Science.gov

Sample records for artificial intelligence technologies

  1. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  2. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  3. Artificial Intelligence Applications to High-Technology Training.

    ERIC Educational Resources Information Center

    Dede, Christopher

    1987-01-01

    Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…

  4. The Potential Role of Artificial Intelligence Technology in Education.

    ERIC Educational Resources Information Center

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  5. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  6. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are also briefly…

  7. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    SciTech Connect

    Not Available

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry.

  8. Massachusetts Institute of Technology Artificial Intelligence Laboratory Bibliography.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge. Artificial Intelligence Lab.

    Massachusetts Institute of Technology (MIT) presents a bibliography of more than 350 reports, theses, and papers from its artificial intelligence laboratory. Title, author, and identification number are given for all items, and most also have a date and contract number. Some items are no longer available, and others may be obtained from National…

  9. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Linda C.; And Others

    1988-01-01

    A series of articles focuses on artificial intelligence research and development to enhance information systems and services. Topics discussed include knowledge base designs, expert system development tools, natural language processing, expert systems for reference services, and the role that artificial intelligence concepts should have in…

  10. Artificial intelligence

    SciTech Connect

    Firschein, O.

    1984-01-01

    This book presents papers on artificial intelligence. Topics considered include knowledge engineering, expert systems, applications of artificial intelligence to scientific reasoning, planning and problem solving, error recovery in robots through failure reason analysis, programming languages, natural language, speech recognition, map-guided interpretation of remotely-sensed imagery, and image understanding architectures.

  11. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  12. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  13. Using Artificial Intelligence Technology in Failsafe Realtime Systems

    NASA Astrophysics Data System (ADS)

    Nejdl, Wolfgang; Neuhold, Erich J.; Theuretzbacher, Norbert

    1987-04-01

    This paper is concerned with the use of artificial intelligence technology to increase system safety in failsafe realtime systems. A safety module for a failsafe realtime system is specified which uses a production system to implement the necessary security checks. The task of this safety module is to guarantee the safety of the system. To implement the safety module production system the AI language OPS83 is used. A complete prototype for use in the Electronic Interlocking System "ELEKTRA" from ITT-Austria is being built comprising approximately 100 to 200 safety assertions in the form of production rules.

  14. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve. PMID:26957450

  15. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  16. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  17. Artificial intelligence and robotics

    SciTech Connect

    Peden, I.C.; Braddock, J.V.; Brown, W.; Langendorf, R.M.

    1982-09-01

    This report examines the state-of-the-art in artificial intelligence and robotics technologies and their potential in terms of Army needs. Assessment includes battlefield technology, research and technology insertions, management considerations and recommendations related to research and development personnel, and recommendations regarding the Army's involvement in the automated plant.

  18. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  19. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  20. Artificial intelligence within AFSC

    NASA Technical Reports Server (NTRS)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  1. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1989-06-20

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility.

  2. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    NASA Technical Reports Server (NTRS)

    Swanson, David J.

    1990-01-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  3. Keeping Pace with New Technology: An Introduction to Robotics, FORTH, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    Reck, Gene

    A course was developed to introduce students at a community college to four major areas of emphasis in emerging technologies: FORTH programming language, elementary electronic theory, robotics, and artificial intelligence. After a needs assessment indicated the importance of such a course, a pretest focusing on the four areas was given to students…

  4. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  5. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  6. Heidegger and artificial intelligence

    SciTech Connect

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  7. Application of Artificial Intelligence technology to the analysis and synthesis of reliable software systems

    NASA Technical Reports Server (NTRS)

    Wild, Christian; Eckhardt, Dave

    1987-01-01

    The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.

  8. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan.

    PubMed

    Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn

    2015-06-01

    This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics. PMID:26021669

  9. Introduction to artificial intelligence

    SciTech Connect

    Gevarter, W.B.

    1987-09-01

    The author discusses the development of artificial intelligence (AI). He explains the basic elements of AI: Heuristic search, knowledge representation, AI languages and tools, Natural Language Processing, computer vision, expert systems and problem solving and planning.

  10. Artificial Intelligence and Vocational Education: An Impending Confluence.

    ERIC Educational Resources Information Center

    Roth, Gene L.; McEwing, Richard A.

    1986-01-01

    Reports on the relatively new field of artificial intelligence and its relationship to vocational education. Compares human intelligence with artificial intelligence. Discusses expert systems, natural language technology, and current trends. Lists potential applications for vocational education. (CH)

  11. Artificial intelligence in hematology.

    PubMed

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems. PMID:16203606

  12. Applications Of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Trivedi, Mohan M.; Gilmore, John F.

    1986-03-01

    Intelligence evolves out of matter, so said the Sankhya philosophers of ancient India. The discipline of artificial intelligence (Al), which was established some 30 years ago, has confirmed the validity of the above assertion. Recently, a number of AI applications have been successfully demonstrated, generating a great deal of excitement and interest in scientific and technical circles. In this special issue of Optical Engineering a representative set of applications that incorporate Al principles is presented.

  13. Artificial intelligence. Second edition

    SciTech Connect

    Winston, P.H.

    1984-01-01

    This book introduces the basic concepts of the field of artificial intelligence. It contains material covering the latest advances in control, representation, language, vision, and problem solving. Problem solving in design and analysis systems is addressed. Mitcell's version-space learning procedure, Morevec's reduced-images stereo procedure, and the Strips problem solver are covered.

  14. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  15. Applications of artificial intelligence

    SciTech Connect

    Gilmore, J.F.

    1984-01-01

    This book presents papers given at a conference on expert systems and artificial intelligence. Topics considered at the conference included the location of multiple faults by diagnostic expert systems, knowledge-based systems, natural language, image processing, computer vision, and identification systems.

  16. Database in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  17. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  18. Artificial intelligence and the future.

    PubMed

    Clocksin, William F

    2003-08-15

    We consider some of the ideas influencing current artificial-intelligence research and outline an alternative conceptual framework that gives priority to social relationships as a key component and constructor of intelligent behaviour. The framework starts from Weizenbaum's observation that intelligence manifests itself only relative to specific social and cultural contexts. This is in contrast to a prevailing view, which sees intelligence as an abstract capability of the individual mind based on a mechanism for rational thought. The new approach is not based on the conventional idea that the mind is a rational processor of symbolic information, nor does it require the idea that thought is a kind of abstract problem solving with a semantics that is independent of its embodiment. Instead, priority is given to affective and social responses that serve to engage the whole agent in the life of the communities in which it participates. Intelligence is seen not as the deployment of capabilities for problem solving, but as constructed by the continual, ever-changing and unfinished engagement with the social group within the environment. The construction of the identity of the intelligent agent involves the appropriation or 'taking up' of positions within the conversations and narratives in which it participates. Thus, the new approach argues that the intelligent agent is shaped by the meaning ascribed to experience, by its situation in the social matrix, and by practices of self and of relationship into which intelligent life is recruited. This has implications for the technology of the future, as, for example, classic artificial intelligence models such as goal-directed problem solving are seen as special cases of narrative practices instead of as ontological foundations. PMID:12952683

  19. Artificial intelligence technology assessment for the US Army Depot System Command

    SciTech Connect

    Pennock, K A

    1991-07-01

    This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. The report identifies a number of factors that should be considered in such evaluations. 22 refs.

