Science.gov

Sample records for arterivirus nonstructural protein

  1. Structure and Genetic Analysis of the Arterivirus Nonstructural Protein 7α ▿ #

    PubMed Central

    Manolaridis, Ioannis; Gaudin, Cyril; Posthuma, Clara C.; Zevenhoven-Dobbe, Jessika C.; Imbert, Isabelle; Canard, Bruno; Kelly, Geoff; Tucker, Paul A.; Conte, Maria R.; Snijder, Eric J.

    2011-01-01

    Arterivirus replicase polyproteins are cleaved into at least 13 mature nonstructural proteins (nsps), and in particular the nsp5-to-nsp8 region is subject to a complex processing cascade. The function of the largest subunit from this region, nsp7, which is further cleaved into nsp7α and nsp7β, is unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the solution structure of nsp7α of equine arteritis virus, revealing an interesting unique fold for this protein but thereby providing little clue to its possible functions. Nevertheless, structure-based reverse genetics studies established the importance of nsp7/nsp7α for viral RNA synthesis, thus providing a basis for future studies. PMID:21561912

  2. Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses

    SciTech Connect

    Han, Mingyuan; Kim, Chi Yong; Rowland, Raymond R.R.; Fang, Ying; Kim, Daewoo; Yoo, Dongwan

    2014-06-15

    Type I interferons (IFNs-α/β) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV–nsp1 and LDV–nsp1 were auto-cleaved to produce the nsp1α and nsp1β subunits, EAV–nsp1 remained uncleaved. SHFV–nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1β, and nsp1γ), but only two subunits were generated as SHFV–nsp1αβ and SHFV–nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1β motif of nsp1β was functional to generate SHFV–nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV–nsp1β, LDV–nsp1β, EAV–nsp1, and SHFV–nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV–nsp1α, CBP degradation was evident in cells expressing LDV–nsp1α and SHFV–nsp1γ, but no such degradation was observed for EAV–nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ

  3. Arterivirus structural proteins and assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the structural characteristics of the Arteriviridae, including the basic molecular details of all of the proteins involved, the interactions of these proteins and where they occur, and further functional characterization. Most recent available literature has been focused on equi...

  4. Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein.

    PubMed

    Fang, Ying; Treffers, Emmely E; Li, Yanhua; Tas, Ali; Sun, Zhi; van der Meer, Yvonne; de Ru, Arnoud H; van Veelen, Peter A; Atkins, John F; Snijder, Eric J; Firth, Andrew E

    2012-10-23

    Programmed -1 ribosomal frameshifting (-1 PRF) is a gene-expression mechanism used to express many viral and some cellular genes. In contrast, efficient natural utilization of -2 PRF has not been demonstrated previously in eukaryotic systems. Like all nidoviruses, members of the Arteriviridae (a family of positive-stranded RNA viruses) express their replicase polyproteins pp1a and pp1ab from two long ORFs (1a and 1b), where synthesis of pp1ab depends on -1 PRF. These polyproteins are posttranslationally cleaved into at least 13 functional nonstructural proteins. Here we report that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame. We show here that this ORF is translated via -2 PRF at a conserved G_GUU_UUU sequence (underscores separate ORF1a codons) at an estimated efficiency of around 20%, yielding a transframe fusion (nsp2TF) with the N-terminal two thirds of nsp2. Expression of nsp2TF in PRRSV-infected cells was verified using specific Abs, and the site and direction of frameshifting were determined via mass spectrometric analysis of nsp2TF. Further, mutagenesis showed that the frameshift site and an unusual frameshift-stimulatory element (a conserved CCCANCUCC motif 11 nucleotides downstream) are required to direct efficient -2 PRF. Mutations preventing nsp2TF expression impair PRRSV replication and produce a small-plaque phenotype. Our findings demonstrate that -2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression. PMID:23043113

  5. Arterivirus Minor Envelope Proteins Are a Major Determinant of Viral Tropism in Cell Culture

    PubMed Central

    Tian, Debin; Wei, Zuzhang; Zevenhoven-Dobbe, Jessika C.; Liu, Runxia; Tong, Guangzhi

    2012-01-01

    Arteriviruses are enveloped positive-strand RNA viruses for which the attachment proteins and cellular receptors have remained largely controversial. Arterivirus particles contain at least eight envelope proteins, an unusually large number among RNA viruses. These appear to segregate into three groups: major structural components (major glycoprotein GP5 and membrane protein [M]), minor glycoproteins (GP2a, GP3, and GP4), and small hydrophobic proteins (E and the recently discovered ORF5a protein). Biochemical studies previously suggested that the GP5-M heterodimer of porcine reproductive and respiratory syndrome virus (PRRSV) interacts with porcine sialoadhesin (pSn) in porcine alveolar macrophages (PAM). However, another study proposed that minor protein GP4, along with GP2a, interacts with CD163, another reported cellular receptor for PRRSV. In this study, we provide genetic evidence that the minor envelope proteins are the major determinant of arterivirus entry into cultured cells. A PRRSV infectious cDNA clone was equipped with open reading frames (ORFs) encoding minor envelope and E proteins of equine arteritis virus (EAV), the only known arterivirus displaying a broad tropism in cultured cells. Although PRRSV and EAV are only distantly related and utilize diversified transcription-regulating sequences (TRSs), a viable chimeric progeny virus was rescued. Strikingly, this chimeric virus (vAPRRS-EAV2ab34) acquired the broad in vitro cell tropism of EAV, demonstrating that the minor envelope proteins play a critical role as viral attachment proteins. We believe that chimeric arteriviruses of this kind will be a powerful tool for further dissection of the arterivirus replicative cycle, including virus entry, subgenomic RNA synthesis, and virion assembly. PMID:22258262

  6. Arterivirus molecular biology and pathogenesis.

    PubMed

    Snijder, Eric J; Kikkert, Marjolein; Fang, Ying

    2013-10-01

    Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection. PMID:23939974

  7. Disulfide Linkages Mediating Nucleocapsid Protein Dimerization Are Not Required for Porcine Arterivirus Infectivity

    PubMed Central

    Zhang, Rong; Chen, Chunyan; Sun, Zhi; Tan, Feifei; Zhuang, Jinshan; Tian, Debin; Tong, Guangzhi

    2012-01-01

    The nucleocapsid (N) proteins of the North American (type II) and European (type I) genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) share only approximately 60% genetic identity, and the functionality of N in both genotypes, especially its role in virion assembly, is still poorly understood. In this study, we demonstrated that the ORF7 3′ untranslated region or ORF7 of type I is functional in the type II PRRSV background. Based on these results, we postulated that the cysteine at position 90 (Cys90) of the type II N protein, which corresponds to an alanine in the type I protein, is nonessential for virus infectivity. The replacement of Cys90 with alanine confirmed this hypothesis. We then hypothesized that all of the cysteines in the N protein could be replaced by alanines. Mutational analysis revealed that, in contradiction to previously reported findings, the replacement of all of the cysteines, either singly or in combination, did not impair the growth of either type II or type I PRRSV. Treatment with the alkylating agent N-ethylmaleimide inhibited cysteine-mediated N dimerization in living cells but not in released virions. Additionally, bimolecular fluorescence complementation assays revealed noncovalent interactions in living cells among the N and C termini and between the N-terminal and C-terminal regions of the N proteins of both genotypes of PRRSV. These results demonstrate that the disulfide linkages mediating the N dimerization are not required for PRRSV viability and help to promote our understanding of the mechanism underlying arterivirus particle assembly. PMID:22301142

  8. MAVS Protein Is Attenuated by Rotavirus Nonstructural Protein 1

    PubMed Central

    Nandi, Satabdi; Chanda, Shampa; Bagchi, Parikshit; Nayak, Mukti Kant; Bhowmick, Rahul; Chawla-Sarkar, Mamta

    2014-01-01

    Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs) of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS), which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1) which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies. PMID:24643253

  9. Biogenesis and architecture of arterivirus replication organelles.

    PubMed

    van der Hoeven, Barbara; Oudshoorn, Diede; Koster, Abraham J; Snijder, Eric J; Kikkert, Marjolein; Bárcena, Montserrat

    2016-07-15

    All eukaryotic positive-stranded RNA (+RNA) viruses appropriate host cell membranes and transform them into replication organelles, specialized micro-environments that are thought to support viral RNA synthesis. Arteriviruses (order Nidovirales) belong to the subset of +RNA viruses that induce double-membrane vesicles (DMVs), similar to the structures induced by e.g. coronaviruses, picornaviruses and hepatitis C virus. In the last years, electron tomography has revealed substantial differences between the structures induced by these different virus groups. Arterivirus-induced DMVs appear to be closed compartments that are continuous with endoplasmic reticulum membranes, thus forming an extensive reticulovesicular network (RVN) of intriguing complexity. This RVN is remarkably similar to that described for the distantly related coronaviruses (also order Nidovirales) and sets them apart from other DMV-inducing viruses analysed to date. We review here the current knowledge and open questions on arterivirus replication organelles and discuss them in the light of the latest studies on other DMV-inducing viruses, particularly coronaviruses. Using the equine arteritis virus (EAV) model system and electron tomography, we present new data regarding the biogenesis of arterivirus-induced DMVs and uncover numerous putative intermediates in DMV formation. We generated cell lines that can be induced to express specific EAV replicase proteins and showed that DMVs induced by the transmembrane proteins nsp2 and nsp3 form an RVN and are comparable in topology and architecture to those formed during viral infection. Co-expression of the third EAV transmembrane protein (nsp5), expressed as part of a self-cleaving polypeptide that mimics viral polyprotein processing in infected cells, led to the formation of DMVs whose size was more homogenous and closer to what is observed upon EAV infection, suggesting a regulatory role for nsp5 in modulating membrane curvature and DMV formation. PMID

  10. Structural and nonstructural proteins of a rabbit parvovirus.

    PubMed Central

    Matsunaga, Y; Matsuno, S

    1983-01-01

    The structural and nonstructural polypeptides of a rabbit parvovirus (RPV) (F-7-9 strain) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The virion contained three polypeptide components, A (molecular weight, 96,000), B (85,000), and C (75,000). A part of the polypeptide C was cleaved into the smaller-molecular-weight polypeptide C' by proteolysis during purification steps. The major polypeptide C together with C' constituted about 87% of the total viral proteins, and the minor polypeptides, A and B, constituted 4 and 9%, respectively. The structural polypeptides of empty particles were similar in size and composition to those of the virion, but the content of the C' polypeptide was very low. When rabbit kidney cell cultures were infected with RPV, the C polypeptide was detected as early as 15 h postinfection, whereas A and B were first demonstrated at 18 h. The C' polypeptide was not detected for 44 h. In addition to the three structural polypeptides, at least three nonstructural polypeptides, E, F, and G, were demonstrated in the RPV-infected cells. Polypeptide E (molecular weight, 49,000), detected mostly in cytoplasm, seemed to be a cellular protein. The F (25,000) and G (22,000) polypeptides seemed to be virus-coded proteins since they were precipitated with the anti-RPV rabbit immunoglobulin. According to partial proteolysis and peptide mapping, the F and G polypeptides shared the same peptide components. Images PMID:6339735

  11. The nonstructural protein 11 of porcine reproductive and respiratory syndrome virus inhibits NF-κB signaling by means of its deubiquitinating activity.

    PubMed

    Wang, Dang; Fan, Jinxiu; Fang, Liurong; Luo, Rui; Ouyang, Haiping; Ouyang, Chao; Zhang, Huan; Chen, Huanchun; Li, Kui; Xiao, Shaobo

    2015-12-01

    Since its emergence in the late 1980s, porcine reproductive and respiratory syndrome (PRRS) has been devastating the swine industry worldwide. The causative agent is an Arterivirus, referred to as PRRS virus (PRRSV). The pathogenic mechanisms of PRRS are poorly understood, but are believed to correlate with the ability of PRRSV to inhibit immune responses of the host. However, precisely how the virus is capable of doing so remains obscure. In this study, we showed that PRRSV infection led to reduced ubiquitination of cellular proteins. Screening all of the 12 nonstructural proteins (Nsps) encoded by PRRSV revealed that, apart from the Nsp2 which contains the deubiqintinating (DUB) ovarian tumor (OTU) domain, Nsp11, which encodes a unique and conserved endoribonuclease (NendoU) throughout the Nidovirus order, also possesses DUB activity. In vivo assay demonstrated that Nsp11 specifically removed lysine 48 (K48)-linked polyubiquitin chains and the conserved sites C112, H144, D173, K180, and Y219 were critical for its DUB activity. Remarkably, DUB activity was responsible for the capacity of Nsp11 to inhibit nuclear factor κB (NF-κB) activation. Mutations abrogating the DUB activity of Nsp11 toward K48-linked polyubiquitin chains of IκBα nullified the suppressive effect on NF-κB. Our data add Nsp11 to the list of DUBs encoded by PRRSV and uncover a novel mechanism by which PRRSV cripples host innate immune responses. PMID:26342881

  12. Zoonotic Potential of Simian Arteriviruses

    PubMed Central

    Bailey, Adam L.; Lauck, Michael; Sibley, Samuel D.; Friedrich, Thomas C.; Freimer, Nelson B.; Jasinska, Anna J.; Phillips-Conroy, Jane E.; Jolly, Clifford J.; Marx, Preston A.; Apetrei, Cristian; Rogers, Jeffrey

    2015-01-01

    Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be “preemergent” zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur. PMID:26559828

  13. Alphavirus RNA synthesis and non-structural protein functions

    PubMed Central

    Rupp, Jonathan C.; Sokoloski, Kevin J.; Gebhart, Natasha N.

    2015-01-01

    The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field. PMID:26219641

  14. Non-Structural Proteins of Arthropod-Borne Bunyaviruses: Roles and Functions

    PubMed Central

    Eifan, Saleh; Schnettler, Esther; Dietrich, Isabelle; Kohl, Alain; Blomström, Anne-Lie

    2013-01-01

    Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod. PMID:24100888

  15. Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator.

    PubMed Central

    Kato, N; Lan, K H; Ono-Nita, S K; Shiratori, Y; Omata, M

    1997-01-01

    The hepatitis C virus (HCV) nonstructural region 5A (NS5A) protein, without its 146 amino-terminal amino acids and fused to the DNA-binding domain of GAL4, strongly activates transcription in yeast and human hepatoma cells. Transcriptional activation by the HCV NS5A protein may play a role in viral replication and hepatocarcinogenesis. PMID:9343247

  16. Structure and Non-Structure of Centrosomal Proteins

    PubMed Central

    Bertero, Michela G.; Boutin, Maïlys; Guarín, Nayibe; Méndez-Giraldez, Raúl; Nuñez, Alfonso; Pedrero, Juan G.; Redondo, Pilar; Sanz, María; Speroni, Silvia; Teichert, Florian; Bruix, Marta; Carazo, José M.; Gonzalez, Cayetano; Reina, José; Valpuesta, José M.; Vernos, Isabelle; Zabala, Juan C.; Montoya, Guillermo; Coll, Miquel; Bastolla, Ugo; Serrano, Luis

    2013-01-01

    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php. PMID:23671615

  17. Identification and Functional Analysis of Novel Nonstructural Proteins of Human Bocavirus 1

    PubMed Central

    Shen, Weiran; Deng, Xuefeng; Zou, Wei; Cheng, Fang; Engelhardt, John F.; Yan, Ziying

    2015-01-01

    ABSTRACT Human bocavirus 1 (HBoV1) is a single-stranded DNA parvovirus that causes lower respiratory tract infections in young children worldwide. In this study, we identified novel splice acceptor and donor sites, namely, A1′ and D1′, in the large nonstructural protein (NS1)-encoding region of the HBoV1 precursor mRNA. The novel small NS proteins (NS2, NS3, and NS4) were confirmed to be expressed following transfection of an HBoV1 infectious proviral plasmid and viral infection of polarized human airway epithelium cultured at an air-liquid interface (HAE-ALI). We constructed mutant pIHBoV1 infectious plasmids which harbor silent mutations (sm) smA1′ and smD1′ at the A1′ and D1′ splice sites, respectively. The mutant infectious plasmids maintained production of HBoV1 progeny virions at levels less than five times lower than that of the wild-type plasmid. Importantly, the smA1′ mutant virus that does not express NS3 and NS4 replicated in HAE-ALI as effectively as the wild-type virus; however, the smD1′ mutant virus that does not express NS2 and NS4 underwent an abortive infection in HAE-ALI. Thus, our study identified three novel NS proteins, NS2, NS3, and NS4, and suggests an important function of the NS2 protein in HBoV1 replication in HAE-ALI. IMPORTANCE Human bocavirus 1 infection causes respiratory diseases, including acute wheezing in infants, of which life-threatening cases have been reported. In vitro, human bocavirus 1 infects polarized human bronchial airway epithelium cultured at an air-liquid interface that mimics the environment of human lower respiratory airways. Viral nonstructural proteins are often important for virus replication and pathogenesis in infected tissues or cells. In this report, we identified three new nonstructural proteins of human bocavirus 1 that are expressed during infection of polarized human bronchial airway epithelium. Among them, we proved that one nonstructural protein is critical to the replication of the

  18. Identification and Characterization of a Novel Non-Structural Protein of Bluetongue Virus

    PubMed Central

    Ratinier, Maxime; Caporale, Marco; Golder, Matthew; Franzoni, Giulia; Allan, Kathryn; Nunes, Sandro Filipe; Armezzani, Alessia; Bayoumy, Amr; Rixon, Frazer; Shaw, Andrew; Palmarini, Massimo

    2011-01-01

    Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell. PMID:22241985

  19. Heterogeneous nuclear ribonuclear protein K interacts with Sindbis virus nonstructural proteins and viral subgenomic mRNA

    SciTech Connect

    Burnham, Andrew J.; Gong, Lei; Hardy, Richard W.

    2007-10-10

    Alphaviruses are a group of arthropod-borne human and animal pathogens that can cause epidemics of significant public health and economic consequence. Alphavirus RNA synthesis requires four virally encoded nonstructural proteins and probably a number of cellular proteins. Using comparative two-dimensional electrophoresis we were able to identify proteins enriched in cytoplasmic membrane fractions containing viral RNA synthetic complexes following infection with Sindbis virus. Our studies demonstrated the following: (i) the host protein hnRNP K is enriched in cytoplasmic membrane fractions following Sindbis virus infection, (ii) viral nonstructural proteins co-immunoprecipitate with hnRNP K, (iii) nsP2 and hnRNP K co-localize in the cytoplasm of Sindbis virus infected cells, (iv) Sindbis virus subgenomic mRNA, but not genomic RNA co-immunoprecipitates with hnRNP K, (v) viral RNA does not appear to be required for the interaction of hnRNP K with the nonstructural proteins. Potential functions of hnRNP K during virus replication are discussed.

  20. Expression, purification and crystallization of a novel nonstructural protein VP9 from white spot syndrome virus

    SciTech Connect

    Liu, Yang; Sivaraman, J.; Hew, Choy L.

    2006-08-01

    The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. Native protein was purified and crystallized by vapour diffusion. The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. To facilitate purification, a cleavable His{sub 6} tag was introduced at the N-terminus. The native protein was purified and crystallized by vapour diffusion against mother liquor containing 2 M sodium acetate, 100 mM MES pH 6.3, 25 mM cadmium sulfate and 3% glycerol. Crystals were obtained within 7 d and diffracted to 2.2 Å; they belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.13, b = 78.21, c = 78.98 Å and four molecules in the asymmetric unit. The selenomethionine-labelled protein produced isomorphous crystals that diffracted to approximately 3.3 Å.

  1. Structures of hepatitis C virus nonstructural proteins required for replicase assembly and function

    PubMed Central

    Gu, Meigang; Rice, Charles M.

    2013-01-01

    Approximately 3% of the world population is infected with hepatitis C virus (HCV), causing a serious public health burden. Like other positive-strand RNA viruses, HCV assembles replicase complexes in association with cellular membranes and produces progeny RNA genomes through negative-strand intermediates. The viral proteins required for RNA replication are nonstructural (NS) proteins NS3 to NS5B. Owing to many obstacles and limitations in structural characterization of proteins and complexes with multiple transmembrane segments, attempts to understand the assembly and action of the HCV replicase complex have been challenging. Nevertheless, great progress has been made in obtaining structural information for several replicase components, providing insights into some aspects of the viral genome replication machinery. PMID:23601958

  2. Expression, purification and crystallization of a novel nonstructural protein VP9 from white spot syndrome virus.

    SciTech Connect

    Liu,Y.; Sivaraman, J.; Hew, C.

    2006-01-01

    The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. To facilitate purification, a cleavable His{sub 6} tag was introduced at the N-terminus. The native protein was purified and crystallized by vapor diffusion against mother liquor containing 2 M sodium acetate, 100 mM MES pH 6.3, 25 mM cadmium sulfate and 3% glycerol. Crystals were obtained within 7 d and diffracted to 2.2 Angstroms; they belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.13, b = 78.21, c = 78.98 Angstroms and four molecules in the asymmetric unit. The selenomethionine-labeled protein produced isomorphous crystals that diffracted to approximately 3.3 Angstroms.

  3. Diagnostic methods for African horsesickness virus using monoclonal antibodies to structural and non-structural proteins.

    PubMed

    Ranz, A I; Miguet, J G; Anaya, C; Venteo, A; Cortés, E; Vela, C; Sanz, A

    1992-11-01

    A panel of 32 hybridoma cell lines secreting monoclonal antibodies (MAbs) reactive with African horsesickness virus serotype 4 (AHSV-4) has been developed. Four of the MAbs recognized the major core antigen VP7, twenty recognized the outer capsid protein VP2 and eight reacted with the non-structural protein NS1. With the VP7-specific MAbs a rapid and sensitive double antibody sandwich immunoassay has been developed to detect viral antigen in infected Vero cells and in spleen tissue from AHSV-infected horses. The sensitivity of the assay is 10 ng viral antigen per 100 microliters. The NS1-specific MAbs allowed visualization by immunofluorescence of tubule-like structures in the cytoplasm of infected Vero cells. This can be very useful as a confirmatory diagnostic procedure. The antigenic map of the outer capsid VP2 protein with MAbs is also reported. PMID:1481354

  4. The Cholera Toxin B Subunit (CTB) Fused to the Porcine Arterivirus Matrix M and GP5 Envelope Proteins Fails to Enhance the GP5-Specific Antibody Response in Pigs Immunized with Adenovectors.

    PubMed

    Roques, Elodie; Lessard, Martin; Archambault, Denis

    2015-08-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus of the Arteriviridae family. As the current commercial vaccines are incompletely protective effective against PRRSV infection, we developed a vaccine strategy using replicating but non-disseminating adenovectors (rAdVs) expressing the PRRSV M matrix protein in fusion with the neutralizing major epitope-carrying GP5 envelope protein (Roques et al. in Vet Res 44:17, 2013). Although production of GP5-specific antibodies (Abs) was observed, no PRRSV-specific neutralizing Abs (NAbs) were induced in pigs given the rAdVs expressing M-GP5 or M-GP5m (GP5m being a mutant form of GP5). Nevertheless, partial protection was observed in the M-GP5m-rAdV-inoculated pigs experimentally infected with PRRSV. Here, we determined the impact of the cholera toxin B subunit (CTB, known for its adjuvant effect) in fusion with the C-terminus of M-GP5m on the Ab response to PRRSV. Three-week-old pigs were immunized twice both intramuscularly and intranasally at 3-week intervals with rAdV-expressing the green fluorescent protein (rAdV-GFP), rAdV-M-GP5m, or rAdV-M-GP5m-CTB. Pigs immunized with rAdV-M-GP5m showed a high level of serum GP5-specific Abs (as determined by an indirect ELISA). In contrast, CTB in fusion with M-GP5m had an unexpected severe negative impact on GP5-specific Ab production. PRRSV-specific NAbs could not be detected in any pigs of all groups. PMID:25801418

  5. Mosquito densonucleosis virus non-structural protein NS2 is necessary for a productive infection

    SciTech Connect

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee; Afanasiev, Boris; Kittayapong, Pattamaporn; Carlson, Jonathan Corsini, Joe

    2008-04-25

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins. Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny.

  6. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    PubMed Central

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  7. Characterising Non-Structural Protein NS4 of African Horse Sickness Virus

    PubMed Central

    Zwart, Lizahn; Potgieter, Christiaan A.; Clift, Sarah J.; van Staden, Vida

    2015-01-01

    African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses. This has since been confirmed in bluetongue virus and Great Island virus, and the non-structural protein was named NS4. In this study, in silico analysis of AHSV Seg-9 sequences revealed the existence of two main types of AHSV NS4, designated NS4-I and NS4-II, with different lengths and amino acid sequences. The AHSV NS4 coding sequences were in the +1 reading frame relative to that of VP6. Both types of AHSV NS4 were expressed in cultured mammalian cells, with sizes close to the predicted 17–20 kDa. Fluorescence microscopy of these cells revealed a dual cytoplasmic and nuclear, but not nucleolar, distribution that was very similar for NS4-I and NS4-II. Immunohistochemistry on heart, spleen, and lung tissues from AHSV-infected horses showed that NS4 occurs in microvascular endothelial cells and mononuclear phagocytes in all of these tissues, localising to the both the cytoplasm and the nucleus. Interestingly, NS4 was also detected in stellate-shaped dendritic macrophage-like cells with long cytoplasmic processes in the red pulp of the spleen. Finally, nucleic acid protection assays using bacterially expressed recombinant AHSV NS4 showed that both types of AHSV NS4 bind dsDNA, but not dsRNA. Further studies will be required to determine the exact function of AHSV NS4 during viral replication. PMID:25915516

  8. Characterising Non-Structural Protein NS4 of African Horse Sickness Virus.

    PubMed

    Zwart, Lizahn; Potgieter, Christiaan A; Clift, Sarah J; van Staden, Vida

    2015-01-01

    African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses. This has since been confirmed in bluetongue virus and Great Island virus, and the non-structural protein was named NS4. In this study, in silico analysis of AHSV Seg-9 sequences revealed the existence of two main types of AHSV NS4, designated NS4-I and NS4-II, with different lengths and amino acid sequences. The AHSV NS4 coding sequences were in the +1 reading frame relative to that of VP6. Both types of AHSV NS4 were expressed in cultured mammalian cells, with sizes close to the predicted 17-20 kDa. Fluorescence microscopy of these cells revealed a dual cytoplasmic and nuclear, but not nucleolar, distribution that was very similar for NS4-I and NS4-II. Immunohistochemistry on heart, spleen, and lung tissues from AHSV-infected horses showed that NS4 occurs in microvascular endothelial cells and mononuclear phagocytes in all of these tissues, localising to the both the cytoplasm and the nucleus. Interestingly, NS4 was also detected in stellate-shaped dendritic macrophage-like cells with long cytoplasmic processes in the red pulp of the spleen. Finally, nucleic acid protection assays using bacterially expressed recombinant AHSV NS4 showed that both types of AHSV NS4 bind dsDNA, but not dsRNA. Further studies will be required to determine the exact function of AHSV NS4 during viral replication. PMID:25915516

  9. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies.

    PubMed

    Cheng, Hsien-Jen; Lin, Chiou-Feng; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Luo, Yueh-Hsia; Lin, Yee-Shin

    2009-01-01

    We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase beta chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311-330 (P311-330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311-330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311-330 possesses the shared epitope. PMID:18997103

  10. A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of non-structural protein 3A in foot-and-mouth disease virus (FMDV) on the virulence in cattle has received significant attention. Particularly, a characteristic 10–20 amino acid deletion has been implicated as being responsible for virus attenuation in cattle: a 10 amino acid deletion in t...

  11. Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication. However...

  12. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells.

    PubMed Central

    Sakamuro, D; Furukawa, T; Takegami, T

    1995-01-01

    Clinical evidence suggests that hepatitis C virus (HCV) is etiologically involved in hepatic cancer and liver cirrhosis. To investigate whether the HCV nonstructural protein NS3 has oncogenic activity, NIH 3T3 cells were transfected with an expression vector containing cDNA for the 5'- or 3'-half sequence of the HCV genome segment encoding NS3. Only cells transfected with the 5'-half cDNA rapidly proliferated, lost contact inhibition, grew anchorage independently in soft agar, and formed tumors in nude mice. PCR analysis confirmed the presence of the 5'-half DNA in the transfectants. These results suggest that the 5' region of the HCV genome segment encoding NS3 is involved in cell transformation. PMID:7745741

  13. Identification of linear B-cell epitopes on goose parvovirus non-structural protein.

    PubMed

    Yu, Tian-Fei; Ma, Bo; Wang, Jun-Wei

    2016-10-15

    Goose parvovirus (GPV) infection can cause a highly contagious and lethal disease in goslings and muscovy ducklings which is widespread in all major goose (Anser anser) and Muscovy duck (Cairina moschata) farming countries, leading to a huge economic loss. Humoral immune responses play a major role in GPV immune protection during GPV infection. However, it is still unknown for the localization and immunological characteristics of B-cell epitopes on GPV non-structural protein (NSP). Therefore, in this study, the epitopes on the NSP of GPV were identified by means of overlapping peptides expressed in Escherichia coli in combination with Western blot. The results showed that the antigenic epitopes on the GPV NSP were predominantly localized in the C-terminal (aa 485-627), and especially, the fragment NS (498-532) was strongly positive. These results may facilitate future investigations on the function of NSP of GPV and the development of immunoassays for the diagnosis of GPV infection. PMID:27590430

  14. Expression, purification and characterization of recombinant severe acute respiratory syndrome coronavirus non-structural protein 1

    PubMed Central

    Brucz, Kimberly; Miknis, Zachary J.; Schultz, L. Wayne; Umland, Timothy C.

    2007-01-01

    The coronavirus (CoV) responsible for severe acute respiratory syndrome (SARS), SARS-CoV, encodes two large polyproteins (pp1a and pp1ab) that are processed by two viral proteases to yield mature non-structural proteins (nsps). Many of these nsps have essential roles in viral replication, but several have no assigned function and possess amino acid sequences that are unique to the CoV family. One such protein is SARS-CoV nsp1, which is processed from the N-terminus of both pp1a and pp1ab. The mature SARS-CoV protein is present in cells several hours post-infection and co-localizes to the viral replication complex, but its function in the viral life cycle remains unknown. Furthermore, nsp1 sequences are highly divergent across the CoV family, and it has been suggested that this is due to nsp1 possessing a function specific to viral interactions with its host cell or acting as a host specific virulence factor. In order to initiate structural and biophysical studies of SARS-CoV nsp1, a recombinant expression system and a purification protocol have been developed, yielding milligram quantities of highly purified SARS-CoV nsp1. The purified protein was characterized using circular dichroism, size exclusion chromatography, and multi-angle light scattering. PMID:17187987

  15. Bovine Rotavirus Nonstructural Protein 4 Produced by Lactococcus lactis Is Antigenic and Immunogenic

    PubMed Central

    Enouf, Vincent; Langella, Philippe; Commissaire, Jacqueline; Cohen, Jean; Corthier, Gérard

    2001-01-01

    Rotavirus nonstructural protein 4 (NSP4) can induce diarrhea in mice. To get insight into the biological effects of NSP4, production of large quantities of this protein is necessary. We first tried to produce the protein in Escherichia coli, but the nsp4 gene proved to be unstable. The capacity of the generally regarded as safe organism Lactococcus lactis to produce NSP4 either intra- or extracellularly was then investigated by using the nisin-controlled expression system. Production of recombinant NSP4 (rNSP4) was observed in L. lactis for both locations. In spite of a very low secretion efficiency, the highest level of production was obtained with the fusion between a lactococcal signal peptide and rNSP4. Cultures of the rNSP4-secreting strain were injected into rabbits, and a specific immune response was elicited. The anti-rNSP4 antibodies produced in these rabbits recognized NSP4 in MA104 cells infected by rotavirus. We showed that L. lactis is able to produce antigenic and immunogenic rNSP4 and thus is a good organism for producing viral antigens. PMID:11282586

  16. Identification of a Novel Determinant for Membrane Association in Hepatitis C Virus Nonstructural Protein 4B▿

    PubMed Central

    Gouttenoire, Jérôme; Castet, Valérie; Montserret, Roland; Arora, Naveen; Raussens, Vincent; Ruysschaert, Jean-Marie; Diesis, Eric; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2009-01-01

    Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic α-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic α-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B. PMID:19357161

  17. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A

    PubMed Central

    Zayas, Margarita; Long, Gang; Madan, Vanesa; Bartenschlager, Ralf

    2016-01-01

    Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC) at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC) mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2). We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core–RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i) SC-dependent recruitment of replication complexes to core protein and (ii) BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles. PMID:26727512

  18. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis.

    PubMed

    Music, Nedzad; Gagnon, Carl A

    2010-12-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3' end of the viral genome encodes four minor and three major structural proteins. The GP(2a), GP₃ and GP₄ (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP₅ (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis. PMID:20388230

  19. Pim Kinase Interacts with Nonstructural 5A Protein and Regulates Hepatitis C Virus Entry

    PubMed Central

    Park, Chorong; Min, Saehong; Park, Eun-Mee; Lim, Yun-Sook; Kang, Sangmin; Suzuki, Tetsuro; Shin, Eui-Cheol

    2015-01-01

    ABSTRACT The life cycle of hepatitis C virus (HCV) is highly dependent on host cellular proteins for virus propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assay using the HCV nonstructural 5A (NS5A) protein as a probe. Of ∼9,000 human cellular proteins immobilized in a microarray, approximately 90 cellular proteins were identified as NS5A interactors. Of these candidates, Pim1, a member of serine/threonine kinase family composed of three different isoforms (Pim1, Pim2, and Pim3), was selected for further study. Pim kinases share a consensus sequence which overlaps with kinase activity. Pim kinase activity has been implicated in tumorigenesis. In the present study, we verified the physical interaction between NS5A and Pim1 by both in vitro pulldown and coimmunoprecipitation assays. Pim1 interacted with NS5A through amino acid residues 141 to 180 of Pim1. We demonstrated that protein stability of Pim1 was increased by NS5A protein and this increase was mediated by protein interplay. Small interfering RNA (siRNA)-mediated knockdown or pharmacological inhibition of Pim kinase abrogated HCV propagation. By employing HCV pseudoparticle entry and single-cycle HCV infection assays, we further demonstrated that Pim kinase was involved in HCV entry at a postbinding step. These data suggest that Pim kinase may represent a new host factor for HCV entry. IMPORTANCE Pim1 is an oncogenic serine/threonine kinase. HCV NS5A protein physically interacts with Pim1 and contributes to Pim1 protein stability. Since Pim1 protein expression level is upregulated in many cancers, NS5A-mediated protein stability may be associated with HCV pathogenesis. Either gene silencing or chemical inhibition of Pim kinase abrogated HCV propagation in HCV-infected cells. We further showed that Pim kinase was specifically required at an early entry step of the HCV life cycle. Thus, we have identified Pim kinase not only as an HCV cell

  20. Nucleoside triphosphatase and RNA helicase activities associated with GB virus B nonstructural protein 3.

    PubMed

    Zhong, W; Ingravallo, P; Wright-Minogue, J; Skelton, A; Uss, A S; Chase, R; Yao, N; Lau, J Y; Hong, Z

    1999-09-01

    GB virus B (GBV-B) is a positive-stranded RNA virus that belongs to the Flaviviridae family. This virus is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species). Nonstructural protein 3 (NS3) of GBV-B contains sequence motifs predictive of three enzymatic activities: serine protease, nucleoside triphosphatase (NTPase), and RNA helicase. The N-terminal serine protease has been characterized and shown to share similar substrate specificity with the HCV NS3 protease. In this report, a full-length GBV-B NS3 protein was expressed in Escherichia coli and purified to homogeneity. This recombinant protein was shown to possess polynucleotide-stimulated NTPase and double-stranded RNA (dsRNA) unwinding activities. Both activities were abolished by a single amino acid substitution, from the Lys (K) residue in the conserved walker motif A (or Ia) "AXXXXGK(210)S" to an Ala (A), confirming that they are intrinsic to GBV-B NS3. Kinetic parameters (K(m) and k(cat)) for hydrolysis of various NTPs or dNTPs were obtained. The dsRNA unwinding activity depends on the presence of divalent metal ions and ATP and requires an RNA duplex substrate with 3' unpaired regions (RNAs with 5' unpaired regions only or with blunt ends are not suitable substrates for this enzyme). This indicates that GBV-B NS3 RNA helicase unwinds dsRNA in the 3' to 5' direction. Direct interaction of the GBV-B NS3 protein with a single-stranded RNA was established using a gel-based RNA bandshift assay. Finally, a homology model of GBV-B NS3 RNA helicase domain based on the 3-dimensional structure of the HCV NS3 helicase that shows a great similarity in overall structure and surface charge distribution between the two proteins was proposed. PMID:10497107

  1. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    PubMed

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-09-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  2. Rotaviral Enterotoxin Nonstructural Protein 4 Targets Mitochondria for Activation of Apoptosis during Infection*

    PubMed Central

    Bhowmick, Rahul; Halder, Umesh Chandra; Chattopadhyay, Shiladitya; Chanda, Shampa; Nandi, Satabdi; Bagchi, Parikshit; Nayak, Mukti Kant; Chakrabarti, Oishee; Kobayashi, Nobumichi; Chawla-Sarkar, Mamta

    2012-01-01

    Viruses have evolved to encode multifunctional proteins to control the intricate cellular signaling pathways by using very few viral proteins. Rotavirus is known to express six nonstructural and six structural proteins. Among them, NSP4 is the enterotoxin, known to disrupt cellular Ca2+ homeostasis by translocating to endoplasmic reticulum. In this study, we have observed translocation of NSP4 to mitochondria resulting in dissipation of mitochondrial membrane potential during virus infection and NSP4 overexpression. Furthermore, transfection of the N- and C-terminal truncated NSP4 mutants followed by analyzing NSP4 localization by immunofluorescence microscopy identified the 61–83-amino acid region as the shortest mitochondrial targeting signal. NSP4 exerts its proapoptotic effect by interacting with mitochondrial proteins adenine nucleotide translocator and voltage-dependent anion channel, resulting in dissipation of mitochondrial potential, release of cytochrome c from mitochondria, and caspase activation. During early infection, apoptosis activation by NSP4 was inhibited by the activation of cellular survival pathways (PI3K/AKT), because PI3K inhibitor results in early induction of apoptosis. However, in the presence of both PI3K inhibitor and NSP4 siRNA, apoptosis was delayed suggesting that the early apoptotic signal is initiated by NSP4 expression. This proapoptotic function of NSP4 is balanced by another virus-encoded protein, NSP1, which is implicated in PI3K/AKT activation because overexpression of both NSP4 and NSP1 in cells resulted in reduced apoptosis compared with only NSP4-expressing cells. Overall, this study reports on the mechanism by which enterotoxin NSP4 exerts cytotoxicity and the mechanism by which virus counteracts it at the early stage for efficient infection. PMID:22888003

  3. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    SciTech Connect

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai; and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  4. Interaction of foot-and-mouth disease virus non-structural protein 3A with host protein DCTN3 is important for viral virulence in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-structural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids in most FMDVs examined to date. The role of 3A in virus growth and virulence within the natural host is not well understood. Using a yeast two-hybrid approach, we identified cellular ...

  5. Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus.

    PubMed

    Liu, I-Ju; Chiu, Chien-Yu; Chen, Yun-Ching; Wu, Han-Chung

    2011-03-18

    The pathogenesis of dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), both serious complications of dengue virus (DV) infection, remains unclear. In this study, we found that anti-DV NS1 (nonstructural protein 1) polyclonal antibodies cross-reacted with human umbilical vein endothelial cells (HUVECs). We further identified a complex-specific mAb, DB16-1, which could recognize DV NS1 and cross-react with HUVECs and human blood vessels. The target protein of DB16-1 was further purified by immunoaffinity chromatography. LC-MS/MS analysis and co-immunoprecipitation revealed that the target protein of DB16-1 was human LYRIC (lysine-rich CEACAM1 co-isolated). Our newly generated anti-LYRIC mAbs bound to HUVECs in a pattern similar to that of DB16-1. The B-cell epitope of DB16-1 displayed a consensus motif, Lys-X-Trp-Gly (KXWG), which corresponded to amino acid residues 116-119 of DV NS1 and mimicked amino acid residues 334-337 in LYRIC. Moreover, the binding activity of DB16-1 in NS1 of DV-2 and in LYRIC disappeared after the KXWG epitope was deleted in each. In conclusion, DB16-1 targeted the same epitope in DV NS1 and LYRIC protein on human endothelial cells, suggesting that it might play a role in the pathogenesis of DHF/DSS. Future studies on the role of the anti-NS1 antibody in causing vascular permeability will undoubtedly be performed on sera collected from individuals before, during, and after the endothelial cell malfunction phase of a dengue illness. PMID:21233208

  6. Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus.

    PubMed

    Yu, Tian-Fei; Li, Ming; Yan, Bing; Shao, Shu-Li; Fan, Xing-Dong; Wang, Jia; Wang, Dan-Na

    2016-08-01

    Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection. PMID:27154558

  7. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors

    PubMed Central

    Mirza, Muhammad Usman; Ghori, Noor-Ul-Huda; Ikram, Nazia; Adil, Abdur Rehman; Manzoor, Sadia

    2015-01-01

    Hepatitis C virus (HCV) is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B) which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties. PMID:25848219

  8. Immunological Features of the Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Rascón-Castelo, Edgar; Burgara-Estrella, Alexel; Mateu, Enric; Hernández, Jesús

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps) in the immune response is not completely clear. nsps have been involved in the host innate immune response, specifically, nsp1α/β, nsp2, nsp4 and nsp11 have been associated with the immunomodulation capability of the virus. To date, only participation by nsp1, nsp2, nsp4 and nsp7 in the humoral immune response has been reported, with the role of other nsps being overlooked. Furthermore, nsp1, nsp2, nsp5, nsp7 nsp9, nsp10, nsp11 have been implicated in the induction of IFN-γ and probably in the development of the cell-mediated immune response. This review discusses recent reports involving the participation of nsps in the modulation of the innate immune response and their role in the induction of both the humoral and cellular immune responses. PMID:25719944

  9. Global origin and transmission of hepatitis C virus nonstructural protein 3 Q80K polymorphism.

    PubMed

    McCloskey, Rosemary M; Liang, Richard H; Joy, Jeffrey B; Krajden, Mel; Montaner, Julio S G; Harrigan, P Richard; Poon, Art F Y

    2015-04-15

    Hepatitis C virus (HCV) has a naturally occurring polymorphism, Q80K, in the nonstructural protein 3 (NS3) gene encoding the viral protease, which has been associated with reduced susceptibility to the direct-acting antiviral inhibitor simeprevir. Q80K is observed predominantly in HCV genotype 1a and seldom in other HCV genotypes; moreover, it has a markedly high prevalence in the United States. Here, we reconstruct the evolutionary history of this polymorphism to investigate why it is so highly localized in prevalence and whether it is stably transmitted between hosts. We found that the majority (96%) of HCV infections carrying Q80K were descended from a single lineage in which a Q80K substitution occurred around the 1940s in the United States, which implies that this polymorphism is likely highly transmissible. Furthermore, we identified 2 other substitutions in NS3 that may interact with Q80K and contribute to its stability. Our results imply that the current distribution and prevalence of Q80K are unlikely to change significantly in the short term. PMID:25389307

  10. SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication

    PubMed Central

    Su, Chan-I; Tseng, Chung-Hsin

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) participates in a reversible posttranslational modification process (SUMOylation) that regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, the roles of viral protein SUMOylation in dengue virus (DENV) infection have not been elucidated. In this study, we found that the SUMOylation pathway was involved in the DENV life cycle, since DENV replication was reduced by silencing the cellular gene Ubc9, which encodes the sole E2-conjugating enzyme required for SUMOylation. By in vivo and in vitro SUMOylation assays, the DENV NS5 protein was identified as an authentic SUMO-targeted protein. By expressing various NS5 mutants, we found that the SUMO acceptor sites are located in the N-terminal domain of NS5 and that a putative SUMO-interacting motif (SIM) of this domain is crucial for its SUMOylation. A DENV replicon harboring the SUMOylation-defective SIM mutant showed a severe defect in viral RNA replication, supporting the notion that NS5 SUMOylation is required for DENV replication. SUMOylation-defective mutants also failed to suppress the induction of STAT2-mediated host antiviral interferon signaling. Furthermore, the SUMOylation of NS5 significantly increased the stability of NS5 protein, which could account for most of the biological functions of SUMOylated NS5. Collectively, these findings suggest that the SUMOylation of DENV NS5 is one of the mechanisms regulating DENV replication. IMPORTANCE SUMOylation is a common posttranslational modification that regulates cellular protein functions but has not been reported in the proteins of dengue virus. Here, we found that the replicase of DENV, nonstructural protein 5 (NS5), can be SUMOylated. It is well known that providing RNA-dependent RNA polymerase activity and antagonizing host antiviral IFN signaling are a “double indemnity” of NS5 to support DENV replication. Without SUMOylation, NS5 fails to

  11. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses.

    PubMed

    Bhakat, Soumendranath; Karubiu, Wilson; Jayaprakash, Venkatesan; Soliman, Mahmoud E S

    2014-11-24

    Neglected tropical diseases are major causes of fatality in poverty stricken regions across Africa, Asia and some part of America. The combined potential health risk associated with arthropod-borne viruses (arboviruses); Dengue virus (DENV), West Nile Virus (WNV) and Chikungunya Virus (CHIKV) is immense. These arboviruses are either emerging or re-emerging in many regions with recent documented outbreaks in the United States. Despite several recent evidences of emergence, currently there are no approved drugs or vaccines available to counter these diseases. Non-structural proteins encoded by these RNA viruses are essential for their replication and maturation and thus may offer ideal targets for developing antiviral drugs. In recent years, several protease inhibitors have been sourced from plant extract, synthesis, computer aided drug design and high throughput screening as well as through drug reposition based approaches to target the non-structural proteins. The protease inhibitors have shown different levels of inhibition and may thus provide template to develop selective and potent drugs against these devastating arboviruses. This review seeks to shed light on the design and development of antiviral drugs against DENV, WNV and CHIKV to date. To the best of our knowledge, this review provides the first comprehensive update on the development of protease inhibitors targeting non-structural proteins of three most devastating arboviruses, DENV, WNV and CHIKV. PMID:25305334

  12. Arterivirus and Nairovirus Ovarian Tumor Domain-Containing Deubiquitinases Target Activated RIG-I To Control Innate Immune Signaling

    PubMed Central

    van Kasteren, Puck B.; Beugeling, Corrine; Ninaber, Dennis K.; Frias-Staheli, Natalia; van Boheemen, Sander; García-Sastre, Adolfo; Snijder, Eric J.

    2012-01-01

    The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I. PMID:22072774

  13. Differences in Processing Determinants of Nonstructural Polyprotein and in the Sequence of Nonstructural Protein 3 Affect Neurovirulence of Semliki Forest Virus

    PubMed Central

    Saul, Sirle; Ferguson, Mhairi; Cordonin, Colette; Fragkoudis, Rennos; Ool, Margit; Tamberg, Nele; Sherwood, Karen; Fazakerley, John K.

    2015-01-01

    ABSTRACT The A7(74) strain of Semliki Forest virus (SFV; genus Alphavirus) is avirulent in adult mice, while the L10 strain is virulent in mice of all ages. It has been previously demonstrated that this phenotypic difference is associated with nonstructural protein 3 (nsP3). Consensus clones of L10 (designated SFV6) and A7(74) (designated A774wt) were used to construct a panel of recombinant viruses. The insertion of nsP3 from A774wt into the SFV6 backbone had a minor effect on the virulence of the resulting recombinant virus. Conversely, insertion of nsP3 from SFV6 into the A774wt backbone or replacement of A774wt nsP3 with two copies of nsP3 from SFV6 resulted in virulent viruses. Unexpectedly, duplication of nsP3-encoding sequences also resulted in elevated levels of nsP4, revealing that nsP3 is involved in the stabilization of nsP4. Interestingly, replacement of nsP3 of SFV6 with that of A774wt resulted in a virulent virus; the virulence of this recombinant was strongly reduced by functionally coupled substitutions for amino acid residues 534 (P4 position of the cleavage site between nsP1 and nsP2) and 1052 (S4 subsite residue of nsP2 protease) in the nonstructural polyprotein. Pulse-chase experiments revealed that A774wt and avirulent recombinant virus were characterized by increased processing speed of the cleavage site between nsP1 and nsP2. A His534-to-Arg substitution specifically activated this cleavage, while a Val1052-to-Glu substitution compensated for this effect by reducing the basal protease activity of nsP2. These findings provide a link between nonstructural polyprotein processing and the virulence of SFV. IMPORTANCE SFV infection of mice provides a well-characterized model to study viral encephalitis. SFV also serves as a model for studies of alphavirus molecular biology and host-pathogen interactions. Thus far, the genetic basis of different properties of SFV strains has been studied using molecular clones, which often contain mistakes

  14. Liver injury caused by antibodies against dengue virus nonstructural protein 1 in a murine model.

    PubMed

    Lin, Chiou-Feng; Wan, Shu-Wen; Chen, Mei-Chun; Lin, Shin-Chao; Cheng, Chu-Chen; Chiu, Shu-Chen; Hsiao, Yu-Ling; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Lin, Yee-Shin

    2008-10-01

    Clinical manifestations of severe dengue diseases include thrombocytopenia, vascular leakage, and liver damage. Evidence shows that hepatic injury is involved in the pathogenesis of dengue infection; however, the mechanisms are not fully resolved. Our previous in vitro studies suggested a mechanism of molecular mimicry in which antibodies directed against dengue virus (DV) nonstructural protein 1 (NS1) cross-reacted with endothelial cells and caused inflammatory activation and apoptosis. In this study, the pathogenic effects of anti-DV NS1 antibodies were further examined in a murine model. We found, in liver sections, that anti-DV NS1 antibodies bound to naive mouse vessel endothelium and the binding activity was inhibited by preabsorption of antibodies with DV NS1. Active immunization with DV NS1 resulted in antibody deposition to liver vessel endothelium, and also apoptotic cell death of liver endothelium. Liver tissue damage was observed in DV NS1-immunized mice by histological examination. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased in mice either actively immunized with DV NS1 protein or passively immunized with antibodies obtained from DV NS1-immunized mice. Furthermore, histological examination revealed mononuclear phagocyte infiltration and cell apoptosis in mice passively immunized with antibodies obtained from mice immunized with DV NS1. Increased AST and ALT levels were observed in mice passively immunized with purified immunoglobulin G (IgG) from dengue patients compared with normal control human IgG-immunized mice. The increased AST and ALT levels were inhibited when dengue patient serum IgG was preabsorbed with DV NS1. In conclusion, active immunization with DV NS1 protein causes immune-mediated liver injury in mice. Passive immunization provides additional evidence that anti-DV NS1 antibodies may play a role in liver damage, which is a pathologic manifestation in dengue virus disease. PMID

  15. Identification and characterization of two cleavage fragments from the Aquareovirus nonstructural protein NS80.

    PubMed

    Chen, Qingxiu; Zhang, Jie; Zhang, Fuxian; Guo, Hong; Fang, Qin

    2016-08-01

    Aquareovirus species vary with respect to pathogenicity, and the nonstructural protein NS80 of aquareoviruses has been implicated in the regulation of viral replication and assembly, which can form viral inclusion bodies (VIBs) and recruit viral proteins to its VIBs in infected cells. NS80 consists of 742 amino acids with a molecular weight of approximately 80 kDa. Interestingly, a short specific fragment of NS80 has also been detected in infected cells. In this study, an approximately 58-kDa product of NS80 was confirmed in various infected and transfected cells by immunoblotting analyses using α-NS80C. Mutational analysis and time course expression assays indicated that the accumulation of the 58-kDa fragment was related to time and infection dose, suggesting that the fragment is not a transient intermediate of protein degradation. Moreover, another smaller fragment with a molecular mass of approximately 22 kDa was observed in transfected and infected cells by immunoblotting with a specific anti-FLAG monoclonal antibody or α-NS80N, indicating that the 58- kDa polypeptide is derived from a specific cleavage site near the amino terminus of NS80. Additionally, different subcellular localization patterns were observed for the 22-kDa and 58-kDa fragments in an immunofluorescence analysis, implying that the two cleavage fragments of NS80 function differently in the viral life cycle. These results provide a basis for additional studies of the role of NS80 played in replication and particle assembly of the Aquareovirus. PMID:27279144

  16. Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and Immunoreactivity Against Antisera from Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun

    2013-01-01

    Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238

  17. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    PubMed

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  18. Protection against Dengue Virus Infection in Mice by Administration of Antibodies against Modified Nonstructural Protein 1

    PubMed Central

    Wan, Shu-Wen; Lu, Yi-Tien; Huang, Chia-Hui; Lin, Chiou-Feng; Anderson, Robert; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Yen, Yu-Ting; Wu-Hsieh, Betty A.; Lin, Yee-Shin

    2014-01-01

    Background Infection with dengue virus (DENV) may cause life-threatening disease with thrombocytopenia and vascular leakage which are related to dysfunction of platelets and endothelial cells. We previously showed that antibodies (Abs) against DENV nonstructural protein 1 (NS1) cross-react with human platelets and endothelial cells, leading to functional disturbances. Based on sequence homology analysis, the C-terminal region of DENV NS1 protein contains cross-reactive epitopes. For safety in vaccine development, the cross-reactive epitopes of DENV NS1 protein should be deleted or modified. Methodology/Principal Findings We tested the protective effects of Abs against full-length DENV NS1, NS1 lacking the C-terminal amino acids (a.a.) 271-352 (designated ΔC NS1), and chimeric DJ NS1 consisting of N-terminal DENV NS1 (a.a. 1-270) and C-terminal Japanese encephalitis virus NS1 (a.a. 271-352). The anti-ΔC NS1 and anti-DJ NS1 Abs showed a lower binding activity to endothelial cells and platelets than that of anti-DENV NS1 Abs. Passive immunization with anti-ΔC NS1 and anti-DJ NS1 Abs reduced DENV-induced prolonged mouse tail bleeding time. Treatment with anti-DENV NS1, anti-ΔC NS1 and anti-DJ NS1 Abs reduced local skin hemorrhage, controlled the viral load of DENV infection in vivo, synergized with complement to inhibit viral replication in vitro, as well as abolished DENV-induced macrophage infiltration to the site of skin inoculation. Moreover, active immunization with modified NS1 protein, but not with unmodified DENV NS1 protein, reduced DENV-induced prolonged bleeding time, local skin hemorrhage, and viral load. Conclusions/Significance These results support the idea that modified NS1 proteins may represent an improved strategy for safe and effective vaccine development against DENV infection. PMID:24658118

  19. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    SciTech Connect

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-09-30

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication.

  20. Mutations Conferring a Noncytotoxic Phenotype on Chikungunya Virus Replicons Compromise Enzymatic Properties of Nonstructural Protein 2

    PubMed Central

    Utt, Age; Das, Pratyush Kumar; Varjak, Margus; Lulla, Valeria; Lulla, Aleksei

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) (genus Alphavirus) has a positive-sense RNA genome. CHIKV nonstructural protein 2 (nsP2) proteolytically processes the viral nonstructural polyprotein, possesses nucleoside triphosphatase (NTPase), RNA triphosphatase, and RNA helicase activities, and induces cytopathic effects in vertebrate cells. Although alphaviral nsP2 mutations can result in a noncytotoxic phenotype, the effects of such mutations on nsP2 enzymatic activities are not well understood. In this study, we introduced a P718G (PG) mutation and selected for additional mutations in CHIKV nsP2 that resulted in a CHIKV replicon with a noncytotoxic phenotype in BHK-21 cells. Combinations of PG and either an E116K (EK) substitution or a GEEGS sequence insertion after residue T648 (5A) markedly reduced RNA synthesis; however, neither PG nor 5A prevented nsP2 nuclear translocation. Introducing PG into recombinant nsP2 inhibited proteolytic cleavage of nsP1/nsP2 and nsP3/nsP4 sites, reduced GTPase and RNA helicase activities, and abolished RNA stimulation of GTPase activity. 5A and EK modulated the effects of PG. However, only the RNA helicase activity of nsP2 was reduced by both of these mutations, suggesting that defects in this activity may be linked to a noncytotoxic phenotype. These results increase our understanding of the molecular basis for the cytotoxicity that accompanies alphaviral replication. Furthermore, adaptation of the CHIKV replicon containing both 5A and PG allowed the selection of a CHIKV replicon with adaptive mutations in nsP1 and nsP3 that enable persistence in human cell line. Such cell lines represent valuable experimental systems for discovering host factors and for screening inhibitors of CHIKV replication at lower biosafety levels. IMPORTANCE CHIKV is a medically important pathogen that causes febrile illness and can cause chronic arthritis. No approved vaccines or antivirals are available for CHIKV. The attenuation of CHIKV is critical to the

  1. The non-structural protein μNS of piscine orthoreovirus (PRV) forms viral factory-like structures.

    PubMed

    Haatveit, Hanne Merethe; Nyman, Ingvild B; Markussen, Turhan; Wessel, Øystein; Dahle, Maria Krudtaa; Rimstad, Espen

    2016-01-01

    Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation in farmed Atlantic salmon. The virus is ubiquitous and found in both farmed and wild salmonid fish. It belongs to the family Reoviridae, closely related to the genus Orthoreovirus. The PRV genome comprises ten double-stranded RNA segments encoding at least eight structural and two non-structural proteins. Erythrocytes are the major target cells for PRV. Infected erythrocytes contain globular inclusions resembling viral factories; the putative site of viral replication. For the mammalian reovirus (MRV), the non-structural protein μNS is the primary organizer in factory formation. The analogous PRV protein was the focus of the present study. The subcellular location of PRV μNS and its co-localization with the PRV σNS, µ2 and λ1 proteins was investigated. We demonstrated that PRV μNS forms dense globular cytoplasmic inclusions in transfected fish cells, resembling the viral factories of MRV. In co-transfection experiments with μNS, the σNS, μ2 and λ1 proteins were recruited to the globular structures. The ability of μNS to recruit other PRV proteins into globular inclusions indicates that it is the main viral protein involved in viral factory formation and pivotal in early steps of viral assembly. PMID:26743679

  2. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy

    PubMed Central

    Chen, Hong-Ru; Chuang, Yung-Chun; Lin, Yee-Shin; Liu, Hsiao-Sheng; Liu, Ching-Chuan; Perng, Guey-Chuen

    2016-01-01

    Dengue virus (DENV) is the most common mosquito-borne flavivirus; it can either cause mild dengue fever or the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). One of the characteristic features of DHF/DSS is vascular leakage; although DENV nonstructural protein 1 (NS1) has been proved to induce vascular leakage after binding to Toll-like receptor 4, the down-stream mechanism has not yet been fully understood. In the sera of DENV-infected patients, the concentrations of DENV NS1 and inflammatory cytokine macrophage migration inhibitory factor (MIF) are positively correlated with disease severity, but whether DENV NS1 induces vascular leakage through MIF secretion remains unknown. We demonstrated that recombinant NS1 induced vascular leakage and MIF secretion both in human endothelial cell line HMEC-1 and in mice. Furthermore, these phenomena were inhibited in the presence of anti-NS1 antibodies both in vitro and in vivo. DENV NS1 also induced LC3-I to LC3-II conversion and p62 degradation in endothelial cell line, which indicated the formation of autophagy. To clarify whether MIF or autophagy mediated DENV NS1-induced vascular leakage, various inhibitors were applied. The results showed that DENV NS1-induced vascular leakage and VE-cadherin disarray were blocked in the presence of MIF inhibitors, anti-MIF-antibodies or autophagy inhibitors. An Atg5 knockdown clone further confirmed that autophagy formation of endothelial cells was required in NS1-induced vascular leakage. Furthermore, DENV NS1-induced LC3 puncta were also decreased in the presence of MIF inhibitors, indicating that MIF mediated DENV NS1-induced autophagy. Taken together, the results suggest a potential mechanism of DENV-induced vascular leakage and provide possible therapeutic targets against DHF/DSS. PMID:27409803

  3. Anti-dengue virus nonstructural protein 1 antibodies contribute to platelet phagocytosis by macrophages.

    PubMed

    Wan, Shu-Wen; Yang, Yi-Wen; Chu, Ya-Ting; Lin, Chiou-Feng; Chang, Chih-Peng; Yeh, Trai-Ming; Anderson, Robert; Lin, Yee-Shin

    2016-03-01

    Thrombocytopenia is an important clinical manifestation of dengue disease. The hypotheses concerning the pathogenesis of thrombocytopenia include decreased production and increased destruction or consumption of platelets. We previously suggested a mechanism of molecular mimicry in which antibodies (Abs) directed against dengue virus (DENV) nonstructural protein 1 (NS1) cross-react with platelets. Furthermore, several lines of evidence show activation of endothelial cells (ECs) and macrophages are related to dengue disease severity. Previous studies also suggested that Ab-opsonised platelets facilitate the engulfment of platelets by macrophages. Here we show that TNF-α-activated ECs upregulate adhesion molecule expression to enhance the binding of platelets and macrophages and lead to anti-DENV NS1 Ab-mediated platelet phagocytosis. We further demonstrate that the interaction between macrophages and TNF-α-activated ECs requires binding of FcγR with the Fc region of platelet-bound anti-DENV NS1 Abs. Importantly, the binding of anti-DENV NS1 Abs to platelets did not interfere with platelet adhesion to ECs. The adhesion molecules ICAM-1 and β3 integrin expressed on ECs as well as the FcγR expressed on macrophages were critical in anti-DENV NS1 Ab-mediated platelet phagocytosis on activated ECs. Moreover, anti-DENV NS1 Abs dramatically enhanced platelet engulfment by macrophages in a murine model of DENV infection. Our study provides evidence for a novel role for anti-DENV NS1 Abs in the pathogenesis of thrombocytopenia in dengue disease by enhancing platelet phagocytosis by macrophages. PMID:26632672

  4. Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy.

