potential of the isolates obtained from the said niche was observed. Interestingly, low carbon content enhanced the arsenic oxidation ability of the strains across different genera in Proteobacteria obtained. This represents the impact of physiological response of carbon metabolism under metal stress conditions. Enhanced arsenic-oxidizing ability of the strains was validated by the presence of aio gene and RT-PCR, where 0.5- to 26-fold up-regulation of arsenite oxidase gene in different genera was observed. The cultures isolated from tannery environment in this study show predominantly arsenic oxidation ability. This detoxification of arsenic in lack of carbon content can aid in effective in situ arsenic bioremediation.

  6. Correlation of arsenic exposure through drinking groundwater and urinary arsenic excretion among adults in Pakistan.

    PubMed

    Ahmed, Mubashir; Fatmi, Zafar; Ali, Arif

    2014-01-01

    Long-term exposure to arsenic has been associated with manifestation of skin lesions (melanosis/keratosis) and increased risk of internal cancers (lung/bladder). The objective of the study described here was to determine the relationship between exposure of arsenic through drinking groundwater and urinary arsenic excretion among adults > or =15 years of age living in Khairpur district, Pakistan. Total arsenic was determined in drinking groundwater and in spot urine samples of 465 randomly selected individuals through hydride generation-atomic absorption spectrometry. Spearman's rank correlation coefficient was calculated between arsenic in drinking groundwater and arsenic excreted in urine. The median arsenic concentration in drinking water was 2.1 microg/L (range: 0.1-350), and in urine was 28.5 microg/L (range: 0.1-848). Positive correlation was found between total arsenic in drinking water and in urine (r = .52, p < .01). Urinary arsenic may be used as a biomarker of arsenic exposure through drinking water.

  7. Arsenic Speciation of Terrestrial Invertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, M.M.; Koch, I.; Gordon, R.A.

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorptionmore » spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.« less

  8. Skin score correlates with global DNA methylation and GSTO1 A140D polymorphism in arsenic-affected population of Eastern India.

    PubMed

    Majumder, Moumita; Dasgupta, Uma B; Guha Mazumder, D N; Das, Nilansu

    2017-07-01

    Arsenic is a potent environmental toxicant causing serious public health concerns in India, Bangladesh and other parts of the world. Gene- and promoter-specific hypermethylation has been reported in different arsenic-exposed cell lines, whereas whole genome DNA methylation study suggested genomic hypo- and hypermethylation after arsenic exposure in in vitro and in vivo studies. Along with other characteristic biomarkers, arsenic toxicity leads to typical skin lesions. The present study demonstrates significant correlation between severities of skin manifestations with their whole genome DNA methylation status as well as with a particular polymorphism (Ala 140 Asp) status in arsenic metabolizing enzyme Glutathione S-transferase Omega-1 (GSTO1) in arsenic-exposed population of the district of Nadia, West Bengal, India.

  9. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    PubMed Central

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hair and toenail arsenic concentrations in populations exposed to a range of environmental arsenic concentrations in both drinking water and soil as well as in a control population with low arsenic concentrations in both drinking water and soil. In this study, we recruited 153 participants from areas with elevated arsenic concentrations in drinking water and residential soil, as well as a control population with no anticipated arsenic exposures. The median drinking water arsenic concentrations in the exposed population were 43.8 micro g/L (range, 16.0-73 micro g/L) and median soil arsenic concentrations were 92.0 mg/kg (range, 9.1-9,900 mg/kg). In the control group, the median drinking water arsenic concentration was below the limit of detection, and the median soil arsenic concentration was 3.3 mg/kg. Participants were categorized based on household drinking water and residential soil arsenic concentrations. The geometric mean hair arsenic concentrations were 5.52 mg/kg for the drinking water exposure group and 3.31 mg/kg for the soil exposure group. The geometric mean toenail arsenic concentrations were 21.7 mg/kg for the drinking water exposure group and 32.1 mg/kg for the high-soil exposure group. Toenail arsenic concentrations were more strongly correlated with both drinking water and soil arsenic concentrations; however, there is a strong likelihood of significant external contamination. Measures of residential exposure were better predictors of hair and toenail arsenic

  10. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  11. Gastric cancer-derived MSC-secreted PDGF-DD promotes gastric cancer progression.

    PubMed

    Huang, Feng; Wang, Mei; Yang, Tingting; Cai, Jie; Zhang, Qiang; Sun, Zixuan; Wu, Xiaodan; Zhang, Xu; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2014-11-01

    This study was designed to investigate the role of PDGF-DD secreted by gastric cancer-derived mesenchymal stem cells (GC-MSCs) in human gastric cancer progression. Gastric cancer cells were indirectly co-cultured with GC-MSCs in a transwell system. The growth and migration of gastric cancer cells were evaluated by cell colony formation assay and transwell migration assay, respectively. The production of PDGF-DD in GC-MSCs was determined by using Luminex and ELISA. Neutralization of PDGFR-β by su16f and siRNA interference of PDGF-DD in GC-MSCs was used to demonstrate the role of PDGF-DD produced by GC-MSCs in gastric cancer progression. GC-MSC conditioned medium promoted gastric cancer cell proliferation and migration in vitro and in vivo. Co-culture with GC-MSCs increased the phosphorylation of PDGFR-β in SGC-7901 cells. Neutralization of PDGFR-β by su16f blocked the promoting role of GC-MSC conditioned medium in gastric cancer cell proliferation and migration. Recombinant PDGF-DD duplicated the effects of GC-MSC conditioned medium on gastric cancer cells. Knockdown of PDGF-DD in GC-MSCs abolished its effects on gastric cancer cells in vitro and in vivo. PDGF-DD secreted by GC-MSCs is capable of promoting gastric cancer cell progression in vitro and in vivo. Targeting the PDGF-DD/PDGFR-β interaction between MSCs and gastric cancer cells may represent a novel strategy for gastric cancer therapy.

  12. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.

    PubMed

    Wei, Chao-Yang; Chen, Tong-Bin

    2006-05-01

    In an area near an arsenic mine in Hunan Province of south China, soils were often found with elevated arsenic levels. A field survey was conducted to determine arsenic accumulation in 8 Cretan brake ferns (Pteris cretica) and 16 Chinese brake ferns (Pteris vittata) growing on these soils. Three factors were evaluated: arsenic concentration in above ground parts (fronds), arsenic bioaccumulation factor (BF; ratio of arsenic in fronds to soil) and arsenic translocation factor (TF; ratio of arsenic in fronds to roots). Arsenic concentrations in the fronds of Chinese brake fern were 3-704 mg kg-1, the BFs were 0.06-7.43 and the TFs were 0.17-3.98, while those in Cretan brake fern were 149-694 mg kg-1, 1.34-6.62 and 1.00-2.61, respectively. Our survey showed that both ferns were capable of arsenic accumulation under field conditions. With most of the arsenic being accumulated in the fronds, these ferns have potential for use in phytoremediation of arsenic contaminated soils.

  13. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  14. Arsenic Toxicity to Juvenile Fish: Effects of Exposure Route, Arsenic Speciation, and Fish Species

    EPA Science Inventory

    Arsenic toxicity to juvenile rainbow trout and fathead minnows was evaluated in 28-day tests using both dietborne and waterborne exposures, both inorganic and organic arsenic species, and both a live diet and an arsenic-spiked pellet diet. Effects of inorganic arsenic on rainbow...

  15. Arsenic Methyltransferase

    EPA Science Inventory

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  16. Manganese enhances peroxynitrite and leukotriene E4 formation in bovine aortic endothelial cells exposed to arsenic.

    PubMed

    Bunderson, Melisa; Pereira, Flavia; Schneider, Mark C; Shaw, Pamela K; Coffin, J Douglas; Beall, Howard D

    2006-01-01

    Long-term exposure to arsenic in drinking water has been linked to cancer and other health effects, including cardiovascular disease. Arsenic in the environment is found in combination with a range of metals that could influence its toxicity. Manganese, in particular, is a metal that is typically found in conjunction with arsenic in contaminated groundwater. Peroxynitrite is a powerful oxidant formed from the reaction between nitric oxide and superoxide anion. Arsenic has been shown to increase the formation of peroxynitrite in bovine aortic endothelial cells (BAECs) and promote the formation of 3-nitrotyrosine (3-NY) in the atherosclerotic plaque of ApoE-/-/LDLr-/- mice. Arsenic exposure also increases leukotriene E4 (LTE4) formation in both the mice and BAECs, an effect that is partially reversed by the addition of Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. In the present study, we investigated the effect of adding nontoxic concentrations of manganese along with arsenic to BAEC cultures. Manganese increased arsenic toxicity and enhanced peroxynitrite, 3-NY, and LTE4 formation in BAECs. Addition of LNAME reduced 3-NY formation induced by arsenic/manganese mixtures, but in contrast to its effect on arsenic alone, L-NAME actually increased LTE4 synthesis in BAECs treated with the arsenic/manganese combination. Overall, these data suggest that manganese may exacerbate the toxic effects of arsenic on the vascular system.

  17. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    PubMed Central

    Faita, Francesca; Cori, Liliana; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2013-01-01

    The arsenic (As) exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects. PMID:23583964

  18. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    PubMed Central

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the U.S. Environmental Protection Agency (EPA) has set a limit of 10 micrograms per liter (10 μg/L) in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry and educators at the local, state, national and international levels to: (1) Establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) Work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry and others; (3) Develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) Develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods, and (5) Develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  19. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.

    PubMed

    Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting

    2016-03-01

    This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.

  20. Metabolism and toxicity of arsenicals in mammals.

    PubMed

    Sattar, Adeel; Xie, Shuyu; Hafeez, Mian Abdul; Wang, Xu; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Pan, Yuanhu; Iqbal, Mujahid; Shabbir, Muhammad Abubakr; Yuan, Zonghui

    2016-12-01

    Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world. Copyright © 2016. Published by Elsevier B.V.

  1. Arsenic and diabetes: current perspectives.

    PubMed

    Huang, Chun Fa; Chen, Ya Wen; Yang, Ching Yao; Tsai, Keh Sung; Yang, Rong Sen; Liu, Shing Hwa

    2011-09-01

    Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have indicated a dose-response relationship between accumulative arsenic exposure and the prevalence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where arsenic exposure occurs through drinking water. Epidemiological researches have suggested that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies analyzed the association between high and chronic exposure to inorganic arsenic in drinking water and the development of DM, but the effect of exposure to low to moderate levels of inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a positive association existed between total urine arsenic and the prevalence of Type 2 DM in people exposed to low to moderate levels of arsenic. However, the diabetogenic role played by arsenic is still debated upon. An increase in the prevalence of DM has been observed among residents of highly arsenic-contaminated areas, whereas the findings from community-based and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a population-based cross-sectional study showed that the current findings did not support an association between arsenic exposure from drinking water at levels less than 300 μg/L and a significantly increased risk of DM. Moreover, although the precise mechanisms for the arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting results and ambiguous interpretation of these data with respect to human exposure

  2. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  3. ADSORPTION TECHNOLOGIES FOR ARSENIC REMOVAL

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  4. ARSENIC REMOVAL USING ADSORPTION TECHNOLOGIES

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  5. THE CELLUAR METABOLISM OF ARSENIC

    EPA Science Inventory

    Because the methylation of arsenic produces intermediates and terminal products that exceed inorganic arsenic in potency as enzyme inhibitors, cytotoxins, and genotoxins, the methylation of arsenic is properly regarded as an activation process. The methylation of arsenic is an e...

  6. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Environmental source of arsenic exposure.

    PubMed

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  8. Environmental Source of Arsenic Exposure

    PubMed Central

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  9. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.

    PubMed Central

    Farmer, J G; Johnson, L R

    1990-01-01

    An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455

  11. Lessons Learned from Arsenic Mitigation among Private Well Households.

    PubMed

    Zheng, Yan

    2017-09-01

    Many thousands of research papers have been published on the occurrence, health effects, and mitigation of arsenic in drinking water sourced from groundwater around the world. Here, an attempt is made to summarize this large body of knowledge into a small number of lessons. This is an opinion paper reflecting on why we are far from the goal of eliminating this silent and widespread poison to protect the health of many millions. The lessons are drawn from research in countries representing a range of economic development and cultural contexts. The replacement of household wells with centralized water supplies has reduced population level exposure to moderate (50-100 μg/L) and high (>100 μg/L) levels of arsenic in drinking water in some countries as they become wealthier. However, there remains a very large rural population in all countries where the exposure to low levels (10-50 μg/L) of arsenic continues due to its dispersed occurrence in the environment and frequent reliance on private well. A set of natural (geological and biological), socioeconomic, and behavioral barriers to progress are summarized as lessons. They range from challenges in identifying the exposed households due to spatially heterogeneous arsenic distribution in groundwater, difficulties in quantifying the exposure let alone reducing the exposure, failures in maintaining compliance to arsenic drinking water standards, to misplaced risk perceptions and environmental justice issues. Environmental health professionals have an ethical obligation to help As mitigation among private well water households, along with physicians, hydrogeologists, water treatment specialists, community organizations, and government.

  12. Lessons Learned from Arsenic Mitigation among Private Well Households

    PubMed Central

    2018-01-01

    Purpose of Review Many thousands of research papers have been published on the occurrence, health effects, and mitigation of arsenic in drinking water sourced from groundwater around the world. Here, an attempt is made to summarize this large body of knowledge into a small number of lessons. Recent Findings This is an opinion paper reflecting on why we are far from the goal of eliminating this silent and widespread poison to protect the health of many millions. The lessons are drawn from research in countries representing a range of economic development and cultural contexts. The replacement of household wells with centralized water supplies has reduced population level exposure to moderate (50–100 μg/L) and high (>100 μg/L) levels of arsenic in drinking water in some countries as they become wealthier. However, there remains a very large rural population in all countries where the exposure to low levels (10–50 μg/L) of arsenic continues due to its dispersed occurrence in the environment and frequent reliance on private well. A set of natural (geological and biological), socioeconomic, and behavioral barriers to progress are summarized as lessons. They range from challenges in identifying the exposed households due to spatially heterogeneous arsenic distribution in groundwater, difficulties in quantifying the exposure let alone reducing the exposure, failures in maintaining compliance to arsenic drinking water standards, to misplaced risk perceptions and environmental justice issues. Summary Environmental health professionals have an ethical obligationtohelpAsmitigationamongprivatewellwaterhouse-holds, along with physicians, hydrogeologists, water treatment specialists, community organizations, and government. PMID:28741248

  13. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    ERIC Educational Resources Information Center

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  14. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies.

    PubMed

    Zecchin, Sarah; Corsini, Anna; Martin, Maria; Cavalca, Lucia

    2017-09-01

    In recent years, the role of microorganisms inhabiting rice rhizosphere in promoting arsenic contamination has emerged. However, little is known concerning the species and metabolic properties involved in this phenomenon. In this study, the influence of water management on the rhizosphere microbiota in relation to arsenic dissolution in soil solution was tested. Rice plants were cultivated in macrocosms under different water regimes: continuous flooding, continuous flooding with a 2-week period drainage before flowering, and dry soil watered every 10 days. The active bacterial communities in rhizosphere soil and in rhizoplane were characterized by 16S rRNA pyrosequencing. An in-depth analysis of microbial taxa with direct or indirect effects on arsenic speciation was performed and related contribution was evaluated. Continuous flooding promoted high diversity in the rhizosphere, with the plant strongly determining species richness and evenness. On the contrary, under watering the communities were uniform, with little differences between rhizosphere soil and rhizoplane. Arsenic-releasing and arsenite-methylating bacteria were selected by continuous flooding, where they represented 8% of the total. On the contrary, bacteria decreasing arsenic solubility were more abundant under watering, with relative abundance of 10%. These values reflected arsenic concentrations in soil solution: 135 μg L -1 and negligible in continuous flooding and under watering, respectively. When short-term drainage was applied before flowering, intermediate conditions were achieved. This evidence strongly indicates an active role of the rhizosphere microbiota in driving arsenic biogeochemistry in rice paddies, influenced by water management, explaining amounts and speciation of arsenic often found in rice grains.

  15. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    USGS Publications Warehouse

    Wang, M.; Song, D.; Zheng, B.; Finkelman, R.B.; ,

    2008-01-01

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong. ?? 2008 New York Academy of Sciences.

  16. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    PubMed

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. ARSENIC SOURCES AND ASSESSMENT

    EPA Science Inventory

    Recent research has identified a number of potential and current links between environmental arsenic releases and the management of operational and abandoned landfills. Many landfills will receive an increasing arsenic load due to the disposal of arsenic-bearing solid residuals ...

  18. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli

    2011-03-01

    Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.

  19. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  20. ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION

    EPA Science Inventory

    Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

  1. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  2. ARSENIC TREATMENT PILOT TESTS

    EPA Science Inventory

    This presentation provides information on the chemistry of arsenic in drinking water and the results of several pilot plant studies on the removal of arsenic from drinking water with emphasis on adsorptive media processes. Information is also being presented on the Arsenic Demon...

  3. Unusual arsenic metabolism in Giant Pandas.

    PubMed

    Braeuer, Simone; Dungl, Eveline; Hoffmann, Wiebke; Li, Desheng; Wang, Chengdong; Zhang, Hemin; Goessler, Walter

    2017-12-01

    The total arsenic concentration and the arsenic speciation in urine and feces samples of the two Giant Pandas living at Vienna zoo and of their feed, bamboo, were determined with ICPMS and HPLC-ICPMS. Urine was the main excretion route and accounted for around 90% of the ingested arsenic. The urinary arsenic concentrations were very high, namely up to 179 μg/L. Dimethylarsinic acid (DMA) was the dominating arsenic compound in the urine samples and ranged from 73 to 92% of the total arsenic, which is unusually high for a terrestrial mammal. The feces samples contained around 70% inorganic arsenic and 30% DMA. The arsenic concentrations in the bamboo samples were between 16 and 920 μg/kg dry mass. The main arsenic species in the bamboo extracts was inorganic arsenic. This indicates that the Giant Panda possesses a unique way of very efficiently methylating and excreting the provided inorganic arsenic. This could be essential for the survival of the animal in its natural habitat, because parts of this area are contaminated with arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chem I Supplement: Arsenic and Old Myths.

    ERIC Educational Resources Information Center

    Sarquis, Mickey

    1979-01-01

    Describes the history of arsenic, the properties of arsenic, production and uses of arsenicals, arsenic in the environment; toxic levels of arsenic, arsenic in the human body, and the Marsh Test. (BT)

  5. Arsenic release during managed aquifer recharge (MAR)

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  6. Arsenic behavior in newly drilled wells.

    PubMed

    Kim, Myoung-Jin; Nriagu, Jerome; Haack, Sheridan

    2003-07-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 microg/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 microm) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells.

  7. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  8. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Yi-Chen; Lien, Li-Ming; School of Medicine, Taipei Medical University, Taipei, Taiwan

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study.more » Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis

  9. Seasonal perspective of dietary arsenic consumption and urine arsenic in an endemic population.

    PubMed

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-07-01

    Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking-cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p = 0.04) from 26 μg L(-1) in summer to 6 μg L(-1) in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day (-1)) and female (2.6 and 1.2 L day(-1)) participants from summer to winter. Arsenic intake through drinking water decreased (p = 0.04) in winter (29 μg day(-1)) than in summer (100 μg day(-1)), and urinary arsenic concentration decreased (p = 0.018) in winter (41 μg L(-1)) than in summer (69 μg L(-1)). Dietary arsenic intake remained unchanged (p = 0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.

  10. A cluster-based randomized controlled trial promoting community participation in arsenic mitigation efforts in Bangladesh.

    PubMed

    George, Christine Marie; van Geen, Alexander; Slavkovich, Vesna; Singha, Ashit; Levy, Diane; Islam, Tariqul; Ahmed, Kazi Matin; Moon-Howard, Joyce; Tarozzi, Alessandro; Liu, Xinhua; Factor-Litvak, Pam; Graziano, Joseph

    2012-06-19

    To reduce arsenic (As) exposure, we evaluated the effectiveness of training community members to perform water arsenic (WAs) testing and provide As education compared to sending representatives from outside communities to conduct these tasks. We conducted a cluster based randomized controlled trial of 20 villages in Singair, Bangladesh. Fifty eligible respondents were randomly selected in each village. In 10 villages, a community member provided As education and WAs testing. In a second set of 10 villages an outside representative performed these tasks. Overall, 53% of respondents using As contaminated wells, relative to the Bangladesh As standard of 50 μg/L, at baseline switched after receiving the intervention. Further, when there was less than 60% arsenic contaminated wells in a village, the classification used by the Bangladeshi and UNICEF, 74% of study households in the community tester villages, and 72% of households in the outside tester villages reported switching to an As safe drinking water source. Switching was more common in the outside-tester (63%) versus community-tester villages (44%). However, after adjusting for the availability of arsenic safe drinking water sources, well switching did not differ significantly by type of As tester (Odds ratio = 0.86[95% confidence interval 0.42-1.77). At follow-up, among those using As contaminated wells who switched to safe wells, average urinary As concentrations significantly decreased. The overall intervention was effective in reducing As exposure provided there were As-safe drinking water sources available. However, there was not a significant difference observed in the ability of the community and outside testers to encourage study households to use As-safe water sources. The findings of this study suggest that As education and WAs testing programs provided by As testers, irrespective of their residence, could be used as an effective, low cost approach to reduce As exposure in many As-affected areas of

  11. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  12. Arsenic silicide formation by oxidation of arsenic implanted silicon

    NASA Astrophysics Data System (ADS)

    Hagmann, D.; Euen, W.; Schorer, G.; Metzger, G.

    1989-07-01

    Wet oxidations of (100) silicon implanted with an arsenic dose of 2 × 1016 cm-2 and an energy of 30 keV were carried out in the temperature range between 600 and 900° C. The oxidation rate is increased on the arsenic implanted samples up to a factor of 2000 as compared to undoped samples. During these oxidations the arsenic suicide phase AsSi is precipitated at the oxide/silicon interface. After short oxidation times at 600° C, a continuous AsSi layer is found. It is dissolved during extended oxidation times and finally almost all As is incorporated in the oxide. After 900° C oxidations, substantial AsSi crystallites remain at the Si/SiO2 interface. They are still observed up to the larg-est oxide thickness grown (2.3 µm). The AsSi phase and the distribution of the im-planted arsenic were analyzed by TEM, SIMS and XRF measurements.

  13. Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: Evidence from the Strong Heart Study.

    PubMed

    Spratlen, Miranda Jones; Gamble, Mary V; Grau-Perez, Maria; Kuo, Chin-Chi; Best, Lyle G; Yracheta, Joseph; Francesconi, Kevin; Goessler, Walter; Mossavar-Rahmani, Yasmin; Hall, Meghan; Umans, Jason G; Fretts, Amanda; Navas-Acien, Ana

    2017-07-01

    B-vitamins involved in one-carbon metabolism (OCM) can affect arsenic metabolism efficiency in highly arsenic exposed, undernourished populations. We evaluated whether dietary intake of OCM nutrients (including vitamins B2, B6, folate (B9), and B12) was associated with arsenic metabolism in a more nourished population exposed to lower arsenic than previously studied. Dietary intake of OCM nutrients and urine arsenic was evaluated in 405 participants from the Strong Heart Study. Arsenic exposure was measured as the sum of iAs, monomethylarsonate (MMA) and dimethylarsenate (DMA) in urine. Arsenic metabolism was measured as the individual percentages of each metabolite over their sum (iAs%, MMA%, DMA%). In adjusted models, increasing intake of vitamins B2 and B6 was associated with modest but significant decreases in iAs% and MMA% and increases in DMA%. A significant interaction was found between high folate and B6 with enhanced arsenic metabolism efficiency. Our findings suggest OCM nutrients may influence arsenic metabolism in populations with moderate arsenic exposure. Stronger and independent associations were observed with B2 and B6, vitamins previously understudied in relation to arsenic. Research is needed to evaluate whether targeting B-vitamin intake can serve as a strategy for the prevention of arsenic-related health effects at low-moderate arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cell cycle-coupled expansion of AR activity promotes cancer progression.

    PubMed

    McNair, C; Urbanucci, A; Comstock, C E S; Augello, M A; Goodwin, J F; Launchbury, R; Zhao, S G; Schiewer, M J; Ertel, A; Karnes, J; Davicioni, E; Wang, L; Wang, Q; Mills, I G; Feng, F Y; Li, W; Carroll, J S; Knudsen, K E

    2017-03-23

    The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.

  15. Chk1 promotes replication fork progression by controlling replication initiation

    PubMed Central

    Petermann, Eva; Woodcock, Mick; Helleday, Thomas

    2010-01-01

    DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity. PMID:20805465

  16. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    PubMed Central

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure. PMID:26784217

  17. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    PubMed

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-16

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  18. Clearance of PML/RARA-bound promoters suffice to initiate APL differentiation.

    PubMed

    Vitaliano-Prunier, Adeline; Halftermeyer, Juliane; Ablain, Julien; de Reynies, Aurélien; Peres, Laurent; Le Bras, Morgane; Metzger, Daniel; de Thé, Hugues

    2014-12-11

    PML/RARA, a potent transcriptional inhibitor of nuclear receptor signaling, represses myeloid differentiation genes and drives acute promyelocytic leukemia (APL). Association of the retinoid X receptor-α (RXRA) coreceptor to PML/RARA is required for transformation, with RXRA promoting its efficient DNA binding. APL is exquisitely sensitive to retinoic acid (RA) and arsenic trioxide (arsenic), which both trigger cell differentiation in vivo. Whereas RA elicits transcriptional activation of PML/RARA targets, how arsenic triggers differentiation remains unclear. Here we demonstrate that extinction of PML/RARA triggers terminal differentiation in vivo. Similarly, ablation of retinoid X receptors loosens PML/RARA DNA binding, inducing terminal differentiation of APL cells ex vivo or in vivo. RXRA sumoylation directly contributes to PML/RARA-dependent transformation ex vivo, presumably by enhancing transcriptional repression. Thus, APL differentiation is a default program triggered by clearance of PML/RARA-bound promoters, rather than obligatory active transcriptional activation, explaining how arsenic elicits APL maturation through PML/RARA degradation. © 2014 by The American Society of Hematology.

  19. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    PubMed Central

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples were collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations were significantly lower (p < 0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. PMID:24975493

  20. [Study on the variation of arsenic concentration in groundwater and chemical characteristics of arsenic in sediment cores at the areas with endemic arsenic poison disease in Jianghan Plain].

    PubMed

    Zhou, Suhua; Ye, Hengpeng; Li, Mingjian; Xiong, Peisheng; Du, Dongyun; Wang, Jingwen

    2015-06-01

    To understand the variation of arsenic concentration in underground water at the endemic arsenic poison disease area of Jianghan Plain so as to better understand the spatial distribution of high arsenic groundwater, hydro-chemical evolution and source of arsenic in this region. Thirty underground water samples were collected respectively around 3 km radius of the two houses where arsenic poisoning patients lived, in Xiantao and Honghu. Sediment cores of three drillings were collected as well. Both paired t-test or paired Wilcoxon Signed Ranking Test were used to compare the arsenic concentration of water. The arsenic concentration in 2011-2012 appeared lower than that in 2006-2007 at the Nanhong village of Xiantao (t = 4.645 3, P < 0.000 1), but was higher (S = -150, P < 0.000 1) in the Yaohe village of Honghu. The pH value showed weak acidity with Eh as weak oxidated. Positive correlations were observed between arsenic concentration and Cl, HCO3(-), Fe, Mn. However, negative correlations were found between As and SO4(2-), NO3(-). The range of arsenic content in the sediment was 1.500 mg/kg to 17.289 mg/kg. The maximum arsenic content existed in the soil layer, while the minimum arsenic content existed in the sand layer. The concentration of arsenic varied widely with time and space at endemic arsenic poison disease area of Jianghan Plain. Characteristics of these water chemicals showed significant differences, when compared to the groundwater from Datong Basin, Shanxi Shanyin and Hetao Plain of Inner Mongolia, which presented a typical environment with high arsenic contents in the groundwater. The arsenic content in the sediment samples seemed related to the lithologic structure.

  1. Arsenic Exposure and Toxicology: A Historical Perspective

    PubMed Central

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J.

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve. PMID:21750349

  2. Well Water Arsenic Exposure, Arsenic Induced Skin-Lesions and Self-Reported Morbidity in Inner Mongolia

    PubMed Central

    Xia, Yajuan; Wade, Timothy J.; Wu, Kegong; Li, Yanhong; Ning, Zhixiong; Le, X Chris; He, Xingzhou; Chen, Binfei; Feng, Yong; Mumford, Judy L.

    2009-01-01

    Residents of the Bayingnormen region of Inner Mongolia have been exposed to arsenic-contaminated well water for over 20 years, but relatively few studies have investigated health effects in this region. We surveyed one village to document exposure to arsenic and assess the prevalence of arsenic-associated skin lesions and self-reported morbidity. Five-percent (632) of the 12,334 residents surveyed had skin lesions characteristics of arsenic exposure. Skin lesions were strongly associated with well water arsenic and there was an elevated prevalence among residents with water arsenic exposures as low as 5 μg/L-10 μg/L. The presence of skin lesions was also associated with self-reported cardiovascular disease. PMID:19440430

  3. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strongmore » arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.« less

  4. INFLUENCE OF DIETARY ARSENIC ON URINARY ARSENIC METABOLITE EXCRETION

    EPA Science Inventory

    Influence of Dietary Arsenic on Urinary Arsenic Metabolite Excretion

    Cara L. Carty, M.S., Edward E. Hudgens, B.Sc., Rebecca L. Calderon, Ph.D., M.S.P.H., Richard Kwok, M.S.P.H., Epidemiology and Biomarkers Branch/HSD, NHEERL/US EPA; David J. Thomas, Ph.D., Pharmacokinetics...