  20. Instructional Applications of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  1. The Use of Video Technology for the Fast-Prototyping of Artificially Intelligent Software.

    ERIC Educational Resources Information Center

    Klein, Gary L.

    This paper describes the use of video to provide a screenplay depiction of a proposed artificial intelligence software system. Advantages of such use are identified: (1) the video can be used to provide a clear conceptualization of the proposed system; (2) it can illustrate abstract technical concepts; (3) it can simulate the functions of the…

  2. In Pursuit of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Watstein, Sarah; Kesselman, Martin

    1986-01-01

    Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…

  3. A Primer on Artificial Intelligence.

    ERIC Educational Resources Information Center

    Leal, Ralph A.

    A survey of literature on recent advances in the field of artificial intelligence provides a comprehensive introduction to this field for the non-technical reader. Important areas covered are: (1) definitions, (2) the brain and thinking, (3) heuristic search, and (4) programing languages used in the research of artificial intelligence. Some…

  4. Artificial Intelligence and Language Comprehension.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC. Basic Skills Group. Learning Div.

    The three papers in this volume concerning artificial intelligence and language comprehension were commissioned by the National Institute of Education to further the understanding of the cognitive processes that enable people to comprehend what they read. The first paper, "Artificial Intelligence and Language Comprehension," by Terry Winograd,…

  5. Artificial Intelligence Applications for Education: Promise, ...Promises.

    ERIC Educational Resources Information Center

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  6. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  7. Improving designer productivity. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  8. Innovative applications of artificial intelligence

    SciTech Connect

    Schorr, H.; Rappaport, A.

    1989-01-01

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  9. Innovative applications of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  10. Artificial intelligence: Principles and applications

    SciTech Connect

    Yazdami, M.

    1985-01-01

    The book covers the principles of AI, the main areas of application, as well as considering some of the social implications. The applications chapters have a common format structured as follows: definition of the topic; approach with conventional computing techniques; why 'intelligence' would provide a better approach; and how AI techniques would be used and the limitations. The contents discussed are: Principles of artificial intelligence; AI programming environments; LISP, list processing and pattern-making; AI programming with POP-11; Computer processing of natural language; Speech synthesis and recognition; Computer vision; Artificial intelligence and robotics; The anatomy of expert systems - Forsyth; Machine learning; Memory models of man and machine; Artificial intelligence and cognitive psychology; Breaking out of the chinese room; Social implications of artificial intelligence; and Index.

  11. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    PubMed

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis. PMID:23366362

  12. Artificial Intelligence and Science Education.

    ERIC Educational Resources Information Center

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  13. Artificial Intelligence and Its Importance in Education.

    ERIC Educational Resources Information Center

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  14. Artificial Intelligence and Information Management

    NASA Astrophysics Data System (ADS)

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  15. Applying artificial intelligence to astronomical databases - A survey of applicable technology

    NASA Technical Reports Server (NTRS)

    Rosenthal, Donald A.

    1988-01-01

    AI technologies which are relevant to astronomical data bases are reviewed, including intelligent interfaces, internal representations, and data analysis. The natural language query system developed for the Hubble Space Telescope and the technique of goal directed queries are considered. Two technologies which might lead to the development of pictorial interfaces are presented: one based on Bayesian probabilities, the other on associative memories. The development of a data analysis system which can discover classes of data within a data base without any information other than the data itself is examined. A prototype data analysis assistant to automatically develop and implement plans for data reduction is described.

  16. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  17. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  18. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  19. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  20. Artificial Intelligence Databases: A Survey and Comparison.

    ERIC Educational Resources Information Center

    Stern, David

    1990-01-01

    Identifies and describes online databases containing references to materials on artificial intelligence, robotics, and expert systems, and compares them in terms of scope and usage. Recommendations for conducting online searches on artificial intelligence and related fields are offered. (CLB)

  1. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1984-01-01

    This book describes the background to AI, explores some characteristic objectives and methods, and indicates some of the practical ramifications for expert, robotic and other types of systems. Following a brief discussion of the nature of intelligence, the recent history of AI is outlined. Characteristic activities of AI systems are explored in Part II. Here it is emphasized that AI systems are not only concerned with ''thought'' but with ''action''-it is an obvious requirement of intelligent commercial and other systems that they behave with competence in a real-world environment. Finally some of the current and future uses of AI systems are explored.

  2. Artificial Intelligence in Education.

    ERIC Educational Resources Information Center

    Ruyle, Kim E.

    Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have a reason…

  3. Thinking, Creativity, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    DeSiano, Michael; DeSiano, Salvatore

    This document provides an introduction to the relationship between the current knowledge of focused and creative thinking and artificial intelligence. A model for stages of focused and creative thinking gives: problem encounter/setting, preparation, concentration/incubation, clarification/generation and evaluation/judgment. While a computer can…

  4. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  5. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  6. Engaging older adults with dementia in creative occupations using artificially intelligent assistive technology.

    PubMed

    Leuty, Valerie; Boger, Jennifer; Young, Laurel; Hoey, Jesse; Mihailidis, Alex

    2013-01-01

    Engagement in creative occupations has been shown to promote well-being for older adults with dementia. Providing access to such occupations is often difficult, as successful participation requires face-time with a person who is knowledgeable in facilitating engagement as well as access to any required resources, such as an arts studio. In response, a computer-based device, the Engaging Platform for Art Development (ePAD), was created to with the aim of enabling more independent access to art creation, ePAD is a an artificially intelligent touch-screen device that estimates a client's level of engagement and provides prompts to encourage engagement if the client becomes disengaged. ePAD is customizable such that an art therapist can choose themes and tools that they feel reflect their client's needs and preferences. This article presents a mixed-methods study that evaluated ePAD's usability by six older adult (with mild-to-moderate dementia) and art therapist dyads. Usability measures suggest that all participants found ePAD engaging but did not find prompts effective. Future development of ePAD includes improving the prompts, implementing the recommendations made by participants in this research, and long-term testing in more naturalistic art therapy contexts. PMID:23923689

  7. Artificial intelligence and simulation

    SciTech Connect

    Holmes, W.M.

    1985-01-01

    The research and development of AI are discussed. Papers are presented on an expert system for chemical process control, an ocean surveillance information fusion expert system, a distributed intelligence system and aircraft pilotage, a procedure for speeding innovation by transferring scientific knowledge more quickly, and syntax programming, expert systems, and real-time fault diagnosis. Consideration is given to an expert system for modeling NASA flight control room usage, simulating aphasia, a method for single neuron recognition of letters, numbers, faces, and certain types of concepts, integrating AI and control system approach, testing an expert system for manufacturing, and the human memory.

  8. Assistive Technology as an artificial intelligence opportunity: Case study of letter-based, head movement driven communication.

    PubMed

    Miksztai-Réthey, Brigitta; Faragó, Kinga Bettina

    2015-01-01

    We studied an artificial intelligent assisted interaction between a computer and a human with severe speech and physical impairments (SSPI). In order to speed up AAC, we extended a former study of typing performance optimization using a framework that included head movement controlled assistive technology and an onscreen writing device. Quantitative and qualitative data were collected and analysed with mathematical methods, manual interpretation and semi-supervised machine video annotation. As the result of our research, in contrast to the former experiment's conclusions, we found that our participant had at least two different typing strategies. To maximize his communication efficiency, a more complex assistive tool is suggested, which takes the different methods into consideration. PMID:26294553

  9. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology. Interim progress report and second year development plan

    SciTech Connect

    Hajek, B.K.; Miller, D.W.