    PubMed

    Chen, Hong-Ru; Chuang, Yung-Chun; Lin, Yee-Shin; Liu, Hsiao-Sheng; Liu, Ching-Chuan; Perng, Guey-Chuen; Yeh, Trai-Ming

    2016-07-01

    Dengue virus (DENV) is the most common mosquito-borne flavivirus; it can either cause mild dengue fever or the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). One of the characteristic features of DHF/DSS is vascular leakage; although DENV nonstructural protein 1 (NS1) has been proved to induce vascular leakage after binding to Toll-like receptor 4, the down-stream mechanism has not yet been fully understood. In the sera of DENV-infected patients, the concentrations of DENV NS1 and inflammatory cytokine macrophage migration inhibitory factor (MIF) are positively correlated with disease severity, but whether DENV NS1 induces vascular leakage through MIF secretion remains unknown. We demonstrated that recombinant NS1 induced vascular leakage and MIF secretion both in human endothelial cell line HMEC-1 and in mice. Furthermore, these phenomena were inhibited in the presence of anti-NS1 antibodies both in vitro and in vivo. DENV NS1 also induced LC3-I to LC3-II conversion and p62 degradation in endothelial cell line, which indicated the formation of autophagy. To clarify whether MIF or autophagy mediated DENV NS1-induced vascular leakage, various inhibitors were applied. The results showed that DENV NS1-induced vascular leakage and VE-cadherin disarray were blocked in the presence of MIF inhibitors, anti-MIF-antibodies or autophagy inhibitors. An Atg5 knockdown clone further confirmed that autophagy formation of endothelial cells was required in NS1-induced vascular leakage. Furthermore, DENV NS1-induced LC3 puncta were also decreased in the presence of MIF inhibitors, indicating that MIF mediated DENV NS1-induced autophagy. Taken together, the results suggest a potential mechanism of DENV-induced vascular leakage and provide possible therapeutic targets against DHF/DSS. PMID:27409803

  5. Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity

    PubMed Central

    Yan, Wenjun; Wei, Jianchao; Shao, Donghua; Deng, Xufang; Wang, Shaohui; Li, Beibei; Tong, Guangzhi; Ma, Zhiyong

    2013-01-01

    Human guanylate-binding protein 1 (hGBP1) is an interferon-inducible protein involved in the host immune response against viral infection. In response to infection by influenza A virus (IAV), hGBP1 transcript and protein were significantly upregulated. Overexpression of hGBP1 inhibited IAV replication in a dose-dependent manner in vitro. The lysine residue at position 51 (K51) of hGBP1 was essential for inhibition of IAV replication. Mutation of K51 resulted in an hGBP1 that was unable to inhibit IAV replication. The viral nonstructural protein 1 (NS1) was found to interact directly with hGBP1. K51 of hGBP1 and a region between residues 123 and 144 in NS1 were demonstrated to be essential for the interaction between NS1 and hGBP1. Binding of NS1 to hGBP1 resulted in a significant reduction in both GTPase activity and the anti-IAV activity of hGBP1. These findings indicated that hGBP1 contributed to the host immune response against IAV replication and that hGBP1-mediated antiviral activity was antagonized by NS1 via binding to hGBP1. PMID:23405236

  6. Influenza A virus non-structural protein 1 (NS1) interacts with cellular multifunctional protein nucleolin during infection.

    PubMed

    Murayama, Rikinori; Harada, Yuichi; Shibata, Toshikatsu; Kuroda, Kazumichi; Hayakawa, Satoshi; Shimizu, Kazufumi; Tanaka, Torahiko

    2007-11-01

    Influenza A virus non-structural protein 1 (NS1) is the most important viral regulatory factor that controls cellular processes to facilitate viral replication. To gain further insight into the role of NS1, we tried to find novel cellular factors that interact with NS1. The complexes of NS1 and target proteins were pulled down from an infected cell lysate using anti-NS1 (A/Udorn/72) single-chain Fv and identified by peptide mass fingerprinting analysis. We identified nucleolin, a multifunctional major nucleolar protein, as a novel NS1-binding protein. The RNA-binding domain of NS1 was responsible for this binding, as judged by a GST (glutathione S-transferase) pull-down assay with the GST-fused functional domains of NS1. By laser confocal microscopy, we observed the co-localization of NS1 with nucleolin most clearly in the nucleoli, indicating that NS1 is interacting with nucleolin during infection. Our results suggest a novel function of NS1, namely, affecting cellular events via interaction with nucleolin. PMID:17767916

  7. Bluetongue Virus Nonstructural Protein NS3/NS3a Is Not Essential for Virus Replication

    PubMed Central

    van Gennip, René G. P.; van de Water, Sandra G. P.; van Rijn, Piet A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector. PMID:24465709

  8. Evaluation of Multiplexed Foot-and-Mouth Disease Nonstructural Protein Antibody Assay Against Standardized Bovine Serum Panel

    SciTech Connect

    Perkins, J; Parida, S; Clavijo, A

    2007-05-14

    Liquid array technology has previously been used to show proof-of-principle of a multiplexed non structural protein serological assay to differentiate foot-and-mouth infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B and 3D and recombinant protein signature 3ABC in combination with four controls. To determine diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, UK. This sera panel has been used to assess the performance of other singleplex ELISA-based non-structural protein antibody assays. The 3ABC signature in the multiplexed assay showed comparative performance to a commercially available non-structural protein 3ABC ELISA (Cedi test{reg_sign}) and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex is acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promotes further assay development and optimization to generate an assay for routine use in foot-and-mouth disease surveillance.

  9. Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease.

    PubMed

    Hu, Xin; Compton, Jaimee R; Leary, Dagmar H; Olson, Mark A; Lee, Michael S; Cheung, Jonah; Ye, Wenjuan; Ferrer, Mark; Southall, Noel; Jadhav, Ajit; Morazzani, Elaine M; Glass, Pamela J; Marugan, Juan; Legler, Patricia M

    2016-05-31

    The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a papain-like protease linked to an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. The protease contains an alternative active site motif, (475)NVCWAK(480), which differs from papain's (CGS(25)CWAFS), and the enzyme lacks a transition state-stabilizing residue homologous to Gln-19 in papain. To understand the roles of conserved residues in catalysis, we determined the structure of the free enzyme and the first structure of an inhibitor-bound alphaviral protease. The peptide-like E64d inhibitor was found to bind beneath a β-hairpin at the interface of the SAM MTase and protease domains. His-546 adopted a conformation that differed from that found in the free enzyme; one or both of the conformers may assist in leaving group departure of either the amine or Cys thiolate during the catalytic cycle. Interestingly, E64c (200 μM), the carboxylic acid form of the E64d ester, did not inhibit the nsP2 protease. To identify key residues involved in substrate binding, a number of mutants were analyzed. Mutation of the motif residue, N475A, led to a 24-fold reduction in kcat/Km, and the conformation of this residue did not change after inhibition. N475 forms a hydrogen bond with R662 in the SAM MTase domain, and the R662A and R662K mutations both led to 16-fold decreases in kcat/Km. N475 forms the base of the P1 binding site and likely orients the substrate for nucleophilic attack or plays a role in product release. An Asn homologous to N475 is similarly found in coronaviral papain-like proteases (PLpro) of the Severe Acute Respiratory Syndrome (SARS) virus and Middle East Respiratory Syndrome (MERS) virus. Mutation of another motif residue, K480A, led to a 9

  10. Japanese Encephalitis Virus Nonstructural Protein NS5 Interacts with Mitochondrial Trifunctional Protein and Impairs Fatty Acid β-Oxidation

    PubMed Central

    Kao, Yu-Ting; Chang, Bi-Lan; Liang, Jian-Jong; Tsai, Hang-Jen; Lee, Yi-Ling; Lin, Ren-Jye; Lin, Yi-Ling

    2015-01-01

    Infection with Japanese encephalitis virus (JEV) can induce the expression of pro-inflammatory cytokines and cause acute encephalitis in humans. β-oxidation breaks down fatty acids for ATP production in mitochondria, and impaired β-oxidation can induce pro-inflammatory cytokine expression. To address the role of fatty-acid β-oxidation in JEV infection, we measured the oxygen consumption rate of mock- and JEV-infected cells cultured with or without long chain fatty acid (LCFA) palmitate. Cells with JEV infection showed impaired LCFA β-oxidation and increased interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) expression. JEV nonstructural protein 5 (NS5) interacted with hydroxyacyl-CoA dehydrogenase α and β subunits, two components of the mitochondrial trifunctional protein (MTP) involved in LCFA β-oxidation, and NS5 proteins were detected in mitochondria and co-localized with MTP. LCFA β-oxidation was impaired and higher cytokines were induced in cells overexpressing NS5 protein as compared with control cells. Deletion and mutation studies showed that the N-terminus of NS5 was involved in the MTP association, and a single point mutation of NS5 residue 19 from methionine to alanine (NS5-M19A) reduced its binding ability with MTP. The recombinant JEV with NS5-M19A mutation (JEV-NS5-M19A) was less able to block LCFA β-oxidation and induced lower levels of IL-6 and TNF-α than wild-type JEV. Moreover, mice challenged with JEV-NS5-M19A showed less neurovirulence and neuroinvasiveness. We identified a novel function of JEV NS5 in viral pathogenesis by impairing LCFA β-oxidation and inducing cytokine expression by association with MTP. PMID:25816318

  11. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins

    PubMed Central

    Scaturro, Pietro; Cortese, Mirko; Chatel-Chaix, Laurent; Fischl, Wolfgang; Bartenschlager, Ralf

    2015-01-01

    Non-structural protein 1 (NS1) is one of the most enigmatic proteins of the Dengue virus (DENV), playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E) and precursor Membrane (prM). Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles. PMID:26562291

  12. Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation.

    PubMed

    Cheng, Hsien-Jen; Lei, Huan-Yao; Lin, Chiou-Feng; Luo, Yueh-Hsia; Wan, Shu-Wen; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Lin, Yee-Shin

    2009-12-01

    Hemorrhagic syndrome is a hallmark of severe dengue diseases. We previously suggested a mechanism of molecular mimicry in which antibodies against dengue virus (DV) nonstructural protein 1 (NS1) cross-react with platelets. In the present study, we demonstrate that protein disulfide isomerase (PDI) on the platelet surface is recognized by anti-DV NS1 antibodies. Anti-DV NS1 obtained from hyperimmunized mouse sera inhibited PDI activity and platelet aggregation, and both inhibitory effects were prevented when anti-DV NS1 antibodies were preabsorbed with PDI. Anti-PDI antibodies bound to a peptide consisting of amino acid residues 311-330 (P311-330) of NS1. This peptide was a predicted epitope analyzed by homologous sequence alignments between DV NS1 and PDI. The platelet binding activities of anti-PDI and anti-DV NS1 antibodies were both reduced by P311-330 preabsorption. Similar to the findings using anti-DV NS1, antibodies against P311-330 bound to PDI and platelets, followed by inhibition of PDI activity and platelet aggregation. Furthermore, the cross-reactivity of dengue hemorrhagic fever patient sera with platelets was reduced when patient sera were preabsorbed with PDI or P311-330. Dengue hemorrhagic fever patient sera also inhibited platelet aggregation, while PDI or P311-330 reduced this inhibitory effect. In conclusion, anti-DV NS1 antibodies cross-react with PDI on platelet surface causing inhibition of platelet aggregation, which may provide implications in dengue disease pathogenesis. PMID:19822367

  13. Rift Valley Fever Virus Nonstructural Protein NSs Promotes Viral RNA Replication and Transcription in a Minigenome System

    PubMed Central

    Ikegami, Tetsuro; Peters, C. J.; Makino, Shinji

    2005-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-α/β) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-α/β production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis. PMID:15827175

  14. Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection.

    PubMed

    Chuang, Yung-Chun; Wang, Shu-Ying; Lin, Yee-Shin; Chen, Hong-Ru; Yeh, Trai-Ming

    2013-01-01

    Dengue virus (DENV) infection can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage and abnormal hemorrhage are the two major pathogenic changes found in these patients. From previous studies, it is known that both antibodies and cytokines induced in response to DENV infection are involved in the immunopathogenesis of DHF/DSS. However, the role of viral factors during DENV infection remains unclear. Nonstructural protein 1 (NS1), which is secreted in the sera of patients, is a useful diagnostic marker for acute DENV infection. Nevertheless, the roles of NS1 and its antibodies in the pathogenesis of DHF/DSS are unclear. The focus of this review is to evaluate the possible contributions of NS1 and the antibodies it induces to vascular leakage and abnormal hemorrhage during DENV infection, which may provide clues to better understanding the pathogenesis of DHF/DSS. PMID:23806052

  15. Pan-Serotype Diagnostic for Foot-and-Mouth Disease Using the Consensus Antigen of Nonstructural Protein 3B

    PubMed Central

    Van Dreumel, Alyssa K.; Michalski, Wojtek P.; McNabb, Leanne M.; Shiell, Brian J.; Singanallur, Nagendrakumar B.

    2015-01-01

    An amino acid consensus sequence for the seven serotypes of foot-and-mouth disease virus (FMDV) nonstructural protein 3B, including all three contiguous repeats, and its use in the development of a pan-serotype diagnostic test for all seven FMDV serotypes are described. The amino acid consensus sequence of the 3B protein was determined from a multiple-sequence alignment of 125 sequences of 3B. The consensus 3B (c3B) protein was expressed as a soluble recombinant fusion protein with maltose-binding protein (MBP) using a bacterial expression system and was affinity purified using amylose resin. The MBP-c3B protein was used as the antigen in the development of a competition enzyme-linked immunosorbent assay (cELISA) for detection of anti-3B antibodies in bovine sera. The comparative diagnostic sensitivity and specificity at 47% inhibition were estimated to be 87.22% and 93.15%, respectively. Reactivity of c3B with bovine sera representing the seven FMDV serotypes demonstrated the pan-serotype diagnostic capability of this bioreagent. The consensus antigen and competition ELISA are described here as candidates for a pan-serotype diagnostic test for FMDV infection. PMID:25788546

  16. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells.

    PubMed

    Martínez-Álvarez, Laura; Piña-Vázquez, Carolina; Zarco, Wilbert; Padilla-Noriega, Luis

    2013-06-01

    A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover. PMID:23827992

  17. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells

    PubMed Central

    Martínez-Álvarez, Laura; Piña-Vázquez, Carolina; Zarco, Wilbert; Padilla-Noriega, Luis

    2013-01-01

    A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover. PMID:23827992

  18. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV.

    PubMed

    Rascón-Castelo, Edgar; Burgara-Estrella, Alexel; Reséndiz-Sandoval, Mónica; Hernández-Lugo, Andrés; Hernández, Jesús

    2015-01-01

    The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp) and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC). Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein) than against nsp (nsp2). In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed. PMID:26633527

  19. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    PubMed Central

    Rascón-Castelo, Edgar; Burgara-Estrella, Alexel; Reséndiz-Sandoval, Mónica; Hernández-Lugo, Andrés; Hernández, Jesús

    2015-01-01

    The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp) and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC). Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein) than against nsp (nsp2). In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed. PMID:26633527

  20. A coiled-coil motif in non-structural protein 3 (NS3) of bluetongue virus forms an oligomer.

    PubMed

    Chacko, Nirmal; Mohanty, Nihar Nalini; Biswas, Sanchay Kumar; Chand, Karam; Yogisharadhya, Revanaiah; Pandey, Awadh Bihari; Mondal, Bimalendu; Shivachandra, Sathish Bhadravati

    2015-10-01

    Bluetongue, an arthropod-borne non-contagious hemorrhagic disease of small ruminants, is caused by bluetongue virus (BTV). Several structural and non-structural proteins encoded by BTV have been associated with virulence mechanisms. In the present study, the NS3 protein sequences of bluetongue viral serotypes were analyzed for the presence of heptad regions and oligomer formation. Bioinformatic analysis of NS3 sequences of all 26 BTV serotypes revealed the presence of at least three coiled-coil motifs (CCMs). A conserved α-helical heptad sequence was identified at 14-26 aa (CCM-I), 185-198aa (CCM-II), and 94-116 aa (CCM-III). Among these, CCM-I occurs close to the N-terminus of NS3 and was presumed to be involved in oligomerization. Furthermore, the N-terminus of NS3 (1M-R117 aa) was over-expressed as a recombinant fusion protein in a prokaryotic expression system. Biochemical characterization of recombinant NS3Nt protein revealed that it forms SDS-resistant dimers and high-order oligomers (hexamer and/or octamer) under reducing or non-reducing conditions. Coiled-coil motifs are believed to be critical for NS protein oligomerization and have potential roles in the formation of viroporin ring/pore either with six/eight subunits and this is the first study toward characterization of CCMs in NS3 of bluetongue virus. PMID:26318174

  1. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements.

    PubMed

    Gao, Yuan; Sun, Shi-Qi; Guo, Hui-Chen

    2016-01-01

    Foot-and-mouth disease virus (FMDV) represses host translation machinery, blocks protein secretion, and cleaves cellular proteins associated with signal transduction and the innate immune response to infection. Non-structural proteins (NSPs) and non-coding elements (NCEs) of FMDV play a critical role in these biological processes. The FMDV virion consists of capsid and nucleic acid. The virus genome is a positive single stranded RNA and encodes a single long open reading frame (ORF) flanked by a long structured 5'-untranslated region (5'-UTR) and a short 3'-UTR. The ORF is translated into a polypeptide chain and processed into four structural proteins (VP1, VP2, VP3, and VP4), 10 NSPs (L(pro), 2A, 2B, 2C, 3A, 3B1-3, 3C(pro), and 3D(pol)), and some cleavage intermediates. In the past decade, an increasing number of studies have begun to focus on the molecular pathogenesis of FMDV NSPs and NCEs. This review collected recent research progress on the biological functions of these NSPs and NCEs on the replication and host cellular regulation of FMDV to understand the molecular mechanism of host-FMDV interactions and provide perspectives for antiviral strategy and development of novel vaccines. PMID:27334704

  2. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1

    PubMed Central

    Avirutnan, Panisadee; Fuchs, Anja; Hauhart, Richard E.; Somnuke, Pawit; Youn, Soonjeon

    2010-01-01

    The complement system plays an essential protective role in the initial defense against many microorganisms. Flavivirus NS1 is a secreted nonstructural glycoprotein that accumulates in blood, is displayed on the surface of infected cells, and has been hypothesized to have immune evasion functions. Herein, we demonstrate that dengue virus (DENV), West Nile virus (WNV), and yellow fever virus (YFV) NS1 attenuate classical and lectin pathway activation by directly interacting with C4. Binding of NS1 to C4 reduced C4b deposition and C3 convertase (C4b2a) activity. Although NS1 bound C4b, it lacked intrinsic cofactor activity to degrade C4b, and did not block C3 convertase formation or accelerate decay of the C3 and C5 convertases. Instead, NS1 enhanced C4 cleavage by recruiting and activating the complement-specific protease C1s. By binding C1s and C4 in a complex, NS1 promotes efficient degradation of C4 to C4b. Through this mechanism, NS1 protects DENV from complement-dependent neutralization in solution. These studies define a novel immune evasion mechanism for restricting complement control of microbial infection. PMID:20308361

  3. A cytotoxic nonstructural protein, NS1, of human parvovirus B19 induces activation of interleukin-6 gene expression.

    PubMed Central

    Moffatt, S; Tanaka, N; Tada, K; Nose, M; Nakamura, M; Muraoka, O; Hirano, T; Sugamura, K

    1996-01-01

    We examined the biological function of a nonstructural regulatory protein, NS1, of human parvovirus B19. Because of the cytotoxic activity of NS1, human hematopoietic cell lines, K562, Raji, and THP-1, were established as transfectants which produce the viral NS1 protein upon induction by using bacterial lactose repressor/operator system. NS1 was significantly produced in the three transfectant cells in an inducer dose- and time-dependent manner. Surprisingly, these three transfectants secreted an inflammatory cytokine, interleukin-6 (IL-6), in response to induction. However, no production of other related cytokines, IL-1beta, IL-8, or tumor necrosis factor alpha, was seen. Moreover, NS1-primed IL-6 induction was transiently demonstrated in primary human endothelial cells. Analysis with luciferase reporter plasmids carrying IL-6 promoter mutant fragments demonstrated that NS1 effect is mediated by a NF-kappaB binding site in the IL-6 promoter region, strongly implying that NS1 functions as a trans-acting transcriptional activator on the IL-6 promoter. Our novel finding, IL-6 induction by NS1, supports the possible relationship between parvovirus B19 infection and polyclonal activation of B cells in rheumatoid arthritis and indicates that NS1 protein may play a significant role in the pathogenesis of some B19-associated diseases by modulating the expression of host cellular genes. PMID:8970971

  4. Identification of a Highly Conserved Epitope on Avian Influenza Virus Non-Structural Protein 1 Using a Peptide Microarray

    PubMed Central

    Wen, Xuexia; Bao, Hongmei; Shi, Lin; Tao, Qimeng; Jiang, Yongping; Zeng, Xianying; Xu, Xiaolong; Tian, Guobin; Zheng, Shimin; Chen, Hualan

    2016-01-01

    Avian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli. Isotype determination revealed that the MAb was IgG1/κ-type subclass. To identify the epitope of the MAb D7, the NS1 protein was truncated into a total of 225 15-mer peptides with 14 amino acid overlaps, which were spotted for a peptide microarray. The results revealed that the MAb D7 recognized the consensus DAPF motif. Furthermore, the AIV NS1 protein with the DAPF motif deletion was transiently expressed in 293T cells and failed to react with MAb D7. Subsequently, the DAPF motif was synthesized with an elongated GSGS linker at both the C- and N-termini. The MAb D7 reacted with the synthesized peptide both in enzyme-linked immunosorbent assay (ELISA) and dot-blot assays. From these results, we concluded that DAPF motif is the epitope of MAb D7. To our knowledge, this is the first report of a 4-mer epitope on the NS1 protein of AIV that can be recognized by MAb using a peptide microarray, which is able to simplify epitope identification, and that could serve as the basis for immune responses against avian influenza. PMID:26938453

  5. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression

    PubMed Central

    Narayanan, Krishna; Ramirez, Sydney I.; Lokugamage, Kumari G.; Makino, Shinji

    2014-01-01

    The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection. PMID:25432065

  6. Suppression of immune responses in pigs by nonstructural protein 1 of porcine reproductive and respiratory syndrome virus.

    PubMed

    Zhou, Yefei; Bai, Juan; Li, Yufeng; Wang, Xinglong; Wang, Xianwei; Jiang, Ping

    2012-10-01

    Porcine reproductive and respiratory syndrome (PRRS) is characterized by a delayed and defective adaptive immune response. The viral nonstructural protein 1 (NSP1) of the PRRS virus (PRRSV) is able to suppress the type I interferon (IFN) response in vitro. In this study, recombinant adenoviruses (rAds) expressing NSP1 (rAd-NSP1), glycoprotein 5 (GP5) (rAd-GP5), and the NSP1-GP5 fusion protein (rAd-NSP1-GP5) were constructed, and the effect of NSP1 on immune responses was investigated in pigs. Pigs inoculated with rAd-NSP1 or rAd-NSP1-GP5 had significantly lower levels of IFN-γ and higher levels of the immunosuppressive cytokine IL-10 than pigs inoculated with rAd-GP5, wild-type adenovirus, or cell culture medium alone. The antibody response to vaccination against classic swine fever virus (CSFV) was significantly decreased by inoculation of NSP1 7 d after CSFV vaccination in pigs. Thus, NSP1-mediated immune suppression may play an important role in PRRSV pathogenesis. PMID:23543950

  7. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway.

    PubMed

    Li, Dan; Lei, Caoqi; Xu, Zhisheng; Yang, Fan; Liu, Huanan; Zhu, Zixiang; Li, Shu; Liu, Xiangtao; Shu, Hongbing; Zheng, Haixue

    2016-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system. PMID:26883855

  8. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway

    PubMed Central

    Li, Dan; Lei, Caoqi; Xu, Zhisheng; Yang, Fan; Liu, Huanan; Zhu, Zixiang; Li, Shu; Liu, Xiangtao; Shu, Hongbing; Zheng, Haixue

    2016-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system. PMID:26883855

  9. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide.

    PubMed

    Lin, Chiou-Feng; Lei, Huan-Yao; Shiau, Ai-Li; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Chen, Shun-Hua; Liu, Ching-Chuan; Chiu, Shu-Chen; Lin, Yee-Shin

    2002-07-15

    The onset of vascular leakage and hemorrhagic diathesis is one of the life-threatening complications occurring in dengue patients, yet the pathogenic mechanisms are not well understood. In this study, we demonstrated that Abs against dengue virus nonstructural protein 1 (NS1) generated in mice cross-reacted with human endothelial cells and mouse vessel endothelium. After binding, mouse anti-NS1 Abs induced endothelial cell apoptosis in a caspase-dependent manner. Inducible NO synthase expression could be observed; it showed a time- and dose-dependent correlation with NO production. Endothelial cell apoptosis, characterized by exposure of phosphatidylserine on the cell surface and nuclear DNA fragmentation, was blocked by treatment with the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester. Further studies demonstrated that the expression of Bcl-2 and Bcl-x(L) decreased in both mRNA and protein levels, whereas p53 and Bax increased after anti-NS1 treatment. Cytochrome c release was also observed. All of these effects could be inhibited by N(omega)-nitro-L-arginine methyl ester. Taken together, anti-NS1 Abs act as autoantibodies that cross-react with noninfected endothelial cells and trigger the intracellular signaling leading to the production of NO and to apoptosis. Endothelial cell damage may cause vascular leakage that contributes to the pathogenesis of dengue disease. PMID:12097367

  10. Comparison of the rotavirus nonstructural protein NSP1 (NS53) from different species by sequence analysis and northern blot hybridization.

    PubMed

    Dunn, S J; Cross, T L; Greenberg, H B

    1994-08-15

    The nucleotide sequence of gene 5 encoding the rotavirus nonstructural protein NSP1 (NS53) of 6 strains (EW, EHP, RRV, I321, OSU, and Gottfried) was determined and compared to 6 previously reported strains (SA11, UK, RF, Hu803, DS-1, and Wa). The 12 rotavirus strains were derived from a total of five separate species (murine, bovine, simian, porcine, and human). Gene sizes ranged from 1564 to 1611 nucleotides in length and the deduced protein sequences were found to be 486 to 495 amino acids in length. Comparisons of NSP1 amino acid sequences showed identities ranging from 36 to 92%. This diversity was most evident between strains from different species. Phylogenetic analysis revealed a clustering of NSP1 sequences according to species origin with the exception that the human and porcine strains were included in a single grouping. Northern blot hybridizations using additional rotavirus strains from the five species confirmed the grouping found by sequence analysis. The species specificity of NSP1 is consistent with the hypothesis that NSP1 plays a role in host range restriction. PMID:8030275

  11. The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication.

    PubMed

    Li, Ling; Wu, Rui; Zheng, Fengwei; Zhao, Cheng; Pan, Zishu

    2015-12-01

    Pestivirus nonstructural protein 2 (NS2) is a multifunctional, hydrophobic protein with an important but poorly understood role in viral RNA replication and infectious virus production. In the present study, based on sequence analysis, we mutated several representative conserved residues within the N-terminus of NS2 of classical swine fever virus (CSFV) and investigated how these mutations affected viral RNA replication and infectious virus production. Our results demonstrated that the mutation of two aspartic acids, NS2/D60A or NS2/D60K and NS2/D78K, in the N-terminus of NS2 abolished infectious virus production and that the substitution of arginine for alanine at position 100 (NS2/R100A) resulted in significantly decreased viral titer. The serial passage of cells containing viral genomic RNA molecules generated the revertants NS2/A60D, NS2/K60D and NS2/K78D, leading to the recovery of infectious virus. In the context of the NS2/R100A mutant, the NS2/I90L mutation compensated for infectious virus production. The regulatory roles of the indicated amino acid residues were identified to occur at the viral RNA replication level. These results revealed a novel function for the NS2 N-terminus of CSFV in modulating viral RNA replication. PMID:26232654

  12. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.

    PubMed

    Bouvet, Mickaël; Imbert, Isabelle; Subissi, Lorenzo; Gluais, Laure; Canard, Bruno; Decroly, Etienne

    2012-06-12

    The replication/transcription complex of severe acute respiratory syndrome coronavirus is composed of at least 16 nonstructural proteins (nsp1-16) encoded by the ORF-1a/1b. This complex includes replication enzymes commonly found in positive-strand RNA viruses, but also a set of RNA-processing activities unique to some nidoviruses. The nsp14 protein carries both exoribonuclease (ExoN) and (guanine-N7)-methyltransferase (N7-MTase) activities. The nsp14 ExoN activity ensures a yet-uncharacterized function in the virus life cycle and must be regulated to avoid nonspecific RNA degradation. In this work, we show that the association of nsp10 with nsp14 stimulates >35-fold the ExoN activity of the latter while playing no effect on N7-MTase activity. Nsp10 mutants unable to interact with nsp14 are not proficient for ExoN activation. The nsp10/nsp14 complex hydrolyzes double-stranded RNA in a 3' to 5' direction as well as a single mismatched nucleotide at the 3'-end mimicking an erroneous replication product. In contrast, di-, tri-, and longer unpaired ribonucleotide stretches, as well as 3'-modified RNAs, resist nsp10/nsp14-mediated excision. In addition to the activation of nsp16-mediated 2'-O-MTase activity, nsp10 also activates nsp14 in an RNA processing function potentially connected to a replicative mismatch repair mechanism. PMID:22635272

  13. Conserved Determinants for Membrane Association of Nonstructural Protein 5A from Hepatitis C Virus and Related Viruses▿

    PubMed Central

    Brass, Volker; Pal, Zsuzsanna; Sapay, Nicolas; Deléage, Gilbert; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2007-01-01

    Nonstructural protein 5A (NS5A) is a membrane-associated essential component of the hepatitis C virus (HCV) replication complex. An N-terminal amphipathic alpha helix mediates in-plane membrane association of HCV NS5A and at the same time is likely involved in specific protein-protein interactions required for the assembly of a functional replication complex. The aim of this study was to identify the determinants for membrane association of NS5A from the related GB viruses and pestiviruses. Although primary amino acid sequences differed considerably, putative membrane anchor domains with amphipathic features were predicted in the N-terminal domains of NS5A proteins from these viruses. Confocal laser scanning microscopy, as well as membrane flotation analyses, demonstrated that NS5As from GB virus B (GBV-B), GBV-C, and bovine viral diarrhea virus, the prototype pestivirus, display membrane association characteristics very similar to those of HCV NS5A. The N-terminal 27 to 33 amino acid residues of these NS5A proteins were sufficient for membrane association. Circular dichroism analyses confirmed the capacity of these segments to fold into alpha helices upon association with lipid-like molecules. Despite structural conservation, only very limited exchanges with sequences from related viruses were tolerated in the context of functional HCV RNA replication, suggesting virus-specific interactions of these segments. In conclusion, membrane association of NS5A by an N-terminal amphipathic alpha helix is a feature shared by HCV and related members of the family Flaviviridae. This observation points to conserved roles of the N-terminal amphipathic alpha helices of NS5A in replication complex formation. PMID:17192310

  14. Active Participation of Cellular Chaperone Hsp90 in Regulating the Function of Rotavirus Nonstructural Protein 3 (NSP3)*

    PubMed Central

    Dutta, Dipanjan; Chattopadhyay, Shiladitya; Bagchi, Parikshit; Halder, Umesh Chandra; Nandi, Satabdi; Mukherjee, Anupam; Kobayashi, Nobumichi; Taniguchi, Koki; Chawla-Sarkar, Mamta

    2011-01-01

    Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225–258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225–258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225–258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225–258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells. PMID:21489987

  15. Hepatitis C Virus Nonstructural Protein 5A: Biochemical Characterization of a Novel Structural Class of RNA-Binding Proteins▿

    PubMed Central

    Hwang, Jungwook; Huang, Luyun; Cordek, Daniel G.; Vaughan, Robert; Reynolds, Shelley L.; Kihara, George; Raney, Kevin D.; Kao, C. Cheng; Cameron, Craig E.

    2010-01-01

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) exhibits a preference for G/U-rich RNA in vitro. Biological analysis of the NS5A RNA-binding activity and its target sites in the genome will be facilitated by a description of the NS5A-RNA complex. We demonstrate that the C-4 carbonyl of the uracil base and, by inference, the C-6 carbonyl of the guanine base interact with NS5A. U-rich RNA of 5 to 6 nucleotides (nt) is sufficient for high-affinity binding to NS5A. The minimal RNA-binding domain of NS5A consists of residues 2005 to 2221 (referred to as domain I-plus). This region of the protein includes the amino-terminal domain I as well as the subsequent linker that separates domains I and II. This linker region is the site of adaptive mutations. U-rich RNA-binding activity is not observed for an NS5A derivative containing only residues 2194 to 2419 (domains II and III). Mass spectrometric analysis of an NS5A-poly(rU) complex identified domains I and II as sites for interaction with RNA. Dimerization of NS5A was demonstrated by glutaraldehyde cross-linking. This dimerization is likely mediated by domain I-plus, as dimers of this protein are trapped by cross-linking. Dimers of the domain II-III protein are not observed. The monomer-dimer equilibrium of NS5A shifts in favor of dimer when U-rich RNA is present but not when A-rich RNA is present, consistent with an NS5A dimer being the RNA-binding-competent form of the protein. These data provide a molecular perspective of the NS5A-RNA complex and suggest possible mechanisms for regulation of HCV and cellular gene expression. PMID:20926572

  16. Tick-Borne Encephalitis Virus Structural Proteins Are the Primary Viral Determinants of Non-Viraemic Transmission between Ticks whereas Non-Structural Proteins Affect Cytotoxicity

    PubMed Central

    Khasnatinov, Maxim A.; Tuplin, Andrew; Gritsun, Dmitri J.; Slovak, Mirko; Kazimirova, Maria; Lickova, Martina; Havlikova, Sabina; Klempa, Boris; Gould, Ernest A.

    2016-01-01

    Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV). The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT) between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs) and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS), Vs and Hypr induce low and high cytopathic effects (cpe), respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions) demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras. PMID:27341437

  17. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine-loaded microspheres against dengue 2 virus.

    PubMed

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2013-01-01

    Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine-loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein-loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein-loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein-loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine incorporation

  18. Chikungunya Virus Nonstructural Protein 2 Inhibits Type I/II Interferon-Stimulated JAK-STAT Signaling ▿ †

    PubMed Central

    Fros, Jelke J.; Liu, Wen Jun; Prow, Natalie A.; Geertsema, Corinne; Ligtenberg, Maarten; Vanlandingham, Dana L.; Schnettler, Esther; Vlak, Just M.; Suhrbier, Andreas; Khromykh, Alexander A.; Pijlman, Gorben P.

    2010-01-01

    Chikungunya virus (CHIKV) is an emerging human pathogen transmitted by mosquitoes. Like that of other alphaviruses, CHIKV replication causes general host shutoff, leading to severe cytopathicity in mammalian cells, and inhibits the ability of infected cells to respond to interferon (IFN). Recent research, however, suggests that alphaviruses may have additional mechanisms to circumvent the host's antiviral IFN response. Here we show that CHIKV replication is resistant to inhibition by interferon once RNA replication has been established and that CHIKV actively suppresses the antiviral IFN response by preventing IFN-induced gene expression. Both CHIKV infection and CHIKV replicon RNA replication efficiently blocked STAT1 phosphorylation and/or nuclear translocation in mammalian cells induced by either type I or type II IFN. Expression of individual CHIKV nonstructural proteins (nsPs) showed that nsP2 was a potent inhibitor of IFN-induced JAK-STAT signaling. In addition, mutations in CHIKV-nsP2 (P718S) and Sindbis virus (SINV)-nsP2 (P726S) that render alphavirus replicons noncytopathic significantly reduced JAK-STAT inhibition. This host shutoff-independent inhibition of IFN signaling by CHIKV is likely to have an important role in viral pathogenesis. PMID:20686047

  19. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling.

    PubMed

    Fros, Jelke J; Liu, Wen Jun; Prow, Natalie A; Geertsema, Corinne; Ligtenberg, Maarten; Vanlandingham, Dana L; Schnettler, Esther; Vlak, Just M; Suhrbier, Andreas; Khromykh, Alexander A; Pijlman, Gorben P

    2010-10-01

    Chikungunya virus (CHIKV) is an emerging human pathogen transmitted by mosquitoes. Like that of other alphaviruses, CHIKV replication causes general host shutoff, leading to severe cytopathicity in mammalian cells, and inhibits the ability of infected cells to respond to interferon (IFN). Recent research, however, suggests that alphaviruses may have additional mechanisms to circumvent the host's antiviral IFN response. Here we show that CHIKV replication is resistant to inhibition by interferon once RNA replication has been established and that CHIKV actively suppresses the antiviral IFN response by preventing IFN-induced gene expression. Both CHIKV infection and CHIKV replicon RNA replication efficiently blocked STAT1 phosphorylation and/or nuclear translocation in mammalian cells induced by either type I or type II IFN. Expression of individual CHIKV nonstructural proteins (nsPs) showed that nsP2 was a potent inhibitor of IFN-induced JAK-STAT signaling. In addition, mutations in CHIKV-nsP2 (P718S) and Sindbis virus (SINV)-nsP2 (P726S) that render alphavirus replicons noncytopathic significantly reduced JAK-STAT inhibition. This host shutoff-independent inhibition of IFN signaling by CHIKV is likely to have an important role in viral pathogenesis. PMID:20686047

  20. Determination of Viremia and Concentration of Circulating Nonstructural Protein 1 in Patients Infected with Dengue Virus in Mexico

    PubMed Central

    de la Cruz-Hernández, Sergio I.; Flores-Aguilar, Hilario; González-Mateos, Silvia; López-Martinez, Irma; Alpuche-Aranda, Celia; Ludert, Juan E.; del Angel, Rosa M.

    2013-01-01

    Higher levels of viremia and circulating nonstructural protein 1 (NS1) have been associated with dengue disease severity. In this study, viremia and circulating NS1 levels were determined in 225 serum samples collected from patients in Mexico infected with dengue virus serotypes 1 and 2 (DENV-1 and DENV-2). Patients with dengue hemorrhagic fever (DHF) who were infected with DENV-1 showed higher levels of circulating NS1 than patients with dengue fever (DF) (P = 0.0175). Moreover, NS1 levels were higher in patients with primary infections with DENV-1 than in patient infected with DENV-2 (P < 0.0001) and in patients with primary infections with DENV-2 than in patients with secondary infections with DENV-2 (P = 0.0051). Unexpectedly, viremia levels were higher in patients with DF than in those with DHF infected with either DENV-1 or DENV-2 (P = 0.0019 and P = 0.001, respectively) and in patients with primary infections than those with secondary DENV-2 infections (P < 0.0001). Results indicate that levels of circulating NS1 vary according to the infecting serotype, immunologic status (primary or secondary infection), and dengue disease severity. PMID:23339203

  1. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes.

    PubMed

    Kappes, Matthew A; Miller, Cathy L; Faaberg, Kay S

    2015-07-01

    The membrane insertion and topology of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) strain VR-2332 was assessed using a cell free translation system in the presence or absence of artificial membranes. Expression of PRRSV nsp2 in the absence of all other viral factors resulted in the genesis of both full-length nsp2 as well as a select number of C-terminal nsp2 isoforms. Addition of membranes to the translation stabilized the translation reaction, resulting in predominantly full-length nsp2 as assessed by immunoprecipitation. Analysis further showed full-length nsp2 strongly associates with membranes, along with two additional large nsp2 isoforms. Membrane integration of full-length nsp2 was confirmed through high-speed density fractionation, protection from protease digestion, and immunoprecipitation. The results demonstrated that nsp2 integrated into the membranes with an unexpected topology, where the amino (N)-terminal (cytoplasmic) and C-terminal (luminal) domains were orientated on opposite sides of the membrane surface. PMID:25768891

  2. Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface

    PubMed Central

    Klema, Valerie J.; Ye, Mengyi; Hindupur, Aditya; Teramoto, Tadahisa; Gottipati, Keerthi; Padmanabhan, Radhakrishnan; Choi, Kyung H.

    2016-01-01

    Flavivirus nonstructural protein 5 (NS5) consists of methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, which catalyze 5’-RNA capping/methylation and RNA synthesis, respectively, during viral genome replication. Although the crystal structure of flavivirus NS5 is known, no data about the quaternary organization of the functional enzyme are available. We report the crystal structure of dengue virus full-length NS5, where eight molecules of NS5 are arranged as four independent dimers in the crystallographic asymmetric unit. The relative orientation of each monomer within the dimer, as well as the orientations of the MTase and RdRp domains within each monomer, is conserved, suggesting that these structural arrangements represent the biologically relevant conformation and assembly of this multi-functional enzyme. Essential interactions between MTase and RdRp domains are maintained in the NS5 dimer via inter-molecular interactions, providing evidence that flavivirus NS5 can adopt multiple conformations while preserving necessary interactions between the MTase and RdRp domains. Furthermore, many NS5 residues that reduce viral replication are located at either the inter-domain interface within a monomer or at the inter-molecular interface within the dimer. Hence the X-ray structure of NS5 presented here suggests that MTase and RdRp activities could be coordinated as a dimer during viral genome replication. PMID:26895240

  3. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus.

    PubMed

    Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel

    2016-06-01

    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. PMID:27090790

  4. Highly divergent strains of porcine reproductive and respiratory syndrome virus incorporate multiple isoforms of nonstructural protein 2 into virions.

    PubMed

    Kappes, Matthew A; Miller, Cathy L; Faaberg, Kay S

    2013-12-01

    Viral structural proteins form the critical intermediary between viral infection cycles within and between hosts, function to initiate entry, participate in immediate early viral replication steps, and are major targets for the host adaptive immune response. We report the identification of nonstructural protein 2 (nsp2) as a novel structural component of the porcine reproductive and respiratory syndrome virus (PRRSV) particle. A set of custom α-nsp2 antibodies targeting conserved epitopes within four distinct regions of nsp2 (the PLP2 protease domain [OTU], the hypervariable domain [HV], the putative transmembrane domain [TM], and the C-terminal region [C]) were obtained commercially and validated in PRRSV-infected cells. Highly purified cell-free virions of several PRRSV strains were isolated through multiple rounds of differential density gradient centrifugation and analyzed by immunoelectron microscopy (IEM) and Western blot assays using the α-nsp2 antibodies. Purified viral preparations were found to contain pleomorphic, predominantly spherical virions of uniform size (57.9 nm ± 8.1 nm diameter; n = 50), consistent with the expected size of PRRSV particles. Analysis by IEM indicated the presence of nsp2 associated with the viral particle of diverse strains of PRRSV. Western blot analysis confirmed the presence of nsp2 in purified viral samples and revealed that multiple nsp2 isoforms were associated with the virion. Finally, a recombinant PRRSV genome containing a myc-tagged nsp2 was used to generate purified virus, and these particles were also shown to harbor myc-tagged nsp2 isoforms. Together, these data identify nsp2 as a virion-associated structural PRRSV protein and reveal that nsp2 exists in or on viral particles as multiple isoforms. PMID:24089566

  5. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone

    PubMed Central

    Xia, Hongjie; Wang, Peipei; Wang, Guang-Chuan; Yang, Jie; Sun, Xianlin; Wu, Wenzhe; Qiu, Yang; Shu, Ting; Zhao, Xiaolu; Yin, Lei; Qin, Cheng-Feng; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our

  6. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells

    PubMed Central

    van Kasteren, Puck B.; Bailey-Elkin, Ben A.; James, Terrence W.; Ninaber, Dennis K.; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J.; Mark, Brian L.; Kikkert, Marjolein

    2013-01-01

    Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases. PMID:23401522

  7. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine–loaded microspheres against dengue 2 virus

    PubMed Central

    Huang, Shih-Shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2013-01-01

    Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine–loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein–loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein–loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein–loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine

  8. A Single Amino Acid Substitution in Poliovirus Nonstructural Protein 2CATPase Causes Conditional Defects in Encapsidation and Uncoating

    PubMed Central

    Asare, Emmanuel; Mugavero, JoAnn; Jiang, Ping; Paul, Aniko V.

    2016-01-01

    ABSTRACT The specificity of encapsidation of C-cluster enteroviruses depends on an interaction between capsid proteins and nonstructural protein 2CATPase. In particular, residue N252 of poliovirus 2CATPase interacts with VP3 of coxsackievirus A20, in the context of a chimeric virus. Poliovirus 2CATPase has important roles both in RNA replication and encapsidation. In this study, we searched for additional sites in 2CATPase, near N252, that are required for encapsidation. Accordingly, segments adjacent to N252 were analyzed by combining triple and single alanine mutations to identify residues required for function. Two triple alanine mutants exhibited defects in RNA replication. The remaining two mutations, located in secondary structures in a predicted three-dimensional model of 2CATPase, caused lethal growth phenotypes. Most single alanine mutants, derived from the lethal variants, were either quasi-infectious and yielded variants with wild-type (wt) or temperature-sensitive (ts) growth phenotypes or had a lethal growth phenotype due to defective RNA replication. The K259A mutation, mapping to an α helix in the predicted structure of 2CATPase, resulted in a cold-sensitive virus. In vivo protein synthesis and virus production were strikingly delayed at 33°C relative to the wt, suggesting a defect in uncoating. Studies with a reporter virus indicated that this mutant is also defective in encapsidation at 33°C. Cell imaging confirmed a much-reduced production of K259A mature virus at 33°C relative to the wt. In conclusion, we have for the first time linked a cold-sensitive encapsidation defect in 2CATPase (K259A) to a subsequent delay in uncoating of the virus particle at 33°C during the next cycle of infection. IMPORTANCE Enterovirus morphogenesis, which involves the encapsidation of newly made virion RNA, is a process still poorly understood. Elucidation of this process is important for future drug development for a large variety of diseases caused by these

  9. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells.

    PubMed

    Dechtawewat, Thanyaporn; Paemanee, Atchara; Roytrakul, Sittiruk; Songprakhon, Pucharee; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai; Saitornuang, Sawanan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Noisakran, Sansanee

    2016-09-01

    Dengue virus (DENV) infection is a leading cause of the mosquito-borne infectious diseases that affect humans worldwide. Virus-host interactions appear to play significant roles in DENV replication and the pathogenesis of DENV infection. Nonstructural protein 1 (NS1) of DENV is likely involved in these processes; however, its associations with host cell proteins in DENV infection remain unclear. In this study, we used a combination of techniques (immunoprecipitation, in-solution trypsin digestion, and LC-MS/MS) to identify the host cell proteins that interact with cell-associated NS1 in an in vitro model of DENV infection in the human hepatocyte HepG2 cell line. Thirty-six novel host cell proteins were identified as potential DENV NS1-interacting partners. A large number of these proteins had characteristic binding or catalytic activities, and were involved in cellular metabolism. Coimmunoprecipitation and colocalization assays confirmed the interactions of DENV NS1 and human NIMA-related kinase 2 (NEK2), thousand and one amino acid protein kinase 1 (TAO1), and component of oligomeric Golgi complex 1 (COG1) proteins in virus-infected cells. This study reports a novel set of DENV NS1-interacting host cell proteins in the HepG2 cell line and proposes possible roles for human NEK2, TAO1, and COG1 in DENV infection. PMID:27108190

  10. The Nonstructural Proteins of Nipah Virus Play a Key Role in Pathogenicity in Experimentally Infected Animals

    PubMed Central

    Yoneda, Misako; Guillaume, Vanessa; Sato, Hiroki; Fujita, Kentaro; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Omi, Mio; Muto-Terao, Yuri; Wild, T. Fabian; Kai, Chieko

    2010-01-01

    Nipah virus (NiV) P gene encodes P protein and three accessory proteins (V, C and W). It has been reported that all four P gene products have IFN antagonist activity when the proteins were transiently expressed. However, the role of those accessory proteins in natural infection with NiV remains unknown. We generated recombinant NiVs lacking V, C or W protein, rNiV(V−), rNiV(C−), and rNiV(W−), respectively, to analyze the functions of these proteins in infected cells and the implications in in vivo pathogenicity. All the recombinants grew well in cell culture, although the maximum titers of rNiV(V−) and rNiV(C−) were lower than the other recombinants. The rNiV(V−), rNiV(C−) and rNiV(W−) suppressed the IFN response as well as the parental rNiV, thereby indicating that the lack of each accessory protein does not significantly affect the inhibition of IFN signaling in infected cells. In experimentally infected golden hamsters, rNiV(V−) and rNiV(C−) but not the rNiV(W−) virus showed a significant reduction in virulence. These results suggest that V and C proteins play key roles in NiV pathogenicity, and the roles are independent of their IFN-antagonist activity. This is the first report that identifies the molecular determinants of NiV in pathogenicity in vivo. PMID:20856799

  11. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation.

    PubMed

    Beura, Lalit K; Sarkar, Saumendra N; Kwon, Byungjoon; Subramaniam, Sakthivel; Jones, Clinton; Pattnaik, Asit K; Osorio, Fernando A

    2010-02-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection of swine leads to a serious disease characterized by a delayed and defective adaptive immune response. It is hypothesized that a suboptimal innate immune response is responsible for the disease pathogenesis. In the study presented here we tested this hypothesis and identified several nonstructural proteins (NSPs) with innate immune evasion properties encoded by the PRRS viral genome. Four of the total ten PRRSV NSPs tested were found to have strong to moderate inhibitory effects on beta interferon (IFN-beta) promoter activation. The strongest inhibitory effect was exhibited by NSP1 followed by, NSP2, NSP11, and NSP4. We focused on NSP1alpha and NSP1beta (self-cleavage products of NSP1 during virus infection) and NSP11, three NSPs with strong inhibitory activity. All of three proteins, when expressed stably in cell lines, strongly inhibited double-stranded RNA (dsRNA) signaling pathways. NSP1beta was found to inhibit both IFN regulatory factor 3 (IRF3)- and NF-kappaB-dependent gene induction by dsRNA and Sendai virus. Mechanistically, the dsRNA-induced phosphorylation and nuclear translocation of IRF3 were strongly inhibited by NSP1beta. Moreover, when tested in a porcine myelomonocytic cell line, NSP1beta inhibited Sendai virus-mediated activation of porcine IFN-beta promoter activity. We propose that this NSP1beta-mediated subversion of the host innate immune response plays an important role in PRRSV pathogenesis. PMID:19923190

  12. Functional Characterization of Bovine Viral Diarrhea Virus Nonstructural Protein 5A by Reverse Genetic Analysis and Live Cell Imaging

    PubMed Central

    Isken, Olaf; Langerwisch, Ulrike; Schönherr, Robert; Lamp, Benjamin; Schröder, Kristin; Duden, Rainer; Rümenapf, Tillmann H.

    2014-01-01

    Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined. In this study, we introduced a panel of 10 amino acid deletions covering the C-terminal half of NS5A. In the context of a highly efficient monocistronic replicon, deletions in LCS I and the N-terminal part of domain II, as well as in domain III, were tolerated with regard to RNA replication. When introduced into a bicistronic replicon, only deletions in LCS I and the N-terminal part of domain II were tolerated. In the context of the viral full-length genome, these mutations allowed residual virion morphogenesis. Based on these data, a functional monocistronic BVDV replicon coding for an NS5A variant with an insertion of the fluorescent protein mCherry was constructed. Live cell imaging demonstrated that a fraction of NS5A-mCherry localizes to the surface of lipid droplets. Taken together, this study provides novel insights into the functions of BVDV NS5A. Moreover, we established the first pestiviral replicon expressing fluorescent NS5A-mCherry to directly visualize functional viral replication complexes by live cell imaging. PMID:24131714

  13. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs.

    PubMed

    Sun, Qiyu; Qi, Xian; Zhang, Yan; Wu, Xiaodong; Liang, Mifang; Li, Chuan; Li, Dexin; Cardona, Carol J; Xing, Zheng

    2016-07-29

    Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection. PMID:27226560

  14. Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1.

    PubMed

    Lin, Chiou-Feng; Chiu, Shu-Chen; Hsiao, Yu-Ling; Wan, Shu-Wen; Lei, Huan-Yao; Shiau, Ai-Li; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Chen, Shun-Hua; Liu, Ching-Chuan; Lin, Yee-Shin

    2005-01-01

    Vascular dysfunction is a hallmark associated with disease onset in dengue hemorrhagic fever and dengue shock syndrome. In addition to direct viral damage, immune responses to dengue virus (DV) infection may also underlie the pathogenesis of disease. We have proposed a mechanism of molecular mimicry in which Abs directed against DV nonstructural protein 1 (NS1) cross-react with endothelial cells and induce damage. In this study, we demonstrated the inflammatory endothelial cell activation induced by anti-DV NS1 via the transcription factor NF-kappaB-regulated pathway. Protein phosphorylation and NF-kappaB activation were observed after anti-DV NS1 stimulation in a human microvascular endothelial cell line-1. The cytokine and chemokine production, including IL-6, IL-8, and MCP-1, but not RANTES, in endothelial cells increased after treatment with anti-DV NS1 Abs. The expression of IL-6, IL-8, and MCP-1 was blocked by the preabsorption of anti-DV NS1 with DV NS1 or by the inhibition of NF-kappaB activation. Furthermore, the increases in both ICAM-1 expression and the ability of human PBMC to adhere to endothelial cells were also observed, and these effects were inhibited by pretreatment with anti-ICAM-1 or anti-MCP-1 Abs. Therefore, in addition to endothelial cell apoptosis, as previously reported, inflammatory activation occurs in endothelial cells after stimulation by anti-DV NS1 Abs. These results suggest the involvement of anti-DV NS1 Abs in the vasculopathy of DV infection. PMID:15611263

  15. Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells

    SciTech Connect

    Garcia-Briones, Mercedes; Rosas, Maria F.; Gonzalez-Magaldi, Monica; Martin-Acebes, Miguel A.; Sobrino, Francisco . E-mail: fsobrino@cbm.uam.es; Armas-Portela, Rosario . E-mail: rarmas@cbm.uam.es

    2006-06-05

    Differences in the kinetics of expression and cell distribution among FMDV non-structural proteins (NSPs) have been observed in BHK-21-infected cells. 3D{sup pol} was the first protein detected by immunofluorescence (1.5 h p.i.), showing a perinuclear distribution. At 2-2.5 h p.i., 2B, 2C, 3B and 3C were detected, mostly exhibiting a punctuated, scattered pattern, while 3A and 3D{sup pol} appeared concentrated at one side of the nucleus. This distribution was exhibited by all the NSPs from 3 h p.i., being 2C and, to a lesser extent, precursors 2BC and 3ABBB, the only proteins detected by Western blotting at that infection time. From 4 h p.i., all mature NSPs as well as precursors 2BC, 3ABBB, 3ABB, 3AB and 3CD{sup pol} were detected by this technique. In spite of their similar immunofluorescence patterns, 2C and 3A co-localized partially by confocal microscopy at 3.5 h p.i., and 3A, but not 2C, co-localized with the ER marker calreticulin, suggesting differences in the distribution of these proteins and/or their precursors as infection proceeded. Transient expression of 2C and 3AB resulted in punctuated fluorescence patterns similar to those found in early infected cells, while 3A showed a more diffuse distribution. A shift towards a fibrous pattern was noticed for 3ABB, while a major change was observed in cells expressing 3ABBB, which displayed a perinuclear fibrous distribution. Interestingly, when co-expressed with 3D{sup pol}, the pattern observed for 3ABBB fluorescence was altered, resembling that exhibited by cells transfected with 3AB. Transient expression of 3D{sup pol} showed a homogeneous cell distribution that included, as determined by confocal microscopy, the nucleus. This was confirmed by the detection of 3D{sup pol} in nuclear fractions of transfected cells. 3D{sup pol} and its precursor 3CD{sup pol} were also detected in nuclear fractions of infected cells, suggesting that these proteins can directly interact with the nucleus during FMDV infection.