  5. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India.

    PubMed

    Bhattacharjee, Pritha; Sanyal, Tamalika; Bhattacharjee, Sandip; Bhattacharjee, Pritha

    2018-05-01

    Arsenic exposure and its adverse health outcome, including the association with cancer risk are well established from several studies across the globe. The present study aims to analyze the epigenetic regulation of key mismatch repair (MMR) genes in the arsenic-exposed population. A case-control study was conducted involving two hundred twenty four (N=224) arsenic exposed [with skin lesion (WSL=110) and without skin lesion (WOSL=114)] and one hundred and two (N=102) unexposed individuals. The methylation status of key MMR genes i.e. MLH1, MSH2, and PMS2 were analyzed using methylation-specific PCR (MSP). The gene expression was studied by qRTPCR. The expression of H3K36me3, which was earlier reported to be an important regulator of MMR pathway, was assessed using ELISA. Arsenic-exposed individuals showed significant promoter hypermethylation (p < 0.0001) of MLH1 and MSH2 compared to those unexposed with consequent down-regulation in their gene expression [MLH1 (p=0.001) and MSH2 (p<0.05)]. However, no significant association was found in expression and methylation of PMS2 with arsenic exposure. We found significant down-regulation of H3K36me3 in the arsenic-exposed group, most significantly in the WSL group (p<0.0001). The expression of SETD2, the methyltransferase of an H3K36me3 moiety was found to be unaltered in arsenic exposure, suggesting the involvement of other regulatory factors yet to be identified. In summary, the epigenetic repression of DNA damage repair genes due to promoter hypermethylation of MLH1 and MSH2 and inefficient recruitment of MMR complex at the site of DNA damage owing to the reduced level of H3K36me3 impairs the mismatch repair pathway that might render the arsenic-exposed individuals more susceptible towards DNA damage and associated cancer risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    PubMed

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Arsenic Trioxide Injection

    MedlinePlus

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  8. Arsenic Hyperaccumulation Strategies: An Overview

    PubMed Central

    Souri, Zahra; Karimi, Naser; Sandalio, Luisa M.

    2017-01-01

    Arsenic (As) pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS) production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants. PMID:28770198

  9. Managing hazardous pollutants in Chile: arsenic.

    PubMed

    Sancha, Ana María; O'Ryan, Raul

    2008-01-01

    Chile is one of the few countries that faces the environmental challenge posed by extensive arsenic pollution, which exists in the northern part of the country. Chile has worked through various options to appropriately address the environmental challenge of arsenic pollution of water and air. Because of cost and other reasons, copying standards used elsewhere in the world was not an option for Chile. Approximately 1.8 million people, representing about 12% of the total population of the country, live in arsenic-contaminated areas. In these regions, air, water, and soil are contaminated with arsenic from both natural and anthropogenic sources. For long periods, water consumed by the population contained arsenic levels that exceeded values recommended by the World Health Organization. Exposure to airborne arsenic also occurred near several large cities, as a consequence of both natural contamination and the intensive mining activity carried out in those areas. In rural areas, indigenous populations, who lack access to treated water, were also exposed to arsenic by consuming foods grown locally in arsenic-contaminated soils. Health effects in children and adults from arsenic exposure first appeared in the 1950s. Such effects included vascular, respiratory, and skin lesions from intake of high arsenic levels in drinking water. Methods to remove arsenic from water were evaluated, developed, and implemented that allowed significant reductions in exposure at a relatively low cost. Construction and operation of treatment plants to remove arsenic from water first began in the 1970s. Beginning in the 1990s, epidemiological studies showed that the rate of lung and bladder cancer in the arsenic-polluted area was considerably higher than mean cancer rates for the country. Cancer incidence was directly related to arsenic exposure. During the 1990s, international pressure and concern by Chile's Health Ministry prompted action to regulate arsenic emissions from copper smelters. A

  10. [Arsenical keratosis treated by dermatome shaving].

    PubMed

    Kjerkegaard, Ulrik Knap; Heje, Jens Martin; Vestergaard, Christian; Stausbøl-Grøn, Birgitte; Stolle, Lars Bjørn

    2014-05-05

    Cutaneous malignancy in association with arsenic exposure is a rare but well-documented phenomenon. Signs of chronic arsenic exposure are very rare in Denmark today. However, arsenic was used in the medical treatment of psoriasis vulgaris up till the 1980's and several patients suffer from this arsenic treatment today. This case report shows that arsenical keratosis can be treated by dermatome shaving, a superficial destructive therapy.

  11. Evaluation of the Association between Arsenic and Diabetes: A National Toxicology Program Workshop Review

    PubMed Central

    Maull, Elizabeth A.; Ahsan, Habibul; Edwards, Joshua; Longnecker, Matthew P.; Navas-Acien, Ana; Pi, Jingbo; Silbergeld, Ellen K.; Styblo, Miroslav; Tseng, Chin-Hsiao; Thayer, Kristina A.

    2012-01-01

    Background: Diabetes affects an estimated 346 million persons globally, and total deaths from diabetes are projected to increase > 50% in the next decade. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. In 2011, the National Toxicology Program (NTP) organized a workshop to assess the literature for evidence of associations between certain chemicals, including inorganic arsenic, and diabetes and/or obesity to help develop a focused research agenda. This review is derived from discussions at that workshop. Objectives: Our objectives were to assess the consistency, strength/weaknesses, and biological plausibility of findings in the scientific literature regarding arsenic and diabetes and to identify data gaps and areas for future evaluation or research. The extent of the existing literature was insufficient to consider obesity as an outcome. Data Sources, Extraction, and Synthesis: Studies related to arsenic and diabetes or obesity were identified through PubMed and supplemented with relevant studies identified by reviewing the reference lists in the primary literature or review articles. Conclusions: Existing human data provide limited to sufficient support for an association between arsenic and diabetes in populations with relatively high exposure levels (≥ 150 µg arsenic/L in drinking water). The evidence is insufficient to conclude that arsenic is associated with diabetes in lower exposure (< 150 µg arsenic/L drinking water), although recent studies with better measures of outcome and exposure support an association. The animal literature as a whole was inconclusive; however, studies using better measures of diabetes-relevant end points support a link between arsenic and diabetes. PMID:22889723

  12. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study

    PubMed Central

    Howard, Barbara V.; Umans, Jason G.; Gribble, Matthew O.; Best, Lyle G.; Francesconi, Kevin A.; Goessler, Walter; Lee, Elisa; Guallar, Eliseo; Navas-Acien, Ana

    2015-01-01

    OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45–75 years were recruited in 1989–1991 and followed through 1998–1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥126 mg/dL, 2-h glucose ≥200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63–0.93) and 0.82 (0.73–0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism. PMID:25583752

  13. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu; Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214; Gaile, Daniel P.

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenicmore » exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression

  14. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    PubMed Central

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a six month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. PMID:22521957

  15. Arsenic in groundwaters in the Northern Appalachian Mountain belt: A review of patterns and processes

    NASA Astrophysics Data System (ADS)

    Peters, Stephen C.

    2008-07-01

    Naturally occurring arsenic in the bedrock of the Northern Appalachian Mountain belt was first recognized in the late 19th century. The knowledge of the behavior of arsenic in groundwater in this region has lagged behind nearly a century, with the popular press reporting on local studies in the early 1980s, and most peer-reviewed research articles on regional patterns conducted and written in the late 1990s and early 2000s. Research reports have shown that within this high arsenic region, between 6% and 22% of households using private drinking water wells contain arsenic in excess of 10 µg/L, the United States Environmental Protection Agency's maximum contaminant level. In nearly all reports, arsenic in drinking water was derived from naturally occurring geologic sources, typically arsenopyrite, substituted sulfides such as arsenian pyrite, and nanoscale minerals such as westerveldite. In most studies, arsenic concentrations in groundwater were controlled by pH dependent adsorption to mineral surfaces, most commonly iron oxide minerals. In some cases, reductive dissolution of iron minerals has been shown to increase arsenic concentrations in groundwater, more commonly associated with anthropogenic activities such as landfills. Evidence of nitrate reduction promoting the presence of arsenic(V) and iron(III) minerals in anoxic environments has been shown to occur in surface waters, and in this manuscript we show this process perhaps applies to groundwater. The geologic explanation for the high arsenic region in the Northern Appalachian Mountain belt is most likely the crustal recycling of arsenic as an incompatible element during tectonic activity. Accretion of multiple terranes, in particular Avalonia and the Central Maine Terrane of New England appear to be connected to the presence of high concentrations of arsenic. Continued tectonic activity and recycling of these older terranes may also be responsible for the high arsenic observed in the Triassic rift basins

  16. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    PubMed

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  17. Sequestration of arsenic in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  18. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1.

    PubMed

    Hulsurkar, M; Li, Z; Zhang, Y; Li, X; Zheng, D; Li, W

    2017-03-01

    Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.

  19. Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment.

    PubMed

    Chen, Baowei; Cao, Fenglin; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2018-07-01

    Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMA V ), monomethylarsonic acid (MMA V ), monomethylarsonous acid (MMA III ), monomethylmonothioarsonic acid (MMMTA V ), and dimethylmonothioarsinic acid (DMMTA V ) were also detected in both hair and nail samples. This is the first report of the detection of MMA III and MMMTA V as metabolites of arsenic in hair and nails of APL patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Involvement of epigenetics and EMT related miRNA in arsenic induced neoplastic transformation and their potential clinical use

    PubMed Central

    Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M.; Netto, George J.; Sidransky, David; Hoque, Mohammad O.

    2015-01-01

    Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject’s risk of developing urothelial carcinoma (UC). To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic exposed subjects, UC patients and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time dependent manner after arsenic treatment and cellular morphology was changed. In soft agar assay, colonies were observed only in arsenic treated cells and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in invasion assay were observed only in arsenic treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were down-regulated in arsenic exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P=0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC=0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early UC detection. PMID:25586904

  1. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast.

    PubMed

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-10-13

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron-sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5'-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. Copyright © 2016 Guo et al.

  2. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    PubMed

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  3. COMMONALITIES IN METABOLISM OF ARSENICALS

    EPA Science Inventory

    Elucidating the pathway of inorganic arsenic metabolism shows that some of methylated arsenicals formed as intermediates and products are reactive and toxic species. Hence, methylated arsenicals likely mediate at least some of the toxic and carcinogenic effects associated with e...

  4. Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water.

    PubMed

    Afolabi, Olusegun K; Wusu, Adedoja D; Ogunrinola, Olabisi O; Abam, Esther O; Babayemi, David O; Dosumu, Oluwatosin A; Onunkwor, Okechukwu B; Balogun, Elizabeth A; Odukoya, Olusegun O; Ademuyiwa, Oladipo

    2015-06-05

    Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. However, the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic. In order to investigate the effects of inorganic arsenic exposure on lipid metabolism, male albino rats were exposed to 50, 100 and 150 ppm arsenic as sodium arsenite and 100, 150 and 200 ppm arsenic as sodium arsenate respectively in their drinking water for 12 weeks. Dyslipidemia induced by the two arsenicals exhibited different patterns. Hypocholesterolemia characterised the effect of arsenite at all the doses, but arsenate induced hypercholesterolemia at the 150 ppm As dose. Hypertriglyceridemia was the hallmark of arsenate effect whereas plasma free fatty acids (FFAs) was increased by the two arsenicals. Reverse cholesterol transport was inhibited by the two arsenicals as evidenced by decreased HDL cholesterol concentrations whereas hepatic cholesterol was increased by arsenite (100 ppm As), but decreased by arsenite (150 ppm As) and arsenate (100 ppm As) respectively. Brain cholesterol and triglyceride were decreased by the two arsenicals; arsenate decreased the renal content of cholesterol, but increased renal content of triglyceride. Arsenite, on the other hand, increased the renal contents of the two lipids. The two arsenicals induced phospholipidosis in the spleen. Arsenite (150 ppm As) and arsenate (100 ppm As) inhibited hepatic HMG CoA reductase. At other doses of the two arsenicals, hepatic activity of the enzyme was up-regulated. The two arsenicals however up-regulated the activity of the brain enzyme. We observed positive associations between tissue arsenic levels and plasma FFA and negative associations between tissue arsenic levels and HDL cholesterol. Our findings indicate that even though sub-chronic exposure to arsenite and arsenate through drinking water produced different patterns of

  5. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE INORGANIC ARSENIC METHYLATION PHENOTYPE

    EPA Science Inventory

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidence suggest that some of the adverse health effects associated with chronic exposure to in...

  6. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    PubMed

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  7. Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor.

    PubMed

    Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M; De Seta, Graciela E; Reina, Fernando D; Panigatti, Cecilia; Litter, Marta I; Harms, Hauke

    2015-05-21

    Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron.

  8. Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor

    PubMed Central

    Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M.; De Seta, Graciela E.; Reina, Fernando D.; Panigatti, Cecilia; Litter, Marta I.; Harms, Hauke

    2015-01-01

    Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron. PMID:26006123

  9. Dissociation of sensitivities to tumor promotion and progression in outbred and inbred SENCAR mice.

    PubMed

    Gimenez-Conti, I B; Bianchi, A B; Fischer, S M; Reiners, J J; Conti, C J; Slaga, T J

    1992-06-15

    The sensitivity of outbred SENCAR mice and inbred SENCAR (SSIN) mice to multistage carcinogenesis was studied. Tumors were induced using either 7,12-dimethylbenz[a]anthracene or N-methyl-N'-nitro-N-nitrosoguanidine as initiators and 12-O-tetradecanoylphorbol-13-acetate or benzoyl peroxide as promoting agents. Although the number of papillomas per mouse was higher in SSIN than in outbred SENCAR mice, the number of carcinomas observed in the SSIN strain was significantly lower regardless of the initiator or promoter used. It was also observed that the expression of markers of premalignant progression (i.e., dysplasia, expression of keratin K13, and loss of keratin K1 expression) was markedly suppressed in SSIN papillomas. After 50 wk of promotion with 12-O-tetradecanoylphorbol-13-acetate, the pattern of expression of K13 and K1 in SSIN mice was comparable to the pattern observed in outbred SENCAR mice after 10 to 20 wk of promotion with 12-O-tetradecanoylphorbol-13-acetate. It was also observed that 67% of the tumors induced in SSIN mice by initiation with 7,12-dimethylbenz[a]anthracene exhibited a mutation in codon 61 of the Ha-ras-1 gene. This latter finding suggests that the differences observed in tumor progression between the inbred strain and the outbred stock are not related to a genetic alteration in the Ha-ras-1 gene but rather to an independent event that we have postulated to involve a putative suppressor gene. The data reported here suggest that the putative gene(s) that confers susceptibility to tumor promotion was segregated from the gene(s) involved in tumor progression during selection and inbreeding of the SENCAR mouse stock.

  10. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  11. Arsenic and antimony transporters in eukaryotes.

    PubMed

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  12. PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC

    EPA Science Inventory

    PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC.

    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder and kidney. In contrast,
    there is no accepted experimental animal model of inorganic arsenic carcinogenesis.
    Proposed mechanisms/modes of action for a...

  13. Chronic arsenic intoxication diagnostic score (CAsIDS).

    PubMed

    Dani, Sergio Ulhoa; Walter, Gerhard Franz

    2018-01-01

    Arsenic and its compounds are well-established, potent, environmentally widespread and persistent toxicants with metabolic, genotoxic, mutagenic, teratogenic, epigenetic and carcinogenic effects. Arsenic occurs naturally in the Earth's crust, but anthropogenic arsenic emissions have surmounted the emissions from important natural sources such as volcanism. Inorganic arsenicals exhibit acute and chronic toxicities in virtually all cell types and tissues, and hence arsenic intoxication affects multiple systems. Whereas acute arsenic intoxication is rare and relatively easy to diagnose, chronic arsenic intoxication (CAsI) is common but goes often misdiagnosed. Based on a review of the literature as well as our own clinical experience, we propose a chronic arsenic intoxication diagnostic score (CAsIDS). A distinctive feature of CAsIDS is the use of bone arsenic load as an essential criterion for the individual risk assessment of chronic arsenic intoxication, combined with a systemic clinical assessment. We present clinical examples where CAsIDS is applied for the diagnosis of CAsI, review the main topics of the toxicity of arsenic in different cell and organ systems and discuss the therapy and prevention of disease caused or aggravated by chronic arsenic intoxication. CAsIDS can help physicians establish the diagnosis of CAsI and associated conditions. Copyright © 2017 John Wiley & Sons, Ltd.

  14. PATHWAY OF INORGANIC ARSENIC METABOLISM

    EPA Science Inventory

    A remarkable aspect of the metabolism of inorganic arsenic in humans is its conversion to methylated metabolites. These metabolites account for most of the arsenic found in urine after exposure to inorganic arsenic. At least some of the adverse health effects attributed to inor...

  15. ADSORPTION MEDIA FOR ARSENIC REMOVAL

    EPA Science Inventory

    Presentation will discuss the use of adsorptive media for the removal of arsenic from drinking water. Presentation is a fundamental discussion on the use of adsorptive media for arsenic removal and includes information from several EPA field studies on removal of arsenic from dr...

  16. ARSENIC REMOVAL COST ESTIMATING PROGRAM

    EPA Science Inventory

    The Arsenic Removal Cost Estimating program (Excel) calculates the costs for using adsorptive media and anion exchange treatment systems to remove arsenic from drinking water. The program is an easy-to-use tool to estimate capital and operating costs for three types of arsenic re...

  17. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-10-15

    Rice is the staple food for the people of arsenic endemic South (S) and South-East (SE) Asian countries. In this region, arsenic contaminated groundwater has been used not only for drinking and cooking purposes but also for rice cultivation during dry season. Irrigation of arsenic-contaminated groundwater for rice cultivation has resulted high deposition of arsenic in topsoil and uptake in rice grain posing a serious threat to the sustainable agriculture in this region. In addition, cooking rice with arsenic-contaminated water also increases arsenic burden in cooked rice. Inorganic arsenic is the main species of S and SE Asian rice (80 to 91% of the total arsenic), and the concentration of this toxic species is increased in cooked rice from inorganic arsenic-rich cooking water. The people of Bangladesh and West Bengal (India), the arsenic hot spots in the world, eat an average of 450g rice a day. Therefore, in addition to drinking water, dietary intake of arsenic from rice is supposed to be another potential source of exposure, and to be a new disaster for the population of S and SE Asian countries. Arsenic speciation in raw and cooked rice, its bioavailability and the possible health hazard of inorganic arsenic in rice for the population of S and SE Asia have been discussed in this review. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Arsenic levels in immigrant children from countries at risk of consuming arsenic polluted water compared to children from Barcelona.

    PubMed

    Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O

    2015-11-01

    Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40% of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure (consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries.

  19. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.

    PubMed

    Chamberlain, Jim F; Sabatini, David A

    2014-08-01

    In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    PubMed Central

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  1. Arsenic chemistry in soils and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendorf, S.; Nico, P.; Kocar, B.D.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 millionmore » people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  2. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML.

    PubMed

    Zhang, Xiao-Wei; Yan, Xiao-Jing; Zhou, Zi-Ren; Yang, Fei-Fei; Wu, Zi-Yu; Sun, Hong-Bin; Liang, Wen-Xue; Song, Ai-Xin; Lallemand-Breitenbach, Valérie; Jeanne, Marion; Zhang, Qun-Ye; Yang, Huai-Yu; Huang, Qiu-Hua; Zhou, Guang-Biao; Tong, Jian-Hua; Zhang, Yan; Wu, Ji-Hui; Hu, Hong-Yu; de Thé, Hugues; Chen, Sai-Juan; Chen, Zhu

    2010-04-09

    Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.

  3. Understanding Arsenic Dynamics in Agronomic Systems to ...

    EPA Pesticide Factsheets

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  4. Implications of oxidative stress and hepatic cytokine (TNF-{alpha} and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Subhankar; Santra, Amal; Lahiri, Sarbari

    2005-04-01

    Introduction: Noncirrhotic portal fibrosis has been reported to occur in humans due to prolonged intake of arsenic contaminated water. Further, oxystress and hepatic fibrosis have been demonstrated by us in chronic arsenic induced hepatic damage in murine model. Cytokines like tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin 6 (IL-6) are suspected to play a role in hepatic collagenesis. The present study has been carried out to find out whether increased oxystress and cytokine response are associated with increased accumulation of collagen in the liver due to prolonged arsenic exposure and these follow a dose-response relationship. Methods: Male BALB/c mice weremore » given orally 200 {mu}l of water containing arsenic in a dose of 50, 100, and 150 {mu}g/mouse/day for 6 days a week (experimental group) or arsenic-free water (<0.01 {mu}g/l, control group) for 3, 6, 9 and 12 months. Hepatic glutathione (GSH), protein sulfhydryl (PSH), glutathione peroxidase (GPx), Catalase, lipid peroxidation (LPx), protein carbonyl (PC), interleukin (IL-6), tumor necrosis factor (TNF-{alpha}), arsenic and collagen content in the liver were estimated from sacrificed animals. Results: Significant increase of lipid peroxidation and protein oxidation in the liver associated with depletion of hepatic thiols (GSH, PSH), and antioxidant enzymes (GPx, Catalase) occurred in mice due to prolonged arsenic exposure in a dose-dependent manner. Significant elevation of hepatic collagen occurred at 9 and 12 months in all the groups associated with significant elevation of TNF-{alpha} and IL-6. However, arsenic level in the liver increased progressively from 3 months onwards. There was a positive correlation between the hepatic arsenic level and collagen content (r = 0.8007), LPx (r = 0.779) and IL-6 (r = 0.7801). Further, there was a significant negative correlation between GSH and TNF-{alpha} (r = -0.5336)) and LPx (r = -0.644). Conclusion: Increasing dose and duration of arsenic

  5. Arsenic in the breast milk of lactating women in arsenic-affected areas of West Bengal, India and its effect on infants.

    PubMed

    Samanta, Gautam; Das, Dipankar; Mandal, Badal K; Chowdhury, Tarit Roy; Chakraborti, Dipankar; Pal, Arup; Ahamed, Sad

    2007-10-01

    Two hundred and twenty-six breast milk samples were collected from lactating women from 3 blocks of North-24 Paragans, one of the arsenic-affected districts of West Bengal, India. Out of 226 samples, only in 39 samples arsenic was detected. Urine, hair, and nail samples were also analyzed to know the arsenic body burden of the lactating women. Arsenic in drinking water was also analyzed. Principle component analysis (PCA) revealed that hair and nail arsenic was highly correlated with water arsenic concentrations, whereas arsenic in urine and breast milk did not cluster with water arsenic. Our present study indicated that among the lactating women who had high arsenic body burden and arsenical skin lesions, they had elevated level of arsenic in their breast milk. Arsenic in hair, nails, and urine samples of infants were analyzed, and the results showed significantly high-body burden of infants in those areas. PCA showed the age-dependent relationship between the hair and nail arsenic concentrations of the mothers and their babies.

  6. Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water.

    PubMed

    Tchounwou, P B; Wilson, B; Ishaque, A

    1999-01-01

    Drinking water contamination by arsenic remains a major public health problem. Acute and chronic arsenic exposure via drinking water has been reported in many countries of the world; especially in Argentina, Bangladesh, India, Mexico, Thailand, and Taiwan, where a large proportion of drinking water (ground water) is contaminated with a high concentration of arsenic. Research has also pointed out significantly higher standardized mortality ratios and cumulative mortality rates for cancers of the bladder, kidney, skin, liver, and colon in many areas of arsenic pollution. General health effects that are associated with arsenic exposure include cardiovascular and peripheral vascular disease, developmental anomalies, neurologic and neurobehavioral disorders, diabetes, hearing loss, portal fibrosis of the liver, lung fibrosis, hematologic disorders (anemia, leukopenia, and eosinophilia), and carcinoma. Although, the clinical manifestations of arsenic poisoning appear similar, the toxicity of arsenic compounds depends largely u[on the chemical species and the form of arsenic involved. On the basis of its high degree of toxicity to humans, and the non-threshold dose-response assumption, a zero level exposure is recommended for arsenic, even though this level is practically non-attainable. In this review, we provide and discuss important information on the physical and chemical properties, production and use, fate and transport, toxicokinetics, systemic and carcinogenic health effects, regulatory and health guidelines, analytical methods, and treatment technologies that are applied to arsenic pollution. Such information is critical in assisting the federal, state and local officials who are responsible for protecting public health in dealing with the problem of drinking water contamination by arsenic and arsenic-containing compounds.

  7. Arsenic speciation and sorption in natural environments

    USGS Publications Warehouse

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  8. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    PubMed

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  9. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica

    PubMed Central

    Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R.; Sánchez, Jesús; Peláez, Ana Isabel

    2017-01-01

    ABSTRACT The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica. The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonadales, especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica, whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  10. ARSENIC URINARY METABOLITES: BIOMARKER STUDY

    EPA Science Inventory

    A population of adults and children with ranges of 10 to 300 g/l of arsenic in their drinking water will have their urine analyzed for total and speciated arsenic. A sample of 30 families will be selected based on tap water analyses for arsenic. This sample will comprise 50% adul...

  11. Arsenic Treatment Technology Demonstrations

    EPA Pesticide Factsheets

    EPA’s research for the new Arsenic Rule focused on the development and evaluation of innovative methods and cost-effective technologies for improving the assessment and control of arsenic contamination.

  12. Method of arsenic removal from water

    DOEpatents

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  13. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    PubMed

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  15. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    USGS Publications Warehouse

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  16. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    PubMed

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  17. Arsenic and skin cancer in the USA: the current evidence regarding arsenic-contaminated drinking water.

    PubMed

    Mayer, Jonathan E; Goldman, Rose H

    2016-11-01

    Studies carried out in developing countries, such as Bangladesh and Taiwan, have reported an association between exposure to arsenic in drinking water and increased rates of non-melanoma skin cancer. However, it is unclear whether this correlation can be extended to the populations of developed countries such as the USA, which have lower levels of arsenic exposure and differ in other factors, such as genetics, nutrition, sun exposure, and socioeconomic status. This report examines the current evidence in an attempt to resolve whether populations in the USA have rates of skin cancer that correlate with higher arsenic concentrations. A systematic literature search was conducted using the PubMed, EMBASE, CINAHL, and Cochrane databases. Six key studies were found and reviewed. Several studies conducted in US populations indicate an association between arsenic-contaminated water and skin cancer, which may in some cases occur at arsenic concentrations of <10 μg/l, the 2001 Environmental Protection Agency (EPA) maximum allowable concentration for municipal water. Private wells are not regulated by the EPA's rule, and many have concentrations above the EPA maximum. In order to help curb the rising incidence of skin cancer, arsenic contamination of water warrants the attention of policymakers. Greater testing of well water and increased education and skin cancer surveillance by dermatologists in arsenic-endemic areas may help to reduce exposure to arsenic and facilitate the early recognition of skin cancer. © 2016 The International Society of Dermatology.

  18. System for removal of arsenic from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  19. Fact Sheet on Arsenic

    EPA Pesticide Factsheets

    Arsenic is a naturally occurring element that is found in combination with either inorganic or organic substances to form many different compounds. Inorganic arsenic compounds are found in soils, sediments, and groundwater.

  20. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection ofmore » mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.« less

  1. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells.

    PubMed

    Li, Juan; Pan, Qianying; Rowan, Patrick D; Trotter, Timothy N; Peker, Deniz; Regal, Kellie M; Javed, Amjad; Suva, Larry J; Yang, Yang

    2016-03-08

    Bone dissemination and bone disease occur in approximately 80% of patients with multiple myeloma (MM) and are a major cause of patient mortality. We previously demonstrated that MM cell-derived heparanase (HPSE) is a major driver of MM dissemination to and progression in new bone sites. However the mechanism(s) by which HPSE promotes MM progression remains unclear. In the present study, we investigated the involvement of mesenchymal features in HPSE-promoted MM progression in bone. Using a combination of molecular, biochemical, cellular, and in vivo approaches, we demonstrated that (1) HPSE enhanced the expression of mesenchymal markers in both MM and vascular endothelial cells; (2) HPSE expression in patient myeloma cells positively correlated with the expression of the mesenchymal markers vimentin and fibronectin. Additional mechanistic studies revealed that the enhanced mesenchymal-like phenotype induced by HPSE in MM cells is due, at least in part, to the stimulation of the ERK signaling pathway. Finally, knockdown of vimentin in HPSE expressing MM cells resulted in significantly attenuated MM cell dissemination and tumor growth in vivo. Collectively, these data demonstrate that the mesenchymal features induced by HPSE in MM cells contribute to enhanced tumor cell motility and bone-dissemination.

  2. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    USGS Publications Warehouse

    Ding, Z.; Zheng, B.; Zhang, Jiahua; Belkin, H.E.; Finkelman, R.B.; Zhao, F.; Zhou, D.; Zhou, Y.; Chen, C.

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray diffraction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  3. Mineral resource of the month: arsenic

    USGS Publications Warehouse

    Brooks, William E.