    1989-06-20

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V&V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility.

  10. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  11. Artificial Intelligence--Applications in Education.

    ERIC Educational Resources Information Center

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  12. Artificial Intelligence, Knowledge Extraction and the Study of Human Intelligence.

    ERIC Educational Resources Information Center

    d'Ydewalle, Gery; Delhaye, Patrick

    1988-01-01

    Describes artificial intelligence (AI) as the study of intelligence with the ideas and methods of computation. States that the goal is to make computers more intelligent and thereby uncover the principles that make intelligent behavior possible. Discusses knowledge representations, production (if-then) systems, and expert systems as forms of AI.…

  13. Third Conference on Artificial Intelligence for Space Applications, part 2

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  14. Artificial Intelligence: An Analysis of the Technology for Training. Training and Development Research Center Project Number Fourteen.

    ERIC Educational Resources Information Center

    Sayre, Scott Alan

    The ultimate goal of the science of artificial intelligence (AI) is to establish programs that will use algorithmic computer techniques to imitate the heuristic thought processes of humans. Most AI programs, especially expert systems, organize their knowledge into three specific areas: data storage, a rule set, and a control structure. Limitations…

  15. Epistasis analysis using artificial intelligence.

    PubMed

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data. PMID:25403541

  16. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Duda, R. O.; Fikes, R. E.; Hart, P. E.; Nilsson, N. J.; Thorndyke, P. W.; Wilber, B. M.

    1971-01-01

    Research in the field of artificial intelligence is discussed. The focus of recent work has been the design, implementation, and integration of a completely new system for the control of a robot that plans, learns, and carries out tasks autonomously in a real laboratory environment. The computer implementation of low-level and intermediate-level actions; routines for automated vision; and the planning, generalization, and execution mechanisms are reported. A scenario that demonstrates the approximate capabilities of the current version of the entire robot system is presented.

  17. Economic reasoning and artificial intelligence.

    PubMed

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. PMID:26185245

  18. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  19. Program for Development of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Riley, Gary; Culbert, Chris; Lopez, Frank

    1987-01-01

    C Language Integrated Production System (CLIPS) computer program is shell for developing expert systems. Designed to enable research, development, and delivery of artificial intelligence on conventional computers. Primary design goals for CLIPS are portability, efficiency, and functionality. Meets or out-performs most microcomputer- and minicomputer-based artificial-intelligence tools. Written in C.

  20. Artificial Intelligence in Education: An Exploration.

    ERIC Educational Resources Information Center

    Cumming, Geoff

    1998-01-01

    Gives a brief outline of the development of Artificial Intelligence in Education (AIED) which includes psychology, education, cognitive science, computer science, and artificial intelligence. Highlights include learning environments; learner modeling; a situated approach to learning; and current examples of AIED research. (LRW)

  1. Artificial intelligence in medical diagnosis.

    PubMed

    Szolovits, P; Patil, R S; Schwartz, W B

    1988-01-01

    In an attempt to overcome limitations inherent in conventional computer-aided diagnosis, investigators have created programs that simulate expert human reasoning. Hopes that such a strategy would lead to clinically useful programs have not been fulfilled, but many of the problems impeding creation of effective artificial intelligence programs have been solved. Strategies have been developed to limit the number of hypotheses that a program must consider and to incorporate pathophysiologic reasoning. The latter innovation permits a program to analyze cases in which one disorder influences the presentation of another. Prototypes embodying such reasoning can explain their conclusions in medical terms that can be reviewed by the user. Despite these advances, further major research and developmental efforts will be necessary before expert performance by the computer becomes a reality. PMID:3276267

  2. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  3. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  4. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  5. Artificial intelligence: Learning to see and act

    NASA Astrophysics Data System (ADS)

    Schölkopf, Bernhard

    2015-02-01

    An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529

  6. Artificial Intelligence, Robots and Education: Selected Sources.

    ERIC Educational Resources Information Center

    Kissinger, Pat

    1987-01-01

    This annotated bibliography describes 12 books, 10 ERIC publications, and 7 periodical articles about artificial intelligence and robotics that were selected by the author as resources for educators. (CLB)

  7. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part C: Basic AI topics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Readily understandable overviews of search oriented problem solving, knowledge representation, and computational logic are provided. Mechanization, automation and artificial intelligence are discussed as well as how they interrelate.

  8. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  9. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  10. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  11. The Outline of Personhood Law Regarding Artificial Intelligences and Emulated Human Entities

    NASA Astrophysics Data System (ADS)

    Muzyka, Kamil

    2013-12-01

    On the verge of technological breakthroughs, which define and revolutionize our understanding of intelligence, cognition, and personhood, especially when speaking of artificial intelligences and mind uploads, one must consider the legal implications of granting personhood rights to artificial intelligences or emulated human entities

  12. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  13. A review of European applications of artificial intelligence to space

    NASA Technical Reports Server (NTRS)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  14. Artificial intelligence in a mission operations and satellite test environment

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  15. Artificial intelligence and robot responsibilities: innovating beyond rights.

    PubMed

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity. PMID:24737482

  16. Using a computer-based simulation with an artificial intelligence component and discovery learning to formulate training needs for a new technology

    SciTech Connect

    Hillis, D.R.

    1992-01-01

    A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for a new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.

  17. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  18. Application Of Artificial Intelligence To Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  19. A Primer for Problem Solving Using Artificial Intelligence.

    ERIC Educational Resources Information Center

    Schell, George P.

    1988-01-01

    Reviews the development of artificial intelligence systems and the mechanisms used, including knowledge representation, programing languages, and problem processing systems. Eleven books and 6 journals are listed as sources of information on artificial intelligence. (23 references) (CLB)

  20. Statistical Software and Artificial Intelligence: A Watershed in Applications Programming.

    ERIC Educational Resources Information Center

    Pickett, John C.

    1984-01-01

    AUTOBJ and AUTOBOX are revolutionary software programs which contain the first application of artificial intelligence to statistical procedures used in analysis of time series data. The artificial intelligence included in the programs and program features are discussed. (JN)

  1. Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology

    PubMed Central

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.

    2014-01-01

    Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829

  2. Portable AI Lab for Teaching Artificial Intelligence.

    ERIC Educational Resources Information Center

    Rosner, Michael; Baj, Fabio.

    1993-01-01

    Describes the Portable AI Lab, a computing environment containing artificial intelligence (AI) tools, examples, and documentation for use with university AI courses. Two modules of the lab are highlighted: the automated theorem proving module and the natural language processing module, which includes augmented transition networks. (23 references)…

  3. A Starter's Guide to Artificial Intelligence.

    ERIC Educational Resources Information Center

    McConnell, Barry A.; McConnell, Nancy J.

    1988-01-01

    Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)

  4. Artificial Intelligence: Underlying Assumptions and Basic Objectives.

    ERIC Educational Resources Information Center

    Cercone, Nick; McCalla, Gordon

    1984-01-01

    Presents perspectives on methodological assumptions underlying research efforts in artificial intelligence (AI) and charts activities, motivations, methods, and current status of research in each of the major AI subareas: natural language understanding; computer vision; expert systems; search, problem solving, planning; theorem proving and logic…

  5. Artificial Intelligence. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Rodgers, Kay, Comp.

    Desgined to serve as a guide to resources on artificial intelligence (AI) and expert systems, this Library of Congress bulletin is divided into 18 sections that contain lists of books, journal articles, periodicals, associations, and other sources of information. A brief statement of the scope of the guide introduces the sections, which are listed…

  6. Dynamic Restructuring Of Problems In Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1992-01-01

    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  7. Projective simulation for artificial intelligence

    PubMed Central

    Briegel, Hans J.; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  8. Projective simulation for artificial intelligence.