  16. Non-structural protein 2 of the porcine reproductive and respiratory syndrome (PRRS) virus: a crucial protein in viral pathogenesis, immunity and diagnosis.

    PubMed

    Wang, Feng-Xue; Song, Ni; Chen, Li-Zhi; Cheng, Shi-Peng; Wu, Hua; Wen, Yong-Jun

    2013-08-01

    Porcine reproductive and respiratory syndrome (PRRS) is a swine disease of significant economic importance that causes reproductive and respiratory problems in pigs. The replicase non-structural protein 2 (Nsp2) of the porcine reproductive and respiratory syndrome virus (PRRSV) is recognized as the most variable region within the PRRSV genome. This review discusses the molecular characteristics and biological and immunological functions of the PRRSV Nsp2 and its involvement in the virus's pathogenesis. The role of Nsp2 in cell and tissue tropism, replication and growth, and variation and pathogenicity of PRRSV and the differences in virulence among different strains are described in the present review. Nsp2 is an ideal marker for monitoring genetic variation and for developing differential diagnostic tests. PMID:23591056

  17. Analysis of murine B-cell epitopes on bluetongue virus 12 nonstructural protein 1.

    PubMed

    HaiXiu, Wang; EnCheng, Sun; QingYuan, Xu; Tao, Yang; Qin, Zhang; YuFei, Feng; JunPing, Li; Shuang, Lv; Liang, Sun; Jing, Sun; DongLai, Wu

    2015-02-01

    The bluetongue virus (BTV) NS1 protein is one of the major proteins synthesized during BTV infection and is responsible for the generation of virus-specific tubules. Although some functional and structural studies on the BTV NS1 protein have been reported, there have been no reports describing the linear B-cell epitopes recognized by humoral immune responses published to date. In this study, 25 BTV12 NS1-reactive monoclonal antibodies (MAbs) and polyclonal antisera (polyclonal antibodies, PAbs) were generated and analyzed. We identified 14 linear NS1 epitopes recognized by the PAbs and MAbs using NS1-derived peptides in an enzyme-linked immunosorbent assay. Moreover, we predicted 23 linear B-cell epitopes using the ABCpred online server which employs an artificial neural network. Analysis of the predicted and identified epitopes of NS1 demonstrated the feasibility of B-cell epitope prediction. Sequence alignments indicated that the epitopes recognized by MAbs are highly conserved among BTV serotypes, but not among the other members of the genus Orbivirus, such as the African horse sickness virus (AHSV), epizootic hemorrhagic disease virus (EHDV), and Chuzan disease virus (CV). Importantly, we identified specific MAbs that recognized all BTV serotypes tested as well as MAbs that recognized only BTV12, suggesting that these NS1-specific MAbs could serve as a basis for BTV diagnostic approaches. The generation and identification of NS1 protein epitopes will provide the foundation for further studies about the function and structure of NS1 and novel epitope-based vaccines. PMID:25343975

  18. Complementation for an essential ancillary nonstructural protein function across parvovirus genera

    PubMed Central

    Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter

    2014-01-01

    Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections. PMID:25194919

  19. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    PubMed

    Sun, Encheng; Zhao, Jing; Liu, Nihong; Yang, Tao; Xu, Qingyuan; Qin, Yongli; Bu, Zhigao; Yang, Yinhui; Lunt, Ross A; Wang, Linfa; Wu, Donglai

    2012-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines

  20. Modulation of cellular immune response against hepatitis C virus nonstructural protein 3 by cationic liposome encapsulated DNA immunization.

    PubMed

    Jiao, Xuanmao; Wang, Richard Y-H; Feng, Zhiming; Alter, Harvey J; Shih, James Wai-Kuo

    2003-02-01

    A vaccine strategy directed to increase Th1 cellular immune responses, particularly to hepatitis C virus (HCV) nonstructural protein 3 (NS3), has considerable potential to overcome the infection with HCV. DNA vaccination can induce both humoral and cellular immune responses, but it became apparent that the cellular uptake of naked DNA injected into muscle was not very efficient, as much of the DNA is degraded by interstitial nucleases before it reaches the nucleus for transcription. In this paper, cationic liposomes composed of different cationic lipids, such as dimethyl-dioctadecylammonium bromide (DDAB), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), or 1,2-dioleoyl-sn-glycerol-3-ethylphosphocholine (DOEPC), were used to improve DNA immunization in mice, and their efficiencies were compared. It was found that cationic liposome-mediated DNA immunization induced stronger HCV NS3-specific immune responses than immunization with naked DNA alone. Cationic liposomes composed of DDAB and equimolar of a neutral lipid, egg yolk phosphatidylcholine (EPC), induced the strongest antigen-specific Th1 type immune responses among the cationic liposome investigated, whereas the liposomes composed of 2 cationic lipids, DDAB and DOEPC, induced an antigen-specific Th2 type immune response. All cationic liposomes used in this study triggered high-level, nonspecific IL-12 production in mice, a feature important for the development of maximum Th1 immune responses. In conclusion, the cationic liposome-mediated gene delivery is a viable HCV vaccine strategy that should be further tested in the chimpanzee model. PMID:12540796

  1. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation.

    PubMed

    Chuang, Yung-Chun; Lin, Jessica; Lin, Yee-Shin; Wang, Shuying; Yeh, Trai-Ming

    2016-02-01

    Dengue virus (DENV) infection is the most common mosquito-borne viral disease, and it can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks of DHF/DSS. However, the mechanism underlying hemorrhage in DHF/DSS remains elusive. In previous studies, plasminogen (Plg) cross-reactive Abs, which can recognize DENV nonstructural protein (NS) 1, have been found in dengue patients. However, it is unclear whether these Abs are indeed induced by DENV NS1. Thus, we immunized mice with recombinant NS1 from both bacteria and drosophila to determine whether NS1 can induce Plg cross-reactive Abs. The results from the NS1-immunized mouse sera indicated that NS1 immunization induced Abs that could cross-react with Plg. To study the effects of these NS1-induced Plg cross-reactive Abs on fibrinolysis, we isolated several Plg cross-reactive anti-NS1 mAbs from these mice and found that some of them could enhance Plg activation. In addition, epitope mapping with a phage-displayed random peptide library revealed that one of these mAbs (2A5) could recognize NS1 C-terminal residues 305-311, which share sequence homology with Plg residues 590-597. A synthetic peptide of NS1 residues 305-311 could inhibit the binding of both 2A5 and its Fab to Plg and its enhanced activation. Thus, our results suggest that DENV NS1 can induce Plg cross-reactive Abs through molecular mimicry, which can enhance Plg activation and may contribute to the pathogenesis of DHF/DSS. PMID:26712948

  2. La Crosse Bunyavirus Nonstructural Protein NSs Serves To Suppress the Type I Interferon System of Mammalian Hosts▿

    PubMed Central

    Blakqori, Gjon; Delhaye, Sophie; Habjan, Matthias; Blair, Carol D.; Sánchez-Vargas, Irma; Olson, Ken E.; Attarzadeh-Yazdi, Ghassem; Fragkoudis, Rennos; Kohl, Alain; Kalinke, Ulrich; Weiss, Siegfried; Michiels, Thomas; Staeheli, Peter; Weber, Friedemann

    2007-01-01

    La Crosse virus (LACV) is a mosquito-transmitted member of the Bunyaviridae family that causes severe encephalitis in children. For the LACV nonstructural protein NSs, previous overexpression studies with mammalian cells had suggested two different functions, namely induction of apoptosis and inhibition of RNA interference (RNAi). Here, we demonstrate that mosquito cells persistently infected with LACV do not undergo apoptosis and mount a specific RNAi response. Recombinant viruses that either express (rLACV) or lack (rLACVdelNSs) the NSs gene similarly persisted and were prone to the RNAi-mediated resistance to superinfection. Furthermore, in mosquito cells overexpressed LACV NSs was unable to inhibit RNAi against Semliki Forest virus. In mammalian cells, however, the rLACVdelNSs mutant virus strongly activated the antiviral type I interferon (IFN) system, whereas rLACV as well as overexpressed NSs suppressed IFN induction. Consequently, rLACVdelNSs was attenuated in IFN-competent mouse embryo fibroblasts and animals but not in systems lacking the type I IFN receptor. In situ analyses of mouse brains demonstrated that wild-type and mutant LACV mainly infect neuronal cells and that NSs is able to suppress IFN induction in the central nervous system. Thus, our data suggest little relevance of the NSs-induced apoptosis or RNAi inhibition for growth or pathogenesis of LACV in the mammalian host and indicate that NSs has no function in the insect vector. Since deletion of the viral NSs gene can be fully complemented by inactivation of the host's IFN system, we propose that the major biological function of NSs is suppression of the mammalian innate immune response. PMID:17344298

  3. Generation of Recombinant Oropouche Viruses Lacking the Nonstructural Protein NSm or NSs

    PubMed Central

    Randall, Richard E.; Elliott, Richard M.

    2015-01-01

    ABSTRACT Oropouche virus (OROV) is a midge-borne human pathogen with a geographic distribution in South America. OROV was first isolated in 1955, and since then, it has been known to cause recurring outbreaks of a dengue-like illness in the Amazonian regions of Brazil. OROV, however, remains one of the most poorly understood emerging viral zoonoses. Here we describe the successful recovery of infectious OROV entirely from cDNA copies of its genome and generation of OROV mutant viruses lacking either the NSm or the NSs coding region. Characterization of the recombinant viruses carried out in vitro demonstrated that the NSs protein of OROV is an interferon (IFN) antagonist as in other NSs-encoding bunyaviruses. Additionally, we demonstrate the importance of the nine C-terminal amino acids of OROV NSs in IFN antagonistic activity. OROV was also found to be sensitive to IFN-α when cells were pretreated; however, the virus was still capable of replicating at doses as high as 10,000 U/ml of IFN-α, in contrast to the family prototype BUNV. We found that OROV lacking the NSm protein displayed characteristics similar to those of the wild-type virus, suggesting that the NSm protein is dispensable for virus replication in the mammalian and mosquito cell lines that were tested. IMPORTANCE Oropouche virus (OROV) is a public health threat in Central and South America, where it causes periodic outbreaks of dengue-like illness. In Brazil, OROV is the second most frequent cause of arboviral febrile illness after dengue virus, and with the current rates of urban expansion, more cases of this emerging viral zoonosis could occur. To better understand the molecular biology of OROV, we have successfully rescued the virus along with mutants. We have established that the C terminus of the NSs protein is important in interferon antagonism and that the NSm protein is dispensable for virus replication in cell culture. The tools described in this paper are important in terms of

  4. Induction of Apoptosis by the Nonstructural Protein 4 and 10 of Porcine Reproductive and Respiratory Syndrome Virus.

    PubMed

    Yuan, Shuaizhen; Zhang, Ning; Xu, Lei; Zhou, Lei; Ge, Xinna; Guo, Xin; Yang, Hanchun

    2016-01-01

    Infection by most viruses triggers apoptosis in host cells, and viruses manipulate this cell response to promote viral replication, virus spread, and cell killing. Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to induce apoptosis both in vitro and in vivo, while the regulatory roles of PRRSV-encoded products in apoptosis are not fully understood. In the present study, we first showed a biphasic apoptosis regulation by a highly pathogenic PRRSV strain JXwn06. It was indicated that PRRSV infection delays apoptosis at early infection but activates apoptosis at late infection in MARC-145 cells. In PRRSV-infected MARC-145 cells, procaspase-8, -9 and -12 were activated at late infection, demonstrating the involvements of death receptor pathway, mitochondrial pathway and endoplasmic reticulum (ER) stress pathway in inducing apoptosis. PRRSV was also shown to induce a similar apoptosis process in pulmonary alveolar macrophages (PAMs) with an early initiation. Next, the PRRSV-encoded apoptosis inducers were screened, indicating that the nonstructural protein (Nsp) 4 and Nsp10 of PRRSV are pro-apoptotic. In the presence of Nsp4, it was confirmed that procaspase-8, -9 and -12 were cleaved, and Nsp4 facilitates the cleavage of procaspase-9 by activating B-cell lymphoma 2 interacting mediator of cell death (Bim), a pro-apoptotic protein. In addition, Nsp4 was shown to induce the degradation of an anti-apoptotic protein, B-cell lymphoma-extra large (Bcl-xL). Nsp10 was shown to activate procaspase-8 and -9 but procaspase-12 and to upregulate the expression of BH3-only pro-apoptotic protein BH3 interacting-domain death agonist (Bid) and its active form, truncated Bid (tBid). Clearly, the participation of both activated caspase-8 and Bid is required for Nsp10-induced apoptosis, indicating a crosstalk between extrinsic- and mitochondria-dependent pathways. Together, our findings suggest that PRRSV infection regulates apoptosis in a two-phase manner and

  5. Induction of Apoptosis by the Nonstructural Protein 4 and 10 of Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Yuan, Shuaizhen; Zhang, Ning; Xu, Lei; Zhou, Lei; Ge, Xinna; Guo, Xin; Yang, Hanchun

    2016-01-01

    Infection by most viruses triggers apoptosis in host cells, and viruses manipulate this cell response to promote viral replication, virus spread, and cell killing. Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to induce apoptosis both in vitro and in vivo, while the regulatory roles of PRRSV-encoded products in apoptosis are not fully understood. In the present study, we first showed a biphasic apoptosis regulation by a highly pathogenic PRRSV strain JXwn06. It was indicated that PRRSV infection delays apoptosis at early infection but activates apoptosis at late infection in MARC-145 cells. In PRRSV-infected MARC-145 cells, procaspase-8, -9 and -12 were activated at late infection, demonstrating the involvements of death receptor pathway, mitochondrial pathway and endoplasmic reticulum (ER) stress pathway in inducing apoptosis. PRRSV was also shown to induce a similar apoptosis process in pulmonary alveolar macrophages (PAMs) with an early initiation. Next, the PRRSV-encoded apoptosis inducers were screened, indicating that the nonstructural protein (Nsp) 4 and Nsp10 of PRRSV are pro-apoptotic. In the presence of Nsp4, it was confirmed that procaspase-8, -9 and -12 were cleaved, and Nsp4 facilitates the cleavage of procaspase-9 by activating B-cell lymphoma 2 interacting mediator of cell death (Bim), a pro-apoptotic protein. In addition, Nsp4 was shown to induce the degradation of an anti-apoptotic protein, B-cell lymphoma-extra large (Bcl-xL). Nsp10 was shown to activate procaspase-8 and -9 but procaspase-12 and to upregulate the expression of BH3-only pro-apoptotic protein BH3 interacting-domain death agonist (Bid) and its active form, truncated Bid (tBid). Clearly, the participation of both activated caspase-8 and Bid is required for Nsp10-induced apoptosis, indicating a crosstalk between extrinsic- and mitochondria-dependent pathways. Together, our findings suggest that PRRSV infection regulates apoptosis in a two-phase manner and

  6. Nonstructural 5A Protein of Hepatitis C Virus Regulates Soluble Resistance-Related Calcium-Binding Protein Activity for Viral Propagation

    PubMed Central

    Tran, Giao V. Q.; Luong, Trang T. D.; Park, Eun-Mee; Kim, Jong-Wook; Choi, Jae-Woong; Park, Chorong; Lim, Yun-Sook

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calcium-binding protein (sorcin) for further characterization. Sorcin is a calcium-binding protein and is highly expressed in certain cancer cells. We verified that NS5A interacted with sorcin through domain I of NS5A, and phosphorylation of the threonine residue 155 of sorcin played a crucial role in protein interaction. Small interfering RNA (siRNA)-mediated knockdown of sorcin impaired HCV propagation. Silencing of sorcin expression resulted in a decrease of HCV assembly without affecting HCV RNA and protein levels. We further demonstrated that polo-like kinase 1 (PLK1)-mediated phosphorylation of sorcin was increased by NS5A. We showed that both phosphorylation and calcium-binding activity of sorcin were required for HCV propagation. These data indicate that HCV modulates sorcin activity via NS5A protein for its own propagation. IMPORTANCE Sorcin is a calcium-binding protein and regulates intracellular calcium homeostasis. HCV NS5A interacts with sorcin, and phosphorylation of sorcin is required for protein interaction. Gene silencing of sorcin impaired HCV propagation at the assembly step of the HCV life cycle. Sorcin is phosphorylated by PLK1 via protein interaction. We showed that sorcin interacted with both NS5A and PLK1, and PLK1-mediated phosphorylation of sorcin was increased by NS5A. Moreover, calcium-binding activity of sorcin played a crucial role in HCV propagation. These data provide evidence that HCV regulates host calcium metabolism for virus propagation, and thus manipulation of sorcin activity may represent a novel therapeutic target for HCV. PMID:26719254

  7. ANALYSIS OF THE FUNCTION OF CYTOPLASMIC FIBERS FORMED BY THE RUBELLA VIRUS NONSTRUCTURAL REPLICASE PROTEINS

    PubMed Central

    Matthews, Jason D.; Tzeng, Wen-Pin; Frey, Teryl K.

    2010-01-01

    The P150 and P90 replicase proteins of rubella virus (RUBV), a plus-strand RNA Togavirus, produce a unique cytoplasmic fiber network resembling microtubules. Pharmacological and mutagenic approaches were used to determine if these fibers functioned in virus replication. The pharmacological approach revealed that microtubules were required for fiber formation, but neither was necessary for virus replication. Through the mutagenic approach it was found that α-helices near both termini of P150 were necessary for fiber assembly and infectivity, but fiber formation and viability could not be correlated because most of these mutations were lethal. The N-terminal α-helix of P150 affected both proteolytic processing of P150 and P90 from the P200 precursor and targeting of P200, possibly through directing conformational folding of P200. Finally, we made the unexpected discovery that RUBV genomes can spread from cell-to-cell without virus particles, a process that we hypothesize utilizes RUBV-induced cytoplasmic projections containing fibers and replication complexes. PMID:20696450

  8. Replacement of the respiratory syncytial virus nonstructural proteins NS1 and NS2 by the V protein of parainfluenza virus 5

    SciTech Connect

    Tran, Kim C.; He, Biao; Teng, Michael N.

    2007-11-10

    Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells. However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.

  9. Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1

    SciTech Connect

    Karttunen, Jenni; Mäntynen, Sari; Ihalainen, Teemu O.; Bamford, Jaana K.H.; Oksanen, Hanna M.

    2015-08-15

    Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES. - Highlights: • Two non-structural proteins of PRD1 are involved in the virus assembly. • P17 and P33 complement the defect in GroES of Escherichia coli. • P33 co-localises with GroEL and P17 in the bacterium. • Slow motion of P33 in the bacterium suggests association with cellular components.

  10. Hepatitis C Virus RNA Replication Depends on Specific Cis- and Trans-Acting Activities of Viral Nonstructural Proteins

    PubMed Central

    Kazakov, Teymur; Yang, Feng; Ramanathan, Harish N.; Kohlway, Andrew; Diamond, Michael S.; Lindenbach, Brett D.

    2015-01-01

    Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3–5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3–5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally. PMID:25875808

  11. Increasing Rate of Cleavage at Boundary between Non-structural Proteins 4B and 5A Inhibits Replication of Hepatitis C Virus*

    PubMed Central

    Herod, Morgan R.; Jones, Daniel M.; McLauchlan, John; McCormick, Christopher J.

    2012-01-01

    In hepatitis C virus, non-structural proteins are cleaved from the viral polyprotein by viral encoded proteases. Although proteolytic processing goes to completion, the rate of cleavage differs between different boundaries, primarily due to the sequence at these positions. However, it is not known whether slow cleavage is important for viral replication or a consequence of restrictions on sequences that can be tolerated at the cleaved ends of non-structural proteins. To address this question, mutations were introduced into the NS4B side of the NS4B5A boundary, and their effect on replication and polyprotein processing was examined in the context of a subgenomic replicon. Single mutations that modestly increased the rate of boundary processing were phenotypically silent, but a double mutation, which further increased the rate of boundary cleavage, was lethal. Rescue experiments relying on viral RNA polymerase-induced error failed to identify second site compensatory mutations. Use of a replicon library with codon degeneracy did allow identification of second site compensatory mutations, some of which fell exclusively within the NS5A side of the boundary. These mutations slowed boundary cleavage and only enhanced replication in the context of the original lethal NS4B double mutation. Overall, the data indicate that slow cleavage of the NS4B5A boundary is important and identify a previously unrecognized role for NS4B5A-containing precursors requiring them to exist for a minimum finite period of time. PMID:22084249

  12. The cytotoxicity of the parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins.

    PubMed Central

    Anouja, F; Wattiez, R; Mousset, S; Caillet-Fauquet, P

    1997-01-01

    Autonomous parvoviruses exert lytic and cytostatic effects believed to contribute to their antineoplastic activity. Studies with inducible clones have demonstrated a direct involvement of parvovirus nonstructural proteins (NS) in oncolysis. Human and rat fibroblasts have been stably transfected with MVM(p) (minute virus of mice prototype strain) NS genes cloned under the control of a hormone-inducible promoter. Dexamethasone-induced synthesis of the NS proteins in sensitive transformed cells results in cell killing within a few days. From these sensitive cell lines have been isolated some NS-resistant clones that also prove resistant to MVM(p) infection, suggesting that cell factors modulate NS cytotoxicity. We have previously reported that factors involved in cell cycle regulation may contribute to this modulation, since NS toxicity requires cell proliferation and correlates with a cell cycle perturbation leading to an arrest in phase S/G2. In addition to its role in cytotoxicity, NS1 can regulate transcription driven by parvovirus and nonparvovirus promoters. Since phosphorylation is a critical event in controlling the activity of many proteins, notably transcription factors and cell cycle-regulated proteins, we have examined the effect of NS1 on the synthesis and phosphorylation of cell proteins. Our results indicate that NS1 interferes, within 7 h of induction, with phosphorylation of a protein of about 14 kDa (p14). Cell synchronization has enabled us to show that phosphorylation of this protein occurs in early S phase and is prevented when NS1 is induced. This early effect of NS1 on p14 phosphorylation may be directly linked to cytotoxicity and is probably related to the previously reported inhibition of cell DNA synthesis. Late in the induction period (24 h), NS1 also alters the synthesis of a 50-kDa protein and a 35-kDa protein (p50 and p35, respectively). Microsequencing of p35 reveals sequence homology with beta-tubulin. These effects of NS1, observed

  13. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    SciTech Connect

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  14. Rotavirus Infection Induces the Unfolded Protein Response of the Cell and Controls It through the Nonstructural Protein NSP3▿

    PubMed Central

    Trujillo-Alonso, Vicenta; Maruri-Avidal, Liliana; Arias, Carlos F.; López, Susana

    2011-01-01

    The unfolded protein response (UPR) is a cellular mechanism that is triggered in order to cope with the stress caused by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). This response is initiated by the endoribonuclease inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and PKR-like ER kinase, which increase the expression of the genes involved in the folding and degradation processes and decrease the protein input into the ER by inhibiting translation. It has been shown that viruses both induce and manipulate the UPR in order to protect the host cells from an ER stress-mediated death, thus permitting the translation of viral proteins and the efficient replication of the virus. To understand the cellular events that occur during the rotavirus replication cycle, we examined the activation of the three UPR arms following infection, using luciferase reporters driven by promoters of the ER stress-responsive genes and real-time reverse transcription-PCR to determine the levels of the stress-induced mRNAs. Our findings indicated that during rotavirus infection two of the three arms of the UPR (IRE1 and ATF6) become activated; however, these pathways are interrupted at the translational level by the general inhibition of protein synthesis caused by NSP3. This response seems to be triggered by more than one viral protein synthesized during the replication of the virus, but not by the viral double-stranded RNA (dsRNA), since cells transfected with psoralen-inactivated virions, or with naked viral dsRNA, did not induce UPR. PMID:21937647

  15. Further evaluation of an ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease virus

    PubMed Central

    FUKAI, Katsuhiko; NISHI, Tatsuya; MORIOKA, Kazuki; YAMADA, Manabu; YOSHIDA, Kazuo; KITANO, Rie; YAMAZOE, Reiko; KANNO, Toru

    2015-01-01

    An ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease (FMDV) was further evaluated using sequentially collected serum samples of experimentally infected animals, because the sensitivity of the kit used in a previous study was significantly low in field animals. The kit fully detected antibodies in infected animals without vaccination; however, the first detections of antibodies by the kit were later than those by the liquid-phase blocking ELISA that is used for serological surveillance in the aftermath of outbreaks in Japan, for detection of antibodies to structural proteins of FMDV. Additionally, although the kit effectively detected antibodies in infected cattle with vaccination, there were several infected pigs with vaccination for which the kit did not detect antibodies during the experimental period. Taken together, the kit may not be suitable for serological surveillance after an FMD outbreak either with or without emergency vaccination in FMD-free countries. PMID:26498533

  16. Further evaluation of an ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease virus.

    PubMed

    Fukai, Katsuhiko; Nishi, Tatsuya; Morioka, Kazuki; Yamada, Manabu; Yoshida, Kazuo; Kitano, Rie; Yamazoe, Reiko; Kanno, Toru

    2016-04-01

    An ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease (FMDV) was further evaluated using sequentially collected serum samples of experimentally infected animals, because the sensitivity of the kit used in a previous study was significantly low in field animals. The kit fully detected antibodies in infected animals without vaccination; however, the first detections of antibodies by the kit were later than those by the liquid-phase blocking ELISA that is used for serological surveillance in the aftermath of outbreaks in Japan, for detection of antibodies to structural proteins of FMDV. Additionally, although the kit effectively detected antibodies in infected cattle with vaccination, there were several infected pigs with vaccination for which the kit did not detect antibodies during the experimental period. Taken together, the kit may not be suitable for serological surveillance after an FMD outbreak either with or without emergency vaccination in FMD-free countries. PMID:26498533

  17. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses

    PubMed Central

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre; Biffar, Lucia; Hammer, Sabine E.; Kvisgaard, Lise K.; Larsen, Lars E.; Stewart, Graham R.; Somavarapu, Satyanarayana; Steinbach, Falko; Graham, Simon P.

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress toward market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralizing antibodies, it has been proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely related (subtype 1) or divergent (subtype 3) PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5), and to a lesser extent, the matrix (M) protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by coexpression of TNF-α and mobilization of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved among strains of both PRRSV genotypes. Thus, M and NSP5 represent attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development. PMID:26909080

  18. Late nonstructural 100,000- and 33,000-dalton proteins of adenovirus type 2. I. Subcellular localization during the course of infection.

    PubMed Central

    Gambke, C; Deppert, W

    1981-01-01

    We analyzed the subcellular locations of the late adenovirus type 2 nonstructural 100,000-dalton (100K) and 33K proteins in adenovirus type 2-infected HeLa cells both by biochemical cell fractionation and by immunofluorescence microscopy, using specific antisera against purified sodium dodecyl sulfate-denatured 100K and 33K polypeptides. Both methods showed that the 100K protein was present in the cytoplasm as well as in the nuclei of infected cells and that it accumulated in the nuclei during the course of infection. Phosphorylated 100K protein also was found both in the cytoplasm and in nuclei. However, the nuclear 100K protein pool was phosphorylated to a higher degree than the cytoplasmic pool. In all experiments the 33K protein, which also is a phosphoprotein, was present exclusively in the nuclei of infected cells. The 100K and 33K proteins were associated with different nuclear substructures; this was demonstrated serologically by an analysis of infected cells in which double color immunofluorescence microscopy was used. In these experiments antibodies against the 100K protein decorated different nuclear structures than antibodies against the 33K protein. Images PMID:7321097

  19. Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene.

    PubMed

    Margaria, P; Ciuffo, M; Pacifico, D; Turina, M

    2007-05-01

    All known pepper cultivars resistant to Tomato spotted wilt virus (TSWV) possess a single dominant resistance gene, Tsw. Recently, naturally occurring resistance-breaking (RB) TSWV strains have been identified, causing major concerns. We used a collection of such strains to identify the specific genetic determinant that allows the virus to overcome the Tsw gene in Capsicum spp. A reverse genetic approach is still not feasible for TSWV; therefore, we analyzed reassortants between wild-type (WT) and RB strains. Our results confirmed that the S RNA, which encodes both the nucleocapsid protein (N) and a nonstructural protein (NSs), carries the genetic determinant responsible for Tsw resistance breakdown. We then used full-length S RNA segments or the proteins they encode to compare the sequences of WT and related RB strains, and obtained indirect evidence that the NSs protein is the avirulence factor in question. Transient expression of NSs protein from WT and RB strains showed that they both can equally suppress post-transcriptional gene silencing (PTGS). Moreover, biological characterization of two RB strains carrying deletions in the NSs protein showed that NSs is important in maintaining TSWV infection in newly emerging leaves over time, preventing recovery. Analysis of another RB strain phenotype allowed us to conclude that local necrotic response is not sufficient for resistance in Capsicum spp. carrying the Tsw gene. PMID:17506332

  20. Mutations in the 5’ NTR and the Non-Structural Protein 3A of the Coxsackievirus B3 Selectively Attenuate Myocarditogenicity

    PubMed Central

    Basavalingappa, Rakesh H.; Rajasekaran, Rajkumar A.; Vu, Hiep; Riethoven, Jean-Jack; Steffen, David; Pattnaik, Asit K.; Reddy, Jay

    2015-01-01

    The 5’ non-translated region (NTR) is an important molecular determinant that controls replication and virulence of coxsackievirus B (CVB)3. Previous studies have reported many nucleotide (nt) sequence differences in the Nancy strain of the virus, including changes in the 5’ NTR with varying degrees of disease severity. In our studies of CVB3-induced myocarditis, we sought to generate an infectious clone of the virus for routine in vivo experimentation. By determining the viral nt sequence, we identified three new nt substitutions in the clone that differed from the parental virus strain: C97U in the 5’ NTR; a silent mutation, A4327G, in non-structural protein 2C; and C5088U (resulting in P1449L amino acid change) in non-structural protein 3A of the virus leading us to evaluate the role of these changes in the virulence properties of the virus. We noted that the disease-inducing ability of the infectious clone-derived virus in three mouse strains was restricted to pancreatitis alone, and the incidence and severity of myocarditis were significantly reduced. We then reversed the mutations by creating three new clones, representing 1) U97C; 2) G4327A and U5088C; and 3) their combination together in the third clone. The viral titers obtained from all the clones were comparable, but the virions derived from the third clone induced myocarditis comparable to that induced by wild type virus; however, the pancreatitis-inducing ability remained unaltered, suggesting that the mutations described above selectively influence myocarditogenicity. Because the accumulation of mutations during passages is a continuous process in RNA viruses, it is possible that CVB3 viruses containing such altered nts may evolve naturally, thus favoring their survival in the environment. PMID:26098885

  1. Marker vaccine potential of foot-and-mouth disease virus with large deletion in the non-structural proteins 3A and 3B.

    PubMed

    Biswal, Jitendra K; Subramaniam, Saravanan; Ranjan, Rajeev; Sharma, Gaurav K; Misri, Jyoti; Pattnaik, Bramhadev

    2015-11-01

    Foot-and-mouth disease (FMD) is a highly contagious, economically important disease of transboundary importance. Regular vaccination with chemically inactivated FMD vaccine is the major means of controlling the disease in endemic countries like India. However, the traditional inactivated vaccines may sometimes contain traces of FMD viral (FMDV) non-structural protein (NSP), therefore, interfering with the NSP-based serological discrimination between infected and vaccinated animals. The availability of marker vaccine for differentiating FMD infected from vaccinated animals (DIVA) would be crucial for the control and subsequent eradication of FMD in India. In this study, we constructed a negative marker FMDV serotype O virus (vaccine strain O IND R2/1975), containing dual deletions of amino acid residues 93-143 and 10-37 in the non-structural proteins 3A and 3B, respectively through reverse genetics approach. The negative marker virus exhibited similar growth kinetics and plaque morphology in cell culture as compared to the wild type virus. In addition, we also developed and evaluated an indirect ELISA (I-ELISA) targeted to the deleted 3AB NSP region (truncated 3AB) which could be used as a companion differential diagnostic assay. The diagnostic sensitivity and specificity of the truncated 3AB I-ELISA were found to be 95.5% and 96%, respectively. The results from this study suggest that the availability negative marker virus and companion diagnostic assay could open a promising new avenue for the application of DIVA compatible marker vaccine for the control of FMD in India. PMID:26260689

  2. Mutations in the 5' NTR and the Non-Structural Protein 3A of the Coxsackievirus B3 Selectively Attenuate Myocarditogenicity.

    PubMed

    Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Basavalingappa, Rakesh H; Rajasekaran, Rajkumar A; Vu, Hiep; Riethoven, Jean-Jack; Steffen, David; Pattnaik, Asit K; Reddy, Jay

    2015-01-01

    The 5' non-translated region (NTR) is an important molecular determinant that controls replication and virulence of coxsackievirus B (CVB)3. Previous studies have reported many nucleotide (nt) sequence differences in the Nancy strain of the virus, including changes in the 5' NTR with varying degrees of disease severity. In our studies of CVB3-induced myocarditis, we sought to generate an infectious clone of the virus for routine in vivo experimentation. By determining the viral nt sequence, we identified three new nt substitutions in the clone that differed from the parental virus strain: C97U in the 5' NTR; a silent mutation, A4327G, in non-structural protein 2C; and C5088U (resulting in P1449L amino acid change) in non-structural protein 3A of the virus leading us to evaluate the role of these changes in the virulence properties of the virus. We noted that the disease-inducing ability of the infectious clone-derived virus in three mouse strains was restricted to pancreatitis alone, and the incidence and severity of myocarditis were significantly reduced. We then reversed the mutations by creating three new clones, representing 1) U97C; 2) G4327A and U5088C; and 3) their combination together in the third clone. The viral titers obtained from all the clones were comparable, but the virions derived from the third clone induced myocarditis comparable to that induced by wild type virus; however, the pancreatitis-inducing ability remained unaltered, suggesting that the mutations described above selectively influence myocarditogenicity. Because the accumulation of mutations during passages is a continuous process in RNA viruses, it is possible that CVB3 viruses containing such altered nts may evolve naturally, thus favoring their survival in the environment. PMID:26098885

  3. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production.

    PubMed

    Gouttenoire, Jérôme; Montserret, Roland; Paul, David; Castillo, Rosa; Meister, Simon; Bartenschlager, Ralf; Penin, François; Moradpour, Darius

    2014-10-01

    Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B. PMID:25392992

  4. Recent Progress in Studies of Arterivirus- and Coronavirus-Host Interactions

    PubMed Central

    Zhong, Yanxin; Tan, Yong Wah; Liu, Ding Xiang

    2012-01-01

    Animal coronaviruses, such as infectious bronchitis virus (IBV), and arteriviruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), are able to manifest highly contagious infections in their specific native hosts, thereby arising in critical economic damage to animal industries. This review discusses recent progress in studies of virus-host interactions during animal and human coronavirus and arterivirus infections, with emphasis on IBV-host cell interactions. These interactions may be directly involved in viral replication or lead to the alteration of certain signaling pathways, such as cell stress response and innate immunity, to facilitate viral replication and pathogenesis. PMID:22816036

  5. Identification of a Novel Nonstructural Protein, VP9, from White Spot Syndrome Virus: Its Structure Reveals a Ferredoxin Fold with Specific Metal Binding Sites

    SciTech Connect

    Liu,Y.; Wu, J.; Song, J.; Sivaraman, J.; Hew, C.

    2006-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP9, a full-length protein of WSSV, encoded by open reading frame wsv230, was identified for the first time in the infected Penaeus monodon shrimp tissues, gill, and stomach as a novel, nonstructural protein by Western blotting, mass spectrometry, and immunoelectron microscopy. Real-time reverse transcription-PCR demonstrated that the transcription of VP9 started from the early to the late stage of WSSV infection as a major mRNA species. The structure of full-length VP9 was determined by both X-ray and nuclear magnetic resonance (NMR) techniques. It is the first structure to be reported for WSSV proteins. The crystal structure of VP9 revealed a ferredoxin fold with divalent metal ion binding sites. Cadmium sulfate was found to be essential for crystallization. The Cd2+ ions were bound between the monomer interfaces of the homodimer. Various divalent metal ions have been titrated against VP9, and their interactions were analyzed using NMR spectroscopy. The titration data indicated that VP9 binds with both Zn2+ and Cd2+. VP9 adopts a similar fold as the DNA binding domain of the papillomavirus E2 protein. Based on our present investigations, we hypothesize that VP9 might be involved in the transcriptional regulation of WSSV, a function similar to that of the E2 protein during papillomavirus infection of the host cells.

  6. The non-structural protein Nsp2TF of porcine reproductive and respiratory syndrome virus down-regulates the expression of Swine Leukocyte Antigen class I.

    PubMed

    Cao, Qian M; Subramaniam, Sakthivel; Ni, Yan-Yan; Cao, Dianjun; Meng, Xiang-Jin

    2016-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is arguably the most economically-important global swine pathogen. Here we demonstrated that PRRSV down-regulates Swine Leukocyte Antigen class I (SLA-I) expression in porcine alveolar macrophages, PK15-CD163 cells and monocyte-derived dendritic cells. To identify the viral protein(s) involved in SLA-I down-regulation, we tested all 22 PRRSV structural and non-structural proteins and identified that Nsp1α and Nsp2TF, and GP3 significantly down-regulated SLA-I expression with Nsp2TF showing the greatest effect. We further generated a panel of mutant viruses in which the Nsp2TF protein synthesis was abolished, and found that the two mutants with disrupted -2 ribosomal frameshifting elements and additional stop codons in the TF domain were unable to down-regulate SLA-I expression. Additionally we demonstrated that the last 68 amino acids of TF domain in Nsp2TF are critical for this function. Collectively, the results indicate a novel function of Nsp2TF in negative modulation of SLA-I expression. PMID:26895249

  7. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen. PMID:12198607

  8. Correlation between serum levels of anti-endothelial cell autoantigen and anti-dengue virus nonstructural protein 1 antibodies in dengue patients.

    PubMed

    Cheng, Hsien-Jen; Luo, Yueh-Hsia; Wan, Shu-Wen; Lin, Chiou-Feng; Wang, Shan-Tair; Hung, Nguyen Thanh; Liu, Ching-Chuan; Ho, Tzong-Shiann; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Lin, Yee-Shin

    2015-05-01

    We have previously shown that anti-dengue virus nonstructural protein 1 (anti-DENV NS1) antibodies cross-react with endothelial cells, and several autoantigens have been identified. This study shows that the antibody levels against these self-proteins are higher in sera from patients with dengue hemorrhagic fever (DHF) than those in control sera. Anti-protein disulfide isomerase (PDI) and anti-heat shock protein 60 (anti-HSP60) IgM levels correlated with both anti-endothelial cells and anti-DENV NS1 IgM titers. A cross-reactive epitope on the NS1 amino acid residues 311-330 (P311-330) had been predicted. We further found that there were higher IgM and IgG levels against P311-330 in DHF patients' sera than those in the control sera. In addition, correlations were observed between anti-PDI with anti-P311-330 IgM and IgG levels, respectively. Therefore, our results indicate that DENV NS1 P311-330 is a major epitope for cross-reactive antibodies to PDI on the endothelial cell surface, which may play an important role in DENV infection-induced autoimmunity. PMID:25758647

  9. Interaction Research on the Antiviral Molecule Dufulin Targeting on Southern Rice Black Streaked Dwarf Virus P9-1 Nonstructural Protein

    PubMed Central

    Wang, Zhenchao; Li, Xiangyang; Wang, Wenli; Zhang, Weiying; Yu, Lu; Hu, Deyu; Song, Baoan

    2015-01-01

    Southern rice black streaked dwarf virus (SRBSDV) causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL), an ideal anti-SRBSDV molecule, and investigated the interactions of DFL targeting on the nonstructural protein P9-1. The biological sequence information and bonding characterization of DFL to four kinds of P9-1 protein were described with fluorescence titration (FT) and microscale thermophoresis (MST) assays. The sequence analysis indicated that P9-1 had highly-conserved C- and N-terminal amino acid residues and a hypervariable region that differed from 131 aa to 160 aa. Consequently, wild-type (WT-His-P9-1), 23 C-terminal residues truncated (TR-ΔC23-His-P9-1), 6 N-terminal residues truncated (TR-ΔN6-His-P9-1), and Ser138 site-directed (MU-138-His-P9-1) mutant proteins were expressed. The FT and MST assay results indicated that DFL bounded to WT-His-P9-1 with micromole affinity and the 23 C-terminal amino acids were the potential targeting site. This system, which combines a complete sequence analysis, mutant protein expression, and binding action evaluating system, could further advance the understanding of the interaction abilities between antiviral drugs and their targets. PMID:25807053

  10. Nonstructural protein (NS1) of human parvovirus B19 stimulates host innate immunity and blunts the exogenous type I interferon signaling in vitro.

    PubMed

    Wu, Jianqin; Chen, Xu; Ye, Haiyan; Yao, Min; Li, Shilin; Chen, Limin

    2016-08-15

    B19 virus is a non-enveloped DNA virus and belongs to the family of parvoviridae. There are two large open reading frames (ORFs), nonstructural protein (NS1) and two capsid proteins (VP1 and VP2). Host innate immune responses form the first line of defense against many pathogen invasion. How B19 virus, especially its encoded viral proteins interacts with host innate immune system remains unknown. In this study we aim to investigate the effect of NS1 on the host innate immune response and exogenous type I IFN signaling. Here we found that the type I IFN can be stimulated by NS1. Interestingly, NS1 also plays an important role in inhibiting the exogenous type I IFN signaling at p-STAT1, ISRE and ISGs levels. We concluded that NS1 may play pivotal role in evading the host immune surveillance. Our data shed novel light on the pathogenesis of B19 viral infection and virus evasion strategies. PMID:27270128

  11. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    SciTech Connect

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  12. Nonstructural seismic restraint guidelines

    SciTech Connect

    Butler, D.M.; Czapinski, R.H.; Firneno, M.J.; Feemster, H.C.; Fornaciari, N.R.; Hillaire, R.G.; Kinzel, R.L.; Kirk, D.; McMahon, T.T.

    1993-08-01

    The Nonstructural Seismic Restraint Guidelines provide general information about how to secure or restrain items (such as material, equipment, furniture, and tools) in order to prevent injury and property, environmental, or programmatic damage during or following an earthquake. All SNL sites may experience earthquakes of magnitude 6.0 or higher on the Richter scale. Therefore, these guidelines are written for all SNL sites.

  13. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments.

    PubMed Central

    Cotmore, S F; McKie, V C; Anderson, L J; Astell, C R; Tattersall, P

    1986-01-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights of 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Restriction endonuclease fragments of this cloned B19 genome were treated with BAL 31 and shotgun cloned into the open reading frame expression vector pJS413. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus. Images PMID:3021988

  14. Transactivation of programmed ribosomal frameshifting by a viral protein.

    PubMed

    Li, Yanhua; Treffers, Emmely E; Napthine, Sawsan; Tas, Ali; Zhu, Longchao; Sun, Zhi; Bell, Susanne; Mark, Brian L; van Veelen, Peter A; van Hemert, Martijn J; Firth, Andrew E; Brierley, Ian; Snijder, Eric J; Fang, Ying

    2014-05-27

    Programmed -1 ribosomal frameshifting (-1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes -1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual -2 frameshifting (-2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of -1 PRF, yielding a third, truncated nsp2 variant named "nsp2N." Remarkably, we now show that both -2 and -1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β's papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection. PMID:24825891

  15. Two Novel Simian Arteriviruses in Captive and Wild Baboons (Papio spp.)

    PubMed Central

    Bailey, Adam L.; Lauck, Michael; Sibley, Samuel D.; Pecotte, Jerilyn; Rice, Karen; Weny, Geoffrey; Tumukunde, Alex; Hyeroba, David; Greene, Justin; Correll, Michael; Gleicher, Michael; Friedrich, Thomas C.; Jahrling, Peter B.; Kuhn, Jens H.; Goldberg, Tony L.; Rogers, Jeffrey

    2014-01-01

    ABSTRACT Since the 1960s, simian hemorrhagic fever virus (SHFV; Nidovirales, Arteriviridae) has caused highly fatal outbreaks of viral hemorrhagic fever in captive Asian macaque colonies. However, the source(s) of these outbreaks and the natural reservoir(s) of this virus remain obscure. Here we report the identification of two novel, highly divergent simian arteriviruses related to SHFV, Mikumi yellow baboon virus 1 (MYBV-1) and Southwest baboon virus 1 (SWBV-1), in wild and captive baboons, respectively, and demonstrate the recent transmission of SWBV-1 among captive baboons. These findings extend our knowledge of the genetic and geographic diversity of the simian arteriviruses, identify baboons as a natural host of these viruses, and provide further evidence that baboons may have played a role in previous outbreaks of simian hemorrhagic fever in macaques, as has long been suspected. This knowledge should aid in the prevention of disease outbreaks in captive macaques and supports the growing body of evidence that suggests that simian arterivirus infections are common in Old World monkeys of many different species throughout Africa. IMPORTANCE Historically, the emergence of primate viruses both in humans and in other primate species has caused devastating outbreaks of disease. One strategy for preventing the emergence of novel primate pathogens is to identify microbes with the potential for cross-species transmission in their natural state within reservoir species from which they might emerge. Here, we detail the discovery and characterization of two related simian members of the Arteriviridae family that have a history of disease emergence and host switching. Our results expand the phylogenetic and geographic range of the simian arteriviruses and define baboons as a natural host for these viruses. Our findings also identify a potential threat to captive macaque colonies by showing that simian arteriviruses are actively circulating in captive baboons. PMID

  16. Divergent Simian Arteriviruses Cause Simian Hemorrhagic Fever of Differing Severities in Macaques

    PubMed Central

    Moncla, Louise H.; Weiler, Andrea M.; Charlier, Olivia; Rojas, Oscar; Byrum, Russell; Ragland, Dan R.; Cohen, Melanie; Sanford, Hannah B.; Qin, Jing

    2016-01-01

    ABSTRACT Simian hemorrhagic fever (SHF) is a highly lethal disease in captive macaques. Three distinct arteriviruses are known etiological agents of past SHF epizootics, but only one, simian hemorrhagic fever virus (SHFV), has been isolated in cell culture. The natural reservoir(s) of the three viruses have yet to be identified, but African nonhuman primates are suspected. Eleven additional divergent simian arteriviruses have been detected recently in diverse and apparently healthy African cercopithecid monkeys. Here, we report the successful isolation in MARC-145 cell culture of one of these viruses, Kibale red colobus virus 1 (KRCV-1), from serum of a naturally infected red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) sampled in Kibale National Park, Uganda. Intramuscular (i.m.) injection of KRCV-1 into four cynomolgus macaques (Macaca fascicularis) resulted in a self-limiting nonlethal disease characterized by depressive behavioral changes, disturbance in coagulation parameters, and liver enzyme elevations. In contrast, i.m. injection of SHFV resulted in typical lethal SHF characterized by mild fever, lethargy, lymphoid depletion, lymphoid and hepatocellular necrosis, low platelet counts, increased liver enzyme concentrations, coagulation abnormalities, and increasing viral loads. As hypothesized based on the genetic and presumed antigenic distance between KRCV-1 and SHFV, all four macaques that had survived KRCV-1 injection died of SHF after subsequent SHFV injection, indicating a lack of protective heterotypic immunity. Our data indicate that SHF is a disease of macaques that in all likelihood can be caused by a number of distinct simian arteriviruses, although with different severity depending on the specific arterivirus involved. Consequently, we recommend that current screening procedures for SHFV in primate-holding facilities be modified to detect all known simian arteriviruses. PMID:26908578

  17. The Endoribonuclease Activity Essential for the Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus to Inhibit NLRP3 Inflammasome-Mediated IL-1β Induction.

    PubMed

    Wang, Chao; Shi, Xibao; Zhang, Xiaozhuan; Wang, Aiping; Wang, Li; Chen, Jing; Deng, Ruiguang; Zhang, Gaiping

    2015-12-01

    NLRP3 inflammasome, which is multiprotein complex that induces the maturity and secretion of proinflammatory interleukin-1β (IL-1β), takes a bridge between the innate and adaptive immune responses to the invading pathogens. It has been shown that porcine reproductive and respiratory syndrome virus (PRRSV) could activate the NLRP3 inflammasome but induce the host's immunosuppression. This study aims to explore whether PRRSV could encode the component to antagonize the NLRP3 inflammasome. The obtained results showed that PRRSV could induce the expression and secretion of IL-1β in early infection through the pathway of NLRP3 inflammasome in porcine alveolar macrophages (PAMs), but the levels of pro-IL-1β mRNA and IL-1β protein decreased to a degree that was similar to the level of the mock-infected group in later infection. This work also found that PRRSV nonstructural protein (nsp) 11 could inhibit the expression of pro-IL-1β mRNA induced by lipopolysaccharide (LPS) and the secretion of IL-1β induced by LPS plus nigericin in PAMs. Furthermore, the mutation studies showed that the endoribonuclease activity was essential for nsp11 to inhibit the secretion of IL-1β. Therefore, it could be indicated that PRRSV could induce the activation of NLRP3 inflammasome, but the virus encoded nsp11 to inhibit this action. PMID:26398903

  18. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus.

    PubMed

    Bhalla, Nishank; Sun, Chengqun; Metthew Lam, L K; Gardner, Christina L; Ryman, Kate D; Klimstra, William B

    2016-09-01

    Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus. PMID:27318152

  19. Human respiratory syncytial virus non-structural protein NS1 modifies miR-24 expression via transforming growth factor-β.

    PubMed

    Bakre, Abhijeet; Wu, Weining; Hiscox, Julian; Spann, Kirsten; Teng, Michael N; Tripp, Ralph A

    2015-11-01

    Human respiratory syncytial virus (RSV) is a major health challenge in the young and elderly owing to the lack of a safe and effective vaccine and proven antiviral drugs. Understanding the mechanisms by which viral genes and proteins modulate the host response to infection is critical for identifying novel disease intervention strategies. In this study, the RSV non-structural protein NS1 was shown to suppress miR-24 expression during infection. Lack of NS1 was linked to increased expression of miR-24, whilst NS1 overexpression suppressed miR-24 expression. NS1 was found to induce Kruppel-like factor 6 (KLF6), a transcription factor that positively regulates the transforming growth factor (TGF)-b pathway to induce cell cycle arrest. Silencing of KLF6 led to increased miR-24 expression via downregulation of TGF-β. Treatment with exogenous TGF-β suppressed miR-24 expression and induced KLF6. Confocal microscopy showed co-localization of KLF6 and RSV NS1. These findings indicated that RSV NS1 interacts with KLF6 and modulates miR-24 expression and TGF-β, which facilitates RSV replication. PMID:26253191

  20. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    SciTech Connect

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela; Alfonso, Victoria; Taboga, Oscar

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.

  1. Venezuelan equine encephalitis virus non-structural protein 3 (nsP3) interacts with RNA helicases DDX1 and DDX3 in infected cells.

    PubMed

    Amaya, Moushimi; Brooks-Faulconer, Taryn; Lark, Tyler; Keck, Forrest; Bailey, Charles; Raman, Venu; Narayanan, Aarthi

    2016-07-01

    The mosquito-borne New World alphavirus, Venezuelan equine encephalitis virus (VEEV) is a Category B select agent with no approved vaccines or therapies to treat infected humans. Therefore it is imperative to identify novel targets that can be targeted for effective therapeutic intervention. We aimed to identify and validate interactions of VEEV nonstructural protein 3 (nsP3) with host proteins and determine the consequences of these interactions to viral multiplication. We used a HA tagged nsP3 infectious clone (rTC-83-nsP3-HA) to identify and validate two RNA helicases: DDX1 and DDX3 that interacted with VEEV-nsP3. In addition, DDX1 and DDX3 knockdown resulted in a decrease in infectious viral titers. Furthermore, we propose a functional model where the nsP3:DDX3 complex interacts with the host translational machinery and is essential in the viral life cycle. This study will lead to future investigations in understanding the importance of VEEV-nsP3 to viral multiplication and apply the information for the discovery of novel host targets as therapeutic options. PMID:27105836

  2. Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 4 Antagonizes Beta Interferon Expression by Targeting the NF-κB Essential Modulator

    PubMed Central

    Huang, Chen; Zhang, Qiong; Guo, Xue-kun; Yu, Zhi-bin; Xu, Ao-Tian; Tang, Jun

    2014-01-01

    ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious pathogen that causes severe diseases in pigs and great economic losses to the swine industry worldwide. Type I interferons (IFNs) play a crucial role in antiviral immunity. In the present study, we demonstrated that infection with the highly pathogenic PRRSV strain JXwn06 antagonized type I IFN expression induced by poly(I·C) in both porcine alveolar macrophages (PAMs) and blood monocyte-derived macrophages (BMo). Subsequently, we showed that the inhibition of poly(I·C)-induced IFN-β production by PRRSV was dependent on the blocking of NF-κB signaling pathways. By screening PRRSV nonstructural and structural proteins, we demonstrated that nonstructural protein 4 (nsp4), a viral 3C-like serine protease, significantly suppressed IFN-β expression. Moreover, we verified that nsp4 inhibited NF-κB activation induced by signaling molecules, including RIG-I, VISA, TRIF, and IKKβ. nsp4 was shown to target the NF-κB essential modulator (NEMO) at the E349-S350 site to mediate its cleavage. Importantly, nsp4 mutants with defective protease activity abolished its ability to cleave NEMO and inhibit IFN-β production. These findings might have implications for our understanding of PRRSV pathogenesis and its mechanisms for evading the host immune response. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is a major agent of respiratory diseases in pigs. Like many other viruses, PRRSV has evolved a variety of strategies to evade host antiviral innate immunity for survival and propagation. In this study, we show that PRRSV nsp4 is a novel antagonist of the NF-κB signaling pathway, which is responsible for regulating the expression of type I interferons and other crucial cytokines. We then investigated the underlying mechanism used by nsp4 to suppress NF-κB-mediated IFN-β production. We found that nsp4 interfered with the NF-κB signaling pathway through the

  3. The secreted form of dengue virus nonstructural protein NS1 is endocytosed by hepatocytes and accumulates in late endosomes: implications for viral infectivity.