    2008-01-01

    Arsenic has a long and varied history: Although it was not isolated as an element until the 13th century, it was known to the ancient Chinese, Egyptians and Greeks in compound form in the minerals arsenopyrite, realgar and orpiment. In the 1400s, “Scheele’s Green” was first used as an arsenic pigment in wallpaper, and leached arsenic from wallpaper may have contributed to Napoleon’s death in 1821. The 1940s play and later movie, Arsenic and Old Lace, dramatizes the metal’s more sinister role. Arsenic continues to be an important mineral commodity with many modern applications.

  4. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    EPA Science Inventory

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  5. Geomicrobial interactions with arsenic and antimony

    USGS Publications Warehouse

    Oremland, Ronald S.

    2015-01-01

    Although arsenic and antimony are generally toxic to life, some microorganisms exist that can metabolize certain forms of these elements. Some can use arsenite or stibnite as potential or sole energy sources, whereas others can use aresenate and antimonite (as was discovered only recently) as terminal electron acceptors. Still other microbes can metabolize arsenic and antimony compounds to detoxify them. These reactions are important from a geomicrobial standpoint because they indicate that a number of microbes contribute to arsenic and antimony mobilization or immobilization in the environment and play a role in arsenic and antimony cycles. Recent reviews include five on prokaryotes and arsenic metabolism, a review with an arsenic perspective on biomining, and a series on environmental antimony, including one about antimony and its interaction with microbiota.

  6. Environmental arsenic exposure and serum matrix metalloproteinase-9.

    PubMed

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; O'Rourke, Mary Kay; Littau, Sally R; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B

    2013-03-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake was estimated. Urine was speciated for arsenic, and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking, and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike's Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9 than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure evaluated using all three exposure metrics was positively associated with MMP-9.

  7. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  8. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    PubMed Central

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. Images Figure 1. A Figure 1. B Figure 2. PMID:9347899

  9. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    PubMed Central

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4- and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16- and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni. PMID:24419344

  10. Arsenic in Drinking Water—A Global Environmental Problem

    NASA Astrophysics Data System (ADS)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  11. PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC: METHYLATED ARSENIC(III) SPECIES THAT REACT DIRECTLY WITH DNA

    EPA Science Inventory


    PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC: METHYLATED ARSENIC(III) SPECIES THAT REACT DIRECTL Y WITH DNA.

    Abstract:

    Although inorganic arsenic (iAs), arsenite or arsenate, is genotoxic, there has been no demonstration that iAs or a methylated metabolite...

  12. KINETIC AND DYNAMIC ASPECTS OF ARSENIC TOXICITY

    EPA Science Inventory

    This project integrates research on aspects of the kinetic and dynamic behavior of arsenic. A PBPK model for arsenic will be developed using metabolism and disposition data from studies in mice. Retention of arsenic in the tissues following exposure to arsenic will be investigate...

  13. Arsenic in drinking water and peripheral nerve conduction velocity among residents of a chronically arsenic-affected area in Inner Mongolia.

    PubMed

    Fujino, Yoshihisa; Guo, Xiaojuan; Shirane, Kiyoyumi; Liu, Jun; Wu, Kegong; Miyatake, Munetoshi; Tanabe, Kimiko; Kusuda, Tetsuya; Yoshimura, Takesumi

    2006-09-01

    It remains unclear whether chronic ingestion of arsenic in drinking water affects the peripheral nervous system. We examined the effects of arsenic exposure on nerve conduction velocity using electromyography. A cross-sectional study was conducted of a population living in an arsenic-affected village in Hetao Plain, Inner Mongolia, China. A total of 134 (93.7%) of 143 inhabitants took part in the study, and 36 (76.6%) of 47 inhabitants in a low-arsenic exposed village were recruited as a control group. Of the participants, 109 inhabitants in the arsenic-affected village and 32 in the low-arsenic exposed village aged > or =18 years were used for the analyses. An expert physician performed skin examinations, and median nerve conduction velocity was examined by electromyography. Arsenic levels in tube-well water and urine were measured. A mean level of arsenic in tube-well water in the arsenic-affected village was 158.3 microg/L, while that in the low-arsenic exposed village was 5.3 microg/L. No significant differences in the means of the motor nerve conduction velocity (MCV) and sensory nerve conduction velocity (SCV) were observed in relation to arsenic levels in tube wells, urine, and the duration of tube-well use. Further, no differences in mean MCV or SCV were found between the subjects with and without arsenic dermatosis, with mean SCV of 52.8 m/s (SD 6.3) in those without and 54.6 m/s (5.2) in subjects with arsenic dermatosis (p=0.206). These findings suggest that chronic arsenic poisoning from drinking water is unlikely to affect nerve conduction velocity, at least within the range of arsenic in drinking water examined in the present study.

  14. [The establishment of the arsenic poisoning rats model caused by corn flour baked by high-arsenic coal].

    PubMed

    Yao, Mao-lin; Zhang, Ai-hua; Yu, Chun; Xu, Yu-yan; Hu, Yong; Xiao, Ting-ting; Wang, Lei

    2013-09-01

    To establish coal arsenic poisoning rat model by feeding the rats with the corn powder baked by high arsenic coal as the main raw material. Fifty Wistar rats, healthy, were randomly divided into 5 groups according to the figures of their weights, including control group, drinking arsenic poisoning water group, low, medium and high arsenic contaminated grain group, 10 rats for each.Rats in control group and drinking arsenic poisoning water group were fed with standard feed without any arsenic containing. Rats in water group would drink 100 mg/L As2O3 solution and the rats in arsenic grain groups would be fed with the arsenic contaminated grain at the dose of 25, 50 and 100 mg/kg, respectively. The duration would last for 3 months.General situation and weight were observed. At the same time, the arsenic contents of urine, hair, liver and kidney of the rats in each group were detected, as well as the histopathology changes of liver and kidney, and the ultra structure of liver was observed. The arsenic contents of urine (median(min-max)) of the rats in the arsenic water group, low, medium and high arsenic grain groups were separately 3055.59 (722.43-6389.05), 635.96(367.85-1551.31), 1453.84 (593.27-5302.94) and 3101.11 (666.64-6858.61) µg/g Cr; while the arsenic contents of hair of the rats in the above groups were separately (23.07 ± 10.38), (8.87 ± 3.31), (12.43 ± 6.65) and (25.68 ± 7.16) µg/g; the arsenic contents of liver of the rats in the above groups were separately (5.68 ± 3.13), (2.64 ± 1.52), (3.89 ± 1.76) and (5.34 ± 2.78) µg/g; and the arsenic contents of kidney were separately (6.90 ± 1.94), (3.48 ± 1.96), (5.03 ± 2.08) and (7.02 ± 1.62) µg/g; which were all significantly higher than those in the control group (86.70 (49.71-106.104) µg/g Cr,(1.28 ± 0.37) µg/g, (1.01 ± 0.34) µg/g and (1.82 ± 1.09) µg/g, respectively). The difference showed significance (P < 0.05). Under electron microscope detection, we observed the reduction of

  15. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1994-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  16. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1995-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  17. OPTIMIZING ARSENIC REMOVAL DURING IRON REMOVAL PROCESSES

    EPA Science Inventory

    The recently promulgated Arsenic rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water also have iron in their water. As a result, arsenic treatment at these sites will most likely b...

  18. Linking Arsenic Metabolism and Toxic Effects

    EPA Science Inventory

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  19. Arsenic geochemistry of groundwater in Southeast Asia.

    PubMed

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  20. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  1. Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo

    PubMed Central

    Rao, Chinthalapally V.; Pal, Sanya; Mohammed, Altaf; Farooqui, Mudassir; Doescher, Mark P.; Asch, Adam S.; Yamada, Hiroshi Y.

    2017-01-01

    Through contaminated diet, water, and other forms of environmental exposure, arsenic affects human health. There are many U.S. and worldwide “hot spots” where the arsenic level in public water exceeds the maximum exposure limit. The biological effects of chronic arsenic exposure include generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage, epigenetic DNA modification, induction of genomic instability, and inflammation and immunomodulation, all of which can initiate carcinogenesis. High arsenic exposure is epidemiologically associated with skin, lung, bladder, liver, kidney and pancreatic cancer, and cardiovascular, neuronal, and other diseases. This review briefly summarizes the biological effects of arsenic exposure and epidemiological cancer studies worldwide, and provides an overview for emerging rodent-based studies of reagents that can ameliorate the effects of arsenic exposure in vivo. These reagents may be translated to human populations for disease prevention. We propose the importance of developing a biomarker-based precision prevention approach for the health issues associated with arsenic exposure that affects millions of people worldwide. PMID:28915699

  2. One Solution to the Arsenic Problem: A Return to Surface (Improved Dug) Wells

    PubMed Central

    Joya, Sakila Afroz; Mostofa, Golam; Yousuf, Jabed; Islam, Ariful; Elahi, Altab; Mahiuddin, Golam; Rahman, Mahmuder; Quamruzzaman, Quazi

    2006-01-01

    Arsenic contamination in drinking-water in Bangladesh is a major catastrophe, the consequences of which exceed most other man-made disasters. The national policy encourages the use of surface water as much as possible without encountering the problems of sanitation that led to the use of groundwater in the first place. This paper describes the success of the Dhaka Community Hospital (DCH) team and the procedure in implementing sanitary, arsenic-free, dugwells. The capital cost for running water is US$ 5–6 per person. Sixty-six sanitary dugwells were installed in phases between 2000 and 2004 in Pabna district of Bangladesh where there was a great need of safe water because, in some villages, 90% of tubewells were highly contaminated with arsenic. In total, 1,549 families now have access to safe arsenic-free dugwell water. Some of them have a water-pipe up to their kitchen. All of these were implemented with active participation of community members. They also pay for water-use and are themselves responsible for the maintenance and water quality. The DCH helped the community with installation and maintenance protocol and also with monitoring water quality. The bacteria levels are low but not always zero, and studies are in progress to reduce bacteria by chlorination. PMID:17366778

  3. Applying a health behavior theory to explore the influence of information and experience on arsenic risk representations, policy beliefs, and protective behavior.

    PubMed

    Severtson, Dolores J; Baumann, Linda C; Brown, Roger L

    2006-04-01

    The common sense model (CSM) shows how people process information to construct representations, or mental models, that guide responses to health threats. We applied the CSM to understand how people responded to information about arsenic-contaminated well water. Constructs included external information (arsenic level and information use), experience (perceived water quality and arsenic-related health effects), representations, safety judgments, opinions about policies to mitigate environmental arsenic, and protective behavior. Of 649 surveys mailed to private well users with arsenic levels exceeding the maximum contaminant level, 545 (84%) were analyzed. Structural equation modeling quantified CSM relationships. Both external information and experience had substantial effects on behavior. Participants who identified a water problem were more likely to reduce exposure to arsenic. However, about 60% perceived good water quality and 60% safe water. Participants with higher arsenic levels selected higher personal safety thresholds and 20% reported a lower arsenic level than indicated by their well test. These beliefs would support judgments of safe water. A variety of psychological and contextual factors may explain judgments of safe water when information suggested otherwise. Information use had an indirect effect on policy beliefs through understanding environmental causes of arsenic. People need concrete information about environmental risk at both personal and environmental-systems levels to promote a comprehensive understanding and response. The CSM explained responses to arsenic information and may have application to other environmental risks.

  4. 21 CFR 862.3120 - Arsenic test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section 862.3120....3120 Arsenic test system. (a) Identification. An arsenic test system is a device intended to measure arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and blood...

  5. TYPES OF ARSENIC AND TREATMENT OPTIONS

    EPA Science Inventory

    Presentation will discuss the state-of-the-art technology for removal of arsenic from drinking water. Presentation includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research studies...

  6. ARSENIC RESEARCH AT GWERD

    EPA Science Inventory

    Abstract - The presentation will summarize the arsenic research program at the Ground Water & Ecosystems Restoration Division of the National Risk Management Research Laboratory of USEPA. Topics include use of permeable reactive barriers for in situ arsenic remediation in ground...

  7. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated ars...

  8. Role of Metabolism in Arsenic-Induced Toxicity: Identification and Quantification of Arsenic Metabolites in Tissues and Excreta

    EPA Science Inventory

    Arsenic is a known toxicant and carcinogen. Methylation of inorganic arsenic was once thought to be a detoxification mechanism because of the rapid excretion and relatively lower toxicity of the pentavalent organic arsenical metabolites. Advances in analytical chemistry have al...

  9. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample.

    PubMed

    Nachman, Keeve E; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A; Navas-Acien, Ana; Love, David C

    2013-07-01

    Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conventional chicken meat had higher iAs concentrations than did conventional antibiotic

  10. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1.

    PubMed

    Treas, Justin; Tyagi, Tulika; Singh, Kamaleshwar P

    2013-11-01

    Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation. © 2013 Wiley Periodicals, Inc.

  11. Arsenic mobilization and immobilization in paddy soils

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  12. Impaired arsenic metabolism in children during weaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro

    2009-09-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, amore » rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 {mu}g/L, range 2.4-940 {mu}g/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.« less

  13. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  14. Assessment of global industrial-age anthropogenic arsenic contamination.

    PubMed

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  15. A Prospective Study of Arsenic Exposure, Arsenic Methylation Capacity, and Risk of Cardiovascular Disease in Bangladesh

    PubMed Central

    Wu, Fen; Liu, Mengling; Parvez, Faruque; Slavkovich, Vesna; Eunus, Mahbub; Ahmed, Alauddin; Argos, Maria; Islam, Tariqul; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Levy, Diane; Graziano, Joseph

    2013-01-01

    Background: Few prospective studies have evaluated the influence of arsenic methylation capacity on cardiovascular disease (CVD) risk. Objective: We evaluated the association of arsenic exposure from drinking water and arsenic methylation capacity with CVD risk. Method: We conducted a case–cohort study of 369 incident fatal and nonfatal cases of CVD, including 211 cases of heart disease and 148 cases of stroke, and a subcohort of 1,109 subjects randomly selected from the 11,224 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). Results: The adjusted hazard ratios (aHRs) for all CVD, heart disease, and stroke in association with a 1-SD increase in baseline well-water arsenic (112 µg/L) were 1.15 (95% CI: 1.01, 1.30), 1.20 (95% CI: 1.04, 1.38), and 1.08 (95% CI: 0.90, 1.30), respectively. aHRs for the second and third tertiles of percentage urinary monomethylarsonic acid (MMA%) relative to the lowest tertile, respectively, were 1.27 (95% CI: 0.85, 1.90) and 1.55 (95% CI: 1.08, 2.23) for all CVD, and 1.65 (95% CI: 1.05, 2.60) and 1.61 (95% CI: 1.04, 2.49) for heart disease specifically. The highest versus lowest ratio of urinary dimethylarsinic acid (DMA) to MMA was associated with a significantly decreased risk of CVD (aHR = 0.54; 95% CI: 0.34, 0.85) and heart disease (aHR = 0.54; 95% CI: 0.33, 0.88). There was no significant association between arsenic metabolite indices and stroke risk. The effects of incomplete arsenic methylation capacity—indicated by higher urinary MMA% or lower urinary DMA%—with higher levels of well-water arsenic on heart disease risk were additive. There was some evidence of a synergy of incomplete methylation capacity with older age and cigarette smoking. Conclusions: Arsenic exposure from drinking water and the incomplete methylation capacity of arsenic were adversely associated with heart disease risk. PMID:23665672

  16. Comparative Distribution and Retention of Arsenic in Arsenic (+3 Oxidation State) Methyltransferase Knockout and Wild Type Mice

    EPA Science Inventory

    The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...

  17. Role of complex organic arsenicals in food in aggregate exposure to arsenic

    EPA Science Inventory

    For much of the world’s population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels has been linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important ...

  18. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    EPA Science Inventory

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  19. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.

    PubMed

    Bhave, Neela S; Veley, Kira M; Nadeau, Jeanette A; Lucas, Jessica R; Bhave, Sanjay L; Sack, Fred D

    2009-01-01

    Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.

  20. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats.

    PubMed

    Xi, Shuhua; Jin, Yaping; Lv, Xiuqiang; Sun, Guifan

    2010-04-01

    The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO(2) from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood-brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.

  1. ARSENIC SEPARATION FROM WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water. The presence of arsenic in water supplies has been linked to arsenical dermatosis and skin cancer . Zeolites are well known for their ion exchange capacities. In the present work, the potential use of a variety of ...

  2. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats.

    PubMed

    Biswas, Debabrata; Sen, Gargi; Sarkar, Avik; Biswas, Tuli

    2011-01-01

    Arsenic is an environmental toxicant that reduces the lifespan of circulating erythrocytes during chronic exposure. Our previous studies had indicated involvement of hypercholesterolemia and reactive oxygen species (ROS) in arsenic-induced apoptotic death of erythrocytes. In this study, we have shown an effective recovery from arsenic-induced death signaling in erythrocytes in response to treatment with atorvastatin (ATV) and N-acetyl cysteine (NAC) in rats. Our results emphasized on the importance of cholesterol in the promotion of ROS-mediated Fas signaling in red cells. Arsenic-induced activation of caspase 3 was associated with phosphatidylserine exposure on the cell surface and microvesiculation of erythrocyte membrane. Administration of NAC in combination with ATV, proved to be more effective than either of the drugs alone towards the rectification of arsenic-mediated disorganization of membrane structural integrity, and this could be linked with decreased ROS accumulation through reduced glutathione (GSH) repletion along with cholesterol depletion. Moreover, activation of caspase 3 was capable of promoting aggregation of band 3 with subsequent binding of autologous IgG and opsonization by C3b that led to phagocytosis of the exposed cells by the macrophages. NAC-ATV treatment successfully amended these events and restored lifespan of erythrocytes from the exposed animals almost to the control level. This work helped us to identify intracellular membrane cholesterol enrichment and GSH depletion as the key regulatory points in arsenic-mediated erythrocyte destruction and suggested a therapeutic strategy against Fas-activated cell death related to enhanced cholesterol and accumulation of ROS. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Arsenic exposure and oral cavity lesions in Bangladesh.

    PubMed

    Syed, Emdadul H; Melkonian, Stephanie; Poudel, Krishna C; Yasuoka, Junko; Otsuka, Keiko; Ahmed, Alauddin; Islam, Tariqul; Parvez, Faruque; Slavkovich, Vesna; Graziano, Joseph H; Ahsan, Habibul; Jimba, Masamine

    2013-01-01

    To evaluate the relationship between arsenic exposure and oral cavity lesions among an arsenic-exposed population in Bangladesh. We carried out an analysis utilizing the baseline data of the Health Effects of Arsenic Exposure Longitudinal Study, which is an ongoing population-based cohort study to investigate health outcomes associated with arsenic exposure via drinking water in Araihazar, Bangladesh. We used multinomial regression models to estimate the risk of oral cavity lesions. Participants with high urinary arsenic levels (286.1 to 5000.0 μg/g) were more likely to develop arsenical lesions of the gums (multinomial odds ratio = 2.90; 95% confidence interval, 1.11 to 7.54), and tongue (multinomial odds ratio = 2.79; 95% confidence interval, 1.51 to 5.15), compared with those with urinary arsenic levels of 7.0 to 134.0 μg/g. Higher level of arsenic exposure was positively associated with increased arsenical lesions of the gums and tongue.

  4. Arsenic content of homeopathic medicines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, H.D.; Saryan, L.A.

    1986-01-01

    In order to test the widely held assumption that homeopathic medicines contain negligible quantities of their major ingredients, six such medicines labeled in Latin as containing arsenic were purchased over the counter and by mail order and their arsenic contents measured. Values determined were similar to those expected from label information in only two of six and were markedly at variance in the remaining four. Arsenic was present in notable quantities in two preparations. Most sales personnel interviewed could not identify arsenic as being an ingredient in these preparations and were therefore incapable of warning the general public of possiblemore » dangers from ingestion. No such warnings appeared on the labels.« less

  5. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    PubMed Central

    Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health. PMID:27766178

  6. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression.

    PubMed

    Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2015-08-01

    We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7-10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer.

  7. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation.

    PubMed

    Flanagan, Sara V; Johnston, Richard B; Zheng, Yan

    2012-11-01

    A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization's guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10-50 µg/L account for an annual 24,000 and perhaps as many as 19,000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0-15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children's Fund 2006-2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations.

  8. Maternal Arsenic Exposure, Arsenic Methylation Efficiency, and Birth Outcomes in the Biomarkers of Exposure to ARsenic (BEAR) Pregnancy Cohort in Mexico

    PubMed Central

    Laine, Jessica E.; Bailey, Kathryn A.; Rubio-Andrade, Marisela; Olshan, Andrew F.; Smeester, Lisa; Drobná, Zuzana; Herring, Amy H.; Stýblo, Miroslav; García-Vargas, Gonzalo G.

    2014-01-01

    Background: Exposure to inorganic arsenic (iAs) from drinking water is a global public health problem, yet much remains unknown about the extent of exposure in susceptible populations. Objectives: We aimed to establish the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort in Gómez Palacio, Mexico, to better understand the effects of iAs exposure on pregnant women and their children. Methods: Two hundred pregnant women were recruited for this study. Concentrations of iAs in drinking water (DW-iAs) and maternal urinary concentrations of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) were determined. Birth outcomes were analyzed for their relationship to DW-iAs and to the concentrations and proportions of maternal urinary arsenicals. Results: DW-iAs for the study subjects ranged from < 0.5 to 236 μg As/L. More than half of the women (53%) had DW-iAs that exceeded the World Health Organization’s recommended guideline of 10 μg As/L. DW-iAs was significantly associated with the sum of the urinary arsenicals (U-tAs). Maternal urinary concentrations of MMAs were negatively associated with newborn birth weight and gestational age. Maternal urinary concentrations of iAs were associated with lower mean gestational age and newborn length. Conclusions: Biomonitoring results demonstrate that pregnant women in Gómez Palacio are exposed to potentially harmful levels of DW-iAs. The data support a relationship between iAs metabolism in pregnant women and adverse birth outcomes. The results underscore the risks associated with iAs exposure in vulnerable populations. Citation: Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobná Z, Herring AH, Stýblo M, García-Vargas GG, Fry RC. 2015. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect 123:186–192; http://dx.doi.org/10

  9. Lead isotopic compositions of common arsenical pesticides used in New England

    USGS Publications Warehouse

    Ayuso, Robert; Foley, Nora; Robinson, Gilpin; Wandless, Gregory; Dillingham, Jeremy

    2004-01-01

    The three most important arsenical pesticides and herbicides that were extensively used on apple, blueberry, and potato crops in New England from mid-1800s to recent times are lead arsenate, calcium arsenate, and sodium arsenate. Lead arsenate was probably the most heavily used of the arsenical pesticides until it was banned in 1988. Other metal-arsenic pesticides were also used but in lesser amounts. A recent report identified areas in New England where arsenical pesticides were used extensively (Robinson and Ayuso, 2004). On the basis of factor analysis of metal concentrations in stream sediment samples, a positive correlation with pesticide use was shown in regions having stream sediment sample populations that contained concentrations of high arsenic and lead. Lead isotope compositions of stream sediments from areas with heavy use of the pesticides could not be entirely explained by lead originating from rock sulfides and their weathering products. An industrial lead contribution (mostly from atmospheric deposition of lead) was suggested in general to explain the lead isotopic distributions of the stream sediments that could not be accounted for by the natural lead in the environment. We concluded that when agricultural land previously contaminated with arsenical pesticides is urbanized, pesticide residues in the soils and stream sediments could be released into the groundwater. No lead isotopic data characterizing the compositions of pesticides were available for comparison. We have determined the lead isotopic compositions of commonly used pesticides in New England, such as lead arsenate, sodium metaarsenite, and calcium arsenate, in order to assist in future isotopic comparisons and to better establish anthropogenic sources of Pb and As. New data are also presented for copper acetoarsenite (or Paris green), methyl arsonic acid and methane arsonic acid, as well as for arsanilic acid, all of which are used as feed additives to promote swine and poultry growth

  10. Arsenic in marine mammals, seabirds, and sea turtles.

    PubMed

    Kunito, Takashi; Kubota, Reiji; Fujihara, Junko; Agusa, Tetsuro; Tanabe, Shinsuke

    2008-01-01

    Although there have been numerous studies on arsenic in low-trophic-level marine organisms, few studies exist on arsenic in marine mammals, seabirds, and sea turtles. Studies on arsenic species and their concentrations in these animals are needed to evaluate their possible health effects and to deepen our understanding of how arsenic behaves and cycles in marine ecosystems. Most arsenic in the livers of marine mammals, seabirds, and sea turtles is AB, but this form is absent or occurs at surprisingly low levels in the dugong. Although arsenic levels were low in marine mammals, some seabirds, and some sea turtles, the black-footed albatross and hawksbill and loggerhead turtles showed high concentrations, comparable to those in marine organisms at low trophic levels. Hence, these animals may have a specific mechanism for accumulating arsenic. Osmoregulation in these animals may play a role in the high accumulation of AB. Highly toxic inorganic arsenic is found in some seabirds and sea turtles, and some evidence suggests it may act as an endocrine disruptor, requiring new and more detailed studies for confirmation. Furthermore, DMA(V) and arsenosugars, which are commonly found in marine animals and marine algae, respectively, might pose risks to highly exposed animals because of their tendency to form reactive oxygen species. In marine mammals, arsenic is thought to be mainly stored in blubber as lipid-soluble arsenicals. Because marine mammals occupy the top levels of their food chain, work to characterize the lipid-soluble arsenicals and how they cycle in marine ecosystems is needed. These lipid-soluble arsenicals have DMA precursors, the exact structures of which remain to be determined. Because many more arsenicals are assumed to be present in the marine environment, further advances in analytical capabilities can and will provide useful future information on the transformation and cycling of arsenic in the marine environment.

  11. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    PubMed

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  12. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    PubMed Central

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Results Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Conclusions Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy. PMID:21392388

  13. Evaluation of Exposure to Arsenic in Residential Soil

    PubMed Central

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda S.; Scrafford, Carolyn G.; Mink, Pamela J.; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-01-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89–17.7 μg/L, respectively) and older participants (3.8, 1.9, 0.91–19.9 μg/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background. PMID:16330356

  14. Arsenic, microbes and contaminated aquifers

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  15. Arsenic Release from Foodstuffs upon Food Preparation.

    PubMed

    Cheyns, Karlien; Waegeneers, Nadia; Van de Wiele, Tom; Ruttens, Ann

    2017-03-22

    In this study the concentration of total arsenic (As) and arsenic species (inorganic As, arsenobetaine, dimethylarsinate, and methylarsonate) was monitored in different foodstuffs (rice, vegetables, algae, fish, crustacean, molluscs) before and after preparation using common kitchen practices. By measuring the water content of the foodstuff and by reporting arsenic concentrations on a dry weight base, we were able to distinguish between As release effects due to food preparation and As decrease due to changes in moisture content upon food preparation. Arsenic species were released to the broth during boiling, steaming, frying, or soaking of the food. Concentrations declined with maxima of 57% for total arsenic, 65% for inorganic As, and 32% for arsenobetaine. On the basis of a combination of our own results and literature data, we conclude that the extent of this release of arsenic species is species specific, with inorganic arsenic species being released most easily, followed by the small organic As species and the large organic As species.

  16. ARSENIC (III) METHYLATED SPECIES REACT WITH DNA DIRECTLY AND COULD BE PROXIMATED/ULTIMATE GENOTOXIC FORMS OF ARSENIC

    EPA Science Inventory


    ARSENIC(III) METHYLATED SPECIES REACT WITH DNA DIRECTL Y AND COULD BE PROXIMATE/ULTIMATE GENOTOXIC FORMS OF ARSENIC


    Arsenite and arsenate (iAs, inorganic arsenic) have been thought to act as genotoxicants without reacting directly with DNA; neither iAs nor As(V) m...

  17. Distribution of Arsenic and Risk Assessment of Activities on Soccer Pitches Irrigated with Arsenic-Contaminated Water.

    PubMed

    Martínez-Villegas, Nadia; Hernández, Abraham; Meza-Figueroa, Diana; Sen Gupta, Bhaskar

    2018-05-24

    The aim of this research was to estimate the risk of human exposure to arsenic due to sporting activities in a private soccer club in Mexico, where arsenic-contaminated water was regularly used for irrigation. For this purpose, the total concentration in the topsoil was considered for risk assessment. This was accomplished through three main objectives: (1) measuring arsenic concentrations in irrigation water and irrigated soils, (2) determining arsenic spatial distribution in shallow soils with Geographical Information Systems (GIS) using geostatistical analysis, and (3) collecting field and survey data to develop a risk assessment calculation for soccer activities in the soccer club. The results showed that the average arsenic concentrations in shallow soils (138.1 mg/kg) were 6.2 times higher than the Mexican threshold for domestic soils (22 mg/kg). Furthermore, dermal contact between exposed users and contaminated soils accounted for a maximum carcinogenic risk value of 1.8 × 10 −5 , which is one order of magnitude higher than the recommended risk value, while arsenic concentrations in the irrigation water were higher (6 mg/L) than the WHO’s permissible threshold in drinking water, explaining the contamination of soils after irrigation. To the best of our knowledge, this is the first risk study regarding dermal contact with arsenic following regular grass irrigation with contaminated water in soccer pitches.

  18. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  19. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    PubMed Central

    Baron, Patrick A.; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. Results: The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conclusions: Conventional chicken meat had higher i

  20. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  1. Effects of biological and behavioral factors on urinary arsenic ...