    PubMed

    Briegel, Hans J; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  9. Projective simulation for artificial intelligence

    NASA Astrophysics Data System (ADS)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  10. Artificial intelligence in medicine: the challenges ahead.

    PubMed Central

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change. PMID:8930853

  11. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  12. Applications of artificial intelligence to scientific research

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  13. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  14. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    ERIC Educational Resources Information Center

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  15. Exodus - Distributed artificial intelligence for Shuttle firing rooms

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1990-01-01

    This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.

  16. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  17. Non-Newtonian Aspects of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  18. Hostile intelligence threat: US technology

    SciTech Connect

    Whitman, D.

    1988-11-01

    This publication outlines the hostile intelligence threat to U.S. industry and Western technology, including the operational capabilities of hostile intelligence services and their scientific and technological (S T) targets. Current intelligence strategies used against the United States are described and sources of information providing countermeasures guidance are listed. Points of contact for security and counterintelligence assistance are also included.

  19. A development framework for distributed artificial intelligence

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  20. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  1. Application of artificial intelligence to robotic vision

    SciTech Connect

    Chao, P.S.; Frick, P.A.

    1983-01-01

    A brief introduction to artificial intelligence (AI) and the general vision process is provided. Two samples of AI researchers' work toward general computer vision are given. The first is a model-based vision system while the second is based on results of studies on human vision. The current state of machine vision in industrial robotics is demonstrated using a well known vision algorithm developed at SRI International. A part of a prototype robotic assembly project with vision is sketched to show the application of some AI tools to practical work. 8 references.

  2. Probabilistic machine learning and artificial intelligence.

    PubMed

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery. PMID:26017444

  3. Probabilistic machine learning and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  4. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  5. Beyond Artificial Intelligence toward Engineered Psychology

    NASA Astrophysics Data System (ADS)

    Bozinovski, Stevo; Bozinovska, Liljana

    This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.

  6. Accelerating artificial intelligence with reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  7. AIonAI: a humanitarian law of artificial intelligence and robotics.

    PubMed

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation. PMID:24414678

  8. Worldwide Intelligent Systems: Approaches to Telecommunications and Network Management. Frontiers in Artificial Intelligence and Applications, Volume 24.

    ERIC Educational Resources Information Center

    Liebowitz, Jay, Ed.; Prerau, David S., Ed.

    This is an international collection of 12 papers addressing artificial intelligence (AI) and knowledge technology applications in telecommunications and network management. It covers the latest and emerging AI technologies as applied to the telecommunications field. The papers are: "The Potential for Knowledge Technology in Telecommunications: A…

  9. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  10. Artificial intelligence. Fears of an AI pioneer.

    PubMed

    Russell, Stuart; Bohannon, John

    2015-07-17

    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity. PMID:26185241

  11. Artificial Intelligence Research Branch future plans

    NASA Technical Reports Server (NTRS)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  12. Digital Intelligence Fostered by Technology

    ERIC Educational Resources Information Center

    Adams, Nan B.

    2004-01-01

    Through interaction with digital technologies for work, play, and communication, the pattern for intellectual development is being altered. The multiple intelligences theoretical framework developed by Gardner (1983) is easily employed to provide evidence that yet another intelligence, digital intelligence, has emerged. In a postmodern pluralistic…

  13. The Potential of Artificial Intelligence in Aids for the Disabled.

    ERIC Educational Resources Information Center

    Boyer, John J.

    The paper explores the possibilities for applying the knowledge of artificial intelligence (AI) research to aids for the disabled. Following a definition of artificial intelligence, the paper reviews areas of basic AI research, such as computer vision, machine learning, and planning and problem solving. Among application areas relevant to the…

  14. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  15. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  16. Challenges in applying artificial intelligence methodologies to military operations

    SciTech Connect

    Arrowood, L.F.; Hilliard, M.R.; Hwang, H.L.; Emrich, M.L.

    1986-01-01

    Artificial intelligence methodologies are being applied to support decision making at all levels of military operations. Applications being studied include assessing force readiness, reliability and capability; planning complex missions; and integrating data from multiple sources. Unclassified research is addressing the considerable challenges presented by supporting such decision making in time-sensitive environments. We examine current efforts to utilize artificial intelligence in the military, discuss difficulties which need to be resolved before intelligent systems can become fully operational, and identify potential applications of artificial intelligence for the Military Airlift Command of the US Air Force.

  17. Artificial symbols and the essence of intelligent computing

    NASA Astrophysics Data System (ADS)

    Magnus, Amy L.; Oxley, Mark E.

    2003-08-01

    A challenge for intelligent computing is translating the skills of innovation into mathematical theory and persistent learning algorithms. Computational intelligence differs from artificial intelligence in that artificial intelligence reasons over symbols while computational intelligence reasons over sub-symbolic data and information. Natural symbos arise from shared human experiences. The creative quality of human interaction suggests symbol generation involves a collection of cooperative agents capable of representing relative experience, negotiating innovation, and---finally---building consensus. As hybrids of sub-symbolic and symbolic reasoning become the norm, it is necessary to formalize the design and evaluation of artificial symbols. In this paper, we delineate the difference between sub-symbolic patterns and symbolic experience. Further, we propose fundamental theory supporting the autonomous construction of artificial symbols which---we assert---is the ultimate culmination of an intelligent computation. We apply this theory to model selection among neural networks.

  18. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  19. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  20. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  1. Robustness in Nature as a Design Principle for Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Schuster, Alfons

    Robustness is a feature in many systems, natural and artificial alike. This chapter investigates robustness from a variety of perspectives including its appearances in nature and its application in modern environments. A particular focus investigates the relevance and importance of robustness in a discipline where many techniques are inspired by problem-solving strategies found in nature—artificial intelligence. The challenging field of artificial intelligence provides an opportunity to engage in a wider discussion on the subject of robustness.

  2. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society. PMID:26799903

  3. Artificial Intelligence Software Engineering (AISE) model

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  4. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  5. Artificial intelligence in the materials processing laboratory

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  6. Artificial intelligence techniques for embryo and oocyte classification.

    PubMed

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology

  7. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  8. Amplify scientific discovery with artificial intelligence

    SciTech Connect

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  9. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    PubMed

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry

  10. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  11. Automation of neutral beam source conditioning with artificial intelligence techniques

    SciTech Connect

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance.

  12. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  13. Applications of artificial intelligence to mission planning

    NASA Technical Reports Server (NTRS)

    Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.

    1990-01-01

    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.

  14. Vibration energy harvester optimization using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.

    2011-06-01

    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  15. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  16. Artificial Intelligence, Language and the Study of Knowledge.