    PubMed

    Alcon-LePoder, Sophie; Drouet, Marie-Thérèse; Roux, Pascal; Frenkiel, Marie-Pascale; Arborio, Michel; Durand-Schneider, Anne-Marie; Maurice, Michèle; Le Blanc, Isabelle; Gruenberg, Jean; Flamand, Marie

    2005-09-01

    The flavivirus nonstructural protein NS1 is expressed as three discrete species in infected mammalian cells: an intracellular, membrane-associated form essential for viral replication, a cell surface-associated form that may be involved in signal transduction, and a secreted form (sNS1), the biological properties of which remain elusive. To determine the distribution of the dengue virus (DEN) sNS1 protein in vivo, we have analyzed by immunohistological means the tissue tropism of purified DEN sNS1 injected intravenously into adult mice. The sNS1 protein was found predominantly associated with the liver, where hepatocytes appeared to represent a major target cell. We further showed that sNS1 could be efficiently endocytosed by human Huh7 and HepG2 hepatocytes in vitro. After its internalization, the protein was detected intracellularly for at least 48 h without being substantially degraded. Colocalization studies of sNS1 with markers of the endolysosomal compartments revealed that the protein was specifically targeted to lysobisphosphatidic acid-rich structures reminiscent of late endosomes, as confirmed by electron microscopy. Intracellular accumulation of sNS1 in Huh7 cells enhanced the fluid phase uptake of rhodamine-labeled dextran. Furthermore, preincubation of Huh7 cells with sNS1 increased dengue virus production after infection with the homologous strain of DEN-1 virus. Our results demonstrate that the accumulation of DEN sNS1 in the late endosomal compartment of hepatocytes potentializes subsequent dengue virus infection in vitro, raising the possibility that sNS1 may contribute to viral propagation in vivo. PMID:16103191

  4. Nuclear Magnetic Resonance Structure of the Nucleic Acid-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 3▿

    PubMed Central

    Serrano, Pedro; Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Joseph, Jeremiah S.; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand β-sheet holding two α-helices of three and four turns that are oriented antiparallel to the β-strands. Two antiparallel two-strand β-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold. PMID:19828617

  5. The Nonstructural Protein 2C of a Picorna-Like Virus Displays Nucleic Acid Helix Destabilizing Activity That Can Be Functionally Separated from Its ATPase Activity

    PubMed Central

    Cheng, Zhenyun; Yang, Jie; Xia, Hongjie; Qiu, Yang; Wang, Zhaowei; Han, Yajuan; Xia, Xiaoling; Qin, Cheng-Feng

    2013-01-01

    Picorna-like viruses in the Picornavirales order are a large group of positive-strand RNA viruses that include numerous important pathogens for plants, insects, and humans. In these viruses, nonstructural protein 2C is one of the most conserved proteins and contains ATPase activity and putative RNA helicase activity. Here we expressed 2C protein of Ectropis obliqua picorna-like virus (EoV; genus Iflavirus, family Iflaviridae, order Picornavirales) in a eukaryotic expression system and determined that EoV 2C displays ATP-independent nucleic acid helix destabilizing and strand annealing acceleration activity in a concentration-dependent manner, indicating that this picornaviral 2C is more like an RNA chaperone than like the previously predicted RNA helicase. Our further characterization of EoV 2C revealed that divalent metal ions, such as Mg2+ and Zn2+, inhibit 2C-mediated helix destabilization to different extents. Moreover, we determined that EoV 2C also contains ATPase activity like that of other picornaviral 2C proteins and further assessed the functional relevance between its RNA chaperone-like and ATPase activities using mutational analysis as well as their responses to Mg2+. Our data show that, when one of the two 2C activities was dramatically inhibited or almost abolished, the other activity could remain intact, showing that the RNA chaperone-like and ATPase activities of EoV 2C can be functionally separated. This report reveals that a picorna-like virus 2C protein displays RNA helix destabilizing and strand annealing acceleration activity, which may be critical for picornaviral replication and pathogenesis, and should foster our understanding of picorna-like viruses and viral RNA chaperones. PMID:23449794

  6. Differentiation of West Nile Virus-Infected Animals from Vaccinated Animals by Competitive ELISA Using Monoclonal Antibodies Against Non-Structural Protein 1

    PubMed Central

    Chung, Kyung Min; Song, Jaewhan

    2012-01-01

    Abstract Antibodies against non-structural protein 1 (NS1) are considered to be the most reliable indicator of a present or past infection by West Nile virus (WNV) in animals. In this study, an in-house competitive enzyme-linked immunosorbent assay (NS1-cELISA) utilizing baculovirus-expressed NS1 and monoclonal antibodies against NS1 was established for the detection of antibody responses to NS1 in WNV-infected animals. The assay was validated by the simultaneous detection of early antibody responses to NS1 and the structural envelope protein in animals infected with WNV, or inoculated with inactivated WNV. NS1-cELISA detected WNV antibodies at 6 days post-infection (dpi) in a WNV-infected rabbit (percent inhibition [PI] value of 84.0), and at 10 dpi in a WNV-infected chicken (PI value of 67.0). The NS1-cELISA was able to detect WNV antibodies in sera from all WNV-infected rabbits at 10 dpi (PI value of 79.2±18.0), and from three of four WNV-infected chickens at 14 dpi (PI value of 73.7±22.8). The results of this study demonstrate that the antibody response to NS1 is similar to that against envelope protein in WNV-infected rabbits and chickens, whereas animals inoculated with inactivated WNV develop antibody responses only to the envelope protein but not to NS1. The NS1-cELISA developed here has the potential to be a useful tool for monitoring WNV circulation (i.e., the prevalence of specific antibodies against WNV NS1), by assaying serum samples from regions in which an inactivated vaccine control strategy has been implemented. PMID:22217168

  7. Functional Cross-talk between Distant Domains of Chikungunya Virus Non-structural Protein 2 Is Decisive for Its RNA-modulating Activity*

    PubMed Central

    Das, Pratyush Kumar; Merits, Andres; Lulla, Aleksei

    2014-01-01

    Chikungunya virus (CHIKV) non-structural protein 2 (nsP2) is a multifunctional protein that is considered a master regulator of the viral life cycle and a main viral factor responsible for cytopathic effects and subversion of antiviral defense. The C-terminal part of nsP2 possesses protease activity, whereas the N-terminal part exhibits NTPase and RNA triphosphatase activity and is proposed to have helicase activity. Bioinformatics analysis classified CHIKV nsP2 into helicase superfamily 1. However, the biochemical significance of a coexistence of two functionally unrelated modules in this single protein remains unknown. In this study, recombinant nsP2 demonstrated unwinding of double-stranded RNA in a 5′–3′ directionally biased manner and RNA strand annealing activity. Comparative analysis of NTPase and helicase activities of wild type nsP2 with enzymatic capabilities of different truncated or N-terminally extended variants of nsP2 revealed that the C-terminal part of the protein is indispensable for helicase functionality and presumably provides a platform for RNA binding, whereas the N-terminal-most region is apparently involved in obtaining a conformation of nsP2 that allows for its maximal enzymatic activities. The establishment of the protocols for the production of biochemically active CHIKV nsP2 and optimization of the parameters for helicase and NTPase assays are expected to provide the starting point for a further search of possibilities for therapeutic interventions to suppress alphaviral infections. PMID:24407286

  8. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    PubMed

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR. PMID:25862017

  9. Dengue virus serotyping based on envelope and membrane and nonstructural protein NS1 serotype-specific capture immunoglobulin M enzyme-linked immunosorbent assays.

    PubMed

    Shu, Pei-Yun; Chen, Li-Kuang; Chang, Shu-Fen; Su, Chien-Ling; Chien, Li-Jung; Chin, Chuan; Lin, Ting-Hsiang; Huang, Jyh-Hsiung

    2004-06-01

    Envelope and membrane (E/M) and nonstructural protein NS1 serotype-specific capture Immunoglobulin M (IgM) enzyme-linked immunosorbent assays (ELISAs) were developed to differentiate four dengue virus serotypes. A total of 93 anti-dengue virus IgM-positive serum samples collected between days 5 and 45 of illness from 59 confirmed dengue patients were analyzed. The results showed that positive serotype specificity could be identified for 86.1 and 47.6% of serum samples tested for E/M-specific IgM antibodies versus 83.3 and 42.9% of serum samples tested for NS1-specific IgM antibodies from patients with primary and secondary dengue virus infections, respectively. Dual analyses with both E/M and NS1 serotype-specific capture IgM ELISAs showed that positive serotype specificity could be correctly identified for 98.6 and 61.9% of all of the primary and secondary serum samples tested, respectively. These findings suggested that E/M and NS1 serotype-specific capture IgM ELISAs have the potential to be of use in dengue virus serotyping. PMID:15184425

  10. Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice.

    PubMed

    Wu, Shu-Fen; Liao, Ching-Len; Lin, Yi-Ling; Yeh, Chia-Tsui; Chen, Li-Kuang; Huang, Yung-Feng; Chou, Hsin-Ying; Huang, Jau-Ling; Shaio, Men-Fang; Sytwu, Huey-Kang

    2003-09-01

    To evaluate the potential of DNA vaccine against dengue (DEN) infection, we characterize the protective efficacy and immune responses of mice intramuscularly injected with plasmid encoding DEN-2 non-structural protein 1 (NS1). Intravenously challenged by lethal DEN-2, mice vaccinated with NS1-DNA exhibited a delay onset of paralysis, a marked decrease of morbidity, and a significant enhancement of survival. In addition to a moderate increase of NS1-specific antibody titer from immunized mice measured by ELISA, a strong priming effect on anti-NS1 response was also noticed in plasmid NS1-vaccinated mice by radioimmunoprecipitation (RIP) or immunoblot analysis. Interestingly, newborn mice from NS1-DNA-immunized dam showed stronger resistance to viral challenge, as compared to those from vector DNA or PBS-immunized dams, indicating the protective role of NS1-specific antibody. In contrast to humoral immune response, DNA immunization can elicit strong cellular immune responses, including NS1-specific T cell proliferation and cytolytic activity. The NS1-DNA-induced protection can be further augmented by co-injection of plasmid encoding interleukin 12 (IL-12), suggesting an effector role of Th1 immunity against DEN infection. In summary, our results suggest the potential of NS1-DNA vaccine against DEN infection, and indicate both NS1-specific humoral and cellular immune responses contribute to the protection. PMID:12922127

  11. Molecular epidemiology of dengue virus serotype 2 in the Taiwan 2002 outbreak with envelope gene and nonstructural protein 1 gene analysis.

    PubMed

    Tung, Yi-Ching; Lin, Kuei-Hsiang; Chiang, Hung-Che; Ke, Liang-Yin; Chen, Yen-Hsu; Ke, Guan-Ming; Chen, Tun-Chieh; Chou, Lee-Chiu; Lu, Po-Liang

    2008-08-01

    The genetic relationships among dengue virus serotype 2 (DEN-2) isolates from the Taiwan 2002 epidemic were studied by sequence analysis of the envelope (E) and nonstructural protein 1 (NS1) genes. A 0-0.4% divergence among 10 isolates revealed an epidemic strain in the outbreak. Phylogenetic study demonstrated that the 2002 Taiwan isolates were of the Cosmopolitan genotype, which is different from the Asian 1 and Asian 2 genotypes of Taiwan DEN-2 isolates from 1981 to 1998 and the American/Asian genotype of 2005 Taiwan isolates. Although grouping results from both E and NS1 gene sequence analyses were the same, the usage of the NS1 gene as a sequence analysis target has not been validated for the lower bootstrap support values of branches in the phylogenetic tree. Our result showing the same genotype changes in Taiwan and Philippines isolates suggests strain transfer of DEN-2 to nearby countries resulting in the same trend of genotype change. PMID:18926953

  12. Antibody to the nonstructural protein NS1 of Japanese encephalitis virus: potential application of mAb-based indirect ELISA to differentiate infection from vaccination.

    PubMed

    Shu, P Y; Chen, L K; Chang, S F; Yueh, Y Y; Chow, L; Chien, L J; Chin, C; Lin, T H; Huang, J H

    2001-02-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect and differentiate the antibody responses to Japanese encephalitis (JE) virus nonstructural protein NS1 between infected and vaccinated individuals. The results showed that all convalescent sera from JE patients contained NS1-specific IgG antibodies, while 65 and 40% of these sera showed detectable NS1-specific IgM and IgA antibodies, respectively. Specificity analysis showed that NS1-specific IgM and IgA antibodies from JE patients do not cross-react to dengue virus NS1 glycoprotein, while IgG antibodies from 10% of JE patients showed significant cross-reaction to dengue virus NS1 glycoprotein. To differentiate infection from vaccination, the immune sera from 24 children vaccinated with inactivated JE vaccine were analyzed. The data showed that none of these immune sera had detectable NS1-specific IgG antibodies. The results demonstrated the potential application of JE NS1-specific indirect ELISA to differentiate infection from vaccination. PMID:11166901

  13. Endothelial Cell Sensitization by Death Receptor Fractions of an Anti-Dengue Nonstructural Protein 1 Antibody Induced Plasma Leakage, Coagulopathy, and Mortality in Mice.

    PubMed

    Sun, Der-Shan; Chang, Ying-Chen; Lien, Te-Sheng; King, Chwan-Chuen; Shih, Yung-Luen; Huang, Hsuan-Shun; Wang, Teng-Yi; Li, Chen-Ru; Lee, Chin-Cheng; Hsu, Ping-Ning; Chang, Hsin-Hou

    2015-09-15

    The mechanisms leading to the life-threatening dengue hemorrhagic fever (DHF) remain elusive. DHF preferentially occurs during secondary dengue infections, suggesting that aberrant immune responses are involved in its development. We previously demonstrated that the autoantibodies elicited by dengue virus (DENV) nonstructural protein 1 (NS1; anti-NS1 Igs) induce plasma leakage and mortality in mice with warfarinized anticoagulant suppression. However, the involved pathogenic Ig fractions of anti-NS1 Igs remain unclear. In this study, the autoreactive Igs in patients with DHF and in NS1-immunized rabbits crossreacted with TNF-related apoptosis-inducing ligand receptor 1 (death receptor [DR]4). Challenges with the DENV in a subcytotoxic dose sensitized endothelial cells to apoptosis. Treatments with the autoantibodies induced proapoptotic activities and suppressed the surface expression of endothelial anticoagulant thrombomodulin. Combined treatments comprising the DENV and DR4 affinity-purified fractions of anti-NS1 IgGs (anti-NS1-DR4 Ig), but not preimmune control IgGs, in subcytotoxic doses led to apoptosis in endothelial cells. Treatments with the anti-NS1-DR4 Ig led to plasma leakage, coagulopathy, and morality in mice with warfarinized anticoagulant suppression. These results suggest that DR4-induced endothelial cell sensitization through NS1-elicited autoantibodies exacerbates anticoagulant suppression, vascular injury, and plasma leakage. Detecting and blocking anti-DR Igs in patients may be novel strategies for managing severe DENV infection. PMID:26259584

  14. Molecular basis for specific viral RNA recognition and 2′-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5)

    PubMed Central

    Zhao, Yongqian; Soh, Tingjin Sherryl; Lim, Siew Pheng; Chung, Ka Yan; Swaminathan, Kunchithapadam; Vasudevan, Subhash G.; Shi, Pei-Yong; Lescar, Julien

    2015-01-01

    Dengue virus (DENV) causes several hundred million human infections and more than 20,000 deaths annually. Neither an efficacious vaccine conferring immunity against all four circulating serotypes nor specific drugs are currently available to treat this emerging global disease. Capping of the DENV RNA genome is an essential structural modification that protects the RNA from degradation by 5′ exoribonucleases, ensures efficient expression of viral proteins, and allows escape from the host innate immune response. The large flavivirus nonstructural protein 5 (NS5) (105 kDa) has RNA methyltransferase activities at its N-terminal region, which is responsible for capping the virus RNA genome. The methyl transfer reactions are thought to occur sequentially using the strictly conserved flavivirus 5′ RNA sequence as substrate (GpppAG-RNA), leading to the formation of the 5′ RNA cap: G0pppAG-RNA→m7G0pppAG-RNA (“cap-0”)→m7G0pppAm2′-O-G-RNA (“cap-1”). To elucidate how viral RNA is specifically recognized and methylated, we determined the crystal structure of a ternary complex between the full-length NS5 protein from dengue virus, an octameric cap-0 viral RNA substrate bearing the authentic DENV genomic sequence (5′-m7G0pppA1G2U3U4G5U6U7-3′), and S-adenosyl-l-homocysteine (SAH), the by-product of the methylation reaction. The structure provides for the first time, to our knowledge, a molecular basis for specific adenosine 2′-O-methylation, rationalizes mutagenesis studies targeting the K61-D146-K180-E216 enzymatic tetrad as well as residues lining the RNA binding groove, and offers previously unidentified mechanistic and evolutionary insights into cap-1 formation by NS5, which underlies innate immunity evasion by flaviviruses. PMID:26578813

  15. Molecular basis for specific viral RNA recognition and 2'-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5).

    PubMed

    Zhao, Yongqian; Soh, Tingjin Sherryl; Lim, Siew Pheng; Chung, Ka Yan; Swaminathan, Kunchithapadam; Vasudevan, Subhash G; Shi, Pei-Yong; Lescar, Julien; Luo, Dahai

    2015-12-01

    Dengue virus (DENV) causes several hundred million human infections and more than 20,000 deaths annually. Neither an efficacious vaccine conferring immunity against all four circulating serotypes nor specific drugs are currently available to treat this emerging global disease. Capping of the DENV RNA genome is an essential structural modification that protects the RNA from degradation by 5' exoribonucleases, ensures efficient expression of viral proteins, and allows escape from the host innate immune response. The large flavivirus nonstructural protein 5 (NS5) (105 kDa) has RNA methyltransferase activities at its N-terminal region, which is responsible for capping the virus RNA genome. The methyl transfer reactions are thought to occur sequentially using the strictly conserved flavivirus 5' RNA sequence as substrate (GpppAG-RNA), leading to the formation of the 5' RNA cap: G0pppAG-RNA → (m7)G0pppAG-RNA ("cap-0")→(m7)G0pppAm2'-O-G-RNA ("cap-1"). To elucidate how viral RNA is specifically recognized and methylated, we determined the crystal structure of a ternary complex between the full-length NS5 protein from dengue virus, an octameric cap-0 viral RNA substrate bearing the authentic DENV genomic sequence (5'-(m7)G0pppA1G2U3U4G5U6U7-3'), and S-adenosyl-l-homocysteine (SAH), the by-product of the methylation reaction. The structure provides for the first time, to our knowledge, a molecular basis for specific adenosine 2'-O-methylation, rationalizes mutagenesis studies targeting the K61-D146-K180-E216 enzymatic tetrad as well as residues lining the RNA binding groove, and offers previously unidentified mechanistic and evolutionary insights into cap-1 formation by NS5, which underlies innate immunity evasion by flaviviruses. PMID:26578813

  16. The DNA virus white spot syndrome virus uses an internal ribosome entry site for translation of the highly expressed nonstructural protein ICP35.

    PubMed

    Kang, Shih-Ting; Wang, Han-Ching; Yang, Yi-Ting; Kou, Guang-Hsiung; Lo, Chu-Fang

    2013-12-01

    Although shrimp white spot syndrome virus (WSSV) is a large double-stranded DNA virus (∼300 kbp), it expresses many polycistronic mRNAs that are likely to use internal ribosome entry site (IRES) elements for translation. A polycistronic mRNA encodes the gene of the highly expressed nonstructural protein ICP35, and here we use a dual-luciferase assay to demonstrate that this protein is translated cap independently by an IRES element located in the 5' untranslated region of icp35. A deletion analysis of this region showed that IRES activity was due to stem-loops VII and VIII. A promoterless assay, a reverse transcription-PCR together with quantitative real-time PCR analysis, and a stable stem-loop insertion upstream of the Renilla luciferase open reading frame were used, respectively, to rule out the possibility that cryptic promoter activity, abnormal splicing, or read-through was contributing to the IRES activity. In addition, a Northern blot analysis was used to confirm that only a single bicistronic mRNA was expressed. The importance of ICP35 to viral replication was demonstrated in a double-stranded RNA (dsRNA) interference knockdown experiment in which the mortality of the icp35 dsRNA group was significantly reduced. Tunicamycin was used to show that the α subunit of eukaryotic initiation factor 2 is required for icp35 IRES activity. We also found that the intercalating drug quinacrine significantly inhibited icp35 IRES activity in vitro and reduced the mortality rate and viral copy number in WSSV-challenged shrimp. Lastly, in Sf9 insect cells, we found that knockdown of the gene for the Spodoptera frugiperda 40S ribosomal protein RPS10 decreased icp35 IRES-regulated firefly luciferase activity but had no effect on cap-dependent translation. PMID:24089551

  17. Natural selection of adaptive mutations in non-structural genes increases trans-encapsidation of hepatitis C virus replicons lacking envelope protein genes.

    PubMed

    Fournier, Carole; Helle, François; Descamps, Véronique; Morel, Virginie; François, Catherine; Dedeurwaerder, Sarah; Wychowski, Czeslaw; Duverlie, Gilles; Castelain, Sandrine

    2013-05-01

    A trans-packaging system for hepatitis C virus (HCV) replicons lacking envelope glycoproteins was developed. The replicons were efficiently encapsidated into infectious particles after expression in trans of homologous HCV envelope proteins under the control of an adenoviral vector. Interestingly, expression in trans of core or core, p7 and NS2 with envelope proteins did not enhance trans-encapsidation. Expression of heterologous envelope proteins, in the presence or absence of heterologous core, p7 and NS2, did not rescue single-round infectious particle production. To increase the titre of homologous, single-round infectious particles in our system, successive cycles of trans-encapsidation and infection were performed. Four cycles resulted in a 100-fold increase in the yield of particles. Sequence analysis revealed a total of 16 potential adaptive mutations in two independent experiments. Except for a core mutation in one experiment, all the mutations were located in non-structural regions mainly in NS5A (four in domain III and two near the junction with the NS5B gene). Reverse genetics studies suggested that D2437A and S2443T adaptive mutations, which are located at the NS5A-B cleavage site did not affect viral replication, but enhanced the single-round infectious particles assembly only in trans-encapsidation model. In conclusion, our trans-encapsidation system enables the production of HCV single-round infectious particles. This system is adaptable and can positively select variants. The adapted variants promote trans-encapsidation and should constitute a valuable tool in the development of replicon-based HCV vaccines. PMID:23288424

  18. Nonstructural protein 1{alpha} subunit-based inhibition of NF-{kappa}B activation and suppression of interferon-{beta} production by porcine reproductive and respiratory syndrome virus

    SciTech Connect

    Song Cheng; Krell, Peter; Yoo, Dongwan

    2010-11-25

    Induction of type I interferon (IFN-{alpha}/{beta}) is an early antiviral response of the host, and porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to downregulate the IFN response during infection in cells and pigs. We report that the PRRSV nonstructural protein 1{alpha} (Nsp1{alpha}) subunit of Nsp1 is a nuclear-cytoplasmic protein distributed to the nucleus and contains a strong suppressive activity for IFN-{beta} production that is mediated through the retinoic acid-inducible gene I (RIG-I) signaling pathway. Nsp1{alpha} suppressed the activation of nuclear factor (NF)-{kappa}B when stimulated with dsRNA or tumor necrosis factor (TNF)-{alpha}, and NF-{kappa}B suppression was RIG-I-dependent. The suppression of NF-{kappa}B activation was associated with the poor production of IFN-{beta} during PRRSV infection. The C-terminal 14 amino acids of the Nsp1{alpha} subunit were critical in maintaining immunosuppressive activity of Nsp1{alpha} for both IFN-{beta} and NF-{kappa}B, suggesting that the newly identified zinc finger configuration comprising of Met180 may be crucial for inhibitory activities. Nsp1{alpha} inhibited I{kappa}B phosphorylation and as a consequence NF-{kappa}B translocation to the nucleus was blocked, leading to the inhibition of NF-{kappa}B stimulated gene expression. Our results suggest that PRRSV Nsp1{alpha} is a multifunctional nuclear protein participating in the modulation of the host IFN system.

  19. XAS Characterization of the Zn Site of Non-structural Protein 3 (NS3) from Hepatitis C Virus

    NASA Astrophysics Data System (ADS)

    Ascone, I.; Nobili, G.; Benfatto, M.; Congiu-Castellano, A.

    2007-02-01

    XANES spectra of non structural protein 3 (NS3) have been calculated using 4 Zn coordination models from three crystallographic structures in the Protein Data Base (PDB): 1DY9, subunit B, 1CU1 subunit A and B, and 1JXP subunit B. Results indicate that XANES is an appropriate tool to distinguish among them. Experimental XANES spectra have been simulated refining crystallographic data. The model obtained by XAS is compared with the PDB models.

  20. Diagnostic application of recombinant non-structural protein 3A to detect antibodies induced by foot-and-mouth disease virus infection.

    PubMed

    Biswal, Jitendra K; Ranjan, Rajeev; Pattnaik, Bramhadev

    2016-05-01

    Detection of antibodies to the non-structural proteins (NSPs) of FMD virus (FMDV) is the preferred differential diagnostic method for identification of FMD-infected animals in the vaccinated population. Nevertheless, due to the observed variability in the antibody response to NSPs, the likelihood of screening or confirming the FMD infection status in animals is increased if an antibody profile to multiple NSPs is considered for diagnosis. In order to develop and evaluate an additional NSP-based diagnostic assay, in this study, the recombinant 3A protein of FMDV was expressed in Escherichia coli and used as an antigen for detection of FMD infection specific antibodies. At the fixed cut-off value of 45 percentage of positivity, the diagnostic sensitivity and specificity of 3A indirect-ELISA (I-ELISA) were found to be 95.7% and 96.3%, respectively. In FMD naturally infected cattle, about 85% of clinically infected and 75% of asymptomatic in-contact populations were found positive at 13 months post-outbreak. The 3A I-ELISA was further evaluated with the bovine serum samples collected randomly from different parts of the country. Furthermore, the performance of newly developed 3A I-ELISA was compared with the extensively used in-house r3AB3 I-ELISA, and the overall concordance in test results was found to be 93.62%. The r3A I-ELISA could be useful as a screening or confirmatory assay in the sero-surveillance of FMD in India irrespective of extensive bi-annual vaccination. PMID:26995490

  1. Human parvovirus B19 non-structural protein (NS1) induces apoptosis through mitochondria cell death pathway in COS-7 cells.

    PubMed

    Hsu, Tsai-Ching; Wu, Wen-Jun; Chen, Meng-Chi; Tsay, Gregory J

    2004-01-01

    Human parvovirus B19 has been found in various tissues in addition to erythroid lineage cells, and non-structural protein (NS1) is reported to induce cytotoxicity and apoptosis in erythroid lineage cells, but the mechanism in non-permissive cells is still unclear. To address this issue, we have constructed the NS1 gene in a cytomegalovirus episomal vector, pEGFP-C1 and transfected it into monkey epithelial cells, COS-7. EGFP-NS1 expression in transfected cells was monitored and assessed by fluorescence microscopy, RT-PCR and Western blot. The flow cytometric analysis showed that the NS1-transfected cells were arrested at G1 phase by paclitaxel treatment and there was increased apoptosis. The expression of p53, an important molecule in apoptosis and cell cycle regulation, and its downstream cell cycle kinase inhibitors p16(INK4) and p21(WAF1/CIP1) were up-regulated in the NS1-transfected cells. Also, increased expression of the pro-apoptotic Bcl-2 members Bax, Bad and activation of caspase 3 and caspase 9, but not the activation of caspase 8 or Fas were detected in the NS1-transfected cells. p53-induced Bax expression and subsequent activation of caspase 9 is probably the apoptotic pathway in NS1-transfected cells since activation of the caspase 9 was suppressed by the p53 inhibitor and apoptosis was significantly inhibited by the caspase 9 inhibitor. Our results suggest that the cell death of the NS1-transfected cells is associated with mitochondria related apoptosis. These findings might provide alternative information for further study and characterization of B19 NS1 protein in B19 non-permissive cells. PMID:15370668

  2. Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling.

    PubMed

    Kumar, Anil; Bühler, Sandra; Selisko, Barbara; Davidson, Andrew; Mulder, Klaas; Canard, Bruno; Miller, Sven; Bartenschlager, Ralf

    2013-04-01

    Dengue virus (DENV) is an important human pathogen, especially in the tropical and subtropical parts of the world, causing considerable morbidity and mortality. DENV replication occurs in the cytoplasm; however, a high proportion of nonstructural protein 5 (NS5), containing methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities, accumulates in the nuclei of infected cells. The present study investigates the impact of nuclear localization of NS5 on its known functions, including viral RNA replication and subversion of the type I interferon response. By using a mutation analysis approach, we identified the most critical residues within the αβ nuclear localization signal (αβNLS), which are essential for the nuclear accumulation of this protein. Although we observed an overall correlation between reduced nuclear accumulation of NS5 and impaired RNA replication, we identified one mutant with drastically reduced amounts of nuclear NS5 and virtually unaffected RNA replication, arguing that nuclear localization of NS5 does not correlate strictly with DENV replication, at least in cell culture. Because NS5 plays an important role in blocking interferon signaling via STAT-2 (signal transducer and activator of transcription 2) degradation, the abilities of the NLS mutants to block this pathway were investigated. All mutants were able to degrade STAT-2, with accordingly similar type I interferon resistance phenotypes. Since the NLS is contained within the RdRp domain, the MTase and RdRp activities of the mutants were determined by using recombinant full-length NS5. We found that the C-terminal region of the αβNLS is a critical functional element of the RdRp domain required for polymerase activity. These results indicate that efficient DENV RNA replication requires only minimal, if any, nuclear NS5, and they identify the αβNLS as a structural element required for proper RdRp activity. PMID:23408610

  3. The C Terminus of the Core β-Ladder Domain in Japanese Encephalitis Virus Nonstructural Protein 1 Is Flexible for Accommodation of Heterologous Epitope Fusion

    PubMed Central

    Yen, Li-Chen; Liao, Jia-Teh; Lee, Hwei-Jen; Chou, Wei-Yuan; Chen, Chun-Wei; Lin, Yi-Ling

    2015-01-01

    ABSTRACT NS1 is the only nonstructural protein that enters the lumen of the endoplasmic reticulum (ER), where NS1 is glycosylated, forms a dimer, and is subsequently secreted during flavivirus replication as dimers or hexamers, which appear to be highly immunogenic to the infected host, as protective immunity can be elicited against homologous flavivirus infections. Here, by using a trans-complementation assay, we identified the C-terminal end of NS1 derived from Japanese encephalitis virus (JEV), which was more flexible than other regions in terms of housing foreign epitopes without a significant impact on virus replication. This mapped flexible region is located in the conserved tip of the core β-ladder domain of the multimeric NS1 structure and is also known to contain certain linear epitopes, readily triggering specific antibody responses from the host. Despite becoming attenuated, recombinant JEV with insertion of a neutralizing epitope derived from enterovirus 71 (EV71) into the C-terminal end of NS1 not only could be normally released from infected cells, but also induced dual protective immunity for the host to counteract lethal challenge with either JEV or EV71 in neonatal mice. These results indicated that the secreted multimeric NS1 of flaviviruses may serve as a natural protein carrier to render epitopes of interest more immunogenic in the C terminus of the core β-ladder domain. IMPORTANCE The positive-sense RNA genomes of mosquito-borne flaviviruses appear to be flexible in terms of accommodating extra insertions of short heterologous antigens into their virus genes. Here, we illustrate that the newly identified C terminus of the core β-ladder domain in NS1 could be readily inserted into entities such as EV71 epitopes, and the resulting NS1-epitope fusion proteins appeared to maintain normal virus replication, secretion ability, and multimeric formation from infected cells. Nonetheless, such an insertion attenuated the recombinant JEV in mice

  4. Increased expression and secretion of interleukin-6 in human parvovirus B19 non-structural protein (NS1) transfected COS-7 epithelial cells.

    PubMed

    Hsu, T-C; Tzang, B-S; Huang, C-N; Lee, Y-J; Liu, G-Y; Chen, M-C; Tsay, G J

    2006-04-01

    Human parvovirus B19 (B19) has been associated with a variety of autoimmune diseases, including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We have demonstrated previously that B19 non-structural protein (NS1) induced apoptosis through the mitochondria cell death pathway in COS-7 epithelial cells and that B19 NS1 may play a role in the pathogenesis of autoimmune diseases. In order to examine the expression profiles of cytokines and chemokines in B19 NS1 transfected COS-7 cells, we constructed the NS1 gene in the pEGFP-C1 vector named enhanced green fluorescence protein gene (EGFP)-NS1. COS-7 cells were transfected with EGFP or EGFP-NS1 plasmid. The expression profiles of cytokines and chemokines, including interleukin (IL)-1beta, IL-5, IL-6, IL-8, IL-10, tumour necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta, granulocyte-macrophage colony-stimulating factor (GM-CSF), growth-related oncogene alpha (GROalpha), interferon gamma-inducible protein (IP)-10, stromal cell derived factor (SDF)-1, macrophage inflammatory protein (MIP)-1beta, monocyte chemoattractant protein (MCP)-1, regulated upon activation normal T cell expressed and secreted (RANTES), Fractalkine, CX3CR1, CCR2, CCR5 and CCR11 were examined in COS-7 cells, EGFP and EGFP-NS1 transfected cells using enzyme-linked immunosorbent assay (ELISA) or reverse transcription-polymerase chain reaction (RT-PCR). Increased expression and levels of IL-6 were found in EGFP-NS1 transfected cells using RT-PCR and ELISA. There were no significant increases in the expression of IL-1beta, IL-8, IP-10, SDF-1, RANTES, Fractalkine, CX3CR-1, CCR2, CCR5, CCR11, TNF-alpha, GM-CSF and TGF-beta using RT-PCR. There were no significantly increased levels of IL-5, IL-10, TNF-alpha, TGF-beta, GROalpha, MIP-1beta and MCP-1 found by ELISA in this study. Our results show that increased expression and secretion of IL-6 in B19 NS1 transfected epithelial cells may play a role in the pathogenesis of

  5. Highly divergent strains of porcine reproductive and respiratory syndrome virus incorporate multiple isoforms of nonstructural protein 2 into virions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viral structural proteins formulate the critical intermediary between viral infection cycles within and between hosts, function to initiate entry, participate in immediate-early viral replication steps, and are major targets for the host adaptive immune response. We report the identification of nons...

  6. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    SciTech Connect

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  7. Identification of a conserved linear epitope using a monoclonal antibody against non-structural protein 3B of foot-and-mouth disease virus.

    PubMed

    Li, Chaosi; Liang, Weifeng; Liu, Wenming; Yang, Decheng; Wang, Haiwei; Ma, Wenge; Zhou, Guohui; Yu, Li

    2016-02-01

    Foot-and-mouth disease virus (FMDV) is a member of the family Picornaviridae that has caused severe economic losses in many countries of the world. Regular vaccinations have been effectively used to control foot-and-mouth disease (FMD) in countries where the disease is enzootic. Distinguishing between infected and vaccinated animals in herds after immunization is an important component of effective eradication strategies. Nonstructural protein (NSP) 3B of FMDV is part of a larger antigen that is used for this differential diagnosis. In this study, an FMDV serotype-independent monoclonal antibody (MAb) against NSP 3B, 5D12, was generated. Using western blot, it was revealed that MAb 5D12 binds to three fragments of 3B displaying the motifs G(1)PYAGPLERQKPLK(14), K(18)LPQQEGPYAGPMER(32) and V(45)KEGPYEGPVKKPVA(59). The motif G(1)PYAGPLERQKPLK(14) was chosen for further mapping. Different truncated motifs derived from the motif G(1)PYAGPLERQKPLK(14) were expressed as GST-fusion constructs for western blot analysis. The results showed that the 5-aa peptide P(2)YAGP(6) was the minimal epitope reactive to MAb 5D12. Subsequent alanine-scanning mutagenesis analysis revealed that Pro(2), Gly(5) and Pro(6) were crucial for MAb 5D12 binding to P(2)YAGP(6). Furthermore, through sequence alignment analysis, the epitope PxxGP recognized by 5D12 was found to be present not only in 3B-1 but also in 3B2 and 3B3 and was highly conserved in seven serotypes of FMDV strains. Western blot analysis also revealed that the peptide epitope could be recognized by sera from FMDV-infected pigs and cattle. Thus, the 5D12-recognized 3B epitope identified here provides theoretical support for the development of MAb 5D12 as a differential diagnosis reagent for FMDV infection. PMID:26563318

  8. The carboxy-terminal half of nonstructural protein 3A is not essential for foot-and-mouth disease virus replication in cultured cell lines.

    PubMed

    Behura, Mrutyunjay; Mohapatra, Jajati K; Pandey, Laxmi K; Das, Biswajit; Bhatt, Mukesh; Subramaniam, Saravanan; Pattnaik, Bramhadev

    2016-05-01

    In foot-and-mouth disease (FMD)-endemic parts of the globe, control is mainly implemented by preventive vaccination with an inactivated purified vaccine. ELISAs detecting antibodies to the viral nonstructural proteins (NSP) distinguish FMD virus (FMDV)-infected animals in the vaccinated population (DIVA). However, residual NSPs present in the vaccines are suspected to be a cause of occasional false positive results, and therefore, an epitope-deleted negative marker vaccine strategy is considered a more logical option. In this study, employing a serotype Asia 1 FMDV infectious cDNA clone, it is demonstrated that while large deletions differing in size and location in the carboxy-terminal half of 3A downstream of the putative hydrophobic membrane-binding domain (deletion of residues 86-110, 101-149, 81-149 and 81-153) are tolerated by the virus without affecting its infectivity in cultured cell lines, deletions in the amino-terminal half (residues 5-54, 21-50, 21-80, 55-80 and 5-149) containing the dimerization and the transmembrane domains are deleterious to its multiplication. Most importantly, the virus could dispense with the entire carboxy-terminal half of 3A (residues 81-153) including the residues involved in the formation of the 3A-3B1 cleavage junction. The rescue of a replication-competent FMDV variant carrying the largest deletion ever in 3A (residues 81-153) and the fact that the deleted region contains a series of linear B-cell epitopes inspired us to devise an indirect ELISA based on a recombinant 3A carboxy-terminal fragment and to evaluate its potential to serve as a companion diagnostic assay for differential serosurveillance if the 3A-truncated virus is used as a marker vaccine. PMID:26935917

  9. Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency.

    PubMed

    Chen, Mei-Chun; Lin, Chiou-Feng; Lei, Huan-Yao; Lin, Shih-Chao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Anderson, Robert; Lin, Yee-Shin

    2009-08-01

    The mechanisms underlying dengue hemorrhagic disease are incompletely understood. We previously showed that anti-dengue virus (DV) nonstructural protein 1 (NS1) Abs cross-react with human platelets and inhibit platelet aggregation. Based on sequence homology alignment, the cross-reactive epitopes reside in the C-terminal region of DV NS1. In this study, we compared the effects of Abs against full-length DV NS1 and NS1 lacking the C-terminal aa 271 to 352 (designated DeltaC NS1). Anti-DeltaC NS1 Abs exhibited lower platelet binding activity than that of anti-full-length NS1. Anti-full-length NS1 but not anti-DeltaC NS1 Abs inhibited platelet aggregation, which was shown to involve integrin alpha(IIb)beta(3) inactivation. We found that the bleeding time in full-length NS1-hyperimmunized mice was longer than that in the normal control mice. By contrast, DeltaC NS1-hyperimmunized mice showed a bleeding time similar to that of normal control mice. Passively administered anti-DV NS1, but not anti-DeltaC NS1, Ab level decreased markedly in serum and this decrease was correlated with Ab binding to platelets. A transient platelet loss in the circulation was observed after anti-DV NS1, but not anti-DeltaC NS1, Ab administration. In summary, platelet dysfunction and bleeding tendency are induced by anti-full-length DV NS1 but not by anti-DeltaC NS1 Abs. These findings may be important not only for understanding dengue hemorrhagic disease pathogenesis but also for dengue vaccine development. PMID:19592650

  10. Antibody Response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nonstructural Proteins and Implications for Diagnostic Detection and Differentiation of PRRSV Types I and II▿

    PubMed Central

    Brown, Elizabeth; Lawson, Steven; Welbon, Craig; Gnanandarajah, Josephine; Li, Juan; Murtaugh, Michael P.; Nelson, Eric A.; Molina, Ramon M.; Zimmerman, Jeffery J.; Rowland, Raymond R. R.; Fang, Ying

    2009-01-01

    To further characterize the humoral immune response of pigs to porcine reproductive and respiratory syndrome virus (PRRSV), direct enzyme-linked immunosorbent assays (ELISA) were used to study the kinetics of antibody responses directed against PRRSV nonstructural proteins in pigs experimentally exposed to the virus. The highest immunoreactivities were against nsp1, nsp2, and nsp7. Using the recombinant nsp7 as an antigen, we validated a dual ELISA for the simultaneous detection and differentiation of serum antibodies against type I and type II PRRSV. Receiver operating characteristic analysis based on 1,334 known-positive and 1,357 known-negative samples showed good specificity (98.3% to type I and 99.3% to type II) and sensitivity (97.4% for type I and 99.8% for type II). To differentiate type I and type II PRRSV, 470 sera originating from experimentally inoculated pigs were tested, and positive sera were correctly differentiated in 469 of 470 samples. The capability of the nsp7 dual ELISA to detect serum antibody responses from pigs infected with various genetically different field strains was determined. The nsp7 dual ELISA possessed 97.6% agreement with the Idexx HerdChek PRRS 2XR ELISA. In further testing of Idexx ELISA suspected false-positive samples, the nsp7 dual ELISA resolved 98% of the samples as negative. Taken together, these results indicate that the nsp7 dual ELISA can be used as a differential test for PRRSV serology with high levels of sensitivity and specificity. This ELISA offers an additional tool for routine or follow-up diagnostics, as well as having substantial value in epidemiological surveys and outbreak investigations. PMID:19261778

  11. Nonstructural Protein 1-Specific Immunoglobulin M and G Antibody Capture Enzyme-Linked Immunosorbent Assays in Diagnosis of Flaviviral Infections in Humans

    PubMed Central

    Galula, Jedhan Ucat; Shen, Wen-Fan; Davis, Brent S.

    2014-01-01

    IgM antibody- and IgG antibody-capture enzyme-linked immunosorbent assays (MAC/GAC-ELISAs) targeted at envelope protein (E) of dengue viruses (DENV), West Nile virus, and Japanese encephalitis virus (JEV) are widely used as serodiagnostic tests for presumptive confirmation of viral infection. Antibodies directed against the flavivirus nonstructural protein 1 (NS1) have been proposed as serological markers of natural infections among vaccinated populations. The aim of the current study is to optimize an IgM and IgG antibody-capture ELISA (MAC/GAC-ELISA) to detect anti-NS1 antibodies and compare it with anti-E MAC/GAC-ELISA. Plasmids to express premembrane/envelope (prM/E) or NS1 proteins of six medically important flaviviruses, including dengue viruses (DENV-1 to DENV-4), West Nile virus (WNV), and Japanese encephalitis virus (JEV), were constructed. These plasmids were used for the production of prM/E-containing virus-like particles (VLPs) and secreted NS1 (sNS1) from COS-1 cells. Archived clinical specimens from patients with confirmed DENV, JEV, and WNV infections, along with naive sera, were subjected to NS1-MAC/GAC-ELISAs before or after depletion of anti-prM/E antibodies by preabsorption with or without VLPs. Human serum specimens from previously confirmed DENV infections showed significantly enhanced positive-to-negative (P/N) ratios for NS1-MAC/GAC-ELISAs after the depletion of anti-prM/E antibodies. No statistical differences in sensitivities and specificities were found between the newly developed NS1- and VLP-MAC/GAC-ELISAs. Further application of the assays to WNV- and JEV-infected serum panels showed similar results. A novel approach to perform MAC/GAC-ELISAs for NS1 antibody detection was successfully developed with great potential to differentiate antibodies elicited by the tetravalent chimeric yellow fever-17D/dengue vaccine or DENV infection. PMID:25502522

  12. Nonstructural protein 1-specific immunoglobulin M and G antibody capture enzyme-linked immunosorbent assays in diagnosis of flaviviral infections in humans.

    PubMed

    Chao, Day-Yu; Galula, Jedhan Ucat; Shen, Wen-Fan; Davis, Brent S; Chang, Gwong-Jen J

    2015-02-01

    IgM antibody- and IgG antibody-capture enzyme-linked immunosorbent assays (MAC/GAC-ELISAs) targeted at envelope protein (E) of dengue viruses (DENV), West Nile virus, and Japanese encephalitis virus (JEV) are widely used as serodiagnostic tests for presumptive confirmation of viral infection. Antibodies directed against the flavivirus nonstructural protein 1 (NS1) have been proposed as serological markers of natural infections among vaccinated populations. The aim of the current study is to optimize an IgM and IgG antibody-capture ELISA (MAC/GAC-ELISA) to detect anti-NS1 antibodies and compare it with anti-E MAC/GAC-ELISA. Plasmids to express premembrane/envelope (prM/E) or NS1 proteins of six medically important flaviviruses, including dengue viruses (DENV-1 to DENV-4), West Nile virus (WNV), and Japanese encephalitis virus (JEV), were constructed. These plasmids were used for the production of prM/E-containing virus-like particles (VLPs) and secreted NS1 (sNS1) from COS-1 cells. Archived clinical specimens from patients with confirmed DENV, JEV, and WNV infections, along with naive sera, were subjected to NS1-MAC/GAC-ELISAs before or after depletion of anti-prM/E antibodies by preabsorption with or without VLPs. Human serum specimens from previously confirmed DENV infections showed significantly enhanced positive-to-negative (P/N) ratios for NS1-MAC/GAC-ELISAs after the depletion of anti-prM/E antibodies. No statistical differences in sensitivities and specificities were found between the newly developed NS1- and VLP-MAC/GAC-ELISAs. Further application of the assays to WNV- and JEV-infected serum panels showed similar results. A novel approach to perform MAC/GAC-ELISAs for NS1 antibody detection was successfully developed with great potential to differentiate antibodies elicited by the tetravalent chimeric yellow fever-17D/dengue vaccine or DENV infection. PMID:25502522

  13. Construction and Immunogenicity Analysis of Hepatitis C Virus (HCV) Truncated Non-Structural Protein 3 (NS3) Plasmid Vaccine

    PubMed Central

    Pouriayevali, Mohammad-Hassan; Bamdad, Taravat; Aghasadeghi, Mohammad-Reza; Sadat, Seyed Mehdi; Sabahi, Farzaneh

    2016-01-01

    Background To develop hepatitis C virus (HCV) vaccine, induction of potent humoral and T cell response against immunogenic targets with conserved region should be achieved. T cell response against NS3 is often associated with complete clearance of the virus. Objectives Herein, we expressed the truncated form of NS3 in a mammalian cell line and evaluated immune responses of NS3 DNA vaccine in BALB/c. Materials and Methods The partial length of NS3 gene, which encodes immunogenic epitopes (1095 - 1379 aa), was amplified by reverse transcription-polymerase chain reaction (RT-PCR) on RNA obtained from a patient with HCV, inserted into pcDNA3.1 plasmid using XhoI/HindIII sites, and finally evaluated by restriction analysis and sequencing. After transfection of the recombinant plasmid into HEK293T cells, the NS3 protein expression was confirmed by western blotting. Mice were immunized intra-dermally close to the base of the mice tail with four doses in two-weeks intervals and the immune responses were assessed using total and subtypes of IgG antibody assay, cell proliferation and cytokine assay. Results The pcDNA3.1 plasmid harboring the coding sequence of NS3 (pc-NS3) was constructed and confirmed with the expected size. Proper expression of the recombinant protein in transfected HEK 293T cells was confirmed using western blotting. The immunization results indicated that pc-NS3 induced significant levels of total antibody, IgG2a subclass antibody, Interferon (IFN)-γ, Interleukin (IL)-4 and proliferation assay compared to the control group (P < 0.05). Conclusions The pc-NS3 possesses the capacity to express NS3 in the mammalian cell line and demonstrated strong immunogenicity in a murine model. Our primary results demonstrated that the immunogenic truncated region of NS3 could be used as a potential vaccine candidate against hepatitis C. PMID:27226878

  14. Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2

    PubMed Central

    Chung, Dong-Hoon; Jonsson, Colleen B.; Tower, Nichole A.; Chu, Yong-Kyu; Sahin, Ergin; Golden, Jennifer E.; Noah, James W.; Schroeder, Chad E.; Sotsky, Julie B.; Sosa, Melinda I.; Cramer, Daniel E.; McKellip, Sara N.; Rasmussen, Lynn; White, E. Lucile; Schmaljohn, Connie S.; Julander, Justin G.; Smith, Jeffrey M.; Filone, Claire Marie; Connor, John H.; Sakurai, Yasuteru; Davey, Robert A.

    2014-01-01

    Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection. PMID:24967809

  15. Nonstructural Proteins 7 and 8 of Feline Coronavirus Form a 2:1 Heterotrimer That Exhibits Primer-Independent RNA Polymerase Activity

    PubMed Central

    Xiao, Yibei; Ma, Qingjun; Restle, Tobias; Shang, Weifeng; Svergun, Dmitri I.; Ponnusamy, Rajesh; Sczakiel, Georg

    2012-01-01

    Nonstructural proteins 7 and 8 of severe acute respiratory syndrome coronavirus (SARS-CoV) have previously been shown by X-ray crystallography to form an 8:8 hexadecamer. In addition, it has been demonstrated that N-terminally His6-tagged SARS-CoV Nsp8 is a primase able to synthesize RNA oligonucleotides with a length of up to 6 nucleotides. We present here the 2.6-Å crystal structure of the feline coronavirus (FCoV) Nsp7:Nsp8 complex, which is a 2:1 heterotrimer containing two copies of the α-helical Nsp7 with conformational differences between them, and one copy of Nsp8 that consists of an α/β domain and a long-α-helix domain. The same stoichiometry is found for the Nsp7:Nsp8 complex in solution, as demonstrated by chemical cross-linking, size exclusion chromatography, and small-angle X-ray scattering. Furthermore, we show that FCoV Nsp8, like its SARS-CoV counterpart, is able to synthesize short oligoribonucleotides of up to 6 nucleotides in length when carrying an N-terminal His6 tag. Remarkably, the same protein harboring the sequence GPLG instead of the His6 tag at its N terminus exhibits a substantially increased, primer-independent RNA polymerase activity. Upon addition of Nsp7, the RNA polymerase activity is further enhanced so that RNA up to template length (67 nucleotides) can be synthesized. Further, we show that the unprocessed intermediate polyprotein Nsp7-10 of human coronavirus (HCoV) 229E is also capable of synthesizing oligoribonucleotides up to a chain length of six. These results indicate that in case of FCoV as well as of HCoV 229E, the formation of a hexadecameric Nsp7:Nsp8 complex is not necessary for RNA polymerase activity. Further, the FCoV Nsp7:Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length. PMID:22318142

  16. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses

    PubMed Central

    Lehmann, Kathleen C.; Gulyaeva, Anastasia; Zevenhoven-Dobbe, Jessika C.; Janssen, George M. C.; Ruben, Mark; Overkleeft, Hermen S.; van Veelen, Peter A.; Samborskiy, Dmitry V.; Kravchenko, Alexander A.; Leontovich, Andrey M.; Sidorov, Igor A.; Snijder, Eric J.; Posthuma, Clara C.; Gorbalenya, Alexander E.

    2015-01-01

    RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies. PMID:26304538

  17. Characterization of the Interactome of the Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the Hyper Variable Region as a Binding Platform for Association with 14-3-3 Proteins.

    PubMed

    Xiao, Yihong; Wu, Weining; Gao, Jiming; Smith, Nikki; Burkard, Christine; Xia, Dong; Zhang, Minxia; Wang, Chengbao; Archibald, Alan; Digard, Paul; Zhou, En-Min; Hiscox, Julian A

    2016-05-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry worldwide and hence global food security, exacerbated by a newly emerged highly pathogenic (HP-PRRSV) strain from China. PRRSV nonstructural protein 2 (nsp2) is a multifunctional polypeptide with strain-dependent influences on pathogenicity. A number of discrete functional regions have been identified on the protein. Quantitative label free proteomics was used to identify cellular binding partners of nsp2 expressed by HP-PRRSV. This allowed the identification of potential cellular interacting partners and the discrimination of nonspecific interactions. The interactome data were further investigated and validated using biological replicates and also compared with nsp2 from a low pathogenic (LP) strain of PRRSV. Validation included both forward and reverse pulldowns and confocal microscopy. The data indicated that nsp2 interacted with a number of cellular proteins including 14-3-3, CD2AP, and other components of cellular aggresomes. The hyper-variable region of nsp2 protein was identified as a binding platform for association with 14-3-3 proteins. PMID:26709850

  18. Production of recombinant non-structural protein-3 hydrophobic domain deletion (NS3ΔHD) protein of bluetongue virus from prokaryotic expression system as an efficient diagnostic reagent.

    PubMed

    Mohanty, Nihar Nalini; Chacko, Nirmal; Biswas, Sanchay Kumar; Chand, Karam; Pandey, Awadh Bihari; Mondal, Bimalendu; Hemadri, Divakar; Shivachandra, Sathish Bhadravati

    2016-09-01

    Serological diagnostics for bluetongue (BT), which is an infectious, non-contagious and arthropod-borne virus disease of ruminants, are primarily dependent on availability of high quality native or recombinant antigen(s) based on either structural/non-structural proteins in sufficient quantity. Non-structural proteins (NS1-NS4) of BT virus are presumed candidate antigens in development of DIVA diagnostics. In the present study, NS3 fusion gene encoding for NS3 protein containing the N- and C-termini with a deletion of two hydrophobic domains (118A to S141 aa and 162S to A182 aa) and intervening variable central domain (142D to K161 aa) of bluetongue virus 23 was constructed, cloned and over-expressed using prokaryotic expression system. The recombinant NS3ΔHD fusion protein (∼38 kDa) including hexa-histidine tag on its both termini was found to be non-cytotoxic to recombinant Escherichia coli cells and purified by affinity chromatography. The purified rNS3ΔHD fusion protein was found to efficiently detect BTV-NS3 specific antibodies in indirect-ELISA format with diagnostic sensitivity (DSn = 94.4%) and specificity (DSp = 93.9%). The study indicated the potential utility of rNS3ΔHD fusion protein as candidate diagnostic reagent in developing an indirect-ELISA for sero-surveillance of animals for BTV antibodies under DIVA strategy, wherever monovalent/polyvalent killed BT vaccine formulations devoid of NS proteins are being practiced for immunization. PMID:27448505

  19. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    PubMed Central

    Carvalho, Denise Maciel; Garcia, Fernanda Gonçalves; Terra, Ana Paula Sarreta; Lopes Tosta, Ana Cristina; Silva, Luciana de Almeida; Castellano, Lúcio Roberto; Silva Teixeira, David Nascimento

    2014-01-01

    Background. During dengue virus (DV) infection, monocytes produce tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1) on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1) serum levels and innate immune response (TLR4 expression and TNF-α/NO production) of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA), TNF-α production by peripheral blood mononuclear cells (PBMCs), and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF) was detected compared to patients with dengue hemorrhagic fever (DHF). Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production) when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes. PMID:25580138

  20. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate

    PubMed Central

    Cottam, Eleanor M; Maier, Helena J; Manifava, Maria; Vaux, Laura C; Chandra-Schoenfelder, Priya; Gerner, Wilhelm; Britton, Paul; Ktistakis, Nick T

    2011-01-01

    Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defense against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, infectious bronchitis virus (IBV), activates autophagy. A screen of individual IBV nonstructural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses mouse hepatitis virus, and severe acute respiratory syndrome virus, and the equivalent nsp5–7 of the arterivirus porcine reproductive and respiratory syndrome virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II -positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double-FYVE-domain containing protein (DFCP) indicating localized concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signaling, activation of sirtuin 1 or induction of ER stress. PMID:21799305

  1. Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells

    SciTech Connect

    Kim, Oekyung; Sun Yan; Lai, Frances W.; Song Cheng; Yoo, Dongwan

    2010-07-05

    Porcine reproductive and respiratory syndrome (PRRS) is an emerged disease of swine characterized by negligible response of type I IFNs and viral persistence. We show that the PRRSV non-structural protein 1 (Nsp1) is the viral component responsible for modulation of IFN response. Nsp1 blocked dsRNA-induced IRF3 and IFN promoter activities. Nsp1 did not block phosphorylation and nuclear translocation of IRF3 but inhibited IRF3 association with CREB-binding protein (CBP) in the nucleus. While IRF3 was stable, CBP was degraded, and CBP degradation was proteasome-dependent, suggesting that CBP degradation is not due to the protease activity of Nsp1 but an intermediary is involved. Our data suggest that the Nsp1-mediated CBP degradation inhibits the recruitment of CBP for enhanceosome assembly, leading to the block of IFN response. CBP degradation is a novel strategy for viral evasion from the host response, and Nsp1 may form a new class of viral antagonists for IFN modulation.

  2. Specific Detection of Two Divergent Simian Arteriviruses Using RNAscope In Situ Hybridization

    PubMed Central

    Yú, Shuǐqìng; Caì, Yíngyún; Lyons, Cassandra; Johnson, Reed F.; Postnikova, Elena; Mazur, Steven; Johnson, Joshua C.; Radoshitzky, Sheli R.; Bailey, Adam L.; Lauck, Michael; Goldberg, Tony L.; O’Connor, David H.; Jahrling, Peter B.; Friedrich, Thomas C.; Kuhn, Jens H.

    2016-01-01

    Simian hemorrhagic fever (SHF) is an often lethal disease of Asian macaques. Simian hemorrhagic fever virus (SHFV) is one of at least three distinct simian arteriviruses that can cause SHF, but pathogenesis studies using modern methods have been scarce. Even seemingly straightforward studies, such as examining viral tissue and cell tropism in vivo, have been difficult to conduct due to the absence of standardized SHFV-specific reagents. Here we report the establishment of an in situ hybridization assay for the detection of SHFV and distantly related Kibale red colobus virus 1 (KRCV-1) RNA in cell culture. In addition, we detected SHFV RNA in formalin-fixed, paraffin-embedded tissues from an infected rhesus monkey (Macaca mulatta). The assay is easily performed and can clearly distinguish between SHFV and KRCV-1. Thus, if further developed, this assay may be useful during future studies evaluating the mechanisms by which a simian arterivirus with a restricted cell tropism can cause a lethal nonhuman primate disease similar in clinical presentation to human viral hemorrhagic fevers. PMID:26963736

  3. Specific Detection of Two Divergent Simian Arteriviruses Using RNAscope In Situ Hybridization.

    PubMed

    Yú, Shu Qìng; Caì, Yíngyún; Lyons, Cassandra; Johnson, Reed F; Postnikova, Elena; Mazur, Steven; Johnson, Joshua C; Radoshitzky, Sheli R; Bailey, Adam L; Lauck, Michael; Goldberg, Tony L; O'Connor, David H; Jahrling, Peter B; Friedrich, Thomas C; Kuhn, Jens H

    2016-01-01

    Simian hemorrhagic fever (SHF) is an often lethal disease of Asian macaques. Simian hemorrhagic fever virus (SHFV) is one of at least three distinct simian arteriviruses that can cause SHF, but pathogenesis studies using modern methods have been scarce. Even seemingly straightforward studies, such as examining viral tissue and cell tropism in vivo, have been difficult to conduct due to the absence of standardized SHFV-specific reagents. Here we report the establishment of an in situ hybridization assay for the detection of SHFV and distantly related Kibale red colobus virus 1 (KRCV-1) RNA in cell culture. In addition, we detected SHFV RNA in formalin-fixed, paraffin-embedded tissues from an infected rhesus monkey (Macaca mulatta). The assay is easily performed and can clearly distinguish between SHFV and KRCV-1. Thus, if further developed, this assay may be useful during future studies evaluating the mechanisms by which a simian arterivirus with a restricted cell tropism can cause a lethal nonhuman primate disease similar in clinical presentation to human viral hemorrhagic fevers. PMID:26963736

  4. Porcine Reproductive and Respiratory Syndrome Virus Replicase - Isoforms of Nonstructural Protein 2 and Interaction with Heat Shock 70kDa Protein 5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nsp2 replicase protein of porcine reproductive and respiratory syndrome virus (PRRSV), when expressed independently, was recently demonstrated to be processed from its precursor by the PL2 protease at or near the G**1196|G**1197 dipeptide in transfected CHO cells. The proteolytic cleavage of nsp...

  5. Amino acid substitutions in the non-structural proteins 4A or 4B modulate the induction of autophagy in West Nile virus infected cells independently of the activation of the unfolded protein response

    PubMed Central

    Blázquez, Ana-Belén; Martín-Acebes, Miguel A.; Saiz, Juan-Carlos

    2015-01-01

    West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus responsible for outbreaks of meningitis and encephalitis. Whereas the activation of autophagy in cells infected with other flaviviruses is well known, the interaction of WNV with the autophagic pathway still remains unclear and there are reports describing opposite findings obtained even analyzing the same viral strain. To clarify this controversy, we first analyzed the induction of autophagic features in cells infected with a panel of WNV strains. WNV was determined to induce autophagy in a strain dependent manner. We observed that all WNV strains or isolates analyzed, except for the WNV NY99 used, upregulated the autophagic pathway in infected cells. Interestingly, a variant derived from this WNV NY99 isolated from a persistently infected mouse increased LC3 modification and aggregation. Genome sequencing of this variant revealed only two non-synonymous nucleotide substitutions when compared to parental NY99 strain. These nucleotide substitutions introduced one amino acid replacement in NS4A and other in NS4B. Using genetically engineered viruses we showed that introduction of only one of these replacements was sufficient to upregulate the autophagic pathway. Thus, in this work we have shown that naturally occurring point mutations in the viral non-structural proteins NS4A and NS4B confer WNV with the ability to induce the hallmarks of autophagy such as LC3 modification and aggregation. Even more, the differences on the induction of an autophagic response observed among WNV variants in infected cells did not correlate with alterations on the activation of the unfolded protein response (UPR), suggesting an uncoupling of UPR and autophagy during flavivirus infection. The findings here reported could help to improve the knowledge of the cellular processes involved on flavivirus–host cell interactions and contribute to the design of effective strategies to combat these pathogens. PMID:25642225

  6. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis.