    EPA Pesticide Factsheets

    Abstract In older men and women who were long-term residents of Churchill County, Nevada, we examined the relation between arsenic exposure from home tap water and urinary levels of inorganic arsenic and its methylated metabolites. Over a wide exposure range (up to 1850 ug of arsenic per liter), urinary concentrations of inorganic, monomethylated, and dimethylated arsenicals strongly correlated with home tap water arsenic concentrations. However, percentages of summed urinary concentrations of inorganic, monomethylated, and dimethylated arsenicals accounted for by each arsenical species were unaffected by arsenic concentration in home tap water, suggesting thc1t capacity for formation and excretion of methylated metabolites was not exceeded. Biological factors (gender, age, body mass index, and genotype) and a behavioral factor (smoking) influenced absolute and relative levels of arsenicals in urine. A multivariate regression model showed that both biological and behavioral factors were significant predictors of absolute and relative concentrations of inorganic arsenic and its methylated metabolites in urine. These findings suggest that analyses of dose-response relations in arsenic-exposed populations should account for these biological and behavioral factors. Furthermore, evidence of significant effects of these factors on arsenic metabolism may support mode of action studies in appropriate experimental models. Running title- Methylated arsenicals as urinary b

  2. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-Chang; Department of Urology, Taipei Medical University—Shuang Ho Hospital, Taipei, Taiwan; Huang, Yung-Kai

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquidmore » chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.« less

  3. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    PubMed

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  4. The Effect of Chronic Arsenic Exposure in Zebrafish

    PubMed Central

    Hallauer, Janell; Geng, Xiangrong; Yang, Hung-Chi; Shen, Jian; Tsai, Kan-Jen

    2016-01-01

    Abstract Arsenic is a prevalent environmental toxin and a Group one human carcinogenic agent. Chronic arsenic exposure has been associated with many human diseases. The aim of this study is to evaluate zebrafish as an animal model to assess arsenic toxicity in elevated long-term arsenic exposure. With prolonged exposure (6 months) to various concentrations of arsenic from 50 ppb to 300 ppb, effects of arsenic accumulation in zebrafish tissues, and phenotypes were investigated. Results showed that there are no significant changes of arsenic retention in zebrafish tissues, and zebrafish did not exhibit any visible tumor formation under arsenic exposure conditions. However, the zebrafish demonstrate a dysfunction in their neurological system, which is reflected by a reduction of locomotive activity. Moreover, elevated levels of the superoxide dismutase (SOD2) protein were detected in the eye and liver, suggesting increased oxidative stress. In addition, the progenies of arsenic-treated parents displayed a smaller biomass (four-fold reduction in body weight) compared with those from their parental controls. This result indicates that arsenic may induce genetic or epigenetic changes that are then passed on to the next generation. Overall, this study demonstrates that zebrafish is a convenient vertebrate model with advantages in the evaluation of arsenic-associated neurological disorders as well as its influences on the offspring. PMID:27140519

  5. Interactions between arsenic species and marine algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J.G.

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surroundingmore » media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)« less

  6. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    USGS Publications Warehouse

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of

  7. Toxic Substances Portal- Arsenic

    MedlinePlus

    ... Has the federal government made recommendations to protect human health? The EPA has set limits on the amount of arsenic that industrial sources can release to the environment and has restricted or cancelled many of the uses of arsenic in pesticides. EPA has set a limit of 0.01 ...

  8. Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh.

    PubMed

    Hata, Akihisa; Yamanaka, Kenzo; Habib, Mohamed Ahsan; Endo, Yoko; Fujitani, Noboru; Endo, Ginji

    2012-05-01

    Chronic inorganic arsenic (iAs) exposure currently affects tens of millions of people worldwide. To accurately determine the proportion of urinary arsenic metabolites in residents continuously exposed to iAs, we performed arsenic speciation analysis of the urine of these individuals and determined whether a correlation exists between the concentration of iAs in drinking water and the urinary arsenic species content. The subjects were 165 married couples who had lived in the Pabna District in Bangladesh for more than 5 years. Arsenic species were measured using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The median iAs concentration in drinking water was 55 μgAs/L (range <0.5-332 μgAs/L). Speciation analysis revealed the presence of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid in urine samples with medians (range) of 16.8 (7.7-32.3), 1.8 (<0.5-3.3), 13.7 (5.6-25.0), and 88.6 μgAs/L (47.9-153.4 μgAs/L), respectively. No arsenobetaine or arsenocholine was detected. The concentrations of the 4 urinary arsenic species were significantly and linearly related to each other. The urinary concentrations of total arsenic and each species were significantly correlated with the iAs concentration of drinking water. All urinary arsenic species are well correlated with each other and with iAs in drinking water. The most significant linear relationship existed between the iAs concentration in drinking water and urinary iAs + MMA concentration. From these results, combined with the effects of seafood ingestion, the best biomarker of iAs exposure is urinary iAs + MMA concentration.

  9. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation

    PubMed Central

    Flanagan, Sara V; Johnston, Richard B

    2012-01-01

    Abstract A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization’s guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10–50 µg/L account for an annual 24 000 and perhaps as many as 19 000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0–15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children’s Fund 2006–2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations. PMID:23226896

  10. Chronic arsenic poisoning following ayurvedic medication.

    PubMed

    Pinto, Benzeeta; Goyal, Palvi; Flora, S J S; Gill, K D; Singh, Surjit

    2014-12-01

    Ayurveda, Indian traditional system of medicine, is practiced commonly in South East Asia and in many parts of the world. Many ayurvedic drugs contain heavy metals and may lead to metal toxicity. Of these, chronic lead poisoning is the most common. Chronic arsenic poisoning following the use of ayurvedic medication, though reported, is rare. We describe three patients who presented with features of chronic arsenic poisoning following prolonged ayurvedic medication use. The diagnosis of chronic arsenic poisoning was confirmed by high arsenic levels in the blood, urine, hair, and nails in all the three patients and in ayurvedic drug in two patients. The ayurvedic medication was discontinued and treatment with D-penicillamine started. At 6 months after treatment, blood arsenic levels returned to normal with clinical recovery in all of them. Arsenic poisoning following ayurvedic medication is much less common than lead poisoning, though mineral ayurvedic medicines may lead to it. We used D-penicillamine as chelator and all of them recovered. Whether withdrawal of medication alone or D-penicillamine also played a role in recovery is unclear and needs to be assessed.

  11. Substantial contribution of biomethylation to aquifer arsenic cycling

    USGS Publications Warehouse

    Maguffin, Scott C.; Kirk, Matthew F.; Daigle, Ashley R.; Hinkle, Stephen R.; Jin, Qusheng

    2015-01-01

    Microbes play a prominent role in transforming arsenic to and from immobile forms in aquifers1. Much of this cycling involves inorganic forms of arsenic2, but microbes can also generate organic forms through methylation3, although this process is often considered insignificant in aquifers4, 5, 6, 7. Here we identify the presence of dimethylarsinate and other methylated arsenic species in an aquifer hosted in volcaniclastic sedimentary rocks. We find that dimethylarsinate is widespread in the aquifer and its concentration correlates strongly with arsenite concentration. We use laboratory incubation experiments and an aquifer injection test to show that aquifer microbes can produce dimethylarsinate at rates of about 0.1% of total dissolved arsenic per day, comparable to rates of dimethylarsinate production in surface environments. Based on these results, we estimate that globally, biomethylation in aquifers has the potential to transform 100 tons of inorganic arsenic to methylated arsenic species per year, compared with the 420–1,250 tons of inorganic arsenic that undergoes biomethylation in soils8. We therefore conclude that biomethylation could contribute significantly to aquifer arsenic cycling. Because biomethylation yields arsine and methylarsines, which are more volatile and prone to diffusion than other arsenic species, we further suggest that biomethylation may serve as a link between surface and subsurface arsenic cycling.

  12. Small System Use of a Solid Arsenic Oxidizing Media in Place of Chemical Oxidation to Enhance Arsenic Removals

    EPA Science Inventory

    As part of the USEPA Arsenic Demonstration Program, an arsenic removal adsorptive media treatment system (10 gpm) was installed at Head Start School in Buckeye Lake, Ohio on June 28, 2006. The source water (ground water) contained around 20 µg/L of arsenic, existing predominatel...

  13. Arsenic uptake by Lemna minor in hydroponic system.

    PubMed

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  14. The Performance of Adsorptive Media Full Scale Arsenic Removal Systems - USEPA Arsenic Demonstration Program

    EPA Science Inventory

    The presentation provides information and data on the performance of several full scale, arsenic removal adsorptive media treatment systems operated under the USEPA arsenic removal demonstration program. The summary includes information on the water quality of the source waters,...

  15. Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Alexandrova, E.; Keimowitz, A.; Wovkulich, K.; Freyer, G.; Stolz, J.; Kenna, T.; Pichler, T.; Polizzotto, M.; Dong, H.; Radloff, K. A.; van Geen, A.

    2008-12-01

    Tens of millions of people in Southeast Asia drink groundwater contaminated with naturally occurring arsenic. The process of arsenic release from the sediment to the groundwater remains poorly understood. Experiments were performed to determine if microbial mineral weathering for nutrient acquisition can serve as a potential mechanism for arsenic mobilization. We performed microcosm experiments with Burkholderia fungorum, phosphate free artificial groundwater, and natural apatite. Controls included incubations with no cells and with killed cells. Additionally, samples were treated with two spikes - an arsenic spike, to show that arsenic release is independent of the initial arsenic concentration, and a phosphate spike to determine whether release occurs at field relevant phosphate conditions. We show in laboratory experiments that phosphate-limited cells of Burkholderia fungorum mobilize ancillary arsenic from apatite as a by-product of mineral weathering for nutrient acquisition. The released arsenic does not undergo a redox transformation but appears to be solubilized from the apatite mineral lattice as arsenate during weathering. Apatite has been shown to be commonly present in sediment samples from Bangladesh aquifers. Analysis of apatite purified from the Ganges, Brahamputra, Meghna drainage basin shows 210 mg/kg of arsenic, which is higher than the average crustal level. Finally, we demonstrate the presence of the microbial phenotype that releases arsenic from apatite in Bangladesh sediments. These results suggest that microbial weathering for nutrient acquisition could be an important mechanism for arsenic mobilization.

  16. The management of arsenic wastes: problems and prospects.

    PubMed

    Leist, M; Casey, R J; Caridi, D

    2000-08-28

    Arsenic has found widespread use in agriculture and industry to control a variety of insect and fungicidal pests. Most of these uses have been discontinued, but residues from such activities, together with the ongoing generation of arsenic wastes from the smelting of various ores, have left a legacy of a large number of arsenic-contaminated sites. The treatment and/or removal of arsenic is hindered by the fact that arsenic has a variety of valence states. Arsenic is most effectively removed or stabilized when it is present in the pentavalent arsenate form. For the removal of arsenic from wastewater, coagulation, normally using iron, is the preferred option. The solidification/stabilization of arsenic is not such a clear-cut process. Factors such as the waste's interaction with the additives (e.g. iron or lime), as well as any effect on the cement matrix, all impact on the efficacy of the fixation. Currently, differentiation between available solidification/stabilization processes is speculative, partly due to the large number of differing leaching tests that have been utilized. Differences in the leaching fluid, liquid-to-solid ratio, and agitation time and method all impact significantly on the arsenic leachate concentrations. This paper reviews options available for dealing with arsenic wastes, both solid and aqueous through an investigation of the methods available for the removal of arsenic from wastewater as well as possible solidification/stabilization options for a variety of waste streams.

  17. Arsenic: The Silent Killer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years,more » can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.« less

  18. ARE ALL ARSENIC EXPOSURES TOXIC? SUPPORTING REGIONAL RISK ASSESSMENTS THROUGH IMPROVED ARSENIC SPECIATION METHODOLOGY

    EPA Science Inventory

    Arsenic exposure assessments require the evaluation of the relative contribution of both media (water, food, etc.) and routes of exposure (ingestion, inhalation, dermal). For arsenic, the important media are predominately water and food and therefore, the route of concern for ...

  19. Well characteristics influencing arsenic concentrations in ground water.

    PubMed

    Erickson, Melinda L; Barnes, Randal J

    2005-10-01

    Naturally occurring arsenic contamination is common in ground water in the upper Midwest. Arsenic is most likely to be present in glacial drift and shallow bedrock wells that lie within the footprint of northwest provenance Late Wisconsinan glacial drift. Elevated arsenic is more common in domestic wells and in monitoring wells than it is in public water system wells. Arsenic contamination is also more prevalent in domestic wells with short screens set in proximity to an upper confining unit, such as glacial till. Public water system wells have distinctly different well-construction practices and well characteristics when compared to domestic and monitoring wells. Construction practices such as exploiting a thick, coarse aquifer and installing a long well screen yield good water quantity for public water system wells. Coincidentally, these construction practices also often yield low arsenic water. Coarse aquifer materials have less surface area for adsorbing arsenic, and thus less arsenic available for potential mobilization. Wells with long screens set at a distance from an upper confining unit are at lower risk of exposure to geochemical conditions conducive to arsenic mobilization via reductive mechanisms such as reductive dissolution of metal hydroxides and reductive desorption of arsenic.

  20. Groundwater arsenic contamination throughout China.

    PubMed

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  1. Characterization of a promiscuous cadmium and arsenic resistance mechanism in Thermus thermophilus HB27 and potential application of a novel bioreporter system.

    PubMed

    Antonucci, Immacolata; Gallo, Giovanni; Limauro, Danila; Contursi, Patrizia; Ribeiro, Ana Luisa; Blesa, Alba; Berenguer, José; Bartolucci, Simonetta; Fiorentino, Gabriella

    2018-05-18

    The characterization of the molecular determinants of metal resistance has potential biotechnological application in biosensing and bioremediation. In this context, the bacterium Thermus thermophilus HB27 is a metal tolerant thermophile containing a set of genes involved in arsenic resistance which, differently from other microbes, are not organized into a single operon. They encode the proteins: arsenate reductase, TtArsC, arsenic efflux membrane transporter, TtArsX, and transcriptional repressor, TtSmtB. In this work we show that the arsenic efflux protein TtArsX and the arsenic responsive transcriptional repressor TtSmtB are required to provide resistance to cadmium. We analyzed the sensitivity to Cd(II) of mutants lacking TtArsX, finding that they are more sensitive to this metal than the wild type strain. In addition, using promoter probe reporter plasmids, we show that the transcription of TtarsX is also stimulated by the presence of Cd(II) in a TtSmtB-dependent way. Actually, a regulatory circuit composed of TtSmtB and a reporter gene expressed from the TtarsX promoter responds to variation in Cd(II), As(III) and As(V) concentrations. Our results demonstrate that the system composed by TtSmtB and TtArsX is responsible for both the arsenic and cadmium resistance in T. thermophilus. The data also support the use of T. thermophilus as a suitable chassis for the design and development of As-Cd biosensors.

  2. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    PubMed Central

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  3. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure.

    PubMed

    Huang, S; Guo, S; Guo, F; Yang, Q; Xiao, X; Murata, M; Ohnishi, S; Kawanishi, S; Ma, N

    2013-01-14

    Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the HaCaT cells line to an environmentally relevant level of arsenic (0.05 ppm) in vitro for 18 weeks. Following sodium arsenic arsenite administration, cell cycle, colony-forming efficiency (CFE), cell tumorigenicity, and expression of CD44v6, NF-κB and p53, were analyzed at different time points (0, 5, 10, 15, 20, 25 and 30 passages). We found that a chronic exposure of HaCaT cells to a low level of arsenic induced a cancer stem- like phenotype. Furthermore, arsenic-treated HaCaT cells also became tumorigenic in nude mice, their growth cycle was predominantly in G2/M and S phases. Relative to nontreated cells, they exhibited a higher growth rate and a significant increase in CFE. Western blot analysis found that arsenic was capable of increasing cell proliferation and sprouting of cancer stem-like phenotype. Additionally, immunohistochemical analysis demonstrated that CD44v6 expression was up-regulated in HaCaT cells exposed to a low level of arsenic during early stages of induction. The expression of CD44v6 in arsenic-treated cells was positively correlated with their cloning efficiency in soft agar (r=0.949, P=0.01). Likewise, the expressions of activating transcription factor NF-κB and p53 genes in the arsenic-treated HaCaT cells were significantly higher than that in non-treated cells. Higher expressions of CD44v6, NF-κB and p53 were also observed in tumor tissues isolated from Balb/c nude mice. The present results suggest that CD44v6 may be a biomarker of arsenic-induced neoplastic transformation in human skin cells, and that arsenic promotes malignant transformation in human skin lesions through a NF-κB signaling pathway-stimulated expression of CD44v6.

  4. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  5. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  6. Arsenic and its compounds in mushrooms: A review.

    PubMed

    Falandysz, Jerzy; Rizal, Leela M

    2016-10-01

    The purpose of this article is to review the detail concentration of arsenic in some species of mushrooms as well as organic and inorganic forms of arsenic in the substrates where wild and cultivated edible mushrooms grow. We also briefly review the molecular forms of arsenic in mushrooms. There is still a lack of experimental data from the environment for a variety of species from different habitats and for different levels of geogenic arsenic in soil. This information will be useful for mushrooms consumers, nutritionists, and food regulatory agencies by describing ways to minimize arsenic content in edible mushrooms and arsenic intake from mushroom meals.

  7. Napoleon Bonaparte's exposure to arsenic during 1816.

    PubMed

    Leslie, A C; Smith, H

    1978-12-11

    Analysis of hair from Napoleon showed that he was exposed to considerable amounts of arsenic during 1816. The distribution pattern of the arsenic in the hair is similar to that found after the daily ingestion of excessive amounts of arsenic.

  8. Assessment of total arsenic and arsenic species stability in alga samples and their aqueous extracts.

    PubMed

    García Salgado, S; Quijano Nieto, M A; Bonilla Simón, M M

    2008-05-30

    In order to achieve reliable information on speciation analysis, it is necessary to assess previously the species stability in the sample to analyse. Furthermore, in those cases where the sample treatment for species extraction is time-consuming, an assessment of the species integrity in the extracts is of paramount importance. Thus, the present paper reports total arsenic and arsenic species stability in alga samples (Sargassum fulvellum and Hizikia fusiformis), as well as in their aqueous extracts, which were stored in amber glass and polystyrene containers at different temperatures. Total arsenic determination was carried out by inductively coupled plasma atomic emission spectroscopy (ICP-AES), after sample acid digestion in a microwave oven, while arsenic speciation was conducted by anion exchange high performance liquid chromatography on-line coupled to ICP-AES, with and without sample introduction by hydride generation (HPLC-ICP-AES and HPLC-HG-ICP-AES), after aqueous microwave-assisted extraction. The results obtained for solid alga samples showed that total arsenic (for Hijiki alga) and arsenic species present (As(V) for Hijiki and NIES No. 9 Sargasso) are stable for at least 12 months when samples are stored in polystyrene containers at +20 degrees C. On the other hand, a different behaviour was observed in the stability of total arsenic and As(V) species in aqueous extracts for both samples, being the best storage conditions for Sargasso extracts a temperature of -18 degrees C and polystyrene containers, under which they are stable for at least 15 days, while Hijiki extracts must be stored in polystyrene containers at +4 degrees C in order to ensure the stability for 10 days.

  9. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    PubMed

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  10. An investigation of the health effects caused by exposure to arsenic from drinking water and coal combustion: arsenic exposure and metabolism.

    PubMed

    Wei, Binggan; Yu, Jiangping; Kong, Chang; Li, Hairong; Yang, Linsheng; Guo, Zhiwei; Cui, Na; Xia, Yajuan; Wu, Kegong

    2017-11-01

    Few studies have been conducted to compare arsenic exposure, metabolism, and methylation in populations exposed to arsenic in drinking water and from coal combustion. Therefore, arsenic concentrations in the environment and arsenic speciation in the urine of subjects exposed to arsenic as a consequence of coal combustion in a rural area in Shaanxi province (CCA) and in drinking water in a rural area in Inner Mongolia (DWA) were investigated. The mean arsenic concentrations in drinking water, indoor air, and soil in CCA were 4.52 μg/L, 0.03 mg/m 3 , and 14.93 mg/kg, respectively. The mean arsenic concentrations in drinking water and soil in DWA were 144.71 μg/L and 10.19 mg/kg, respectively, while the level in indoor air was lower than the limit of detection. The total daily intakes of arsenic in DWA and CCA were 4.47 and 3.13 μg/day·kg, respectively. The mean urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and total arsenic (TAs) for subjects with skin lesions in DWA were 50.41, 47.01, 202.66, and 300.08 μg/L. The concentrations for subjects without skin lesions were 49.76, 44.20, 195.60, and 289.56 μg/L, respectively. The %iAs, %MMA, and %DMA in the TAs in the urine of subjects from CCA were 12.24, 14.73, and 73.03%, while the corresponding values from DWA were 17.54, 15.57, and 66.89%, respectively. The subjects in DWA typically had a higher %iAs and %MMA, and a lower %DMA, and primary and secondary methylation index (PMI and SMI) than the subjects in CCA. It was concluded that the arsenic methylation efficiency of subjects in DWA and CCA was significantly influenced by chronic exposure to high levels of arsenic in the environment. The lower PMI and SMI values in DWA revealed lower arsenic methylation capacity due to ingestion of arsenic in drinking water. However, it remained unclear if the differences in arsenic metabolism between the two groups were due to differences in exposure levels

  11. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in whi...

  12. Arsenic (Environmental Health Student Portal)

    MedlinePlus

    ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...

  13. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.

    PubMed

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-07-01

    A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.

  14. Arsenic

    MedlinePlus

    ... its development. Arsenic is also associated with adverse pregnancy outcomes and infant mortality, with impacts on child health (1) , and exposure in utero and in early childhood has been linked to increases in mortality ...

  15. Arsenic Exposure and Hypertension: A Systematic Review

    PubMed Central

    Abhyankar, Lalita N.; Jones, Miranda R.; Guallar, Eliseo

    2011-01-01

    Background: Environmental exposure to arsenic has been linked to hypertension in persons living in arsenic-endemic areas. Objective: We summarized published epidemiologic studies concerning arsenic exposure and hypertension or blood pressure (BP) measurements to evaluate the potential relationship. Data sources and extraction: We searched PubMed, Embase, and TOXLINE and applied predetermined exclusion criteria. We identified 11 cross-sectional studies from which we abstracted or derived measures of association and calculated pooled odds ratios (ORs) using inverse-variance weighted random-effects models. Data synthesis: The pooled OR for hypertension comparing the highest and lowest arsenic exposure categories was 1.27 [95% confidence interval (CI): 1.09, 1.47; p-value for heterogeneity = 0.001; I2 = 70.2%]. In populations with moderate to high arsenic concentrations in drinking water, the pooled OR was 1.15 (95% CI: 0.96, 1.37; p-value for heterogeneity = 0.002; I2 = 76.6%) and 2.57 (95% CI: 1.56, 4.24; p-value for heterogeneity = 0.13; I2 = 46.6%) before and after excluding an influential study, respectively. The corresponding pooled OR in populations with low arsenic concentrations in drinking water was 1.56 (95% CI: 1.21, 2.01; p-value for heterogeneity = 0.27; I2 = 24.6%). A dose–response assessment including six studies with available data showed an increasing trend in the odds of hypertension with increasing arsenic exposure. Few studies have evaluated changes in systolic and diastolic BP (SBP and DBP, respectively) measurements by arsenic exposure levels, and those studies reported inconclusive findings. Conclusion: In this systematic review we identified an association between arsenic and the prevalence of hypertension. Interpreting a causal effect of environmental arsenic on hypertension is limited by the small number of studies, the presence of influential studies, and the absence of prospective evidence. Additional evidence is needed to evaluate the

  16. Accumulation of lead and arsenic by peanut grown on lead and arsenic contaminated soils amended with broiler litter ash or superphosphate

    USDA-ARS?s Scientific Manuscript database

    Lead and arsenic are toxic metals that can be harmful to humans when inhaled or ingested via the consumption of drinking water or of crops grown on lead and arsenic contaminated soils. Lead and arsenic in the environment comes from industrial activities and the use of arsenical herbicides and insec...

  17. Arsenic in stream sediments of northern Alabama

    USGS Publications Warehouse

    Goldhaber, M.B.; Irwin, Elise; Atkins, Brian; Lee, Lopaka; Black, D.D.; Zappia, Humbert; Hatch, Joe; Pashin, Jack; Barwick, L.H.; Cartwright, W.E.; Sanzolone, Rick; Rupert, Leslie; Kolker, Allan; Finkelman, Robert

    2001-01-01

    OVERVIEW OF ARSENIC IN STREAM SEDIMENTS The overall range of arsenic in the NURE stream sediments was from 0.3 to 44 mg/kg sediment (ppm) As in the sample data set. The mean value was 4.3 ppm with a standard deviation of 4.1 ppm. For comparison, the crustal abundance of arsenic is 1.8 ppm (Taylor, 1964). Shale is higher, with average values of 15 ppm. Coal samples from the entire USGS National Coal Resource Data System coal database (Finkelman, 1994) average 24 ppm arsenic. A study of stream sediments from throughout the U.S. by the USGS NAWQA program reported that the 75th percentile for arsenic in 541 stream sediments was 9.5 ppm (Rice, 1999). Given the relatively low crustal abundance of arsenic, a number of stream-sediment samples in this study may be considered geochemically anomalous in this element.

  18. Arsenic and selenium in microbial metabolism

    USGS Publications Warehouse

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  19. Human exposure to arsenic from drinking water in Vietnam.

    PubMed

    Agusa, Tetsuro; Trang, Pham Thi Kim; Lan, Vi Mai; Anh, Duong Hong; Tanabe, Shinsuke; Viet, Pham Hung; Berg, Michael

    2014-08-01

    Vietnam is an agricultural country with a population of about 88 million, with some 18 million inhabitants living in the Red River Delta in Northern Vietnam. The present study reports the chemical analyses of 68 water and 213 biological (human hair and urine) samples conducted to investigate arsenic contamination in tube well water and human arsenic exposure in four districts (Tu Liem, Dan Phuong, Ly Nhan, and Hoai Duc) in the Red River Delta. Arsenic concentrations in groundwater in these areas were in the range of <1 to 632 μg/L, with severe contamination found in the communities Ly Nhan, Hoai Duc, and Dan Phuong. Arsenic concentrations were markedly lowered in water treated with sand filters, except for groundwater from Hoai Duc. Human hair samples had arsenic levels in the range of 0.07-7.51 μg/g, and among residents exposed to arsenic levels ≥50 μg/L, 64% of them had hair arsenic concentrations higher than 1 μg/g, which is a level that can cause skin lesions. Urinary arsenic concentrations were 4-435 μg/g creatinine. Concentrations of arsenic in hair and urine increased significantly with increasing arsenic content in drinking water, indicating that drinking water is a significant source of arsenic exposure for these residents. The percentage of inorganic arsenic (IA) in urine decreased with age, whereas the opposite trend was observed for monomethylarsonic acid (MMA) in urine. Significant co-interactions of age and arsenic exposure status were also detected for concentrations of arsenic in hair and the sum of IA, MMA, and dimethylarsinic acid (DMA) in urine and %MMA. In summary, this study demonstrates that a considerable proportion of the Vietnamese population is exposed to arsenic levels of chronic toxicity, even if sand filters reduce exposure in many households. Health problems caused by arsenic ingestion through drinking water are increasingly reported in Vietnam. © 2013 Elsevier B.V. All rights reserved.

  20. Arsenic accumulation in three species of sea turtles.

    PubMed

    Saeki, K; Sakakibara, H; Sakai, H; Kunito, T; Tanabe, S

    2000-09-01

    Arsenic in the liver, kidney and muscle of three species of sea turtles, e.g., green turtles (Chelonia mydas), loggerhead turtles (Caretta caretta) and hawksbill turtles (Eretmochelys imbricata), were determined using HG-AAS, followed by arsenic speciation analysis using HPLC-ICP-MS. The order of arsenic concentration in tissues was muscle > kidney > liver. Unexpectedly, the arsenic concentrations in the hawksbill turtles feeding mainly on sponges were higher than the two other turtles primarily eating algae and mollusk which accumulate a large amount of arsenic. Especially, the muscles of the hawksbill turtles contained remarkably high arsenic concentrations averaging 153 mg kg(-1) dry weight with the range of 23.1-205 mg kg(-1) (n = 4), even in comparison with the data from other organisms. The arsenic concentrations in the tissues of the green turtles were significantly decreased with standard carapace length as an indicator of growth. In arsenic compounds, arsenobetaine was mostly detected in the tissues of all the turtles. Besides arsenobetaine, a small amount of dimethylarsinic acid was also observed in the hawksbill turtles.

  1. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products.

    PubMed

    Almela, C; Algora, S; Benito, V; Clemente, M J; Devesa, V; Súñer, M A; Vélez, D; Montoro, R

    2002-02-13

    The total arsenic, inorganic arsenic, lead, cadmium, and mercury contents of 18 algae food products currently on sale in Spain were determined. The suitability of the analytical methodologies for this type of matrix was confirmed by evaluating their analytical characteristics. The concentration ranges found for each contaminant, expressed in milligrams per kilogram of dry weight, were as follows: total arsenic, 2.3-141; inorganic arsenic, 0.15-88; lead, < 0.05-1.33; cadmium, 0.03-1.9; and mercury, 0.004-0.04. There is currently no legislation in Spain regarding contaminants in algae food products, but some of the samples analyzed revealed Cd and inorganic As levels higher than those permitted by legislation in other countries. Given the high concentrations of inorganic As found in Hizikia fusiforme, a daily consumption of 1.7 g of the product would reach the Provisional Tolerable Weekly Intake recommended by the WHO for an average body weight of 68 kg. A more comprehensive study of the contents and toxicological implications of the inorganic As present in the algae food products currently sold in Spain may be necessary, which might then be the basis for the introduction of specific sales restrictions.