    ERIC Educational Resources Information Center

    Goldstein, Ira; And Others

    This paper studies the relationship of artificial intelligence (AI) to the study of language and the representation of the underlying knowledge that supports the comprehension process. It develops the view that intelligence is based on the ability to use large amounts of diverse kinds of knowledge in procedural ways, rather than on the possession…

  17. Implementing Artificial Intelligence Behaviors in a Virtual World

    NASA Technical Reports Server (NTRS)

    Krisler, Brian; Thome, Michael

    2012-01-01

    In this paper, we will present a look at the current state of the art in human-computer interface technologies, including intelligent interactive agents, natural speech interaction and gestural based interfaces. We describe our use of these technologies to implement a cost effective, immersive experience on a public region in Second Life. We provision our Artificial Agents as a German Shepherd Dog avatar with an external rules engine controlling the behavior and movement. To interact with the avatar, we implemented a natural language and gesture system allowing the human avatars to use speech and physical gestures rather than interacting via a keyboard and mouse. The result is a system that allows multiple humans to interact naturally with AI avatars by playing games such as fetch with a flying disk and even practicing obedience exercises using voice and gesture, a natural seeming day in the park.

  18. The Roles of Artificial Intelligence in Education: Current Progress and Future Prospects

    ERIC Educational Resources Information Center

    McArthur, David; Lewis, Matthew; Bishary, Miriam

    2005-01-01

    This report begins by summarizing current applications of ideas from artificial intelligence (Al) to education. It then uses that summary to project various future applications of Al--and advanced technology in general--to education, as well as highlighting problems that will confront the wide­ scale implementation of these technologies in the…

  19. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  20. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  1. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  2. Artificial intelligence for multi-mission planetary operations

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  3. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  4. Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh

    1991-01-01

    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments.

  5. Biologically inspired technologies using artificial muscles

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2005-01-01

    After billions of years of evolution, nature developed inventions that work, which are appropriate for the intended tasks and that last. The evolution of nature led to the introduction of highly effective and power efficient biological mechanisms that are scalable from micron to many meters in size. Imitating these mechanisms offers enormous potentials for the improvement of our life and the tools we use. Humans have always made efforts to imitate nature and we are increasingly reaching levels of advancement where it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. Some of the biomimetic technologies that have emerged include artificial muscles, artificial intelligence, and artificial vision to which significant advances in materials science, mechanics, electronics, and computer science have contributed greatly. One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their operation mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the state-of-the-art and challenges to making artificial muscles and their potential biomimetic applications.

  6. The Coming of Age of Artificial Intelligence in Medicine*

    PubMed Central

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    Summary This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems. PMID:18790621

  7. LOGO Progress Report 1973-1975. Artificial Intelligence Memo Number 356. Revised.

    ERIC Educational Resources Information Center

    Abelson, H.; And Others

    This report outlines the accomplishments of the LOGO project of the Massachusetts Institute of Technology's Artificial Intelligence Laboratory during the period 1973-1975. Three major areas of work are listed: (1) building learning environments, (2) the theory behind the environments, and (3) experimenting with learning environments. Advances in…

  8. Turtle Escapes the Plane: Some Advanced Turtle Geometry. Artificial Intelligence Memo Number 348.

    ERIC Educational Resources Information Center

    diSessa, Andy

    The LOGO Turtles, originally developed at the Massachusetts Institute of Technology Artificial Intelligence Laboratory for teaching concepts in elementary geometry to primary-age children, can also be used in teaching higher-level mathematics. In the exercises described here, the turtle was programed to traverse curved surfaces. Both geometric and…

  9. Bionics: A Step toward Artificial Intelligence Systems

    ERIC Educational Resources Information Center

    Dutton, Robert E.

    1970-01-01

    Recent developments and future prospects in the borrowing of biological principles to build problem solving relationships between human intelligence and the information storage and manipulation capacities of computers. Twenty-one references. (LY)

  10. Fifth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  11. Training Software in Artificial-Intelligence Computing Techniques

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  12. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  13. United States Army Training and Doctrine Command (TRADOC) - artificial intelligence and robotics symposium

    SciTech Connect

    Not Available

    1985-01-01

    Various papers on artificial intelligence and robotics and their applications for the US Army are presented. Topics include US Army robotics development directions; mobile robots for surveillance, reconnaissance, and manipulative missions in hazardous environments; technology development in intelligent machine systems; control of a multi-robot process line using AI; land vehicles; remote control weapons platforms; expert systems for logistic analysis. Also addressed are software architecture for real-time, embedded expert systems; knowledge integrity maintenance; embedding AI systems into command and control; a natural language understanding system for maneuver control; and a design of a generic intelligent trainer.

  14. Artificial intelligence and its impact on combat aircraft

    NASA Technical Reports Server (NTRS)

    Ott, Lawrence M.; Abbot, Kathy; Kleider, Alfred; Moon, D.; Retelle, John

    1987-01-01

    As the threat becomes more sophisticated and weapon systems more complex to meet the threat, the need for machines to assist the pilot in the assessment of information becomes paramount. This is particularly true in real-time, high stress situations. The advent of artificial intelligence (AI) technology offers the opportunity to make quantum advances in the application of machine technology. However, if AI systems are to find their way into combat aircraft, they must meet certain criteria. The systems must be responsive, reliable, easy to use, flexible, and understandable. These criteria are compared with the current status used in a combat airborne application. Current AI systems deal with nonreal time applications and require significant user interaction. On the other hand, aircraft applications require real time, minimum human interaction systems. In order to fill the gap between where technology is now and where it must be for aircraft applications, considerable government research is ongoing in NASA, DARPA, and three services. The ongoing research is briefly summarized. Finally, recognizing that AI technology is in its embryonic stage, and the aircraft needs are very demanding, a number of issues arise. These issues are delineated and findings are provided where appropriate.

  15. Neural networks: A versatile tool from artificial intelligence

    SciTech Connect

    Yama, B.R.; Lineberry, G.T.

    1996-12-31

    Artificial Intelligence research has produced several tools for commercial application in recent years. Artificial Neural Networks (ANNs), Fuzzy Logic, and Expert Systems are some of the techniques that are widely used today in various fields of engineering and business. Among these techniques, ANNs are gaining popularity due to their learning and other brain-like capabilities. Within the mining industry, ANN technology is being utilized with large payoffs for real-time process control applications. In this paper, a brief introduction to ANNs and the associated terminology is given. The neural network development process is outlined, followed by the back-propagation learning algorithm. Next, the development of two multi-layer, feed-forward neural networks is described and the results axe presented. One network is developed for prediction of strength of intact rock specimens, and another network is developed for prediction of mineral concentrations. Preliminary results indicate a predictive error less than 10% using cross-validation on a limited data set. The performance of the neural network for prediction of mineral concentrations was compared with kriging. It was found that the neural network performed not only satisfactorily, but in some cases performed better than, the kriging model.

  16. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  17. Use of artificial intelligence in supervisory control

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron; Erickson, Jon D.

    1989-01-01

    Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.

  18. Artificial evolution: a new path for artificial intelligence?

    PubMed

    Husbands, P; Harvey, I; Cliff, D; Miller, G

    1997-06-01

    Recently there have been a number of proposals for the use of artificial evolution as a radically new approach to the development of control systems for autonomous robots. This paper explains the artificial evolution approach, using work at Sussex to illustrate it. The paper revolves around a case study on the concurrent evolution of control networks and visual sensor morphologies for a mobile robot. Wider intellectual issues surrounding the work are discussed, as is the use of more abstract evolutionary simulations as a new potentially useful tool in theoretical biology. PMID:9209759

  19. Artificial Intelligence and the High School Computer Curriculum.

    ERIC Educational Resources Information Center

    Dillon, Richard W.

    1993-01-01

    Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…

  20. Artificial Intelligence: Themes in the Second Decade. Memo Number 67.

    ERIC Educational Resources Information Center

    Feigenbaum, Edward A.

    The text of an invited address on artificial intelligence (AI) research over the 1963-1968 period is presented. A survey of recent studies on the computer simulation of intellective processes emphasizes developments in heuristic programing, problem-solving and closely related learning models. Progress and problems in these areas are indicated by…

  1. Artificial Intelligence Methods: Challenge in Computer Based Polymer Design

    NASA Astrophysics Data System (ADS)

    Rusu, Teodora; Pinteala, Mariana; Cartwright, Hugh

    2009-08-01

    This paper deals with the use of Artificial Intelligence Methods (AI) in the design of new molecules possessing desired physical, chemical and biological properties. This is an important and difficult problem in the chemical, material and pharmaceutical industries. Traditional methods involve a laborious and expensive trial-and-error procedure, but computer-assisted approaches offer many advantages in the automation of molecular design.

  2. Reflections on the relationship between artificial intelligence and operations research

    NASA Technical Reports Server (NTRS)

    Fox, Mark S.

    1989-01-01

    Historically, part of Artificial Intelligence's (AI's) roots lie in Operations Research (OR). How AI has extended the problem solving paradigm developed in OR is explored. In particular, by examining how scheduling problems are solved using OR and AI, it is demonstrated that AI extends OR's model of problem solving through the opportunistic use of knowledge, problem reformulation and learning.

  3. Ethical Implications of an Experiment in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Levinson, Stephen E.

    2003-01-01

    Revisits the classic debate on whether there can be an artificial creation that behaves and uses language with intelligence and agency. Argues that many moral and spiritual objections to this notion are not grounded either ethically or empirically. (Author/VWL)

  4. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    ERIC Educational Resources Information Center

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  5. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  6. Evolution and Revolution in Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Roll, Ido; Wylie, Ruth

    2016-01-01

    The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the…

  7. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1992-01-01

    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  8. Artificial Intelligence: Is the Future Now for A.I.?

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2009-01-01

    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  9. An Artificial Intelligence-Based Distance Education System: Artimat

    ERIC Educational Resources Information Center

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  10. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  11. Artificial Intelligence Approaches to Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Bregar, William S.; Farley, Arthur M.

    1980-01-01

    Explores how new, operational models of cognition processing developed in Artificial Intelligence (AI) can be applied in computer assisted instruction (CAI) systems. CAI systems are surveyed in terms of their goals and formalisms, and a model for the development of a tutorial CAI system for algebra problem solving is introduced. (Author)

  12. Social Studies and Emerging Paradigms: Artificial Intelligence and Consciousness Education.

    ERIC Educational Resources Information Center

    Braun, Joseph A., Jr.

    1987-01-01

    Asks three questions: (1) Are machines capable of thinking as people do? (2) How is the thinking of computers similar and different from human thinking? and (3) What exactly is thinking? Examines research in artificial intelligence. Describes the theory and research of consciousness education and discusses an emerging paradigm for human thinking…

  13. Artificial Intelligence in ADA: Pattern-Directed Processing. Final Report.

    ERIC Educational Resources Information Center

    Reeker, Larry H.; And Others

    To demonstrate to computer programmers that the programming language Ada provides superior facilities for use in artificial intelligence applications, the three papers included in this report investigate the capabilities that exist within Ada for "pattern-directed" programming. The first paper (Larry H. Reeker, Tulane University) is designed to…

  14. The Seeds of Artificial Intelligence. SUMEX-AIM.

    ERIC Educational Resources Information Center

    Research Resources Information Center, Rockville, MD.

    Written to provide an understanding of the broad base of information on which the artificial intelligence (AI) branch of computer science rests, this publication presents a general view of AI, the concepts from which it evolved, its current abilities, and its promise for research. The focus is on a community of projects that use the SUMEX-AIM…

  15. Second Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas (Compiler)

    1988-01-01

    The proceedings of the conference are presented. This second conference on Artificial Intelligence for Space Applications brings together a diversity of scientific and engineering work and is intended to provide an opportunity for those who employ AI methods in space applications to identify common goals and to discuss issues of general interest in the AI community.

  16. New directions for Artificial Intelligence (AI) methods in optimum design

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1989-01-01

    Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.

  17. Artificial intelligence - New tools for aerospace project managers

    NASA Technical Reports Server (NTRS)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  18. Neuroscientific implications for situated and embodied artificial intelligence

    NASA Astrophysics Data System (ADS)

    Downing, Keith

    2007-03-01

    While classic artificial intelligence systems still struggle to incorporate commonsense knowledge properly, situated and embodied artificial intelligence (SEAI) aims to build animats that acquire a common-sense understanding of the world via interactions between simulated brains, bodies and environments. Neuroscientists believe that much of this common sense involves predictive models for physical activities, but the transfer of sensorimotor skill knowledge to cognition is non-trivial, indicating that SEAI may meet a daunting challenge of its own. This paper considers the neurological bases for implicit procedural and explicit declarative common sense, and the possibilities for its transfer from the former to the latter. This helps assess the prospects for SEAI eventually to surpass GOFAI (good old-fashioned AI) in the quest for generally intelligent systems.

  19. Artificial Life in Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-02-01

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

  20. Artificial Life in Quantum Technologies

    PubMed Central

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-01-01

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies. PMID:26853918

  1. Artificial Intelligence, Education and Music: The Use of Artificial Intelligence To Encourage and Facilitate Music Composition by Novices.

    ERIC Educational Resources Information Center

    Holland, Simon

    The goal of this project was to find ways of using artificial intelligence to encourage and aid music composition by musical novices, particularly those without traditional musical skills. Two complementary approaches are presented. In the first approach, Harmony Space, a new kind of direct manipulation tool for music, is described. Two recent…

  2. Artificial intelligence for space station automation

    SciTech Connect

    Firschein, O.

    1986-01-01

    This book provides guidance on the state of the art of Al-based technology for space station automation. The contents include the following: Al-based Technology; Review; Concept Designs; Analysis of Al Technology Needs; Design for Automation; Teleoperation and Robotics; Sensors; Expert Systems; Planning Space Station Information System; Man-Machine Interface; and Appendix - Technology Transfer to Terrestrial Applications.

  3. Intelligent Mobile Technologies

    NASA Technical Reports Server (NTRS)

    Alena, Rick; Gilbaugh, Bruce; Glass, Brian; Swanson, Keith (Technical Monitor)

    2000-01-01

    Testing involves commercial radio equipment approved for export and use in Canada. Testing was conducted in the Canadian High Arctic, where hilly terrain provided the worst-case testing. SFU and Canadian governmental agencies made significant technical contributions. The only technical data related to radio testing was exchanged with SFU. Test protocols are standard radio tests performed by communication technicians worldwide. The Joint Fields Operations objectives included the following: (1) to provide Internet communications services for field science work and mobile exploration systems; (2) to evaluate the range and throughput of three different medium-range radio link technologies for providing coverage of the crater area; and (3) to demonstrate collaborative software such as NetMeeting with multi-point video for exchange of scientific information between remote node and base-base camp and science centers as part of communications testing.

  4. Learning comunication strategies for distributed artificial intelligence

    NASA Astrophysics Data System (ADS)

    Kinney, Michael; Tsatsoulis, Costas

    1992-08-01

    We present a methodology that allows collections of intelligent system to automatically learn communication strategies, so that they can exchange information and coordinate their problem solving activity. In our methodology communication between agents is determined by the agents themselves, which consider the progress of their individual problem solving activities compared to the communication needs of their surrounding agents. Through learning, communication lines between agents might be established or disconnected, communication frequencies modified, and the system can also react to dynamic changes in the environment that might force agents to cease to exist or to be added. We have established dynamic, quantitative measures of the usefulness of a fact, the cost of a fact, the work load of an agent, and the selfishness of an agent (a measure indicating an agent's preference between transmitting information versus performing individual problem solving), and use these values to adapt the communication between intelligent agents. In this paper we present the theoretical foundations of our work together with experimental results and performance statistics of networks of agents involved in cooperative problem solving activities.

  5. Anti-fatigue optimization design by artificial intelligence strategy

    NASA Astrophysics Data System (ADS)

    Xing, Bin; Yang, Qingxiong

    1991-11-01

    The artificial intelligence strategy is applied to the optimum antifatigue design of structural details. A set of approaches quite different from the traditional mathematical programming method is put forward. By setting up a state space of discrete design variables to which the intelligence search strategy is applied, the integralization of discrete variables can be avoided. An example of optimum antifatigue design for a typical structure detail of aircraft is worked out using the present method. Comparison between the results obtained by this method and those obtained by the mathematical programming method shows that the present method is better. Verification experiments conducted by the author show that the method proposed is feasible and reliable.

  6. Information Processing in Cognition Process and New Artificial Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Nanning; Xue, Jianru

    In this chapter, we discuss, in depth, visual information processing and a new artificial intelligent (AI) system that is based upon cognitive mechanisms. The relationship between a general model of intelligent systems and cognitive mechanisms is described, and in particular we explore visual information processing with selective attention. We also discuss a methodology for studying the new AI system and propose some important basic research issues that have emerged in the intersecting fields of cognitive science and information science. To this end, a new scheme for associative memory and a new architecture for an AI system with attractors of chaos are addressed.

  7. An application of artificial intelligence theory to reconfigurable flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.

    1987-01-01

    Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.

  8. Space Environment Modelling with the Use of Artificial Intelligence Methods

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore

  9. Integrating artificial and human intelligence into tablet production process.

    PubMed

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data. PMID:24970587

  10. Man-made minds: The promise of artificial intelligence

    SciTech Connect

    Waldrop, M.M.

    1987-01-01

    Artificial Intelligence (AI), the art of designing machines that are both omniscient and sensible, has become the crowning challenge of today's information explosion. Physicist/science writer Waldrop explains the prodigious difficulties of endowing computers with the ability to learn, to reason, to understand. He reports on progress (and setbacks) at major AI research centers. Here scientists of many disciplines are beginning to simulate human vision, and they are designing AI programs to supervise ever more sophisticated industrial and communications systems. Underlying all AI research, the author points out, is the quest to understand the processes of human thought - which poses AI's most baffling question: Can a machine ever be made to actually think. At the practical level, AI is likely to give us within the next twenty years computer/robots that will converse in everyday language; provide expert advice on a wide spectrum of personal, professional, and business concerns; and serve as a responsive home tutor or an instant, world-wide librarian. Globally, AI is the ultimate prize in international technological competition. And in its expanding military role, AI, is being called on to supply the infallible mastermind for Star Wars ''defenses'' and other strategic systems.

  11. Artificial Intelligent Controller for a DC Motor

    NASA Astrophysics Data System (ADS)

    Delavari, Hadi; Ranjbar Noiey, Abolzafl; Minagar, Sara

    The Speed and position control of DC motors is addressed in this paper. An optimal intelligent control scheme is proposed for the system. Preliminary a PID controller is designed using Genetic Algorithms (GA). The proposed controller is implemented by using optimal integral state feedback control with GA and Kalman filter. In the proposed scheme, performance depends on choosing weighting matrices Q and R in the cost function, and accordingly GA is used to find these proper weighting matrices. In order to reduce the control performance degradation due to system parameters variation, a Kalman filter is gained. The performance of the proposed technique (ISF) is compared with PID controller. Computer simulation validates the effectiveness of the proposed scheme even in presence of uncertainties.

  12. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  13. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    NASA Astrophysics Data System (ADS)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  14. Solar activity predicted with artificial intelligence

    NASA Astrophysics Data System (ADS)

    Lundstedt, Henrik

    The variability of solar activity has been described as a non-linear chaotic dynamic system. AI methods are therefore especially suitable for modelling and predicting solar activity. Many indicators of the solar activity have been used, such as sunspot numbers, F 10.7 cm solar radio flux, X-ray flux, and magnetic field data. Artificial neural networks have also been used by many authors to predict solar cycle activity. Such predictions will be discussed. A new attempt to predict the solar activity using SOHO/MDI high-time resolution solar magnetic field data is discussed. The purpose of this new attempt is to be able to predict episodic events and to predict occurrence of coronal mass ejections. These predictions will be a part of the Lund Space Weather Model.

  15. Issues in management of artificial intelligence based projects

    NASA Technical Reports Server (NTRS)

    Kiss, P. A.; Freeman, Michael S.

    1988-01-01

    Now that Artificial Intelligence (AI) is gaining acceptance, it is important to examine some of the obstacles that still stand in the way of its progress. Ironically, many of these obstacles are related to management and are aggravated by the very characteristcs that make AI useful. The purpose of this paper is to heighten awareness of management issues in AI development and to focus attention on their resolution.

  16. Experiments with microcomputer-based artificial intelligence environments

    USGS Publications Warehouse

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  17. Potential applications for artificial intelligence in the petroleum industry

    SciTech Connect

    Alegre, L. )

    1991-11-01

    This article clarifies some concepts of artificial intelligence (AI), discusses some of its applications, and demonstrates its potential application in the petroleum industry. AI is divided into two levels: the psychological, where it attempts to represent knowledge explicitly, and the intuitive, where explication of knowledge is not important and the emphasis is on brain architecture. Expert systems, which implement explicit knowledge, are discussed in more detail. A brief discussion of use of AI in Brazil, particularly at Petrobras, is presented.

  18. What can software engineers learn from artificial intelligence

    SciTech Connect

    Tichy, W.R.

    1987-11-01

    The author provides a detailed analysis of artificial intelligence (AI) tools. He discusses only one representative from each class of tools. Each representative selected is state-of-the art, yet pure enough to permit a description of its salient features and established enough to be in use among several groups beyond its original inventors. Despite this apparent bias, the conclusions drawn about a particular tool apply to all members of its class.

  19. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  20. Experiments with microcomputer-based artificial intelligence environments

    SciTech Connect

    Summers, E.G.; MacDonald, R.A.

    1988-11-01

    The US Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the artificial intelligence computer, and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Golf Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming.

  1. Artificial intelligence issues related to automated computing operations

    NASA Technical Reports Server (NTRS)

    Hornfeck, William A.

    1989-01-01

    Large data processing installations represent target systems for effective applications of artificial intelligence (AI) constructs. The system organization of a large data processing facility at the NASA Marshall Space Flight Center is presented. The methodology and the issues which are related to AI application to automated operations within a large-scale computing facility are described. Problems to be addressed and initial goals are outlined.

  2. Future applications of artificial intelligence to Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  3. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  4. Artificial intelligence programming languages for computer aided manufacturing

    NASA Technical Reports Server (NTRS)

    Rieger, C.; Samet, H.; Rosenberg, J.

    1979-01-01

    Eight Artificial Intelligence programming languages (SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL, and QLISP) are presented and surveyed, with examples of their use in an automated shop environment. Control structures are compared, and distinctive features of each language are highlighted. A simple programming task is used to illustrate programs in SAIL, LISP, MICROPLANNER, and CONNIVER. The report assumes reader knowledge of programming concepts, but not necessarily of the languages surveyed.

  5. Artificial intelligence, expert systems, computer vision, and natural language processing

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  6. Analysis of optoelectronic strategic planning in Taiwan by artificial intelligence portfolio tool

    NASA Astrophysics Data System (ADS)

    Chang, Rang-Seng

    1992-05-01

    Taiwan ROC has achieved significant advances in the optoelectronic industry with some Taiwan products ranked high in the world market and technology. Six segmentations of optoelectronic were planned. Each one was divided into several strategic items, design artificial intelligent portfolio tool (AIPT) to analyze the optoelectronic strategic planning in Taiwan. The portfolio is designed to provoke strategic thinking intelligently. This computer- generated strategy should be selected and modified by the individual. Some strategies for the development of the Taiwan optoelectronic industry also are discussed in this paper.

  7. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  8. Northeast Artificial Intelligence Consortium (NAIC). Volume 8. Artificial intelligence applications to speech recognition. Final report, Sep 84-Dec 89

    SciTech Connect

    Rhody, H.; Biles, J.

    1990-12-01

    The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC of the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge based maintenance, hardware architectures for very large systems, knowledge based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the design and implementation of a knowledge-based system to read speech spectrograms.

  9. Artificial intelligence for Space Station automation: crew safety, productivity, autonomy, augmented capability

    SciTech Connect

    Firschein, O.; Georgeff, M.P.; Park, W.; Cheeseman, P.C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) RandD projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an RandD plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface. 293 references.

  10. Artificial intelligence for Space Station automation: Crew safety, productivity, autonomy, augmented capability

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) R&D projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an R&D plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface.

  11. Robotics and artificial intelligence for hazardous environments

    SciTech Connect

    Spelt, P.F.

    1993-04-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics.

  12. Robotics and artificial intelligence for hazardous environments

    SciTech Connect

    Spelt, P.F.

    1993-01-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics.

  13. Hybrid Intelligent Perception System: Intelligent perception through combining Artificial Neural Networks and an Expert System

    SciTech Connect

    Glover, C.W.; Spelt, P.F.

    1990-01-01

    This paper presents a report of work-in-progress on a project to combine Artificial Neural Networks (ANNs) and Expert Systems (ESs) into a hybrid, self-improving pattern recognition system. The purpose of this project is to explore methods of combining multiple classifiers into a Hybrid Intelligent Perception (HIP) System. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. ANNs and ESs have different strengths and weaknesses, which are being exploited in this project in such a way that they are complementary to each other: Strengths in one system make up for weaknesses in the other, and vice versa. There is presently considerable interest in the AI community in ways to exploit the strengths of these methodologies to produce an intelligent system which is more robust and flexible than one using either technology alone. Perception, which involves both data-driven (bottom-up) and concept-driven (top-down) processing, is a process which seems especially well-suited to displaying the capabilities of such a hybrid system. This work has been funded for the past six months by an Oak Ridge National Laboratory seed grant, and most of the system components are operating in both the PC and the hypercube computer environments. Here we report on the efforts to develop the low-level ANNs and a graphic representation of their knowledge, and discuss ways of using an ES to integrate and supervise the entire system. 11 refs., 3 figs.

  14. An intelligent remote monitoring system for artificial heart.

    PubMed

    Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G

    2005-12-01

    A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data. PMID:16379373

  15. An Artificial Intelligence Approach for Gears Diagnostics in AUVs.

    PubMed

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-01-01

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868

  16. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    PubMed Central

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-01-01

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868

  17. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  18. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration

  19. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  20. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  1. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  2. An artificial ecosystem model used in the study of social, economic and technological dynamics: An artificial electrical energy market

    SciTech Connect

    Arjona, D.

    1998-07-01

    This paper will present the artificial ecosystem as a tool, in the development of multi agent models for the simulation of economic and technological dynamics (as well as other possible applications). This tool is based on the mechanics of an artificial society and consists of autonomous artificial agents that interact with individuals that have different characteristics and behavior and other that have a similar conduct to their own. Initial conditions are assumed not to be controllable, however they can be influenced. The importance of the concept of the ecosystem is in understanding great units in the light of their own components which are relevant for the analysis and become interdependent among themselves and with other essential components that hold the total operation of the system. Ideas for the development of a simulation model based on autonomous intelligent agents are presented. These agents will have a brain that is based on artificial intelligence technologies. The Sand Kings Simulation Model, an artificial ecosystem model developed by the author, is described as well as the application of artificial intelligence to this artificial life model. An application to a real life problem is also offered as an artificial energy market that is currently being developed by the author is described.

  3. Artificial intelligence in sports on the example of weight training.

    PubMed

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  4. Artificial Intelligence in Sports on the Example of Weight Training

    PubMed Central

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  5. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.

    PubMed

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-01-01

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164

  6. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms

    PubMed Central

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-01-01

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164

  7. Exploring expressivity and emotion with artificial voice and speech technologies.

    PubMed

    Pauletto, Sandra; Balentine, Bruce; Pidcock, Chris; Jones, Kevin; Bottaci, Leonardo; Aretoulaki, Maria; Wells, Jez; Mundy, Darren P; Balentine, James

    2013-10-01

    Emotion in audio-voice signals, as synthesized by text-to-speech (TTS) technologies, was investigated to formulate a theory of expression for user interface design. Emotional parameters were specified with markup tags, and the resulting audio was further modulated with post-processing techniques. Software was then developed to link a selected TTS synthesizer with an automatic speech recognition (ASR) engine, producing a chatbot that could speak and listen. Using these two artificial voice subsystems, investigators explored both artistic and psychological implications of artificial speech emotion. Goals of the investigation were interdisciplinary, with interest in musical composition, augmentative and alternative communication (AAC), commercial voice announcement applications, human-computer interaction (HCI), and artificial intelligence (AI). The work-in-progress points towards an emerging interdisciplinary ontology for artificial voices. As one study output, HCI tools are proposed for future collaboration. PMID:24024543

  8. Fourth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  9. Artificial Intelligence For A Safer And More Efficient Car Driving

    NASA Astrophysics Data System (ADS)

    Adorni, Giovanni

    1989-03-01

    In this paper a project, PROMETHEUS, is described in which fourteen of Europe's leading car manufacturers are to join with approximately forty research institutes and governmental agencies to make the traffic of Europe safer, more efficient and more economical. PROMETHEUS project is divided into seven areas. In this paper one of the seven areas, PRO-ART, is described. PRO-ART is aimed at clarifying the need for and the principles of the artificial intelligence to be used in the next generation automobile. After a brief description of the overhall project, the description of the seven years PRO-ART Italian research programme will be given.

  10. Artificial intelligence program in a computer application supporting reactor operations

    SciTech Connect

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II.