    PubMed Central

    Falgout, B; Bray, M; Schlesinger, J J; Lai, C J

    1990-01-01

    The protective immunity conferred by a set of recombinant vaccinia viruses containing the entire coding sequence of dengue virus type 4 nonstructural glycoprotein NS1 plus various flanking sequences was evaluated by using a mouse encephalitis model. Mice immunized with recombinant vNS1-NS2a, which expresses authentic NS1, were solidly protected against intracerebral dengue virus challenge. However, mice immunized with recombinants vNS1-15%NS2a and vRSVG/NS1-15%NS2a, which express aberrant forms of NS1, were only partially protected (63 to 67% survival rate). Serologic analysis showed that mice immunized with vNS1-NS2a developed high titers of antibodies to NS1 as measured by radioimmunoprecipitation, enzyme-linked immunosorbent assay, and complement-mediated cytolytic assays. In addition, a pool of sera from these animals was protective in a passive transfer experiment. Lower titers of NS1-specific antibodies were detected in sera of animals immunized with vNS1-15%NS2a or vRSVG/NS1-15%NS2a by all three assays. These data support the view that protection against dengue virus infection in mice may be mediated at least in part by NS1-specific antibodies through a mechanism of complement-mediated lysis of infected cells. Additionally, immunization with two recombinant viruses expressing authentic NS1 of dengue virus type 2 conferred partial protection (30-50%) against dengue virus type 2 challenge. Images PMID:2143542

  7. Development of novel antibodies against non-structural proteins nsP1, nsP3 and nsP4 of chikungunya virus: potential use in basic research.

    PubMed

    Kumar, Sameer; Mamidi, Prabhudutta; Kumar, Abhishek; Basantray, Itishree; Bramha, Umarani; Dixit, Anshuman; Maiti, Prasanta Kumar; Singh, Sujay; Suryawanshi, Amol Ratnakar; Chattopadhyay, Subhasis; Chattopadhyay, Soma

    2015-11-01

    Chikungunya virus (CHIKV) has reemerged recently as an important pathogen, causing several large epidemics worldwide. This necessitates the development of better reagents to understand its biology and to establish effective and safe control measures. The present study describes the development and characterization of polyclonal antibodies (pAbs) against synthetic peptides of CHIKV non-structural proteins (nsPs; nsP1, nsP3 and nsP4). The reactivity of these pAbs was demonstrated by ELISA and Western blot. Additionally, in vitro infection studies in a mammalian system confirmed that these pAbs are highly sensitive and specific for CHIKV nsPs, as these proteins were detected very early during viral replication. Homology analysis of the selected epitope sequences revealed that they are conserved among all of the CHIKV strains of different genotypes, while comparison with other alphavirus sequences showed that none of them are 100% identical to the epitope sequences (except Onyong-nyong and Igbo Ora viruses, which show 100% identity to the nsP4 epitope). Interestingly, two different forms of CHIKV nsP1 and three different forms of nsP3 were detected in Western blot analysis during infection; however, further experimental investigations are required to confirm their identity. Also, the use of these antibodies demonstrated faster and enhanced expression profiles of all CHIKV nsPs in 2006 Indian outbreak strains when compared to the CHIKV prototype strain, suggesting the epidemic potential of the 2006 isolate. Accordingly, it can be suggested that the pAbs reported in this study can be used as sensitive and specific tools for experimental investigations of CHIKV replication and infection. PMID:26280524

  8. Production of antiserum to a non-structural potyviral protein and its use to detect narcissus yellow stripe and other potyviruses.

    PubMed

    Mowat, W P; Dawson, S; Duncan, G H

    1989-08-01

    A protein, of apparent molecular weight 72,000, was purified from experimentally infected narcissus plants with yellow stripe symptoms utilising SDS-polyacrylamide gel electrophoresis. This protein was excised from the gels and used to prepare antiserum, which reacted specifically with cytoplasmic cylindrical inclusions in ultra-thin sections of virus-infected cells and, in immunoblots, with the 72 kDa protein in preparations containing cytoplasmic inclusions. The antiserum reacted in ELISA with leaf extracts from yellow stripe diseased plants of four narcissus cultivars but not with extracts from comparable symptomless plants. In tests with extracts of plants infected with seven definitive potyviruses, reactions were obtained with bean yellow mosaic and iris mild mosaic viruses. Virus-specific reactions in dot-blot ELISA were dependent on the presence of Tween 20 in the extraction buffer. In contrast, an antiserum to the putative cytoplasmic inclusion protein of alstroemeria mosaic virus reacted only with SDS-treated leaf extracts of infected plants. In limited tests, the method of purifying cytoplasmic inclusion protein was successfully applied to four definitive potyviruses, suggesting that it may be generally applicable to potyviruses and of use for preparing antisera when purification of virus particles is difficult. PMID:2778031

  9. The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity

    NASA Astrophysics Data System (ADS)

    Shukla, Ashutosh; Dey, Debajit; Banerjee, Kamalika; Nain, Anshu; Banerjee, Manidipa

    2015-10-01

    Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.

  10. The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity

    PubMed Central

    Shukla, Ashutosh; Dey, Debajit; Banerjee, Kamalika; Nain, Anshu; Banerjee, Manidipa

    2015-01-01

    Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family. PMID:26515753

  11. The crystal structure of porcine reproductive and respiratory syndrome virus nonstructural protein Nsp1beta reveals a novel metal-dependent nuclease.

    PubMed

    Xue, Fei; Sun, Yuna; Yan, Liming; Zhao, Cong; Chen, Ji; Bartlam, Mark; Li, Xuemei; Lou, Zhiyong; Rao, Zihe

    2010-07-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family of Nidovirales, is the causative agent of porcine reproductive and respiratory syndrome, which results in enormous economic losses in the swine industry. As the second protein encoded by the PRRSV genome, nsp1beta cleaves itself from the downstream nsp2 protein via a C-terminal papain-like cysteine protease (PCP) domain. Although nsp1beta is known to be involved in virulence, its precise role in the process of viral infection remains unclear. In this work, we describe the homodimeric crystal structure of PRRSV nsp1beta in its natural, self-processed form. We show that the architecture of its N-terminal domain (NTD) adopts a fold closely resembling that of several known nucleases and has intrinsic nuclease activity that is strongly activated by manganese ions in vitro. Key features, however, distinguish nsp1beta from characterized nucleases, including the C-terminal PCP domain (which is responsible for the self-release of nsp1beta from nsp2), a linker domain (LKD) that connects the NTD and the PCP domain, and a C-terminal extension (CTE) that binds to and is stabilized by the putative substrate binding site of the PCPbeta domain. Combined with the reported nuclear localization of this protein, these results shed light on the self-processing mode and precise biological function of nsp1beta and thus offer a multitarget template for future drug discovery. PMID:20410261

  12. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions.

    PubMed Central

    Bartenschlager, R; Ahlborn-Laake, L; Mous, J; Jacobsen, H

    1993-01-01

    We have studied processing of the nonstructural (NS) polyprotein of the hepatitis C virus. A series of cDNAs corresponding to predicted NS2/3/4 or NS3/4 regions were constructed, and processing of the polyproteins was studied in an in vitro transcription-translation system. We report that a catalytically active serine-type proteinase is encoded by the NS3 region. Substitution of the serine residue of the putative catalytic triad (H, D, and S) by alanine blocked cleavage at the NS3/4 junction, while processing between NS2 and NS3 was not affected. Thus, cleavage at the NS2/3 junction is mediated either by cellular enzymes or by an NS-2 inherent proteinase activity. Deletion analysis of an NS3/4 cDNA construct mapped the amino terminus of the enzymatically active proteinase between amino acids 1049 and 1065 of the polyprotein. As internal deletions of variable segments of the presumed helicase domain prevented processing at the NS314 junction, a continuous NS3 region appears to be required for processing at this site. To analyze hepatitis C virus polyprotein cleavage in vivo, recombinant vaccinia viruses expressing NS2/3/4 or NS3/4/5 proteins were generated. In agreement with the in vitro data, cleavage between NS2 and NS3 was independent of a catalytically active NS3 proteinase, whereas substitution of the active-site serine residue by the amino acid alanine completely blocked processing at the NS3/4 and NS4/5 junctions. These results demonstrate that NS3 encodes the viral proteinase essential for generating the amino termini of NS4 and NS5. Images PMID:8389908

  13. Identification of a Naturally Processed Cytotoxic CD8 T-Cell Epitope of Coxsackievirus B4, Presented by HLA-A2.1 and Located in the PEVKEK Region of the P2C Nonstructural Protein

    PubMed Central

    Varela-Calvino, Ruben; Skowera, Ania; Arif, Sefina; Peakman, Mark

    2004-01-01

    The adaptive immune system generates CD8 cytotoxic T lymphocytes (CTLs) as a major component of the protective response against viruses. Knowledge regarding the nature of the peptide sequences presented by HLA class I molecules and recognized by CTLs is thus important for understanding host-pathogen interactions. In this study, we focused on identification of a CTL epitope generated from coxsackievirus B4 (CVB4), a member of the enterovirus group responsible for several inflammatory diseases in humans and often implicated in the triggering and/or acceleration of the autoimmune disease type 1 diabetes. We identified a 9-mer peptide epitope that can be generated from the P2C nonstructural protein of CVB4 (P2C1137-1145) and from whole virus by antigen-presenting cells and presented by HLA-A2.1. This epitope is recognized by effector memory (gamma interferon [IFN-γ]-producing) CD8 T cells in the peripheral blood at a frequency of responders that suggests that it is a major focus of the anti-CVB4 response. Short-term CD8 T-cell lines generated against P2C1137-1145 are cytotoxic against peptide-loaded target cells. Of particular interest, the epitope lies within a region of viral homology with the diabetes-related autoantigen, glutamic acid decarboxylase-65 (GAD65). However, P2C1137-1145-specific cytotoxic T lymphocyte (CTL) lines were not activated to produce IFN-γ by the GAD65 peptide homologue and did not show cytotoxic activity in the presence of appropriately labeled targets. These results describe the first CD8 T-cell epitope of CVB4 that will prove useful in the study of CVB4-associated disease. PMID:15564450

  14. Identification of a naturally processed cytotoxic CD8 T-cell epitope of coxsackievirus B4, presented by HLA-A2.1 and located in the PEVKEK region of the P2C nonstructural protein.

    PubMed

    Varela-Calvino, Ruben; Skowera, Ania; Arif, Sefina; Peakman, Mark

    2004-12-01

    The adaptive immune system generates CD8 cytotoxic T lymphocytes (CTLs) as a major component of the protective response against viruses. Knowledge regarding the nature of the peptide sequences presented by HLA class I molecules and recognized by CTLs is thus important for understanding host-pathogen interactions. In this study, we focused on identification of a CTL epitope generated from coxsackievirus B4 (CVB4), a member of the enterovirus group responsible for several inflammatory diseases in humans and often implicated in the triggering and/or acceleration of the autoimmune disease type 1 diabetes. We identified a 9-mer peptide epitope that can be generated from the P2C nonstructural protein of CVB4 (P2C(1137-1145)) and from whole virus by antigen-presenting cells and presented by HLA-A2.1. This epitope is recognized by effector memory (gamma interferon [IFN-gamma]-producing) CD8 T cells in the peripheral blood at a frequency of responders that suggests that it is a major focus of the anti-CVB4 response. Short-term CD8 T-cell lines generated against P2C(1137-1145) are cytotoxic against peptide-loaded target cells. Of particular interest, the epitope lies within a region of viral homology with the diabetes-related autoantigen, glutamic acid decarboxylase-65 (GAD(65)). However, P2C(1137-1145)-specific cytotoxic T lymphocyte (CTL) lines were not activated to produce IFN-gamma by the GAD(65) peptide homologue and did not show cytotoxic activity in the presence of appropriately labeled targets. These results describe the first CD8 T-cell epitope of CVB4 that will prove useful in the study of CVB4-associated disease. PMID:15564450

  15. Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3β and NF-κB activation.

    PubMed

    Chen, Chia-Ling; Lin, Chiou-Feng; Wan, Shu-Wen; Wei, Li-Shiung; Chen, Mei-Chun; Yeh, Trai-Ming; Liu, Hsiao-Sheng; Anderson, Robert; Lin, Yee-Shin

    2013-08-15

    Immunopathogenetic mechanisms of dengue virus (DENV) infection are involved in hemorrhagic syndrome resulting from thrombocytopenia, coagulopathy, and vasculopathy. We have proposed a mechanism of molecular mimicry in which Abs against DENV nonstructural protein 1 (NS1) cross-react with human endothelial cells and cause NF-κB-regulated immune activation and NO-mediated apoptosis. However, the signaling pathway leading to NF-κB activation after the binding of anti-DENV NS1 Abs to endothelial cells is unresolved. In this study, we found that anti-DENV NS1 Abs caused the formation of lipid raftlike structures, and that disrupting lipid raft formation by methyl-β-cyclodextrin decreased NO production and apoptosis. Treatment with anti-DENV NS1 Abs elevated ceramide generation in lipid rafts. Pharmacological inhibition of acid sphingomyelinase (aSMase) decreased anti-DENV NS1 Ab-mediated ceramide and NO production, as well as apoptosis. Exogenous ceramide treatment induced biogenesis of inducible NO synthase (iNOS)/NO and apoptosis through an NF-κB-regulated manner. Furthermore, activation of glycogen synthase kinase-3β (GSK-3β) was required for ceramide-induced NF-κB activation and iNOS expression. Notably, anti-DENV NS1 Abs caused GSK-3β-mediated NF-κB activation and iNOS expression, which were regulated by aSMase. Moreover, pharmacological inhibition of GSK-3β reduced hepatic endothelial cell apoptosis in mice passively administered anti-DENV NS1 Abs. These results suggest that anti-DENV NS1 Abs bind to the endothelial cell membrane and cause NO production and apoptosis via a mechanism involving the aSMase/ceramide/GSK-3β/NF-κB/iNOS/NO signaling pathway. PMID:23851680

  16. Conserved Surface Features Form the Double-stranded RNA Binding Site of Non-structural Protein 1 (NS1) from Influenza A and B Viruses

    SciTech Connect

    Yin,C.; Khan, J.; Swapna, G.; Ertekin, A.; Krug, R.; Tong, L.; Montelione, G.

    2007-01-01

    Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-{angstrom} x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier 'working models' of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an {approx}45{sup o} angle relative to the axes of helices {alpha}2/{alpha}2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses.

  17. Conserved surface features form the double-stranded RNA binding site of non-structural protein 1 (NS1) from influenza A and B viruses.

    PubMed

    Yin, Cuifeng; Khan, Javed A; Swapna, G V T; Ertekin, Asli; Krug, Robert M; Tong, Liang; Montelione, Gaetano T

    2007-07-13

    Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-A x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier "working models" of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an approximately 45 degrees angle relative to the axes of helices alpha2/alpha2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses. PMID:17475623

  18. Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist

    SciTech Connect

    Chen, Z.; Lawson, S.; Sun, Z.; Zhou, X.; Guan, X.; Christopher-Hennings, J.; Nelson, E.A.; Fang, Y.

    2010-03-01

    The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1alpha and nsp1beta subunits. In infected cells, we detected the actual existence of nsp1alpha and nsp1beta. Cleavage sites between nsp1alpha/nsp1beta and nsp1beta/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1alpha and nsp1beta mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-beta expression. The nsp1beta was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK-STAT signaling pathway. These results demonstrated that nsp1beta has ability to inhibit both interferon synthesis and signaling, while nsp1alpha alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.

  19. Equine Arteritis Virus Does Not Induce Interferon Production in Equine Endothelial Cells: Identification of Nonstructural Protein 1 as a Main Interferon Antagonist

    PubMed Central

    Go, Yun Young; Li, Yanhua; Chen, Zhenhai; Han, Mingyuan; Yoo, Dongwan; Fang, Ying; Balasuriya, Udeni B. R.

    2014-01-01

    The objective of this study was to investigate the effect of equine arteritis virus (EAV) on type I interferon (IFN) production. Equine endothelial cells (EECs) were infected with the virulent Bucyrus strain (VBS) of EAV and expression of IFN-β was measured at mRNA and protein levels by quantitative real-time RT-PCR and IFN bioassay using vesicular stomatitis virus expressing the green fluorescence protein (VSV-GFP), respectively. Quantitative RT-PCR results showed that IFN-β mRNA levels in EECs infected with EAV VBS were not increased compared to those in mock-infected cells. Consistent with quantitative RT-PCR, Sendai virus- (SeV-) induced type I IFN production was inhibited by EAV infection. Using an IFN-β promoter-luciferase reporter assay, we subsequently demonstrated that EAV nsps 1, 2, and 11 had the capability to inhibit type I IFN activation. Of these three nsps, nsp1 exhibited the strongest inhibitory effect. Taken together, these data demonstrate that EAV has the ability to suppress the type I IFN production in EECs and nsp1 may play a critical role to subvert the equine innate immune response. PMID:24967365

  20. Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3

    PubMed Central

    Xu, Yi; Wu, Jianxiang; Fu, Shuai; Li, Chenyang; Zhu, Zeng-Rong

    2015-01-01

    ABSTRACT The ubiquitin/26S proteasome system plays a vital role in regulating host defenses against pathogens. Previous studies have highlighted different roles for the ubiquitin/26S proteasome in defense during virus infection in both mammals and plants, but their role in the vectors that transmit those viruses is still unclear. In this study, we determined that the 26S proteasome is present in the small brown planthopper (SBPH) (Laodelphgax striatellus) and has components similar to those in plants and mammals. There was an increase in the accumulation of Rice stripe virus (RSV) in the transmitting vector SBPH after disrupting the 26S proteasome, indicating that the SBPH 26S proteasome plays a role in defense against RSV infection by regulating RSV accumulation. Yeast two-hybrid analysis determined that a subunit of the 26S proteasome, named RPN3, could interact with RSV NS3. Transient overexpression of RPN3 had no effect on the RNA silencing suppressor activity of RSV NS3. However, NS3 could inhibit the ability of SBPH rpn3 to complement an rpn3 mutation in yeast. Our findings also indicate that the direct interaction between RPN3 and NS3 was responsible for inhibiting the complementation ability of RPN3. In vivo, we found an accumulation of ubiquitinated protein in SBPH tissues where the RSV titer was high, and silencing of rpn3 resulted in malfunction of the SBPH proteasome-mediated proteolysis. Consequently, viruliferous SBPH in which RPN3 was repressed transmitted the virus more effectively as a result of higher accumulation of RSV. Our results suggest that the RSV NS3 protein is able to hijack the 26S proteasome in SBPH via a direct interaction with the RPN3 subunit to attenuate the host defense response. IMPORTANCE We show, for the first time, that the 26S proteasome components are present in the small brown planthopper and play a role in defense against its vectored plant virus (RSV). In turn, RSV encodes a protein that subverts the SBPH 26S proteasome

  1. Role of amphotericin B upon enhancement of protective immunity elicited by oral administration with liposome-encapsulated-Japanese encephalitis virus nonstructural protein 1 (NS1) in mice.

    PubMed

    Lin, Tsung-Shun; Chuang, Chuan-Chang; Hsu, Hui-Ling; Liu, Yu-Tien; Lin, Wen-Po; Liang, Chung-Chih; Liu, Wen-Tssann

    2010-09-01

    Amphotericin B (AmB) is an antifungal antibiotic the activity of which has been associated with modulation of pro-inflammatory cytokines expression in cultured cells. Herein we reveal that co-administration with AmB enhances the immunogenicity of oral Lip-JENS1 vaccine which derived from liposomes functionalized with DSPC (distearoylphosphatidylcholine) and cholesterol (2:1, molar ratio)-bearing JE virus NS1 protein (600 microg ml(-1)). Oral single dose of Lip-JENS1 elicited a detectable serum NS1-specific IgG antibody response from a mouse model. Remarkably, the addition of AmB (125 microg per mouse), particularly, 2 h prior to, but not simultaneously with, the administration of Lip-JENS1 significantly enhanced the systemic antigen-specific antibody response, providing superior protection against lethal JEV challenges. Further, we observed AmB-induced the transcription of cytokine expression and translocation of transcriptional factor NF-kappaB from the cytoplasm to the nucleus for the murine macrophage J774A.1. Moreover, Peyer's-patch lymphocytes (PPL) from AmB-treated mice produced high levels of IL-1beta, IL-6 and TNF-alpha expression compared to the corresponding control of cells from non-treated mice. Taken together, the results suggest that AmB exerts a profound influence upon mucosal vaccination with Lip-JENS1, possibly playing an adjuvant-augmented role to "fine-tune" humoral as well as cellular immune response, thus conferring enhanced protective immunity for immunising individuals against JE infection. PMID:20412849

  2. School Facilities Manual: Nonstructural Protection Guide. Safer Schools, Earthquake Hazards, Nonstructural. Second Edition.

    ERIC Educational Resources Information Center

    Noson, Linda Lawrance; Perbix, Todd W.

    This guide addresses the strengthening of nonstructural elements of a school building to resist earthquake-induced damaged and improve school building safety in Washington State regions with notable earthquake activity. Nonstructural elements include the decorative details and those functional building parts and contents which support the…

  3. Disruption of Type I Interferon Signaling by the Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Virus via the Hijacking of STAT2 and STAT1 into Inclusion Bodies

    PubMed Central

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Cao, Wu-Chun; Wang, Manli; Deng, Fei; Hu, Zhihong

    2015-01-01

    ABSTRACT The type I interferon (IFN) system, including IFN induction and signaling, is the critical component of the host defense line against viral infection, which, in turn, is also a vulnerable target for viral immune evasion. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus. Previous data have shown that SFTSV can interfere with the early induction of type I IFNs through targeting host kinases TBK1/IKKε. In this study, we demonstrated that SFTSV also can suppress type I IFN-triggered signaling and interferon-stimulated gene (ISG) expression. Interestingly, we observed the significant inhibition of IFN signaling in cells transfected with the plasmids encoding the nonstructural protein (NSs) but not the nucleocapsid protein (NP), indicating the role of NSs as an antagonist of IFN signaling. Furthermore, coimmunoprecipitation (Co-IP) and pulldown assays indicated that NSs interacts with the cellular signal transducer and activator of transcription 2 (STAT2), and the DNA-binding domain of STAT2 may contribute to the NSs-STAT2 interaction. Combined with confocal microscopy analyses, we demonstrated that NSs sequesters STAT2 and STAT1 into viral inclusion bodies (IBs) and impairs IFN-induced STAT2 phosphorylation and nuclear translocation of both STATs, resulting in the inhibition of IFN signaling and ISG expression. SFTSV NSs-mediated hijacking of STATs in IBs represents a novel mechanism of viral suppression of IFN signaling, highlighting the role of viral IBs as the virus-built “jail” sequestering some crucial host factors and interfering with the corresponding cellular processes. IMPORTANCE SFTSV is an emerging bunyavirus which can cause a severe hemorrhagic fever-like disease with high case fatality rates in humans, posing a serious health threat. However, there are no specific antivirals available, and the pathogenesis and virus-host interactions are largely unclear. Here, we demonstrated that SFTSV can inhibit type I IFN

  4. Double-Stranded RNA Binding of Influenza B Virus Nonstructural NS1 Protein Inhibits Protein Kinase R but Is Not Essential To Antagonize Production of Alpha/Beta Interferon▿

    PubMed Central

    Dauber, Bianca; Schneider, Jana; Wolff, Thorsten

    2006-01-01

    Expression of alpha/beta interferon (IFN-α/β) in virus-infected vertebrate cells is a key event in the establishment of a sustained antiviral response, which is triggered by double-stranded RNA (dsRNA) produced during viral replication. These antiviral cytokines initiate the expression of cellular proteins with activities that limit the replication and spread of the invading viruses. Within this response, the dsRNA-dependent protein kinase R (PKR) that is expressed at constitutive levels and upregulated by IFN-α/β acts as an important antiviral effector that can block the cellular translational machinery. We previously demonstrated that efficient replication of influenza B virus depends on the viral dsRNA-binding NS1 protein that inhibits the transcriptional activation of IFN-α/β genes. Here we tested the postulate that the viral NS1 protein counteracts antiviral responses through sequestering intracellular dsRNA by analyzing a collection of recombinant influenza B viruses. As expected, viruses expressing dsRNA-binding-defective NS1 proteins were strongly attenuated for replication in IFN-competent hosts. Interestingly, these virus mutants failed to prevent activation of PKR but could effectively limit IFN induction. Conversely, a mutant virus expressing the N-terminal dsRNA-binding domain of NS1 prevented PKR activation, but not IFN induction, suggesting an important role for the NS1 C-terminal part in silencing the activation route of IFN-α/β genes. Thus, our findings indicate an unexpected mechanistic dichotomy of the influenza B virus NS1 protein in the suppression of antiviral responses, which involves at least one activity that is largely separable from dsRNA binding. PMID:16987984

  5. Genetic stability of PRRSV VR-2332 nsp2 deletion mutants in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PRRSV nonstructural protein 2 (nsp2) is the largest putative cleavage product of this arterivirus replicase polyprotein, and is composed of a cysteine protease (PL2) domain at the N-terminus, a middle hypervariable region and four transmembrane domains near the C-terminus. Previous studies demonstra...

  6. CELLULAR TRANSCRIPTIONAL PROFILING IN INFLUENZA A VIRUS INFECTED LUNG EPITHELIAL CELLS: THE ROLE OF THE NONSTRUCTURAL NS1 PROTEIN IN THE EVASION OF THE HOST INNATE DEFENSE AND ITS POTENTIAL CONTRIBUTION TO PANDEMIC INFLUENZA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NS1 protein of influenza A virus contributes to viral pathogenesis, primarily by enabling the virus to disarm the host cell type interferon defense system. We examined the downstream effects of NS1 protein expression during influenza A virus infection on global cellular mRNA levels by measuring ...

  7. Differential type I interferon activation and susceptibility of dendritic cell populations to porcine arterivirus

    PubMed Central

    Loving, Crystal L; Brockmeier, Susan L; Sacco, Randy E

    2007-01-01

    Dendritic cells (DCs) play a role in anti-viral immunity by providing early innate protection against viral replication and by presenting antigen to T cells for initiation of the adaptive immune response. Studies show the adaptive response to porcine reproductive and respiratory syndrome virus (PRRSV) is ineffective for complete viral elimination. Other studies describe the kinetics of the adaptive response to PRRSV, but have not investigated the early response by DCs. We hypothesize that there is an aberrant activation of DCs early in PRRSV infection; consequently, the adaptive response is triggered inadequately. The current study characterized a subtype of porcine lung DCs (L-DCs) and investigated the ability of PRRSV to infect and replicate in L-DCs and monocyte-derived DCs (MDDCs). Furthermore, the type I interferon anti-viral response to PRRSV with and without the addition of recombinant porcine IFN-α (rpIFN-α), an important cytokine that signals for anti-viral mediator activation, was analysed. Results show that PRRSV replicated in MDDCs but not L-DCs, providing evidence that these cells have followed distinct differentiation pathways. Although both cell types responded to PRRSV with an induction of IFN-β mRNA, the magnitude and duration of the response differed between cell types. The addition of rpIFN-α was protective in MDDCs, and mRNA synthesis of Mx (myxovirus resistant) and PKR (double-stranded RNA dependent protein kinase) was observed in both cell types after rpIFN-α addition. Overall, PRRSV replicated in MDDCs but not L-DCs, and rpIFN-α was required for the transcription of protective anti-viral mediators. DC response to PRRSV was limited to IFN-β transcription, which may be inadequate in triggering the adaptive immune response. PMID:17116172

  8. Porcine arterivirus activates the NF-{kappa}B pathway through I{kappa}B degradation

    SciTech Connect

    Lee, Sang-Myeong; Kleiboeker, Steven B. . E-mail: KleiboekerS@Missouri.edu

    2005-11-10

    Nuclear factor-kappaB (NF-{kappa}B) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-{kappa}B in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-{kappa}B activation was characterized by translocation of NF-{kappa}B from the cytoplasm to the nucleus, increased DNA binding activity, and NF-{kappa}B-regulated gene expression. NF-{kappa}B activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-{kappa}B activation. Degradation of I{kappa}B protein was detected late in PRRSV infection, and overexpression of the dominant negative form of I{kappa}B{alpha} (I{kappa}B{alpha}DN) significantly suppressed NF-{kappa}B activation induced by PRRSV. However, I{kappa}B{alpha}DN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-{kappa}B DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-{kappa}B was activated by PRRSV infection. Moreover, NF-{kappa}B-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-{kappa}B activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.

  9. Differential type I interferon activation and susceptibility of dendritic cell populations to porcine arterivirus.

    PubMed

    Loving, Crystal L; Brockmeier, Susan L; Sacco, Randy E

    2007-02-01

    Dendritic cells (DCs) play a role in anti-viral immunity by providing early innate protection against viral replication and by presenting antigen to T cells for initiation of the adaptive immune response. Studies show the adaptive response to porcine reproductive and respiratory syndrome virus (PRRSV) is ineffective for complete viral elimination. Other studies describe the kinetics of the adaptive response to PRRSV, but have not investigated the early response by DCs. We hypothesize that there is an aberrant activation of DCs early in PRRSV infection; consequently, the adaptive response is triggered inadequately. The current study characterized a subtype of porcine lung DCs (L-DCs) and investigated the ability of PRRSV to infect and replicate in L-DCs and monocyte-derived DCs (MDDCs). Furthermore, the type I interferon anti-viral response to PRRSV with and without the addition of recombinant porcine IFN-alpha (rpIFN-alpha), an important cytokine that signals for anti-viral mediator activation, was analysed. Results show that PRRSV replicated in MDDCs but not L-DCs, providing evidence that these cells have followed distinct differentiation pathways. Although both cell types responded to PRRSV with an induction of IFN-beta mRNA, the magnitude and duration of the response differed between cell types. The addition of rpIFN-alpha was protective in MDDCs, and mRNA synthesis of Mx (myxovirus resistant) and PKR (double-stranded RNA dependent protein kinase) was observed in both cell types after rpIFN-alpha addition. Overall, PRRSV replicated in MDDCs but not L-DCs, and rpIFN-alpha was required for the transcription of protective anti-viral mediators. DC response to PRRSV was limited to IFN-beta transcription, which may be inadequate in triggering the adaptive immune response. PMID:17116172

  10. Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradation.

    PubMed

    Lee, Sang-Myeong; Kleiboeker, Steven B

    2005-11-10

    Nuclear factor-kappaB (NF-kappaB) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-kappaB in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-kappaB activation was characterized by translocation of NF-kappaB from the cytoplasm to the nucleus, increased DNA binding activity, and NF-kappaB-regulated gene expression. NF-kappaB activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-kappaB activation. Degradation of IkappaB protein was detected late in PRRSV infection, and overexpression of the dominant negative form of IkappaBalpha (IkappaBalphaDN) significantly suppressed NF-kappaB activation induced by PRRSV. However, IkappaBalphaDN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-kappaB DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-kappaB was activated by PRRSV infection. Moreover, NF-kappaB-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-kappaB activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV. PMID:16129468

  11. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: The role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza

    NASA Astrophysics Data System (ADS)

    Geiss, Gary K.; Salvatore, Mirella; Tumpey, Terrence M.; Carter, Victoria S.; Wang, Xiuyan; Basler, Christopher F.; Taubenberger, Jeffery K.; Bumgarner, Roger E.; Palese, Peter; Katze, Michael G.; García-Sastre, Adolfo

    2002-08-01

    The NS1 protein of influenza A virus contributes to viral pathogenesis, primarily by enabling the virus to disarm the host cell type IFN defense system. We examined the downstream effects of NS1 protein expression during influenza A virus infection on global cellular mRNA levels by measuring expression of over 13,000 cellular genes in response to infection with wild-type and mutant viruses in human lung epithelial cells. Influenza A/PR/8/34 virus infection resulted in a significant induction of genes involved in the IFN pathway. Deletion of the viral NS1 gene increased the number and magnitude of expression of cellular genes implicated in the IFN, NF-B, and other antiviral pathways. Interestingly, different IFN-induced genes showed different sensitivities to NS1-mediated inhibition of their expression. A recombinant virus with a C-terminal deletion in its NS1 gene induced an intermediate cellular mRNA expression pattern between wild-type and NS1 knockout viruses. Most significantly, a virus containing the 1918 pandemic NS1 gene was more efficient at blocking the expression of IFN-regulated genes than its parental influenza A/WSN/33 virus. Taken together, our results suggest that the cellular response to influenza A virus infection in human lung cells is significantly influenced by the sequence of the NS1 gene, demonstrating the importance of the NS1 protein in regulating the host cell response triggered by virus infection.

  12. Guide and Checklist for Nonstructural Earthquake Hazards in California Schools.

    ERIC Educational Resources Information Center

    2003

    The recommendations included in this document are intended to reduce seismic hazards associated with the non-structural components of schools buildings, including mechanical systems, ceiling systems, partitions, light fixtures, furnishings, and other building contents. It identifies potential earthquake hazards and provides recommendations for…

  13. Role of non-structural protein 2 in the regulation of the replication of the porcine reproductive and respiratory syndrome virus in MARC-145 cells: effect of gene silencing and over expression.

    PubMed

    Wang, Feng-Xue; Wen, Yong-Jun; Yang, Bo-Chao; Liu, Zhun; Shi, Xin Chuan; Leng, Xue; Song, Ni; Wu, Hua; Chen, Li-Zhi; Cheng, Shi-Peng

    2012-12-28

    Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease in swine-producing areas. Many vaccine strategies have been developed to control the disease, but none have yet been completely successful. The development of a cell line that can produce large yields of PRRSV vaccine is very necessary. In order to determine the role of Nsp2 in the replication of the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in MARC-145 cells, we used an RNA interference-based short hairpin RNA of Nsp2 and constructed cell lines expressing the HP-PRRSV Nsp2 gene. Conserved HP-PRRSV Nsp2 sequences were used to design short interfering RNAs and test their ability to silence PRRSV transcript expression and replication in cells in vitro transfection. Nsp2, ORF7, and β-actin mRNA expression were determined using semi-quantitative real-time PCR. Infection with siRNA targeting Nsp2 was found to reduce the Nsp2 expression in MARC-145 cells infected with PRRSV. Both MARC-145-TJ Nsp2 and MARC-145-TJM Nsp2 cell lines were screened by G418, which were infected with HP-PRRSV, normal MARC-145 cells for mock, and then virus titers were calculated by TCID(50) after the CPE showing up. The downregulation of Nsp2 induced a remarkable decrease in PRRSV replication, causing the reduction of structural protein. The Nsp2-targeted siRNA was found to downregulate the expression of Nsp2 in MARC-145 cells and inducing replication reduce of PRRSV in MARC-145 cells. The shRNA vectors S-1 and S-2 could effectively induce the inhibition of viral replication in MARC-145. Results showed that cells expressing the Nsp2 gene of the highly pathogenic PRRSV TJ and attenuated TJM remained stable. PRRSV replication was faster in these cells than in MARC-145 cells, especially during the early stage. This shows that Nsp2 plays a positive role in PRRSV proliferation. PMID:22959006

  14. Biophysical characterisation of the nucleocapsid protein from a highly pathogenic porcine reproductive and respiratory syndrome virus strain.

    PubMed

    Jourdan, Stefanie S; Osorio, Fernando A; Hiscox, Julian A

    2012-03-01

    The arterivirus nucleocapsid (N) protein is a multifunctional protein that binds viral RNA for encapsidation and has potential roles in host cell processes. This study characterised the N protein from a highly virulent North American strain of porcine reproductive and respiratory syndrome virus (PRRSV). The association with viral RNA was mapped to defined motifs on the N protein. The results indicated that disulphide bridge formation played a key role in RNA binding, offering an explanation why infectious virus cannot be rescued if cysteine residues are mutated, and that multiple sites may promote RNA binding. PMID:22306009

  15. Performance-based seismic design of nonstructural building components: The next frontier of earthquake engineering

    NASA Astrophysics Data System (ADS)

    Filiatrault, Andre; Sullivan, Timothy

    2014-08-01

    With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major

  16. Some Aspects of Multigrid Methods on Non-Structured Meshes

    NASA Technical Reports Server (NTRS)

    Guillard, H.; Marco, N.

    1996-01-01

    To solve a given fine mesh problem, the design of a multigrid method requires the definition of coarse levels, associated coarse grid operators and inter-grid transfer operators. For non-structured simplified meshes, these definitions can rely on the use of non-nested triangulations. These definitions can also be founded on agglomeration/aggregation techniques in a purely algebraic manner. This paper analyzes these two options, shows the connections of the volume-agglomeration method with algebraic methods and proposes a new definition of prolongation operator suitable for the application of the volume-agglomeration method to elliptic problems.

  17. Reducing the Risks of Nonstructural Earthquake Damage: A Practical Guide. Earthquake Hazards Reduction Series 1.

    ERIC Educational Resources Information Center

    Reitherman, Robert

    The purpose of this booklet is to provide practical information to owners, operators, and occupants of office and commercial buildings on the vulnerabilities posed by earthquake damage to nonstructural items and the means available to deal with these potential problems. Examples of dangerous nonstructural damages that have occurred in past…

  18. The KnowRISK project: Tools and strategies to reduce non-structural damage

    NASA Astrophysics Data System (ADS)

    Sousa Oliveira, Carlos; Lopes, Mário; Mota de Sá, Francisco; Amaral Ferreia, Mónica; Candeias, Paulo; Campos Costa, Alfredo; Rupakhety, Rajesh; Meroni, Fabrizio; Azzaro, Raffaele; D'Amico, Salvatore; Langer, Horst; Musacchio, Gemma; Sousa Silva, Delta; Falsaperla, Susanna; Scarfì, Luciano; Tusa, Giuseppina; Tuvé, Tiziana

    2016-04-01

    The project KnowRISK (Know your city, Reduce seISmic risK through non-structural elements) is financed by the European Commission to develop prevention measures that may reduce non-structural damage in urban areas. Pilot areas of the project are within the three European participating countries, namely Portugal, Iceland and Italy. Non-structural components of a building include all those components that are not part of the structural system, more specifically the architectural, mechanical, electrical, and plumbing systems, as well as furniture, fixtures, equipment, and contents. Windows, partitions, granite veneer, piping, ceilings, air conditioning ducts and equipment, elevators, computer and hospital equipment, file cabinets, and retail merchandise are all examples of non-structural components that are vulnerable to earthquake damage. We will use the experience gained during past earthquakes, which struck in particular Iceland, Italy and Portugal (Azores). Securing the non-structural elements improves the safety during an earthquake and saves lives. This paper aims at identifying non-structural seismic protection measures in the pilot areas and to develop a portfolio of good practices for the most common and serious non-structural vulnerabilities. This systematic identification and the portfolio will be achieved through a "cross-knowledge" strategy based on previous researches, evidence of non-structural damage in past earthquakes. Shake table tests of a group of non-structural elements will be performed. These tests will be filmed and, jointly with portfolio, will serve as didactic supporting tools to be used in workshops with building construction stakeholders and in risk communication activities. A Practical Guide for non-structural risk reduction will be specifically prepared for citizens on the basis of the outputs of the project, taking into account the local culture and needs of each participating country.

  19. Nonstructural urban stormwater quality measures: building a knowledge base to improve their use.

    PubMed

    Taylor, André C; Fletcher, Tim D

    2007-05-01

    This article summarizes a research project that investigated the use, performance, cost, and evaluation of nonstructural measures to improve urban stormwater quality. A survey of urban stormwater managers from Australia, New Zealand, and the United States revealed a widespread trend of increasing use of nonstructural measures among leading stormwater management agencies, with at least 76% of 41 types of nonstructural measures being found to be increasing in use. Data gathered from the survey, an international literature review, and a multicriteria analysis highlighted four nonstructural measures of greatest potential value: mandatory town planning controls that promote the adoption of low-impact development principles and techniques; development of strategic urban stormwater management plans for a city, shire, or catchment; stormwater management measures and programs for construction/building sites; and stormwater management activities related to municipal maintenance operations such as maintenance of the stormwater drainage network and manual litter collections. Knowledge gained on the use and performance of nonstructural measures from the survey, literature review, and three trial evaluation projects was used to develop tailored monitoring and evaluation guidelines for these types of measure. These guidelines incorporate a new evaluation framework based on seven alternative styles of evaluation that range from simply monitoring whether a nonstructural measure has been fully implemented to monitoring its impact on waterway health. This research helps to build the stormwater management industry's knowledge base concerning nonstructural measures and provides a practical tool to address common impediments associated with monitoring and evaluating the performance and cost of these measures. PMID:17387545

  20. Seismic performance of non-structural components and contents in buildings: an overview of NZ research

    NASA Astrophysics Data System (ADS)

    Dhakal, Rajesh P.; Pourali, Atefeh; Tasligedik, Ali Sahin; Yeow, Trevor; Baird, Andrew; MacRae, Gregory; Pampanin, Stefano; Palermo, Alessandro

    2016-03-01

    This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.

  1. Modeling nonstructural carbohydrate reserve dynamics in forest trees

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Keenan, Trevor; Carbone, Mariah; Pederson, Neil

    2013-04-01

    Understanding the factors influencing the availability of nonstructural carbohydrate (NSC) reserves is essential for predicting the resilience of forests to climate change and environmental stress. However, carbon allocation processes remain poorly understood and many models either ignore NSC reserves, or use simple and untested representations of NSC allocation and pool dynamics. Using model-data fusion techniques, we combined a parsimonious model of forest ecosystem carbon cycling with novel field sampling and laboratory analyses of NSCs. Simulations were conducted for an evergreen conifer forest and a deciduous broadleaf forest in New England. We used radiocarbon methods based on the 14C "bomb spike" to estimate the age of NSC reserves, and used this to constrain the mean residence time of modeled NSCs. We used additional data, including tower-measured fluxes of CO2, soil and biomass carbon stocks, woody biomass increment, and leaf area index and litterfall, to further constrain the model's parameters and initial conditions. Incorporation of fast- and slow-cycling NSC pools improved the ability of the model to reproduce the measured interannual variability in woody biomass increment. We show how model performance varies according to model structure and total pool size, and we use novel diagnostic criteria, based on autocorrelation statistics of annual biomass growth, to evaluate the model's ability to correctly represent lags and memory effects.

  2. Tree Nonstructural Carbohydrate Reserves Across Eastern US Temperate Forests

    NASA Astrophysics Data System (ADS)

    Mantooth, J.; Dietze, M.

    2015-12-01

    Understanding the roles, importance, and dynamics of tree non-structural carbohydrates (NSCs) is currently an active area of research. The question of how the relationships between NSCs, growth, and mortality can be used to develop more accurate projections of forest dynamics is central to this research. To begin to address this question, we have asked an even more fundamental question: How much are trees allocating carbon to storage, in the form of NSCs, versus new growth? Ecological theory predicts that there should be trade-offs between different plant life history strategies provided that there are the carbon mass-balance constraints to enforce these trade-offs. Current data on tree NSCs lack the spatial and taxonomic extent required to properly address this question. Therefore, we established a network of forest inventory plots at ten sites across the eastern US and measured growth in adult trees using increment cores and repeat measures of diameter at breast height (DBH). Increment cores were also used to measure sapwood NSCs. We hypothesized that across the eastern US, shade tolerant species, e.g. Sugar Maple (Acer saccharum) have the largest NSC reserves and that shade intolerant species have the lowest reserves. We also hypothesized that NSC reserves increase with temperature and precipitation, as with growth, and that within species NSC reserves increase with growth rate. Initial analyses of tree NSCs indicates that trees of intermediate shade tolerance, e.g. Red Oak (Quercus rubra) have the highest concentrations of sapwood NSCs, and among the highest growth rates. Across the entire study region, NSC concentrations are positively correlated with tree size and growth rate. Within species, NSC concentrations are also positively correlated with growth rate. Across functional groups healthy individuals have significantly higher sapwood NSC concentrations than visibly stressed individuals. There are also significantly lower NSC concentrations in sapwood of

  3. Multiscale simulations on conformational dynamics and membrane interactions of the non-structural 2 (NS2) transmembrane domain.

    PubMed

    Hung, Huynh Minh; Hang, Tran Dieu; Nguyen, Minh Tho

    2016-09-01

    Hepatitis C virus (HCV) is one of the most crucial global health issues, in which the HCV non-structural protein 2 (NS2), particularly its three transmembrane segments, plays a crucial role in HCV assembly. In this context, multiscale MD simulations have been applied to investigate the preferred orientation of transmembrane domain of NS2 protein (TNS2) in a POPC bilayer, structural stability and characteristic of intramembrane protein-lipid and protein-protein interaction. Our study indicates that NS2 protein adopts three trans-membrane segments with highly stable α-helix structure in a POPC bilayer and a short helical luminal segment. While the first and second TM segment involved in continuous helical domain, the third TM segment is however cleaved into two sub-segments with different tilt angles via a kink at L87G88. Salt bridges K81-E45, R32-PO4 and R43-PO4 are determined as the key factor to stabilize the structure of TM2 and TM3 which consist of charged residues located in the hydrophobic region of the membrane. PMID:27444387

  4. Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems

    NASA Astrophysics Data System (ADS)

    Soroushian, Siavash; Maragakis, E. "Manos"; Zaghi, Arash E.; Rahmanishamsi, Esmaeel; Itani, Ahmad M.; Pekcan, Gokhan

    2016-03-01

    A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.

  5. Modeling nonstructural carbohydrate reserve dynamics in forest trees

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.; Keenan, T. F.; Carbone, M. S.; Czimczik, C. I.; Hollinger, D. Y.; Murakami, P.; Schaberg, P.; Xu, X.

    2012-12-01

    Understanding the factors influencing the availability of nonstructural carbohydrate (NSC) reserves is essential for predicting the resilience of forests to climate change and environmental stress. However, carbon allocation processes remain poorly understood and many models either ignore NSC reserves, or use simple and untested representations of NSC allocation and pool dynamics. Using model-data fusion techniques, we combined a parsimonious model of forest ecosystem carbon cycling with novel field sampling and laboratory analyses of NSCs. Simulations were conducted for an evergreen conifer forest and a deciduous broadleaf forest in New England. We used radiocarbon methods based on the 14C "bomb spike" to estimate the age of NSC reserves, and used this to constrain the mean residence time of modeled NSCs. We used additional data, including tower-measured fluxes of CO2, soil and biomass carbon stocks, woody biomass increment, and leaf area index and litterfall, to further constrain the model's parameters and initial conditions. Three years of field measurements indicate that stemwood NSCs are highly dynamic on seasonal time scales. The modeled seasonal dynamics conform to expectations (accumulated in the growing season, depleted in the dormant season) but are inconsistent with the observational data (total stemwood NSC concentrations higher in March than November, lower in August than June). We interpret this contradiction to suggest that stemwood concentrations provide an incomplete picture of the whole-tree NSC budget. A two-pool model structure that accounted for both "fast" (active pool, MRT ≈1 y) and "slow" (passive pool, MRT ≥ 20 y) cycling reserves (1) gives reasonable estimates of the size and MRT of the total NSC pool; (2) greatly improves model predictions of interannual variability in woody biomass increment, compared to zero- or one-pool structures used in the majority of existing models; (3) provides a mechanism by which observations of a one

  6. Non-structural carbohydrates in woody plants compared among laboratories.

    PubMed

    Quentin, Audrey G; Pinkard, Elizabeth A; Ryan, Michael G; Tissue, David T; Baggett, L Scott; Adams, Henry D; Maillard, Pascale; Marchand, Jacqueline; Landhäusser, Simon M; Lacointe, André; Gibon, Yves; Anderegg, William R L; Asao, Shinichi; Atkin, Owen K; Bonhomme, Marc; Claye, Caroline; Chow, Pak S; Clément-Vidal, Anne; Davies, Noel W; Dickman, L Turin; Dumbur, Rita; Ellsworth, David S; Falk, Kristen; Galiano, Lucía; Grünzweig, José M; Hartmann, Henrik; Hoch, Günter; Hood, Sharon; Jones, Joanna E; Koike, Takayoshi; Kuhlmann, Iris; Lloret, Francisco; Maestro, Melchor; Mansfield, Shawn D; Martínez-Vilalta, Jordi; Maucourt, Mickael; McDowell, Nathan G; Moing, Annick; Muller, Bertrand; Nebauer, Sergio G; Niinemets, Ülo; Palacio, Sara; Piper, Frida; Raveh, Eran; Richter, Andreas; Rolland, Gaëlle; Rosas, Teresa; Saint Joanis, Brigitte; Sala, Anna; Smith, Renee A; Sterck, Frank; Stinziano, Joseph R; Tobias, Mari; Unda, Faride; Watanabe, Makoto; Way, Danielle A; Weerasinghe, Lasantha K; Wild, Birgit; Wiley, Erin; Woodruff, David R

    2015-11-01

    Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory

  7. Non-structural carbohydrate pools in a tropical forest.

    PubMed

    Würth, Mirjam K R; Peláez-Riedl, Susanna; Wright, S Joseph; Körner, Christian

    2005-03-01

    The pool size of mobile, i.e. non-structural carbohydrates (NSC) in trees reflects the balance between net photosynthetic carbon uptake (source) and irreversible investments in structures or loss of carbon (sink). The seasonal variation of NSC concentration should reflect the sink/source relationship, provided all tissues from root to crown tops are considered. Using the Smithsonian canopy crane in Panama we studied NSC concentrations in a semi-deciduous tropical forest over 22 months. In the 9 most intensively studied species (out of the 17 investigated), we found higher NSC concentrations (starch, glucose, fructose, sucrose) across all species and organs in the dry season than in the wet season (NSC 7.2% vs 5.8% of dry matter in leaves, 8.8/6.0 in branches, 9.7/8.5 in stems, 8.3/6.4 in coarse and 3.9/2.2 in fine roots). Since this increase was due to starch only, we attribute this to drought-constrained growth (photosynthesis less affected by drought than sink activity). Species-specific phenological rhythms (leafing or fruiting) did not overturn these seasonal trends. Most of the stem volume (diameter at breast height around 40 cm) stores NSC. We present the first whole forest estimate of NSC pool size, assuming a 200 t ha(-1) forest biomass: 8% of this i.e. ca. 16 t ha(-1) is NSC, with ca. 13 t ha(-1) in stems and branches, ca. 0.5 and 2.8 t ha(-1) in leaves and roots. Starch alone (ca. 10.5 t ha(-1)) accounts for far more C than would be needed to replace the total leaf canopy without additional photosynthesis. NSC never passed through a period of significant depletion. Leaf flushing did not draw heavily upon NSC pools. Overall, the data imply a high carbon supply status of this forest and that growth during the dry season is not carbon limited. Rather, water shortage seems to limit carbon investment (new tissue formation) directly, leaving little leeway for a direct CO2 fertilization effects. PMID:15578227

  8. Molecular Determinants of Substrate Specificity for Semliki Forest Virus Nonstructural Protease

    PubMed Central

    Lulla, Aleksei; Lulla, Valeria; Tints, Kairit; Ahola, Tero; Merits, Andres

    2006-01-01

    The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1′ had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1′, and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site. PMID:16699022

  9. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    SciTech Connect

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.; Osorio, Fernando A.; Hiscox, Julian A.

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.

  10. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees.

    PubMed

    Richardson, Andrew D; Carbone, Mariah S; Keenan, Trevor F; Czimczik, Claudia I; Hollinger, David Y; Murakami, Paula; Schaberg, Paul G; Xu, Xiaomei

    2013-02-01

    Nonstructural carbohydrate reserves support tree metabolism and growth when current photosynthates are insufficient, offering resilience in times of stress. We monitored stemwood nonstructural carbohydrate (starch and sugars) concentrations of the dominant tree species at three sites in the northeastern United States. We estimated the mean age of the starch and sugars in a subset of trees using the radiocarbon ((14) C) bomb spike. With these data, we then tested different carbon (C) allocation schemes in a process-based model of forest C cycling. We found that the nonstructural carbohydrates are both highly dynamic and about a decade old. Seasonal dynamics in starch (two to four times higher in the growing season, lower in the dormant season) mirrored those of sugars. Radiocarbon-based estimates indicated that the mean age of the starch and sugars in red maple (Acer rubrum) was 7-14 yr. A two-pool (fast and slow cycling reserves) model structure gave reasonable estimates of the size and mean residence time of the total NSC pool, and greatly improved model predictions of interannual variability in woody biomass increment, compared with zero- or one-pool structures used in the majority of existing models. This highlights the importance of nonstructural carbohydrates in the context of forest ecosystem carbon cycling. PMID:23190200

  11. Interspecies variation of forage nutritive value and nonstructural carbohydrates in perennial cool-season grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage nitrogen (N) and nonstructural carbohydrate (NSC) concentrations are important indicators of forage quality, and knowledge of N and NSC variation among grass germplasm is one element to consider in developing a successful forage and livestock management program. An experiment was conducted in...

  12. Seasonal trends in nonstructural carbohydrates in cool- and warm- season grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass breeders have historically selected for and developed cultivar with an increased ability to accumulate high concentrations of nonstructural carbohydrates (NSC). While increases in NSC content of forages are generally considered advantageous, there are times during the growing season when incr...

  13. Responses of non-structural carbohydrates to shoot removal and soil moisture treatments in Salix nigra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Above-ground disturbances are common in dynamic riparian environments, and Salix nigra is well-adapted with a vigorous resprouting response. Soil moisture stresses are also common, and S. nigra is flood tolerant and drought sensitive. Nonstructural carbohydrate (NSC) reserves provide energy for rege...

  14. Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1994-01-01

    A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.

  15. Identification of a lead like inhibitor of the hepatitis C virus non-structural NS2 autoprotease

    PubMed Central

    Shaw, Joseph; Harris, Mark; Fishwick, Colin W.G.

    2015-01-01

    Hepatitis C virus (HCV) non-structural protein 2 (NS2) encodes an autoprotease activity that is essential for virus replication and thus represents an attractive anti-viral target. Recently, we demonstrated that a series of epoxide-based compounds, previously identified as potent inhibitors of the clotting factor, FXIII, also inhibited NS2-mediated proteolysis in vitro and possessed anti-viral activity in cell culture models. This suggested that a selective small molecule inhibitor of the NS2 autoprotease represents a viable prospect. In this independent study, we applied a structure-guided virtual high-throughput screening approach in order to identify a lead-like small molecule inhibitor of the NS2 autoprotease. This screen identified a molecule that was able to inhibit both NS2-mediated proteolysis in vitro and NS2-dependent genome replication in a cell-based assay. A subsequent preliminary structure–activity relationship (SAR) analysis shed light on the nature of the active pharmacophore in this compound and may inform further development into a more potent inhibitor of NS2 mediated proteolysis. PMID:26518228

  16. The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum.

    PubMed Central

    Tian, P; Estes, M K; Hu, Y; Ball, J M; Zeng, C Q; Schilling, W P

    1995-01-01

    We previously reported that expression of rotavirus nonstructural glycoprotein NSP4 is responsible for an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in Spodoptera frugiperda (Sf9) insect cells (P. Tian, Y. Hu, W. P. Schilling, D. A. Lindsay, J. Eiden, and M. K. Estes, J. Virol. 68:251-257, 1994). The purpose of the present study was to determine the mechanism by which NSP4 causes an increase in [Ca2+]i by measuring the permeability of the cytoplasmic and endoplasmic reticulum (ER) membranes in recombinant-baculovirus-infected Sf9 cells. No obvious change in plasmalemma permeability to divalent cations was observed in cells expressing NSP4 compared with that in cells expressing another rotaviral glycoprotein (VP7) when the influx of Ba2+, a Ca2+ surrogate, was monitored. The basal Ca2+ permeability of the internal Ca2+ store was evaluated by measuring the release of Ca2+ induced by ionomycin, a Ca2+ ionophore, or thapsigargin, an inhibitor of the ER Ca(2+)-ATPase pump, following suspension of the cells in Ca(2+)-free extracellular buffer. Releasable Ca2+ decreased with time to a greater extent in cells expressing NSP4 compared with that in cells expressing VP7, suggesting that NSP4 increases the basal Ca2+ permeability of the ER membrane. To determine the possible mechanism by which NSP4 increases ER permeability, purified NSP4 protein or a 22-amino-acid synthetic peptide consisting of residues 114 to 135 (NSP4(114-135) was added exogenously to noninfected Sf9 cells during measurement of [Ca2+]i. Both NSP4 and the NSP4(114-135 peptide produced a time-dependent increase in [Ca2+]i that was attenuated by prior inhibition of phospholipase C with U-73122. Pretreatment of the cells with thapsigargin completely blocked the increase in [Ca2+]i produced by NSP4(114-135, but the peptide only partially reduced the change in [Ca2+]i produced by thapsigargin. No changes in [Ca2+]i were seen in cells treated with control peptides. These results suggest that (i

  17. Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites.