  2. Secretion of arsenic, cholesterol, vitamin E, and zinc from the site of arsenical melanosis and leucomelanosis in skin.

    PubMed

    Yousuf, A K M; Misbahuddin, Mir; Rahman, Md Sayedur

    2011-06-01

    Melanosis and leucomelanosis with or without keratosis are the earliest symptoms of arsenicosis. Uneven distribution of arsenical melanosis and leucomelanosis in skin led us to investigate the possibility of preferential secretion of arsenic and three constituents of sweat; cholesterol, vitamin E, and zinc. Twenty-four-hour skin secretion was collected from skin lesions and unaffected sites of 20 patients. Skin secretions were collected from 20 people exposed to arsenic-contaminated drinking water and 20 healthy, unexposed individuals. The secretion of arsenic from the skin of healthy controls (mean ± SE; unit: μg/in.(2) of skin/24 h; chest: 0.6 ± 0.2; back: 0.3 ± 0.1; abdomen: 0.5 ± 0.2) was increased several folds in arsenic-exposed controls (chest: 8.4 ± 1.8; back: 8.3 ± 1.9; abdomen: 6.7 ± 1.8) and patients (chest: 9.2 ± 1.3; back: 7.8 ± 1.3; abdomen: 5.2 ± 1.0). There was no difference in the skin lesions and unaffected sites in patients. However, the secretion of cholesterol was significantly lower in the chest of patients (190 ± 36) and healthy controls (686 ± 100) (p < 0.001). Secretions of vitamin E were low in healthy controls (chest: 8.5 ± 3.1; back: 5.2 ± 1.7; and abdomen: 8.7 ± 2.4), higher in arsenic-exposed controls (chest: 30.2 ± 8.1; back: 16.3 ± 8.9; and abdomen: 24.8 ± 9.3), and highest in patients [chest: 91.4 ± 14.9 (p < 0.0001 vs. control); back: 72.4 ± 13.2 (p < 0.001 vs. control); and abdomen: 46.8 ± 12.9]. Chronic intake of arsenic led to several folds higher secretion of zinc both in patients and in arsenic-exposed controls. One molecule of arsenic appears to be co-secreted with two molecules of zinc. Arsenic skin lesions showed no alteration in secretion of arsenic, although the secretion of cholesterol, vitamin E, and zinc was changed. Potential implications are discussed.

  3. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    PubMed

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub

  4. Prevalence of arsenic exposure in population of Ballia district from drinking water and its correlation with blood arsenic level.

    PubMed

    Katiyar, Shashwat; Singh, Dharam

    2014-05-01

    An investigation was carried out to ascertain the effect of arsenic in the blocks of Ballia district in Uttar Pradesh in the upper and middle Ganga plain, India. Analysis of 100 drinking water samples revealed that arsenic concentration was below 10 μg l⁻¹ in 60% samples, 10-50 μg l⁻¹ in 6%, 100 μg l⁻¹ in 24% and 200 μg l⁻¹ in 10% samples, respectively. The arsenic concentration in drinking water ranged from 12.8 to 132.2 μg l⁻¹. The depth of source of drinking water (10-60 m) was also found with a mean of 36.12 ± 13.61 μg l⁻¹ arsenic concentration. Observations revealed that at depth ranging from 10 to 20 m, the mean level of arsenic concentration was 17.398 ± 21.796 μg l⁻¹, while at 21 to 40 m depth As level was 39.685 ± 40.832 μg l⁻¹ and at 41 to 60 m As level was 46.89 ± 52.80 μg l⁻¹, respectively. These observations revealed a significant positive correlation (r = 0.716, t = 4.215, P < 0.05) between depth and arsenic concentration in drinking water. The age of water sources were ranged from zero to 30 years. The study indicates that the older sources of drinking water showed higher chance of contamination. Results showed that group 21-30 years having maximum arsenic concentration with mean value of 52.57 ± 53.79 μg l⁻¹. Correlation analysis also showed a significant positive correlation (r = 0.801, t = 5.66, P < 0.05) between age of drinking water sources and their respective arsenic concentration (μg l⁻¹). Arsenic concentration in blood with mean value 0.226 ± 0.177 μg dl⁻¹ significantly increased as compared to control. The blood arsenic content correlated significantly (r = 0.6823, t = 3.93, P < 0.05) with drinking water arsenic level and exposure time (r = 0.545, t = 3.101 & *P < 0.05) for populations residing in Ballia districts. Observations and correlation analysis revealed that individuals having depth of drinking water sources 20-30 m were less affected with arsenic exposure.

  5. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  6. Arsenic Metabolism and Distribution in Developing Organisms

    EPA Science Inventory

    A growing body of evidence suggests that exposure to inorganic arsenic during early life has long term adverse effects. The extent of exposure to inorganic arsenic and its methylated metabolites in utero is determined not only by the rates of formation and transfer of arsenicals...

  7. Arsenic compounds as anticancer agents.

    PubMed

    Wang, Z Y

    2001-08-01

    In this paper the use of arsenic compounds as anticancer agents in clinical trials and in in vitro investigations is reviewed, including the experience at our institute. Treatment of newly diagnosed and relapsed patients with acute promyelocytic leukemia (APL) with arsenic trioxide (As2O3) has been found to result in complete remission (CR) rates of 85-93% when given by intravenous infusion for 2-3 h at a dose of 10 mg/day diluted in 5% glucose saline solution. Patients exhibit a response in 28-42 days. CR rates after administration of Composite Indigo Naturalis tablets containing arsenic sulfide and of pure tetraarsenic tetrasulfide reached 98% and 84.9%, respectively. At higher concentrations (1-2 microM), arsenic induced apoptosis, while at lower concentrations (0.1-0.5 microM), it triggered cell differentiation in vitro. As2O3-induced apoptosis has been observed in many cancer cell lines, including esophageal carcinoma, gastric cancer, neuroblastoma, lymphoid malignancies, and multiple myeloma. Its effectiveness was confirmed in the treatment of multiple myeloma. Arsenic compounds are effective agents in the treatment of APL and their activity against other types of cancer requires further investigation.

  8. Groundwater arsenic in Chimaltenango, Guatemala.

    PubMed

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  9. Aqueous extract of Carica papaya Linn. roots potentially attenuates arsenic induced biochemical and genotoxic effects in Wistar rats.

    PubMed

    Ojo, Oluwafemi Adeleke; Ojo, Adebola Busola; Awoyinka, Olayinka; Ajiboye, Basiru Olaitan; Oyinloye, Babatunji Emmanuel; Osukoya, Olukemi Adetutu; Olayide, Israel Idowu; Ibitayo, Adejoke

    2018-04-01

    In Africa, the fruit, leaf, seed and roots of Carica papaya Linn. are generally used to treat a variety of diseases such as malaria, cancer, and cardiovascular diseases. In this study, we evaluated the protective potentials of aqueous extract of C. papaya roots on arsenic-induced biochemical and genotoxic effects in Wistar rats. Rats were induced intraperitoneal with sodium arsenate (dissolved in distilled water at 3 mg/kg body weight) for 21 days and the animals were administered simultaneously with 200 mg/kg body weight vitamin C, 100 and 150 mg/kg body weight of the C. papaya Linn. root aqueous extract once daily for three weeks. Results obtained reveals that activities of plasma 8-OHdG, serum lipids concentration, atherogenic index (AI), coronary artery index (CRI), aspartate transaminase, alanine transaminase, alkaline phosphatase, total bilirubin levels were elevated significantly ( p  < 0.05) and catalase, glutathione peroxidase, superoxide dismutase, plasma hematological profile were progressively reduced ( p  < 0.05) in arsenic-alone exposed rats. Significant increase in the quantity of chromosomal aberrations (CA), micronuclei (MN) frequency, oxidative damages in the bone marrow cells from arsenic alone rats was observed. Though, mitotic index scores in these cells were progressively reduced (p < 0.05). In animals administered with aqueous extract of C. papaya roots and vitamin C, the altered parameters were significantly recovered towards the levels observed in normal control rats. These results suggest that aqueous C. papaya roots preparations might have therapeutic potential as a supplement that can be applied in arsenic poisoning.

  10. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  11. A review on environmental factors regulating arsenic methylation in humans.

    PubMed

    Tseng, Chin-Hsiao

    2009-03-15

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers.

  12. ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation.

    PubMed

    Dassouki, Zeina; Sahin, Umut; El Hajj, Hiba; Jollivet, Florence; Kfoury, Youmna; Lallemand-Breitenbach, Valérie; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali

    2015-01-15

    The human T-cell lymphotropic virus type I (HTLV-1) Tax transactivator initiates transformation in adult T-cell leukemia/lymphoma (ATL), a highly aggressive chemotherapy-resistant malignancy. The arsenic/interferon combination, which triggers degradation of the Tax oncoprotein, selectively induces apoptosis of ATL cell lines and has significant clinical activity in Tax-driven murine ATL or human patients. However, the role of Tax loss in ATL response is disputed, and the molecular mechanisms driving degradation remain elusive. Here we demonstrate that ATL-derived or HTLV-1-transformed cells are dependent on continuous Tax expression, suggesting that Tax degradation underlies clinical responses to the arsenic/interferon combination. The latter enforces promyelocytic leukemia protein (PML) nuclear body (NB) formation and partner protein recruitment. In arsenic/interferon-treated HTLV-1 transformed or ATL cells, Tax is recruited onto NBs and undergoes PML-dependent hyper-sumoylation by small ubiquitin-like modifier (SUMO)2/3 but not SUMO1, ubiquitination by RNF4, and proteasome-dependent degradation. Thus, the arsenic/interferon combination clears ATL through degradation of its Tax driver, and this regimen could have broader therapeutic value by promoting degradation of other pathogenic sumoylated proteins. © 2015 by The American Society of Hematology.

  13. Nonsynonymous Polymorphisms in the Human AS3MT Arsenic Methylation Gene: Implications for Arsenic Toxicity

    PubMed Central

    2017-01-01

    Arsenic methylation, the primary biotransformation in the human body, is catalyzed by the enzyme As(III) S-adenosylmethionine (SAM) methyltransferases (hAS3MT). This process is thought to be protective from acute high-level arsenic exposure. However, with long-term low-level exposure, hAS3MT produces intracellular methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)), which are considerably more toxic than inorganic As(III) and may contribute to arsenic-related diseases. Several single nucleotide polymorphisms (SNPs) in putative regulatory elements of the hAS3MT gene have been shown to be protective. In contrast, three previously identified exonic SNPs (R173W, M287T, and T306I) may be deleterious. The goal of this study was to examine the effect of single amino acid substitutions in hAS3MT on the activity of the enzyme that might explain their contributions to adverse health effects of environmental arsenic. We identified five additional intragenic variants in hAS3MT (H51R, C61W, I136T, W203C, and R251H). We purified the eight polymorphic hAS3MT proteins and characterized their enzymatic properties. Each enzyme had low methylation activity through decreased affinity for substrate, lower overall rates of catalysis, or lower stability. We propose that amino acid substitutions in hAS3MT with decreased catalytic activity lead to detrimental responses to environmental arsenic and may increase the risk of arsenic-related diseases. PMID:28537708

  14. Arsenic Is A Genotoxic Carcinogen

    EPA Science Inventory

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  15. ARSENIC - SUSCEPTIBILITY & IN UTERO EFFECTS

    EPA Science Inventory

    Exposure to inorganic arsenic remains a serious public health problem at many locations worldwide. If has often been noted that prevalences of signs and symptoms of chronic arsenic poisoning differ among various populations. For example, skin lesions or peripheral vascular dis...

  16. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.

    PubMed

    Kruger, Martin C; Bertin, Philippe N; Heipieper, Hermann J; Arsène-Ploetze, Florence

    2013-05-01

    Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.

  17. ARSENIC MOBILIZATION FROM SEDIMENTS IN MICROCOSMS UNDER SULFATE REDUCTION

    PubMed Central

    Sun, Jing; Quicksall, Andrew N.; Chillrud, Steven N.; Mailloux, Brian J.; Bostick, Benjamin C.

    2016-01-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30 to 40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful. PMID:27037658

  18. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    PubMed

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.

  19. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution.

    PubMed

    Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra

    2008-12-01

    The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed.

  20. GROUND WATER TREATMENT PROCESSES FOR ARSENIC REMOVAL

    EPA Science Inventory

    In 1975 EPA established a maximum contaminant level (MCL) for arsenic at 0.05 mg/L. In 1996, Congress amended the SDWA and these amendments required that EPA develop an arsenic research strategy and publish a proposal to revise the arsenic MCL by January 2000. The Agency proposed...

  1. Serum levels of the extracellular domain of the epidermal growth factor receptor in individuals exposed to arsenic in drinking water in Bangladesh.

    PubMed

    Li, Y; Chen, Y; Slavkovic, V; Ahsan, H; Parvez, F; Graziano, J H; Brandt-Rauf, P W

    2007-01-01

    Epidermal growth factor receptor-dependent mechanisms have been implicated in growth signal transduction pathways that contribute to cancer development, including dermal carcinogenesis. Detection of the extracellular domain of the epidermal growth factor receptor (EGFR ECD) in serum has been suggested as a potential biomarker for monitoring this effect in vivo. Arsenic is a known human carcinogen, producing skin and other malignancies in populations exposed through their drinking water. One such exposed population, which we have been studying for a number of years, is in Bangladesh. The purpose of this study was to examine the EGFR ECD as a potential biomarker of arsenic exposure and/or effect in this population. Levels of the EGFR ECD were determined by enzyme-linked immunosorbent assay in the serum samples from 574 individuals with a range of arsenic exposures from drinking water in the Araihazar area of Bangladesh. In multiple regression analysis, serum EGFR ECD was found to be positively associated with three different measures of arsenic exposure (well water arsenic, urinary arsenic and a cumulative arsenic index) at statistically significant levels (parsenic-induced skin lesions (p progressively for each increase in all three arsenic measures (also stratified in tertiles) and this increasing risk became more pronounced among subjects within the highest tertile of EGFR ECD levels. These results suggest that serum EGFR ECD levels may be a potential biomarker of effect of arsenic exposure and may indicate those exposed individuals at greatest risk for the development of arsenic-induced skin lesions.

  2. Arsenic in North Carolina: Public Health Implications

    PubMed Central

    Sanders, Alison P.; Messier, Kyle P.; Shehee, Mina; Rudo, Kenneth; Serre, Marc L.; Fry, Rebecca C.

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services (NCDHHS) database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System (GIS) techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7,712 showed detectable arsenic concentrations that ranged between 1 and 806 μg/L. Additionally, 1,436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes. PMID:21982028

  3. Arsenic in North Carolina: public health implications.

    PubMed

    Sanders, Alison P; Messier, Kyle P; Shehee, Mina; Rudo, Kenneth; Serre, Marc L; Fry, Rebecca C

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7712 showed detectable arsenic concentrations that ranged between 1 and 806μg/L. Additionally, 1436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Dietary arsenic consumption and urine arsenic in an endemic population: response to improvement of drinking water quality in a 2-year consecutive study.

    PubMed

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Du Laing, Gijs; De Neve, Jan; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-01-01

    We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L(-1)) in a first year (group I) and for participants using water lower in arsenic (<50 μg L(-1)) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.(-1) day(-1) (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.(-1) day(-1) (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.(-1) day(-1) (p = 0.088) in males and 2.6 and 1.9 μg kg body wt.(-1) day(-1) (p = 0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L(-1) (p = 0.052) and in females 130 and 52 μg L(-1) (p = 0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L(-1) (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.(-1) day(-1) (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that

  5. Drinking Water Arsenic Rule History

    EPA Pesticide Factsheets

    The EPA published the final arsenic rule on January 22, 2001. In response to the national debate surrounding the arsenic rule related to science and costs, the EPA announced on March 20, 2001 that the agency would reassess the science and cost issues.

  6. Arsenic Removal from Drinking Water

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Case Study 2,5), Case Study 3, and 6), Media Regeneration Project. The presentation consists of material presented at other training sess...

  7. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    PubMed

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels.

  8. Arsenic Redistribution Between Sediments and Water Near a Highly Contaminated Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keimowitz,A.; Zheng, Y.; Chillrud, S.

    2005-01-01

    Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic >10 000 {micro}g L{sup -1} or >130 {micro}M in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and theymore » indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, >99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides.« less

  9. Arsenic Exposure and Toxicology: A Historical Perspective

    EPA Science Inventory

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, in various forms, has also been used as a pesticide and a ch...

  10. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.

    PubMed

    van Halem, D; Olivero, S; de Vet, W W J M; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2010-11-01

    Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m(3)) into an anoxic aquifer with elevated iron (0.27 mmolL(-1)) and arsenic (0.27μmolL(-1)) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments. Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (R(Fe)) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system's efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at R(Fe)=∼8). R(As) did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic

  11. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    PubMed

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  12. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    USGS Publications Warehouse

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  13. Arsenic Mobilization Through Microbial Bioreduction of Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadanier, C. J.; Roller, J.; Schreiber, M. E.

    2004-12-01

    Under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)oxides with the oxidation of organic carbon. Nutrients and trace metals, such as arsenic, associated with Fe(III) hydroxides may be mobilized through microbially-mediated surface reduction. Although arsenic mobilization has been attributed to mineral surface reduction in a variety of pristine and contaminated environments, minimal information exists on the mechanisms causing this arsenic mobilization. Understanding of the fundamental biochemical and physicochemical processes involved in these mobilization mechanisms is still limited, and has been complicated by the often contradictory and interchangeable terminology used in the literature to describe them. We studied arsenic mobilization mechanisms using a series of controlled microcosm experiments containing aggregated arsenic-bearing ferrihydrite nanoparticles and an Fe(III)-reducing microorganism, Geobacter metallireducens. The phase distribution of iron and arsenic was determined through filtration and ultracentrifugation techniques. Experimental results showed that in the biotic trials, approximately 10 percent of the Fe(III) was reduced to Fe(II) by microbial activity, which remained associated with ferrihydrite surfaces. Biotic activity resulted in changes in nanoparticle surface potential and caused deflocculation of nanoparticle aggregates. Deflocculated nanoparticles were able to pass through a 0.2 micron filter and could only be removed from solution by ultracentrifugation. Arsenic mobilized over time in the biotic trials was found to be exclusively associated with the nanoparticles; 98 percent of arsenic that passed through a 0.2 micron filter was removed from solution by ultracentrifugation. None of these changes were observed in abiotic controls. Because arsenic contamination of natural waters due to mobilization from mineral surfaces is a significant route of human arsenic exposure

  14. Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice

    NASA Astrophysics Data System (ADS)

    Wu, Ruirui; Wu, Xiafang; Wang, Huihui; Fang, Xin; Li, Yongfang; Gao, Lanyue; Sun, Guifan; Pi, Jingbo; Xu, Yuanyuan

    2017-03-01

    Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains.

  15. PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity.

    PubMed

    Incio, Joao; Tam, Josh; Rahbari, Nuh N; Suboj, Priya; McManus, Dan T; Chin, Shan M; Vardam, Trupti D; Batista, Ana; Babykutty, Suboj; Jung, Keehoon; Khachatryan, Anna; Hato, Tai; Ligibel, Jennifer A; Krop, Ian E; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Shibuya, Masabumi; Carmeliet, Peter; Soares, Raquel; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai

    2016-06-15

    Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    EPA Pesticide Factsheets

    Adsorptive media technology is a frequently used method of removing arsenic by small water systems because of its simplicity and efficiency. Current practice is to replace the media when it no longer reduces arsenic below the USEPA drinking water maximum contaminant level (MCL) of 10 µg/L. Media replacement typically accounts for approximately 80% of the total operational and maintenance (O/M) costs. This cost can be substantial and cost prohibitive for many small systems. One potential option to reduce the cost is on-site regeneration and reuse of the media. To evaluate the regeneration option, three consecutive regeneration studies were conducted on a full scale 295 gpm arsenic removal adsorptive media system. This paper, of a two part series, describes the regeneration process and its effectiveness to strip the arsenic and other contaminants from an exhausted media. The results of the regeneration studies found that a three step regeneration process of media backwash, caustic regeneration and acid neutralization/conditioning is very effective for stripping arsenic and other contaminants from the exhaustive media of a full scale arsenic removal system This paper, of a two part series, describes the regeneration process and its effectiveness to strip the arsenic and other contaminants from an exhausted media

  17. Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease

    PubMed Central

    El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude

    2015-01-01

    Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. PMID:25421557

  18. Magentite nanoparticle for arsenic remotion.

    NASA Astrophysics Data System (ADS)

    Viltres, H.; Odio, O. F.; Borja, R.; Aguilera, Y.; Reguera, E.

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (<20 nm) proved to be very efficient for the removal of arsenic in drinking water. Magnetic nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl3 and FeCl2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As2O3 and As2O5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles.

  19. Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer.

    PubMed

    Shah, Palak; Trinh, Elaine; Qiang, Lei; Xie, Lishi; Hu, Wen-Yang; Prins, Gail S; Pi, Jingbo; He, Yu-Ying

    2017-01-24

    Exposure to inorganic arsenic in contaminated drinking water poses an environmental public health threat for hundreds of millions of people in the US and around the world. Arsenic is a known carcinogen for skin cancer. However, the mechanism by which arsenic induces skin cancer remains poorly understood. Here, we have shown that arsenic induces p62 expression in an autophagy-independent manner in human HaCaT keratinocytes. In mouse skin, chronic arsenic exposure through drinking water increases p62 protein levels in the epidermis. Nrf2 is required for basal and arsenic-induced p62 up-regulation. p62 knockdown reduces arsenic-induced Nrf2 activity, and induces sustained p21 up-regulation. p62 induction is associated with increased proliferation in mouse epidermis. p62 knockdown had little effect on arsenic-induced apoptosis, while it decreased cell proliferation following arsenic treatment. Our findings indicate that arsenic induces p62 expression to regulate the Nrf2 pathway in human keratinocytes and suggest that targeting p62 may help prevent arsenic-induced skin cancer.

  20. A biologically based model of growth and senescence of Syrian hamster embryo (SHE) cells after exposure to arsenic.

    PubMed Central

    Liao, K H; Gustafson, D L; Fox, M H; Chubb, L S; Reardon, K F; Yang, R S

    2001-01-01

    We modified the two-stage Moolgavkar-Venzon-Knudson (MVK) model for use with Syrian hamster embryo (SHE) cell neoplastic progression. Five phenotypic stages are proposed in this model: Normal cells can either become senescent or mutate into immortal cells followed by anchorage-independent growth and tumorigenic stages. The growth of normal SHE cells was controlled by their division, death, and senescence rates, and all senescent cells were converted from normal cells. In this report, we tested the modeling of cell kinetics of the first two phenotypic stages against experimental data evaluating the effects of arsenic on SHE cells. We assessed cell division and death rates using flow cytometry and correlated cell division rates to the degree of confluence of cell cultures. The mean cell death rate was approximately equal to 1% of the average division rate. Arsenic did not induce immortalization or further mutations of SHE cells at concentrations of 2 microM and below, and chromium (3.6 microM) and lead (100 microM) had similar negative results. However, the growth of SHE cells was inhibited by 5.4 microM arsenic after a 2-day exposure, with cells becoming senescent after only 16 population doublings. In contrast, normal cells and cells exposed to lower arsenic concentrations grew normally for at least 30 population doublings. The biologically based model successfully predicted the growth of normal and arsenic-treated cells, as well as the senescence rates. Mechanisms responsible for inducing cellular senescence in SHE cells exposed to arsenic may help explain the apparent inability of arsenic to induce neoplasia in experimental animals. PMID:11748027

  1. Elevated Human telomerase reverse transcriptase gene expression in blood cells associated with chronic and arsenic exposure in Inner Mongolia, China

    EPA Science Inventory

    BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...

  2. Sedimentology and arsenic pollution in the Bengal Basin: insight into arsenic occurrence and subsurface geology.

    NASA Astrophysics Data System (ADS)

    Hills, Andrew; McArthur, John

    2014-05-01

    The Bengal delta system is a geologically recent feature overlying a deeply incised palaeo-surface formed during the Last Glacial Maximum. This surface is a series of terraces and valleys created by river incision (Goodbred & Kuehl 2003). The terraces were weathered, forming a thin, indurated laterite deposit (Goodbred & Kuehl 2000) at depths greater than 50 m. McArthur et al. (2008) define this as a palaeosol and have identified it at depths greater than 30 m though out Bangladesh and West Bengal. It has been observed that arsenic concentrations at these sites are lower than the rest of the delta. It has been assumed that the surface morphology at sites where there is a palaeosol are similar and can therefore be characterised by remote sensing, in the form of Google Earth images. Sites were selected in Bangladesh and West Bengal, from work by McArthur et al. (2011); Hoque et al. (2012), where groundwater chemistry and sedimentology data are available making it possible to determine if the subsurface is a palaeo-channel or palaeo-interfluve. Arsenic concentration data have been inputted into Google Earth and the palaeo-channels marked where the arsenic concentration is greater than 10 µg/L, and palaeo-interfluves where arsenic concentration is less than 10 µg/L. The surface morphologies in these domains have been examined for similarities, and it was shown that avulsion scars and abandoned river channels are found where arsenic concentrations are greater than 10 µg/L. Conversely the surrounding areas that are devoid of channel scars have arsenic concentrations less than 10 µg/L. Using the correlation between avulsion features being representative of palaeo-channels and high arsenic concentrations, sites were selected that had a similar surface morphology to the type localities. A comparison of these images and arsenic concentrations showed that the postulate is valid for over 80 percent of cases. Where this is not valid, this could indicate that the subsurface

  3. Arsenic oxidation by UV radiation combined with hydrogen peroxide.

    PubMed

    Sorlini, S; Gialdini, F; Stefan, M

    2010-01-01

    Arsenic is a widespread contaminant in the environment around the world. The most abundant species of arsenic in groundwater are arsenite [As(III)] and arsenate [As(V)]. Several arsenic removal processes can reach good removal yields only if arsenic is present as As(V). For this reason it is often necessary to proceed with a preliminary oxidation of As(III) to As(V) prior to the removal technology. Several studies have focused on arsenic oxidation with conventional reagents and advanced oxidation processes. In the present study the arsenic oxidation was evaluated using hydrogen peroxide, UV radiation and their combination in distilled and in real groundwater samples. Hydrogen peroxide and UV radiation alone are not effective at the arsenic oxidation. Good arsenic oxidation yields can be reached in presence of hydrogen peroxide combined with a high UV radiation dose (2,000 mJ/cm(2)). The quantum efficiencies for As(III) oxidation were calculated for both the UV photolysis and the UV/H(2)O(2) processes.

  4. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    EPA Science Inventory

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC.
    L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4.
    1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  5. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    EPA Pesticide Factsheets

    The replacement of exhausted, adsorptive media used to remove arsenic from drinking water accounts for approximately 80% of the total operational and maintenance (O/M) costs of this commonly used small system technology. The results of three, full scale system studies of an on-site media regeneration process (Part 1) showed it to be effective in stripping arsenic and other contaminants from the exhausted media. Part 2, of this two part paper, presents information on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement. The results of the studies indicate that regenerated media is very effective in removing arsenic and the regeneration cost is substantially less than the media replacement cost. On site regeneration, therefore, provides small systems with alternative to media replacement when removing arsenic from drinking water using adsorptive media technology. Part 2 of a two part paper on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement.

  6. TREATMENT TECHNOLOGIES FOR ARSENIC REMOVAL

    EPA Science Inventory

    The United States Environmental Protection Agency (US EPA) recently reduced the arsenic maximum contaminant level (MCL) from 0.050 mg/L to 0.010 mg/L. In order to increase arsenic outreach efforts, a summary of the new rule, related health risks, treatment technologies, and desig...

  7. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD Specific Tolerances for Residues of New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as As...

  8. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD Specific Tolerances for Residues of New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as As...

  9. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD Specific Tolerances for Residues of New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as As...

  10. Poultry Consumption and Arsenic Exposure in the U.S. Population.

    PubMed

    Nigra, Anne E; Nachman, Keeve E; Love, David C; Grau-Perez, Maria; Navas-Acien, Ana

    2017-03-01

    Arsenicals (roxarsone and nitarsone) used in poultry production likely increase inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and roxarsone or nitarsone concentrations in poultry meat. However, the association between poultry intake and exposure to these arsenic species, as reflected in elevated urinary arsenic concentrations, is unknown. Our aim was to evaluate the association between 24-hr dietary recall of poultry consumption and arsenic exposure in the U.S. population. We hypothesized first, that poultry intake would be associated with higher urine arsenic concentrations and second, that the association between turkey intake and increased urine arsenic concentrations would be modified by season, reflecting seasonal use of nitarsone. We evaluated 3,329 participants ≥ 6 years old from the 2003-2010 National Health and Nutrition Examination Survey (NHANES) with urine arsenic available and undetectable urine arsenobetaine levels. Geometric mean ratios (GMR) of urine total arsenic and DMA were compared across increasing levels of poultry intake. After adjustment, participants in the highest quartile of poultry consumption had urine total arsenic 1.12 (95% CI: 1.04, 1.22) and DMA 1.13 (95% CI: 1.06, 1.20) times higher than nonconsumers. During the fall/winter, participants in the highest quartile of turkey intake had urine total arsenic and DMA 1.17 (95% CI: 0.99, 1.39; p -trend = 0.02) and 1.13 (95% CI: 0.99, 1.30; p -trend = 0.03) times higher, respectively, than nonconsumers. Consumption of turkey during the past 24 hr was not associated with total arsenic or DMA during the spring/summer. Poultry intake was associated with increased urine total arsenic and DMA in NHANES 2003-2010, reflecting arsenic exposure. Seasonally stratified analyses by poultry type provide strong suggestive evidence that the historical use of arsenic-based poultry drugs contributed to arsenic exposure in the U.S. Nigra AE, Nachman KE, Love DC, Grau

  11. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    EPA Science Inventory

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  12. The case for visual analytics of arsenic concentrations in foods.

    PubMed

    Johnson, Matilda O; Cohly, Hari H P; Isokpehi, Raphael D; Awofolu, Omotayo R

    2010-05-01

    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species.

  13. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  14. The Case for Visual Analytics of Arsenic Concentrations in Foods

    PubMed Central

    Johnson, Matilda O.; Cohly, Hari H.P.; Isokpehi, Raphael D.; Awofolu, Omotayo R.

    2010-01-01

    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species. PMID:20623005

  15. Behavioral Determinants of Switching to Arsenic-Safe Water Wells.

    PubMed

    George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan

    2017-02-01

    More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational interventions when combined with fee-based water arsenic testing programs led to nearly all households buying an arsenic test for their drinking water sources (93%) compared with only 53% when fee-based arsenic testing alone was offered. The aim of the present study was to build on the findings of this trial by investigating prospectively the psychological factors that were most strongly associated with switching to arsenic-safe wells in response to these interventions. Our theoretical framework was the RANAS (risk, attitude, norm, ability, and self-regulation) model of behavior change. In the multivariate logistic regression model of 285 baseline unsafe well users, switching to an arsenic-safe water source was significantly associated with increased instrumental attitude (odds ratio [OR] = 9.12; 95% confidence interval [CI] = [1.85, 45.00]), descriptive norm (OR = 34.02; 95% CI = [6.11, 189.45]), coping planning (OR = 11.59; 95% CI = [3.82, 35.19]), and commitment (OR = 10.78; 95% CI = [2.33, 49.99]). In addition, each additional minute from the nearest arsenic-safe drinking water source reduced the odds of switching to an arsenic-safe well by more than 10% (OR = 0.89; 95% CI = [0.87, 0.92]). Future arsenic mitigation programs should target these behavioral determinants of switching to arsenic-safe water sources.

  16. Arsenic load in rice ecosystem and its mitigation through deficit irrigation.

    PubMed

    Mukherjee, Arkabanee; Kundu, M; Basu, B; Sinha, B; Chatterjee, M; Bairagya, M Das; Singh, U K; Sarkar, S

    2017-07-15

    Rice the staple food is a notable intake source of arsenic to the rural population of eastern India through food-chain. A field survey was carried out to study the variation of arsenic load in different parts of rice genotype Shatabdi (most popular genotype of the region) exposed to varying level of arsenic present in the irrigation water and soil. As irrigation is the primary source of arsenic contamination, a study was conducted to assess arsenic load in rice ecosystem under deficit irrigation practices like intermittent ponding (IP), saturation (SAT) and aerobic (AER) imposed during stress allowable stage (16-40 days after transplanting) of the crop (genotype Shatabdi). Present survey showed that arsenic content in water and soil influenced the arsenic load of rice grain. Variation in arsenic among different water and soil samples influenced grain arsenic load to the maximum extent followed by straw. Deviation in root arsenic load due to variation in water and soil arsenic content was lowest. Arsenic concentration of grain is strongly related to the arsenic content of both irrigation water and soil. However, water has 10% higher impact on grain arsenic load over soil. Translocation of arsenic from root to shoot decreased with the increase in arsenic content of water. Imposition of saturated and aerobic environment reduced both yield and grain arsenic load. In contrast under IP a marked decrease in grain arsenic content recorded with insignificant reduction in yield. Deficit irrigation resulted in significant reduction (17.6-25%) in arsenic content of polished rice and the values were lower than that of the toxic level (<0.2 mg kg -1 ). In contrast the decrease in yield was to the tune of 0.9% under IP regime over CP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    EPA Pesticide Factsheets

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  18. Methylated Arsenic in the Southern North Sea

    NASA Astrophysics Data System (ADS)

    Millward, G. E.; Kitts, H. J.; Comber, S. D. W.; Ebdon, L.; Howard, A. G.

    1996-07-01

    Water samples collected in the southern North Sea in August 1988 (mid-summer), April 1989 (spring), September/October 1989 (late summer) and May 1990 were analysed for dissolved inorganic arsenic, monomethylarsenic (MMA) and dimethylarsenic (DMA). In mid-summer 1988, both MMA and DMA were observed throughout the southern North Sea, with lowest concentrations of dissolved inorganic arsenic (mean 6·48 nmol l -1) and the highest proportions of methylated arsenic (29%) being found in highly productive continental coastal waters. In April 1989, waters of the North Sea had a mean inorganic arsenic concentration of 12 nmol l -1and methylated species were not detected, even though phytoplankton blooms were present. Shipboard phytoplankton incubation studies (in May 1990) revealed that uptake of dissolved inorganic arsenic occurred at a rate of 0·57 nmol l -1 day -1, but the appearance of dissolved methylated species was not observed. During September/October 1989, while MMA and DMA were present in all sectors of the North Sea, the relative proportion of methylated compounds (11%) in continental coastal waters was less than mid-summer 1988. It was shown that estuarine, porewater and atmospheric inputs of arsenic species were relatively small during the observational periods, and that almost all of the methylated compounds originated from decaying algal tissue. Demethylation of DMA and MMA throughout winter contributed to the dissolved inorganic arsenic pool. The results are discussed in the context of the development of a predictive model for the cycling of arsenic in the North Sea.

  19. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  20. Arsenic-transforming microbes and their role in biomining processes.

    PubMed

    Drewniak, L; Sklodowska, A

    2013-11-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a toxic (also for themselves) form, and (2) How do these microorganisms cope with this toxic element? In this review, we summarize current knowledge about arsenic-transforming microbes and their role in biomining processes. Special consideration is given to studies that have increased our understanding of how microbial activities are linked to the biogeochemistry of arsenic, by examining (1) where and in which forms arsenic occurs in the mining environment, (2) microbial activity in the context of arsenic mineral dissolution and the mechanisms of arsenic resistance, (3) the minerals used and technologies applied in the biomining of arsenic, and (4) how microbes can be used to clean up post-mining environments.

  1. The microbial arsenic cycle in Mono Lake, California

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.; Hollibaugh, James T.

    2004-01-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO2 into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less “extreme” environments, such as drinking water aquifers.

  2. Substance P Promotes the Progression of Endometrial Adenocarcinoma.

    PubMed

    Ma, Jing; Yuan, Shifa; Cheng, Jianxin; Kang, Shan; Zhao, Wenhong; Zhang, Jie

    2016-06-01

    It has been demonstrated that substance P (SP) promotes while neurokinin-1 receptor (NK-1R) antagonist inhibits the proliferation of several human cancer cells. Currently, it is still unknown whether such actions exist in human endometrial carcinoma. This study aimed to explore the role of SP/NK-1R signaling in the progression of endometrial adenocarcinoma. The expression levels of SP and NK-1R in endometrial adenocarcinoma tissues and Ishikawa cell line were detected by real-time quantitative PCR and Western blot analysis. The effects of SP on Ishikawa cells proliferation and invasion were analyzed using MTT assay and transwell matrigel invasion assay, respectively. The expression levels of matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor C (VEGF-C) in Ishikawa cells after administration of SP were detected by real-time quantitative RCR and Western blot analysis. The expression levels of SP and NK-1R were significantly higher in endometrial adenocarcinoma tissues and Ishikawa cells than in normal endometrium. Substance P significantly enhanced the proliferation and invasion of Ishikawa cells. In addition, SP induced the expression of MMP-9 and VEGF-C in Ishikawa cells, whereas NK-1R antagonist inhibited these effects. Substance P plays an important role in the development of endometrial carcinoma by inducing the expression of MMP-9 and VEGF-C and promoting cancer cell proliferation and metastasis, which can be blocked by NK-1R antagonist.

  3. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chao-Yuan; Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan; Su, Chien-Tien

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography withmore » tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.« less

  4. Assessment of Nutritional Status of Infants Living in Arsenic-Contaminated Areas in Bangladesh and Its Association with Arsenic Exposure

    PubMed Central

    Milton, Abul Hasnat; Attia, John; Alauddin, Mohammad; McEvoy, Mark; McElduff, Patrick; Hussain, Sumaira; Akhter, Ayesha; Akter, Shahnaz; Islam, M. Munirul; Ahmed, AM Shamsir; Iyengar, Vasu; Islam, Md Rafiqul

    2018-01-01

    Data is scarce on early life exposure to arsenic and its association with malnutrition during infancy. This study followed the nutritional status of a cohort of 120 infants from birth to 9 months of age in an arsenic contaminated area in Bangladesh. Anthropometric data was collected at 3, 6 and 9 months of the infant’s age for nutritional assessment whereas arsenic exposure level was assessed via tube well drinking water arsenic concentration at the initiation of the study. Weight and height measurements were converted to Z-scores of weight for age (WAZ-underweight), height for age (HAZ-stunting), weight for height (WHZ-wasting) for children by comparing with WHO growth standard. Arsenic exposure levels were categorized as <50 μg/L and ≥50 μg/L. Stunting rates (<−2 SD) were 10% at 3 months and 44% at both 6 and 9 months. Wasting rates (<−2 SD) were 23.3% at 3 months and underweight rates (<−2 SD) were 25% and 10% at 3 and 6 months of age, respectively. There was a significant association of stunting with household drinking water arsenic exposure ≥50 μg/L at age of 9 months (p = 0.009). Except for stunting at 9 months of age, we did not find any significant changes in other nutritional indices over time or with levels of household arsenic exposure in this study. Our study suggests no association between household arsenic exposure and under-nutrition during infancy; with limiting factors being small sample size and short follow-up. Difference in stunting at 9 months by arsenic exposure at ≥50 μg/L might be a statistical incongruity. Further longitudinal studies are warranted to establish any association. PMID:29301293

  5. Arsenic is Cytotoxic and Genotoxic to Primary Human Lung Cells

    PubMed Central

    Xie, Hong; Huang, ShouPing; Martin, Sarah; Wise, John P.

    2014-01-01

    Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24 h) or long (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells. PMID:24291234

  6. Folate and Cobalamin Modify Associations between S-adenosylmethionine and Methylated Arsenic Metabolites in Arsenic-Exposed Bangladeshi Adults123

    PubMed Central

    Howe, Caitlin G.; Niedzwiecki, Megan M.; Hall, Megan N.; Liu, Xinhua; Ilievski, Vesna; Slavkovich, Vesna; Alam, Shafiul; Siddique, Abu B.; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Chronic exposure to inorganic arsenic (InAs) through drinking water is a major problem worldwide. InAs undergoes hepatic methylation to form mono- and dimethyl arsenical species (MMA and DMA, respectively), facilitating arsenic elimination. Both reactions are catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT) using S-adenosylmethionine (SAM) as the methyl donor, yielding the methylated product and S-adenosylhomocysteine (SAH), a potent product-inhibitor of AS3MT. SAM biosynthesis depends on folate- and cobalamin-dependent one-carbon metabolism. With the use of samples from 353 participants in the Folate and Oxidative Stress Study, our objective was to test the hypotheses that blood SAM and SAH concentrations are associated with arsenic methylation and that these associations differ by folate and cobalamin nutritional status. Blood SAM and SAH were measured by HPLC. Arsenic metabolites in blood and urine were measured by HPLC coupled to dynamic reaction cell inductively coupled plasma MS. In linear regression analyses, SAH was not associated with any of the arsenic metabolites. However, log(SAM) was negatively associated with log(% urinary InAs) (β: −0.11; 95% CI: −0.19, −0.02; P = 0.01), and folate and cobalamin nutritional status significantly modified associations between SAM and percentage of blood MMA (%bMMA) and percentage of blood DMA (%bDMA) (P = 0.02 and P = 0.01, respectively). In folate- and cobalamin-deficient individuals, log(SAM) was positively associated with %bMMA (β: 6.96; 95% CI: 1.86, 12.05; P < 0.01) and negatively associated with %bDMA (β: −6.19; 95% CI: −12.71, 0.32; P = 0.06). These findings suggest that when exposure to InAs is high, and methyl groups are limiting, SAM is used primarily for MMA synthesis rather than for DMA synthesis, contributing additional evidence that nutritional status may explain some of the interindividual differences in arsenic metabolism and, consequently, susceptibility to arsenic

  7. Industrial contributions of arsenic to the environment.

    PubMed Central

    Nelson, K W

    1977-01-01

    Arsenic is present in all copper, lead, and zinc sulfide ores and is carried along with those metals in the mining, milling and concentrating process. Separation, final concentration and refining of by-product arsenic as the trioxide is achieved at smelters. Arsenic is the essential consistent element of many compounds important and widely used in agriculture and wood preservation. Lesser amounts are used in metal alloys, glass-making, and feed additives. There is no significant recycling. Current levels of arsenic emissions to the atmosphere from smelters and power plants and ambient air concentrations are given as data of greatest environmental interest. PMID:908308

  8. Analysis of arsenical metabolites in biological samples.

    PubMed

    Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J

    2009-11-01

    Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [(73)As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic.

  9. XAS Studies of Arsenic in the Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charnock, J. M.; School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL; Polya, D. A.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  10. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yu; Parvez, Faruque; Gamble, Mary

    2009-09-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (> 300 {mu}g/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 {mu}g/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 {mu}g/L, mean 99 {mu}g/L) of arsenic exposure. Findings to date suggestmore » adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.« less

  11. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  12. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia

    EPA Science Inventory

    Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...

  13. Arsenic in Drinking Water-A Global Environmental Problem

    ERIC Educational Resources Information Center

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  14. Arsenic Adsorption from Water Using Graphene-Based Materials as Adsorbents: a Critical Review

    NASA Astrophysics Data System (ADS)

    Yang, Xuetong; Xia, Ling; Song, Shaoxian

    2017-07-01

    Adsorption is widely applied to remove arsenic from water. This paper reviewed and compared the recent progresses on the arsenic removal by adsorption using two-dimensional and three-dimensional graphene-based materials as adsorbents. Functional graphene sheet achieved the largest As(III) adsorption capacity of 138.79mg/g, while Mg-Al LDH/GO2 showed the largest As(V) adsorption capacity of 183.11mg/g. Parameters including pH, temperature, co-existing ions and loaded metal or metal oxide affected the adsorption process. The adsorption mechanisms of graphene-based materials for As(III) and As(V) could be explained by surface complexation and the electrostatic attraction, respectively. Future works are suggested to focus on regenerating of two-dimensional graphene-based adsorbents and developing the three-dimensional with large specific surface area and better adsorption performance.

  15. Study of arsenic accumulation in rice and evaluation of protective effects of Chorchorus olitorius leaves against arsenic contaminated rice induced toxicities in Wistar albino rats.

    PubMed

    Hosen, Saeed Mohammed Imran; Das, Dipesh; Kobi, Rupkanowar; Chowdhury, Dil Umme Salma; Alam, Md Jibran; Rudra, Bashudev; Bakar, Muhammad Abu; Islam, Saiful; Rahman, Zillur; Al-Forkan, Mohammad

    2016-10-14

    In the present study, we investigated the arsenic accumulation in different parts of rice irrigated with arsenic contaminated water. Besides, we also evaluated the protective effects of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities in animal model. A pot experiment was conducted with arsenic amended irrigation water (0.0, 25.0, 50.0 and 75.0 mg/L As) to investigate the arsenic accumulation in different parts of rice. In order to evaluate the protective effects of Corchorus olitorius leaves, twenty Wistar albino rats were divided into four different groups. The control group (Group-I) was supplied with normal laboratory pellets while groups II, III, and IV received normal laboratory pellets supplemented with arsenic contaminated rice, C. olitorius leaf powder (4 %), arsenic contaminated rice plus C. olitorius leaf powder (4 %) respectively. Different haematological parameters and serum indices were analyzed to evaluate the protective effects of Corchorus olitorius leaves against arsenic intoxication. To gather more supportive evidences of Corchorus olitorius potentiality against arsenic intoxication, histopathological analysis of liver, kidney, spleen and heart tissues was also performed. From the pot experiment, we have found a significant (p ≤ 0.05) increase of arsenic accumulation in different parts of rice with the increase of arsenic concentrations in irrigation water and the trend of accumulation was found as root > straw > husk > grain. Another part of the experiment revealed that supplementation of C. olitorius leaves with arsenic contaminated rice significantly (p < 0.05) restored the altered haematological parameters and other serum indices towards the normal values. Arsenic deposition pattern on different organs and histological studies on the ultrastructural changes of liver, kidneys, spleen and heart also supported the protective roles of Corchorus olitorius leaves against arsenic contaminated

  16. Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.

    PubMed

    Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech

    2017-07-01

    The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), p<0.0001). The median serum Se concentrations in the study group and the control were: 54.20μg/l (IQR 44.2-73.10μg/l) and 55.45μg/l (IQR 38.5-69.60μg/l) respectively and did not differ significantly between the groups. In the exposed group we observed significantly higher urine concentrations of selenosugar 1 (SeSug 1) and selenosugar 3 (SeSug3) than in the control group Me: 1.68μg/g creat. (IQR 1.25-2.97 vs Me: 1.07μg/g creat. (IQR 0.86-1.29μg/g), p<0.0001 for SeSug1; Me: 0.45μg/g creat. (IQR 0.26-0.69) vs Me: 0.28μg/g creat. (IQR 0.17-0.45μg/g), p=0.0021). In the multivariate model, after adjusting to cofounders (age, BMI, job seniority time, consumption of fish and seafood and smoking habits) the high rate of arsenic urine wash out (measured as a sum of iAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. A novel method to remove arsenic from water

    NASA Astrophysics Data System (ADS)

    McDonald, Kyle J.

    Arsenic is a toxic metalloid that is found ubiquitously in earth's crust. The release of arsenic into the aqueous environment and the subsequent contamination in drinking water supplies is a worldwide health crisis. Arsenic is the culprit of the largest mass poisoning of a population in history and the number one contaminant of concern in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Priority List of Hazardous Substances. Practical, affordable, and reliable treatment technologies have yet to be developed due to the difficulty in overcoming many socioeconomic and geochemical barriers. Recent studies have reported that cupric oxide (CuO) nanoparticles have shown promising characteristics as a sorbent to remove arsenic from water. However, these studies were conducted in controlled environments and have yet to test the efficacy of this treatment technology in the field. In this manuscript, a flow through adsorption column containing CuO nanoparticles was developed for lab based studies to remove arsenic from water. These studies were expanded to include a field demonstration of the CuO nanoparticle flow through adsorption column to remove naturally occurring arsenic from groundwater associated with agriculture, domestic groundwater, and in situ recovery (ISR) uranium production process water. A major limitation for many treatment technologies is the difficulties presented in the disposal of waste byproducts such as sludge and spent media. In the research contained in this manuscript, we investigate the processes of regenerating the CuO nanoparticles using sodium hydroxide (NaOH). The use of the regenerated CuO nanoparticles was examined in batch experiments and implemented in the flow through column studies. The ability to regenerate and reuse a sorbent drastically reduces costs involved in manufacturing and disposal of spent media. Also, the CuO nanoparticles were evaluated in batch experiments for the removal of naturally

  18. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    PubMed

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, P<0.01), higher percentages of iAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, P<0.01) but lower percentages of monomethylarsonate (MMA) in serum (15.5 vs 18.8%, P<0.01) ans dimethylarsinate acid (DMA) in urine (65.1 vs 69.8%, P<0.01). Subjects with lower selenium concentrations in serum (<50 microg/l) had a stronger tendency to the risk of skin lesions than individual having higher selenium concentrations [odd ratio (OR), 7.3; 95% confidence interval (95% CI), 1.5-35.7; P=0.014]. This OR estimation was confirmed in those subjects having higher ratios of As/Se in urine and serum, with OR as high as 10.3 and 3.8 respectively. Lower serum selenium status (<50 microg/l) is significantly correlated to the arsenic-associated skin lesions in the arsenic exposed population. The accumulation of iAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  19. Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic.

    PubMed

    Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu

    2018-01-01

    The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.

  20. Arsenic removal by nanoparticles: a review.

    PubMed

    Habuda-Stanić, Mirna; Nujić, Marija

    2015-06-01

    Contamination of natural waters with arsenic, which is both toxic and carcinogenic, is widespread. Among various technologies that have been employed for arsenic removal from water, such as coagulation, filtration, membrane separation, ion exchange, etc., adsorption offers many advantages including simple and stable operation, easy handling of waste, absence of added reagents, compact facilities, and generally lower operation cost, but the need for technological innovation for water purification is gaining attention worldwide. Nanotechnology is considered to play a crucial role in providing clean and affordable water to meet human demands. This review presents an overview of nanoparticles and nanobased adsorbents and its efficiencies in arsenic removal from water. The paper highlights the application of nanomaterials and their properties, mechanisms, and advantages over conventional adsorbents for arsenic removal from contaminated water.

  1. Attenuation of arsenic neurotoxicity by curcumin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.

    2009-11-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associatedmore » with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.« less

  2. Arsenic in Mexican children exposed to contaminated well water.

    PubMed

    Monroy-Torres, Rebeca; Macías, Alejandro E; Gallaga-Solorzano, Juan Carlos; Santiago-García, Enrique Javier; Hernández, Isabel

    2009-01-01

    This cross-sectional study measures the arsenic level in school children exposed to contaminated well water in a rural area in México. Arsenic was measured in hair by hydride generation atomic absorption spectrophotometry. Overall, 110 children were included (average 10 years-old). Among 55 exposed children, mean arsenic level on hair was 1.3 mg/kg (range <0.006-5.9). All unexposed children had undetectable arsenic levels. The high level of arsenic in water was associated to the level in hair. However, exposed children drank less well water at school or at home than unexposed children, suggesting that the use of contaminated water to cook beans, broths or soups may be the source of arsenic exposure.

  3. Poultry Consumption and Arsenic Exposure in the U.S. Population

    PubMed Central

    Nigra, Anne E.; Nachman, Keeve E.; Love, David C.; Grau-Perez, Maria; Navas-Acien, Ana

    2016-01-01

    Background: Arsenicals (roxarsone and nitarsone) used in poultry production likely increase inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and roxarsone or nitarsone concentrations in poultry meat. However, the association between poultry intake and exposure to these arsenic species, as reflected in elevated urinary arsenic concentrations, is unknown. Objectives: Our aim was to evaluate the association between 24-hr dietary recall of poultry consumption and arsenic exposure in the U.S. population. We hypothesized first, that poultry intake would be associated with higher urine arsenic concentrations and second, that the association between turkey intake and increased urine arsenic concentrations would be modified by season, reflecting seasonal use of nitarsone. Methods: We evaluated 3,329 participants ≥ 6 years old from the 2003–2010 National Health and Nutrition Examination Survey (NHANES) with urine arsenic available and undetectable urine arsenobetaine levels. Geometric mean ratios (GMR) of urine total arsenic and DMA were compared across increasing levels of poultry intake. Results: After adjustment, participants in the highest quartile of poultry consumption had urine total arsenic 1.12 (95% CI: 1.04, 1.22) and DMA 1.13 (95% CI: 1.06, 1.20) times higher than nonconsumers. During the fall/winter, participants in the highest quartile of turkey intake had urine total arsenic and DMA 1.17 (95% CI: 0.99, 1.39; p-trend = 0.02) and 1.13 (95% CI: 0.99, 1.30; p-trend = 0.03) times higher, respectively, than nonconsumers. Consumption of turkey during the past 24 hr was not associated with total arsenic or DMA during the spring/summer. Conclusions: Poultry intake was associated with increased urine total arsenic and DMA in NHANES 2003–2010, reflecting arsenic exposure. Seasonally stratified analyses by poultry type provide strong suggestive evidence that the historical use of arsenic-based poultry drugs contributed to arsenic

  4. Nutritional deficiency and arsenical manifestations: a perspective study in an arsenic-endemic region of West Bengal, India.

    PubMed

    Deb, Debasree; Biswas, Anirban; Ghose, Aloke; Das, Arabinda; Majumdar, Kunal K; Guha Mazumder, Debendra N

    2013-09-01

    To assess whether nutritional deficiency increases susceptibility to arsenic-related health effects. Assessment of nutrition was based on a 24 h recall method of all dietary constituents. Epidemiological cross-sectional study was conducted in an arsenic endemic area of West Bengal with groundwater arsenic contamination. The study was composed of two groups – Group 1 (cases, n 108) exhibiting skin lesions and Group 2 (exposed controls, n 100) not exhibiting skin lesions – age- and sex-matched and having similar arsenic exposure through drinking water and arsenic levels in urine and hair. Both groups belonged to low socio-economic strata (Group 1 significantly poorer, P<0·01) and had low BMI (prevalence of BMI<18·5 kg/m2: in 38% in Group 1 and 27% in Group 2). Energy intake was below the Recommended Daily Allowance (set by the Indian Council of Medical Research) in males and females in both groups. Increased risk of arsenical skin lesions was found for those in the lowest quintile of protein intake (v. highest quintile: OR=4·60, 95% CI 1·36, 15·50 in males; OR=5·62, 95% CI 1·19, 34·57 in females). Significantly lower intakes of energy, protein, thiamin, niacin, Mg, Zn and choline were observed in both males and females of Group 1 compared with Group 2. Significantly lower intakes of carbohydrate, riboflavin, niacin and Cu were also observed in female cases with skin lesions compared with non-cases. Deficiencies of Zn, Mg and Cu, in addition to protein, B vitamins and choline, are found to be associated with arsenical skin lesions in West Bengal.

  5. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    PubMed

    Escudero, Lorena V; Casamayor, Emilio O; Chong, Guillermo; Pedrós-Alió, Carles; Demergasso, Cecilia

    2013-01-01

    The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.

  6. Extraction and speciation of arsenic in lacustrine sediments

    USGS Publications Warehouse

    Ficklin, W.H.

    1990-01-01

    Arsenic was partially extracted with 4.OM hydrochloric acid, from samples collected at 25-cm intervals in a 350-cm column of sediment at Milltown Reservoir, Montana and from a 60-cm core of sediment collected at the Cheyenne River Embayment of Lake Oahe, South Dakota. The sediment in both reservoirs is highly contaminated with arsenic. The extracted arsenic was separated into As(III) and As(V) on acetate form Dowex 1-X8 ion-exchange resin with 0.12M HCl eluent. Residual arsenic was sequentially extracted with KClO3 and HCl. Arsenic was determined by graphite-furnace atomic-absorption spectrometry. The analytical results define oxidized and reduced zones in the sediment columns. ?? 1990.

  7. Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation

    PubMed Central

    Chen, Jian; Qin, Jie; Zhu, Yong-Guan; de Lorenzo, Víctor

    2013-01-01

    Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food. PMID:23645194

  8. Arsenic-related Bowen's disease, palmar keratosis, and skin cancer.

    PubMed Central

    Cöl, M; Cöl, C; Soran, A; Sayli, B S; Oztürk, S

    1999-01-01

    Chronic arsenical intoxication can still be found in environmental and industrial settings. Symptoms of chronic arsenic intoxication include general pigmentation or focal "raindrop" pigmentation of the skin and the appearance of hyperkeratosis of the palms of the hands and soles of the feet. In addition to arsenic-related skin diseases including keratosis, Bowen's disease, basal-cell-carcinoma, and squamous-cell carcinoma, there is also an increased risk of some internal malignancies. Arsenic-related diseases are common in areas of the world where the drinking water has a high arsenic content. In this paper, we describe a 35-year-old male patient who had arsenic-related keratosis, squamous-cell carcinoma in the palmar area of his left hand, and Bowen's disease on his left thigh. The patient worked in a borax mine for 15 years, so he was exposed to arsenic in drinking water, airborne arsenic in his workplace, and had direct contact. The patient was treated for 11 months for arsenic-related keratosis until an axillary lymph node metastasis occurred; the lesion was excised and diagnosed to be malignant. Bowen's disease was detected when the patient was being treated for cancer. No other malignancy was found. The patient is still receiving regular follow-up care. Images Figure 1 Figure 2 PMID:10417369

  9. Retardation of arsenic transport through a Pleistocene aquifer

    PubMed Central

    van Geen, Alexander; Bostick, Benjamín C.; Trang, Pham Thi Kim; Lan, Vi Mai; Mai, Nguyen-Ngoc; Manh, Phu Dao; Viet, Pham Hung; Radloff, Kathleen; Aziz, Zahid; Mey, Jacob L.; Stahl, Mason O.; Harvey, Charles F.; Oates, Peter; Weinman, Beth; Stengel, Caroline; Frei, Felix; Kipfer, Rolf; Berg, Michael

    2013-01-01

    Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of South and Southeast Asia exposes an estimated population of over 100 million to toxic levels of arsenic (1). Holocene aquifers are the source of widespread arsenic poisoning across the region (2, 3). In contrast, Pleistocene sands deposited in this region more than ~12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water (4) and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination over 120 m from Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20 fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in South and Southeast Asia as a consequence of increasing levels of groundwater pumping have been delayed by the retardation of arsenic transport. PMID:24025840

  10. Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease.