    PubMed Central

    Chambers, T J; Grakoui, A; Rice, C M

    1991-01-01

    The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites. Images PMID:1833562

  18. The KnowRISK project - Know your city, Reduce seISmic risK through non-structural elements

    NASA Astrophysics Data System (ADS)

    Sousa Oliveria, Carlos; Amaral Ferreira, Mónica; Lopez, Mário; Sousa Silva, Delta; Musacchio, Gemma; Rupakhety, Rajesh; Falsaperla, Susanna; Meroni, Fabrizio; Langer, Horst

    2016-04-01

    Historically, there is a tendency to focus on seismic structural performance of buildings, neglecting the potential for damage of non-structural elements. In particular, non-structural elements of buildings are their architectural parts (i.e. partitions, ceilings, cladding), electrical and mechanical components (i.e., distribution panels, piping, plumbing), and contents (e.g., furniture, bookcases, computers and desktop equipment). Damage of these elements often contributes significantly to earthquake impacts. In the 1999 Izmit Earthquake, Turkey, 50% of the injuries and 3% of human losses were caused by non-structural failures. In the 2010-2011 Christchurch Earthquakes (New Zealand), 40% of building damage was induced by non-structural malfunctions. Around 70%-85% of construction cost goes into these elements, and their damage can strongly influence the ability of communities to cope with and recover from earthquakes. The project Know your city, Reduce seISmic risK through non-structural elements (KnowRISK) aims at facilitating local communities' access to expert knowledge on non-structural seismic protection solutions. The project will study seismic scenarios critical for non-structural damage, produce a portfolio of non-structural protection measures and investigate the level of awareness in specific communities. We will implement risk communication strategies that will take into account the social and cultural background and a participatory approach to raise awareness in local communities. The paradox between the progress of scientific knowledge and the ongoing increase of losses from natural disasters worldwide is a well-identified gap in the UN Hyogo Framework for Action 2005-2015, in which one of the main priorities is the investment on "knowledge use, innovation and education to build a culture of safety and resilience". The KnowRISK is well aligned with these priorities and will contribute to participatory action aimed at: i) transferring expert knowledge

  19. Functional differences in hepatitis C virus nonstructural (NS) 3/4A- and 5A-specific T cell responses

    PubMed Central

    Holmström, Fredrik; Chen, Margaret; Balasiddaiah, Anangi; Sällberg, Matti; Ahlén, Gustaf; Frelin, Lars

    2016-01-01

    The hepatitis C virus nonstructural (NS) 3/4A and NS5A proteins are major targets for the new direct-acting antiviral compounds. Both viral proteins have been suggested as modulators of the response to the host cell. We have shown that NS3/4A- and NS5A-specific T cell receptors confer different effector functions, and that killing of NS3/4A-expressing hepatocytes is highly dependent on IFN-γ. We here characterize the functional differences in the T cell responses to NS3/4A and NS5A. NS3/4A- and NS5A-specific T cells could be induced at various frequencies in wild-type-, NS3/4A-, and NS5A-transgenic mice. Priming of NS5A-specific T cells required a high DNA dose, and was unlike NS3/4A dependent on both CD4+ and CD8+ T cells, but less influenced by CD25+/GITR+ regulatory T cells. The presence of IL-12 greatly improved specific CD8+ T cell priming by NS3/4A but not by NS5A, suggesting a less dependence of IFN-γ for NS5A. This notion was supported by the observation that NS5A-specific T cells could eliminate NS5A-expressing hepatocytes also in the absence of IFN-γ-receptor-2. This supports that NS3/4A- and NS5A-specific T cells become activated and eliminate antigen expressing, or infected hepatocytes, by distinct mechanisms, and that NS5A-specific T cells show an overall less dependence of IFN-γ. PMID:27141891

  20. Reducing New Orleans Residential Flood Risk in an Uncertain Future Using Non-Structural Risk Mitigation

    NASA Astrophysics Data System (ADS)

    Fischbach, J. R.; Groves, D.; Johnson, D.

    2010-12-01

    Five years after Hurricane Katrina devastated the Gulf Coast, the long-term future of the City of New Orleans remains uncertain. This paper addresses one of New Orleans' most critical challenges: how to make the city more resilient and less vulnerable to future flood damages. Despite recent upgrades to the protection system surrounding the city designed to protect against floods with a 1-in-100 (1%) annual chance of occurrence, New Orleans remains vulnerable to lower-frequency, high-damage events. In addition, uncertain factors that influence flood risk, including coastal land loss and subsidence, rising sea levels, and population recovery and growth, may lead to increasing risk over time. Current proposals for risk reduction in New Orleans and South Louisiana, however, have not fully accounted for these key uncertain drivers. Rather than focus on additional large-scale structural infrastructure investments, this paper considers proposals to augment the existing protection system with ``non-structural" risk mitigation programs. Non-structural risk mitigation includes incentives for elevating existing or new structures, revised building codes, incentives for relocation to lower risk areas, and land use restrictions designed to curtail future growth in the floodplain. This research estimates the risk reduction benefits and implementation costs of non-structural risk mitigation strategies focused on single-family or small multi-family homes in New Orleans. We draw from existing risk models to develop a low-resolution scenario generator, NOLArisk, designed to produce first-order estimates of property risk from 2011-2060 across a range of uncertain future scenarios. We then apply exploratory modeling and Robust Decision Making (RDM) methods to a) suggest strategies that balance risk reduction and implementation costs across many or most plausible futures, and b) identify scenarios in which current alternatives yield negative net economic benefits or excessive levels of

  1. The role of non-structural carbohydrate reserves in trees under climatic stress

    NASA Astrophysics Data System (ADS)

    Hoch, G.; Koerner, C.

    2012-12-01

    The storage of non-structural carbon (C) reserves is an indispensable process for all plants. Diverting parts of their photoassimilates into storage pools (e.g. starch and storage lipids) ensures plants to survive periods when the requirement for C (i.e. the sum of all C-sink activities) exceeds their photosynthetic capacity (C-source activity). Over the last decade, research delivered clear evidence that under the current atmospheric CO2 concentrations, tree growth is generally limited by the availability of resources other than C (e.g. soil nutrients) under most conditions. Whether climatic stresses, like cold temperature or drought, can induce C-limitation in trees is currently vividly debated. We will thus address the following questions: 1) do low temperatures at alpine treelines or drought lead to situations where photosynthesis is limiting growth, and 2) what is the role of non-structural C reserves under such conditions? Trees at the alpine treeline as well as under hydraulic constraints accumulate, rather than use up their non-structural carbohydrate reserves with increasing stress. We propose that this observed increase of C stores results from a stress related decline in growth (C-sink activity) relative to C-supply. Hence, the higher C reserve concentrations found in trees under cold and dry conditions are very likely a direct physiological response to the environmental stress (diversion to storage), reflecting relatively higher availability of photoassimilates compared to sink demand. Previous experiments with trees and crops showed that in cold and dry environments, meristematic growth is generally limited more severely and at an earlier stage than photosynthesis. While cell division and differentiation are close to zero at about 5 °C even in cold adapted species, rates of photosynthesis are still reaching up to 80 % of maximum rates. Similarly, structural growth generally ceases at much less negative water potentials than does photosynthesis, which

  2. Virion packaging of multiple cleavage isoforms of porcine reproductive and respiratory syndrome virus nonstructural protein 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of a complex disease often resulting in significant morbidity and mortality. Recently, highly pathogenic isolates have emerged which have proven to be devastatingly effective pathogens, resulting in rapid systemic deterioration...

  3. [Involvement of nonstructural protein 5A and lipids on production of hepatitis C virus particles].

    PubMed

    Suzuki, Tetsuro; Masaki, Takahiro; Aizaki, Hideki

    2008-12-01

    A robust system for production of recombinant infectious hepatitis C virus (HCV) has been established in 2005 and classical virological techniques are now able to be applied to the HCV research, especially regarding molecular mechanisms on virion assembly and maturation. We recently demonstrated that the C-terminal serine cluster of NS5A is a determinant of NS5A interaction with Core and the subcellular localization of NSSA. Mutation of this cluster blocks the NS5A-Core interaction, resulting in perturbation of association between Core and HCV RNA. It is thus tempting to consider that NS5A plays a key role in transporting the viral genome RNA synthesized by the replication complex to the surface of lipid droplets (LDs) or LD-associated membranes, where Core localizes, leading to facilitation of nucleocapsid formation. We also demonstrated an important role of cholesterol and sphingolipid in HCV infection and virion maturation. Specifically, mature HCV particles are rich in cholesterol. Depletion of cholesterol from HCV or hydrolysis of virion-associated sphingomyelin results in a loss of infectivity, and the addition of exogenous cholesterol restores infectivity. In addition, cholesterol and sphingolipid on the HCV membrane play a key role in virus internalization. Finally, inhibitors of the sphingolipid biosynthetic pathway efficiently block virion production. PMID:19374198

  4. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration

    SciTech Connect

    Reichenbacker, R.R.; Hart, E.R.; Schultz, R.C.

    1996-06-01

    The impact of artificial defoliation on Populus growth, biomass production, and total nonstructural carbohydrate concentration was examined. Four Populus clones were field planted and artificially defoliated. Assigned defoliation levels (0, 25, 50, or 75%) were applied to leaves of leaf plastochron index 0 through 8 during a 6-d period in a 3-step incremental manner to simulate cottonwood leaf beetle, Chrysomela scripta F., larval feeding patterns. Artificial defoliations were timed to coincide with the outbreaks of natural beetle populations in adjacent areas. After 2 growing seasons, trees were measured for height, diameter, and biomass accumulation. Root samples were collected from 0 and 75% defoliation treatments for each clone. Biomass was reduced an average of 33% as defoliation level increased from 0 to 75%. As defoliation level increased from 0 to 75%, a consistent allocation ratio of biomass to 2/3 above and 1/3 below ground components continued in all clones. An overcompensation response occurred in above ground biomass when a defoliation level of 25% was applied. Between 25 and 75% a strong linear trend of decreasing biomass as defoliation increased was indicated. Vitality of the tree, as indicated by total nonstructural carbohydrate content, was affected only slightly by increasing defoliation. 26 refs., 1 fig., 6 tabs.

  5. Analysis of a non-structural gene reveals evidence of possible hepatitis C virus (HCV) compartmentalization

    PubMed Central

    Blackard, Jason T.; Ma, Gang; Welge, Jeffrey A.; Martin, Christina M.; Sherman, Kenneth E.; Taylor, Lynn E.; Mayer, Kenneth H.; Jamieson, Denise J.

    2011-01-01

    Viral diversity is a hallmark of hepatitis C virus (HCV) infection; however, only limited data are available regarding HCV variability in extrahepatic sites, and none have systematically compared diversity in non-structural and structural genomic regions. Therefore, HCV diversity in the NS5B and envelope 1 (E1) hypervariable region 1 (HVR1) genes was evaluated in matched sera and peripheral blood mononuclear cells (PBMCs) obtained from 13 HCV-infected women. Multiple clonal sequences were compared to evaluate quasispecies diversity and viral compartmentalization in PBMCs. Genetic distances were higher for E1/HVR1 compared to NS5B in both the sera and PBMCs (p = 0.0511 and p = 0.0284). Genetic distances were higher in serum NS5B compared to PBMC NS5B (p = 0.0003); however, they were not different when comparing E1/HVR1 in sera to PBMCs. By phylogenetic analysis of NS5B, evidence of possible PBMC compartmentalization was observed for 1 woman, while statistical methods were consistent with PBMC compartmentalization for 6 women. Evidence of compartmentalization within a non-structural genomic region may suggest that viral adaptation to a unique extracellular microenvironment(s) may be required for efficient replication and could contribute to HCV persistence. PMID:22170544

  6. Genetic effects on total phenolics, condensed tannins and non-structural carbohydrates in loblolly pine (Pinus taeda L.) needles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and environmental effects on carbon allocation to soluble phenolics and non-structural carbohydrates in needles of widely-planted loblolly pine (Pinus taeda L.) genotypes could impact productivity, sustainability and biogeochemical cycling in the southeastern U.S. The magnitude of genetic a...

  7. Profiles of Nonstructural Carbohydrates, as a Function of Species and Extraction Method, in Four Cool-Season Forage Grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonstructural carbohydrates (NSC) of forage grasses, particularly long-chain fructans, have been proposed as the causal agent of equine laminitis. In order to evaluate the correlation between NSC and laminitis, NSC must be quantified in the forages being fed to and grazed by horses. The goal of th...

  8. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses.

    PubMed

    Koonin, E V; Gorbalenya, A E; Purdy, M A; Rozanov, M N; Reyes, G R; Bradley, D W

    1992-09-01

    Computer-assisted comparison of the nonstructural polyprotein of hepatitis E virus (HEV) with proteins of other positive-strand RNA viruses allowed the identification of the following putative functional domains: (i) RNA-dependent RNA polymerase, (ii) RNA helicase, (iii) methyltransferase, (iv) a domain of unknown function ("X" domain) flanking the papain-like protease domains in the polyproteins of animal positive-strand RNA viruses, and (v) papain-like cysteine protease domain distantly related to the putative papain-like protease of rubella virus (RubV). Comparative analysis of the polymerase and helicase sequences of positive-strand RNA viruses belonging to the so-called "alpha-like" supergroup revealed grouping between HEV, RubV, and beet necrotic yellow vein virus (BNYVV), a plant furovirus. Two additional domains have been identified: one showed significant conservation between HEV, RubV, and BNYVV, and the other showed conservation specifically between HEV and RubV. The large nonstructural proteins of HEV, RubV, and BNYVV retained similar domain organization, with the exceptions of relocation of the putative protease domain in HEV as compared to RubV and the absence of the protease and X domains in BNYVV. These observations show that HEV, RubV, and BNYVV encompass partially conserved arrays of distinctive putative functional domains, suggesting that these viruses constitute a distinct monophyletic group within the alpha-like supergroup of positive-strand RNA viruses. PMID:1518855

  9. Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers

    SciTech Connect

    Kohler, Christian; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian

    2008-04-09

    Three layer insulating glass units with two low-e coatings and an effective gas fill are known to be highly insulating, with center-of-glass U-factors as low as 0.57 W/m{sup 2}-K (0.10 Btu/h-ft{sup 2}- F). Such units have historically been built with center layers of glass or plastic which extend all the way through the spacer system. This paper shows that triple glazing systems with non-structural center layers which do not create a hermetic seal at the edge have the potential to be as thermally efficient as standard designs, while potentially removing some of the production and product integration issues that have discouraged the use of triples.

  10. The effect of non-structural components and lignin on hemicellulose extraction.

    PubMed

    Liu, Kai-Xuan; Li, Hong-Qiang; Zhang, Jie; Zhang, Zhi-Guo; Xu, Jian

    2016-08-01

    As the important structural component of corn stover, hemicellulose could be converted into a variety of high value-added products. However, high quality hemicellulose extraction is not an easy issue. The present study aims to investigate the effects of non-structural components (NSCs) and lignin removal on alkaline extraction of hemicellulose. Although NSCs were found to have a minimal effect on hemicellulose dissolution, they affected the color values of the hemicellulose extracts. The lignin limited the hemicellulose dissolution and increased the color value by binding to hemicellulose molecules and forming lignin-carbohydrate complexes. Sodium chlorite method can remove about 90% lignin from corn stover, especially the lignin connected to hemicellulose through p-coumaric and ferulic acids. Which increased the hemicellulose dissolution ratio to 93% and reduced the color value 14-28%, but the cost is about 20% carbohydrates lost. PMID:27213576

  11. Is nonstructural bone graft useful in surgical treatment of lumbar spinal tuberculosis?

    PubMed Central

    Liu, Jia-Ming; Chen, Xuan-Yin; Zhou, Yang; Long, Xin-Hua; Chen, Wen-Zhao; Liu, Zhi-Li; Huang, Shan-Hu; Yao, Hao-Qun

    2016-01-01

    Abstract Surgical intervention is an important option for treating spinal tuberculosis. Previous studies have reported different surgical procedures and bone grafts for it. To our knowledge, few studies demonstrated the clinical results of using nonstructural autogenous bone graft in surgical treatment of spinal tuberculosis. The purpose of this study is to compare the clinical outcomes of surgical management lumbar spinal tuberculosis by one-stage posterior debridement with nonstructural autogenous bone grafting and instrumentation versus anterior debridement, strut bone grafting combined with posterior instrumentation. A total of 58 consecutive patients who underwent surgical treatment due to lumbar spinal tuberculosis from January 2011 to December 2013 were included. A total of 22 patients underwent one-stage posterior debridement, nonstructural autogenous bone grafting, and instrumentation (group A), and 36 patients received anterior debridement, strut bone grafting combined with posterior instrumentation (group B). The operative duration, total blood loss, perioperative transfusion, length of hospital stay, hospitalization cost, and complications were recorded. The bony fusion of the graft was assessed by computed tomography scans. American Spinal Injury Association (ASIA) Impairment Scale was used to evaluate the neurological function of patients in the 2 groups. All the patients were followed up, with a mean follow-up duration of 21.6 ± 5.7 months in group A and 22.3 ± 6.2 months in group B (P = 0.47). The average operative duration was 257.5 ± 91.1 minutes in group A and 335.7 ± 91.0 minutes in group B (P = 0.002). The mean total blood loss was 769.6 ± 150.9 mL in group A and 1048.6 ± 556.9 mL in group B (P = 0.007). Also, significant differences were found between the 2 groups in perioperative transfusion volumes, length of hospital stay, and hospitalization cost (P < 0.05), which were less in group A

  12. Nonstructural heart disease in the newborn. Observations during one year in a perinatal service.

    PubMed Central

    Rowe, R D; Izukawa, T; Mulholland, H C; Bloom, K R; Cook, D H; Swyer, P R

    1978-01-01

    One-third of 327 newborn infants referred to the perinatal service of the Hospital for Sick Children during 1975 with suspected cardiopulmonary disorders proved to have nonstructural heart disease. Most of these were term infants with transient tachypnoea or cyanosis who recovered. A history of fetal distress or difficult delivery was commonly associated. The haemodynamic disorder for most was a delay in the normal progress of the transitional circulation. Evidence of myocardial ischaemia was present in 40%, and about half of these developed congestive heart failure. Aids to diagnosis of the ischaemic complication included echocardiography and myocardial perfusion scanning. For a small proportion specific metabolic disturbances, myocarditis, or dysrhythmia seemed the primary cause but even for these there were reasonable grounds to suspect a prenatal origin. Current general supportive measures were of value in treatment. PMID:718241

  13. Quantitative characterization of nonstructural carbohydrates of mezcal Agave (Agave salmiana Otto ex Salm-Dick).

    PubMed

    Michel-Cuello, Christian; Juárez-Flores, Bertha Irene; Aguirre-Rivera, Juan Rogelio; Pinos-Rodríguez, Juan Manuel

    2008-07-23

    Fructans are the reserve carbohydrates in Agave spp. plants. In mezcal factories, fructans undergoes thermal hydrolysis to release fructose and glucose, which are the basis to produce this spirit. Carbohydrate content determines the yield of the final product, which depends on plant organ, ripeness stage, and thermal hydrolysis. Thus, a qualitative and quantitative characterization of nonstructural carbohydrates was conducted in raw and hydrolyzed juices extracted from Agave salmiana stems and leaves under three ripeness stages. By high-performance liquid chromatography (HPLC), fructose, glucose, sucrose, xylose, and maltose were identified in agave juice. Only the plant fraction with hydrolysis interaction was found to be significant in the glucose concentration plant. Interactions of the fraction with hydrolysis and ripeness with hydrolysis were statistically significant in fructose concentration. Fructose concentration rose considerably with hydrolysis, but only in juice extracted from ripe agave stems (early mature and castrated). This increase was statistically significant only with acid hydrolysis. PMID:18558710

  14. Epoxide based inhibitors of the hepatitis C virus non-structural 2 autoprotease

    PubMed Central

    Shaw, Joseph; Fishwick, Colin W.G.; Harris, Mark

    2015-01-01

    Hepatitis C virus (HCV) non-structural 2 (NS2) encodes an essential protease activity responsible for processing at the NS2–NS3 junction which represents an attractive antiviral target. Attempts to inhibit the NS2 autoprotease with mechanism-based protease inhibitors and substrate peptides have had limited success. We report a series of epoxide-containing small molecules capable of blocking NS2–NS3 proteolysis in vitro and demonstrate the potential for selectivity towards the NS2 autoprotease. A compound within this series was able to perturb HCV genome replication in a subgenomic replicon system only when polyprotein processing was dependent on NS2 autoprotease activity, in addition it inhibited replication of full length HCV. These findings suggest blocking HCV polyprotein processing through inhibition of the NS2 autoprotease represents a viable route to exert an antiviral effect. PMID:25703928

  15. Hospital Workers Disaster Management and Hospital Nonstructural: A Study in Bandar Abbas, Iran

    PubMed Central

    Lakbala, Parvin

    2016-01-01

    Introduction: A devastating earthquake is inevitable in the long term and likely in the near future in Iran. The objective of the study was to assess the knowledge of hospital staff to disaster management system in hospital and to determine nonstructural safety assessment in Shahid Mohammadi hospital in Bandar Abbas city of Iran. This hospital is the main referral hospital in Hormozgan province with a capacity of about 450 beds and the highest patient admissions. Methods: The cross-sectional study was conducted in 2013 on 200 healthcare workers at Shahid Mohammadi hospital, in the city of Bandar Abbas, Iran. This hospital is the main referral hospital in Hormozgan province and has a capacity of about 450 beds with highest numbers of patient admissions. Questionnaire and checklist used for assessing health workers knowledge and awareness towards disaster management and nonstructural safety this hospital. Results: This study found that knowledge, awareness, and disaster preparedness of hospital staff need continual reinforcement to improve self efficacy for disaster management. Equipping health care facilities at the time of natural disasters, especially earthquakes are of great importance all over the world, especially in Iran. This requires the national strategies and planning for all health facilities. Conclusion: It seems due to limitations of hospital beds, insufficient of personnel, and medical equipment, health care providers paid greater attention to this issue. Since this hospital is the only educational public hospital in the province, it is essential to pay much attention to the risk management not only to this hospital but at the national level to health facilities. PMID:26573039

  16. [Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems].

    PubMed

    Zhang, Hai-Yan; Wang, Chuan-Kuan; Wang, Xing-Chang; Cheng, Fang-Yan

    2013-11-01

    Taking the two diffuse-porous tree species Betula platyphylla and Tilia amurensis in a temperate forest in Northeast China as test objects, this paper studied the spatial variation of the non-structural carbohydrates (NSC) concentrations in the stem xylem after leaf-fall. For the two tree species, the concentrations of total non-structural carbohydrate (TNC, soluble sugars plus starch) and soluble sugars in the stem xylem decreased gradually with the increasing depth from cambium to pith, whereas the starch concentration showed little radial variation. There was still a substantial amount of NSC in the inner wood close to pith. The concentrations of the NSC in the two species stems decreased gradually from the stump to the breast height, and then increased vertically. The maximum concentrations of the TNC, soluble sugars, and starch occurred at different heights, depending on the species and the TNC components. The ratio of sugar to starch showed a contrasting vertical trend for the two species, i. e., increasing from the stump to the top for B. platyphylla, but decreasing for T. amurensis. The estimation error of the stem NSC storage was mainly from the axial variation, and then, from the radial variation of NSC concentration. The TNC concentration (1.0% dry mass) in the stem of shade-intolerant species B. platyphylla was significantly lower than that (4.3% dry mass) of shade-tolerant species T. amurensis, which could be related to their different life-history strategies. Applying the sampling protocols considering the axial and radial variations of NSC could effectively reduce the potential uncertainty in estimating the NSC storage at tree or stand level. PMID:24564131

  17. Effects of ozone and water deficit on field-grown soybean: II. Leaflet nonstructural carbohydrates

    SciTech Connect

    Miller, J.E.; Vozzo, S.F.; Patterson, R.P.

    1995-07-01

    Ozone (O{sub 3}) and water deficit can suppress photosynthesis, growth, and yield of crops, and both may alter plant carbohydrate status. Little is known, however, concerning the combined effects of these stresses on C assimilation and nonstructural carbohydrate reserves in field-grown plants. Soybean [Glycine max (L.) Merr. `Young`] plants were subjected to two soil moisture regimes (providing well-watered and periodically water-deficient conditions) and three levels of O{sub 3} concentrations were 0.018, 0.059, and 0.085 {mu}L L{sup -1} (seasonal mean 12 h d{sup -1} concentration). Leaflet carbohydrate concentrations were measured periodically during the growing season. Total soluble carbohydrates (TSCs) (sucrose and hexose) and starch were measured in the center leaflet of the sixth trifoliolate from the apex. Ozone stress suppressed leaflet concentrations of TSCs and starch on most sampling dates. Impacts of water deficit were less consistent, but starch concentrations usually increased when effects were significant. Interactions between the two stresses occurred infrequently, although water stress reduced the negative effects of O{sub 3} on sucrose and TSCs when the data were analyzed over the season. Ozone treatment also slightly increased the proportion of sucrose compared to starch in the total nonstructural carbohydrate (TNC) pool. The response of seasonal mean TNC concentrations, seasonal mean NCER, and seed yield to O{sub 3} followed similar patterns, although TNCs were suppressed more on a relative basis then NCER or yield. 34 refs., 4 figs., 4 tabs.

  18. Mutations in the classical swine fever virus NS4B protein affects virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NS4B is one of the non-structural proteins of Classical Swine Fever Virus (CSFV), the etiological agent of a severe, highly lethal disease of swine. Protein domain analysis of the predicted amino acid sequence of the NS4B protein of highly pathogenic CSFV strain Brescia (BICv) identified a Toll/Inte...

  19. Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1).

    PubMed

    Gelanew, Tesfaye; Poole-Smith, B Katherine; Hunsperger, Elizabeth

    2015-09-15

    Dengue virus (DENV) nonstructural-1 (NS1) glycoprotein is useful for diagnosis of DENV infections in the first 8 days of illness with any of the four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). However, NS1 diagnostics are less sensitive for secondary DENV infections so the utility of NS1 diagnostics in dengue endemic countries where there is predominantly secondary infections is being questioned. Heat-mediated immunecomplex dissociation (ICD) prior to testing serum samples can significantly improve NS1 test sensitivity in secondary infections but requires monoclonal antibodies (MAbs) reactive to heat-denatured NS1. In order to incorporate a simple heat-mediated ICD step, a crucial step was to develop new MAbs with high affinity and specificity to heat-denatured DENV NS1 protein. In the present study, six new MAbs were isolated from BALB/c mice immunized with recombinant monomeric NS1 of DENV-1 and DENV-2. Characterization using three different methods: indirect ELISA, fixed cell ELISA and western blot revealed that all six MAbs are serotype-cross-reactive and capable of recognizing dimeric and hexameric isoforms as well as heat-denatured NS1 from all four DENV serotypes. No cross-reactivity to NS1 of West Nile virus and Yellow fever virus was observed on western blot and indirect ELISA. Five of the six MAbs mapped to the DENV NS1 region of 105-119 amino acids. The remaining MAb mapped to DENV NS1 region of 25-39 amino acids. These two NS1 regions were found to be highly conserved among all four DENV serotypes by sequences analysis and database comparison. These MAbs were used to develop an NS1 capture ELISA and tested using a small panel of clinical specimens. The results from the NS1 capture ELISA indicated at least a three-fold increase in NS1 antigen detection in heat-denatured samples compared to untreated specimens. Furthermore, artificial immunecomplexed results also demonstrated the binding efficiency of these MAbs to heat denatured NS1. Taken together

  20. Wind-Tunnel Evaluation of the Effect of Blade Nonstructural Mass Distribution on Helicopter Fixed-System Loads

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Mirick, Paul H.; Wilkie, W. Keats

    1998-01-01

    This report provides data obtained during a wind-tunnel test conducted to investigate parametrically the effect of blade nonstructural mass on helicopter fixed-system vibratory loads. The data were obtained with aeroelastically scaled model rotor blades that allowed for the addition of concentrated nonstructural masses at multiple locations along the blade radius. Testing was conducted for advance ratios ranging from 0.10 to 0.35 for 10 blade-mass configurations. Three thrust levels were obtained at representative full-scale shaft angles for each blade-mass configuration. This report provides the fixed-system forces and moments measured during testing. The comprehensive database obtained is well-suited for use in correlation and development of advanced rotorcraft analyses.

  1. Distribution and mixing of old and new nonstructural carbon in two temperate trees.

    PubMed

    Richardson, Andrew D; Carbone, Mariah S; Huggett, Brett A; Furze, Morgan E; Czimczik, Claudia I; Walker, Jennifer C; Xu, Xiaomei; Schaberg, Paul G; Murakami, Paula

    2015-04-01

    We know surprisingly little about whole-tree nonstructural carbon (NSC; primarily sugars and starch) budgets. Even less well understood is the mixing between recent photosynthetic assimilates (new NSC) and previously stored reserves. And, NSC turnover times are poorly constrained. We characterized the distribution of NSC in the stemwood, branches, and roots of two temperate trees, and we used the continuous label offered by the radiocarbon (carbon-14, (14) C) bomb spike to estimate the mean age of NSC in different tissues. NSC in branches and the outermost stemwood growth rings had the (14) C signature of the current growing season. However, NSC in older aboveground and belowground tissues was enriched in (14) C, indicating that it was produced from older assimilates. Radial patterns of (14) C in stemwood NSC showed strong mixing of NSC across the youngest growth rings, with limited 'mixing in' of younger NSC to older rings. Sugars in the outermost five growth rings, accounting for two-thirds of the stemwood pool, had a mean age < 1 yr, whereas sugars in older growth rings had a mean age > 5 yr. Our results are thus consistent with a previously-hypothesized two-pool ('fast' and 'slow' cycling NSC) model structure. These pools appear to be physically distinct. PMID:25558814

  2. Age, allocation and availability of nonstructural carbon in mature red maple trees.

    PubMed

    Carbone, Mariah S; Czimczik, Claudia I; Keenan, Trevor F; Murakami, Paula F; Pederson, Neil; Schaberg, Paul G; Xu, Xiaomei; Richardson, Andrew D

    2013-12-01

    The allocation of nonstructural carbon (NSC) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality. We used the radiocarbon ((14) C) 'bomb spike' as a tracer of substrate and age of carbon in stemwood NSC, CO2 emitted by stems, tree ring cellulose and stump sprouts regenerated following harvesting in mature red maple trees. We addressed the following questions: which factors influence the age of stemwood NSC?; to what extent is stored vs new NSC used for metabolism and growth?; and, is older, stored NSC available for use? The mean age of extracted stemwood NSC was 10 yr. More vigorous trees had both larger and younger stemwood NSC pools. NSC used to support metabolism (stem CO2 ) was 1-2 yr old in spring before leaves emerged, but reflected current-year photosynthetic products in late summer. The tree ring cellulose (14) C age was 0.9 yr older than direct ring counts. Stump sprouts were formed from NSC up to 17 yr old. Thus, younger NSC is preferentially used for growth and day-to-day metabolic demands. More recently stored NSC contributes to annual ring growth and metabolism in the dormant season, yet decade-old and older NSC is accessible for regrowth. PMID:24032647

  3. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels

    NASA Astrophysics Data System (ADS)

    O'Brien, Michael J.; Leuzinger, Sebastian; Philipson, Christopher D.; Tay, John; Hector, Andy

    2014-08-01

    Plants in most biomes are thought to be living at their hydraulic limits, and alterations to precipitation patterns consistent with climate change trends are causing die-back in forests across the globe. However, within- and among-species variation in plant traits that promote persistence and adaptation under these new rainfall regimes may reduce mortality in these changing climates. Storage of non-structural carbohydrates (NSCs) is posited as an important trait for resistance and resilience of forests to climate-change-induced drought, but the underlying mechanisms remain unclear. Here we demonstrate a positive relationship between NSCs and drought survival by manipulating NSC concentrations within seedlings of ten tropical tree species. Seedlings experimentally enriched in NSCs showed higher stem water potentials and sustained NSCs during drought. NSC use for maintenance of osmoregulation and hydraulic function therefore seems to underlie improved drought resistance. That drought mortality is delayed by higher NSC concentrations has implications for predicting the impacts of climate change on forest die-back and may help focus restoration efforts on species that increase the resistance and resilience of forests to climate change.

  4. Distribution and mixing of old and new nonstructural carbon in two temperate trees

    PubMed Central

    Richardson, Andrew D; Carbone, Mariah S; Huggett, Brett A; Furze, Morgan E; Czimczik, Claudia I; Walker, Jennifer C; Xu, Xiaomei; Schaberg, Paul G; Murakami, Paula

    2015-01-01

    We know surprisingly little about whole-tree nonstructural carbon (NSC; primarily sugars and starch) budgets. Even less well understood is the mixing between recent photosynthetic assimilates (new NSC) and previously stored reserves. And, NSC turnover times are poorly constrained. We characterized the distribution of NSC in the stemwood, branches, and roots of two temperate trees, and we used the continuous label offered by the radiocarbon (carbon-14, 14C) bomb spike to estimate the mean age of NSC in different tissues. NSC in branches and the outermost stemwood growth rings had the 14C signature of the current growing season. However, NSC in older aboveground and belowground tissues was enriched in 14C, indicating that it was produced from older assimilates. Radial patterns of 14C in stemwood NSC showed strong mixing of NSC across the youngest growth rings, with limited ‘mixing in’ of younger NSC to older rings. Sugars in the outermost five growth rings, accounting for two-thirds of the stemwood pool, had a mean age < 1 yr, whereas sugars in older growth rings had a mean age > 5 yr. Our results are thus consistent with a previously-hypothesized two-pool (‘fast’ and ‘slow’ cycling NSC) model structure. These pools appear to be physically distinct. PMID:25558814

  5. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.

    PubMed

    Klein, Tamir; Hoch, Günter; Yakir, Dan; Körner, Christian

    2014-09-01

    In trees exposed to prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (i) to what degree is tree growth limited by C availability; and (ii) is growth limited by concurrent C storage (e.g., as nonstructural carbohydrates, NSC)? To test the relationships between drought, growth and C reserves, we monitored the changes in NSC levels and constructed stem growth chronologies of mature Pinus halepensis Miller trees of three drought stress levels growing in Yatir forest, Israel, at the dry distribution limit of forests. Moderately stressed and stressed trees showed 34 and 14% of the stem growth, 71 and 31% of the sap flux density, and 79 and 66% of the final needle length of healthy trees in 2012. In spite of these large reductions in growth and sap flow, both starch and soluble sugar concentrations in the branches of these trees were similar in all trees throughout the dry season (2-4% dry mass). At the same time, the root starch concentrations of moderately stressed and stressed trees were 47 and 58% of those of healthy trees, but never <2% dry mass. Our results show that all the studied trees maintain a fairly good coordination between C supply and demand, and even during prolonged drought there is more than one way for a tree to maintain a positive C balance. PMID:25187568

  6. Classical Swine Fever Virus p7 protein is a viroporin involved in virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The non-structural protein p7 of Classical Swine Fever Virus (CSFV) is a hydrophobic polypeptide with an apparent molecular mass of 7 kDa. The protein contains two hydrophobic stretches of amino acids interrupted by a short charged segment that are predicted to form transmembrane helices and a cytos...

  7. Drought stress, growth, and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest

    NASA Astrophysics Data System (ADS)

    Klein, Tamir; Yakir, Dan; Hoch, Günter

    2014-05-01

    • In trees under prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (1) to what degree is tree growth limited by C availability; and (2) Is growth limited by concurrent C storage (e.g. as nonstructural carbohydrates, NSC). • To test the relationships between drought, growth, and C reserves, we monitored the changes in NSC levels and constructed stem growth chronologies of Pinus halepensis trees of three drought stress levels growing in Yatir forest, Israel, at the dry limit of forest existence. • Moderately stressed and stressed trees showed 37% and 21% of the stem growth of healthy trees in 2012; 71% and 31% of the sap flux density; and 79% and 66% of the final needle length. In spite of these large reductions, both starch and soluble sugars concentrations in branches of these trees were similar in all trees throughout the dry season (2-4% dry mass). At the same time the root starch concentrations of moderately stressed and stressed trees were 47% and 58% of that of healthy trees, but never below 2% d.m. • Our results suggest that the drought-induced growth reduction is associated with a general C shortage, rather than competition with concurrent C storage. The relatively small effect of drought stress level on NSC dynamics, the maintenance of a 2% d.m. starch, and the continued sap flow indicate that a whole-tree C starvation is not likely to occur in these trees growing at the edge of the desert. Special request: If the abstract is not accepted for presentation in this session, please consider for presentation in session BG2.11 Plant traits and biogeochemical cycles. Thank you.

  8. Concentrations and 14C age of nonstructural carbon in California oaks

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Druffel-Rodriguez, K.; Trumbore, S. E.

    2008-12-01

    Plants store photosynthetic assimilates as nonstructural carbon (NSC), mainly glucose, fructose, sucrose, and starch. NSC fuels processes such as respiration and growth. Research suggests that NSC represents a significant fraction of a plant's annual C budget, but temporal dynamics of NSC are poorly understood. We used concentration and radiocarbon (14C) measurements of NSC to investigate how temporal dynamics of NSC vary with life strategy and throughout a species' range. In Mediterranean environments, oaks have developed two strategies (evergreen and deciduous) to cope with drought. Within California, the uncertainty of annual winter rain increases from north to south. We compared two evergreen and deciduous species: Coastal and Interior live oak (Quercus agrifolia and wislizenii) and Valley and Blue oak (Q. lobata and douglasii). Samples (4 mm cores to 20 cm depth at dbh) were taken in 2008 before leaf-out and fall at five sites which represent an inland to coast temperature gradient from high to low summer temperatures as well as a north- south precipitation gradient. Sugars were isolated by shaking in methanol-water and quantified using a spectrometric micro-plate technique. Starch was isolated by boiling in ethanol followed by HCl digestion and quantified manometrically. 14C contents were measured by AMS. Preliminary findings indicate that in live oaks, winter sugar concentrations are constant throughout the tree and across sites, while 14C concentrations increase towards a tree's center. This suggests that the NSC pool oaks is not well mixed. Future work will elucidate whether plants can access these older NSC stores.

  9. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  10. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  11. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging.

    PubMed

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K; Osorio, Fernando A; Hiscox, Julian A

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus. PMID:18550142

  12. An interactome map of the nucleocapsid protein from a highly pathogenic North American porcine reproductive and respiratory syndrome virus strain generated using SILAC-based quantitative proteomics.

    PubMed

    Jourdan, Stefanie S; Osorio, Fernando; Hiscox, Julian A

    2012-04-01

    Positive strand RNA viruses replicate in the cytoplasm of an infected cell and encode nucleocapsid proteins. These proteins function to promote encapsidation of the RNA genome and virus particle assembly as well as playing potential roles in viral RNA synthesis. Nucleocapsid proteins can also associate with cellular proteins and signaling cascades. The arterivirus nucleocapsid (N) protein is no exception and localizes to both the cytoplasm and the nucleolus in virus-infected cells. This study generated an interactome map of the N protein from a highly virulent North American strain of porcine reproductive and respiratory syndrome virus (PRRSV). This is a major pathogen of swine resulting in significant morbidity and mortality. Crucial to the study was the use of SILAC coupled to affinity purification using GFP-traps and LC-MS/MS. This approach has not been applied before to the investigation of host/viral protein interactomes and this study revealed that the PRRSV N protein interacts with the host cell protein synthesis machinery especially at the level of translation initiation as well as with the RNA post-transcriptional modification machinery. Applications of the dataset can include studies of virus/host interactions and the design of live attenuated recombinant vaccines. PMID:22522808

  13. Mean age, concentrations and usage of nonstructural carbon in California oaks

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Muhr, J.; Xu, X.; Druffel-Rodriguez, K. C.; Trumbore, S.

    2012-12-01

    Recent studies show that plants transport, accumulate, and store significant amounts of photosynthetic assimilates as nonstructural carbon (NSC). However, the temporal dynamics of the NSC pool and its role as energy source, in particular during times of stress, are not well known. Taking advantage of the bomb radiocarbon (14C) tracer, we determined the mean age (here defined as mean time elapsed since C was initially fixed from the atmosphere) of soluble and insoluble NSC pools within the stem and of stem-emitted CO2 in mature, sympatric deciduous and evergreen oaks in California. In 2008, we quantified the 14C content and concentration of soluble and insoluble NSC in up to 20 cm long stem increment cores of sympatric evergreen (Quercus agrifolia, wislizeni) and deciduous (Q. lobata, douglasii) oaks during the wet (deciduous dormant) and dry (deciduous growing) seasons. Samples were taken along a coastal precipitation gradient at five nature reserves. In 2010 and 2011, we monitored the rate and 14C content of CO2 emissions from tree trunks of sympatric evergreen Q. agrifolia and deciduous Q. lobata and douglasii at two of the reserves. In all cores, we found that the NSC associated with a given depth averaged several years younger than the structural C (cellulose) in the wood at the same depth. For example, in wood made of structural C fixed before 1950, we detected modern NSC that was clearly fixed during the decades since the testing of atomic weapons in the atmosphere (peak 1950-1960s). These patterns can be explained by a model in which NSC in a given location in the stem is derived from a component that was fixed in the same year as the structural C, mixed with younger NSC that has been transported inward. Despite differences in growth rates, we found no differences in the mean age of NSC pools between life strategies or locations. Within a given stem core increment, there was no difference between the mean age of soluble and insoluble NSC. Concentrations of

  14. The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Chatterton, N. J.; Bugbee, B.

    1994-01-01

    We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 micromoles m-2 s-1) and using two CO2 concentrations, 360 and 1200 micromoles mol-1. Photosynthetically active radiation (400-700 nm) was attenuated slightly faster through canopies grown in 360 micromoles mol-1 than through canopies grown in 1200 micromoles mol-1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200 micromoles mol-1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p < 0.05) than for canopies grown in 360 micromoles mol-1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 degrees C over 5 d increased starch, fructan and glucose levels in canopies grown in 1200 micromoles mol-1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.

  15. Interferon sensitivity-determining region of nonstructural region 5A of hepatitis C virus genotype 1b correlates with serum alanine aminotransferase levels in chronic infection.

    PubMed

    Yoshioka, K; Ito, H; Watanabe, K; Yano, M; Ishigami, M; Mizutani, T; Sasaki, Y; Goto, H

    2005-03-01

    The mutations in the interferon (IFN) sensitivity-determining region (ISDR) of nonstructural region 5A (NS5A) of hepatitis C virus (HCV) have been correlated with response to IFN therapy. NS5A appears to disrupt a host antiviral pathway that plays a role in suppressing virus replication and protects hepatocytes from apoptosis. We assessed whether ISDR correlates with viral load and serum alanine aminotransferase (ALT) levels. Serum viral load and ALT levels were prospectively measured bimonthly by HCV core protein assay and monthly, respectively, for 22 months in 87 patients chronically infected with HCV genotype 1b. ISDR of HCV was directly sequenced from the products of reverse transcription and polymerase chain reaction of HCV RNA. Five patients had four or more substitutions (mutant type), 33 had 1-3 (intermediate type), and 49 had no substitutions (wild type) in ISDR. The numbers of substitutions in ISDR were inversely correlated with mean viral load over a 22-month period (r = 0.292, P = 0.0060) and directly with mean serum ALT levels (r = 0.360, P = 0.0006). The numbers of substitutions in ISDR was significantly larger in the patients with changes of viral load more than fivefold during the 22 months (1.4 +/- 2.4) than in those without changes (0.6 +/- 0.8) (P = 0.0188). The present study demonstrates that the patients with more substitutions in ISDR had significantly higher serum ALT levels and smaller viral load. These results suggest that NS5A with more substitutions in ISDR may lose the ability to block host antiviral pathways and to protect hepatocytes from apoptosis. PMID:15720528

  16. Identification of an NTPase motif in classical swine fever virus NS4B protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive sense single-stranded RNA virus in the genus Pestivirus of the Flaviviridae family. Here, we have identified, within CSFV non-structural (NS) protein NS4B, conserved sequence el...

  17. Proteolytic processing of Porcine Reproductive and Respiratory Syndrome Virus nsp2 replicase protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One critical step in porcine reproductive and respiratory syndrome virus (PRRSV) replication is the proteolytic processing of the ORF1 polyprotein (replicase). The replicase polyprotein is generally believed to be processed to generate at least 12 smaller nonstructural proteins (nsps) involved in r...

  18. The effect of soaking on protein and mineral loss in orchardgrass and alfalfa hays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonstructural carbohydrates (NSC) are usually targeted for removal during hay soaking, however, other essential nutrients may also be lost. The objectives of this research were to determine impact of water temperature and time of soaking on removal of protein and minerals from legume and cool-season...

  19. Variation in the concentration and age of nonstructural carbon stored in different tree tissues

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Carbone, Mariah; Huggett, Brett; Furze, Morgan; Czimczik, Claudia I.; Xu, Xiaomei

    2014-05-01

    Trees store nonstructural carbon (NSC), in the form of sugars and starch, in the ray parenchyma cells of woody tissues. These reserves provide a carbon buffer when demand (growth, protection, or metabolism) exceeds supply (photosynthesis). This is particularly important in the context of resilience to stress and disturbance, such as might be associated with various global change factors. However, storage allocation processes and the availability of stored reserves remain poorly understood in woody plants. To better understand how NSC reserves are distributed throughout the tree, and the degree to which NSC reserves mix across ring boundaries and tissue types, we destructively sampled two 30-year-old trees (one red oak, Quercus rubra L., and one white pine, Pinus strobus L.) growing at Harvard Forest, an oak-dominated temperate forest in the northeastern United States. We analyzed stemwood samples (divided into individual rings, bark, and phloem), coarse and fine branches, and coarse (separated into three depths) and fine roots for concentrations of total sugars and starch. For a subset of samples we used the radiocarbon (14C) "bomb spike" method to estimate the mean age of extracted sugars and starch. In oak, stemwood sugar and starch concentrations were highest (50 mg/g) in the youngest (most recently-formed) rings, and dropped off rapidly (to 10 mg/g or less) across the 10 most recent rings. In oak phloem tissue, sugar concentrations were high (90 mg/g) compared to starch (10 mg/g). In pine, sugar concentrations dropped off rapidly across the three most recent rings (from 30 mg/g to 10 mg/g) whereas starch concentrations were low even for the youngest rings (10 mg/g or less). In pine, phloem concentrations of both sugar (190 mg/g) and starch (20 mg/g) were both substantially higher than in oak. Such strong radial trends must be accounted for when scaling up to whole-tree budgets, as whole increment cores cannot properly integrate (on a ring-area basis) across the

  20. Diurnal and Seasonal Patterns of Non-Structural Carbohydrates in Pinus edulis and Juniperus monosperma

    NASA Astrophysics Data System (ADS)

    Woodruff, D.; Meinzer, F. C.; McDowell, N. G.

    2013-12-01

    Increases in drought-induced tree mortality have recently been documented globally and although less documented, non-lethal reductions in growth that are associated with the observed occurrences of tree mortality could represent an even greater drought-induced loss of net ecosystem productivity. Although carbon starvation has received a great deal of attention recently as a potential cause of drought-related mortality, the role of carbon depletion in the growth reduction and mortality of trees remains unresolved. The difference in mortality rates of piñon pine (Pinus edulis) and one seed juniper (Juniperus monosperma) in response to drought has been hypothesized to be related to their contrasting strategies for avoiding tissue desiccation and hydraulic failure (isohydry for piñon and anisohydry for juniper), and the subsequent impact of these strategies on their carbon balance. Despite intense interest in the role of carbon dynamics in tree survival and productivity, little is known of the short- and long-term consequences of drought on carbon storage and depletion in the context of these two contrasting strategies. Diurnal patterns of concentrations of non-structural carbohydrates (NSC) were analyzed in piñon and juniper under ambient growing conditions as well as under experimental drought conditions during May, August, and September of 2012. Our objective was to examine differences in storage, depletion and conversion of starch and sugars in these species at multiple points throughout the growing season and to identify any potential patterns of storage or conversion that could represent distinct vulnerabilities or compensatory responses to drought. Differences in total NSC between species were least pronounced at the beginning of the growing season in May and substantially more pronounced in August and September when NSC in piñon was reduced to approximately 2% tissue dry wt., down from 13-16% during May, whereas NSC in juniper was reduced to 4-6 % tissue

  1. Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is a multi-domain protein and has been shown to undergo remarkable genetic variation, primarily in its middle region, while exhibiting high conservation in the N-terminal putative protease domain and th...

  2. Ambient ozone effects on gas exchange and total non-structural carbohydrate levels in cutleaf coneflower (Rudbeckia laciniata L.) growing in Great Smoky Mountains National Park

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone-sensitive and -tolerant individuals of the perennial herbaceous cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates in the Great Smoky Mountains National Park USA. Net photosynthesis decreased with increased f...

  3. Chromatographic profiles of nonstructural carbohydrates contributing to the colorimetrically determined fructan, ethanol-soluble, and water-soluble carbohydrate contents of five grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonstructural carbohydrates in forages are often analyzed by colorimetric assays of water and ethanol extracts. Water-soluble carbohydrates (WSC) include polysaccharides (starch and fructan) and mono- and disaccharides. Ethanol-soluble carbohydrates (ESC) consist only of mono-, di- and oligosaccha...

  4. Low Non-structured Antiretroviral Therapy Interruptions in HIV-Infected Persons Who Inject Drugs Receiving Multidisciplinary Comprehensive HIV Care at an Outpatient Drug Abuse Treatment Center.

    PubMed

    Vallecillo, Gabriel; Mojal, Sergio; Roquer, Albert; Samos, Pilar; Luque, Sonia; Martinez, Diana; Martires, Paula Karen; Torrens, Marta

    2016-05-01

    Continuous HIV treatment is necessary to ensure successful combined antiretroviral therapy (cART). The aim of this study was to evaluate the incidence of patient-initiated non-structured treatment interruptions in HIV-infected persons who inject drugs and who received a multidisciplinary comprehensive program, including medical HIV care, drug-dependence treatment and psychosocial support, at a drug outpatient addiction center. Non-structured treatment interruptions were defined as ≥30 consecutive days off cART without medical indication. During a median follow-up of 53.8 months, 37/132 (28 %) patients experienced the first non-structured treatment interruptions. The cumulative probability of cART interruption at 5 years was 31.2 % (95 % CI 22.4-40.0). Current drug use injection ≥1/day (HR 14.77; 95 % CI 5.90-36.96) and cART naive patients (HR 0.35, 95 % CI 0.14-0.93) were predictive factors for non-structured treatment interruptions. HIV care provided at a drug addiction center is a useful strategy to sustain continuous cART, however, drug abstinence is essential for the long-term maintenance of cART. PMID:26427376

  5. Effects of structured versus non-structured learning on achievement and attitudes of fifth graders in a public aquarium

    NASA Astrophysics Data System (ADS)

    Kafka, Merryl Audrey

    The investigator analyzed the main effect of a structured-learning experience in an informal setting, as well as interactions between the students' learning-style variations toward the element of structure and the imposed instructional conditions. The subjects consisted of 170 students enrolled in two public schools located in Brooklyn, New York. The students were predominantly a White multi-ethnic population consisting of 118 Caucasians, 25 Hispanics, 24 Asians, and 3 African-Americans. Three randomly assigned classes (n = 81) were provided trip sheets, which directed students on how to learn new information with written questions and directives. Three randomly assigned non-structured classes (n = 89) experienced the same exhibit in a free-form manner. Science-based criterion-referenced pre- and posttests were administered, in addition to Learning Style Inventories (Dunn, Dunn, & Price, 1996) and a modified Semantic Differential Scale (Pizzo, 1981), which was used to measure attitudinal levels. The non-structured group had access to similar content information in the form of exhibit graphics, but apparently they chose not to read it as carefully or engage in the information-seeking process as intensely as the students equipped with trip sheets. Analysis of covariance (ANCOVA) indicated that a structured-learning experience produced significantly higher science-achievement test scores than in a non-structured-learning experience (p = .0001). In addition, there was no single learning-style variation (preference, aversion, or no preference) to structure that produced significantly higher gains than another. Furthermore, attitudinal scores were not significantly different between structured and non-structured groups, as well as among homogeneous subsets of students with learning-style variations that matched, mismatched, or indicated no-preferenced positions on the element of structure. Hence, a moderate amount of structure resulted in academic gains without

  6. The dengue virus non-structural protein 1 (NS1) is secreted efficiently from infected mosquito cells.

    PubMed

    Alcalá, Ana C; Medina, Fernando; González-Robles, Arturo; Salazar-Villatoro, Lizbeth; Fragoso-Soriano, Rogelio J; Vásquez, Carlos; Cervantes-Salazar, Margot; Del Angel, Rosa M; Ludert, Juan E

    2016-01-15

    Dengue virus NS1 is a glycoprotein of 46-50kDa which associates as a dimer to internal and cytoplasmic membranes and is also secreted, as a hexamer, to the extracellular milieu. However, the notion exist that NS1 is secreted only from infected vertebrate and not mosquito cells. In this work, evidence is presented showing that NS1 is secreted efficiently by infected mosquito cells. NS1 was detected in cell supernatants starting at 6hpi with a continuous concentration increase up to 24hpi. Nevertheless, cell viability showed an average cell survival of 97%. At variance with observations with vertebrate cells, NS1 does not seems to associate with the cytoplasmic membrane of insect cells. Finally, evidence is presented indicating that NS1 is secreted from insect cells as a barrel-shaped hexamer. These findings provide new insights into the biology of NS1 and open questions about the role of secreted NS1 in the vector mosquito. PMID:26655246

  7. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Membrane modification of host subcellular compartments is critical to the replication of many RNA viruses. Enveloped viruses additionally require the ability to requisition cellular membranes during egress for the development of infectious progeny. Porcine reproductive and respiratory syndrome virus...

  8. Cellular Changes Induced by Adenovirus Vaccine Vectors Expressing Foot-and-Mouth Disease Virus Structural and Nonstructural Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) is the most contagious pathogen of cloven-hoofed animals including swine and bovines. The emergency control of outbreaks is dependent on rapid protection and prevention of virus spread. Adenovirus-based FMD subunit vaccines containing the coding region of viral ca...

  9. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets.

    PubMed

    Subissi, Lorenzo; Imbert, Isabelle; Ferron, François; Collet, Axelle; Coutard, Bruno; Decroly, Etienne; Canard, Bruno

    2014-01-01

    The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". PMID:24269475

  10. Is nonstructural bone graft useful in surgical treatment of lumbar spinal tuberculosis?: A retrospective case-control study.

    PubMed

    Liu, Jia-Ming; Chen, Xuan-Yin; Zhou, Yang; Long, Xin-Hua; Chen, Wen-Zhao; Liu, Zhi-Li; Huang, Shan-Hu; Yao, Hao-Qun

    2016-08-01

    Surgical intervention is an important option for treating spinal tuberculosis. Previous studies have reported different surgical procedures and bone grafts for it. To our knowledge, few studies demonstrated the clinical results of using nonstructural autogenous bone graft in surgical treatment of spinal tuberculosis.The purpose of this study is to compare the clinical outcomes of surgical management lumbar spinal tuberculosis by one-stage posterior debridement with nonstructural autogenous bone grafting and instrumentation versus anterior debridement, strut bone grafting combined with posterior instrumentation.A total of 58 consecutive patients who underwent surgical treatment due to lumbar spinal tuberculosis from January 2011 to December 2013 were included. A total of 22 patients underwent one-stage posterior debridement, nonstructural autogenous bone grafting, and instrumentation (group A), and 36 patients received anterior debridement, strut bone grafting combined with posterior instrumentation (group B). The operative duration, total blood loss, perioperative transfusion, length of hospital stay, hospitalization cost, and complications were recorded. The bony fusion of the graft was assessed by computed tomography scans. American Spinal Injury Association (ASIA) Impairment Scale was used to evaluate the neurological function of patients in the 2 groups.All the patients were followed up, with a mean follow-up duration of 21.6 ± 5.7 months in group A and 22.3 ± 6.2 months in group B (P = 0.47). The average operative duration was 257.5 ± 91.1 minutes in group A and 335.7 ± 91.0 minutes in group B (P = 0.002). The mean total blood loss was 769.6 ± 150.9 mL in group A and 1048.6 ± 556.9 mL in group B (P = 0.007). Also, significant differences were found between the 2 groups in perioperative transfusion volumes, length of hospital stay, and hospitalization cost (P < 0.05), which were less in group A compared with

  11. A simple, inexpensive, robust and sensitive dot-blot assay for equal detection of the nonstructural-1 glycoprotein of all dengue virus serotypes

    PubMed Central

    2013-01-01

    Background Detection of dengue virus (DENV) soluble/excreted (s/e) form of the nonstructural-1 (NS1) glycoprotein in patient acute-phase sera is ideal for diagnosis. The commercially-available detection assays are, however, too expensive for routine use and have low specificity, particularly for the s/e NS1 glycoprotein of DENV-2 and DENV-4, which are important causes of lethal human disease worldwide. Methods Mouse monoclonal antibodies (MAbs) were generated and screened against s/e NS1 glycoprotein purified from each DENV serotype to obtain those that reacted equally with each serotype, but not with yellow fever virus (YFV) s/e NS1 glycoprotein or human serum proteins. One MAb, MAb 2C4.6, was further tested against these DENV glycoproteins in human sera using simple, peroxidase-labelled secondary antibody/substrate-developed dot-blot assays. Results Optimal quenching of endogenous human serum peroxidases was attained using 3% H2O2 in H20 for 5 min. MAb 2C4.6 showed an acceptable detection sensitivity of < 32 ng/ml for the s/e NS1 glycoprotein of each DENV serotype but did not cross-react with the YFV s/e NS1 glycoprotein or human serum proteins. By contrast, the LX1 epitope-specific MAb, 3D1.4, showed similar detection sensitivity against only the DENV-1 NS1 glycoprotein, consistent with results from commercial DENV s/e NS1 glycoprotein detection assays. DENV s/e NS1 glycoproteins were stable in human sera after drying on the nitrocellulose membranes and storage for one month at ambient temperature (28°C) before being processed. The total assay time was reduced to 3 h without any loss of detection sensitivity. This dot-blot format was ideal for the circulating immune complex disruption step, which is required for increased DENV s/e NS1 glycoprotein detection. Conclusions This is the first study to determine the detection sensitivity of MAbs against known concentrations of s/e NS1 glycoprotein from each DENV serotype. The preparation of patient serum samples for

  12. Differentiation of infected and vaccinated animals (DIVA) using the NS1 protein of avian influenza virus in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of avian influenza (AI) vaccination in poultry would have greater world-wide acceptance if a reliable test that clearly discriminates naturally infected from vaccinated only animals (DIVA) was available. Because the non-structural protein (NS1) is expressed in infected cells, and is not pac...

  13. Alfalfa baleage with increased concentration of nonstructural carbohydrates supplemented with a corn-based concentrate did not improve production and nitrogen utilization in early lactation dairy cows.

    PubMed

    Brito, A F; Tremblay, G F; Bertrand, A; Castonguay, Y; Bélanger, G; Michaud, R; Lafrenière, C; Martineau, R; Berthiaume, R

    2014-11-01

    The objective of this study was to investigate the effects of feeding alfalfa baleage with different concentrations of nonstructural carbohydrates (NSC) supplemented with a common corn-based concentrate on performance, ruminal fermentation profile, N utilization, and omasal flow of nutrients in dairy cows during early lactation. Ten multiparous (8 ruminally cannulated) and 8 primiparous Holstein cows were randomly assigned to treatments (high- or low-NSC diet) in a crossover design. The difference in NSC concentration between the 2 alfalfa baleages fed from d14 to 21 averaged 14 g of NSC/kg of dry matter (DM). Forages and concentrate were offered in separate meals with forages fed once and concentrate offered 3 times daily. Except for the molar proportion of valerate, which was lowest in cows fed the high-NSC diet, no other changes in ruminal fermentation were observed. Omasal flows of most nitrogenous fractions, including bacterial nonammonia N and AA, were not affected by treatments. Apparent ruminal digestibilities of neutral and acid detergent fiber and N were lowest, whereas that of total ethanol-soluble carbohydrates was highest when feeding the high-NSC diet. Postruminal digestibilities of DM, organic matter, fiber, and N were highest in cows fed the high-NSC diet, resulting in no difference in total-tract digestibilities. Total-tract digestibility of total ethanol-soluble carbohydrates was highest in cows fed the high-NSC diet, but that of starch did not differ across treatments. Although milk yield and total DM intake did not differ between treatments, yields of milk fat and 4% fat-corrected milk decreased significantly in cows fed the high-NSC diet. Milk concentration of urea N was lowest, and that of ruminal NH3-N highest, in cows fed the high-NSC diet. Plasma urea N concentration tended to be decreased in cows fed the high-NSC diet, but concentrations of AA were not affected by treatments, with the exception of Asp and Cys, both of which were lowest in

  14. Dengue virus protein recognition by virus-specific murine CD8+ cytotoxic T lymphocytes.

    PubMed Central

    Rothman, A L; Kurane, I; Lai, C J; Bray, M; Falgout, B; Men, R; Ennis, F A

    1993-01-01

    The identification of the protein targets for dengue virus-specific T lymphocytes may be useful for planning the development of subunit vaccines against dengue. We studied the recognition by murine dengue virus-specific major histocompatibility complex class I-restricted, CD8+ cytotoxic T lymphocytes (CTL) of dengue virus proteins using recombinant vaccinia viruses containing segments of the dengue virus genome. CTL from H-2k mice recognized a single serotype-cross-reactive epitope on the nonstructural (NS) protein NS3. CTL from H-2b mice recognized a serotype-cross-reactive epitope that was localized to NS4a or NS4b. CTL from H-2d mice recognized at least three epitopes: a serotype-specific epitope on one of the structural proteins, a serotype-cross-reactive epitope on NS3, and a serotype-cross-reactive epitope on NS1 or NS2a. Our findings demonstrate the limited recognition of dengue virus proteins by CTL from three inbred mouse strains and the predominance of CTL epitopes on dengue virus nonstructural proteins, particularly NS3. Since human dengue virus-specific CTL show similar patterns of recognition, these findings suggest that nonstructural proteins should be considered in designing vaccines against dengue. PMID:7678307

  15. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know.

    PubMed

    Hartmann, Henrik; Trumbore, Susan

    2016-07-01

    Contents 386 I. 386 II. 388 III. 392 IV. 392 V. 396 VI. 399 399 References 399 SUMMARY: Carbohydrates provide the building blocks for plant structures as well as versatile resources for metabolic processes. The nonstructural carbohydrates (NSC), mainly sugars and starch, fulfil distinct functional roles, including transport, energy metabolism and osmoregulation, and provide substrates for the synthesis of defence compounds or exchange with symbionts involved in nutrient acquisition or defence. At the whole-plant level, NSC storage buffers the asynchrony of supply and demand on diel, seasonal or decadal temporal scales and across plant organs. Despite its central role in plant function and in stand-level carbon cycling, our understanding of storage dynamics, its controls and response to environmental stresses is very limited, even after a century of research. This reflects the fact that often storage is defined by what we can measure, that is, NSC concentrations, and the interpretation of these as a proxy for a single function, storage, rather than the outcome of a range of NSC source and sink functions. New isotopic tools allow direct quantification of timescales involved in NSC dynamics, and show that NSC-C fixed years to decades previously is used to support tree functions. Here we review recent advances, with emphasis on the context of the interactions between NSC, drought and tree mortality. PMID:27061438

  16. Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in Pinus edulis and Juniperus monosperma.

    PubMed

    Woodruff, David R; Meinzer, Frederick C; Marias, Danielle E; Sevanto, Sanna; Jenkins, Michael W; McDowell, Nate G

    2015-04-01

    Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry-anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics. Leaf hydraulic vulnerability, leaf water potential (Ψl ), leaf hydraulic conductance (Kleaf ), photosynthesis (A), stomatal conductance (gs) and nonstructural carbohydrate (NSC) content were analyzed throughout the growing season. Leaf hydraulic vulnerability was significantly lower in the relatively anisohydric J. monosperma than in the more isohydric P. edulis. In P. edulis, Ψl dropped and stayed below 50% loss of leaf hydraulic conductance (P₅₀) early in the day during May, August and around midday in September, leading to sustained reductions in Kleaf . In J. monosperma, Ψl dropped below P₅₀ only during August, resulting in the maintenance of Kleaf during much of the growing season. Mean A and gs during September were significantly lower in P. edulis than in J. monosperma. Foliar total NSC was two to three times greater in J. monosperma than in P. edulis in June, August and September. Consistently lower levels of total NSC in P. edulis suggest that its isohydric strategy pushes it towards the exhaustion of carbon reserves during much of the growing season. PMID:25412472

  17. Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors

    PubMed Central

    Chak, Li-Ling; Okamura, Katsutomo

    2014-01-01

    A general feature of Argonaute-dependent small RNAs is their base-paired precursor structures, and precursor duplex structures are often required for confident annotation of miRNA genes. However, this rule has been broken by discoveries of functional small RNA species whose precursors lack a predictable double-stranded (ds-) RNA structure, arguing that duplex structures are not prerequisite for small RNA loading to Argonautes. The biological significance of single-stranded (ss-) RNA loading has been recognized particularly in systems where active small RNA amplification mechanisms are involved, because even a small amount of RNA molecules can trigger the production of abundant RNA species leading to profound biological effects. However, even in the absence of small RNA amplification mechanisms, recent studies have demonstrated that potent gene silencing can be achieved using chemically modified synthetic ssRNAs that are resistant to RNases in mice. Therefore, such ssRNA-mediated gene regulation may have broader roles than previously recognized, and the findings have opened the door for further research to optimize the design of ss-siRNAs toward future pharmaceutical and biomedical applications of gene silencing technologies. In this review, we will summarize studies about endogenous ssRNA species that are bound by Argonaute proteins and how ssRNA precursors are recognized by various small RNA pathways. PMID:24959173

  18. Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks.

    PubMed

    Trumbore, Susan; Czimczik, Claudia I; Sierra, Carlos A; Muhr, Jan; Xu, Xiaomei

    2015-11-01

    Trees contain non-structural carbon (NSC), but it is unclear for how long these reserves are stored and to what degree they are used to support plant activity. We used radiocarbon ((14)C) to show that the carbon (C) in stemwood NSC can achieve ages of several decades in California oaks. We separated NSC into two fractions: soluble (∼50% sugars) and insoluble (mostly starch) NSC. Soluble NSC contained more C than insoluble NSC, but we found no consistent trend in the amount of either pool with depth in the stem. There was no systematic difference in C age between the two fractions, although ages increased with stem depth. The C in both NSC fractions was consistently younger than the structural C from which they were extracted. Together, these results indicate considerable inward mixing of NSC within the stem and rapid exchange between soluble and insoluble pools, compared with the timescale of inward mixing. We observed similar patterns in sympatric evergreen and deciduous oaks and the largest differences among tree stems with different growth rates. The (14)C signature of carbon dioxide (CO2) emitted from tree stems was higher than expected from very recent photoassimilates, indicating that the mean age of C in respiration substrates included a contribution from C fixed years previously. A simple model that tracks NSC produced each year, followed by loss (through conversion to CO2) in subsequent years, matches our observations of inward mixing of NSC in the stem and higher (14)C signature of stem CO2 efflux. Together, these data support the idea of continuous accumulation of NSC in stemwood and that 'vigor' (growth rate) and leaf habit (deciduous vs evergreen) control NSC pool size and allocation. PMID:26452766

  19. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin

    PubMed Central

    Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K.; Nichol, Stuart T.; Albariño, César G.; Spiropoulou, Christina F.

    2015-01-01

    Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV’s high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor’s maturation to GP38, and Gn precursor’s maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public

  20. Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought

    PubMed Central

    Rosas, Teresa; Galiano, Lucía; Ogaya, Romà; Peñuelas, Josep; Martínez-Vilalta, Jordi

    2013-01-01

    Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought. PMID:24130568

  1. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1

    PubMed Central

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-01-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  2. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1.

    PubMed

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-10-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  3. Seasonal variation in the biomass and non-structural carbohydrate content of fine roots of teak (Tectona grandis L. f.) plantations in a dry tropical region.

    PubMed

    Singh, K P; Srivastava, K

    1986-06-01

    Seasonal variation in the biomass and total non-structural carbohydrate content (TNC) of fine roots of teak (Tectona grandis L. f.) were studied in 19- and 29-year-old plantations in a dry tropical region. Fine root TNC content was highest during the dry summer (May), and lowest in the early part of the rainy season (July). Generally, seasonal trends in TNC content were the opposite of those in fine root biomass. The TNC concentration of roots increased with diameter and decreased with soil depth. In the 19-year-old plantation, fine root TNC content was approximately 12% higher than in the 29-year-old plantation. PMID:14975904

  4. Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe.

    PubMed

    Lintunen, Anna; Paljakka, Teemu; Jyske, Tuula; Peltoniemi, Mikko; Sterck, Frank; von Arx, Georg; Cochard, Hervé; Copini, Paul; Caldeira, Maria C; Delzon, Sylvain; Gebauer, Roman; Grönlund, Leila; Kiorapostolou, Natasa; Lechthaler, Silvia; Lobo-do-Vale, Raquel; Peters, Richard L; Petit, Giai; Prendin, Angela L; Salmon, Yann; Steppe, Kathy; Urban, Josef; Roig Juan, Sílvia; Robert, Elisabeth M R; Hölttä, Teemu

    2016-01-01

    Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter

  5. Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe

    PubMed Central

    Lintunen, Anna; Paljakka, Teemu; Jyske, Tuula; Peltoniemi, Mikko; Sterck, Frank; von Arx, Georg; Cochard, Hervé; Copini, Paul; Caldeira, Maria C.; Delzon, Sylvain; Gebauer, Roman; Grönlund, Leila; Kiorapostolou, Natasa; Lechthaler, Silvia; Lobo-do-Vale, Raquel; Peters, Richard L.; Petit, Giai; Prendin, Angela L.; Salmon, Yann; Steppe, Kathy; Urban, Josef; Roig Juan, Sílvia; Robert, Elisabeth M. R.; Hölttä, Teemu

    2016-01-01

    Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter

  6. Development and characterization of a synthetic infectious cDNA clone of the virulent Bucyrus strain of equine arteritis virus expressing mCherry (red fluorescent protein).

    PubMed

    Mondal, Shankar P; Cook, R Frank; Chelvarajan, R Lakshman; Henney, Pamela J; Timoney, Peter J; Balasuriya, Udeni B R

    2016-04-01

    Strains of equine arteritis virus (EAV) differ in their virulence phenotypes, causing anywhere from subclinical infections to severe disease in horses. Here, we describe the in silico design and de novo synthesis of a full-length infectious cDNA clone of the horse-adapted virulent Bucyrus strain (VBS) of EAV encoding mCherry along with in vitro characterization of the progeny virions (EAV sVBSmCherry) in terms of host-cell tropism, replicative capacity and stability of the mCherry coding sequences following sequential passage in cell culture. The relative stability of the mCherry sequence during sequential cell culture passage coupled with a comparable host-cell range phenotype (equine endothelial cells, CD3(+) T cells and CD14(+) monocytes) to parental EAV VBS suggest that EAV-sVBSmCherry-derived virus could become a valuable research tool for identification of host-cell tropism determinants and for characterization of the viral proteins involved in virus attachment and entry into different subpopulations of peripheral blood mononuclear cells. Furthermore, this study demonstrates that advances in nucleic acid synthesis technology permit synthesis of complex viral genomes with overlapping genes like those of arteriviruses, thereby circumventing the need for complicated molecular cloning techniques. In summary, de novo nucleic acid synthesis technology facilitates innovative viral vector design without the tedium and risks posed by more-conventional laboratory techniques. PMID:26711457

  7. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. PMID:25787689

  8. SAT: a Late NS Protein of Porcine Parvovirus

    PubMed Central

    Zádori, Zoltán; Szelei, József; Tijssen, Peter

    2005-01-01

    The genomes of all members of the Parvovirus genus were found to contain a small open reading frame (ORF), designated SAT, with a start codon four or seven nucleotides downstream of the VP2 initiation codon. Green fluorescent protein or FLAG fusion constructs of SAT demonstrated that these ORFs were expressed. Although the SAT proteins of the different parvoviruses are not particularly conserved, they were all predicted to contain a membrane-spanning helix, and mutations in this hydrophobic stretch affected the localization of the SAT protein. SAT colocalized with calreticulin in the membranes of the endoplasmic reticulum and the nucleus. A knockout mutant (SAT−), with an unmodified VP sequence, showed a “slow-spreading” phenotype. These knockout mutants could be complemented with VP2− SAT+ mutant. The SAT protein is a late nonstructural (NS) protein, in contrast to previously identified NS proteins, since it is expressed from the same mRNA as VP2. PMID:16189014

  9. What do we know about the role and regulation of stored non-structural carbon compounds in trees?

    NASA Astrophysics Data System (ADS)

    Sala, A.; Martinez-Vilalta, J.; Lloret, F.

    2012-12-01

    Despite the critical role of forests on the global C cycle and recent increases in drought-induced forest mortality, remarkable knowledge gaps exist to accurately predict tree growth and survival under climate change. In particular, storage of non-structural carbon compounds (NSCC) is thought to be critical for tree survival under drought but its regulation and function is the least understood of the tree's C budget components. Our current understanding of the role and regulation of stored NSCC relies on several assumptions. First, stored NSCC is generally assumed to be a passive buffer between source and sink demand for growth and respiration and, therefore, is an integrator of the tree C balance. Second, most process-based models commonly assume that C availability drives growth and ignore storage and environmental regulation of sink activity. Third, trees under C deficits are assumed to rely on stored C until normal conditions are restored or reserves are exhausted, whichever comes first. Implicit is this is that stored NSCC increases survival under drought, and that access to stored NSCC is unlimited. For the most part, these assumptions have not been experimentally tested, and increasing evidence suggests that some of them are not necessarily correct. Here we assess the validity of some of the assumptions above from a review of the published data. Several studies so far are consistent with the notion that stored NSCC serve as a passive buffer between C assimilation and C demand for growth and respiration. In contrast, other studies indicate that C may be partitioned to storage at the expense of growth. In any case, unequivocal evidence of whether and when C is or is not partitioned to storage at the expense of growth in woody plants is lacking, leaving a critical void in our knowledge. Many studies in woody plants indicate that growth is more sensitive to water availability than photosynthesis, and that NSCC accumulate as a result. This indicates that growth

  10. Localization of structural proteins in African swine fever virus particles by immunoelectron microscopy.

    PubMed Central

    Carrascosa, J L; González, P; Carrascosa, A L; Garciá-Barreno, B; Enjuanes, L; Viñuela, E

    1986-01-01

    Seven African swine fever virus structural proteins were localized in the virion by immunoelectron microscopy. African swine fever virus-infected cells were incubated, before or after embedding and thin sectioning, with monoclonal antibodies specific for different structural proteins, and after labeling with protein A-gold complexes, the samples were examined in the electron microscope. Proteins p14 and p24 were found in the external region of the virion, proteins p12, p72, p17, and p37 were found in the intermediate layers, and protein p150 was found in the nucleoid and in one vertex. A monoclonal antibody that recognized protein p150 as well as p220, a virus-induced, nonstructural protein, could also bind to a component present in the nucleus of both uninfected and virus-infected cells. Images PMID:3517383

  11. Differential impact of mechanical unloading on structural and nonstructural components of the extracellular matrix in advanced human heart failure.

    PubMed

    Sakamuri, Siva S V P; Takawale, Abhijit; Basu, Ratnadeep; Fedak, Paul W M; Freed, Darren; Sergi, Consolato; Oudit, Gavin Y; Kassiri, Zamaneh

    2016-06-01

    Adverse remodeling of the extracellular matrix (ECM) is a significant characteristic of heart failure. Reverse remodeling of the fibrillar ECM secondary to mechanical unloading of the left ventricle (LV) by left ventricular assist device (LVAD) has been subject of intense investigation; however, little is known about the impacts on nonfibrillar ECM and matricellular proteins that also contribute to disease progression. Explanted failing hearts were procured from patients with nonischemic dilated cardiomyopathy (DCM) with or without LVAD support, and compared to nonfailing control hearts. LV free wall specimens were formalin-fixed, flash-frozen or optimum cutting temperature-mount frozen. Histologic and biochemical assessment of fibrillar ECM showed that LVAD support was associated with lower levels of insoluble collagen, collagen type I mRNA, and collagen I/III ratio compared with no-LVAD hearts. A disintegrin and Metalloproteinase with Thrombospondin Motifs-2 (ADAM-TS2), a procollagen endopeptidase, was reduced in no-LVAD but not in LVAD hearts. The rise in ECM proteolytic activities was significantly lower in LVAD hearts. Matrix metalloproteinases (MMP1, MMP2, MMP8, MMP13, and MT1-MMP/MMP14) were comparable between DCM hearts. Tissue inhibitor of metalloproteinase (TIMP)3 and TIMP4 messenger RNA and protein showed the greatest reduction in no-LVAD hearts. Basement membrane proteins exhibited less severe disarray of laminin and fibronectin-1 in LVAD-supported hearts. The rise in matricellular protein, osteopontin, was suppressed in LVAD hearts, whereas secreted protein, acidic, cysteine-rich (SPARC) levels was unaffected by LVAD. Mechanical unloading of the failing DCM hearts can restore the fibrillar ECM and the basement membrane, contributing toward improved clinical outcomes. However, persistent elevation of matricellular proteins such as SPARC could contribute to the relapse of failing hearts on removal of LVAD support. PMID:26963743

  12. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  13. Delivery of a Foot-and-Mouth Disease Virus Empty Capsid Subunit Antigen with Nonstructural Protein 2B Improves Protection of Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously demonstrated that a replication-defective human adenovirus serotype 5 (Ad5) vector carrying the capsid (P1-2A) and 3C protease coding regions as well as a portion of the 2B coding region of foot-and-mouth disease virus (FMDV) (Ad5-A24) protects cattle and swine from direct inocula...

  14. [Research Progress in the Core Proteins of the Classical Swine Fever Virus].

    PubMed

    Hou, Yuzhen; Zhao, Dantong; Liu, Guoying; He, Fan; Liu, Bin; Fu, Shaoyin; Hao, Yongqing; Zhang, Wenguang

    2015-09-01

    The core protein (CP) of the classical swine fever virus (CSFV) is one of its structural proteins. Apart from forming the nucleocapsid to protect internal viral genomic RNA, this protein is involved in transcriptional regulation. Also, during viral infection, the CP is involved in interactions with many host proteins. In this review, we combine study of this protein with its disorders, structural/functional characteristics, as well as its interactions with the non-structural proteins NS3, NS5B and host proteins such as SUMO-1, UBC9, OS9 and IQGAP1. We also summarize the important part played by the CP in CSFV pathogenicity, virulence and replication of genomic RNA. We also provide guidelines for further studies in the CP of the CSFV. PMID:26738299

  15. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins.

    PubMed

    Ly, Hoai J; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses. PMID:27368371

  16. Effects of high and moderate non-structural carbohydrate hay on insulin, glucose, triglyceride, and leptin concentrations in overweight Arabian geldings.

    PubMed

    Shepherd, M L; Pleasant, R S; Crisman, M V; Werre, S R; Milton, S C; Swecker, W S

    2012-06-01

    The objective of this study was to determine the effects of high and moderate non-structural carbohydrates (NSC) hay on insulin, glucose, triglyceride, and leptin concentrations in overweight Arabian geldings. Eight adult overweight (average BCS 7 [9-point scale]) Arabian geldings were fed each of two orchardgrass hays, high NSC (18% DM) and moderate NSC (12% DM), in a cross over design during two 28-day periods. Body weight and body condition score assessment along with blood sampling to measure insulin, glucose, leptin, and triglyceride concentrations were performed on days 0, 7, 14, 21 and 28 of each period. Effects of hay, period, day, and day*hay on plasma glucose and serum leptin were not detected. Serum insulin was influenced by hay (p = 0.001), day (p = 0.03), and day*hay (p = 0.04). Insulin concentrations were higher on day 7 in the high NSC group (15.6 μIU/ml) than the moderate NSC group (9.5 μIU/ml), but not by day 14 (p = 0.0007). Plasma triglyceride was influenced by period (p = 0.0003), day*period (p < 0.0001), and day*hay (p = 0.02). Hyperinsulinaemia was not observed in the overweight Arabian geldings fed either a moderate or high NSC hay. PMID:21575079

  17. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla)

    PubMed Central

    Song, Xinzhang; Peng, Changhui; Zhou, Guomo; Gu, Honghao; Li, Quan; Zhang, Chao

    2016-01-01

    Moso bamboo can rapidly complete its growth in both height and diameter within only 35–40 days after shoot emergence. However, the underlying mechanism for this “explosive growth” remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches, and especially trunks and rhizomes to the “explosively growing” shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the “explosive growth” of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo. PMID:27181522

  18. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought.

    PubMed

    Nardini, Andrea; Casolo, Valentino; Dal Borgo, Anna; Savi, Tadeja; Stenni, Barbara; Bertoncin, Paolo; Zini, Luca; McDowell, Nathan G

    2016-03-01

    In 2012, an extreme summer drought induced species-specific die-back in woody species in Northeastern Italy. Quercus pubescens and Ostrya carpinifolia were heavily impacted, while Prunus mahaleb was largely unaffected. By comparing seasonal changes in isotopic composition of xylem sap, rainfall and deep soil samples, we show that P. mahaleb has a deeper root system than the other two species. This morphological trait allowed P  mahaleb to maintain higher water potential (Ψ), gas exchange rates and non-structural carbohydrates content (NSC) throughout the summer, when compared with the other species. More favourable water and carbon states allowed relatively stable maintenance of stem hydraulic conductivity (k) throughout the growing season. In contrast, in Quercus pubescens and Ostrya carpinifolia, decreasing Ψ and NSC were associated with significant hydraulic failure, with spring-to-summer k loss averaging 60%. Our data support the hypothesis that drought-induced tree decline is a complex phenomenon that cannot be modelled on the basis of single predictors of tree status like hydraulic efficiency, vulnerability and carbohydrate content. Our data highlight the role of rooting depth in seasonal progression of water status, gas exchange and NSC, with possible consequences for energy-demanding mechanisms involved in the maintenance of vascular integrity. PMID:26437327

  19. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla).

    PubMed

    Song, Xinzhang; Peng, Changhui; Zhou, Guomo; Gu, Honghao; Li, Quan; Zhang, Chao

    2016-01-01

    Moso bamboo can rapidly complete its growth in both height and diameter within only 35-40 days after shoot emergence. However, the underlying mechanism for this "explosive growth" remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches, and especially trunks and rhizomes to the "explosively growing" shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the "explosive growth" of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo. PMID:27181522

  20. Hepatitis E virus ORF1 encoded non structural protein-host protein interaction network.

    PubMed

    Ojha, Nishant Kumar; Lole, Kavita S

    2016-02-01

    Hepatitis E virus ORF1 encoded non-structural polyprotein (nsP) consist of multiple domains, namely: Methyltransferase, Y-domain, Protease, X-domain, Helicase and RNA dependent RNA polymerase. We have attempted to identify human liver cell proteins that are interacting with HEV ORF1 encoded functional domains by using Y2H screening. A total of 155 protein-protein interactions between HEV-ORF1 and human proteins were identified. Comparative analysis of the HEV-ORF1-Human interaction network with reconstructed human interactome showed that the cellular proteins interacting with HEV-ORF1 are central and interconnected. Enrichment analysis of Gene Ontology and cellular pathways showed that the viral proteins preferentially interacted with the proteins of metabolism and energy generation along with host immune response and ubiquitin proteasomal pathways. The mTOR and focal adhesion pathways were also targeted by the virus. These interactions suggest that HEV probably utilizes important proteins in carbohydrate metabolism, energy generation and iron homoeostasis in the host cells during its establishment. PMID:26689634

  1. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein.

    PubMed

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  2. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  3. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    PubMed

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. PMID:27030586

  4. Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity.

    PubMed

    Tan, B H; Fu, J; Sugrue, R J; Yap, E H; Chan, Y C; Tan, Y H

    1996-02-15

    The complete nonstructural NS5 gene of dengue type 1 virus, Singapore strain S275/90 (D1-S275/90) was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein (126 kDa). The GST-NS5 fusion protein was purified and the recombinant NS5 protein released from the fusion protein by thrombin cleavage. The recombinant NS5 had a predicted molecular weight of 100 kDa and reacted with antiserum against D1-S275/90 virus in Western blot analysis. The purified recombinant NS5 protein possessed RNA-dependent RNA polymerase activity which was inhibited (>99%) by antibodies against the recombinant NS5 protein. The polymerase product was shown to be a negative-stranded RNA molecule, of template size, which forms a double-stranded complex with the template RNA. PMID:8607261

  5. Interannual and seasonal dynamics, and the age, of nonstructural carbohydrate pools in the stemwood of temperate trees across a climatic gradient in New England

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.; Carbone, M. S.; Czimczik, C. I.; Keenan, T. F.; Schaberg, P.; Xu, X.

    2011-12-01

    Like all plants, forest trees accumulate and store surplus mobile carbon (C) compounds as resources to be used to support future growth. This can be viewed as a bet-hedging strategy, providing reserves that the tree can draw on in times of stress-e.g., following disturbance, disease, or extreme climatic events. In the context of climate change, understanding factors influencing the availability of these stored C compounds to support growth and metabolism is essential for predicting the resilience of forests to environmental stress factors. We conducted this study to investigate the role of these stored C pools in the context ecosystem C balance at time scales from days to years. At quarterly intervals over a three year period, we monitored stemwood total nonstructural carbohydrate (TNC) concentrations of the dominant tree species of New England. Work was conducted at three sites along a climatic gradient: an oak-dominated transition hardwood forest (Harvard Forest), a maple-beech-birch northern hardwood forest (Bartlett Experimental Forest), and a spruce-fir forest (Howland Forest). We observed large differences among species both in TNC concentrations, and in how the TNC pool is partitioned to different compounds (starch, sucrose, glucose, fructose, raffinose, xylose and stachyose). Within a species, however, seasonal dynamics were remarkably similar across sites. The interannual variability in maximum TNC concentrations appears to be smaller than interannual variability in annual net ecosystem exchange of CO2. With an additional set of samples, we are using the bomb radiocarbon (14C) spike to estimate the average age of the sugars and starches in the TNC pool, and relating this to factors such as size, age, and recent growth rates of each tree. Initial results suggest that these TNC pools range in age from several years to several decades old. The average ages of starch and sugar pools are related, with the starches generally being older than sugars

  6. Nonstructural carbon dynamics are best predicted by the combination of photosynthesis and plant hydraulics during both bark beetle induced mortality and herbaceous plant response to drought

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Guadagno, C.; Peckham, S. D.; Pendall, E.; Borkhuu, B.; Aston, T.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Yarkhunova, Y.; Weinig, C.

    2012-12-01

    Recent work has shown that nonstructural carbon (NSC) provides both a signal and consequence of water stress in plants. The dynamics of NSC are likely not solely a result of the balance of photosynthesis and respiration (carbon starvation hypothesis) but also the availability of NSC for plant functions due to hydraulic condition. Further, plant hydraulics regulates photosynthesis both directly through stomatal conductance and indirectly through leaf water status control over leaf biochemistry. To test these hypotheses concerning NSC in response to a wide variety of plant perturbations, we used a model that combines leaf biochemical controls over photosynthesis (Farquhar model) with dynamic plant hydraulic conductance (Sperry model). This model (Terrestrial Regional Ecosystem Exchange Simulator; TREES) simulates the dynamics of NSC through a carbon budget approach that responds to plant hydraulic status. We tested TREES on two dramatically different datasets. The first dataset is from lodgepole pine and Engelmann spruce trees dying from bark beetles that carry blue-stain fungi which block xylem and cause hydraulic failure. The second data set is from Brassica rapa, a small herbaceous plant whose accessions are used in a variety of crops. The Brassica rapa plants include two parents whose circadian clock periods are different; NSC is known to provide inputs to the circadian clock likely modified by drought. Thus, drought may interact with clock control to constrain how NSC changes over the day. The Brassica rapa plants were grown in growth chamber conditions where drought was precisely controlled. The connection between these datasets is that both provide rigorous tests of our understanding of plant NSC dynamics and use similar leaf and whole plant gas exchange and NSC laboratory methods. Our results show that NSC decline (<10% in the whole plant) is less precipitous than expected from carbon starvation alone because both C uptake and use are impacted by water stress

  7. [Influence of mulching management on the relationships between foliar non-structural carbohydrates and N, P concentrations in Phyllostachys violascens stand].

    PubMed

    Guo, Zi-wu; Hu, Jun-jing; Yang, Qing-ping; Li, Ying-chun; Chen, Shuang-lin; Chen, Wei-jun

    2015-04-01

    To understand the physiological adaptive mechanism of Phyllostachys violascens to intensive mulching management, the effect of mulching management (CK, 1, 3 and 6 years) on the concentrations and ratios of non-structural carbohydrates (NSC), nitrogen (N) and phosphorus (P) in bamboo foliage, and their stoichiometry was investigated. The results showed the concentrations of NSC and soluble sugar increased, while the starch content and N/P decreased markedly in bamboo stand with 1-year mulching, compared to CK stand, which suggested the N limitation to bamboo growth was strengthened. Foliar soluble sugar content decreased significantly, while the starch content increased dramatically, and the NSC content by per unit mass of N and P reached the maximum in the bamboo stand with 3-year mulching, compared to all other treatments. Foliar NSC and soluble sugar contents decreased significantly, while foliar starch content and N/P increased dramatically in the stand with 6-year mulching, which suggested the P limitation to bamboo growth was strengthened. Foliar NSC content was positively correlated with N and P concentrations in a short-term mulching management stand (≤ 3 years), while showed negative relationship with N/P. The foliar starch content in the stand with 6-year mulching was negatively correlated with N and P contents, while was positively correlated with N/P. The results indicated that short-term mulching management accelerated the accumulation of soluble sugar and decomposition of starch in foliage, thus the growth and activity of Ph. violascens was enhanced greatly. Long-term mulching management promoted the starch accumulation, which led to the transition from N limitation to P limitation for bamboo growth. In summary, long-term (6 years) mulching management caused the decrease of growth and activity of Ph. violascens dramatically, thus enhancing the bamboo stand degradation. The utilization efficiency of N and P reached the highest in the stand with 3-year

  8. Interannual and seasonal dynamics, and the age, of nonstructural carbohydrate pools in the stemwood of temperate trees across a climatic gradient in the Northeastern US

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.; Carbone, M. S.; Czimczik, C. I.; Keenan, T. F.; Schaberg, P.; Murakami, P.; Xu, X.

    2012-04-01

    Like all plants, forest trees accumulate and store non-structural carbohydrates (NSC) as resources to be used in the future. This can be viewed as a bet-hedging strategy, providing reserves that the tree can draw on in times of stress—e.g., following disturbance, disease, or extreme climatic events. In the context of climate change, understanding factors influencing the availability of these stored NSC compounds to support growth and metabolism is essential for predicting the resilience of forests to environmental stress factors. We conducted this study to investigate the role of these stored NSC pools in the context of ecosystem C balance at time scales from days to years. At quarterly intervals over a three-year period, we monitored stemwood total NSC concentrations of the dominant tree species of New England. Work was conducted at three sites along a climatic gradient: an oak-dominated transition hardwood forest (Harvard Forest), a maple-beech-birch northern hardwood forest (Bartlett Experimental Forest), and a spruce-fir forest (Howland Forest). We observed large differences among species both in NSC concentrations, and in how the NSC pool is partitioned to different compounds (starch, sucrose, glucose, fructose, raffinose, and stachyose). Within a species, however, seasonal dynamics were remarkably similar across sites. We used the bomb radiocarbon (14C) spike to estimate the average age of the sugars and starches in the NSC pool in a subset of nine maple trees from each site. We found that the age of sugars ranged from 1-24 y and starches from 1-31 y. The ages of sugar and starch pools were highly correlated across all sites, and there was no significant difference in the mean age of the two pools, which was ~11 y. Using a one-pool representation of NSC reserves (similar to the standard approach used in several existing forest C models) our model FöBAAR (FOrest Biomass, Allocation, Assimilation and Respiration) failed to reproduce the seasonal NSC dynamics

  9. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1.

    PubMed

    Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan

    2016-02-01

    Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. PMID:26773386

  10. A Rab-GAP TBC Domain Protein Binds Hepatitis C Virus NS5A and Mediates Viral Replication▿

    PubMed Central

    Sklan, Ella H.; Staschke, Kirk; Oakes, Tina M.; Elazar, Menashe; Winters, Mark; Aroeti, Benjamin; Danieli, Tsafi; Glenn, Jeffrey S.

    2007-01-01

    Hepatitis C virus (HCV) is an important cause of liver disease worldwide. Current therapies are inadequate for most patients. Using a two-hybrid screen, we isolated a novel cellular binding partner interacting with the N terminus of HCV nonstructural protein NS5A. This partner contains a TBC Rab-GAP (GTPase-activating protein) homology domain found in all known Rab-activating proteins. As the first described interaction between such a Rab-GAP and a viral protein, this finding suggests a new mechanism whereby viruses may subvert host cell machinery for mediating the endocytosis, trafficking, and sorting of their own proteins. Moreover, depleting the expression of this partner severely impairs HCV RNA replication with no obvious effect on cell viability. These results suggest that pharmacologic disruption of this NS5A-interacting partner can be contemplated as a potential new antiviral strategy against a pathogen affecting nearly 3% of the world's population. PMID:17686842

  11. Lipid Droplet-Binding Protein TIP47 Regulates Hepatitis C Virus RNA Replication through Interaction with the Viral NS5A Protein

    PubMed Central

    Vogt, Dorothee A.; Camus, Grégory; Herker, Eva; Webster, Brian R.; Tsou, Chia-Lin; Greene, Warner C.; Yen, Tien-Sze Benedict; Ott, Melanie

    2013-01-01

    The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web. PMID:23593007

  12. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    PubMed

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells. PMID:23325696

  13. Toscana Virus NSs Protein Promotes Degradation of Double-Stranded RNA-Dependent Protein Kinase

    PubMed Central

    Kalveram, Birte

    2013-01-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses—i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus—has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells. PMID:23325696

  14. Regulation of Brome Mosaic Virus Gene Expression by Restriction of Initiation of Protein Synthesis

    PubMed Central

    Chroboczek, Jadwiga; Puchkova, Ludmiła; Zagórski, Włodzimierz

    1980-01-01

    The translation of total and individual brome mosaic virus (BMV) RNAs was examined in a wheat germ cell-free system in the presence of various inhibitors. Inhibitors of the initiation of polypeptide synthesis, e.g., potassium ions, 7-methylguanosine 5′ -monophosphate, and aurintricarboxylic acid, were shown not only to inhibit overall BMV protein synthesis but also to change the ratio of BMV polypeptides synthesized. Under conditions restrictive for initiation, the translation of nonstructural BMV genes was suppressed, but coat protein synthesis proceeded at a high rate. A similar discrimination among BMV messengers was exerted by a regulatory protein kinase isolated from wheat germ. These results suggest that the regulation of the expression of BMV genes is based on a difference in the mechanism of formation of initiation complexes for individual BMV messages. Images PMID:16789194

  15. Humoral Response in Toscana Virus Acute Neurologic Disease Investigated by Viral-Protein-Specific Immunoassays

    PubMed Central

    Magurano, Fabio; Nicoletti, Loredana

    1999-01-01

    The Toscana virus (family Bunyaviridae, genus Phlebovirus) is the only sandfly-transmitted virus that demonstrates neurotropic activity. Clinical cases ranging from aseptic meningitis to meningoencephalitis caused by Toscana virus are yearly observed in central Italy during the summer, and several cases have been reported among tourists returning from zones of endemicity (Italy, Portugal, Spain, and Cyprus). In Toscana virus patients, immunoglobulin M (IgM) antibodies, usually present at the onset of symptoms, can reveal elevated titers by enzyme-linked immunosorbent assay and can persist for at least 1 year. IgG antibodies can be absent at the onset of symptoms: titers rise in convalescent sera and persist for many years. At least five proteins have been identified in Toscana virus-infected cells: nucleoprotein N, glycoproteins G1 and G2, a large protein (L) assumed to be a component of the polymerase, and two nonstructural proteins, NSm and NSs. We report results of a study on the antibody response to individual viral proteins in patients with Toscana virus-associated acute neurologic disease. Immunoblotting and semiquantitative radioimmunoprecipitation assay (RIPA) allow identification of nucleoprotein N as the major antigen responsible for both IgM and IgG responses. Antibodies to proteins other than nucleoprotein N are detected only by RIPA. Antibodies to glycoproteins are detected in about one-third of patients, and whereas their presence always predicts neutralization, some serum samples with neutralizing activity have undetectable levels of antibodies to G1-G2. Antibodies to nonstructural proteins NSm and NSs are also identified. The results obtained raise some questions about antigenic variability and relevant neutralization epitopes of Toscana virus. PMID:9874664

  16. The C terminus of NS1 protein of influenza A/WSN/1933(H1N1) virus modulates antiviral responses in infected human macrophages and mice.

    PubMed

    Anastasina, Maria; Schepens, Bert; Söderholm, Sandra; Nyman, Tuula A; Matikainen, Sampsa; Saksela, Kalle; Saelens, Xavier; Kainov, Denis E

    2015-08-01

    Non-structural protein NS1 of influenza A viruses interacts with cellular factors through its N-terminal RNA-binding, middle effector and C-terminal non-structured domains. NS1 attenuates antiviral responses in infected cells and thereby secures efficient virus replication. Some influenza strains express C-terminally truncated NS1 proteins due to nonsense mutations in the NS1 gene. To understand the role of the NS1 C-terminal region in regulation of antiviral responses, we engineered influenza viruses expressing C-terminally truncated NS1 proteins using A/WSN/33(H1N1) reverse genetics and tested them in human macrophages and in mice. We showed that a WSN virus expressing NS1 with a 28 aa deletion from its C terminus is a more powerful inducer of antiviral responses than the virus expressing full-length NS1, or one with a 10 aa truncation of NS1 in vitro. Thus, our findings suggest that the C-terminal region of NS1 is essential for regulation of antiviral responses. Moreover, viruses expressing truncated NS1 proteins could be good vaccine candidates. PMID:25934792

  17. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis?

    PubMed

    Barba, Marta; Daly, Janet M

    2016-01-01

    Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1) has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies. PMID:27589809

  18. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. PMID:26687707

  19. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins

    PubMed Central

    Hedil, Marcio; Kormelink, Richard

    2016-01-01

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far. PMID:27455310

  20. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins.

    PubMed

    Hedil, Marcio; Kormelink, Richard

    2016-01-01

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far. PMID:27455310

  1. Characterization of influenza virus variants with different sizes of the non-structural (NS) genes and their potential as live influenza vaccine in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influenza virus isolate A/turkey/Oregon/71-delNS1 (H7N3) has a 10 nucleotide deletion in the coding region of the NS1 gene and as a result produces a truncated NS1 protein. From a stock of this virus, we found that several variants with different sizes of the NS genes exist. The number of varian...

  2. [Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein].

    PubMed

    Zhao, Wei; Niu, Ke; Zhao, Jian; Jin, Yi-ming; Sui, Ting-ting; Wang, Wen

    2013-09-01

    Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus. PMID:24386845

  3. Aquareovirus NS80 Initiates Efficient Viral Replication by Retaining Core Proteins within Replication-Associated Viral Inclusion Bodies

    PubMed Central

    Yan, Liming; Zhang, Jie; Guo, Hong; Yan, Shicui; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2015-01-01

    Viral inclusion bodies (VIBs) are specific intracellular compartments for reoviruses replication and assembly. Aquareovirus nonstructural protein NS80 has been identified to be the major constituent for forming globular VIBs in our previous study. In this study, we investigated the role of NS80 in viral structural proteins expression and viral replication. Immunofluorescence assays showed that NS80 could retain five core proteins or inner-capsid proteins (VP1-VP4 and VP6), but not outer-capsid proteins (VP5 and VP7), within VIBs in co-transfected or infected cells. Further co-immunoprecipitation analysis confirmed that NS80 could interact with each core protein respectively. In addition, we found that newly synthesized viral RNAs co-localized with VIBs. Furthermore, time-course analysis of viral structural proteins expression showed that the expression of NS80 was detected first, followed by the detection of inner shell protein VP3, and then of other inner-capsid proteins, suggesting that VIBs were essential for the formation of viral core frame or progeny virion. Moreover, knockdown of NS80 by shRNA not only inhibited the expression of aquareovirus structural proteins, but also inhibited viral infection. These results indicated that NS80-based VIBs were formed at earlier stage of infection, and NS80 was able to coordinate the expression of viral structural proteins and viral replication. PMID:25938226

  4. Insights into Bacteriophage T5 Structure from Analysis of Its Morphogenesis Genes and Protein Components

    PubMed Central

    Zivanovic, Yvan; Confalonieri, Fabrice; Ponchon, Luc; Lurz, Rudi; Chami, Mohamed; Flayhan, Ali; Renouard, Madalena; Huet, Alexis; Decottignies, Paulette; Davidson, Alan R.; Breyton, Cécile

    2014-01-01

    Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm. PMID:24198424

  5. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  6. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  7. Functional Analysis of West Nile Virus Proteins in Human Cells.

    PubMed

    Kaufusi, Pakieli H; Tseng, Alanna; Nerurkar, Vivek R

    2016-01-01

    West Nile Virus (WNV) lineage 2 strains have been responsible for large outbreaks of neuroinvasive disease in the United States and Europe between 1999 and 2012. Different strains in this lineage have previously been shown to produce either severe or mild neuroinvasive disease in mice. Phylogenetic and amino acid comparisons between highly or less virulent lineage 2 strains have demonstrated that the nonstructural (NS) gene(s) were most variable. However, the roles of some of the NS proteins in virus life cycle are unknown. The aim of this chapter is to describe simple computational and experimental approaches that can be used to: (1) explore the possible roles of the NS proteins in virus life cycle and (2) test whether the subtle amino acid changes in WNV NS gene products contributed to the evolution of more virulent strains. The computational approaches include methods based on: (1) sequence similarity, (2) sequence motifs, and (3) protein membrane topology predictions. Highlighted experimental procedures include: (1) isolation of viral RNA from WNV-infected cells, (2) cDNA synthesis and PCR amplification of WNV genes, (3) cloning into GFP expression vector, (4) bacterial transformation, (5) plasmid isolation and purification, (6) transfection using activated dendrimers (Polyfect), and (7) immunofluorescence staining of transfected mammalian cells. PMID:27188549

  8. A systematic review of structured compared with non-structured breastfeeding programmes to support the initiation and duration of exclusive and any breastfeeding in acute and primary health care settings.

    PubMed

    Beake, Sarah; Pellowe, Carol; Dykes, Fiona; Schmied, Virginia; Bick, Debra

    2012-04-01

    Policies and guidelines have recommended that structured programmes to support breastfeeding should be introduced. The objective of this review was to consider the evidence of outcomes of structured compared with non-structured breastfeeding programmes in acute maternity care settings to support initiation and duration of exclusive breastfeeding. Quantitative and qualitative studies were considered. Primary outcomes of interest were initiation of breastfeeding and duration of exclusive breastfeeding. Studies that only considered community-based interventions were excluded. An extensive search of literature published in 1992-2010 was undertaken using identified key words and index terms. Methodological quality was assessed using checklists developed by the Joanna Briggs Institute. Two independent reviewers conducted critical appraisal and data extraction; 26 articles were included. Because of clinical and methodological heterogeneity of study designs, it was not possible to combine studies or individual outcomes in meta-analyses. Most studies found a statistically significant improvement in breastfeeding initiation following introduction of a structured breastfeeding programme, although effect sizes varied. The impact on the duration of exclusive breastfeeding and duration of any breastfeeding to 6 months was also evident, although not all studies found statistically significant differences. Despite poor overall study quality, structured programmes compared with standard care positively influence the initiation and duration of exclusive breastfeeding and any breastfeeding. In health care settings with low breastfeeding initiation and duration rates, structured programmes may have a greater benefit. Few studies controlled for any potential confounding factors, and the impact of bias has to be considered. PMID:22188596

  9. Protein 2B of Coxsackievirus B3 Induces Autophagy Relying on Its Transmembrane Hydrophobic Sequences

    PubMed Central

    Wu, Heng; Zhai, Xia; Chen, Yang; Wang, Ruixue; Lin, Lexun; Chen, Sijia; Wang, Tianying; Zhong, Xiaoyan; Wu, Xiaoyu; Wang, Yan; Zhang, Fengmin; Zhao, Wenran; Zhong, Zhaohua

    2016-01-01

    Coxsackievirus B (CVB) belongs to Enterovirus genus within the Picornaviridae family, and it is one of the most common causative pathogens of viral myocarditis in young adults. The pathogenesis of myocarditis caused by CVB has not been completely elucidated. In CVB infection, autophagy is manipulated to facilitate viral replication. Here we report that protein 2B, one of the non-structural proteins of CVB3, possesses autophagy-inducing capability. The autophagy-inducing motif of protein 2B was identified by the generation of truncated 2B and site-directed mutagenesis. The expression of 2B alone was sufficient to induce the formation of autophagosomes in HeLa cells, while truncated 2B containing the two hydrophobic regions of the protein also induced autophagy. In addition, we demonstrated that a single amino acid substitution (56V→A) in the stem loop in between the two hydrophobic regions of protein 2B abolished the formation of autophagosomes. Moreover, we found that 2B and truncated 2B with autophagy-inducting capability were co-localized with LC3-II. This study indicates that protein 2B relies on its transmembrane hydrophobic regions to induce the formation of autophagosomes, while 56 valine residue in the stem loop of protein 2B might exert critical structural influence on its two hydrophobic regions. These results may provide new insight for understanding the molecular mechanism of autophagy triggered by CVB infection. PMID:27187444

  10. Protein 2B of Coxsackievirus B3 Induces Autophagy Relying on Its Transmembrane Hydrophobic Sequences.

    PubMed

    Wu, Heng; Zhai, Xia; Chen, Yang; Wang, Ruixue; Lin, Lexun; Chen, Sijia; Wang, Tianying; Zhong, Xiaoyan; Wu, Xiaoyu; Wang, Yan; Zhang, Fengmin; Zhao, Wenran; Zhong, Zhaohua

    2016-01-01

    Coxsackievirus B (CVB) belongs to Enterovirus genus within the Picornaviridae family, and it is one of the most common causative pathogens of viral myocarditis in young adults. The pathogenesis of myocarditis caused by CVB has not been completely elucidated. In CVB infection, autophagy is manipulated to facilitate viral replication. Here we report that protein 2B, one of the non-structural proteins of CVB3, possesses autophagy-inducing capability. The autophagy-inducing motif of protein 2B was identified by the generation of truncated 2B and site-directed mutagenesis. The expression of 2B alone was sufficient to induce the formation of autophagosomes in HeLa cells, while truncated 2B containing the two hydrophobic regions of the protein also induced autophagy. In addition, we demonstrated that a single amino acid substitution (56V→A) in the stem loop in between the two hydrophobic regions of protein 2B abolished the formation of autophagosomes. Moreover, we found that 2B and truncated 2B with autophagy-inducting capability were co-localized with LC3-II. This study indicates that protein 2B relies on its transmembrane hydrophobic regions to induce the formation of autophagosomes, while 56 valine residue in the stem loop of protein 2B might exert critical structural influence on its two hydrophobic regions. These results may provide new insight for understanding the molecular mechanism of autophagy triggered by CVB infection. PMID:27187444

  11. Total protein

    MedlinePlus

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your ... nutritional problems, kidney disease or liver disease . If total protein is abnormal, you will need to have more ...

  12. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication.

    PubMed

    Zhang, Chengcheng; Kang, Kai; Ning, Pengbo; Peng, Yangxin; Lin, Zhi; Cui, Hongjie; Cao, Zhi; Wang, Jing; Zhang, Yanming

    2015-08-01

    The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling via to its ability to interact with various cellular proteins. Here, HSP70/NS5A complex formation is confirmed by coimmunoprecipitation and GST-pulldown studies. Additionally, the N-terminal amino acids (29-240) of NS5A were identified as the interaction region through in vivo deletion analyses, and confocal microscopy showed that NS5A and HSP70 colocalized in the cytoplasm. Overexpression of HSP70 via the eukaryotic expression plasmid pDsRED N1 or lentivirus significantly promoted viral RNA synthesis. Whereas the knockdown of HSP70 by lentivirus-mediated shRNA or inhibition by quercetin markedly decreased the viral load. These data suggest that HSP70 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of HSP70 protein functions may be beneficial for developing new strategies to treat CSFV infection. PMID:25827528

  13. Storage Proteins

    PubMed Central

    Fujiwara, Toru; Nambara, Eiji; Yamagishi, Kazutoshi; Goto, Derek B.; Naito, Satoshi

    2002-01-01

    Plants accumulate storage substances such as starch, lipids and proteins in certain phases of development. Storage proteins accumulate in both vegetative and reproductive tissues and serve as a reservoir to be used in later stages of plant development. The accumulation of storage protein is thus beneficial for the survival of plants. Storage proteins are also an important source of dietary plant proteins. Here, we summarize the genome organization and regulation of gene expression of storage protein genes in Arabidopsis. PMID:22303197

  14. Generating protein three-dimensional fold signatures using inductive logic programming.

    PubMed

    Turcotte, M; Muggleton, S H; Sternberg, M J

    2001-12-01

    Inductive logic programming (ILP) has been applied to automatically discover protein fold signatures. This paper investigates the use of topological information to circumvent problems encountered during previous experiments, namely (1) matching of non-structurally related secondary structures and (2) scaling problems. Cross-validation tests were carried out for 20 folds. The overall estimated accuracy is 73.37+/-0.35%. The new representation allows us to process the complete set of examples, while previously it was necessary to sample the negative examples. Topological information is used in approximately 90% of the rules presented here. Information about the topology of a sheet is present in 63% of the rules. This set of rules presents characteristics of the overall architecture of the fold. In contrast, 26% of the rules contain topological information which is limited to the packing of a restricted number of secondary structures, as such, the later set resembles those found in our previous studies. PMID:11765853

  15. Dietary Proteins

    MedlinePlus

    ... grains and beans. Proteins from meat and other animal products are complete proteins. This means they supply all of the amino acids the body can't make on its own. Most plant proteins are incomplete. You should eat different types of plant proteins every day to get ...

  16. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins.

    PubMed

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L; Herr, Andrew B; Ji, Jun-Yuan; Li, Pingwei

    2016-06-14

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  17. Oral and parenteral immunization of chickens (Gallus gallus) against West Nile virus with recombinant envelope protein

    USGS Publications Warehouse

    Fassbinder-Orth, C. A.; Hofmeister, E.K.; Weeks-Levy, C.; Karasov, W.H.

    2009-01-01

    West Nile virus (WNV) causes morbidity and mortality in humans, horses, and in more than 315 bird species in North America. Currently approved WNV vaccines are designed for parenteral administration and, as yet, no effective oral WNV vaccines have been developed. WNV envelope (E) protein is a highly antigenic protein that elicits the majority of virus-neutralizing antibodies during a WNV immune response. Leghorn chickens were given three vaccinations (each 2 wk apart) of E protein orally (20 ??g or 100 ??g/dose), of E protein intramuscularly (IM, 20 ??g/dose), or of adjuvant only (control group) followed by a WNV challenge. Viremias were measured post-WNV infection, and three new enzyme-linked immunosorbent assays were developed for quantifying IgM, IgY, and IgA-mediated immune response of birds following WNV infection. WNV viremia levels were significantly lower in the IM group than in both oral groups and the control group. Total WNV E protein-specific IgY production was significantly greater, and WNV nonstructural 1-specific IgY was significantly less, in the IM group compared to all other treatment groups. The results of this study indicate that IM vaccination of chickens with E protein is protective against WNV infection and results in a significantly different antibody production profile as compared to both orally vaccinated and nonvaccinated birds. ?? 2009 American Association of Avian Pathologists.

  18. Epitope-mapped monoclonal antibodies against the HPV16E1--E4 protein.

    PubMed

    Doorbar, J; Ely, S; Coleman, N; Hibma, M; Davies, D H; Crawford, L

    1992-03-01

    The human papillomavirus (HPV) E1--E4 protein is the only nonstructural late protein encoded by the virus. We have isolated three hybridomas producing monoclonal antibodies to the E1--E4 protein of HPV16, which is the HPV type most frequently associated with cervical cancer. The three antibodies (TVG 401, 402, and 403) detect adjacent epitopes within the major seroreactive region of the molecule and show no reactivity against the E4 proteins of HPV1, HPV2, HPV4, or HPV6. The E1--E4 protein migrates as a 10K species on SDS-gel electrophoresis and forms cytoplasmic inclusion granules in infected cells in vitro similar in appearance to those produced by HPV1 in benign warts. In naturally occurring HPV16-induced tumors the E1--E4 protein was detected in the cytoplasm of cells in the upper layers of the lesion in areas in which HPV16 DNA replication was occurring, as determined by in situ hybridization. Although the epitopes recognized by these monoclonal antibodies survive brief fixation in 5% formaldehyde, reactivity was destroyed by prolonged fixation. These monoclonal antibodies represent the first against HPV16 E1--E4 and should complement those already available to E7 and L1 for the screening of frozen sections of clinical biopsies and will be of value in monitoring the progression of HPV infection from benign lesions to invasive cancer. PMID:1371027

  19. Protein Analysis

    NASA Astrophysics Data System (ADS)

    Chang, Sam K. C.

    Proteins are an abundant component in all cells, and almost all except storage proteins are important for biological functions and cell structure. Food proteins are very complex. Many have been purified and characterized. Proteins vary in molecular mass, ranging from approximately 5000 to more than a million Daltons. They are composed of elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Twenty α-amino acids are the building blocks of proteins; the amino acid residues in a protein are linked by peptide bonds. Nitrogen is the most distinguishing element present in proteins. However, nitrogen content in various food proteins ranges from 13.4 to 19.1% (1) due to the variation in the specific amino acid composition of proteins. Generally, proteins rich in basic amino acids contain more nitrogen.

  20. Increased Phosphoenolpyruvate Carboxykinase (PEPCK) Gene Expression and Steatosis During Hepatitis C Virus (HCV) Subgenome Replication: Role of Nonstructural Component-5A (NS5A) and CCAAT/Enhancer Binding Protein ß (C/EBPß)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic hepatitis C virus (HCV) infection greatly increases the risk for type 2 diabetes and nonalcoholic steatohepatitis; however, the pathogenic mechanisms remain incompletely understood. Here we report gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) transcription and associated tra...

  1. Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections.

    PubMed

    Shu, Pei-Yun; Chen, Li-Kuang; Chang, Shu-Fen; Yueh, Yi-Yun; Chow, Ling; Chien, Li-Jung; Chin, Chuan; Lin, Ting-Hsiang; Huang, Jyh-Hsiung

    2003-07-01

    We have found that NS1 serotype-specific immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) can be used to differentiate primary and secondary dengue virus infections. This is due to the fact that the NS1-specific IgG antibody cannot be detected before day 9 of illness for primary infection, so the NS1-specific IgG antibodies measured in acute-phase sera must come from previous infection. Comparison of NS1 serotype-specific IgG ELISA with envelope- and membrane-specific capture IgM and IgG ELISA in the differentiation of primary and secondary dengue virus infections showed good correlation (95.90% agreement). Most important, we have found that the serotype of the dengue virus from the majority of patients with primary infection could be correctly identified when convalescent-phase or postinfection sera were analyzed by NS1 serotype-specific IgG ELISA. These findings suggested that NS1 serotype-specific IgG ELISA could be reliably applied for serodiagnosis and seroepidemiological study of dengue virus infection. PMID:12853395

  2. Potential application of nonstructural protein NS1 serotype-specific immunoglobulin G enzyme-linked immunosorbent assay in the seroepidemiologic study of dengue virus infection: correlation of results with those of the plaque reduction neutralization test.

    PubMed

    Shu, Pei-Yun; Chen, Li-Kuang; Chang, Shu-Fen; Yueh, Yi-Yun; Chow, Ling; Chien, Li-Jung; Chin, Chuan; Yang, Hui-Hua; Lin, Ting-Hsiang; Huang, Jyh-Hsiung

    2002-05-01

    An NS1 serotype-specific indirect enzyme-linked immunosorbent assay (ELISA) was developed to differentiate primary and secondary dengue virus infections and serotypes of primary dengue virus infection. For this report, we carried out retrospective seroepidemiologic studies on serum samples collected from residents of Liuchiu Hsiang, Pingtung County, an isolated island in southern Taiwan during 1997-1998. The results demonstrated that good correlation existed between dengue virus NS1 serotype-specific immunoglobulin G (IgG) ELISA and dengue virus plaque reduction neutralization test (PRNT). Our data suggested that NS1 serotype-specific IgG ELISA could replace PRNT for seroepidemiologic studies to differentiate Japanese encephalitis and dengue virus infections and for dengue virus serotyping. PMID:11980973

  3. Coq7p relevant residues for protein activity and stability.

    PubMed

    Busso, Cleverson; Ferreira-Júnior, José Ribamar; Paulela, Janaina A; Bleicher, Lucas; Demasi, Marilene; Barros, Mario H

    2015-12-01

    Coenzyme Q (Q) is an isoprenylated benzoquinone electron carrier required for electronic transport in the mitochondrial respiratory chain, shuttling electrons from complexes I and II to complex III. Q synthesis requires proteins termed Coq (Coq1-Coq11). Coq7p is part of the multimeric complex involved in Q synthesis catalyzing the hydroxylation of demethoxy-Q6 (DMQ6), the last monooxygenase step in Q synthesis with a catalytic center containing a carboxylate-bridged di-iron at the active site of the enzyme. Here we indicate a group of Coq7p residues that modulate protein activity: D53, R57, V111 and S114. R57, V111 and S114 are very conserved residues; V111 and S114 are present in separated communities of amino acid correlation analysis. The coq7 double mutant V111G/S114A and S114E show respiratory deficiency at non permissive temperature, DMQ6 accumulation and lower content of Q6. Therefore we conclude that phosphomimetic S114E inhibit Coq7p activity, and propose that S114 phosphorylation is required to move a non-structured loop of 25 amino acids between helix 2 and 3, and that affects the di-iron coordination in Coq7p catalytic center. PMID:26497406

  4. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication

    PubMed Central

    de la Torre, Beatriz G.; Valle, Javier; Andreu, David; Sobrino, Francisco

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target. PMID:26505190

  5. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters.