    PubMed

    El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude; Chatziantoniou, Christos

    2015-07-01

    Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. Copyright © 2015 by the American Society of Nephrology.

  11. Phytoremediation of arsenic in submerged soil by wetland plants.

    PubMed

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  12. Arsenic in the soils of Zimapán, Mexico.

    PubMed

    Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-02-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.

  13. Association of Low-Moderate Arsenic Exposure and Arsenic Metabolism with Incident Diabetes and Insulin Resistance in the Strong Heart Family Study.

    PubMed

    Grau-Perez, Maria; Kuo, Chin-Chi; Gribble, Matthew O; Balakrishnan, Poojitha; Jones Spratlen, Miranda; Vaidya, Dhananjay; Francesconi, Kevin A; Goessler, Walter; Guallar, Eliseo; Silbergeld, Ellen K; Umans, Jason G; Best, Lyle G; Lee, Elisa T; Howard, Barbara V; Cole, Shelley A; Navas-Acien, Ana

    2017-12-20

    High arsenic exposure has been related to diabetes, but at low-moderate levels the evidence is mixed. Arsenic metabolism, which is partly genetically controlled and may rely on certain B vitamins, plays a role in arsenic toxicity. We evaluated the prospective association of arsenic exposure and metabolism with type 2 diabetes and insulin resistance. We included 1,838 American Indian men and women free of diabetes (median age, 36 y). Arsenic exposure was assessed as the sum of inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) urine concentrations (ΣAs). Arsenic metabolism was evaluated by the proportions of iAs, MMA, and DMA over their sum (iAs%, MMA%, and DMA%). Homeostasis model assessment for insulin resistance (HOMA2-IR) was measured at baseline and follow-up visits. Incident diabetes was evaluated at follow-up. Median ΣAs, iAs%, MMA%, and DMA% was 4.4 μg/g creatinine, 9.5%, 14.4%, and 75.6%, respectively. Over 10,327 person-years of follow-up, 252 participants developed diabetes. Median HOMA2-IR at baseline was 1.5. The fully adjusted hazard ratio [95% confidence interval (CI)] for incident diabetes per an interquartile range increase in ΣAs was 1.57 (95% CI: 1.18, 2.08) in participants without prediabetes at baseline. Arsenic metabolism was not associated with incident diabetes. ΣAs was positively associated with HOMA2-IR at baseline but negatively with HOMA2-IR at follow-up. Increased MMA% was associated with lower HOMA2-IR when either iAs% or DMA% decreased. The association of arsenic metabolism with HOMA2-IR differed by B-vitamin intake and AS3MT genetics variants. Among participants without baseline prediabetes, arsenic exposure was associated with incident diabetes. Low MMA% was cross-sectional and prospectively associated with higher HOMA2-IR. Research is needed to confirm possible interactions of arsenic metabolism with B vitamins and AS3MT variants on diabetes risk. https://doi.org/10.1289/EHP2566.

  14. Association of Low-Moderate Arsenic Exposure and Arsenic Metabolism with Incident Diabetes and Insulin Resistance in the Strong Heart Family Study

    PubMed Central

    Kuo, Chin-Chi; Gribble, Matthew O.; Balakrishnan, Poojitha; Jones Spratlen, Miranda; Vaidya, Dhananjay; Francesconi, Kevin A.; Goessler, Walter; Guallar, Eliseo; Silbergeld, Ellen K.; Umans, Jason G.; Best, Lyle G.; Lee, Elisa T.; Howard, Barbara V.; Cole, Shelley A.

    2017-01-01

    Background: High arsenic exposure has been related to diabetes, but at low-moderate levels the evidence is mixed. Arsenic metabolism, which is partly genetically controlled and may rely on certain B vitamins, plays a role in arsenic toxicity. Objective: We evaluated the prospective association of arsenic exposure and metabolism with type 2 diabetes and insulin resistance. Methods: We included 1,838 American Indian men and women free of diabetes (median age, 36 y). Arsenic exposure was assessed as the sum of inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) urine concentrations (ΣAs). Arsenic metabolism was evaluated by the proportions of iAs, MMA, and DMA over their sum (iAs%, MMA%, and DMA%). Homeostasis model assessment for insulin resistance (HOMA2-IR) was measured at baseline and follow-up visits. Incident diabetes was evaluated at follow-up. Results: Median ΣAs, iAs%, MMA%, and DMA% was 4.4μg/g creatinine, 9.5%, 14.4%, and 75.6%, respectively. Over 10,327 person-years of follow-up, 252 participants developed diabetes. Median HOMA2-IR at baseline was 1.5. The fully adjusted hazard ratio [95% confidence interval (CI)] for incident diabetes per an interquartile range increase in ΣAs was 1.57 (95% CI: 1.18, 2.08) in participants without prediabetes at baseline. Arsenic metabolism was not associated with incident diabetes. ΣAs was positively associated with HOMA2-IR at baseline but negatively with HOMA2-IR at follow-up. Increased MMA% was associated with lower HOMA2-IR when either iAs% or DMA% decreased. The association of arsenic metabolism with HOMA2-IR differed by B-vitamin intake and AS3MT genetics variants. Conclusions: Among participants without baseline prediabetes, arsenic exposure was associated with incident diabetes. Low MMA% was cross-sectional and prospectively associated with higher HOMA2-IR. Research is needed to confirm possible interactions of arsenic metabolism with B vitamins and AS3MT variants on diabetes risk

  15. [Pilot study on pentavalent arsenic removal by coagulation and the strengthening effect of flocs recycling].

    PubMed

    Yao, Juan-Juan; Gao, Nai-Yun; Xia, Sheng-Ji; Chen, Bei-Bei

    2009-06-15

    The pilot and bench scale studies on pentavalent arsenic removal by coagulation and the strengthening effect of flocs recycling were performed. The results show that above 95% As (V) in the raw water exists in the form of dissolved As (V). Furthermore, the removal efficiencies of dissolved arsenic and total arsenic by mixing, first flocculation, second flocculation, sedimentation, filtration units were 87.92%, 6.18%, 2.38%, 1.55%, 1.23% and 1.10%, 1.83%, 2.20%, 86.42%, 7.38% respectively. Therefore, conversion rate of dissolved As(V) into particulate As(V) and the settlement performance of flocs were strongly dependent on the coagulation effect, which determined the As(V) removal efficiency in the whole system. Flocs have a strong adsorption capacity for As(V) and the adsorption obeys a second order reaction kinetics and well fits the modified Freundlich model. Flocs recycling can obviously promoted the As(V) removal by enhanced coagulation and reduce the dosage of coagulant with recycling point set at rapid mixed site and recycling ratio at 50%.

  16. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh

    PubMed Central

    Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L.; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C.; Morgun, Andriy

    2017-01-01

    Background Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. Results 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. Conclusions This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota. PMID:29211769

  17. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh.

    PubMed

    Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C; Morgun, Andriy; Kile, Molly L

    2017-01-01

    Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota.

  18. Use of arsenic-73 in research supports USEPA's regulatory decisions on inorganic arsenic in drinking water*

    EPA Science Inventory

    Inorganic arsenic is a natural contaminant of drinking water in the United States and throughout the world. Long term exposure to inorganic arsenic in drinking water at elevated levels (>100 ug/L) is associated with development of cancer in several organs, cardiovascular disease,...

  19. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  20. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Sanner, Robert D [Livermore, CA; Dias, Victoria L [Livermore, CA; Reynolds, John G [San Ramon, CA

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  1. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter.

    PubMed

    Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B

    2005-01-25

    One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.

  2. Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata.

    PubMed

    Wang, Xin; Rathinasabapathi, Bala; de Oliveira, Letuzia Maria; Guilherme, Luiz R G; Ma, Lena Q

    2012-10-16

    Microbes play an important role in arsenic transformation and cycling in the environment. Microbial arsenic oxidation and reduction were demonstrated in the growth media of arsenic hyperaccumulator Pteris vittata L. All arsenite (AsIII) at 0.1 mM in the media was oxidized after 48 h incubation. Oxidation was largely inhibited by antibiotics, indicating that bacteria played a dominant role. To identify AsIII oxidizing bacteria, degenerate primers were used to amplify ∼500 bp of the AsIII oxidase gene aioA (aroA) using DNA extracted from the media. One aioA (aroA)-like sequence (MG-1, tentatively identified as Acinetobacter sp.) was amplified, exhibiting 82% and 91% identity in terms of gene and deduced protein sequence to those from Acinetobacter sp. 33. In addition, four bacterial strains with different arsenic tolerance were isolated and identified as Comamonas sp.C-1, Flavobacterium sp. C-2, Staphylococcus sp. C-3, and Pseudomonas sp. C-4 using carbon utilization, fatty acid profiles, and/or sequencing 16s rRNA gene. These isolates exhibited dual capacity for both AsV reduction and AsIII oxidation under ambient conditions. Arsenic-resistant bacteria with strong AsIII oxidizing ability may have potential to improve bioremediation of AsIII-contaminated water using P. vittata and/or other biochemical strategies.

  3. Arsenic metabolism by microbial communities from an arsenic-rich shallow-water hydrothermal system in Ambitle Island, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ruiz Chancho, M.; Pichler, T.; Amend, J. P.; Akerman, N. H.

    2011-12-01

    Arsenic, although toxic, is used as an energy source by certain microbes, some of which can catalyse the reduction of arsenate by using different electron donors, while others oxidize arsenite with oxygen or nitrate as electron acceptors. The marine shallow-water hydrothermal system in Tutum Bay, Ambitle Island, Papua New Guinea is ideal for investigating the metabolism of microbes involved in arsenic cycling, because there hydrothermal vents discharge fluids with arsenite concentrations as high as 950 μg/L. Vent fluids are hot (˜100°C), slightly acidic (pH˜6) and reducing. Upon mixing with colder and oxygen-rich seawater the fluid chemistry changes rapidly within a few meters from the hydrothermal source. The objective of this work was to study arsenic metabolism due to microbial activity in Tutum Bay. Sediments collected at 7.5 and 30 m along a transect beginning at a hydrothermal vent were used as inocula in the microbial culturing experiments. Media were designed using chemical analyses of the hydrothermal fluids. Following culture experiments, arsenic species identification and quantification were performed for the growth media with HPLC-ICP(HR)MS, using anion exchange and reversed phase chromatography. Quality control included mass balance calculations and spiking experiments. A fast reduction of arsenate to arsenite was observed in the first 24 hours leading to the conclusion that the microbial communities were capable of reducing arsenic. However, mass balance calculations revealed that more than 30% of the arsenic had been transformed to one or more unknown species, which could not be detected by ion exchange chromatography. The addition of peroxide combined with reversed phase chromatography revealed the presence of several unknown species. Following the addition of peroxide some of the unknown species were identified to be thio-arsenic compounds, because they were oxidized to their oxo-analogues. Nevertheless, a significant fraction of unknown

  4. Management of the Arsenic Groundwater System Lagunera - MEXICO

    NASA Astrophysics Data System (ADS)

    Boochs, P. W.; Billib, M.; Aparicio, J.; Gutierrez, C.

    2007-05-01

    Arsenic in drinking water is considered one of the most important environmental causes of cancer mortality in the world. Groundwater resources of the Comarca Lagunera region (Northern Mexico), which represents the main source of drinking water for more than 2 million people in the area, show arsenic concentrations ranging from 5 to 750 micro g/l. Large areas have concentrations quite above the Mexican standard of 25 micro g/l for human use and consumption. The aquifer is overexploited and the groundwater levels at the central part of the aquifer are drawn down more than 100 m in less than 50 years. The drawdown provoked the dissolution and migration of the geogenic existing arsenic within the aquifer. The presence of arsenic has been related to several potential sources. It was found out, that the main source is geothermal activity, less mining and the use of arsenical pesticides. The process of the geneses of the arsenic pollution implicates, that the highest content is on the bottom of the aquifer. Data analysis showed, that arsenic concentration is correlated to the age of the groundwater. "Older" water has higher arsenic content than "younger" water and the oldest water can be found at the bottom of the aquifer. Before 1950 the groundwater level in the Comarca Lagunera was close to the surface and there were only dug and shallow wells with low groundwater abstraction. The water was pumped from the upper parts of the aquifer and because this was "young" water it had low arsenic content. Then after 1950 a lot of wells, mainly for irrigation, were built and in 2002 there were 2350 active wells with an abstraction of about 1088 Mio cbm/year. In consequence to this the groundwater level decreased extraordinary. More and more "older" water was pumped and the arsenic content increased. Furthermore at the beginning of 1960 the river Nazas was canalized and lined, so that the natural groundwater recharge by infiltration from the river was stopped. By this way, the

  5. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamdar, Ambreen; Xi, Guochen

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Sincemore » H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.« less

  6. Arsenic methylation and skin lesions in migrant and native adult women with chronic exposure to arsenic from drinking groundwater.

    PubMed

    Wei, Binggan; Yu, Jiangping; Yang, Linsheng; Li, Hairong; Chai, Yuanqing; Xia, Yajuan; Wu, Kegong; Gao, Jianwei; Guo, Zhiwei; Cui, Na

    2017-02-01

    In order to figure out the prevalence of skin lesions and methylation capacity for migrant and native adult women in an endemic area for arsenic poisoning in Inner Mongolia, China, 207 adult women were selected for study subjects. The results showed that the prevalence of skin lesions for the external group, provincial group and native group was 36.54, 26.15 and 35.56 %, respectively. The nail content of arsenic and urinary concentrations of dimethylarsenic (DMA), monomethylarsenic (MMA) and inorganic arsenic (iAs) were significantly higher in women with skin lesions than in those without skin lesions. The highest urinary concentrations of DMA, MMA and iAs were 213.93, 45.72 and 45.01 μg/L in the native group. The arsenic methylation capacity index revealed that the external group had the greatest capacity, while the native group had the lowest. The odds ratios of skin lesions in relation to arsenic metabolites and arsenic methylation capacity varied widely among the three groups. Urinary MMA and iAs concentrations were positively associated with risk of skin lesions in the three groups of adult women, while primary and secondary methylation capacities were negatively related to risk of skin lesions in native and provincial groups. The external group might be more susceptible to MMA and iAs, while the provincial and native groups were more tolerance to MMA and iAs. Lower primary and secondary arsenic methylation capacities increased the risk of skin lesions in native and provincial groups. Moreover, higher nail arsenic concentration increased the risk of skin lesions of adult women.

  7. Construction of a Modular Arsenic-Resistance Operon in E. coli and the Production of Arsenic Nanoparticles

    PubMed Central

    Edmundson, Matthew Charles; Horsfall, Louise

    2015-01-01

    Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study, we have produced Escherichia coli strains containing arsenic-resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the “wild-type”) is resistant up to 20 mM sodium arsenate, the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-­containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We have also investigated introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0), providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals. PMID:26539432

  8. Aquatic arsenic: phytoremediation using floating macrophytes.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Relationship between arsenic skin lesions and the age of natural menopause.

    PubMed

    Yunus, Fakir Md; Rahman, Musarrat Jabeen; Alam, Md Zahidul; Hore, Samar Kumar; Rahman, Mahfuzar

    2014-05-02

    Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women's reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. We compared menopausal age in two groups of women--with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies--participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups' age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure.

  10. Neovascularization and Angiogenic Gene Expression Following Chronic Arsenic Exposure in Mice

    PubMed Central

    Soucy, Nicole V.; Mayka, Debra; Klei, Linda R.; Nemec, Antonia A.; Bauer, John A.; Barchowsky, Aaron

    2015-01-01

    Exposure to arsenic in drinking water increases incidence of cardiovascular diseases. However, the basic mechanisms and genetic changes that promote these diseases are unknown. This study investigated the effects of chronic arsenic exposure on vessel growth and expression of angiogenic and tissue remodeling genes in cardiac tissues. Male mice were exposed to low to moderately high levels of arsenite (AsIII) for 5, 10, or 20 wk in their drinking water. Vessel growth in Matrigel implants was tested during the last 2 wk of each exposure period. Implant vascularization increased in mice exposed to 5–500 ppb AsIII for 5 wk. Similar increases were seen following exposure to 50–250 ppb of AsIII over 20 wk, but the response to 500 ppb decreased with time. RT-PCR analysis of cardiac mRNA revealed differential expression of angiogenic or tissue remodeling genes, such as vascular endothelial cell growth factor (VEGF), VEGF receptors, plasminogen activator inhibitor-1, endothelin-1, and matrix metalloproteinase-9, which varied with time or amount of exposure. VEGF receptor mRNA and cardiac microvessel density were reduced by exposure to 500 ppb AsIII for 20 wk. These data demonstrate differential concentration and time-dependent effects of chronic arsenic exposure on cardiovascular phenotype and vascular remodeling that may explain the etiology for AsIII-induced disease. PMID:15738583

  11. Arsenic concentrations in Baltic Sea sediments close to chemical munitions dumpsites

    NASA Astrophysics Data System (ADS)

    Bełdowski, Jacek; Szubska, Marta; Emelyanov, Emelyan; Garnaga, Galina; Drzewińska, Anna; Bełdowska, Magdalena; Vanninen, Paula; Östin, Anders; Fabisiak, Jacek

    2016-06-01

    In addition to natural sources and land-originated pollution, the Baltic Sea has another anthropogenic source of arsenic in bottom sediments-arsenic-based Chemical Warfare Agents (CWA). To examine the potential usage of arsenic contents results for monitoring the leakage from chemical weapons, sediment samples were collected from officially reported and potential chemical weapon dumpsites located in the Baltic Sea, and total and inorganic arsenic concentrations were analyzed. Results showed an elevated arsenic content in dumpsite areas compared to reference areas. Correlations of arsenic with other metals and organic matter were studied to elucidate any unusual behavior of arsenic in the dumpsites. In the area of the Bornholm Deep, such behavior was observed for inorganic arsenic. It appears that in close vicinity of dumped munitions, the inorganic arsenic concentration of sediments is not correlated with either organic matter content or authigenic minerals formation, as is commonly observed elsewhere. Investigations on CWA concentrations, performed within the CHEMSEA (Chemical Munition Search and Assesment) project, allowed us to compare the results of arsenic concentrations with the occurrence of arsenic-containing CWA.

  12. Arsenic stress after the Proterozoic glaciations

    NASA Astrophysics Data System (ADS)

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  13. Arsenic stress after the Proterozoic glaciations.

    PubMed

    Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-04

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  14. Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor

    PubMed Central

    Rodriguez-Freire, Lucia; Moore, Sarah E.; Sierra-Alvarez, Reyes; Root, Robert A.; Chorover, Jon; Field, James A.

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that has been identified at high concentrations in groundwater in certain locations around the world. Concurrent microbial reduction of arsenate (AsV) and sulfate (SO42-) can result in the formation of poorly soluble arsenic sulfide minerals (ASM). The objective of this research was to study As biomineralization in a minimal iron environment for the bioremediation of As-contaminated groundwater using simultaneous AsV and SO42- reduction. A continuous-flow anaerobic bioreactor was maintained at slightly acidic pH (6.25-6.50) and fed with AsV and SO42-, utilizing ethanol as an electron donor for over 250 d. A second bioreactor running under the same conditions but lacking SO42- was operated as a control to study the fate of As (without S). The reactor fed with SO42- removed an average 91.2% of the total soluble As at volumetric rates up to 2.9 mg As/(L∙h), while less than 5% removal was observed in the control bioreactor. Soluble S removal occurred with an S to As molar ratio of 1.2, suggesting the formation of a mixture of orpiment- (As2S3) and realgar-like (AsS) solid phases. Solid phase characterization using K-edge X-Ray absorption spectroscopy confirmed the formation of a mixture of As2S3 and AsS. These results indicate that a bioremediation process relying on the addition of a simple, low-cost electron donor offers potential to promote the removal of As from groundwater with naturally occurring or added sulfate by precipitation of ASM. PMID:26333155

  15. Can arsenic occurrence rate in bedrock aquifers be predicted?

    USGS Publications Warehouse

    Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan

    2012-01-01

    A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 μg L–1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 μg L–1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology.

  16. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  17. Can arsenic occurrence rates in bedrock aquifers be predicted?

    PubMed Central

    Yang, Qiang; Jung, Hun Bok; Marvinney, Robert G.; Culbertson, Charles W.; Zheng, Yan

    2012-01-01

    A high percentage (31%) of groundwater samples from bedrock aquifers in the greater Augusta area, Maine was found to contain greater than 10 µg L−1 of arsenic. Elevated arsenic concentrations are associated with bedrock geology, and more frequently observed in samples with high pH, low dissolved oxygen, and low nitrate. These associations were quantitatively compared by statistical analysis. Stepwise logistic regression models using bedrock geology and/or water chemistry parameters are developed and tested with external data sets to explore the feasibility of predicting groundwater arsenic occurrence rates (the percentages of arsenic concentrations higher than 10 µg L−1) in bedrock aquifers. Despite the under-prediction of high arsenic occurrence rates, models including groundwater geochemistry parameters predict arsenic occurrence rates better than those with bedrock geology only. Such simple models with very few parameters can be applied to obtain a preliminary arsenic risk assessment in bedrock aquifers at local to intermediate scales at other localities with similar geology. PMID:22260208

  18. INVESTIGATIONS INTO THE MODE OF ACTION OF ARSENIC

    EPA Science Inventory

    Arsenic is a ubiquitous metalloid to which there is significant human exposure through the air, water, and food. That arsenic can induce cancer in humans has been known since the late 17th century, yet how arsenic induces cancer has been the subject of a myriad of scientific inve...

  19. Arsenic exposure and its impact on health in Chile.

    PubMed

    Ferreccio, Catterina; Sancha, Ana María

    2006-06-01

    The problem of arsenic in Chile was reviewed. In Chile, the population is exposed to arsenic naturally via drinking-water and by air pollution resulted from mining activities. The sources of arsenic were identified to estimate the exposure of population to arsenic through air, water, and food. Health effects, particularly early effects, observed in children and adults, such as vascular diseases (premature cardiac infarct), respiratory illnesses (bronchiectasis), and skin lesions have been described. Chronic effects, such as lung and bladder cancers, were reported 20 years after peak exposure and persisted 27 years after mitigation measures for removing arsenic from drinking surface water were initiated. Although the effects of arsenic are similar in different ethnic and cultural groups (e.g. Japanese, Chinese, Indian, Bangladeshi, American, and Taiwanese), variations could be explained by age at exposure, the dose received, smoking, and nutrition. Since health effects were observed at arsenic levels of 50 microg/L in drinking-water, it is advised that Chile follows the World Health Organization's recommendation of 10 microg/L. The Chilean experience in removal of arsenic suggests that it is feasible to reach this level using the conventional coagulation process.

  20. Purification of arsenic-contaminated water with K-jarosite filters.

    PubMed

    Hott, Rodrigo C; Maia, Luiz F O; Santos, Mayra S; Faria, Márcia C; Oliveira, Luiz C A; Pereira, Márcio C; Bomfeti, Cleide A; Rodrigues, Jairo L

    2018-05-01

    The high toxicity and potential arsenic accumulation in several environments have encouraged the development of technologies for its removal from contaminated waters. However, the arsenic released into aquatic environment comes mainly from extremely acidic mining effluents, making harder to find stable adsorbents to be used in these conditions. In this work, K-jarosite particles were synthesized as a stable adsorbent in acidic medium for eliminating arsenic from contaminated water. The adsorption capacities of K-jarosite for As 3+ , As 5+ , and monomethylarsonic acid were 9.45, 12.36, and 8.21 mg g -1 , respectively. Most arsenic in water was adsorbed within the first 10 min, suggesting the fast arsenic adsorption kinetics of K-jarosite particles. Because of that, a K-jarosite filter was constructed for purifying water at a constant flow. The K-jarosite filter was highly efficient to treat arsenic-contaminated water from a Brazilian river, reducing the concentration of arsenic in water to near zero. These data suggest the K-jarosite filter can be used as a low-cost technology for purifying arsenic-contaminated water in acidic medium.

  1. Aldehyde dehydrogenase induction in arsenic-exposed rat bladder epithelium.

    PubMed

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2016-01-01

    Arsenic is widely distributed in the environment. Many human cancers, including urothelial carcinoma (UC), show a dose-dependent relationship with arsenic exposure in the south-west coast of Taiwan (also known as the blackfoot disease (BFD) areas). However, the molecular mechanisms of arsenic-mediated UC carcinogenesis has not yet been defined. In vivo study, the rat bladder epithelium were exposed with arsenic for 48 h. The proteins were extracted from untreated and arsenic-treated rat bladder cells and utilized two-dimensional gel electrophoresis and mass spectrometry. Selected peptides were extracted from the gel and identified by quadrupole-time of flight (Q-TOF) Ultima-Micromass spectra. The significantly difference expression of proteins in arsenic-treated groups as compared with untreated groups was confirmed by immunohistochemistry (IHC) and western blotting. We found that thirteen proteins were down-regulated and nine proteins were up-regulated in arsenic-treated rat bladder cells when compared with untreated groups. The IHC and western blotting results confirmed that aldehyde dehydrogenase (ALDH) protein was up-regulated in arsenic-treated rat bladder epithelium. Expression of ALDH protein was significantly higher in UC patients from BFD areas than those from non-BFD areas using IHC (p=0.018). In conclusion, the ALDH protein expression could be used as molecular markers for arsenic-induced transformation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.

    PubMed

    Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M

    2015-04-01

    Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Total arsenic in selected food samples from Argentina: Estimation of their contribution to inorganic arsenic dietary intake.

    PubMed

    Sigrist, Mirna; Hilbe, Nandi; Brusa, Lucila; Campagnoli, Darío; Beldoménico, Horacio

    2016-11-01

    An optimized flow injection hydride generation atomic absorption spectroscopy (FI-HGAAS) method was used to determine total arsenic in selected food samples (beef, chicken, fish, milk, cheese, egg, rice, rice-based products, wheat flour, corn flour, oats, breakfast cereals, legumes and potatoes) and to estimate their contributions to inorganic arsenic dietary intake. The limit of detection (LOD) and limit of quantification (LOQ) values obtained were 6μgkg(-)(1) and 18μgkg(-)(1), respectively. The mean recovery range obtained for all food at a fortification level of 200μgkg(-)(1) was 85-110%. Accuracy was evaluated using dogfish liver certified reference material (DOLT-3 NRC) for trace metals. The highest total arsenic concentrations (in μgkg(-)(1)) were found in fish (152-439), rice (87-316) and rice-based products (52-201). The contribution to inorganic arsenic (i-As) intake was calculated from the mean i-As content of each food (calculated by applying conversion factors to total arsenic data) and the mean consumption per day. The primary contributors to inorganic arsenic intake were wheat flour, including its proportion in wheat flour-based products (breads, pasta and cookies), followed by rice; both foods account for close to 53% and 17% of the intake, respectively. The i-As dietary intake, estimated as 10.7μgday(-)(1), was significantly lower than that from drinking water in vast regions of Argentina. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Association of Arsenic Exposure and Arsenic Metabolism with the Metabolic Syndrome and its Individual Components: Prospective Evidence from the Strong Heart Family Study.

    PubMed

    Spratlen, Miranda J; Grau-Perez, Maria; Best, Lyle G; Yracheta, Joseph; Lazo, Mariana; Vaidya, Dhananjay; Balakrishnan, Poojitha; Gamble, Mary V; Francesconi, Kevin A; Goessler, Walter; Cole, Shelley A; Umans, Jason G; Howard, Barbara V; Navas-Acien, Ana

    2018-03-15

    Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. The association between arsenic exposure and arsenic metabolism with metabolic syndrome and its individual components, however, is relatively unknown. We used poisson regression with robust variance to evaluate the association between baseline arsenic exposure (urine arsenic levels) and metabolism (relative percentage of arsenic species over their sum) with incident metabolic syndrome and its individual components (elevated waist circumference, elevated triglycerides, reduced HDL, hypertension, elevated fasting plasma glucose) in 1,047 participants from the Strong Heart Family Study, a prospective family-based cohort in American Indian communities (baseline visits in 1998-1999 and 2001-2003, follow-up visits in 2001-2003 and 2006-2009). 32% of participants developed metabolic syndrome over follow-up. An IQR increase in arsenic exposure was associated with 1.19 (95% CI: 1.01, 1.41) greater risk for elevated fasting plasma glucose but not with other individual components or overall metabolic syndrome. Arsenic metabolism, specifically lower MMA% and higher DMA% was associated with higher risk of overall metabolic syndrome and elevated waist circumference, but not with any other component. These findings support there is a contrasting and independent association between arsenic exposure and arsenic metabolism with metabolic outcomes which may contribute to overall diabetes risk.

  5. METHYLATED TRIVALENT ARSENIC SPECIES ARE GENOTOXIC

    EPA Science Inventory

    ABSTRACT

    The genotoxic effects of arsenic compounds are generally believed to result from other than direct interacton with DNA. The reactivties of methyloxarsine (MAsIII) and iododimethylarsine (DMAsIII), two methylated trivalent arsenicals, toward supercoiled X174 RFI ...

  6. Assessment of arsenic concentrations in domestic well water, by town, in Maine 2005-09

    USGS Publications Warehouse

    Nielsen, M.G.; Lombard, P.J.; Schalk, L.F.

    2010-01-01

    Prior studies have established that approximately 10 percent of domestic wells in Maine have arsenic levels greater than the U.S. Environmental Protection Agency maximum contaminant limit (10 micrograms per liter (ug/L)). Of even greater concern are multiple discoveries of wells with very high arsenic levels (> 500 ug/L) in several areas of the State. A study was initiated to assist the Maine Center for Disease Control and Prevention (ME-CDC) in developing a better understanding of the statewide spatial occurrence of wells with elevated arsenic levels at the individual town level, identify areas of the State that should be targeted for increased efforts to promote well-water testing, and generate data for potential use in predicting areas of the State likely to have very high levels of arsenic. The State's Health and Environmental and Testing Laboratory (HETL) annually analyzes samples from thousands of domestic wells for arsenic. Results of arsenic analyses of domestic well water submitted to the HETL from 2005 to 2009 were screened and organized, by town, in order to summarize the results for all towns with samples submitted to the HETL. In order to preserve the privacy of well owners, the screening and organization of samples was conducted in the offices of the ME-CDC, following applicable Maine and United States laws, rules, and privacy policies. After screening, the database contained samples from 531 towns in Maine and from 11,111 individual wells. Of those towns, 385 had samples from 5 or more individual wells, 174 towns had samples from 20 or more individual wells, and 49 towns had samples from 60 or more wells. These samples, because they were submitted by homeowners and were not part of a random sample, may not be representative of all wells in a given area. The minimum, maximum, and median arsenic values for the towns with five or more samples were calculated, and the maximum and median values were mapped for the State. The percentages of samples

  7. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jui Tung; Bain, Lisa J., E-mail: lbain@clemson.edu; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mousemore » embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  8. Relationship between arsenic skin lesions and the age of natural menopause

    PubMed Central

    2014-01-01

    Background Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women’s reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. Methods We compared menopausal age in two groups of women – with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies— participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Results Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups’ age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. Conclusions The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure. PMID:24886424

  9. Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain, Central China.

    PubMed

    Chen, Xiaoming; Zeng, Xian-Chun; Wang, Jianing; Deng, Yamin; Ma, Teng; Guoji E; Mu, Yao; Yang, Ye; Li, Hao; Wang, Yanxin

    2017-02-01

    It was shown that groundwater in Jianghan Plain was severely contaminated by arsenic; however, little is known about the mechanism by which the mineral arsenic was mobilized and released into groundwater from the high-arsenic sediments in this area. Here, we collected sediment samples from the depths of 5-230m in Jianghan Plain. Although all of the samples contain high contents of total arsenic, the soluble arsenic was only detectable in few of the shallow sediments, but was readily detectable in all of the deep sediments at the depths of 190-230m. Analysis of the genes of arsenate-respiring reductases indicated that they were not present in all of the shallow sediments from the depths of 5-185m, but were detectable in all of the deep sediments from the depths of 190-230m; all of the identified reductase genes are new or new-type, and they display unique diversity. Microcosm assay indicated that the microbial communities from the deep sediments were able to reduce As(V) into As(III) using lactate, formate, pyruvate or acetate as an electron donor under anaerobic condition. Arsenic release assay demonstrated that these microbial communalities efficiently catalyzed the mobilization and release of the mineral arsenic into aqueous phase. We also isolated a novel cultivable dissimilatory As(V)-respiring bacterium Aeromonas sp. JH155 from the sediments. It is able to completely reduce 2.0mM As(V) into As(III) in 72h, and efficiently promote the reduction and release of the mineral arsenic into aqueous phase. Analysis of the 16S rRNA genes indicated that the deep sediments contain diversities of microbial communities, which were shaped by the environmental factors, such as As, SO 4 2- , NO 3 - , Fe and pH value. These data suggest that the microorganisms in the deep sediments in Jianghan Plain played key roles in the mobilization and release of insoluble arsenic into the groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Benefits of Alcohol on Arsenic Toxicity in Rats

    PubMed Central

    Dutta, Shubha Ranjan; Passi, Deepak; Bharti, Jaya

    2017-01-01

    Introduction It has been demonstrated earlier that exposure to ethanol and/or arsenic compounds (such as sodium arsenite) produces toxic effects as shown by both in vitro and in vivo experiments. Chronic exposure of humans to arsenic through drinking water, pesticides or consumption of alcoholic beverages has produced major health problem and concern in recent years. Water being one of the main ingredients for alcohol formation (beer fermentation process) can lead to contamination with arsenic. Thus, people consuming such alcohol are getting continuously exposed to arsenic compounds as well along with alcohol. Aim The present study was undertaken to investigate the effect of alcohol co-administration on arsenic induced changes in carbohydrate metabolic status in adult male albino rats. Materials and Methods Adult male albino rats of Wistar strain (weighing~100g) were divided into three groups (n=8 rats/group) including Control or vehicle treated (C), Arsenic treated (As) and Arsenic treated alcohol co-exposed (As+Alc). Treatment with Sodium-arsenite included intra-peritoneal injection consecutively for 14 days at a dose of 5.55 mg/kg (equivalent to 35% of LD50) per day. Absolute alcohol (15% v/v) was fed at a dose of 0.5 ml/100 g body weight per day for five consecutive days from start of the treatment schedule. Distilled water (D/W) was used as vehicle. Blood Glucose (BG) level, levels of glycogen, Pyruvic Acid (PA), Free Amino Acid Nitrogen (FAAN), total protein, Glutamate Oxalate transaminase (GOT) and Glutamate Pyruvate Transaminase (GPT) activity, and glucose-6-phosphatase (G6Pase) activity were measured in tissues including liver, kidney and muscle. Results Treatment with arsenic decreased the levels of BG, liver glycogen and PA, tissue protein and G6Pase activity, GOT activity in liver and muscle, and increased free amino acid content in kidney and muscle, GPT activity in liver and kidney. Alcohol administration to rats co-exposed to arsenic treatment

  11. Benefits of Alcohol on Arsenic Toxicity in Rats.

    PubMed

    Singh, Purnima; Dutta, Shubha Ranjan; Passi, Deepak; Bharti, Jaya

    2017-01-01

    It has been demonstrated earlier that exposure to ethanol and/or arsenic compounds (such as sodium arsenite) produces toxic effects as shown by both in vitro and in vivo experiments. Chronic exposure of humans to arsenic through drinking water, pesticides or consumption of alcoholic beverages has produced major health problem and concern in recent years. Water being one of the main ingredients for alcohol formation (beer fermentation process) can lead to contamination with arsenic. Thus, people consuming such alcohol are getting continuously exposed to arsenic compounds as well along with alcohol. The present study was undertaken to investigate the effect of alcohol co-administration on arsenic induced changes in carbohydrate metabolic status in adult male albino rats. Adult male albino rats of Wistar strain (weighing~100g) were divided into three groups (n=8 rats/group) including Control or vehicle treated (C), Arsenic treated (As) and Arsenic treated alcohol co-exposed (As+Alc). Treatment with Sodium-arsenite included intra-peritoneal injection consecutively for 14 days at a dose of 5.55 mg/kg (equivalent to 35% of LD50) per day. Absolute alcohol (15% v/v) was fed at a dose of 0.5 ml/100 g body weight per day for five consecutive days from start of the treatment schedule. Distilled water (D/W) was used as vehicle. Blood Glucose (BG) level, levels of glycogen, Pyruvic Acid (PA), Free Amino Acid Nitrogen (FAAN), total protein, Glutamate Oxalate transaminase (GOT) and Glutamate Pyruvate Transaminase (GPT) activity, and glucose-6-phosphatase (G6Pase) activity were measured in tissues including liver, kidney and muscle. Treatment with arsenic decreased the levels of BG, liver glycogen and PA, tissue protein and G6Pase activity, GOT activity in liver and muscle, and increased free amino acid content in kidney and muscle, GPT activity in liver and kidney. Alcohol administration to rats co-exposed to arsenic treatment reversed these changes. Thus, it is suggested that

  12. Environmental microbes can speciate and cycle arsenic.

    PubMed

    Rhine, E Danielle; Garcia-Dominguez, Elizabeth; Phelps, Craig D; Young, L Y

    2005-12-15

    Naturally occurring arsenic is found predominantly as arsenate [As(V)] or arsenite [As(III)], and can be readily oxidized or reduced by microorganisms. Given the health risks associated with arsenic in groundwater and the interest in arsenic-active microorganisms, we hypothesized that environmental microorganisms could mediate a redox cycling of arsenic that is linked to their metabolism. This hypothesis was tested using an As(V) respiring reducer (strain Y5) and an aerobic chemoautotrophic As(II) oxidizer (strain OL1 ) both isolated from a Superfund site, Onondaga Lake, in Syracuse, NY. Strains were grown separately and together in sealed serum bottles, and the oxic/anoxic condition was the only parameter changed. Initially, under anoxic conditions when both isolates were grown together, 2 mM As(V) was stoichiometrically reduced to As(III) within 14 days. Following complete reduction, sterile ambient air was added and within 24 h As(III) was completely oxidized to As(V). The anoxic-oxic cycle was repeated, and sterile controls showed no abiotic transformation within the 28-day incubation period. These results demonstrate that microorganisms can cycle arsenic in response to dynamic environmental conditions, thereby affecting the speciation, and hence mobility and toxicity of arsenic in the environment.

  13. Total and inorganic arsenic in fish samples from Norwegian waters.

    PubMed

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (<0.006 mg kg(-1)) in all cases. The obtained results question the assumptions made by the European Food Safety Authority (EFSA) on the inorganic arsenic level in fish used in the recent EFSA opinion on arsenic in food.

  14. Developing robust arsenic awareness prediction models using machine learning algorithms.

    PubMed

    Singh, Sushant K; Taylor, Robert W; Rahman, Mohammad Mahmudur; Pradhan, Biswajeet

    2018-04-01

    Arsenic awareness plays a vital role in ensuring the sustainability of arsenic mitigation technologies. Thus far, however, few studies have dealt with the sustainability of such technologies and its associated socioeconomic dimensions. As a result, arsenic awareness prediction has not yet been fully conceptualized. Accordingly, this study evaluated arsenic awareness among arsenic-affected communities in rural India, using a structured questionnaire to record socioeconomic, demographic, and other sociobehavioral factors with an eye to assessing their association with and influence on arsenic awareness. First a logistic regression model was applied and its results compared with those produced by six state-of-the-art machine-learning algorithms (Support Vector Machine [SVM], Kernel-SVM, Decision Tree [DT], k-Nearest Neighbor [k-NN], Naïve Bayes [NB], and Random Forests [RF]) as measured by their accuracy at predicting arsenic awareness. Most (63%) of the surveyed population was found to be arsenic-aware. Significant arsenic awareness predictors were divided into three types: (1) socioeconomic factors: caste, education level, and occupation; (2) water and sanitation behavior factors: number of family members involved in water collection, distance traveled and time spent for water collection, places for defecation, and materials used for handwashing after defecation; and (3) social capital and trust factors: presence of anganwadi and people's trust in other community members, NGOs, and private agencies. Moreover, individuals' having higher social network positively contributed to arsenic awareness in the communities. Results indicated that both the SVM and the RF algorithms outperformed at overall prediction of arsenic awareness-a nonlinear classification problem. Lower-caste, less educated, and unemployed members of the population were found to be the most vulnerable, requiring immediate arsenic mitigation. To this end, local social institutions and NGOs could play a

  15. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  16. Biological removal of arsenic pollution by soil fungi.

    PubMed

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils. Copyright © 2011

  17. DRINKING WATER ARSENIC AND PERINATAL OUTCOMES

    EPA Science Inventory

    Drinking Water Arsenic and Perinatal Outcomes
    DT Lobdell, Z Ning, RK Kwok, JL Mumford, ZY Liu, P Mendola

    Many studies have documented an association between drinking water arsenic (DWA) and cancer, vascular diseases, and dermatological outcomes, but few have investigate...

  18. Mineral resource of the month: Arsenic

    USGS Publications Warehouse

    Bedinger, George M.

    2014-01-01

    Arsenic is a gray metal rarely encountered as a free element, but is widely distributed in minerals and ores that contain copper, iron and lead. Arsenic is often found in groundwater as a result of the natural weathering of rock and soil.

  19. Arsenic Species in the Ground Water

    EPA Science Inventory

    Abstract Arsenic concentrations in ground varies widely and regionally across the United States and exists as oxyanions having two oxidation states: As(+III) and As(+V). As(V) is effectively removed by most arsenic treatment processes whereas uncharged As(III) is poorly removed...

  20. Tracking the pathway of arsenic metabolism

    EPA Science Inventory

    Although the toxic and carcinogenic properties of arsenic have been recognized for centuries, only in the past few decades has research focused on understanding the metabolic fate of arsenic in humans and relating metabolism to adverse health effects. In humans, conversion of in...

  1. Silencing NKD2 by Promoter Region Hypermethylation Promotes Esophageal Cancer Progression by Activating Wnt Signaling.

    PubMed

    Cao, Baoping; Yang, Weili; Jin, Yongshuai; Zhang, Meiying; He, Tao; Zhan, Qimin; Herman, James G; Zhong, Guanglin; Guo, Mingzhou

    2016-11-01

    Naked cuticle homolog 2 (NKD2) was found to be frequently methylated in human breast and gastric cancers. However, the epigenetic changes and mechanisms of NKD2 in human esophageal cancer remain unclear. Nine esophageal cancer cell lines and 154 cases of primary esophageal cancer samples were analyzed using methylation-specific polymerase chain reaction, immunohistochemical analysis, Western blot, and xenograft mouse models. Loss of NKD2 expression and complete methylation were found in KYSE150 and TE1 cells. Reduced NKD2 expression and partial methylation of the promoter region were observed in KYSE30, KYSE70, KYSE410, KYSE140, and COLO680 cells. High levels of NKD2 expression and unmethylation were detected in KYSE450 and TE8 cells. Reexpression of NKD2 was induced by 5-aza-2'-deoxycytidine in cells in which NKD2 was not expressed or cells in which NKD2 expression was reduced. NKD2 was methylated in 53.2% of human primary esophageal cancer samples (82 of 154), and promoter region hypermethylation was significantly associated with reduced expression of NKD2 (p < 0.01). NKD2 methylation was associated with tumor, node, and metastasis stage and lymph node metastasis (p < 0.01). Our results suggest that NKD2 is regulated by promoter region methylation and that methylation of NKD2 may serve as a prognostic marker in esophageal cancer. Our further studies demonstrate that NKD2 suppresses cell proliferation, colony formation, cell invasion, and migration and also induces G1/S checkpoint arrest in esophageal cancer cells. NKD2 suppressed xenograft tumor growth and inhibited Wnt signaling in human esophageal cancer cells. NKD2 is frequently methylated in human esophageal cancer, and the expression of NKD2 is regulated by promoter region methylation. NKD2 suppresses esophageal cancer progression by inhibiting Wnt signaling both in vitro and in vivo. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  2. Arsenic detection in water: YPO{sub 4}:Eu{sup 3+} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debasish; Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in; Academy of Scientific and Innovative Research

    This work reports on the novel technique of detection of arsenic in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Eu{sup 3+} (5%) doped YPO{sub 4}nanorodswere utilised for the said experiment. Co-precipitation method was used for the synthesis of the materials and characterised them with different instrumental techniques like X-ray diffraction (XRD), Infra-red (IR), UV-absorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence studies. This nanoparticle can adsorb both arsenic and arsenious acids. We studied the effect of arsenic adsorption on the luminescence behaviour of the nanoparticles. Arsenic acid enhanced the luminescencemore » intensity whereas arsenious acid quenched the luminescence. This luminescence enhancement or quenching is related with arsenic concentration. This relation of luminescence property with concentration of arsenic can be used to detect arsenic in industrial waste. - Graphical abstract: Novel technique of detection of Arsenic ion in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Potential application for detection of arsenic in drinking and industrial waste water. - Highlights: • Novel technique of detection of Arsenic in aqueous solution by YPO{sub 4}:Eu{sup 3+} nanomaterials. • The effect of arsenic adsorption on the luminescence behaviour of the nanoparticles was studied. • Arsenic acid enhance whereas arsenious acid quenches the luminescence intensity. • This technique can be used to detect arsenic in industrial waste.« less

  3. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    NASA Astrophysics Data System (ADS)

    Jasrotia, Shivakshi; Kansal, Arun; Mehra, Aradhana

    2017-05-01

    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth ( Eichhornia crassipes) and two algae ( Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3-8.4, whereas COD reduced by 50-65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to <0.1 mg/L, Chlorodesmis sp. was able to reduce arsenic by 40-50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation.

  4. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Victor H.

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-{alpha}) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs{sup III}, MAs{sup V}, DMAs{sup III}, DMAs{sup V}). This study examines the relationship between TGF-{alpha} concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) frommore » areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-{alpha} in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-{alpha} concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-{alpha} levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-{alpha} concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p < 0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-{alpha} than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p = 0.003). These results suggest that TGF-{alpha} in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas.« less

  5. DNA repair gene XPD and susceptibility to arsenic-induced hyperkeratosis.

    PubMed

    Ahsan, Habibul; Chen, Yu; Wang, Qiao; Slavkovich, Vesna; Graziano, Joseph H; Santella, Regina M

    2003-07-20

    Chronic exposure to inorganic arsenic is known to cause non-melanocytic skin and internal cancers in humans. An estimated 50-70 million people in Bangladesh have been chronically exposed to arsenic from drinking water and are at risk of skin and other cancers. We undertook the first study to examine whether genetic susceptibility, as determined by the codon 751 SNP (A-->C) of the DNA repair gene XPD, influences the risk of arsenic-induced hyperkeratotic skin lesions, precursors of skin cancer, in a case-control study of 29 hyperkeratosis cases and 105 healthy controls from the same community in an area of Bangladesh. As expected, there was a monotonic increase in risk of hyperkeratosis in relation to urinary arsenic measures but the XPD genotype was not independently associated with the risk. However, the increase in hyperkeratosis risk in relation to urinary arsenic measures genotype was borderline significant for urinary total arsenic (P for trend=0.06) and statistically significant for urinary creatinine adjusted arsenic (P for trend=0.01) among subjects with the XPD A allele (AA) but not among subjects with the other XPD genotypes. Among AA carriers, the risk for the highest arsenic exposed group compared with the lowest was more than 7-fold for urinary total arsenic and about 11-fold for urinary creatinine adjusted arsenic. In conclusion, our findings suggest that the DNA repair gene XPD may influence the risk of arsenic-induced premalignant hyperkeratotic skin lesions. Future larger studies are needed to confirm this novel finding and investigate how combinations of different candidate genes and/or other host and environmental factors may influence the risk of arsenic induced skin and other cancers.

  6. Quantifying Inorganic Arsenic and Other Water-Soluble Arsenic Species in Human Milk by HPLC/ICPMS.

    PubMed

    Stiboller, Michael; Raber, Georg; Gjengedal, Elin Lovise Folven; Eggesbø, Merete; Francesconi, Kevin A

    2017-06-06

    Because the toxicity of arsenic depends on its chemical form, risk assessments of arsenic exposure must consider the type of arsenic compound, and hence they require sensitive and robust methods for their determination. Furthermore, the assessment should include studies on the most vulnerable people within a population, such as newborns and infants, and thus there is a need to quantify arsenic species in human milk. Herein we report a method for the determination of arsenic species at low concentrations in human milk by HPLC/ICPMS. Comparison of single and triple quadrupole mass analysers showed comparable performance, although the triple quadrupole instrument more efficiently overcame the problem of ArCl + interference, from the natural chloride present in milk, without the need for gradient elution HPLC conditions. The method incorporates a protein precipitation step with trifluoroacetic acid followed by addition of dichloromethane or dibromomethane to remove the lipids. The aqueous phase was subjected to anion-exchange and cation-exchange/mixed mode chromatography with aqueous ammonium bicarbonate and pyridine buffer solutions as mobile phases, respectively. For method validation, a human milk sample was spiked with defined amounts of dimethylarsinate, arsenobetaine, and arsenate. The method showed good recoveries (99-103%) with detection limits (in milk) in the range of 10 ng As kg -1 . The method was further tested by analyzing two Norwegian human milk samples where arsenobetaine, dimethylarsinate, and a currently unknown As species were found, but iAs was not detected.

  7. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism.

    PubMed

    Nidheesh, P V; Singh, T S Anantha

    2017-08-01

    Arsenic contamination in drinking water is a major issue in the present world. Arsenicosis is the disease caused by the regular consumption of arsenic contaminated water, even at a lesser contaminated level. The number of arsenicosis patients is increasing day-by-day. Decontamination of arsenic from the water medium is the only one way to regulate this and the arsenic removal can be fulfilled by water treatment methods based on separation techniques. Electrocoagulation (EC) process is a promising technology for the effective removal of arsenic from aqueous solution. The present review article analyzes the performance of the EC process for arsenic removal. Electrocoagulation using various sacrificial metal anodes such as aluminium, iron, magnesium, etc. is found to be very effective for arsenic decontamination. The performances of each anode are described in detail. A special focus has been made on the mechanism behind the arsenite and arsenate removal by EC process. Main trends in the disposal methods of sludge containing arsenic are also included. Comparison of arsenic decontamination efficiencies of chemical coagulation and EC is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    Arsenic is one of the most harmful and toxic metals, being a Group A human carcinogen. Mining activities as well as the use of arsenic-containing pesticides have resulted in the contamination of a wide variety of sites including mine tailings, cattle dip sites, wood treatment sites, pesticide treatment areas, golf courses, etc. Phytoremediation has emerged as a novel and promising technology, which uses plants to clean up contaminated soil and water taking advantage of plant's natural abilities to extract and accumulate various contaminants. This method has distinct advantages, since it maintains the biological properties and physical structure of the soil, is environment friendly, and above all, inexpensive. However, effective remediation of contaminated residential soils using a specific plant species is an immensely complex task whose success depends on a multitude of factors including the ability of the target plant to uptake, translocate, detoxify, and accumulate arsenic in its system. One of the major challenges in phytoremediation lies in identifying a fast- growing, high biomass plant that can accumulate the contaminant in its harvestable parts. vetiver grass (Vetiveria zizanioides) is a fast-growing perennial grass with strong ecological adaptability and large biomass. While this plant is not a hyperaccumulator of arsenic, it has been reported to be able to tolerate and accumulate considerable amounts of arsenic. Being a high biomass, fast-growing plant, vetiver has the potential to be used for arsenic remediation. The present study investigates the potential of vetiver grass to tolerate and accumulate arsenic in soils with varying physico-chemical properties. A greenhouse study is in progress to study the uptake, tolerance and stress response of vetiver grass to inorganic arsenical pesticide. A column study was set up using 5 soils (Eufaula, Millhopper, Orelia, Orla, and Pahokee Muck) contaminated with sodium arsenite at 4 different concentrations of

  9. Evaluation of Arsenic Removal Technology: Arsenic Demonstration Program

    EPA Science Inventory

    Specific objectives of this program are to evaluate the reliability of the arsenic technologies of small scale systems; to gauge the simplicity of system operations, maintenance and operator skill; to determine the cost-effectiveness of the treatment technologies; and to characte...

  10. Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water.

    PubMed

    Wang, Yan; Zhao, Fenghong; Jin, Yaping; Zhong, Yuan; Yu, Xiaoyun; Li, Gexin; Lv, Xiuqiang; Sun, Guifan

    2011-03-01

    Chronic exposure to inorganic arsenic (iAs) is associated with neurotoxicity. Studies to date have disclosed that methylation of ingested iAs is the main metabolic pathway, and it is a process relying on reduced glutathione (GSH). The aim of this study was to explore the effects of exogenous GSH on arsenic burden and metabolism of nitric oxide (NO) in the brain of mice exposed to arsenite via drinking water. Mice were exposed to sodium arsenite through drinking water contaminated with 50 mg/L arsenic for 4 weeks and treated intraperitoneally with saline solution, 200 mg/kg body weight (b.w), 400 mg/kg b.w, or 800 mg/kg b.w GSH, respectively, at the 4th week. Levels of iAs, monomethylarsenic acid, and dimethylarsenic acid (DMAs) in the liver, blood, and brain were determined by method of hydride generation coupled with atomic absorption spectrophotometry. Activities of nitric oxide synthase (NOS) and contents of NO in the brain were determined by colorimetric method. Compared with mice exposed to arsenite alone, administration of GSH increased dose-dependently the primary and secondary methylation ratio in the liver, which caused the decrease in percent iAs and increase in percent DMAs in the liver, as a consequence, resulted in significant decrease in iAs levels in the blood and total arsenic levels in both blood and brain. NOS activities and NO levels in the brain of mice in iAs group were significantly lower than those in control; however, administration of GSH could increase significantly activities of NOS and contents of NO. Findings from this study suggested that exogenous GSH could promote both primary and secondary arsenic methylation capacity in the liver, which might facilitate excretion of arsenicals, and consequently reduce arsenic burden in both blood and brain and furthermore ameliorate the effects of arsenicals on NO metabolism in the brain.

  11. Arsenic-contaminated cold-spring water in mountainous areas of Hui County, Northwest China: a new source of arsenic exposure.

    PubMed

    Zhang, Qiang; Zheng, Quanmei; Sun, Guifan

    2011-11-15

    Although pump-well is the primary drinking water source in rural areas of China, there are still 8.4% of villages reliant on cold-spring. In this study, a survey of arsenic concentration in cold-springs and pump-wells was carried out in Hui County, Northwest China. A total of 352 drinking water samples, including 177 cold-springs and 175 pump-wells, were collected. The maximum arsenic concentrations in cold-springs and pump-wells were 0.482 mg/L and 0.067 mg/L, respectively. We found that 15.8% (28) of total cold-springs and 1.1% (2) of total pump-wells had arsenic concentrations exceeding the maximum allowable concentration of arsenic in drinking water of rural China (0.05 mg/L). Our findings show that 5 cold spring-contaminated villages are located in the mountainous areas of Hui County and 2224 inhabitants may be at risk of high arsenic exposure. This paper indicates that arsenic contamination of cold-springs may be more serious than expected in mountainous areas of Northwest China and extensive surveys and epidemiological studies should be carried out to investigate the potential contaminated areas and affected population. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science.

    PubMed

    Tanaka, Joji; Davis, Thomas P; Wilson, Paul

    2018-05-28

    Arsenic (As) exhibits diverse (bio)chemical reactivity and biological activity depending upon its oxidation state. However, this distinctive reactivity has been largely overlooked across many fields owing to concerns regarding the toxicity of arsenic. Recently, a clinical renaissance in the use of arsenicals, including organic arsenicals that are known to be less toxic than inorganic arsenicals, alludes to the possibility of broader acceptance and application in the field of polymer and biomaterials science. Here, current examples of polymeric/macromolecular arsenicals are reported to stimulate interest and highlight their potential as a novel platform for functional, responsive, and bioactive materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Arsenic contamination in food chain: Thread to food security

    NASA Astrophysics Data System (ADS)

    Shekhar Azad Kashyap, Chandra; Singh, Swati

    2017-04-01

    The supply of good quality food is a necessity for economic and social health welfare of urban and rural population. Over the last several decades groundwater contamination in developing countries has assumed dangerous levels as a result millions of people are at risk. This is so particularly with respect to arsenic that has registered high concentration in groundwater in countries like India and Bangladesh. The arsenic content in groundwater varies from 10 to 780 µg/L, which is far above the levels for drinking water standards prescribed by World Health Organization (WHO). Currently arsenic has entered in food chain due to irrigation with arsenic contaminated water. In the present study reports the arsenic contamination in groundwater that is being used for irrigating paddy in Manipur and West Bengal. The arsenic content in irrigation water is 475 µg/L and 780 µg/L in Manipur and West Bengal, respectively. In order to assess the effect of such waters on the rice crop, we collected rice plant from Manipur and determined the arsenic content in roots, stem, and grain. The arsenic content in grain varies from 110 to 190 mg/kg while the limit of arsenic intake by humans is 10 mg/kg (WHO). This problem is not confine to the area, it spread global level, and rice being cultivated in these regions is export to the other countries like USA, Middle East and Europe and will be thread to global food security.

  14. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.

    PubMed

    Chen, Jian; Sun, Guo-Xin; Wang, Xiao-Xue; Lorenzo, Víctor de; Rosen, Barry P; Zhu, Yong-Guan

    2014-09-02

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products.

  15. SPECIATION OF ARSENIC IN EDIBLE BIOTA TO SUPPORT RISK ASSESSMENT DETERMINATION OF RELATIVE SOURCE CONTRIBUTION FOR ARSENIC

    EPA Science Inventory

    The Office of Research and Development has designated the study of arsenic as a high priority research area because of the health risk associated from exposure to this element. Present monitoring efforts are primarily focused on total concentration of arsenic in drinking water. ...

  16. Costs of Arsenic Removal Technologies for Small Water Systems: U.S. EPA Arsenic Removal Technology Demonstration Program

    EPA Science Inventory

    As part of the Arsenic Rule Implementation Research Program, between July 2003 and July 2011, the U.S. environmental Protection Agency (EPA) conducted 50 full-scale demonstration projects on treatment systems removing arsenic from drinking water in 26 states throughout the U.S. ...

  17. Spatial modeling for groundwater arsenic levels in North Carolina

    USGS Publications Warehouse

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  18. Arsenic and Environmental Health: State of the Science and ...

    EPA Pesticide Factsheets

    Background: Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with “arsenic” in the title, the question becomes, what questions would best drive future research directions? Objectives: The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines. Methods: The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop. Discussion: More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and suscepti

  19. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    PubMed Central

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  20. Spatial modeling for groundwater arsenic levels in North Carolina.

    PubMed

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.