    PubMed

    Murcia, Germán; Pontin, Mariela; Reinoso, Herminda; Baraldi, Rita; Bertazza, Gianpaolo; Gómez-Talquenca, Sebastián; Bottini, Rubén; Piccoli, Patricia N

    2016-03-01

    Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters. PMID:26411544

  6. Hepatitis C Genotype Prevalence in Monastir Region, Tunisia: Correlation between 5' Untranslated Region (5'UTR), Non-structural 5B (NS5B), and Core Sequences in HCV Subtyping.

    PubMed

    Souii, Amira; Elargoubi, Aida; Fallecker, Catherine; Mastouri, Maha; Drouet, Emmanuel

    2016-09-01

    Hepatitis C virus (HCV) is a causative agent of chronic liver disease, cirrhosis, and hepatocellular carcinoma. It constitutes a major public health around the world. There is no vaccine available against HCV, and current therapies are effective in only small percentage of patients. HCV has wide population-specific genotype variability. Genotype knowledge and viral load assessment are equally important for designing therapeutic strategies. Taking into account that the molecular epidemiology of HCV variants circulating in Tunisia is not yet well elucidated, and that, at present, little is known about the distribution pattern of HCV in Monastir region (Tunisia), we aimed, herein, to evaluate the prevalence of HCV genotypes in Monastir and to identify risk-related factors. For this purpose, 50 anti-HCV antibody-positive cases were diagnosed and subjected to viral RNA extraction, amplification, genotyping, and viral load quantification. Molecular epidemiology was studied by 5' untranslated region (5' UTR) sequencing as compared with the non-structural 5B (NS5B) and core region sequences. Overall concordance between 5' UTR, core, and NS5B sequencing was 100 %. The highest prevalent genotype was 1b (50 %) followed by genotypes 1a (16 %), 4a (12 %), 2a (10 %), 2c (8 %), and 3a (4 %). Interestingly, the subtype 1b had a statistically significant higher viral load than the other genotypes followed by subtype 1a. Based on these data, this study revealed a high prevalence of HCV genotype 1 (subtypes 1b and 1a) compared to other genotypes. A continued monitoring of HCV and knowledge of circulating genotypes could impact on future vaccine formulations. PMID:27189386

  7. Immunogold localization of tobravirus 2b nematode transmission helper protein associated with virus particles.

    PubMed

    Vellios, Evangelos; Duncan, George; Brown, Derek; MacFarlane, Stuart

    2002-08-15

    Transmission of the tobraviruses Tobacco rattle virus (TRV) and Pea early-browning virus (PEBV) by trichodorid vector nematodes requires the viral coat protein (CP) and the 2b protein, a nonstructural protein encoded by RNA2, the smaller of the two viral genomic RNAs. It is hypothesized that the 2b protein functions by interacting with a small, flexible domain located at the C-terminus of the CP, forming a bridge between the virus particle and the internal surface of the vector nematode feeding apparatus. Antibodies specific for the 2b protein of PEBV or TRV did not bind to virus particles that were adsorbed to electron microscope grids and were not able to trap virus particles from extracts of infected plants. However, electron microscopy of thin sections of plants infected with PEBV probed with 2b-specific antibodies which were further gold-labeled showed that the 2b protein localizes exclusively to virus particles. Similarly, immunogold localization studies showed that the 2b protein of TRV isolate PaY4 is associated only with TRV PaY4 virus particles. When a recombinant TRV encoding the PaY4 2b protein and the CP from TRV isolate PpK20 was examined, the 2b protein could not be detected by Western blotting and in IGL experiments was not associated with virus particles. These results suggest that in the absence of a specific interaction between compatible CP and 2b proteins, the 2b protein does not accumulate. PMID:12202212

  8. West Nile virus methyltransferase domain interacts with protein kinase G

    PubMed Central

    2013-01-01

    Background The flaviviral nonstructural protein 5 (NS5) is a phosphoprotein, though the precise identities and roles of many specific phosphorylations remain unknown. Protein kinase G (PKG), a cGMP-dependent protein kinase, has previously been shown to phosphorylate dengue virus NS5. Methods We used mass spectrometry to specifically identify NS5 phosphosites. Co-immunoprecipitation assays were used to study protein-protein interactions. Effects on viral replication were measured via replicon system and plaque assay titering. Results We identified multiple sites in West Nile virus (WNV) NS5 that are phosphorylated during a WNV infection, and showed that the N-terminal methyltransferase domain of WNV NS5 can be specifically phosphorylated by PKG in vitro. Expressing PKG in cell culture led to an enhancement of WNV viral production. We hypothesized this effect on replication could be caused by factors beyond the specific phosphorylations of NS5. Here we show for the first time that PKG is also able to stably interact with a viral substrate, WNV NS5, in cell culture and in vitro. While the mosquito-borne WNV NS5 interacted with PKG, tick-borne Langat virus NS5 did not. The methyltransferase domain of NS5 is able to mediate the interaction between NS5 and PKG, and mutating positive residues in the αE region of the methyltransferase interrupts the interaction. These same mutations completely inhibited WNV replication. Conclusions PKG is not required for WNV replication, but does make a stable interaction with NS5. While the consequence of the NS5:PKG interaction when it occurs is unclear, mutational data demonstrates that this interaction occurs in a region of NS5 that is otherwise necessary for replication. Overall, the results identify an interaction between virus and a cellular kinase and suggest a role for a host kinase in enhancing flaviviral replication. PMID:23876037

  9. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  10. Whey Protein

    MedlinePlus

    ... shows that taking whey protein in combination with strength training increases lean body mass, strength, and muscle size. ... grams/kg of whey protein in combination with strength training for 6-10 weeks. For HIV/AIDS-related ...

  11. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. PMID:25329362

  12. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  13. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  14. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  15. NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation.

    PubMed

    Li, Ting; Li, Xi; Zhu, WenFei; Wang, HuiYu; Mei, Lin; Wu, ShaoQiang; Lin, XiangMei; Han, XueQing

    2016-08-01

    NF90 is a novel host antiviral factor that regulates PKR activation and stress granule formation in influenza A virus (IAV)-infected cells, but the precise mechanisms by which it operates remain unclear. We identified NF90 as a novel interacting protein of IAV nonstructural protein 1 (NS1). The interaction was dependent on the RNA-binding properties of NS1. NS1 associated with NF90 and PKR simultaneously; however, the interaction between NF90 and PKR was restricted by NS1. Knockdown of NF90 promoted inhibition of PKR phosphorylation induced by NS1, while coexpression of NF90 impeded reduction of PKR phosphorylation and stress granule formation triggered by NS1. In summary, NF90 exerts its antiviral activity by antagonizing the inhibitory role of NS1 on PKR phosphorylation. PMID:27423063

  16. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design.

    PubMed

    Watterson, Daniel; Modhiran, Naphak; Young, Paul R

    2016-06-01

    The flavivirus non-structural protein, NS1, is an unusual viral gene product. Despite the recent unveiling of its atomic structure (Akey et al., 2014), and a growing list of host molecules with which it has been found associated, the primary function of NS1 remains elusive. It assumes many diverse roles including direct participation in the flaviviral replication complex and virion maturation. In its secreted form it is a hexameric lipoparticle that is involved in systemic immune and endothelial cell modulation. In this review we highlight recent advances in elucidating the molecular mechanisms underpinning NS1 function and present the current state of play and some future prospects for NS1 targeted antiviral strategies. This article forms part of a symposium on flavivirus drug discovery in Antiviral Research. PMID:26944216

  17. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.

    PubMed

    Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire

    2012-08-01

    Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration

  18. Cellular Casein Kinase 2 and Protein Phosphatase 2A Modulate Replication Site Assembly of Bluetongue Virus*

    PubMed Central

    Mohl, Bjorn-Patrick; Roy, Polly

    2016-01-01

    A number of cytoplasmic replicating viruses produce cytoplasmic inclusion bodies or protein aggregates; however, a hallmark of viruses of the Reoviridae family is that they utilize these sites for purposes of replication and capsid assembly, functioning as viral assembly factories. Here we have used bluetongue virus (BTV) as a model system for this broad family of important viruses to understand the mechanisms regulating inclusion body assembly. Newly synthesized viral proteins interact with sequestered viral RNA molecules prior to capsid assembly and double-stranded RNA synthesis within viral inclusion bodies (VIBs). VIBs are predominantly comprised of a BTV-encoded non-structural protein 2 (NS2). Previous in vitro studies indicated that casein kinase 2 (CK2) mediated the phosphorylation of NS2, which regulated the propensity of NS2 to form larger aggregates. Using targeted pharmacological reagents, specific mutation in the viral genome by reverse genetics and confocal microscopy, here we demonstrate that CK2 activity is important for BTV replication. Furthermore, we show that a novel host cell factor, protein phosphatase 2A, is involved in NS2 dephosphorylation and that, together with CK2, it regulates VIB morphology and virus replication. Thus, these two host enzymes influence the dynamic nature of VIB assembly/disassembly, and these concerted activities may be relevant to the assembly and the release of these cores from VIBs. PMID:27226558

  19. Characterisation of Structural Proteins from Chronic Bee Paralysis Virus (CBPV) Using Mass Spectrometry

    PubMed Central

    Chevin, Aurore; Coutard, Bruno; Blanchard, Philippe; Dabert-Gay, Anne-Sophie; Ribière-Chabert, Magali; Thiéry, Richard

    2015-01-01

    Chronic bee paralysis virus (CBPV) is the etiological agent of chronic paralysis, an infectious and contagious disease in adult honeybees. CBPV is a positive single-stranded RNA virus which contains two major viral RNA fragments. RNA 1 (3674 nt) and RNA 2 (2305 nt) encode three and four putative open reading frames (ORFs), respectively. RNA 1 is thought to encode the viral RNA-dependent RNA polymerase (RdRp) since the amino acid sequence derived from ORF 3 shares similarities with the RdRP of families Nodaviridae and Tombusviridae. The genomic organization of CBPV and in silico analyses have suggested that RNA 1 encodes non-structural proteins, while RNA 2 encodes structural proteins, which are probably encoded by ORFs 2 and 3. In this study, purified CBPV particles were used to characterize virion proteins by mass spectrometry. Several polypeptides corresponding to proteins encoded by ORF 2 and 3 on RNA 2 were detected. Their role in the formation of the viral capsid is discussed. PMID:26110588

  20. Analysis of mutations in adeno-associated virus Rep protein in vivo and in vitro.

    PubMed Central

    McCarty, D M; Ni, T H; Muzyczka, N

    1992-01-01

    The adeno-associated virus (AAV) Rep protein is required for both viral DNA replication and transactivation of the AAV promoters. Here we report the effects of mutations in the rep gene on transcription and replication in vivo and terminal repeat binding and terminal resolution site (trs) endonuclease activities in vitro. In all, we examined 10 in-frame deletions and 14 amino acid substitution mutations at eight positions. The point mutations were targeted to regions that are highly conserved among the parvovirus nonstructural proteins and include the extended ATPase domain of the AAV Rep protein. The mutations identify at least two noncontiguous regions of Rep which are essential for terminal repeat binding (amino acids 134 to 242 and amino acids 415 to 490). Mutations in either region render the protein inactive for both DNA replication and transactivation. In addition, mutations within a putative ATPase region also cause defects in replication and transactivation in vivo as well as in the ATP-dependent trs endonuclease activity in vitro. These results suggest that Rep transactivates via a novel mechanism which may require both DNA binding and an enzymatic activity, namely, ATPase or DNA helicase activity. Images PMID:1318396

  1. Mapping of nuclear import signal and importin {alpha}3 binding regions of 52K protein of bovine adenovirus-3

    SciTech Connect

    Paterson, Carolyn P.; Ayalew, Lisanework E.; Tikoo, Suresh K.

    2012-10-10

    The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acid 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.

  2. Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Hans

    2011-03-01

    Proteins combine properties of solids, liquids, and glasses. Schrödinger anticipated the main features of biomolecules long ago by stating that they had to be solid-like, but able to assume many different conformations. Indeed proteins can assume a gigantic number of conformational substates with the same primary sequence but different conformations. The different substates are described as craters in a very-high-dimensional energy landscape. The energy landscape is organized in a hierarchy of tiers, craters within craters within craters. Protein motions are pictured as transition between substates - jumps from crater to crater. Initially we assumed that these jumps were controlled by internal barriers between substates, but experiments have shown that nature selected a different approach. Proteins are surrounded by one to two layers of water and are embedded in a bulk solvent. Structural motions of the protein are controlled by the alpha fluctuations in the solvent surrounding the protein. Some internal motions most likely involving side chains are controlled electrostatically by beta fluctuations in the hydration shell. The dynamics of proteins is consequently dominated by the environment (H. Frauenfelder et al. PNAS 106, 5129 (2009). One can speculate that this organization permits exchange of information among biomolecules. The energy landscape is not just organized into two tiers, alpha and beta, but cryogenic experiments have revealed more tiers and protein more properties similar to that of glasses. While proteins function at ambient temperatures, cryogenic studies are necessary to understand the physics relevant for biology.

  3. Flavivirus NS1: a multifaceted enigmatic viral protein.

    PubMed

    Rastogi, Meghana; Sharma, Nikhil; Singh, Sunit Kumar

    2016-01-01

    Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review. PMID:27473856

  4. The chaperone like function of the nonhistone protein HMGB1

    SciTech Connect

    Osmanov, Taner; Ugrinova, Iva; Pasheva, Evdokia

    2013-03-08

    Highlights: ► The HMGB1 protein strongly enhanced the formation of nucleosome particles. ► The target of HMGB1 action as a chaperone is the DNA not the histone octamer. ► The acetylation of HMGB1 decreases the stimulating effect of the protein. -- Abstract: Almost all essential nuclear processes as replication, repair, transcription and recombination require the chromatin template to be correctly unwound and than repackaged. The major strategy that the cell uses to overcome the nucleosome barrier is the proper removal of the histone octamer and subsequent deposition onto DNA. Important factors in this multi step phenomenon are the histone chaperones that can assemble nucleosome arrays in vitro in the absence of ATP. The nonhistone protein HMGB1 is a good candidate for a chaperone as its molecule consists of two DNA binding motives, Box’s A and B, and a long nonstructured C tail highly negatively charged. HMGB1 protein is known as a nuclear “architectural” factor for its property to bind preferentially to distorted DNA structures and was reported to kink the double helix. Our experiments show that in the classical stepwise dialysis method for nucleosome assembly the addition of HMGB1 protein stimulates more than two times the formation of middle-positioned nucleosomes. The stimulation effect persists in dialysis free experiment when the reconstitution is possible only in the presence of a chaperone. The addition of HMGB1 protein strongly enhanced the formation of a nucleosome in a dose dependant manner. Our results show that the target of HMGB1 action as a chaperone is the DNA fragment not the histone octamer. One possible explanation for the stimulating effect of HMGB1 is the “architectural” property of the protein to associate with the middle of the DNA fragment and to kink it. The acquired V shaped DNA structure is probably conformationals more favorable to wrap around the prefolded histone octamer. We tested also the role of the post

  5. Interfacial Protein-Protein Associations

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.

    2014-01-01

    While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on poly(ethylene glycol) modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for longer times. The appearance of three distinct RET states suggested a spatially heterogeneous surface – with areas of high protein density (i.e. strongly-interacting clusters) coexisting with mobile monomers. Distinct association states exhibited characteristic behavior, i.e. partial-RET (monomer-monomer) associations were shorter-lived than complete-RET (protein-cluster) associations. While the fractional surface area covered by regions with high protein density (i.e. clusters) increased with increasing concentration, the distribution of contact times between monomers and clusters was independent of solution concentration, suggesting that associations were a local phenomenon, and independent of the global surface coverage. PMID:24274729

  6. C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2006-12-20

    Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, it was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.

  7. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing

    PubMed Central

    Hedil, Marcio; Sterken, Mark G.; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance. PMID:26275304

  8. Development of a competitive enzyme-linked immunosorbent assay for detection of antibodies against the 3B protein of foot-and-mouth disease virus.

    PubMed

    Yang, Ming; Parida, Satya; Salo, Tim; Hole, Kate; Velazquez-Salinas, Lauro; Clavijo, Alfonso

    2015-04-01

    Foot-and-mouth disease (FMD) is one of the most highly contagious and economically devastating diseases, and it severely constrains the international trade of animals. Vaccination against FMD is a key element in the control of FMD. However, vaccination of susceptible animals raises critical issues, such as the differentiation of infected animals from vaccinated animals. The current study developed a reliable and rapid test to detect antibodies against the conserved, nonstructural proteins (NSPs) of the FMD virus (FMDV) to distinguish infected animals from vaccinated animals. A monoclonal antibody (MAb) against the FMDV NSP 3B was produced. A competitive enzyme-linked immunosorbent assay (cELISA) for FMDV/NSP antibody detection was developed using a recombinant 3ABC protein as the antigen and the 3B-specific MAb. Sera collected from naive, FMDV experimentally infected, vaccinated carrier, and noncarrier animals were tested using the 3B cELISA. The diagnostic specificity was 99.4% for naive animals (cattle, pigs, and sheep) and 99.7% for vaccinated noncarrier animals. The diagnostic sensitivity was 100% for experimentally inoculated animals and 64% for vaccinated carrier animals. The performance of this 3B cELISA was compared to that of four commercial ELISA kits using a panel of serum samples established by the World Reference Laboratory for FMD at The Pirbright Institute, Pirbright, United Kingdom. The diagnostic sensitivity of the 3B cELISA for the panel of FMDV/NSP-positive bovine serum samples was 94%, which was comparable to or better than that of the commercially available NSP antibody detection kits. This 3B cELISA is a simple, reliable test to detect antibodies against FMDV nonstructural proteins. PMID:25651918

  9. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation

    PubMed Central

    Siu, Gavin Ka Yu; Zhou, Fan; Yu, Mei Kuen; Zhang, Leiliang; Wang, Tuanlao; Liang, Yongheng; Chen, Yangchao; Chan, Hsiao Chang; Yu, Sidney

    2016-01-01

    Hepatitis C virus (HCV) has long been observed to take advantage of the host mitochondria to support viral replication and assembly. The HCV core protein has been implicated to fragment host mitochondria. In this report, we have discovered that the non-structural protein 5A (NS5A) plays an instructive role in attaching ER with mitochondria, causing mitochondrial fragmentation. Dynamin-related protein 1(Drp1), a host protein essential to mitochondrial membrane fission, does not play a role in NS5A-induced mitochondrial fragmentation. Instead, phosphatidylinositol 4-kinase IIIα (PI4KA), which has been demonstrated to bind to NS5A and is required to support HCV life cycle, is required for NS5A to induce mitochondrial fragmentation. Both NS5A and core are required by HCV to fragment the mitochondria, as inhibiting either of their respective downstream proteins, PI4KA or Drp1, resulted in lengthening of mitochondria tubules in HCVcc-infected cells. By fragmenting the mitochondria, NS5A renders the cells more resistant to mitochondria mediated apoptosis. This finding indicates previously-ignored contribution of NS5A in HCV-induced mitochondria dysfunction. PMID:27010100

  10. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    SciTech Connect

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-07-18

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.

  11. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation.

    PubMed

    Siu, Gavin Ka Yu; Zhou, Fan; Yu, Mei Kuen; Zhang, Leiliang; Wang, Tuanlao; Liang, Yongheng; Chen, Yangchao; Chan, Hsiao Chang; Yu, Sidney

    2016-01-01

    Hepatitis C virus (HCV) has long been observed to take advantage of the host mitochondria to support viral replication and assembly. The HCV core protein has been implicated to fragment host mitochondria. In this report, we have discovered that the non-structural protein 5A (NS5A) plays an instructive role in attaching ER with mitochondria, causing mitochondrial fragmentation. Dynamin-related protein 1(Drp1), a host protein essential to mitochondrial membrane fission, does not play a role in NS5A-induced mitochondrial fragmentation. Instead, phosphatidylinositol 4-kinase IIIα (PI4KA), which has been demonstrated to bind to NS5A and is required to support HCV life cycle, is required for NS5A to induce mitochondrial fragmentation. Both NS5A and core are required by HCV to fragment the mitochondria, as inhibiting either of their respective downstream proteins, PI4KA or Drp1, resulted in lengthening of mitochondria tubules in HCVcc-infected cells. By fragmenting the mitochondria, NS5A renders the cells more resistant to mitochondria mediated apoptosis. This finding indicates previously-ignored contribution of NS5A in HCV-induced mitochondria dysfunction. PMID:27010100

  12. Influenza A Virus NS1 Protein Inhibits the NLRP3 Inflammasome

    PubMed Central

    Cheong, Woo-Chang; Kang, Hye-Ri; Yoon, Hyunyee; Kang, Suk-Jo; Ting, Jenny P.-Y.; Song, Moon Jung

    2015-01-01

    The inflammasome is a molecular platform that stimulates the activation of caspase-1 and the processing of pro-interleukin (IL)-1β and pro-IL-18 for secretion. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is activated by diverse molecules and pathogens, leading to the formation of the NLRP3 inflammasome. Recent studies showed that the NLRP3 inflammasome mediates innate immunity against influenza A virus (IAV) infection. In this study, we investigated the function of the IAV non-structural protein 1 (NS1) in the modulation of NLRP3 inflammasome. We found that NS1 proteins derived from both highly pathogenic and low pathogenic strains efficiently decreased secretion of IL-1β and IL-18 from THP-1 cells treated with LPS and ATP. NS1 overexpression significantly impaired the transcription of proinflammatory cytokines by inhibiting transactivation of the nuclear factor-κB (NF-κB), a major transcription activator. Furthermore, NS1 physically interacted with endogenous NLRP3 and activation of the NLRP3 inflammasome was abrogated in NS1-expressing THP-1 cells. These findings suggest that NS1 downregulates NLRP3 inflammasome activation by targeting NLRP3 as well as NF-κB, leading to a reduction in the levels of inflammatory cytokines as a viral immune evasion strategy. PMID:25978411

  13. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  14. Immunodetection and subcellular localization of Mal de Río Cuarto virus P9-1 protein in infected plant and insect host cells.

    PubMed

    Guzmán, Fabiana A; Arneodo, Joel D; Pons, Amalia B Saavedra; Truol, Graciela A; Luque, Andrés V; Conci, Luis R

    2010-08-01

    Mal de Río Cuarto virus (MRCV), a member of the genus Fijivirus, family Reoviridae, has a genome consisting of 10 dsRNA segments. The segment 9 (S9) possesses two non-overlapping open reading frames (ORF-1 and ORF-2) encoding two putative proteins, MRCV P9-1 and MRCV P9-2, both of unknown function. The MRCV S9 ORF-1 was RT-PCR amplified, expressed in pET-15b vector, and the recombinant protein produced was used to raise an antiserum in rabbit. Western blot with the specific MRCV P9-1 antiserum detected a protein of about 39 kDa molecular weight present in crude protein extracts from infected plants and insects. However, no reaction was observed when this antiserum was tested against purified virus. In contrast, only virus particles were detected by a MRCV-coat antiserum used as a validation control. These results suggest that MRCV S9 ORF-1 encodes a non-structural protein of MRCV. Immunoelectron microscopy assays confirmed these results, and localized the MRCV P9-1 protein exclusively in electron-dense granular viroplasms within the cytoplasm of infected plants and insects cells. As viroplasms are believed to be the replication sites of reoviruses, the intracellular location of MRCV P9-1 protein suggests that it might be involved in the assembly process of MRCV particles. PMID:20419342

  15. Whey Protein

    MedlinePlus

    ... intolerance, for replacing or supplementing milk-based infant formulas, and for reversing weight loss and increasing glutathione ( ... allergic reactions compared to infants who receive standard formula. However, taking why protein might not be helpful ...

  16. The p14 FAST Protein of Reptilian Reovirus Increases Vesicular Stomatitis Virus Neuropathogenesis▿

    PubMed Central

    Brown, Christopher W.; Stephenson, Kyle B.; Hanson, Stephen; Kucharczyk, Michael; Duncan, Roy; Bell, John C.; Lichty, Brian D.

    2009-01-01

    The fusogenic orthoreoviruses express nonstructural fusion-associated small transmembrane (FAST) proteins that induce cell-cell fusion and syncytium formation. It has been speculated that the FAST proteins may serve as virulence factors by promoting virus dissemination and increased or altered cytopathology. To directly test this hypothesis, the gene encoding the p14 FAST protein of reptilian reovirus was inserted into the genome of a heterologous virus that does not naturally form syncytia, vesicular stomatitis virus (VSV). Expression of the p14 FAST protein by the VSV/FAST recombinant gave the virus a highly fusogenic phenotype in cell culture. The growth of this recombinant fusogenic VSV strain was unaltered in vitro but was significantly enhanced in vivo. The VSV/FAST recombinant consistently generated higher titers of virus in the brains of BALB/c mice after intranasal or intravenous infection compared to the parental VSV/green fluorescent protein (GFP) strain that expresses GFP in place of p14. The VSV/FAST recombinant also resulted in an increased incidence of hind-limb paralysis, it infected a larger volume of brain tissue, and it induced more extensive neuropathology, thus leading to a lower maximum tolerable dose than that for the VSV/GFP parental virus. In contrast, an interferon-inducing mutant of VSV expressing p14 was still attenuated, indicating that this interferon-inducing phenotype is dominant to the fusogenic properties conveyed by the FAST protein. Based on this evidence, we conclude that the reovirus p14 FAST protein can function as a bona fide virulence factor. PMID:18971262

  17. Designed protein-protein association.

    PubMed

    Grueninger, Dirk; Treiber, Nora; Ziegler, Mathias O P; Koetter, Jochen W A; Schulze, Monika-Sarah; Schulz, Georg E

    2008-01-11

    The analysis of natural contact interfaces between protein subunits and between proteins has disclosed some general rules governing their association. We have applied these rules to produce a number of novel assemblies, demonstrating that a given protein can be engineered to form contacts at various points of its surface. Symmetry plays an important role because it defines the multiplicity of a designed contact and therefore the number of required mutations. Some of the proteins needed only a single side-chain alteration in order to associate to a higher-order complex. The mobility of the buried side chains has to be taken into account. Four assemblies have been structurally elucidated. Comparisons between the designed contacts and the results will provide useful guidelines for the development of future architectures. PMID:18187656

  18. Bluetongue Virus NS4 Protein Is an Interferon Antagonist and a Determinant of Virus Virulence

    PubMed Central

    Ratinier, Maxime; Shaw, Andrew E.; Barry, Gerald; Gu, Quan; Di Gialleonardo, Luigina; Janowicz, Anna; Varela, Mariana; Randall, Richard E.; Caporale, Marco

    2016-01-01

    ABSTRACT Bluetongue virus (BTV) is the causative agent of bluetongue, a major infectious disease of ruminants with serious consequences to both animal health and the economy. The clinical outcome of BTV infection is highly variable and dependent on a variety of factors related to both the virus and the host. In this study, we show that the BTV nonstructural protein NS4 favors viral replication in sheep, the animal species most affected by bluetongue. In addition, NS4 confers a replication advantage on the virus in interferon (IFN)-competent primary sheep endothelial cells and immortalized cell lines. We determined that in cells infected with an NS4 deletion mutant (BTV8ΔNS4), there is increased synthesis of type I IFN compared to cells infected with wild-type BTV-8. In addition, using RNA sequencing (RNA-seq), we show that NS4 modulates the host IFN response and downregulates mRNA levels of type I IFN and interferon-stimulated genes. Moreover, using reporter assays and protein synthesis assays, we show that NS4 downregulates the activities of a variety of promoters, such as the cytomegalovirus immediate-early promoter, the IFN-β promoter, and a promoter containing interferon-stimulated response elements (ISRE). We also show that the NS4 inhibitory activity on gene expression is related to its nucleolar localization. Furthermore, NS4 does not affect mRNA splicing or cellular translation. The data obtained in this study strongly suggest that BTV NS4 is an IFN antagonist and a key determinant of viral virulence. IMPORTANCE Bluetongue is one of the main infectious diseases of ruminants and is caused by bluetongue virus (BTV), an arthropod-borne virus transmitted from infected to susceptible animals by Culicoides biting midges. Bluetongue has a variable clinical outcome that can be related to both virus and host factors. It is therefore critical to understand the interplay between BTV and the host immune responses. In this study, we show that a nonstructural protein

  19. Booster immunization with a partially purified citrus tristeza virus (CTV) preparation after priming with recombinant CTV coat protein enhances the binding capacity of capture antibodies by ELISA.

    PubMed

    Bar-Joseph, M; Filatov, V; Gofman, R; Guang, Y; Hadjinicolis, A; Mawassi, M; Gootwine, E; Weisman, Y; Malkinson, M

    1997-08-01

    Groups of rabbits and young lambs were immunized subcutaneously and intramuscularly with a recombinant citrus tristeza virus (CTV) coat protein (rCTV-CP) antigen. Three weeks after primary immunization the animals were divided into two groups that were boosted either with rCTV-CP or with a partially purified preparation of CTV particles (ppCTV). Twelve and 15 days after the last injection, the animals were bled and the binding capacity of the antisera for CTV detection was examined for capture antibodies by the indirect ELISA. Considerably higher ELISA titers were obtained from animals that were boosted with ppCTV than with rCP. Boosting with partially purified native antigens after priming with recombinant antigens is expected to extend the applicability of the antisera for detecting other structural and non-structural viral antigens by trapping ELISA. PMID:9274814

  20. Interaction of the hepatitis B virus X protein with the lysine methyltransferase SET and MYND domain-containing 3 induces activator protein 1 activation.

    PubMed

    Hayashi, Miwako; Deng, Lin; Chen, Ming; Gan, Xiang; Shinozaki, Kenta; Shoji, Ikuo; Hotta, Hak

    2016-01-01

    Hepatitis B virus (HBV) is a widespread human pathogen that often causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The detailed mechanisms underlying HBV pathogenesis remain poorly understood. The HBV X protein (HBx) is a multifunctional regulator that modulates viral replication and host cell functions, such as cell cycle progression, apoptosis and protein degradation through interaction with a variety of host factors. Recently, the nonstructural protein 5A (NS5A) of hepatitis C virus has been reported to interact with methyltransferase SET and MYND domain-containing 3 (SMYD3), which is implicated in chromatin modification and development of cancer. Because HBx shares fundamental regulatory functions concerning viral replication and pathogenesis with NS5A, it was decided to examine whether HBx interacts with SMYD3. In the present study, it was demonstrated by co-immunoprecipitation analysis that HBx interacts with both ectopically and endogenously expressed SMYD3 in Huh-7.5 cells. Deletion mutation analysis revealed that the C-terminal region of HBx (amino acids [aa] 131-154) and an internal region of SMYD3 (aa 269-288) are responsible for their interaction. Immunofluorescence and proximity ligation assays showed that HBx and SMYD3 co-localize predominantly in the cytoplasm. Luciferase reporter assay demonstrated that the interaction between HBx and SMYD3 activates activator protein 1 (AP-1) signaling, but not that of nuclear factor-kappa B (NF-κB). On the other hand, neither overexpression nor knockdown of SMYD3 altered production of HBV transcripts and HBV surface antigen (HBsAg). In conclusion, a novel HBx-interacting protein, SMYD3, was identified, leading to proposal of a novel mechanism of AP-1 activation in HBV-infected cells. PMID:26616333

  1. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein

    PubMed Central

    Robinson, Lloyd S.; Ashman, Elisabeth M.; Hultgren, Scott J.; Chapman, Matthew R.

    2010-01-01

    Summary Produced by many Enterobacteriaceae spp., curli are biologically important amyloid fibres that have been associated with biofilm formation, host cell adhesion and invasion, and immune system activation. CsgA is the major fibre subunit and CsgE, CsgF and CsgG are non-structural proteins involved in curli biogenesis. We have characterized the role of CsgG in curli subunit secretion across the outer membrane. Directed mutagenesis of CsgG confirmed that its activity is dependent on localization to the outer membrane. Rotary Shadow electron microscopy of purified CsgG suggested that this protein assembles into an oligomeric complex with an apparent central pore. Oligomeric CsgG complexes were confirmed using co-purification experiments. Antibiotic sensitivity assays demonstrated that overexpression of CsgG rendered Escherichia coli susceptible to the antibiotic erythromycin. A 22-amino-acid sequence at the N-terminus of CsgA was sufficient to direct heterologous proteins to the CsgG secretion apparatus. Finally, we determined that CsgG participates in an outer membrane complex with two other curli assembly proteins, CsgE and CsgF. PMID:16420357

  2. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A

    PubMed Central

    Kim, Nari; Kim, Min-Jung; Sung, Pil Soo; Bae, Yong Chul; Shin, Eui-Cheol; Yoo, Joo-Yeon

    2016-01-01

    Hepatitis C virus (HCV) utilizes autophagy to promote its propagation. Here we show the autophagy-mediated suppression of HCV replication via the endoplasmic reticulum (ER) protein SCOTIN. SCOTIN overexpression inhibits HCV replication and infectious virion production in cells infected with cell culture-derived HCV. HCV nonstructural 5A (NS5A) protein, which is a critical factor for HCV RNA replication, interacts with the IFN-β-inducible protein SCOTIN, which transports NS5A to autophagosomes for degradation. Furthermore, the suppressive effect of SCOTIN on HCV replication is impaired in both ATG7-silenced cells and cells treated with autophagy or lysosomal inhibitors. SCOTIN does not affect the overall flow of autophagy; however, it is a substrate for autophagic degradation. The physical association between the transmembrane/proline-rich domain (TMPRD) of SCOTIN and Domain-II of NS5A is essential for autophagosomal trafficking and NS5A degradation. Altogether, our findings suggest that IFN-β-induced SCOTIN recruits the HCV NS5A protein to autophagosomes for degradation, thereby restricting HCV replication. PMID:26868272

  3. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  4. Host Restrictions of Avian Influenza Viruses: In Silico Analysis of H13 and H16 Specific Signatures in the Internal Proteins

    PubMed Central

    Tønnessen, Ragnhild; Hauge, Anna G.; Hansen, Elisabeth F.; Rimstad, Espen; Jonassen, Christine M.

    2013-01-01

    Gulls are the primary hosts of H13 and H16 avian influenza viruses (AIVs). The molecular basis for this host restriction is only partially understood. In this study, amino acid sequences from Eurasian gull H13 and H16 AIVs and Eurasian AIVs (non H13 and H16) were compared to determine if specific signatures are present only in the internal proteins of H13 and H16 AIVs, using a bioinformatics approach. Amino acids identified in an initial analysis performed on 15 selected sequences were checked against a comprehensive set of AIV sequences retrieved from Genbank to verify them as H13 and H16 specific signatures. Analysis of protein similarities and prediction of subcellular localization signals were performed to search for possible functions associated with the confirmed signatures. H13 and H16 AIV specific signatures were found in all the internal proteins examined, but most were found in the non-structural protein 1 (NS1) and in the nucleoprotein. A putative functional signature was predicted to be present in the nuclear export protein. Moreover, it was predicted that the NS1 of H13 and H16 AIVs lack one of the nuclear localization signals present in NS1 of other AIV subtypes. These findings suggest that the signatures found in the internal proteins of H13 and H16 viruses are possibly related to host restriction. PMID:23646204

  5. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  6. Protein assay structured on paper by using lithography

    NASA Astrophysics Data System (ADS)

    Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.

    2015-03-01

    There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.

  7. Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein.

    PubMed

    Cordek, Daniel G; Croom-Perez, Tayler J; Hwang, Jungwook; Hargittai, Michele R S; Subba-Reddy, Chennareddy V; Han, Qingxia; Lodeiro, Maria Fernanda; Ning, Gang; McCrory, Thomas S; Arnold, Jamie J; Koc, Hasan; Lindenbach, Brett D; Showalter, Scott A; Cameron, Craig E

    2014-08-29

    The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome. PMID:25031324

  8. 78 FR 9399 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... nonstructural gene region, where foreign genes can be expressed as a fusion protein with the nonstructural... stimulate protective immunity, requires a cold chain for storage, and in many cases has been associated...

  9. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  10. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  11. Membrane Requirements for Uridylylation of the Poliovirus VPg Protein and Viral RNA Synthesis In Vitro

    PubMed Central

    Fogg, Mark H.; Teterina, Natalya L.; Ehrenfeld, Ellie

    2003-01-01

    Efficient translation of poliovirus (PV) RNA in uninfected HeLa cell extracts generates all of the viral proteins required to carry out viral RNA replication and encapsidation and to produce infectious virus in vitro. In infected cells, viral RNA replication occurs in ribonucleoprotein complexes associated with clusters of vesicles that are formed from preexisting intracellular organelles, which serve as a scaffold for the viral RNA replication complex. In this study, we have examined the role of membranes in viral RNA replication in vitro. Electron microscopic and biochemical examination of extracts actively engaged in viral RNA replication failed to reveal a significant increase in vesicular membrane structures or the protective aggregation of vesicles observed in PV-infected cells. Viral, nonstructural replication proteins, however, bind to heterogeneous membrane fragments in the extract. Treatment of the extracts with nonionic detergents, a membrane-altering inhibitor of fatty acid synthesis (cerulenin), or an inhibitor of intracellular membrane trafficking (brefeldin A) prevents the formation of active replication complexes in vitro, under conditions in which polyprotein synthesis and processing occur normally. Under all three of these conditions, synthesis of uridylylated VPg to form the primer for initiation of viral RNA synthesis, as well as subsequent viral RNA replication, was inhibited. Thus, although organized membranous structures morphologically similar to the vesicles observed in infected cells do not appear to form in vitro, intact membranes are required for viral RNA synthesis, including the first step of forming the uridylylated VPg primer for RNA chain elongation. PMID:14557626

  12. Structural Basis for dsRNA Recognition by NS1 Protein of Influenza A Virus

    SciTech Connect

    Cheng, A.; Wong, S; Yuan, Y

    2009-01-01

    Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.

  13. Bioengineered vaults: self-assembling protein shell-lipophilic core nanoparticles for drug delivery.

    PubMed

    Buehler, Daniel C; Marsden, Matthew D; Shen, Sean; Toso, Daniel B; Wu, Xiaomeng; Loo, Joseph A; Zhou, Z Hong; Kickhoefer, Valerie A; Wender, Paul A; Zack, Jerome A; Rome, Leonard H

    2014-08-26

    We report a novel approach to a new class of bioengineered, monodispersed, self-assembling vault nanoparticles consisting of a protein shell exterior with a lipophilic core interior designed for drug and probe delivery. Recombinant vaults were engineered to contain a small amphipathic α-helix derived from the nonstructural protein 5A of hepatitis C virus, thereby creating within the vault lumen a lipophilic microenvironment into which lipophilic compounds could be reversibly encapsulated. Multiple types of electron microscopy showed that attachment of this peptide resulted in larger than expected additional mass internalized within the vault lumen attributable to incorporation of host lipid membrane constituents spanning the vault waist (>35 nm). These bioengineered lipophilic vaults reversibly associate with a sample set of therapeutic compounds, including all-trans retinoic acid, amphotericin B, and bryostatin 1, incorporating hundreds to thousands of drug molecules per vault nanoparticle. Bryostatin 1 is of particular therapeutic interest because of its ability to potently induce expression of latent HIV, thus representing a preclinical lead in efforts to eradicate HIV/AIDS. Vaults loaded with bryostatin 1 released free drug, resulting in activation of HIV from provirus latency in vitro and induction of CD69 biomarker expression following intravenous injection into mice. The ability to preferentially and reversibly encapsulate lipophilic compounds into these novel bioengineered vault nanoparticles greatly advances their potential use as drug delivery systems. PMID:25061969

  14. Bioengineered Vaults: Self-Assembling Protein Shell–Lipophilic Core Nanoparticles for Drug Delivery

    PubMed Central

    2015-01-01

    We report a novel approach to a new class of bioengineered, monodispersed, self-assembling vault nanoparticles consisting of a protein shell exterior with a lipophilic core interior designed for drug and probe delivery. Recombinant vaults were engineered to contain a small amphipathic α-helix derived from the nonstructural protein 5A of hepatitis C virus, thereby creating within the vault lumen a lipophilic microenvironment into which lipophilic compounds could be reversibly encapsulated. Multiple types of electron microscopy showed that attachment of this peptide resulted in larger than expected additional mass internalized within the vault lumen attributable to incorporation of host lipid membrane constituents spanning the vault waist (>35 nm). These bioengineered lipophilic vaults reversibly associate with a sample set of therapeutic compounds, including all-trans retinoic acid, amphotericin B, and bryostatin 1, incorporating hundreds to thousands of drug molecules per vault nanoparticle. Bryostatin 1 is of particular therapeutic interest because of its ability to potently induce expression of latent HIV, thus representing a preclinical lead in efforts to eradicate HIV/AIDS. Vaults loaded with bryostatin 1 released free drug, resulting in activation of HIV from provirus latency in vitro and induction of CD69 biomarker expression following intravenous injection into mice. The ability to preferentially and reversibly encapsulate lipophilic compounds into these novel bioengineered vault nanoparticles greatly advances their potential use as drug delivery systems. PMID:25061969

  15. ICP35 Is a TREX-Like Protein Identified in White Spot Syndrome Virus

    PubMed Central

    Phairoh, Panapat; Suthibatpong, Thana; Rattanarojpong, Triwit; Jongruja, Nujarin; Senapin, Saengchan; Choowongkomon, Kiattawee; Khunrae, Pongsak

    2016-01-01

    ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity. PMID:27348862

  16. Induction of a Protective Response in Mice by the Dengue Virus NS3 Protein Using DNA Vaccines

    PubMed Central

    Costa, Simone M.; Yorio, Anna Paula; Gonçalves, Antônio J. S.; Vidale, Mariana M.; Costa, Emmerson C. B.; Mohana-Borges, Ronaldo; Motta, Marcia A.; Freire, Marcos S.; Alves, Ada M. B.

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection. PMID:22031819

  17. A Crystal Structure of the Dengue Virus NS5 Protein Reveals a Novel Inter-domain Interface Essential for Protein Flexibility and Virus Replication

    PubMed Central

    Zhao, Yongqian; Soh, Tingjin Sherryl; Zheng, Jie; Chan, Kitti Wing Ki; Phoo, Wint Wint; Lee, Chin Chin; Tay, Moon Y. F.; Swaminathan, Kunchithapadam; Cornvik, Tobias C.; Lim, Siew Pheng; Shi, Pei-Yong; Lescar, Julien; Vasudevan, Subhash G.; Luo, Dahai

    2015-01-01

    Flavivirus RNA replication occurs within a replication complex (RC) that assembles on ER membranes and comprises both non-structural (NS) viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent-RNA polymerase (RdRp) domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3) at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV), the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5. PMID:25775415

  18. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies

    PubMed Central

    Baker, Steven F.; Perez, Daniel R.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection. PMID:26809059

  19. Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway

    PubMed Central

    Joubert, Pierre-Emmanuel; Stapleford, Kenneth; Guivel-Benhassine, Florence; Vignuzzi, Marco; Schwartz, Olivier; Albert, Matthew L.

    2015-01-01

    Chikungunya virus (CHIKV), the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell’s cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K) and MAP kinase-activated protein kinase (MnKs) activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition. PMID:26317997

  20. Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway.

    PubMed

    Joubert, Pierre-Emmanuel; Stapleford, Kenneth; Guivel-Benhassine, Florence; Vignuzzi, Marco; Schwartz, Olivier; Albert, Matthew L

    2015-08-01

    Chikungunya virus (CHIKV), the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell's cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K) and MAP kinase-activated protein kinase (MnKs) activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition. PMID:26317997

  1. Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphorylation

    PubMed Central

    2013-01-01

    Chikungunya (CHIKV) and Sindbis (SINV) are arboviruses belonging to the alphavirus genus within the Togaviridae family. They cause frequent epidemics of febrile illness and long-term arthralgic sequelae that affect millions of people each year. Both viruses replicate prodigiously in infected patients and in vitro in mammalian cells, suggesting some level of control over the host cellular translational machinery that senses and appropriately directs the cell’s fate through the unfolded protein response (UPR). The mammalian UPR involves BIP (or GRP78), the master sensor in the endoplasmic reticulum (ER) together with the three downstream effector branches: inositol-requiring ser/thr protein kinase/endonuclease (IRE-1), PKR-like ER resident kinase (PERK) and activating transcription factor 6 (ATF-6). Through careful analysis of CHIKV and SINV infections in cell culture we found that the former selectively activates ATF-6 and IRE-1 branches of UPR and suppresses the PERK pathway. By separately expressing each of the CHIKV proteins as GFP-fusion proteins, we found that non-structural protein 4 (nsP4), which is a RNA-dependent-RNA polymerase, suppresses the serine-51 phosphorylation of eukaryotic translation initiation factor, alpha subunit (eIF2α), which in turn regulates the PERK pathway. This study provides insight into a mechanism by which CHIKV replication responds to overcome the host UPR machinery. PMID:23356742

  2. A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo.

    PubMed

    Arribillaga, Laura; Durantez, Maika; Lozano, Teresa; Rudilla, Francesc; Rehberger, Federico; Casares, Noelia; Villanueva, Lorea; Martinez, Marta; Gorraiz, Marta; Borrás-Cuesta, Francisco; Sarobe, Pablo; Prieto, Jesús; Lasarte, Juan José

    2013-01-01

    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10(-14) mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF- κβ by TLR4-expressing cells, as well as the production of TNF- α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer. PMID:24093105

  3. A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell Responses In Vivo

    PubMed Central

    Durantez, Maika; Lozano, Teresa; Rudilla, Francesc; Rehberger, Federico; Casares, Noelia; Villanueva, Lorea; Martinez, Marta; Gorraiz, Marta; Borrás-Cuesta, Francisco; Sarobe, Pablo; Prieto, Jesús; Lasarte, Juan José

    2013-01-01

    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer. PMID:24093105

  4. Production of HIV Particles Is Regulated by Altering Sub-Cellular Localization and Dynamics of Rev Induced by Double-Strand RNA Binding Protein

    PubMed Central

    Urcuqui-Inchima, Silvio; Patiño, Claudia; Zapata, Ximena; García, María Patricia; Arteaga, José; Chamot, Christophe; Kumar, Ajit; Hernandez-Verdun, Danièle

    2011-01-01

    Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication. PMID:21364984

  5. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/. PMID:26935399

  6. Phylogenetic and 2D/3D Analysis of HCV 1a NS4A Gene/Protein in Pakistani Isolates

    PubMed Central

    Hussain, Abrar; Idrees, Muhammad; Asif, Muhammad; Ali, Liaqat; Rasool, Mahmood

    2015-01-01

    Background: The nonstructural protein NS4A of hepatitis C virus is composed of 54 amino acids. This small size protein has vital role in many cellular functions. The most important reported function is being a cofactor of viral enzymes serine protease and helicase. Objectives: The objective of this study was to analyze the phylogenetic variation, its impact in terms of translation and any functional change in protein structure at primary 2D/3D structure using computational tools from Pakistani patients isolates. Materials and Methods: Patient sera infected with Hepatitis C virus, genotype 1A, were obtained from Molecular Diagnostics lab, CEMB, University of the Punjab Lahore by using BD Vacutainer collection tubes (Becton Dickenson). Results: Phylogenetic analysis of the gene revealed that Pakistani 1a HCV strains are in the start of third cluster and there is a difference between inter Pakistani isolates at primary, secondary and tertiary levels. Conclusions: Mutations were present in the central domain of NS4A (amino acids 21 - 34). PMID:26288631

  7. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    SciTech Connect

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  8. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution.

    PubMed

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M; Vasudevan, Subhash G; Grüber, Gerhard

    2015-11-01

    Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase-RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented. PMID:26527147

  9. Development of an Insect Vector Cell Culture and RNA Interference System To Investigate the Functional Role of Fijivirus Replication Protein

    PubMed Central

    Jia, Dongsheng; Chen, Hongyan; Zheng, Ailing; Chen, Qian; Liu, Qifei; Xie, Lianhui

    2012-01-01

    An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins. PMID:22398296

  10. Mosquito Protein Kinase G Phosphorylates Flavivirus NS5 and Alters Flight Behavior in Aedes aegypti and Anopheles gambiae

    PubMed Central

    Keating, Julie A.; Bhattacharya, Dipankar; Rund, Samuel S.C.; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J.; Duffield, Giles E.

    2013-01-01

    Abstract Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976

  11. FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication.

    PubMed

    Li, Helin; Zhang, Chengcheng; Cui, Hongjie; Guo, Kangkang; Wang, Fang; Zhao, Tianyue; Liang, Wulong; Lv, Qizhuang; Zhang, Yanming

    2016-02-01

    The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling and host cellular responses via to its ability to interact with various cellular proteins. FKBP8 is also reported to promote virus replication. Here, we show that NS5A specifically interacts with FKBP8 through coimmunoprecipitation and GST-pulldown studies. Additionally, confocal microscopy study showed that NS5A and FKBP8 colocalized in the cytoplasm. Overexpression of FKBP8 via the eukaryotic expression plasmid pDsRED N1 significantly promoted viral RNA synthesis. The cells knockdown of FKBP8 by lentivirus-mediated shRNA markedly decreased the virus replication when infected with CSFV. These data suggest that FKBP8 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of FKBP8 protein functions may be beneficial for developing new strategies to treat CSFV infection. PMID:26748656

  12. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice

    PubMed Central

    Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M.; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong

    2016-01-01

    mutations in the Gc glycoprotein can restore the pathogenicity of attenuated mutants resulting from deletions or mutations in the nonstructural protein NSs. Our findings highlight the fact that careful consideration should be taken when designing live attenuated vaccines based on deletions of nonstructural proteins since single mutations in the viral glycoproteins appear to revert attenuated mutants to virulent phenotypes. PMID:26984728

  13. Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease.

    PubMed

    Sun, Chengqun; Gardner, Christina L; Watson, Alan M; Ryman, Kate D; Klimstra, William B

    2014-02-01

    Engineered alphavirus vectors expressing reporters of infection have been used for a number of years due to their relatively low costs for analysis of virus replication and the capacity to utilize imaging systems for longitudinal measurements of growth within single animals. In general, these vectors have been derived from Old World alphaviruses using a second viral subgenomic promoter to express the transgenes, placed either immediately after the nonstructural proteins or at the 3' end of the viral coding sequences. However, the relevance of these vectors to natural infections is questionable, as they have not been rigorously tested for virulence in vivo in comparison with parental viruses or for the retention of the reporter during replication. Here, we report construction of new expression vectors for two Old World arthritogenic alphaviruses (Sindbis and Chikungunya viruses) and two New World encephalitic alphaviruses (eastern and Venezuelan equine encephalitis viruses) based upon either fusion of the reporter protein in frame within nonstructural protein 3 (nsP3) or insertion of the reporter as a cleavable element between the capsid and PE2 structural proteins. We have compared these with a traditional 3' double subgenomic promoter virus expressing either a large, firefly luciferase (fLuc; 1,650 nucleotides), or small, NanoLuc (nLuc; 513 nucleotides), luminescent reporter protein. Results indicate that the nLuc is substantially more stable than fLuc during repeated rounds of infection regardless of the transgene location. However, the capsid-PE2 insertion and nsP3 fusion viruses exhibit the most authentic mimicking of parental virus infection regardless of expressed protein. IMPORTANCE As more antiviral therapeutics and vaccines are developed, rapid and accurate in vivo modeling of their efficacy will be required. However, current alphavirus vectors expressing reporters of infection have not been extensively tested for accurate mimicking of the infection

  14. The Replacement of 10 Non-Conserved Residues in the Core Protein of JFH-1 Hepatitis C Virus Improves Its Assembly and Secretion

    PubMed Central

    Etienne, Loïc; Blanchard, Emmanuelle; Boyer, Audrey; Desvignes, Virginie; Gaillard, Julien; Meunier, Jean-Christophe; Roingeard, Philippe; Hourioux, Christophe

    2015-01-01

    Hepatitis C virus (HCV) assembly is still poorly understood. It is thought that trafficking of the HCV core protein to the lipid droplet (LD) surface is essential for its multimerization and association with newly synthesized HCV RNA to form the viral nucleocapsid. We carried out a mapping analysis of several complete HCV genomes of all genotypes, and found that the genotype 2 JFH-1 core protein contained 10 residues different from those of other genotypes. The replacement of these 10 residues of the JFH-1 strain sequence with the most conserved residues deduced from sequence alignments greatly increased virus production. Confocal microscopy of the modified JFH-1 strain in cell culture showed that the mutated JFH-1 core protein, C10M, was present mostly at the endoplasmic reticulum (ER) membrane, but not at the surface of the LDs, even though its trafficking to these organelles was possible. The non-structural 5A protein of HCV was also redirected to ER membranes and colocalized with the C10M core protein. Using a Semliki forest virus vector to overproduce core protein, we demonstrated that the C10M core protein was able to form HCV-like particles, unlike the native JFH-1 core protein. Thus, the substitution of a few selected residues in the JFH-1 core protein modified the subcellular distribution and assembly properties of the protein. These findings suggest that the early steps of HCV assembly occur at the ER membrane rather than at the LD surface. The C10M-JFH-1 strain will be a valuable tool for further studies of HCV morphogenesis. PMID:26339783

  15. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    PubMed Central

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we

  16. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  17. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    SciTech Connect

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-05-10

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV ({approx} 5 log) and VSV ({approx} 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells.

  18. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins.

    PubMed

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, C T; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66(th),67(th) isoleucine and 101(st),102(nd) leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  19. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence.

    PubMed

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R; Kehn-Hall, Kylene; Omichinski, James G

    2015-05-12

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH. PMID:25918396

  20. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence

    PubMed Central

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R.; Kehn-Hall, Kylene; Omichinski, James G.

    2015-01-01

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH. PMID:25918396

  1. In-depth proteomic analysis of Varroa destructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite.

    PubMed

    Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor

    2015-01-01

    We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed. PMID:26358842

  2. In-depth proteomic analysis of Varroa destructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite

    PubMed Central

    Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor

    2015-01-01

    We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed. PMID:26358842

  3. Characterization of specific antigenic epitopes and the nuclear export signal of the Porcine circovirus 2 ORF3 protein.

    PubMed

    Gu, Jinyan; Wang, Lun; Jin, Yulan; Lin, Cui; Wang, Huijuan; Zhou, Niu; Xing, Gang; Liao, Min; Zhou, Jiyong

    2016-02-29

    Porcine circovirus 2 (PCV2) is the etiological agent of postweaning multisystemic wasting syndrome. PCV2 ORF3 protein is a nonstructural protein known to induce apoptosis, but little is known about the biological function of ORF3 protein. Therefore, we undertook this study to map ORF3 protein epitopes recognized by a panel of monoclonal antibodies (mAbs) and to characterize putative nuclear localization (NLS) and nuclear export (NES) sequences in ORF3. The linear epitopes targeted by two previously published mAbs 3B1 and 1H3 and a novel mouse mAb 3C3 were defined using overlapping pools of peptides. Here, we find that ORF3 in PCV2 infected cells contains a conformational epitope targeted by the antibody 3C3, which is distinct from linear epitopes recognized by the antibodies 3B1 and 1H3 in recombinant ORF3 protein. These results suggest that the linear epitope recognized by 3B1 and 1H3 is masked in PCV2 infected cells, and that the conformational epitope is unique to PCV2 infection. Furthermore, we find that ORF3 protein expressed in cytoplasm in early stages of PCV2 infection and then accumulated in nucleus over time. Moreover, we localize a NES at the N-terminus (residues 1-35aa) of ORF3 which plays critical role in nuclear export activity. These findings provide a novel insight that deepens our understanding of the biological function of PCV2 ORF3. PMID:26854343

  4. Mutations That Hamper Dimerization of Foot-and-Mouth Disease Virus 3A Protein Are Detrimental for Infectivity

    PubMed Central

    González-Magaldi, Mónica; Postigo, Raúl; de la Torre, Beatriz G.; Vieira, Yuri A.; Rodríguez-Pulido, Miguel; López-Viñas, Eduardo; Gómez-Puertas, Paulino; Andreu, David; Kremer, Leonor; Rosas, María F.

    2012-01-01

    Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, virulence, and host range. In other picornaviruses, homodimerization of 3A has been shown to be relevant for its biological activity. In this work, FMDV 3A homodimerization was evidenced by an in situ protein fluorescent ligation assay. A molecular model of the FMDV 3A protein, derived from the nuclear magnetic resonance (NMR) structure of the poliovirus 3A protein, predicted a hydrophobic interface spanning residues 25 to 44 as the main determinant for 3A dimerization. Replacements L38E and L41E, involving charge acquisition at residues predicted to contribute to the hydrophobic interface, reduced the dimerization signal in the protein ligation assay and prevented the detection of dimer/multimer species in both transiently expressed 3A proteins and in synthetic peptides reproducing the N terminus of 3A. These replacements also led to production of infective viruses that replaced the acidic residues introduced (E) by nonpolar amino acids, indicating that preservation of the hydrophobic interface is essential for virus replication. Replacements that favored (Q44R) or impaired (Q44D) the polar interactions predicted between residues Q44 and D32 did not abolish dimer formation of transiently expressed 3A, indicating that these interactions are not critical for 3A dimerization. Nevertheless, while Q44R led to recovery of viruses that maintained the mutation, Q44D resulted in selection of infective viruses with substitution D44E with acidic charge but with structural features similar to those of the parental virus, suggesting that Q44 is involved in functions other than 3A dimerization. PMID:22787230

  5. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  6. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug d