Science.gov

Sample records for artificial life system

  1. Artificial life and living systems: Insight into artificial life and its implications in life science research

    PubMed Central

    Guruprasad, Sarvothaman; Sekar, Kanagaraj

    2006-01-01

    Advanced technology has made it possible to build machines and systems like robots, which are capable of making intelligent decisions. Robots capable of self-replication and perform human functions are also available. The current challenge is to design evolutionary systems with high complexity comparable to that of biological networks. This is proposed to be achieved by ALife (Artificial Life). Here, we describe the promises provided by ALife for life sciences. PMID:17597875

  2. Controlled Ecological Life Support Systems: Natural and Artificial Ecosystems

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D. (Editor); Thompson, Brad G. (Editor); Tibbitts, Theodore W. (Editor); Volk, Tyler (Editor)

    1989-01-01

    The scientists supported by the NASA sponsored Controlled Ecological Life Support Systems (CELSS) program have played a major role in creating a Committee on Space Research (COSPAR) section devoted to the development of bioregenerative life support for use in space. The series of 22 papers were sponsored by Subcommission F.4. The papers deal with many of the diverse aspects of life support, and with outgrowth technologies that may have commercial applications in fields such as biotechnology and bioengineering. Papers from researchers in France, Canada, Japan and the USSR are also presented.

  3. Monitoring of space station life support systems with miniature mass spectrometry and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Yost, Richard A.; Johnson, Jodie V.; Wong, Carla M.

    1987-01-01

    The combination of quadrupole ion trap tandem mass spectroscopy with artificial intelligence is a promising approach for monitoring the performance of the life support systems in the space station. Such an analytical system can provide the selectivity, sensitivity, speed, small size, and decision making intelligence to detect, identify, and quantify trace toxic compounds which may accumulate in the space station habitat.

  4. Artificial Life in Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-02-01

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

  5. Artificial Life in Quantum Technologies

    PubMed Central

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-01-01

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies. PMID:26853918

  6. Artificial life: The coming evolution

    SciTech Connect

    Farmer, J.D. Santa Fe Inst., NM ); Belin, A.d'A. )

    1990-01-01

    Within fifty to a hundred years a new class of organisms is likely to emerge. These organisms will be artificial in the sense that they will originally be designed by humans. However, they will reproduce, and will evolve into something other than their initial form; they will be alive'' under any reasonable definition of the word. These organisms will evolve in a fundamentally different manner than contemporary biological organisms, since their reproduction will be under at least partial conscious control, giving it a Lamarckian component. The pace of evolutionary change consequently will be extremely rapid. The advent of artificial life will be the most significant historical event since the emergence of human beings. The impact on humanity and the biosphere could be enormous, larger than the industrial revolution, nuclear weapons, or environmental pollution. We must take steps now to shape the emergence of artificial organisms; they have potential to be either the ugliest terrestrial disaster, or the most beautiful creation of humanity. 22 refs., 3 figs.

  7. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  8. Effects of artificial lighting on the detection of plant stress with spectral reflectance remote sensing in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Richards, Jeffrey T.

    2006-09-01

    Plant-based life support systems that utilize bioregenerative technologies have been proposed for long-term human missions to both the Moon and Mars. Bioregenerative life support systems will utilize higher plants to regenerate oxygen, water, and edible biomass for crews, and are likely to significantly lower the ‘equivalent system mass’ of crewed vehicles. As part of an ongoing effort to begin the development of an automatic remote sensing system to monitor plant health in bioregenerative life support modules, we tested the efficacy of seven artificial illumination sources on the remote detection of plant stresses. A cohort of pepper plants (Capsicum annuum L.) were grown 42 days at 25 °C, 70% relative humidity, and 300 μmol m-2 s-1 of photosynthetically active radiation (PAR; from 400 to 700 nm). Plants were grown under nutritional stresses induced by irrigating subsets of the plants with 100, 50, 25, or 10% of a standard nutrient solution. Reflectance spectra of the healthy and stressed plants were collected under seven artificial lamps including two tungsten halogen lamps, plus high pressure sodium, metal halide, fluorescent, microwave, and red/blue light emitting diode (LED) sources. Results indicated that several common algorithms used to estimate biomass and leaf chlorophyll content were effective in predicting plant stress under all seven illumination sources. However, the two types of tungsten halogen lamps and the microwave illumination source yielded linear models with the highest residuals and thus the highest predictive capabilities of all lamps tested. The illumination sources with the least predictive capabilities were the red/blue LEDs and fluorescent lamps. Although the red/blue LEDs yielded the lowest residuals for linear models derived from the remote sensing data, the LED arrays used in these experiments were optimized for plant productivity and not the collection of remote sensing data. Thus, we propose that if adjusted to optimize the

  9. Performative Apparatus and Diffractive Practices: An Account of Artificial Life Art.

    PubMed

    Prophet, Jane; Pritchard, Helen

    2015-01-01

    Drawing on our own art/science practices and a series of interviews with artificial life practitioners, we explore the entanglement of developments at the artistic edges of artificial life. We start by defining key terms from Karen Barad's agential realism. We then diffractively read artificial life together with agential realism to discuss the potential for interventions in the field. Through a discussion of artificial life computer simulations, ideas of agency are problematized, and artificial life's single purposeful actor, the agent, is replaced by agential, an adjective denoting a relationship rather than a subject-object duality. We then seek to reinterpret the difficult-to-define term "emergence." Agency in artificial life emerges through what Barad calls entanglement, in this case between observers and their apparatus, a perpetual engagement between observations of a system and their interpretations. The article explores the differences that this diffractive perspective makes to artificial life and accounts of its materialization. PMID:26280074

  10. Is the creation of artificial life morally significant?

    PubMed Central

    Douglas, Thomas; Powell, Russell; Savulescu, Julian

    2013-01-01

    In 2010, the Venter lab announced that it had created the first bacterium with an entirely synthetic genome. This was reported to be the first instance of ‘artificial life,’ and in the ethical and policy discussions that followed it was widely assumed that the creation of artificial life is in itself morally significant. We cast doubt on this assumption. First we offer an account of the creation of artificial life that distinguishes this from the derivation of organisms from existing life and clarify what we mean in asking whether the creation of artificial life has moral significance. We then articulate and evaluate three attempts to establish that the creation of artificial life is morally significant. These appeal to (1) the claim that the creation of artificial life involves playing God, as expressed in three distinct formulations; (2) the claim that the creation of artificial life will encourage reductionist attitudes toward the living world that undermine the special moral value accorded to life; and (3) the worry that artificial organisms will have an uncertain functional status and consequently an uncertain moral status. We argue that all three attempts to ground the moral significance of the creation of artificial life fail, because none of them establishes that the creation of artificial life is morally problematic in a way that the derivation of organisms from existing life forms is not. We conclude that the decisive moral consideration is not how life is created but what non-genealogical properties it possesses. PMID:23810562

  11. Is the creation of artificial life morally significant?

    PubMed

    Douglas, Thomas; Powell, Russell; Savulescu, Julian

    2013-12-01

    In 2010, the Venter lab announced that it had created the first bacterium with an entirely synthetic genome. This was reported to be the first instance of 'artificial life,' and in the ethical and policy discussions that followed it was widely assumed that the creation of artificial life is in itself morally significant. We cast doubt on this assumption. First we offer an account of the creation of artificial life that distinguishes this from the derivation of organisms from existing life and clarify what we mean in asking whether the creation of artificial life has moral significance. We then articulate and evaluate three attempts to establish that the creation of artificial life is morally significant. These appeal to (1) the claim that the creation of artificial life involves playing God, as expressed in three distinct formulations; (2) the claim that the creation of artificial life will encourage reductionist attitudes toward the living world that undermine the special moral value accorded to life; and (3) the worry that artificial organisms will have an uncertain functional status and consequently an uncertain moral status. We argue that all three attempts to ground the moral significance of the creation of artificial life fail, because none of them establishes that the creation of artificial life is morally problematic in a way that the derivation of organisms from existing life forms is not. We conclude that the decisive moral consideration is not how life is created but what non-genealogical properties it possesses. PMID:23810562

  12. Biological Life Support Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP2 includes short reports on: (1) Crew Regenerative Life Support in Long Duration Space Missions; (2) Bioconversion Systems for Food and Water on Long Term Space Missions; (3) Novel Laboratory Approaches to Multi-purpose Aquatic Biogenerative Closed-Loop Food Production Systems; and (4) Artificial Neural Network Derived Plant Growth Models.

  13. Artificial life and the Chinese room argument.

    PubMed

    Anderson, David; Copeland, B Jack

    2002-01-01

    "Strong artificial life" refers to the thesis that a sufficiently sophisticated computer simulation of a life form is a life form in its own right. Can John Searle's Chinese room argument [12]-originally intended by him to show that the thesis he dubs "strong AI" is false-be deployed against strong ALife? We have often encountered the suggestion that it can be (even in print; see Harnad [8]). We do our best to transfer the argument from the domain of AI to that of ALife. We do so in order to show once and for all that the Chinese room argument proves nothing about ALife. There may indeed be powerful philosophical objections to the thesis of strong ALife, but the Chinese room argument is not among them. PMID:12650646

  14. Artificial frustrated spin systems

    NASA Astrophysics Data System (ADS)

    Perrin, Y.; Chioar, I. A.; Nguyen, V. D.; Lacour, D.; Hehn, M.; Montaigne, F.; Canals, B.; Rougemaille, N.

    2015-09-01

    Complex architectures of nanostructures are routinely elaborated using bottom-up or nanofabrication processes. This technological capability allows scientists to engineer materials with properties that do not exist in nature, but also to manufacture model systems to explore fundamental issues in condensed matter physics. Two-dimensional frustrated arrays of magnetic nanostructures are one class of systems for which theoretical predictions can be tested experimentally. These systems have been the subject of intense research in the last few years and allowed the investigation of a rich physics and fascinating phenomena, such as the exploration of the extensively degenerate ground-state manifolds of spin ice systems, the evidence of new magnetic phases in purely two-dimensional lattices, and the observation of pseudoexcitations involving classical analogues of magnetic monopoles. We show here, experimentally and theoretically, that simple magnetic geometries can lead to unconventional, non-collinear spin textures. For example, kagome arrays of inplane magnetized nano-islands do not show magnetic order. Instead, these systems are characterized by spin textures with intriguing properties, such as chirality, coexistence of magnetic order and disorder, and charge crystallization. Magnetic frustration effects in lithographically patterned kagome arrays of nanomagnets with out-of-plane magnetization also lead to an unusal, and still unknown, magnetic ground state manifold. Besides the influence of the lattice geometry, the micromagnetic nature of the elements constituting the arrays introduce the concept of chiral magnetic monopoles, bringing additional complexity into the physics of artificial frustrated spin systems.

  15. Artificial Life Art, Creativity, and Techno-hybridization (editor's introduction).

    PubMed

    Dorin, Alan

    2015-01-01

    Artists and engineers have devised lifelike technology for millennia. Their ingenious devices have often prompted inquiry into our preferences, prejudices, and beliefs about living systems, especially regarding their origins, status, constitution, and behavior. A recurring fabrication technique is shared across artificial life art, science, and engineering. This involves aggregating representations or re-creations of familiar biological parts-techno-hybridization-but the motives of practitioners may differ markedly. This article, and the special issue it introduces, explores how ground familiar to contemporary artificial life science and engineering has been assessed and interpreted in parallel by (a) artists and (b) theorists studying creativity explicitly. This activity offers thoughtful, alternative perspectives on artificial life science and engineering, highlighting and sometimes undermining the fields' underlying assumptions, or exposing avenues that are yet to be explored outside of art. Additionally, art has the potential to engage the general public, supporting and exploring the findings of scientific research and engineering. This adds considerably to the maturity of a culture tackling the issues the discipline of artificial life raises. PMID:26280066

  16. The ontological basis of strong artificial life.

    PubMed

    Olson, E T

    1997-01-01

    This article concerns the claim that it is possible to create living organisms, not merely models that represent organisms, simply by programming computers ("virtual" strong alife). I ask what sort of things these computer-generated organisms are supposed to be (where are they, and what are they made of?). I consider four possible answers to this question: (a) The organisms are abstract complexes of pure information; (b) they are material objects made of bits of computer hardware; (c) they are physical processes going on inside the computer; and (d) they are denizens of an entire artificial world, different from our own, that the programmer creates. I argue that (a) could not be right, that (c) collapses into (b) and that (d) would make strong alife either absurd or uninteresting. Thus, "virtual" strong alife amounts to the claim that, by programming a computer, one can literally bring bits of its hardware to life. PMID:9090157

  17. A comprehensive overview of the applications of artificial life.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest. PMID:16393455

  18. Creating and maintaining chemical artificial life by robotic symbiosis.

    PubMed

    Hanczyc, Martin M; Parrilla, Juan M; Nicholson, Arwen; Yanev, Kliment; Stoy, Kasper

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the droplet that it creates. The robot can then use this categorization to autonomously detect the current state of the droplet and respond. The robot is programmed to visually track the droplet and either inject more chemical fuel to sustain a motile state or introduce a new chemical component that results in a state change (e.g., division). Coupling inexpensive open source hardware with sensing and feedback allows for replicable real-time manipulation and monitoring of nonequilibrium systems that would be otherwise tedious, expensive, and error-prone. This system is a first step towards the practical confluence of chemical, artificial intelligence, and robotic approaches to artificial life. PMID:25514433

  19. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  20. Beller Lecture: Artificial Ferroic Systems

    NASA Astrophysics Data System (ADS)

    Heyderman, Laura

    In artificial ferroic systems, novel functionality is engineered through the combination of structured ferroic materials and the control of the interactions between the different components. I will present two classes of these systems, beginning with hybrid mesoscopic structures incorporating two different ferromagnetic layers whose static and dynamic behaviour result from the mutual imprint of the magnetic domain configurations. Here we have demonstrated a new vortex core reversal mechanism, which occurs when it is displaced across domain boundaries with a magnetic field. I will then describe our progress on artificial spin ice, consisting of arrays of dipolar-coupled nanomagnets arranged in frustrated geometries. We have employed photoemission electron microscopy to observe the behaviour of emergent magnetic monopoles in an array of nanomagnets placed on the kagome lattice. We have also created artificial spin ice with fluctuating magnetic moments and observed the evolution of magnetic configurations with time. This has provided a means to study relaxation processes with a controlled route to the lowest-energy state. Recently, we have demonstrated with muon spin relaxation that these magnetic metamaterials can support thermodynamic phase transitions, and future directions include the incorporation of novel magnetic materials such as ultrathin magnetic films, the investigation of 3D structures, as well as the implementation of x-ray resonant magnetic scattering to study magnetic correlations in smaller nanomagnets and at faster timescales

  1. Learning Evolution and the Nature of Science Using Evolutionary Computing and Artificial Life

    ERIC Educational Resources Information Center

    Pennock, Robert T.

    2007-01-01

    Because evolution in natural systems happens so slowly, it is difficult to design inquiry-based labs where students can experiment and observe evolution in the way they can when studying other phenomena. New research in evolutionary computation and artificial life provides a solution to this problem. This paper describes a new A-Life software…

  2. Artificial nutrition at the end of life: ethical issues.

    PubMed

    van de Vathorst, Suzanne

    2014-04-01

    Artificial nutrition is a medical treatment that first of all needs a sound scientific base before prescribing it. This base is absent for dying patients and patients in the end stage of dementia. Because feeding is a very emotional and symbolical issue, patient and family may request this treatment despite the lack of evidence. These issues should be addressed in good communication with patient and relatives. For comatose patients and patients in a persistent vegetative state artificial nutrition is a necessary support to bridge the time until either recovery is imminent or improbable. At that moment artificial nutrition no longer contributes to the life of the patient and should be ceased. Artificial nutrition has no place in patients that voluntary decide to stop eating and drinking in order to die. PMID:24810185

  3. "Life is a verb": inflections of artificial life in cultural context.

    PubMed

    Helmreich, Stefan

    2007-01-01

    This review essay surveys recent literature in the history of science, literary theory, anthropology, and art criticism dedicated to exploring how the artificial life enterprise has been inflected by--and might also reshape--existing social, historical, cognitive, and cultural frames of thought and action. The piece works through various possible interpretations of Kevin Kelly's phrase "life is a verb," in order to track recent shifts in cultural studies of artificial life from an aesthetic of critique to an aesthetic of conversation, discerning in the process different styles of translating between the concerns of the humanities, social sciences, natural sciences, and sciences of the artificial. PMID:17355191

  4. A graph grammar approach to artificial life.

    PubMed

    Kniemeyer, Ole; Buck-Sorlin, Gerhard H; Kurth, Winfried

    2004-01-01

    We present the high-level language of relational growth grammars (RGGs) as a formalism designed for the specification of ALife models. RGGs can be seen as an extension of the well-known parametric Lindenmayer systems and contain rule-based, procedural, and object-oriented features. They are defined as rewriting systems operating on graphs with the edges coming from a set of user-defined relations, whereas the nodes can be associated with objects. We demonstrate their ability to represent genes, regulatory networks of metabolites, and morphologically structured organisms, as well as developmental aspects of these entities, in a common formal framework. Mutation, crossing over, selection, and the dynamics of a network of gene regulation can all be represented with simple graph rewriting rules. This is demonstrated in some detail on the classical example of Dawkins' biomorphs and the ABC model of flower morphogenesis: other applications are briefly sketched. An interactive program was implemented, enabling the execution of the formalism and the visualization of the results. PMID:15479546

  5. Using Artificial Life to Assess the Typicality of Terrestrial Life: Implications for Human Mission Planetary Protection

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark; Powers, Edward I. (Technical Monitor)

    2001-01-01

    The extent to which extraterrestrial life questions can be addressed, in the absence of an actual example, rests in some measure on the extent to which terrestrial life is representative of life in general since we will likely have to draw heavily, if not completely, from terrestrial life research. One example of a practical question involving extraterrestrial life that arises in preparing for a human mission to another planet such as Mars, is trying to assess and minimize the possible adverse effects of the presence of humans on possible indigenous extraterrestrial life-forms. This paper will present some key planetary protection challenges for a human Mars mission and then focus on one possible approach for assessing the extent to which terrestrial life is representative of biological phenomena in general, informing perhaps, the level of confidence we might have in applying terrestrial research - to extraterrestrial life issues. The approach involves appealing to the relatively new field of Artificial Life (A-Life) to: (1) use what might be the most basic minimal set of life-defining characteristics in (2) a large number of open-ended Artificial Life simulations to generate a "life possibility space" (3) the products of which can be examined for their plausibility within the context of relevant constraining knowledge, so that (4) the remaining possibility space can be examined for its variability relative to terrestrial life, where low variability might suggest that terrestrial life is representative of life in general, and high variability would indicate otherwise.

  6. Artificial-life researchers try to create social reality.

    PubMed

    Flam, F

    1994-08-12

    Some scientists, among them cosmologist Stephen Hawking, argue that computer viruses are alive. A better case might be made for many of the self-replicating silicon-based creatures featured at the fourth Conference on Artificial Life, held on 5 to 8 July in Boston. Researchers from computer science, biology, and other disciplines presented computer programs that, among other things, evolved cooperative strategies in a selfish world and recreated themselves in ever more complex forms. PMID:17782127

  7. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  8. Learning in Artificial Neural Systems

    NASA Technical Reports Server (NTRS)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  9. MD-Logic Artificial Pancreas System

    PubMed Central

    Atlas, Eran; Nimri, Revital; Miller, Shahar; Grunberg, Eli A.; Phillip, Moshe

    2010-01-01

    OBJECTIVE Current state-of-the-art artificial pancreas systems are either based on traditional linear control theory or rely on mathematical models of glucose-insulin dynamics. Blood glucose control using these methods is limited due to the complexity of the biological system. The aim of this study was to describe the principles and clinical performance of the novel MD-Logic Artificial Pancreas (MDLAP) System. RESEARCH DESIGN AND METHODS The MDLAP applies fuzzy logic theory to imitate lines of reasoning of diabetes caregivers. It uses a combination of control-to-range and control-to-target strategies to automatically regulate individual glucose levels. Feasibility clinical studies were conducted in seven adults with type 1 diabetes (aged 19–30 years, mean diabetes duration 10 ± 4 years, mean A1C 6.6 ± 0.7%). All underwent 14 full, closed-loop control sessions of 8 h (fasting and meal challenge conditions) and 24 h. RESULTS The mean peak postprandial (overall sessions) glucose level was 224 ± 22 mg/dl. Postprandial glucose levels returned to <180 mg/dl within 2.6 ± 0.6 h and remained stable in the normal range for at least 1 h. During 24-h closed-loop control, 73% of the sensor values ranged between 70 and 180 mg/dl, 27% were >180 mg/dl, and none were <70 mg/dl. There were no events of symptomatic hypoglycemia during any of the trials. CONCLUSIONS The MDLAP system is a promising tool for individualized glucose control in patients with type 1 diabetes. It is designed to minimize high glucose peaks while preventing hypoglycemia. Further studies are planned in the broad population under daily-life conditions. PMID:20150292

  10. The dilemma of the symbols: analogies between philosophy, biology and artificial life.

    PubMed

    Spadaro, Salvatore

    2013-01-01

    This article analyzes some analogies going from Artificial Life questions about the symbol-matter connection to Artificial Intelligence questions about symbol-grounding. It focuses on the notion of the interpretability of syntax and how the symbols are integrated in a unity ("binding problem"). Utilizing the DNA code as a model, this paper discusses how syntactic features could be defined as high-grade characteristics of the non syntactic relations in a material-dynamic structure, by using an emergentist approach. This topic furnishes the ground for a confutation of J. Searle's statement that syntax is observer-relative, as he wrote in his book "Mind: A Brief Introduction". Moreover the evolving discussion also modifies the classic symbol-processing doctrine in the mind which Searle attacks as a strong AL argument, that life could be implemented in a computational mode. Lastly, this paper furnishes a new way of support for the autonomous systems thesis in Artificial Life and Artificial Intelligence, using, inter alia, the "adaptive resonance theory" (ART). PMID:24109563

  11. Synthetic Biology and the Moral Significance of Artificial Life: A Reply to Douglas, Powell and Savulescu.

    PubMed

    Christiansen, Andreas

    2016-06-01

    I discuss the moral significance of artificial life within synthetic biology via a discussion of Douglas, Powell and Savulescu's paper 'Is the creation of artificial life morally significant'. I argue that the definitions of 'artificial life' and of 'moral significance' are too narrow. Douglas, Powell and Savulescu's definition of artificial life does not capture all core projects of synthetic biology or the ethical concerns that have been voiced, and their definition of moral significance fails to take into account the possibility that creating artificial life is conditionally acceptable. Finally, I show how several important objections to synthetic biology are plausibly understood as arguing that creating artificial life in a wide sense is only conditionally acceptable. PMID:26833578

  12. 14 CFR 23.691 - Artificial stall barrier system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Artificial stall barrier system. 23.691... Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... pitching motion. (d) Each system must be designed so that the artificial stall barrier can be quickly...

  13. 14 CFR 23.691 - Artificial stall barrier system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Artificial stall barrier system. 23.691... Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... pitching motion. (d) Each system must be designed so that the artificial stall barrier can be quickly...

  14. 14 CFR 23.691 - Artificial stall barrier system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Artificial stall barrier system. 23.691... Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall... pitching motion. (d) Each system must be designed so that the artificial stall barrier can be quickly...

  15. Missileborne Artificial Vision System (MAVIS)

    NASA Technical Reports Server (NTRS)

    Andes, David K.; Witham, James C.; Miles, Michael D.

    1994-01-01

    Several years ago when INTEL and China Lake designed the ETANN chip, analog VLSI appeared to be the only way to do high density neural computing. In the last five years, however, digital parallel processing chips capable of performing neural computation functions have evolved to the point of rough equality with analog chips in system level computational density. The Naval Air Warfare Center, China Lake, has developed a real time, hardware and software system designed to implement and evaluate biologically inspired retinal and cortical models. The hardware is based on the Adaptive Solutions Inc. massively parallel CNAPS system COHO boards. Each COHO board is a standard size 6U VME card featuring 256 fixed point, RISC processors running at 20 MHz in a SIMD configuration. Each COHO board has a companion board built to support a real time VSB interface to an imaging seeker, a NTSC camera, and to other COHO boards. The system is designed to have multiple SIMD machines each performing different corticomorphic functions. The system level software has been developed which allows a high level description of corticomorphic structures to be translated into the native microcode of the CNAPS chips. Corticomorphic structures are those neural structures with a form similar to that of the retina, the lateral geniculate nucleus, or the visual cortex. This real time hardware system is designed to be shrunk into a volume compatible with air launched tactical missiles. Initial versions of the software and hardware have been completed and are in the early stages of integration with a missile seeker.

  16. Tailoring superradiance to design artificial quantum systems.

    PubMed

    Longo, Paolo; Keitel, Christoph H; Evers, Jörg

    2016-01-01

    Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604

  17. Tailoring superradiance to design artificial quantum systems

    PubMed Central

    Longo, Paolo; Keitel, Christoph H.; Evers, Jörg

    2016-01-01

    Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604

  18. Tailoring superradiance to design artificial quantum systems

    NASA Astrophysics Data System (ADS)

    Longo, Paolo; Keitel, Christoph H.; Evers, Jörg

    2016-03-01

    Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.

  19. 14 CFR 23.691 - Artificial stall barrier system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Artificial stall barrier system. 23.691... Construction Control Systems § 23.691 Artificial stall barrier system. If the function of an artificial stall barrier, for example, stick pusher, is used to show compliance with § 23.201(c), the system must...

  20. Reactively and Anticipatory Behaving Agents for Artificial Life Simulations

    NASA Astrophysics Data System (ADS)

    Kohout, Karel; Nahodil, Pavel

    2010-11-01

    Reactive behavior is still considered and the exact opposite for the anticipatory one. Despite the advances on the field of anticipation there are little thoughts on relation with the reactive behavior, the similarities and where the boundary is. In this article we will present our viewpoint and we will try to show that reactive and anticipatory behavior can be combined. This is the basic ground of our unified theory for anticipatory behavior architecture. We still miss such compact theory, which would integrate multiple aspects of anticipation. My multi-level anticipatory behavior approach is based on the current understanding of anticipation from both the artificial intelligence and biology point of view. As part of the explanation we will also elaborate on the topic of weak and strong artificial life. Anticipation is not matter of a single mechanism in a living organism. It was noted already that it happens on many different levels even in the very simple creatures. What we consider to be important for our work and what is our original though is that it happens even without voluntary control. We believe that this is novelty though for the anticipation theory. Naturally research of anticipation was in the beginning of this decade focused on the anticipatory principles bringing advances on the field itself. This allowed us to build on those, look at them from higher perspective, and use not one but multiple levels of anticipation in a creature design. This presents second original though and that is composition of the agent architecture that has anticipation built in almost every function. In this article we will focus only on first two levels within the 8-factor anticipation framework. We will introduce them as defined categories of anticipation and describe them from theory and implementation algorithm point of view. We will also present an experiment conducted, however this experiment serves more as explanatory example. These first two levels may seem trivial

  1. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  2. Artificial diets for life tables bioassays of TPB in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two artificial diets for mass rearing and bioassay of the tarnished plant bug, (TPB), Lygus lineolaris Palisot de Beauvois, (Hemiptera: Miridae) were modified and developed, respectively. The first diet is a modification of a semisolid artificial diet (NI diet), which permits large scale rearing of ...

  3. An artificial gravity research facility for life sciences

    NASA Technical Reports Server (NTRS)

    Lemke, Larry G.

    1988-01-01

    To obtain data for the design of a Mars mission vehicle configured for artificial gravity, NASA is currently studying the design of a variable-gravity research facility (VGRF) in a low earth orbit. The VGRF could be flown as a coorbiting payload requiring periodic servicing, resupply, and contingency intervention from the Space Station. The reasons why artificial gravity is needed for long-term missions are discussed; preliminary designs of a Mars vehicle with artificial gravity (at a weight cost of about 20 percent) are described; and particular attention is given to the VGRF design and mission profile.

  4. Photoinduced Energy Transfer in Artificial Photosynthetic Systems

    NASA Astrophysics Data System (ADS)

    Imahori, H.; Umeyama, T.

    Artificial photosynthesis is a current topic of intensive investigations, both in order to understand the reactions that play a central role in natural photosynthesis as well as to develop highly efficient solar energy conversion systems and molecular optoelectronic devices [1-34]. Artificial photosynthesis is defined as a research field that attempts to mimic the natural process of photosynthesis. Therefore, the outline of natural photosynthesis is described briefly for the better understanding of artificial photosynthesis . Natural photosynthetic system is regarded as one of the most elaborate nanobiological machines [35,36]. It converts solar energy into electrochemical potential or chemical energy, which is prerequisite for the living organisms on the earth. The core function of photosynthesis is a cascade of photoinduced energy and electron transfer between donors and acceptors in the antenna complexes and the reaction center. For instance, in purple photosynthetic bacteria (Rhodopseudomonas acidophila and Rhodopseudomonas palustris) there are two different types of antenna complexes: a core light-harvesting antenna (LH1) and peripheral light-harvesting antenna (LH2) [37-39]. LH1 surrounds the reaction center where charge separation takes place.

  5. An intelligent remote monitoring system for artificial heart.

    PubMed

    Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G

    2005-12-01

    A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data. PMID:16379373

  6. Dynamic Artificial Neural Networks with Affective Systems

    PubMed Central

    Schuman, Catherine D.; Birdwell, J. Douglas

    2013-01-01

    Artificial neural networks (ANNs) are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP) and long term depression (LTD), and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance. PMID:24303015

  7. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  8. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  9. Proactive learning for artificial cognitive systems

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Young

    2010-04-01

    The Artificial Cognitive Systems (ACS) will be developed for human-like functions such as vision, auditory, inference, and behavior. Especially, computational models and artificial HW/SW systems will be devised for Proactive Learning (PL) and Self-Identity (SI). The PL model provides bilateral interactions between robot and unknown environment (people, other robots, cyberspace). For the situation awareness in unknown environment it is required to receive audiovisual signals and to accumulate knowledge. If the knowledge is not enough, the PL should improve by itself though internet and others. For human-oriented decision making it is also required for the robot to have self-identify and emotion. Finally, the developed models and system will be mounted on a robot for the human-robot co-existing society. The developed ACS will be tested against the new Turing Test for the situation awareness. The Test problems will consist of several video clips, and the performance of the ACSs will be compared against those of human with several levels of cognitive ability.

  10. Artificial Aging as a Predictor of Paper's Future Useful Life.

    ERIC Educational Resources Information Center

    Bansa, Helmut; Hofer, Hans-H.

    1989-01-01

    An experiment with the artificial aging of paper which--in contrast with the usual practice--was carried out at relatively low temperatures (i.e., 50-95 degrees Celsius), and not on laboratory handsheets, but on naturally aged paper from the commercial production of four centuries, produced results justifying the thesis that there may be at best…

  11. An Artificial Ising System with Phononic Excitations

    NASA Astrophysics Data System (ADS)

    Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul

    Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.

  12. Constrained optimization via artificial immune system.

    PubMed

    Zhang, Weiwei; Yen, Gary G; He, Zhongshi

    2014-02-01

    An artificial immune system inspired by the fundamental principle of the vertebrate immune system, for solving constrained optimization problems, is proposed. The analogy between the mechanism of biological immune response and constrained optimization formulation is drawn. Individuals in population are classified into feasible and infeasible groups according to their constraint violations that closely match with the two states, inactivated and activated, of B-cells in the immune response. Feasible group focuses on exploitation in the feasible areas through clonal selection, recombination, and hypermutation, while infeasible group facilitates exploration along the feasibility boundary via location update. Direction information is extracted to promote the interactions between these two groups. This approach is validated by the benchmark functions proposed most recently and compared with those of the state of the art from various branches of evolutionary computation paradigms. The performance achieved is considered fairly competitive and promising. PMID:23757542

  13. Fault tolerant architecture for artificial olfactory system

    NASA Astrophysics Data System (ADS)

    Lotfivand, Nasser; Nizar Hamidon, Mohd; Abdolzadeh, Vida

    2015-05-01

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible.

  14. Artificial Immune System for Recognizing Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  15. Efficiency parameters in artificial allosteric systems.

    PubMed

    Schneider, Hans-Jörg

    2016-09-14

    It is shown that the until now largely overlooked change of the conformational energy ΔGC is the dominating factor for most synthetic allosteric complexes. Essential is the energy ΔGC required for the formation of a suitable geometry for ligand binding in the absence of an effector molecule E; ΔGC is usually dominated by an increase of strain and/or by high energy solvents in a cavity. The role of the effector molecule E in such systems is to generate a suitable conformation for binding the ligand A and thus to compensate the unfavourable conformational energy ΔGC. Positive cooperativity increases with ΔGC, and decreases with the ΔG0(A) value which reflects the binding energy of A in a strain-free host. As illustrated with a few examples ΔG0(A) cannot be measured directly but can eventually be estimated independently. Many artificial allosteric systems described in the literature, such as those based on ethylene glycol chains or bipyridyl units, lack significant strain differences, and are therefore less efficient. Negative cooperativity is determined only by the difference ΔΔGA,E between the binding energies at the two sites; it can be enhanced or lowered by concomitant changes in ΔGC. PMID:27431438

  16. Proceedings of intelligent engineering systems through artificial neural networks

    SciTech Connect

    Dagli, C.H. . Dept. of Engineering Management); Kumara, S.R. . Dept. of Industrial Management Systems Engineering); Shin, Y.C. . School of Mechanical Engineering)

    1991-01-01

    This book contains the edited versions of the technical presentation of ANNIE '91, the first international meeting on Artificial Neural Networks in Engineering. The conference covered the theory of Artificial Neural Networks and its contributions in the engineering domain and attracted researchers from twelve countries. The papers in this edited book are grouped into four categories: Artificial Neural Network Architectures; Pattern Recognition; Adaptive Control, Diagnosis and Process Monitoring; and Neuro-Engineering Systems.

  17. Exploration technology surface systems: Artificial gravity

    NASA Technical Reports Server (NTRS)

    Hirschbein, Murray

    1991-01-01

    The topics presented are covered in viewgraph form and include the following: technical issues; current, state-of-the-art, and future programs; and Mars direct tether application for artificial gravity.

  18. Artificial Nutrition (Food) and Hydration (Fluids) at the End of Life

    MedlinePlus

    Artificial Nutrition (Food) and Hydration (Fluids) at the End of Life It is very common for doctors to provide fluids and food to people who are very sick ... to understand how the body processes food and fluids. The information below explains the medical facts about ...

  19. Biological life-support systems

    NASA Technical Reports Server (NTRS)

    Shepelev, Y. Y.

    1975-01-01

    The establishment of human living environments by biologic methods, utilizing the appropriate functions of autotrophic and heterotrophic organisms is examined. Natural biologic systems discussed in terms of modeling biologic life support systems (BLSS), the structure of biologic life support systems, and the development of individual functional links in biologic life support systems are among the factors considered. Experimental modeling of BLSS in order to determine functional characteristics, mechanisms by which stability is maintained, and principles underlying control and regulation is also discussed.

  20. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme

  1. From natural to bioassisted and biomimetic artificial water channel systems.

    PubMed

    Barboiu, Mihail; Gilles, Arnaud

    2013-12-17

    Within biological systems, natural channels and pores transport metabolites across the cell membranes. Researchers have explored artificial ion-channel architectures as potential mimics of natural ionic conduction. All these synthetic systems have produced an impressive collection of alternative artificial ion-channels. Amazingly, researchers have made far less progress in the area of synthetic water channels. The development of synthetic biomimetic water channels and pores could contribute to a better understanding of the natural function of protein channels and could offer new strategies to generate highly selective, advanced water purification systems. Despite the imaginative work by synthetic chemists to produce sophisticated architectures that confine water clusters, most synthetic water channels have used natural proteins channels as the selectivity components, embedded in the diverse arrays of bioassisted artificial systems. These systems combine natural proteins that present high water conductance states under natural conditions with artificial lipidic or polymeric matrixes. Experimental results have demonstrated that natural biomolecules can be used as bioassisted building blocks for the construction of highly selective water transport through artificial membranes. A next step to further the potential of these systems was the design and construction of simpler compounds that maintain the high conduction activity obtained with natural compounds leading to fully synthetic artificial biomimetic systems. Such studies aim to use constitutional selective artificial superstructures for water/proton transport to select functions similar to the natural structures. Moving to simpler water channel systems offers a chance to better understand mechanistic and structural behaviors and to uncover novel interactive water-channels that might parallel those in biomolecular systems. This Account discusses the incipient development of the first artificial water channels

  2. A toxicity test in artificial soil based on the life-history strategy of the nematode Plectus acuminatus

    SciTech Connect

    Kammenga, J.E.; Van Koert, P.H.G.; Riksen, J.A.G.; Korthals, G.W.; Bakker, J.

    1996-05-01

    The ecological risk assessment of toxicants in soil requires reproducible and relevant test systems using a wide range of species. To supplement present test methods from the Organisation of Economic Cooperation and Development (OECD) in artificial soil with earthworms and springtails, a toxicity test in OECD artificial soil has been developed using the bacterivorous nematode Plectus acuminatus (Bastian, 1865) (Nematoda; Plectidae). The juvenile to adult ratio was used as a test parameter since previous life-cycle studies pointed out that fitness of P. acuminatus was strongly determined by changes in both reproduction and juvenile survival. Optimal conditions for the performance of nematodes in OECD artificial soil were determined (pH{sub KCl} = 5.5, temperature = 20C, and a moisture content of 70% dry wt. artificial soil), and tests were conducted with cadmium, copper, and pentachlorophenol. After an exposure period of 3 weeks the EC50 for cadmium was 321.0 {+-} 1.7 mg/kg dry wt., and the no-observed-effect concentration (NOEC) was 32 mg/kg dry wt. The EC50 for pentachlorophenol was 47.9 {+-} 1.2 mg/kg dry wt., and the NOEC was <10 mg/kg dry wt. For copper the EC50 was 162 {+-} 0.2 mg/kg dry wt., and the NOEC was 32 mg/kg dry wt. It is concluded that the nematode test may well supplement current coil test systems using earthworms and springtails.

  3. [Power units of implanted artificial heart and assisted circulation system].

    PubMed

    Kiselev, Iu M; Kremnev, V A; Sadov, V V; Spiridonov, V A

    1976-01-01

    The existing and presently planned systems of power supply for an artificially implanted heart and assisted circulation devices are reviewed. A comparative analysis as to their conformability to biological, functional and technical demands placed on the implanted systems is given. In an implanted artificial heart and assisted circulation systems most promising is shown to be the use of nuclear fuel as a source of power and as converters -- that of thermal engines with gas and steam cycle. PMID:1025440

  4. Extended mission life support systems

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  5. Building Artificial Vision Systems with Machine Learning

    SciTech Connect

    LeCun, Yann

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  6. Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott

    2006-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.

  7. Artificial life simulation of self-assembly in bacteriophage by movable finite automata.

    PubMed

    Shirayama, Masatoshi; Koshino, Makoto; Hatakeyama, Toyomasa; Kimura, Haruhiko

    2004-11-01

    This paper presents a model which is based on biological research using the movable finite automata (MFA) on a self-assembly of T4 phage, and exhibits the results of artificial life simulation. In the previous work, Thompson and Goel [Artificial Life, Addison Weley, 1989, pp. 317-340; Biosystems 18 (1985) 23; J. Theor. Biol. 131 (1988) 351] presented the movable finite automata (MFA) which has a capability of moving on finite automata, and simulated on a computer. They were represented individual rectangular boxes, however, the results of simulation was different from real T4 phage. We propose the sphere model as a protein structure, and simulate the self-assembly of the entire structure of the T4 phage on a computer. PMID:15527954

  8. Challenges and Perspectives in Designing Artificial Photosynthetic Systems.

    PubMed

    Zhou, Han; Yan, Runyu; Zhang, Di; Fan, Tongxiang

    2016-07-11

    The development of artificial photosynthetic systems for water splitting and CO2 reduction on a large scale for practical applications is the ultimate goal towards worldwide sustainability. This Concept highlights the state-of-the-art research trends of artificial photosynthesis concepts and designs from some new perspectives. Particularly, it is focused on five important aspects for the design of promising artificial photosynthetic systems: 1) catalyst development, 2) architecture design, 3) device buildup 4) mechanism exploration, and 5) theoretical investigations. Some typical progress and challenges, the most significant milestones achieved to date, as well as possible future directions are illustrated and discussed. This Concept article presents a selection of new developments to highlight new trends and possibilities, main barriers, or challenges; with this, we hope to inspire more advances in the field of artificial photosynthesis. PMID:27138858

  9. Life Support Systems Microbial Challenges

    NASA Technical Reports Server (NTRS)

    Roman, Monserrate C.

    2009-01-01

    This viewgraph presentation reviews the current microbial challenges of environmental control and life support systems. The contents include: 1) Environmental Control and Life Support Systems (ECLSS) What is it?; 2) A Look Inside the International Space Station (ISS); 3) The Complexity of a Water Recycling System; 4) ISS Microbiology Acceptability Limits; 5) Overview of Current Microbial Challenges; 6) In a Perfect World What we Would like to Have; and 7) The Future.

  10. Generating compact classifier systems using a simple artificial immune system.

    PubMed

    Leung, Kevin; Cheong, France; Cheong, Christopher

    2007-10-01

    Current artificial immune system (AIS) classifiers have two major problems: 1) their populations of B-cells can grow to huge proportions, and 2) optimizing one B-cell (part of the classifier) at a time does not necessarily guarantee that the B-cell pool (the whole classifier) will be optimized. In this paper, the design of a new AIS algorithm and classifier system called simple AIS is described. It is different from traditional AIS classifiers in that it takes only one B-cell, instead of a B-cell pool, to represent the classifier. This approach ensures global optimization of the whole system, and in addition, no population control mechanism is needed. The classifier was tested on seven benchmark data sets using different classification techniques and was found to be very competitive when compared to other classifiers. PMID:17926714

  11. Systems design of long-life systems

    NASA Technical Reports Server (NTRS)

    Miles, R. F., Jr.

    1974-01-01

    A long-life system is defined as a system which cannot be life-tested in its operational environment. Another restriction is that preventive maintenance and repair shall be either impossible or economically disadvantageous. Examples of such systems include planetary spacecraft, communication satellites, undersea telephone cables, and nuclear power plants. The questions discussed are related to the implementation of system functions, approaches to determine the required level of system reliability, and aspects of tradeoffs between requirements and reliability.

  12. Structural colors: from natural to artificial systems.

    PubMed

    Fu, Yulan; Tippets, Cary A; Donev, Eugenii U; Lopez, Rene

    2016-09-01

    Structural coloration has attracted great interest from scientists and engineers in recent years, owing to fascination with various brilliant examples displayed in nature as well as to promising applications of bio-inspired functional photonic structures and materials. Much research has been done to reveal and emulate the physical mechanisms that underlie the structural colors found in nature. In this article, we review the fundamental physics of many natural structural colors displayed by living organisms as well as their bio-inspired artificial counterparts, with emphasis on their connections, tunability strategies, and proposed applications, which aim to maximize the technological benefits one could derive from these photonic nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:758-775. doi: 10.1002/wnan.1396 For further resources related to this article, please visit the WIREs website. PMID:26952315

  13. Controlled ecological life-support system - Use of plants for human life-support in space

    NASA Technical Reports Server (NTRS)

    Chamberland, D.; Knott, W. M.; Sager, J. C.; Wheeler, R.

    1992-01-01

    Scientists and engineers within NASA are conducting research which will lead to development of advanced life-support systems that utilize higher plants in a unique approach to solving long-term life-support problems in space. This biological solution to life-support, Controlled Ecological Life-Support System (CELSS), is a complex, extensively controlled, bioengineered system that relies on plants to provide the principal elements from gas exchange and food production to potable water reclamation. Research at John F. Kennedy Space Center (KSC) is proceeding with a comprehensive investigation of the individual parts of the CELSS system at a one-person scale in an approach called the Breadboard Project. Concurrently a relatively new NASA sponsored research effort is investigating plant growth and metabolism in microgravity, innovative hydroponic nutrient delivery systems, and use of highly efficient light emitting diodes for artificial plant illumination.

  14. 14 CFR 23.691 - Artificial stall barrier system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Artificial stall barrier system. 23.691 Section 23.691 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.691...

  15. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  16. Lighting system combining daylight concentrators and an artificial source

    DOEpatents

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  17. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    PubMed

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system. PMID:26170084

  18. An overview of expert systems. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    An expert system is defined and its basic structure is discussed. The knowledge base, the inference engine, and uses of expert systems are discussed. Architecture is considered, including choice of solution direction, reasoning in the presence of uncertainty, searching small and large search spaces, handling large search spaces by transforming them and by developing alternative or additional spaces, and dealing with time. Existing expert systems are reviewed. Tools for building such systems, construction, and knowledge acquisition and learning are discussed. Centers of research and funding sources are listed. The state-of-the-art, current problems, required research, and future trends are summarized.

  19. An Artificial Intelligence-Based Distance Education System: Artimat

    ERIC Educational Resources Information Center

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  20. Impact of artificial "gummy" fingers on fingerprint systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsutomu; Matsumoto, Hiroyuki; Yamada, Koji; Hoshino, Satoshi

    2002-04-01

    Potential threats caused by something like real fingers, which are called fake or artificial fingers, should be crucial for authentication based on fingerprint systems. Security evaluation against attacks using such artificial fingers has been rarely disclosed. Only in patent literature, measures, such as live and well detection, against fake fingers have been proposed. However, the providers of fingerprint systems usually do not mention whether or not these measures are actually implemented in emerging fingerprint systems for PCs or smart cards or portable terminals, which are expected to enhance the grade of personal authentication necessary for digital transactions. As researchers who are pursuing secure systems, we would like to discuss attacks using artificial fingers and conduct experimental research to clarify the reality. This paper reports that gummy fingers, namely artificial fingers that are easily made of cheap and readily available gelatin, were accepted by extremely high rates by 11 particular fingerprint devices with optical or capacitive sensors. We have used the molds, which we made by pressing our live fingers against them or by processing fingerprint images from prints on glass surfaces, etc. We describe how to make the molds, and then show that the gummy fingers, which are made with these molds, can fool the fingerprint devices.

  1. Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.

    PubMed

    Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H

    2016-01-01

    Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles. PMID:27363369

  2. Artificial synapse network on inorganic proton conductor for neuromorphic systems

    NASA Astrophysics Data System (ADS)

    Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing

    2014-01-01

    The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are self-assembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.

  3. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  4. Using Artificial Intelligence Technology in Failsafe Realtime Systems

    NASA Astrophysics Data System (ADS)

    Nejdl, Wolfgang; Neuhold, Erich J.; Theuretzbacher, Norbert

    1987-04-01

    This paper is concerned with the use of artificial intelligence technology to increase system safety in failsafe realtime systems. A safety module for a failsafe realtime system is specified which uses a production system to implement the necessary security checks. The task of this safety module is to guarantee the safety of the system. To implement the safety module production system the AI language OPS83 is used. A complete prototype for use in the Electronic Interlocking System "ELEKTRA" from ITT-Austria is being built comprising approximately 100 to 200 safety assertions in the form of production rules.

  5. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  6. Apollo Portable Life Support System

    NASA Technical Reports Server (NTRS)

    1968-01-01

    With its exterior removed, the Apollo portable life support system (PLSS) can be studied. The PLSS is worn as a backpack over the extravehicular mobility unit (EMU), a multi-layered spacesuit used for outside the spacecraft activity. This is a close-up of the working parts of the PLSS.

  7. Apollo Portable Life Support System

    NASA Technical Reports Server (NTRS)

    1968-01-01

    With its exterior removed, the Apollo portable life support system (PLSS) can be studied. The PLSS is worn as a backpack over the extravehicular mobility unit (EMU), a multi-layered spacesuit used for outside the spacecraft activity. This is a wider view of the exposed interior working parts of the PLSS and its removed cover.

  8. Control system for an artificial heart

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1970-01-01

    Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.

  9. Artificial Immune System for Multi-Area Economic Dispatch

    NASA Astrophysics Data System (ADS)

    De, Shankha Suvra; Hazra, Abhik; Basu, Mousumi

    2013-09-01

    This article presents artificial immune system for solving multi-area economic dispatch (MAED) problem with tie line constraints considering transmission losses, multiple fuels, valve-point loading and prohibited operating zones. Artificial immune system is based on the clonal selection principle which implements adaptive cloning, hyper mutation, aging operator and tournament selection. The effectiveness of the proposed algorithm has been verified on three different test systems, both small and large, involving varying degree of complexity. Compared with differential evolution, evolutionary programming and real-coded genetic algorithm, considering the quality of the solution obtained, the proposed algorithm seems to be a promising alternative approach for solving the MAED problems in practical power system.

  10. An integrated artificial photosynthesis system based on peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Li, Ying; Yang, Fan; Zhang, Chunfeng; Qin, Meng; Cao, Yi; Wang, Wei

    2014-06-01

    A peptide nanotube platform that integrates both light-harvesting and catalytic units was successfully engineered for artificial photosynthesis. Peptide nanotubes not only serve as a hub for physically combining both units, but also work as mediators that transfer the energy from photo-excited chromophores to catalytic centers. The direct conversion of NAD+ to NADH upon light illumination was demonstrated. This represents a promising step towards efficient and fully integrated artificial photosynthesis systems.A peptide nanotube platform that integrates both light-harvesting and catalytic units was successfully engineered for artificial photosynthesis. Peptide nanotubes not only serve as a hub for physically combining both units, but also work as mediators that transfer the energy from photo-excited chromophores to catalytic centers. The direct conversion of NAD+ to NADH upon light illumination was demonstrated. This represents a promising step towards efficient and fully integrated artificial photosynthesis systems. Electronic supplementary information (ESI) available: Experimental procedures and supporting figures. See DOI: 10.1039/c4nr00295d

  11. Artificial nerve system for structural monitoring

    NASA Astrophysics Data System (ADS)

    Martin, William N., Jr.; Ghoshal, Anindya; Sundaresan, Mannur J.; Lebby, Gary L.; Schulz, Mark J.; Pratap, Promod R.

    2002-06-01

    Recent structural health monitoring techniques have focused on developing global sensor systems that can detect damage on large structures. The approach presented here uses a piezoelectric sensor array system that mimics the biological nervous system architecture to measure acoustic emissions and dynamic strains in structures. The advantage of this approach is that the number of channels of data acquisition used for an N-by-N sensor array can be reduced from N2 to 2N. For large arrays the number of data acquisition channels is tremendously reduced. When transient damage events occur on the structure, the array output time histories can be recorded and the location of the excitation can be accurately determined using combinatorial logic. A trade-off is the difficulty of extracting individual sensor time histories from the array outputs without a neural network or a regressive technique. Only the sums of the sensor strains of each row and column can be exactly calculated using the voltage outputs of the array. The array approach allows efficient use of data acquisition instrumentation for structural health monitoring. Applications for the sensor array include crack and delamination detection, dynamic strain measurement, impact detection, and localization of damage on large complex structures.

  12. Solar System Searches for Life

    NASA Astrophysics Data System (ADS)

    Chyba, C. F.

    1998-12-01

    Exobiology--the search for extraterrestrial life and the study of conditions relevant to its origins--has been reborn in the past decade. This rebirth has been driven largely by discoveries related to Earth's deep biosphere, and the recognition that there may be several extraterrestrial environments within our own Solar System that could provide plausible environments for subsurface ecologies. Most prominent among these are Mars and Jupiter's moon Europa. In 2003 NASA intends to launch an orbiting spacecraft to Europa, to determine whether a subsurface ocean does in fact exist beneath that world's ice layer. A subsequent lander mission is in the initial planning stages. Lessons learned from the Viking spacecrafts' search for life on Mars over 25 years ago need to be carefully considered. More broadly, the interrelationships between planetary exploration and our understanding of the origin of life are becoming increasingly important.

  13. The Life Support Database system

    NASA Technical Reports Server (NTRS)

    Likens, William C.

    1991-01-01

    The design and implementation of the database system are described with specific reference to data available from the Build-1 version and techniques for its utilization. The review of the initial documents for the Life Support Database is described in terms of title format and sequencing, and the users are defined as participants in NASA-sponsored life-support research. The software and hardware selections are based respectively on referential integrity and compatibility, and the implementation of the user interface is achieved by means of an applications-programming tool. The current Beta-Test implementation of the system includes several thousand acronyms and bibliographic references as well as chemical properties and exposure limits, equipment, construction materials, and mission data. In spite of modifications in the database the system is found to be effective and a potentially significant resource for the aerospace community.

  14. Photobioreactors in Life Support Systems.

    PubMed

    Wagner, Ines; Braun, Markus; Slenzka, Klaus; Posten, Clemens

    2016-01-01

    Life support systems for long-term space missions or extraterrestrial installations have to fulfill major functions such as purification of water and regeneration of atmosphere as well as the generation of food and energy. For almost 60 years ideas for biological life support systems have been collected and various concepts have been developed and tested. Microalgae as photosynthetic organisms have played a major role in most of these concepts. This review deals with the potentials of using eukaryotic microalgae for life support systems and highlights special requirements and frame conditions for designing space photobioreactors especially regarding illumination and aeration. Mono- and dichromatic illumination based on LEDs is a promising alternative for conventional systems and preliminary results yielded higher photoconversion efficiencies (PCE) for dichromatic red/blue illumination than white illumination. Aeration for microgravity conditions should be realized in a bubble-free manner, for example, via membranes. Finally, a novel photobioreactor concept for space application is introduced being parameterized and tested with the microalga Chlamydomonas reinhardtii. This system has already been tested during two parabolic flight campaigns. PMID:26206570

  15. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  16. [Hydrogen peroxide in artificial photosynthesizing systems].

    PubMed

    Lobanov, A V; Komissarov, G G

    2014-01-01

    From the point of view of the concepts of hydrogen peroxide as a source of photosynthetic oxygen (hydrogen) coordination and photochemical properties of chlorophyll and its aggregates towards hydrogen peroxide were considered. The binding energy of H2O and H2O2 with chlorophyll and chlorophyllide depending on their form (monomers, dimers and trimers) was estimated by quantum chemical calculations. It is shown that at an increase of the degree of the pigment aggregation binding energy of H2O2 was more than the energy of H2O. Analysis of experimental results of the photochemical decomposition of hydrogen peroxide using chlorophyll was carried out. Estimates of the thermodynamic parameters (deltaG degrees and deltaH degrees) of the formation of organic compounds from CO2 with water and hydrogen peroxide were compared. The interaction of CO2 with H2O2 requires much less energy consumption than with water for all considered cases. The formation of organic products (formaldehyde, alcohols, carboxylic and carbonylic compounds) and simultaneous production of O2 under the influence of visible light in the systems of inorganic carbon--hydrogen peroxide--chlorophyll (phthalocyanine) is detected by GC/MS method, FTIR spectroscopy, and chemical analysis. PMID:25702472

  17. Artificial olfactory system with fault-tolerant sensor array.

    PubMed

    Lotfivand, Nasser; Abdolzadeh, Vida; Hamidon, Mohd Nizar

    2016-07-01

    Numerous applications of artificial olfaction resulting from research in many branches of sciences have caused considerable interest in the enhancement of these systems. In this paper, we offer an architecture which is suitable for critical applications, such as medical diagnosis, where reliability and precision are deemed important. The proposed architecture is able to tolerate failures in the sensors of the array. In this study, the discriminating ability of the proposed architecture in detecting complex odors, as well as the performance of the proposed architecture in encountering sensor failure, were investigated and compared with the generic architecture. The results demonstrated that by applying the proposed architecture in the artificial olfactory system, the performance of system in the healthy mode was identical to the classic structure. However, in the faulty situation, the proposed architecture implied high identification ability of odor samples, while the generic architecture showed very poor performance in the same situation. Based on the results, it was possible to achieve high odor identification through the developed artificial olfactory system using the proposed architecture. PMID:27038885

  18. Information Processing in Cognition Process and New Artificial Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Nanning; Xue, Jianru

    In this chapter, we discuss, in depth, visual information processing and a new artificial intelligent (AI) system that is based upon cognitive mechanisms. The relationship between a general model of intelligent systems and cognitive mechanisms is described, and in particular we explore visual information processing with selective attention. We also discuss a methodology for studying the new AI system and propose some important basic research issues that have emerged in the intersecting fields of cognitive science and information science. To this end, a new scheme for associative memory and a new architecture for an AI system with attractors of chaos are addressed.

  19. Artificial intelligence, expert systems, computer vision, and natural language processing

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  20. Bed bugs, their blood sources and life history parameters: a comparison of artificial and natural feeding.

    PubMed

    Aak, A; Rukke, B A

    2014-03-01

    A blood-feeding system that utilizes a small amount of whole heparinized human blood in parafilm bags is described in detail, and similarities and differences between artificially fed and naturally rodent-fed bed bugs (Hemiptera: Cimicidae) are discussed. Blood with high levels of heparin (10%) was unsuitable for artificial colony rearing, whereas bed bugs fed on 1% heparinized blood and those that naturally ingested rat blood completed their lifecycle with similar stage structures over time, with no significant differences in mortality. No differences in feeding efficiency or fertility were found in a direct comparison of bed bugs maintained under each of these two treatments, but analysis of the full lifecycle revealed that artificially fed bed bugs became significantly smaller and laid fewer eggs than rodent-fed bed bugs. The level of membrane stretching regulated the number of bed bugs that fed. When the membrane was stretched to twice its length and width, 96% of bed bugs successfully fed through the parafilm. Whole heparinized blood that was stored at 6 °C for ≥ 14 days failed to retain its nutritional value and the amount of blood consumed and number of consecutive moults were significantly reduced. PMID:23692154

  1. Validation of artificial skin equivalents as in vitro testing systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert; Marx, Ulrich; Walles, Heike; Schober, Lena

    2011-03-01

    With the increasing complexity of the chemical composition of pharmaceuticals, cosmetics and everyday substances, the awareness of potential health issues and long term damages for humanoid organs is shifting into focus. Artificial in vitro testing systems play an important role in providing reliable test conditions and replacing precarious animal testing. Especially artificial skin equivalents ASEs are used for a broad spectrum of studies like penetration, irritation and corrosion of substances. One major challenge in tissue engineering is the qualification of each individual ASE as in vitro testing system. Due to biological fluctuations, the stratum corneum hornified layer of some ASEs may not fully develop or other defects might occur. For monitoring these effects we developed an fully automated Optical Coherence Tomography device. Here, we present different methods to characterize and evaluate the quality of the ASEs based on image and data processing of OCT B-scans. By analysing the surface structure, defects, like cuts or tears, are detectable. A further indicator for the quality of the ASE is the morphology of the tissue. This allows to determine if the skin model has reached the final growth state. We found, that OCT is a well suited technology for automatically characterizing artificial skin equivalents and validating the application as testing system.

  2. The application of hybrid artificial intelligence systems for forecasting

    NASA Astrophysics Data System (ADS)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  3. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  4. Artificial immune system approach for air combat maneuvering

    NASA Astrophysics Data System (ADS)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  5. Assuring Life in Composite Systems

    NASA Technical Reports Server (NTRS)

    Chamis, Christos c.

    2008-01-01

    A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.

  6. Life beyond the solar system.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Review of some of the highlights and more recent developments in the search for extraterrestrial intelligence. The first major problem is one of the generality of the formation of planetary systems. Observations of the nearest stars which are not members of binary or multiple stars indicates that fully half have companions of planetary mass. The presence of organic compounds in meteorites, probably in Jovian planets, in comets, in the interstellar medium, and in cool stars implies that the production of organic compounds essential for the origin of life should be pervasive throughout the universe. Possibilities of interstellar communication are discussed.

  7. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  8. Artificial endocrine controller for power management in robotic systems.

    PubMed

    Sauzé, Colin; Neal, Mark

    2013-12-01

    The robots that operate autonomously for extended periods in remote environments are often limited to gather only small amounts of power through photovoltaic solar panels. Such limited power budgets make power management critical to the success of the robot's mission. Artificial endocrine controllers, inspired by the mammalian endocrine system, have shown potential as a method for managing competing demands, gradually switching between behaviors, synchronizing behavior with external events, and maintaining a stable internal state of the robot. This paper reports the results obtained using these methods to manage power in an autonomous sailing robot. Artificial neural networks are used for sail and rudder control, while an artificial endocrine controller modulates the magnitude of actuator movements in response to battery or sunlight levels. Experiments are performed both in simulation and using a real robot. In simulation a 13-fold reduction in median power consumption is achieved; in the robot this is reduced to a twofold reduction because of the limitations of the simulation model. Additional simulations of a long term mission demonstrate the controller's ability to make gradual behavioral transitions and to synchronize behaviors with diurnal and seasonal changes in sunlight levels. PMID:24805216

  9. An artificial compound eye system for large field imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shi, Lifang; Shi, Ruiying; Dong, Xiaochun; Deng, Qiling; Du, Chunlei

    2012-11-01

    With the rapid development of science and technology, optical imaging system has been widely used, and the performance requirements are getting higher and higher such as lighter weight, smaller size, larger field of view and more sensitive to the moving targets. With the advantages of large field of view, high agility and multi-channels, compound eye is more and more concerned by academia and industry. In this work, an artificial spherical compound eye imaging system is proposed, which is formed by several mini cameras to get a large field of view. By analyzing the relationship of the view field between every single camera and the whole system, the geometric arrangement of cameras is studied and the compound eye structure is designed. By using the precision machining technology, the system can be manufactured. To verify the performance of this system, experiments were carried out, where the compound eye was formed by seven mini cameras which were placed centripetally along a spherical surface so that each camera points in a different direction. Pictures taken by these cameras were mosaiced into a complete image with large field of view. The results of the experiments prove the validity of the design method and the fabrication technology. By increasing the number of the cameras, larger view field even panoramic imaging can be realized by using this artificial compound eye.

  10. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  11. Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth

    PubMed Central

    van Geffen, Koert G; van Grunsven, Roy H A; van Ruijven, Jasper; Berendse, Frank; Veenendaal, Elmar M

    2014-01-01

    Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well-known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life-history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life-history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex-specific effects of artificial light on caterpillar life-history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life-histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history. PMID:25360250

  12. Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth.

    PubMed

    van Geffen, Koert G; van Grunsven, Roy H A; van Ruijven, Jasper; Berendse, Frank; Veenendaal, Elmar M

    2014-06-01

    Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well-known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life-history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life-history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex-specific effects of artificial light on caterpillar life-history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life-histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history. PMID:25360250

  13. Can interbreeding of wild and artificially propagated animals be prevented by using broodstock selected for a divergent life history?

    PubMed Central

    Seamons, Todd R; Hauser, Lorenz; Naish, Kerry A; Quinn, Thomas P

    2012-01-01

    Two strategies have been proposed to avoid negative genetic effects of artificially propagated individuals on wild populations: (i) integration of wild and captive populations to minimize domestication selection and (ii) segregation of released individuals from the wild population to minimize interbreeding. We tested the efficacy of the strategy of segregation by divergent life history in a steelhead trout, Oncorhynchus mykiss, system, where hatchery fish were selected to spawn months earlier than the indigenous wild population. The proportion of wild ancestry smolts and adults declined by 10–20% over the three generations since the hatchery program began. Up to 80% of the naturally produced steelhead in any given year were hatchery/wild hybrids. Regression model selection analysis showed that the proportion of hatchery ancestry smolts was lower in years when stream discharge was high, suggesting a negative effect of flow on reproductive success of early-spawning hatchery fish. Furthermore, proportions of hybrid smolts and adults were higher in years when the number of naturally spawning hatchery-produced adults was higher. Divergent life history failed to prevent interbreeding when physical isolation was ineffective, an inadequacy that is likely to prevail in many other situations. PMID:23144657

  14. Artificial vision support system (AVS(2)) for improved prosthetic vision.

    PubMed

    Fink, Wolfgang; Tarbell, Mark A

    2014-11-01

    State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators. PMID:25286349

  15. Adaptive conventional power system stabilizer based on artificial neural network

    SciTech Connect

    Kothari, M.L.; Segal, R.; Ghodki, B.K.

    1995-12-31

    This paper deals with an artificial neural network (ANN) based adaptive conventional power system stabilizer (PSS). The ANN comprises an input layer, a hidden layer and an output layer. The input vector to the ANN comprises real power (P) and reactive power (Q), while the output vector comprises optimum PSS parameters. A systematic approach for generating training set covering wide range of operating conditions, is presented. The ANN has been trained using back-propagation training algorithm. Investigations reveal that the dynamic performance of ANN based adaptive conventional PSS is quite insensitive to wide variations in loading conditions.

  16. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  17. Water oxidation reaction in natural and artificial photosynthetic systems

    SciTech Connect

    Yano, Junko; Yachandra, Vittal

    2013-12-10

    Understanding the structure and mechanism of water oxidation catalysts is an essential component for developing artificial photosynthetic devices. In the natural water oxidation catalyst, the geometric and electronic structure of its inorganic core, the Mn{sub 4}CaO{sub 5} cluster, has been studied by spectroscopic and diffraction measurements. In inorganic systems, metal oxides seem to be good candidates for water oxidation catalysts. Understanding the reaction mechanism in both natural and oxide-based catalysts will helpin further developing efficient and robust water oxidation catalysts.

  18. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  19. Design Considerations for Artificial Lifting of Enhanced Geothermal System Fluids

    SciTech Connect

    Xina Xie; K. K. Bloomfield; G. L. Mines; G. M. Shook

    2005-07-01

    This work evaluates the effect of production well pumping requirements on power generation. The amount of work that can be extracted from a geothermal fluid and the rate at which this work is converted to power increase as the reservoir temperature increases. Artificial lifting is an important issue in this process. The results presented are based on a configuration comprising one production well and one injection well, representing an enhanced geothermal system. The effects of the hydraulic conductivity of the geothermal reservoir, the flow rate, and the size of the production casing are considered in the study. Besides submersible pumps, the possibility of using lineshaft pumps is also discussed.

  20. NASA Now: Life Science: Portable Life Support System

    NASA Video Gallery

    Spacesuit engineer Antja Chambers discusses the Portable Life Support System, a backpack the astronauts wear during spacewalks. It provides oxygen for the astronauts, protects them from the harsh c...

  1. Origins of life systems chemistry

    NASA Astrophysics Data System (ADS)

    Sutherland, J.

    2015-10-01

    By reconciling previously conflicting views about the origin of life - in which one or other cellular subsystem emerges first, and then 'invents' the others - a new modus operandi for its study is suggested. Guided by this, a cyanosulfidic protometabolism is uncovered which uses UV light and the stoichiometric reducing power of hydrogen sulfide to convert hydrogen cyanide, and a couple of other prebiotic feedstock molecules which can be derived therefrom, into nucleic acid, peptide and lipid building blocks. Copper plays several key roles in this chemistry, thus, for example, copper(I) catalysed cross coupling and copper(II) driven oxidative crosscoupling reactions generate key feedstock molecules. Geochemical scenarios consistent with this protometabolism are outlined. Finally, the transition of a system from the inanimate to the animate state is considered in the context of there being intermediate stages of partial 'aliveness'.

  2. ANUBIS: artificial neuromodulation using a Bayesian inference system.

    PubMed

    Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie

    2013-01-01

    Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework. PMID:22970879

  3. Controlled Ecological Life Support System - CELSS

    NASA Technical Reports Server (NTRS)

    Sager, John C.

    1992-01-01

    The Controlled Ecological Life Support System (CELSS) Program, a NASA effort to develop bioregenerative systems which provide required life support elements for crews on long duration space missions or extraterrestrial planetary colonizations, is briefly discussed. The CELSS analytical requirements are defined in relation to the life support objectives and priorities of a CELSS. The first phase of the CELSS Breadboard Concept is shown.

  4. Disease spread models in wild and feral animal populations: application of artificial life models.

    PubMed

    Ward, M P; Laffan, S W; Highfield, L D

    2011-08-01

    The role that wild and feral animal populations might play in the incursion and spread of important transboundary animal diseases, such as foot and mouth disease (FMD), has received less attention than is warranted by the potential impacts. An artificial life model (Sirca) has been used to investigate this issue in studies based on spatially referenced data sets from southern Texas. An incursion of FMD in which either feral pig or deer populations were infected could result in between 698 and 1557 infected cattle and affect an area of between 166 km2 and 455 km2 after a 100-day period. Although outbreak size in deer populations can be predicted bythe size of the local deer population initially infected, the resulting outbreaks in feral pig populations are less predictable. Also, in the case of deer, the size of potential outbreaks might depend on the season when the incursion occurs. The impact of various mitigation strategies on disease spread has also been investigated. The approach used in the studies reviewed here explicitly incorporates the spatial distribution and relationships between animal populations, providing a new framework to explore potential impacts, costs, and control strategies. PMID:21961216

  5. Incomplete fuzzy data processing systems using artificial neural network

    NASA Technical Reports Server (NTRS)

    Patyra, Marek J.

    1992-01-01

    In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.

  6. Ultrathin Alvarez lens system actuated by artificial muscles.

    PubMed

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems. PMID:27139677

  7. Development of an Electrohydraulic Total Artificial Heart System

    NASA Astrophysics Data System (ADS)

    Homma, Akihiko; Taenaka, Yoshiyuki; Tatsumi, Eisuke; Takewa, Yoshiaki; Mizuno, Toshihide; Shioya, Kyoko; Lee, Hwan Sung; Tsukiya, Tomonori; Kakuta, Yukihide; Katagiri, Nobumasa; Nishinaka, Tomohiro; Koshiji, Kohji

    An electrohydraulic total artificial heart (EHTAH) system has been developed. The EHTAH system consists of diaphragm-type blood pumps, an electrohydraulic actuator, an internal control unit, a transcutaneous energy transfer system (TETS), a transcutaneous optical telemetry system (TOTS), and an internal battery. The reciprocating rotation of the impeller generates oil pressure which drives the blood pumps at alternating intervals. The blood pumps and the actuator were successfully integrated into the pump unit without oil conduits. As a result of miniaturizing the blood pumps and the actuator, the displacement volume and weight of the EHTAH system decreased to 872 ml and 2492g, respectively. Furthermore, the maximum flow rate and efficiency increased up to 12 L/min and 15.4%. The pump units and the EHTAH systems were successfully implanted in 36 calves weighing from 55 to 87kg. In the longest case, the ca1f with the pump unit survived for 87 days and the calf with the EHTAH system survived for 70 days. The EHTAH system was powered by the TETS, and was powered everyday by the internal battery for 40 minutes. These results indicate that the EHTAH system has the potential to become a fully implantable cardiac replacement system.

  8. Interactions between Artificial Gravity, Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Natalie; Zwart, Sara; Smith, Scott M.

    2007-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding has a profound effect on the health of an organism. Therefore, optimal nutrition is mandatory on Earth (1 g), in microgravity and also when applying artificial gravity to the human system. Immobilization like in microgravity or bed rest also has a profound effect on different physiological systems, like body fluid regulation, the cardiovascular, the musculoskeletal, the immunological system and others. Up to now there is no countermeasure available which is effective to counteract cardiovascular deconditioning (rf. Chapter 5) together with maintenance of the musculoskeletal system in a rather short period of time. Gravity seems therefore to be one of the main stimuli to keep these systems and application of certain duration of artificial gravity per day by centrifugation has often been proposed as a very potential countermeasure against the weakening of the physiological systems. Up to now, neither optimal intensity nor optimal length of application of artificial gravity has been studied sufficiently to recommend a certain, effective and efficient protocol. However, as shown in chapter 5 on cardiovascular system, in chapter 6 on the neuromuscular system and chapter 7 (bone and connective system) artificial gravity has a very high potential to counteract any degradation caused by immobilization. But, nutrient supply -which ideally should match the actual needs- will interact with these changes and therefore has also to be taken into account. It is well known that astronauts beside the Skylab missions- were and are still not optimally nourished during their stay in space (Bourland et al. 2000;Heer et al. 1995;Heer et al. 2000b;Smith et al. 1997;Smith & Lane 1999;Smith et al. 2001;Smith et al. 2005). It has also been described anecdotally that astronauts have lower appetites. One possible explanation could be altered taste and smell sensations during space flight, although in some early

  9. Systems of creation: the emergence of life from nonliving matter.

    PubMed

    Mann, Stephen

    2012-12-18

    The advent of life from prebiotic origins remains a deep and possibly inexplicable scientific mystery. Nevertheless, the logic of living cells offers potential insights into an unknown world of autonomous minimal life forms (protocells). This Account reviews the key life criteria required for the development of protobiological systems. By adopting a systems-based perspective to delineate the notion of cellularity, we focus specific attention on core criteria, systems design, nanoscale phenomena and organizational logic. Complex processes of compartmentalization, replication, metabolism, energization, and evolution provide the framework for a universal biology that penetrates deep into the history of life on the Earth. However, the advent of protolife systems was most likely coextensive with reduced grades of cellularity in the form of simpler compartmentalization modules with basic autonomy and abridged systems functionalities (cells focused on specific functions such as metabolism or replication). In this regard, we discuss recent advances in the design, chemical construction, and operation of protocell models based on self-assembled phospholipid or fatty acid vesicles, self-organized inorganic nanoparticles, or spontaneous microphase separation of peptide/nucleotide membrane-free droplets. These studies represent a first step towards addressing how the transition from nonliving to living matter might be achieved in the laboratory. They also evaluate plausible scenarios of the origin of cellular life on the early Earth. Such an approach should also contribute significantly to the chemical construction of primitive artificial cells, small-scale bioreactors, and soft adaptive micromachines. PMID:22404166

  10. Controlled Ecological Life Support System. Life Support Systems in Space Travel

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor); Klein, H. P. (Editor)

    1985-01-01

    Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station.

  11. A Bio-Inspired Electromechanical System: Artificial Hair Cell

    NASA Astrophysics Data System (ADS)

    Ahn, Kang-Hun

    Inspired by recent biophysical study on the auditory sensory organs, we study electromechanical system which functions similar to the hair cell of the ear. One of the important mechanisms of hair cells, adaptation, is mimicked by an electromechanical feedback loop. The proposed artificial hair cell functions similar to a living sensory organ in the sense that it senses input force signal in spite of the relatively strong noise. Numerical simulation of the proposed system shows otoacoustic sound emission, which was observed in the experiments on the hair cells of the bullfrog. This spontaneous motion is noise-induced periodic motion which is controlled by the time scale of adaptation process and the mechanical damping.

  12. A Survey of Artificial Immune System Based Intrusion Detection

    PubMed Central

    Li, Tao; Hu, Xinlei; Wang, Feng; Zou, Yang

    2014-01-01

    In the area of computer security, Intrusion Detection (ID) is a mechanism that attempts to discover abnormal access to computers by analyzing various interactions. There is a lot of literature about ID, but this study only surveys the approaches based on Artificial Immune System (AIS). The use of AIS in ID is an appealing concept in current techniques. This paper summarizes AIS based ID methods from a new view point; moreover, a framework is proposed for the design of AIS based ID Systems (IDSs). This framework is analyzed and discussed based on three core aspects: antibody/antigen encoding, generation algorithm, and evolution mode. Then we collate the commonly used algorithms, their implementation characteristics, and the development of IDSs into this framework. Finally, some of the future challenges in this area are also highlighted. PMID:24790549

  13. A survey of artificial immune system based intrusion detection.

    PubMed

    Yang, Hua; Li, Tao; Hu, Xinlei; Wang, Feng; Zou, Yang

    2014-01-01

    In the area of computer security, Intrusion Detection (ID) is a mechanism that attempts to discover abnormal access to computers by analyzing various interactions. There is a lot of literature about ID, but this study only surveys the approaches based on Artificial Immune System (AIS). The use of AIS in ID is an appealing concept in current techniques. This paper summarizes AIS based ID methods from a new view point; moreover, a framework is proposed for the design of AIS based ID Systems (IDSs). This framework is analyzed and discussed based on three core aspects: antibody/antigen encoding, generation algorithm, and evolution mode. Then we collate the commonly used algorithms, their implementation characteristics, and the development of IDSs into this framework. Finally, some of the future challenges in this area are also highlighted. PMID:24790549

  14. Using isotopes for design and monitoring of artificial recharge systems

    USGS Publications Warehouse

    Contributors: Hendriksson, N.; Kulongoski, J.T.; Massmann, G.; Newman, B.

    2013-01-01

    Over the past years, the IAEA has provided support to a number of Member States engaged in the implementation of hydrological projects dealing with the design and monitoring of artificial recharge ( A R ) systems, primarily situated in arid and semiarid regions. AR is defined as any engineered system designed to introduce water to, and store water in, underlying aquifers. Aquifer storage and recovery (ASR) is a specific type of AR used with the purpose of increasing groundwater resources. Different water management strategies have been tested under various geographical, hydrological and climatic regimes. However, the success of such schemes cannot easily be predicted, since many variables need to be taken into account in the early stages of every AR project.

  15. Towards Design of a Stumble Detection System for Artificial Legs

    PubMed Central

    Zhang, Fan; D’Andrea, Susan E.; Nunnery, Michael J.; Kay, Steven M.; Huang, He

    2011-01-01

    Recent advances in design of powered artificial legs have led to increased potential to allow lower limb amputees to actively recover stumbles. To achieve this goal, promptly and accurately identifying stumbles is essential. This study aimed to (1) select potential stumble detection data sources that react reliably and quickly to stumbles and can be measured from a prosthesis, and (2) investigate two different approaches based on selected data sources to detect stumbles and classify stumble types in patients with transfemoral (TF) amputations during ambulation. In the experiments, the normal gait of TF amputees was perturbed by a controllable treadmill or when they walked on an obstacle course. The results showed that the acceleration of prosthetic foot can accurately detect the tested stumbling events 140–240 ms before the critical timing of falling and precisely classify the stumble type. However, the detector based on foot acceleration produced high false alarm rates, which challenged its real application. Combining electromyographic (EMG) signals recorded from residual limb with the foot acceleration significantly reduced the false alarm rate but sacrificed the detection response time. The results of this study may lead to design of a stumble detection system for instrumented, powered artificial legs; however, continued engineering efforts are required to improve the detection performance and resolve the challenges that remain for implementing the stumble detector on prosthetic legs. PMID:21859635

  16. WebAL Comes of Age: A Review of the First 21 Years of Artificial Life on the Web.

    PubMed

    Taylor, Tim; Auerbach, Joshua E; Bongard, Josh; Clune, Jeff; Hickinbotham, Simon; Ofria, Charles; Oka, Mizuki; Risi, Sebastian; Stanley, Kenneth O; Yosinski, Jason

    2016-01-01

    We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994-when the first WebAL work appeared-up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010-2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area. PMID:27472416

  17. Bioregenerative life-support systems

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1994-01-01

    Long-duration future habitation of space involving great distances from Earth and/or large crew sizes (eg, lunar outpost, Mars base) will require a controlled ecological life-support system (CELSS) to simultaneously revitalize atmosphere (liberate oxygen and fix carbon dioxide), purify water (via transpiration), and generate human food (for a vegetarian diet). Photosynthetic higher plants and algae will provide the essential functions of biomass productivity in a CELSS, and a combination of physicochemical and bioregenerative processes will be used to regenerate renewable resources from waste materials. Crop selection criteria for a CELSS include nutritional use characteristics as well as horticultural characteristics. Cereals, legumes, and oilseed crops are used to provide the major macronutrients for the CELSS diet. A National Aeronautics and Space Administration (NASA) Specialized Center of Research and Training (NSCORT) was established at Purdue University to establish proof of the concept of the sustainability of a CELSS. The Biosphere 2 project in Arizona is providing a model for predicted and unpredicted situations that arise as a result of closure in a complex natural ecosystem.

  18. VWPS: A Ventilator Weaning Prediction System with Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Chen, Austin H.; Chen, Guan-Ting

    How to wean patients efficiently off mechanical ventilation continues to be a challenge for medical professionals. In this paper we have described a novel approach to the study of a ventilator weaning prediction system (VWPS). Firstly, we have developed and written three Artificial Neural Network (ANN) algorithms to predict a weaning successful rate based on the clinical data. Secondly, we have implemented two user-friendly weaning success rate prediction systems; the VWPS system and the BWAP system. Both systems could be used to help doctors objectively and effectively predict whether weaning is appropriate for patients based on the patients' clinical data. Our system utilizes the powerful processing abilities of MatLab. Thirdly, we have calculated the performance through measures such as sensitivity and accuracy for these three algorithms. The results show a very high sensitivity (around 80%) and accuracy (around 70%). To our knowledge, this is the first design approach of its kind to be used in the study of ventilator weaning success rate prediction.

  19. Artificial or variable gravity attained by tether systems

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1986-01-01

    The simplest orbiting tethered system demands for stability that the mass centers of two end bodies be displaced above and below the position of zero acceleration. Therefore, the contents of the end bodies are subjected necessarily to acceleration fields or artificial gravity whose magnitudes depend on the dimensions and masses of the system. If the length of the tether changes, so do the fields. Even for a fixed tether length, the acceleration field at a location in the system may be somewhat variable unless special means are employed to maintain a constant value. These fundamental properties of a tethered system can be used to advantage if small or variable acceleration fields are desired for experimental or operational reasons. This potential use involves a few expressions from a formulation of tether system dynamics. Some of these formulae were collected for convenient use. Two and three body tethered equilibrium equations are explained. A special application of acceleration field control using a tether system is attainment of near-zero gravity. In this applicaition, even small variations about zero become a critical matter.

  20. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  1. Artificial neural network for location estimation in wireless communication systems.

    PubMed

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments. PMID:22736978

  2. Variable selection for QSAR by artificial ant colony systems.

    PubMed

    Izrailev, S; Agrafiotis, D K

    2002-01-01

    Derivation of quantitative structure-activity relationships (QSAR) usually involves computational models that relate a set of input variables describing the structural properties of the molecules for which the activity has been measured to the output variable representing activity. Many of the input variables may be correlated, and it is therefore often desirable to select an optimal subset of the input variables that results in the most predictive model. In this paper we describe an optimization technique for variable selection based on artificial ant colony systems. The algorithm is inspired by the behavior of real ants, which are able to find the shortest path between a food source and their nest using deposits of pheromone as a communication agent. The underlying basic self-organizing principle is exploited for the construction of parsimonious QSAR models based on neural networks for several classical QSAR data sets. PMID:12184383

  3. Tuning of power system stabilizers using an artificial neural network

    SciTech Connect

    Hsu, Y.Y.; Chen, C.R. )

    1991-12-01

    This paper reports on tuning of power system stabilizers (PSS) which is investigated using an artificial neural network (ANN). To have good damping characteristics over a wide range of operating conditions, it is desirable to adapt the PSS parameters in real-time based on generator loading conditions. To do this, a pair of on-line measurements, i.e. generator real power output (P) and power factor (PF), which are representative of generator operating condition, are chosen as the input signals to the neural net. The outputs of the neural net are the desired PSS parameters. The neural net, once trained by a set of input-output patterns in the training set, can yield proper PSS parameters under any generator loading condition. Digital simulations of a synchronous machine subject to a major disturbance of three-phase fault under different operating conditions are performed to demonstrate the effectiveness of the proposed neural network.

  4. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  5. Automatic Emboli Detection System for the Artificial Heart

    NASA Astrophysics Data System (ADS)

    Steifer, T.; Lewandowski, M.; Karwat, P.; Gawlikowski, M.

    In spite of the progress in material engineering and ventricular assist devices construction, thromboembolism remains the most crucial problem in mechanical heart supporting systems. Therefore, the ability to monitor the patient's blood for clot formation should be considered an important factor in development of heart supporting systems. The well-known methods for automatic embolus detection are based on the monitoring of the ultrasound Doppler signal. A working system utilizing ultrasound Doppler is being developed for the purpose of flow estimation and emboli detection in the clinical artificial heart ReligaHeart EXT. Thesystem will be based on the existing dual channel multi-gate Doppler device with RF digital processing. A specially developed clamp-on cannula probe, equipped with 2 - 4 MHz piezoceramic transducers, enables easy system setup. We present the issuesrelated to the development of automatic emboli detection via Doppler measurements. We consider several algorithms for the flow estimation and emboli detection. We discuss their efficiency and confront them with the requirements of our experimental setup. Theoretical considerations are then met with preliminary experimental findings from a) flow studies with blood mimicking fluid and b) in-vitro flow studies with animal blood. Finally, we discuss some more methodological issues - we consider several possible approaches to the problem of verification of the accuracy of the detection system.

  6. Simulation of HIV infection in artificial immune systems

    NASA Astrophysics Data System (ADS)

    Sieburg, Hans B.; McCutchan, J. Allen; Clay, Oliver K.; Cabalerro, Lisa; Ostlund, James J.

    1990-09-01

    Infection by the human immunodeficiency virus (HIV) causes a multi-faceted disease process which ultimately leads to severe degenerative conditions in the immune and nervous systems. The complexity of the virus/host-system interaction has brought into sharp focus the need for alternative efforts by which to overcome the limitations of available animal models. This article reports on the dynamics of HIV infection in an artificial immune system (AIS), a novel in silico tool for bio-medical research. Using a method of graphical programming, the HIV/AIS interactions are described at the cellular level and then transferred into the setting of an asynchronous cellular automaton simulation. A specific problem in HIV pathogenesis is addressed: To determine the extent by which the physiological connectivity of a normal B-cell, T-cell, macrophage immune system supports persistence of infection and disease progression to AIDS. Several observations are discussed which will be presented in four categories: (a) the major known manifestations of HIV infection and AIDS; (b) the predictability of latency and sudden progression to disease; (c) the predictability of HIV-dependent alterations of cytokine secretion patterns, and (d) secondary infections, which are found to be a critical element in establishing and maintaining a progressive disease dynamics. The effects of exogenously applied cytokine Interleukin 2 are considered. All results are summarized in a phase-graph model of the global HIV/AIS dynamical system.

  7. Environmental Control and Life Support Systems and Power Systems ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Environmental Control and Life Support Systems and Power Systems - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Artificial intelligence in the service of system administrators

    NASA Astrophysics Data System (ADS)

    Haen, C.; Barra, V.; Bonaccorsi, E.; Neufeld, N.

    2012-12-01

    The LHCb online system relies on a large and heterogeneous IT infrastructure made from thousands of servers on which many different applications are running. They run a great variety of tasks: critical ones such as data taking and secondary ones like web servers. The administration of such a system and making sure it is working properly represents a very important workload for the small expert-operator team. Research has been performed to try to automatize (some) system administration tasks, starting in 2001 when IBM defined the so-called “self objectives” supposed to lead to “autonomic computing”. In this context, we present a framework that makes use of artificial intelligence and machine learning to monitor and diagnose at a low level and in a non intrusive way Linux-based systems and their interaction with software. Moreover, the multi agent approach we use, coupled with an “object oriented paradigm” architecture should increase our learning speed a lot and highlight relations between problems.

  9. Developing Sustainable Life Support System Concepts

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  10. Life prediction systems for critical rotating components

    NASA Technical Reports Server (NTRS)

    Cunningham, Susan E.

    1993-01-01

    With the advent of advanced materials in rotating gas turbine engine components, the methodologies for life prediction of these parts must also increase in sophistication and capability. Pratt & Whitney's view of generic requirements for composite component life prediction systems are presented, efforts underway to develop these systems are discussed, and industry participation in key areas requiring development is solicited.

  11. Security framework for networked storage system based on artificial immune system

    NASA Astrophysics Data System (ADS)

    Huang, Jianzhong; Xie, Changsheng; Zhang, Chengfeng; Zhan, Ling

    2007-11-01

    This paper proposed a theoretical framework for the networked storage system addressing the storage security. The immune system is an adaptive learning system, which can recognize, classify and eliminate 'non-self' such as foreign pathogens. Thus, we introduced the artificial immune technique to the storage security research, and proposed a full theoretical framework for storage security system. Under this framework, it is possible to carry out the quantitative evaluation for the storage security system using modeling language of artificial immune system (AIS), and the evaluation can offer security consideration for the deployment of networked storage system. Meanwhile, it is potential to obtain the active defense technique suitable for networked storage system via exploring the principle of AIS and achieve a highly secure storage system with immune characteristic.

  12. The Thoratec system implanted as a modified total artificial heart: the Bad Oeynhausen technique.

    PubMed

    Arusoglu, Latif; Reiss, Nils; Morshuis, Michiel; Schoenbrodt, Michael; Hakim-Meibodi, Kavous; Gummert, Jan

    2010-12-01

    The CardioWest™ total artificial heart (SynCardia Systems, Tuscon, AZ, USA) is the only FDA-approved total artificial heart determined as a bridge to human heart transplantation for patients dying of biventricular heart failure. Implantation provides immediate hemodynamic restoration and clinical stabilization, leading to end-organ recovery and thus eventually allowing cardiac transplantation. Occasionally, implantation of a total artificial heart is not feasible for anatomical reasons. For this patient group, we have developed an alternative technique using the paracorporeal Thoratec biventricular support system (Thoratec, Pleasanton, CA, USA) as a modified total artificial heart. A detailed description of the implantation technique is presented. PMID:21169150

  13. Artificial Intelligence Measurement System, Overview and Lessons Learned. Final Project Report.

    ERIC Educational Resources Information Center

    Baker, Eva L.; Butler, Frances A.

    This report summarizes the work conducted for the Artificial Intelligence Measurement System (AIMS) Project which was undertaken as an exploration of methodology to consider how the effects of artificial intelligence systems could be compared to human performance. The research covered four areas of inquiry: (1) natural language processing and…

  14. Planetary Systems and the Origins of Life

    NASA Astrophysics Data System (ADS)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  15. A model for a knowledge-based system's life cycle

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  16. Physiological Characterization of the SynCardia Total Artificial Heart in a Mock Circulation System

    PubMed Central

    Crosby, Jessica R.; DeCook, Katrina J.; Tran, Phat L.; Smith, Richard G.; Larson, Douglas F.; Khalpey, Zain I.; Burkhoff, Daniel; Slepian, Marvin J.

    2014-01-01

    The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving bi-ventricular replacement system for a wide variety of patients with end-stage heart failure. While the clinical performance of the TAH is established, modern physiologic characterization, in terms of elastance behavior and pressure-volume characterization has not been defined. Herein we examine the TAH in terms of elastance using a non-ejecting left-ventricle, and then characterize the pressure-volume relationship of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Further, we show that the TAH has a pressure-volume relationship behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload, however this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared to the human heart. PMID:25551416

  17. Physiological characterization of the SynCardia total artificial heart in a mock circulation system.

    PubMed

    Crosby, Jessica R; DeCook, Katrina J; Tran, Phat L; Smith, Richard G; Larson, Douglas F; Khalpey, Zain I; Burkhoff, Daniel; Slepian, Marvin J

    2015-01-01

    The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving biventricular replacement system for a wide variety of patients with end-stage heart failure. Although the clinical performance of the TAH is established, modern physiological characterization, in terms of elastance behavior and pressure-volume (PV) characterization has not been defined. Herein, we examine the TAH in terms of elastance using a nonejecting left ventricle, and then characterize the PV relation of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Furthermore, we show that the TAH has a PV relation behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload-dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload; however, this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared with the human heart. PMID:25551416

  18. Detecting breakpoints in artificially modified- and real-life time series using three state-of-the-art methods

    NASA Astrophysics Data System (ADS)

    Topál, Dániel; Matyasovszkyt, István; Kern, Zoltán; Hatvani, István Gábor

    2016-02-01

    Time series often contain breakpoints of different origin, i.e. breakpoints, caused by (i) shifts in trend, (ii) other changes in trend and/or, (iii) changes in variance. In the present study, artificially generated time series with white and red noise structures are analyzed using three recently developed breakpoint detection methods. The time series are modified so that the exact "locations" of the artificial breakpoints are prescribed, making it possible to evaluate the methods exactly. Hence, the study provides a deeper insight into the behaviour of the three different breakpoint detection methods. Utilizing this experience can help solving breakpoint detection problems in real-life data sets, as is demonstrated with two examples taken from the fields of paleoclimate research and petrology.

  19. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS)

    NASA Astrophysics Data System (ADS)

    Cooper, Edwin L.

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the

  20. Energy conversion at liquid/liquid interfaces: artificial photosynthetic systems

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Gugeshashvili, M. I.; Deamer, D. W.

    1995-01-01

    This chapter focuses on multielectron reactions in organized assemblies of molecules at the liquid/liquid interface. We describe the thermodynamic and kinetic parameters of such reactions, including the structure of the reaction centers, charge movement along the electron transfer pathways, and the role of electric double layers in artificial photosynthesis. Some examples of artificial photosynthesis at the oil/water interface are considered, including water photooxidation to the molecular oxygen, oxygen photoreduction, photosynthesis of amphiphilic compounds and proton evolution by photochemical processes.

  1. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    PubMed

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination. PMID:27349114

  2. A new evolutionary system for evolving artificial neural networks.

    PubMed

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms. PMID:18255671

  3. Honey characterization using computer vision system and artificial neural networks.

    PubMed

    Shafiee, Sahameh; Minaei, Saeid; Moghaddam-Charkari, Nasrollah; Barzegar, Mohsen

    2014-09-15

    This paper reports the development of a computer vision system (CVS) for non-destructive characterization of honey based on colour and its correlated chemical attributes including ash content (AC), antioxidant activity (AA), and total phenolic content (TPC). Artificial neural network (ANN) models were applied to transform RGB values of images to CIE L*a*b* colourimetric measurements and to predict AC, TPC and AA from colour features of images. The developed ANN models were able to convert RGB values to CIE L*a*b* colourimetric parameters with low generalization error of 1.01±0.99. In addition, the developed models for prediction of AC, TPC and AA showed high performance based on colour parameters of honey images, as the R(2) values for prediction were 0.99, 0.98, and 0.87, for AC, AA and TPC, respectively. The experimental results show the effectiveness and possibility of applying CVS for non-destructive honey characterization by the industry. PMID:24767037

  4. Hydrothermal systems and the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1994-01-01

    The author reviews current thought about life originating in hyperthermophilic microorganisms. Hyperthermophiles obtain food from chemosynthesis of sulfur and have an RNA nucleotide sequence different from bacteria and eucarya. It is postulated that a hyperthermophile may be the common ancestor of all life. Current research efforts focus on the synthesis of organic compounds in hydrothermal systems.

  5. Closed-Loop Life Support Systems

    NASA Technical Reports Server (NTRS)

    Fisher, John W.

    2003-01-01

    Contents include the following: 1. Advanced life support requirements document-high level: (a) high level requirements and standards, (b) advanced life support requirements documents-air, food, water. 2. Example technologies that satisfy requrements: air system-carbon dioxide removal. 3. Air-sabatter. 4. International Space Station water treatment subsystem.5. Direct osmotic concentrator. 6. Mass, volume and power estimates.

  6. Hydrothermal systems and the emergence of life.

    PubMed

    Shock, E L

    1994-03-01

    The author reviews current thought about life originating in hyperthermophilic microorganisms. Hyperthermophiles obtain food from chemosynthesis of sulfur and have an RNA nucleotide sequence different from bacteria and eucarya. It is postulated that a hyperthermophile may be the common ancestor of all life. Current research efforts focus on the synthesis of organic compounds in hydrothermal systems. PMID:11539585

  7. Life Table and Laboratory Rearing of Nezara viridula (L.) (Heteroptera: Pentatomidae) on two Artificial Diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern green stink bug, Nezara viridula (Linnaeus), is a rather destructive pest and has been reported responsible for an estimated $ 6.5 millions dollars in costs associated with crop loss and insecticide costs across the US. A great deal of interest exists in the potential for using artifici...

  8. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  9. Implications of Human Pattern Processing for the Design of Artificial Knowledge Systems.

    ERIC Educational Resources Information Center

    Hayes-Roth, Barbara

    This paper presents evidence that four design principles commonly embodied in artificial knowledge systems are inconsistent with human cognitive capabilities. Because these principles are widely accepted as characteristics of human knowledge processing, common theoretical properties related to cognitive psychology and artificial intelligence which…

  10. Controlled Ecological Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1992-01-01

    Document contains proceedings of February, 1989 meeting of Scientists of NASA's Controlled Ecological Life Support Systems (CELSS) program. Includes 25 scientific papers and bibliography of CELSS documents published as NASA reports.

  11. Life cycle optimization of building energy systems

    NASA Astrophysics Data System (ADS)

    Osman, Ayat; Norman, Bryan; Ries, Robert

    2008-02-01

    A life cycle optimization model intended to potentially reduce the environmental impacts of energy use in commercial buildings is presented. A combination of energy simulation, life cycle assessment, and operations research techniques are used to develop the model. In addition to conventional energy systems, such as the electric grid and a gas boiler, cogeneration systems which concurrently generate power and heat are investigated as an alternative source of energy. Cogeneration systems appeared to be an attractive alternative to conventional systems when considering life cycle environmental criteria. Internal combustion engine and microturbine (MT) cogeneration systems resulted in a reduction of up to 38% in global warming potential compared with conventional systems, while solid oxide fuel cell and MT cogeneration systems resulted in a reduction of up to 94% in tropospheric ozone precursor potential (TOPP). Results include a Pareto-optimal frontier between reducing costs and reducing the selected environmental indicators.

  12. Design Rules for Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.

  13. Influence of adjustments to amputation and artificial limb on quality of life in patients following lower limb amputation.

    PubMed

    Sinha, Richa; van den Heuvel, Wim J A; Arokiasamy, Perianayagam; van Dijk, Jitse P

    2014-03-01

    The objectives of this study are to investigate the relationship between adjustments to amputation and artificial limb, and quality of life (QoL), and to analyse the influence of sociodemographic, medical and amputation-related factors on this relationship. Patients with unilateral and noncongenital lower limb amputation who were using artificial limb were interviewed (n=368) using structured questionnaires. The Trinity Amputation and Prosthesis Experience Scales (TAPES) were used to assess adjustments to amputation and artificial limb and the MOS Short-Form Health Survey (SF-36) was used to assess the physical (PCS) and mental (MCS) component summary of QoL. Absence of comorbidity and residual stump pain, being employed, young age, less functional restriction, being more adjusted to limitation, increased social adjustment and less restriction in athletic activity were related to better PCS scores. Absence of comorbidity and phantom limb pain, nonuse of assistive device, being more adjusted to limitation, increased social adjustment and being less functionally restricted were related to higher MCS scores. Comorbidity had a modifying effect on both PCS and MCS scores. In addition, age, being employed and residual stump pain had a modifying influence on PCS, whereas assistive device use and phantom limb pain had a modifying influence on MCS. Our findings show that TAPES subscales have a modifying effect on the associations between several background (sociodemographic and amputation characteristics) and QoL (PCS and MCS). This indicates that adjustments to amputation and artificial limb are the key determinants of QoL in individuals following lower limb amputation. PMID:24157864

  14. Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Averner, Maurice M.

    1989-01-01

    The NASA CELLS program is based upon the integration of biological and physiochemical processes in order to produce a system that will produce food, a breathable atmosphere, and potable water from metabolic and other wastes. The CELSS concept is described and a schematic system diagram is provided. Central to the CELSS concept is the Plant Growth Chamber, where green plant photosynthesis produces food, and aids in the production of oxygen and water. Progress to date at the Breadboard Facility at the Kennedy Space Center is summarized. The Breadboard Facility will implement the basic techniques and processes required for a CELSS based on photosynthetic plant growth in a ground-based system of practical size and results will be extrapolated to predict the performance of a full-sized system. Current available technology and near-future forecasts for plant growth techniques (focusing on maximum productivity), food sources (to select optimal CELSS plants), and waste management and contaminant control are discussed.

  15. Explosives and landmine detection using an artificial olfactory system

    NASA Astrophysics Data System (ADS)

    White, Joel E.; Waggoner, L. Paul; Kauer, John S.

    2004-09-01

    We are developing a portable, artificial olfactory system based on multiple attributes of the sense of smell to identify air-borne odors, including those associated with buried landmines. Brief (1-2 sec) air samples are drawn over an array of optically-interrogated, cross-reactive chemical sensors. These consist of polymers with high sensitivity and relatively narrow specificity for nitroaromatics (Timothy Swager, MIT), as well as those with broader responses, thus permitting discrimination among substances that may be confused for nitroaromatics. Biologically-based pattern matching algorithms automatically identify odors as one of several to which the device has been trained. In discrimination tests, after training to one concentration of 6 odors, the device gave 95% correct identification when tested at the original plus three different concentrations. Thus, as required in real world applications, the device can identify odors at multiple concentrations without explicitly training on each. In sensitivity tests, the device showed 100% detection and no false alarms for the landmine-related compound DNT at concentrations as low as 500 pp-trillion (quantified by GC/MS) - 10 times lower than average canine behavioral thresholds. To investigate landmine detection capabilities, field studies were conducted at Ft. Leonard Wood, MO. In calibration tests, signals from buried PMA1A anti-personnel landmines were clearly discriminated from background. In a limited 9 site "blind" test, PMA1A detection was 100% with false alarms of 40%. Although requiring further development, these data indicate that a device with appropriate sensors and exploiting olfactory principles can detect and discriminate low concentration vapor signatures, including those of buried landmines.

  16. Products of an Artificially Induced Hydrothermal System at Yucca Mountain

    SciTech Connect

    S. Levy

    2000-08-07

    Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than

  17. Life support systems for Mars transit

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Kliss, M.; Straight, C.

    1992-01-01

    The structural elements of life-support systems are reviewed in order to assess the suitability of specific features for use during a Mars mission. Life-support requirements are estimated by means of an approximate input/output analysis, and the advantages are listed relating to the use of recycling and regeneration techniques. The technological options for regeneration are presented in categories such as CO2 reduction, organics removal, polishing, food production, and organics oxidation. These data form the basis of proposed mission requirements and constraints as well as the definition of what constitutes an adequate reserve. Regenerative physical/chemical life-support systems are championed based exclusively on the mass savings inherent in the technology. The resiliency and 'soft' failure modes of bioregenerative life-support systems are identified as areas of investigation.

  18. An artificial neural network system for diagnosing gas turbine engine fuel faults

    SciTech Connect

    Illi, O.J. Jr.; Greitzer, F.L.; Kangas, L.J.; Reeve, T.

    1994-04-01

    The US Army Ordnance Center & School and Pacific Northwest Laboratories are developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system employs Artificial Neural Network (AN) technology to perform diagnosis and prognosis of the tank`s AGT-1500 gas turbine engine. This paper describes the design and prototype development of the ANN component of the diagnostic system, which we refer to as ``TEDANN`` for Turbine Engine Diagnostic Artificial Neural Networks.

  19. Life without a Systems Office

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2006-01-01

    Nowadays, it's possible to look to the open Web for subscription-based services that allow one to sidestep slow-moving institutions in order to serve one's users. More often than not, systems offices will not interfere, as they're heavily involved in triaging their workload. Happily, taking an active stance in learning a new technology before it…

  20. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  1. Removal of organic micropollutants in an artificial recharge system

    NASA Astrophysics Data System (ADS)

    Valhondo, C.; Nödler, K.; Köck-Schulmeyer, M.; Hernandez, M.; Licha, T.; Ayora, C.; Carrera, J.

    2012-04-01

    Emerging contaminants including pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides are increasingly being identified in the environment. Emerging pollutants and their transformation products show low concentration in the environment (ng/L), but the effects of the mixtures and lifelong exposure to humans are currently unknown. Many of these contaminants are removed under aerobic conditions in water treatment plants. However, several pharmaceuticals and metabolites present in wastewater are not eliminated by conventional treatment processes. Several lab studies, however, show that the behaviour of many of these micropollutants is affected by the dominant redox conditions. However, data from field experiments are limited and sometimes contradictory. Artificial recharge is a widespread technology to increase the groundwater resources. In this study we propose a design to enhance the natural remediation potential of the aquifer with the installation of a reactive layer at the bottom of the infiltration pond. This layer is a mixture of compost, aquifer material, clay and iron oxide. This layer is intended to provide an extra amount of DOC to the recharge water and to promote biodegradation by means of the development of different redox zones along the travel path through the unsaturated zone and within the aquifer. Moreover, compost, clay and iron oxide of the layer are assumed to increase sorption surfaces for neutral, cationic and anionic compounds, respectively. The infiltration system is sited in Sant Vicenç dels Horts (Barcelona, Spain). It consists of a decantation pond, receiving raw water from the Llobregat River (highly affected from treatment plant effluents), and an infiltration pond (5600 m2). The infiltration rate is around 1 m3/m2/day. The system is equipped with a network of piezometers, suction cups and tensiometers. Infiltration periods have been performed before and after the installation of the reactive layer

  2. Modeling molecular computing systems by an artificial chemistry - its expressive power and application.

    PubMed

    Tominaga, Kazuto; Watanabe, Tooru; Kobayashi, Keiji; Nakamura, Masaki; Kishi, Koji; Kazuno, Mitsuyoshi

    2007-01-01

    Artificial chemistries are mainly used to construct virtual systems that are expected to show behavior similar to living systems. In this study, we explore possibilities of applying an artificial chemistry to modeling natural biochemical systems-or, to be specific, molecular computing systems-and show that it may be a useful modeling tool for molecular computation. We previously proposed an artificial chemistry based on string pattern matching and recombination. This article first demonstrates that this artificial chemistry is computationally universal if it has only rules that have one reactant or two reactants. We think this is a good property of an artificial chemistry that models molecular computing, because natural elementary chemical reactions, on which molecular computing is based, are mostly unimolecular or bimolecular. Then we give two illustrative example models for DNA computing in our artificial chemistry: one is for the type of computation called the Adleman-Lipton paradigm, and the other is for a DNA implementation of a finite automaton. Through the construction of these models we observe preferred properties of the artificial chemistry for modeling molecular computing, such as having no spatial structure and being flexible in choosing levels of abstraction. PMID:17567243

  3. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Linda C.; And Others

    1988-01-01

    A series of articles focuses on artificial intelligence research and development to enhance information systems and services. Topics discussed include knowledge base designs, expert system development tools, natural language processing, expert systems for reference services, and the role that artificial intelligence concepts should have in…

  4. Rapid evolution in crop-weed hybrids under artificial selection for divergent life histories

    PubMed Central

    Campbell, Lesley G; Snow, Allison A; Sweeney, Patricia M; Ketner, Julie M

    2009-01-01

    When species hybridize, offspring typically exhibit reduced fitness and maladapted phenotypes. This situation has biosafety implications regarding the unintended spread of novel transgenes, and risk assessments of crop-wild hybrids often assume that poorly adapted hybrid progeny will not evolve adaptive phenotypes. We explored the evolutionary potential of early generation hybrids using nontransgenic wild and cultivated radish (Raphanus raphanistrum, Raphanus sativus) as a model system. We imposed four generations of selection for two weedy traits – early flowering or large size – and measured responses in a common garden in Michigan, USA. Under selection for early flowering, hybrids evolved to flower as early as wild lineages, which changed little. These early-flowering hybrids also recovered wild-type pollen fertility, suggesting a genetic correlation that could accelerate the loss of crop traits when a short life cycle is advantageous. Under selection for large size at reproduction, hybrids evolved longer leaves faster than wild lineages, a potentially advantageous phenotype under longer growing seasons. Although early generation hybrid offspring have reduced fitness, our findings provide novel support for rapid adaptation in crop-wild hybrid populations. Biosafety risk assessment programs should consider the possibility of rapid evolution of weedy traits from early generations of seemingly unfit crop-wild hybrids. PMID:25567859

  5. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  6. 1991 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1991 Life Support Systems Analysis Workshop was sponsored by NASA Headquarters' Office of Aeronautics and Space Technology (OAST) to foster communication among NASA, industrial, and academic specialists, and to integrate their inputs and disseminate information to them. The overall objective of systems analysis within the Life Support Technology Program of OAST is to identify, guide the development of, and verify designs which will increase the performance of the life support systems on component, subsystem, and system levels for future human space missions. The specific goals of this workshop were to report on the status of systems analysis capabilities, to integrate the chemical processing industry technologies, and to integrate recommendations for future technology developments related to systems analysis for life support systems. The workshop included technical presentations, discussions, and interactive planning, with time allocated for discussion of both technology status and time-phased technology development recommendations. Key personnel from NASA, industry, and academia delivered inputs and presentations on the status and priorities of current and future systems analysis methods and requirements.

  7. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  8. Life Support Systems Microbial Challenges

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.

    2010-01-01

    Many microbiological studies were performed during the development of the Space Station Water Recovery and Management System from1990-2009. Studies include assessments of: (1) bulk phase (planktonic) microbial population (2) biofilms, (3) microbially influenced corrosion (4) biofouling treatments. This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recovery Tests (WRT) from 1990 to 1998. This report provides an overview of some of the microbiological analyses performed during the Space Station WRT program. These tests not only integrated several technologies with the goal of producing water that met NASA s potable water specifications, but also integrated humans, and therefore human flora into the protocols. At the time these tests were performed, not much was known (or published) about the microbial composition of these types of wastewater. It is important to note that design changes to the WRS have been implemented over the years and results discussed in this report might be directly related to test configurations that were not chosen for the final flight configuration. Results microbiological analyses performed Conclusion from the during the WRT showed that it was possible to recycle water from different sources, including urine, and produce water that can exceed the quality of municipally produced water.

  9. A Parallelized Pumpless Artificial Placenta System Significantly Prolonged Survival Time in a Preterm Lamb Model.

    PubMed

    Miura, Yuichiro; Matsuda, Tadashi; Usuda, Haruo; Watanabe, Shimpei; Kitanishi, Ryuta; Saito, Masatoshi; Hanita, Takushi; Kobayashi, Yoshiyasu

    2016-05-01

    An artificial placenta (AP) is an arterio-venous extracorporeal life support system that is connected to the fetal circulation via the umbilical vasculature. Previously, we published an article describing a pumpless AP system with a small priming volume. We subsequently developed a parallelized system, hypothesizing that the reduced circuit resistance conveyed by this modification would enable healthy fetal survival time to be prolonged. We conducted experiments using a premature lamb model to test this hypothesis. As a result, the fetal survival period was significantly prolonged (60.4 ± 3.8 vs. 18.2 ± 3.2 h, P < 0.01), and circuit resistance and minimal blood lactate levels were significantly lower in the parallel circuit group, compared with our previous single circuit group. Fetal physiological parameters remained stable until the conclusion of the experiments. In summary, parallelization of the AP system was associated with reduced circuit resistance and lactate levels and allowed preterm lamb fetuses to survive for a significantly longer period when compared with previous studies. PMID:26644374

  10. Withholding artificially provided nutrition and hydration from disabled children--assessing their quality of life.

    PubMed

    Stanley, A L

    2000-10-01

    This article focuses on quality of life determinations and limitation of treatment decisions for children with physical and mental disabilities. Issues are addressed through one pediatric convalescent center's ethical dilemma, deliberations and process for decision-making when the organization's definition of quality of life differed from that of the parents wishing to place their child there. The Ethics Committee suggested revised admission criteria to include provision of hydration and nutrition for future admissions. PMID:11063038

  11. Life support system development in West Germany.

    PubMed

    Skoog, A I

    1982-12-01

    The delivery of fully qualified Environmental Control and Life Support System (ECLS) flight hardware for the Spacelab Flight Unit was completed in 1979, and the first Spacelab flight is scheduled for mid 1983. With Spacelab approaching its operational stage, ESA has initiated the Follow-on Development Programme. The future evolution of Spacelab elements in a continued U.S./European cooperation is obviously linked to the U.S. STS evolution and leads from the sortie-mode improvements (Initial Step) towards pallet systems and module applications in unmanned and manned space platforms (Medium and Far Term Alternatives). Extensive studies and design work have been accomplished on life support systems for Life Sciences Laboratories (Biorack) in Spacelab (incubators and holding units for low vertebrates). Future long term missions require the implementation of closed loop life support systems and in order to meet the long range development cycle feasibility studies have been performed. Terrestrial applications of the life support technologies developed for space have been successfully implemented. PMID:11541695

  12. Life support system development in West Germany

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar

    The delivery of fully qualified Environmental Control and Life Support System (ECLS) flight hardware for the Spacelab Flight Unit was completed in 1979, and the first Spacelab flight is scheduled for mid 1983. With Spacelab approaching its operational stage, ESA has initiated the Follow-on Development Programme. The future evolution of Spacelab elements in a continued U.S./European cooperation is obviously linked to the U.S. STS evolution and leads from the sortie-mode improvements (Initial Step) towards pallet systems and module applications in unmanned and manned space platforms (Medium and Far Term Alternatives). Extensive studies and design work have been accomplished on life support systems for Life Sciences Laboratories (Biorack) in Spacelab (incubators and holding units for low vertebrates). Future long term missions require the implementation of closed loop life support systems and in order to meet the long range development cycle feasibility studies have been performed. Terrestrial applications of the life support technologies developed for space have been successfully implemented.

  13. Alisse : Advanced life support system evaluator

    NASA Astrophysics Data System (ADS)

    Brunet, Jean; Gerbi, Olivier; André, Philippe; Davin, Elisabeth; Avezuela Rodriguez, Raul; Carbonero, Fernando; Soumalainen, Emilia; Lasseur, Christophe

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require such an amount of life support consumables (e.g. food, water and oxygen) that direct supply or re-supply from Earth is not an option anymore. Regenerative Life Support Systems are therefore necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. The architecture of an Environmental Controlled Life Support System widely depends on the mission scenario. Even for a given mission scenario, different architectures could be envisaged which need to be evaluated and compared with appropriate tools. As these evaluation and comparison, based on the single criterion of Equivalent System Mass, was not considered com-prehensive enough, ESA is developing a multi-criteria evaluation tool: ALISSE (Advanced Life Support System Evaluator). The main objective of ALISSE, and of the work presented here, is the definition and implemen-tation of a metrics system, addressing the complexity of any ECLSS along its Life Cycle phases. A multi-dimensional and multi-criteria (i.e. mass, energy, efficiency, risk to human, reliability, crew time, sustainability, life cycle cost) approach is proposed through the development of a computing support platform. Each criterion being interrelated with the others, a model based system approach is used. ALISSE is expected to provide significant inputs to the ESA Concurrent Design Facility and, as a consequence, to be a highly valuable tool for decision process linked to any manned space mission. Full contact detail for the contact author : Jean Brunet Sherpa Engineering General Manager Phone : 0033(0)608097480 j.brunet@sherpa-eng.com

  14. Controlled ecological life support system: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Gustan, E.; Vinopal, T.

    1982-01-01

    This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.

  15. Long life reliability thermal control systems study

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Killen, R. E.

    1972-01-01

    The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.

  16. Control problems in Autonomous Life Support Systems

    NASA Technical Reports Server (NTRS)

    Colombano, S. P.; Schwartzkopf, S. H.; Macelroy, R. D.

    1981-01-01

    Autonomous Life Support Systems (ALSS) are envisioned for long range permanence in space. ALSS would require little or no input of matter for extended periods of time. The design of such a system involves an understanding of both ecological principles and control theory of nonlinear, ill-defined systems. A distinction is drawn between ecosystem survival strategies and the aims of control theory. Experimental work is under way to help combine the two approaches.

  17. Artificial neural networks: Principle and application to model based control of drying systems -- A review

    SciTech Connect

    Thyagarajan, T.; Ponnavaikko, M.; Shanmugam, J.; Panda, R.C.; Rao, P.G.

    1998-07-01

    This paper reviews the developments in the model based control of drying systems using Artificial Neural Networks (ANNs). Survey of current research works reveals the growing interest in the application of ANN in modeling and control of non-linear, dynamic and time-variant systems. Over 115 articles published in this area are reviewed. All landmark papers are systematically classified in chronological order, in three distinct categories; namely, conventional feedback controllers, model based controllers using conventional methods and model based controllers using ANN for drying process. The principles of ANN are presented in detail. The problems and issues of the drying system and the features of various ANN models are dealt with up-to-date. ANN based controllers lead to smoother controller outputs, which would increase actuator life. The paper concludes with suggestions for improving the existing modeling techniques as applied to predicting the performance characteristics of dryers. The hybridization techniques, namely, neural with fuzzy logic and genetic algorithms, presented, provide, directions for pursuing further research for the implementation of appropriate control strategies. The authors opine that the information presented here would be highly beneficial for pursuing research in modeling and control of drying process using ANN. 118 refs.

  18. Cost analysis of life support systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    A methodology was developed to predict realistic relative cost of Life Support Systems (LSS) and to define areas of major cost impacts in the development cycle. Emphasis was given to tailoring the cost data for usage by program planners and designers. The equipment classifications used based on the degree of refinement were as follows: (1) Working model; (2) low-fidelity prototype; (3) high-fidelity prototype; and (4) flight-qualified system. The major advanced LSS evaluated included the following: (1) Carbon dioxide removal; (2) oxygen recovery systems; (3) water recovery systems; (4) atmosphere analysis system.

  19. An artificial gravity demonstration experiment

    NASA Technical Reports Server (NTRS)

    Rupp, C.; Lemke, L.; Penzo, P.

    1989-01-01

    An artificial gravity experiment which is tethered to a Delta second stage and which uses the Small Expendable Deployer System is proposed. Following tether deployment, the Delta vehicle performs the required spin-up maneuver and can then be passivated. A surplus reentry vehicle houses the artificial gravity life science experiments. When the experiments are completed, the reentry phase of the experiment is initiated by synchronizing the spin of the configuration with the required deorbit impulse.

  20. A New Rule-Based System for the Construction and Structural Characterization of Artificial Proteins

    NASA Astrophysics Data System (ADS)

    Štambuk, Nikola; Konjevoda, Paško; Gotovac, Nikola

    In this paper, we present a new rule-based system for an artificial protein design incorporating ternary amino acid polarity (polar, nonpolar, and neutral). It may be used to design de novo α and β protein fold structures and mixed class proteins. The targeted molecules are artificial proteins with important industrial and biomedical applications, related to the development of diagnostic-therapeutic peptide pharmaceuticals, antibody mimetics, peptide vaccines, new nanobiomaterials and engineered protein scaffolds.

  1. Control Problems in Autonomous Life Support Systems

    NASA Technical Reports Server (NTRS)

    Colombano, S.

    1982-01-01

    The problem of constructing life support systems which require little or no input of matter (food and gases) for long, or even indefinite, periods of time is addressed. Natural control in ecosystems, a control theory for ecosystems, and an approach to the design of an ALSS are addressed.

  2. Environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support Systems (ECLSS) for Space Station Freedom are presented. Topics covered include: crew generated wastes processing and reclamation; water reclamation - pre- and post-treatment; simplified waste water processing; improved trace contaminant removal; and real time microbial analysis.

  3. Life systems for a lunar base

    NASA Technical Reports Server (NTRS)

    Nelson, Mark; Hawes, Philip B.; Augustine, Margret

    1992-01-01

    The Biosphere 2 project is pioneering work on life systems that can serve as a prototype for long-term habitation on the Moon. This project will also facilitate the understanding of the smaller systems that will be needed for initial lunar base life-support functions. In its recommendation for a policy for the next 50 years in space, the National Commission on Space urged, 'To explore and settle the inner Solar System, we must develop biospheres of smaller size, and learn how to build and maintain them' (National Commission on Space, 1986). The Biosphere 2 project, along with its Biospheric Research and Development Center, is a materially closed and informationally and energetically open system capable of supporting a human crew of eight, undertaking work to meet this need. This paper gives an overview of the Space Biospheres Ventures' endeavor and its lunar applications.

  4. The Artificial Planet

    NASA Astrophysics Data System (ADS)

    Glover, D. R.

    An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

  5. Environmental Control and Life Support System

    NASA Technical Reports Server (NTRS)

    Ray, Charles; Adams, Alan

    1990-01-01

    Viewgraphs on the Environmental Control and Life Support System (ECLSS) for the space station are presented. The ECLSS is divided into six subsystems: temperature and humidity control (THC), atmosphere control and supply (ACS), atmosphere revitalization (AR), fire detection and suppression (FDS), water recovery management (WRM), and waste management (WM). Topics covered include: ECLSS subsystem functions; ECLSS distributed system; ECLSS functional distribution; CO2 removal; CO2 reduction; oxygen generation; urine processor; and potable water recovery.

  6. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Rasky, Daniel J. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have led to the following approach. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are considered to be exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is defined after many trade-offs. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, SVM/[ESM + function (TRL)], with appropriate weighting and scaling. The total value is given by SVM. Cost is represented by higher ESM and lower TRL. The paper provides a detailed description and example application of a suggested System Value Metric and an overall ALS system metric.

  7. Evolutionary artificial neural networks for hydrological systems forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Yung-hsiang; Chang, Fi-John

    2009-03-01

    SummaryThe conventional ways of constructing artificial neural network (ANN) for a problem generally presume a specific architecture and do not automatically discover network modules appropriate for specific training data. Evolutionary algorithms are used to automatically adapt the network architecture and connection weights according to the problem environment without substantial human intervention. To improve on the drawbacks of the conventional optimal process, this study presents a novel evolutionary artificial neural network (EANN) for time series forecasting. The EANN has a hybrid procedure, including the genetic algorithm and the scaled conjugate gradient algorithm, where the feedforward ANN architecture and its connection weights of neurons are simultaneously identified and optimized. We first explored the performance of the proposed EANN for the Mackey-Glass chaotic time series. The performance of the different networks was evaluated. The excellent performance in forecasting of the chaotic series shows that the proposed algorithm concurrently possesses efficiency, effectiveness, and robustness. We further explored the applicability and reliability of the EANN in a real hydrological time series. Again, the results indicate the EANN can effectively and efficiently construct a viable forecast module for the 10-day reservoir inflow, and its accuracy is superior to that of the AR and ARMAX models.

  8. Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Dawson, David L. (Technical Monitor)

    2000-01-01

    NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.

  9. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have reached a consensus. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is then set accordingly. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, [SVM + TRL]/ESM, with appropriate weighting and scaling. The total value is the sum of SVM and TRL. Cost is represented by ESM. The paper provides a detailed description and example application of the suggested System Value Metric.

  10. New Trends in Computing Anticipatory Systems : Emergence of Artificial Conscious Intelligence with Machine Learning Natural Language

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2008-10-01

    This paper deals with the challenge to create an Artificial Intelligence System with an Artificial Consciousness. For that, an introduction to computing anticipatory systems is presented, with the definitions of strong and weak anticipation. The quasi-anticipatory systems of Robert Rosen are linked to open-loop controllers. Then, some properties of the natural brain are presented in relation to the triune brain theory of Paul D. MacLean, and the mind time of Benjamin Libet, with his veto of the free will. The theory of the hyperincursive discrete anticipatory systems is recalled in view to introduce the concept of hyperincursive free will, which gives a similar veto mechanism: free will as unpredictable hyperincursive anticipation The concepts of endo-anticipation and exo-anticipation are then defined. Finally, some ideas about artificial conscious intelligence with natural language are presented, in relation to the Turing Machine, Formal Language, Intelligent Agents and Mutli-Agent System.

  11. Artificial Intelligence and Expert Systems Research and Their Possible Impact on Information Science.

    ERIC Educational Resources Information Center

    Borko, Harold

    1985-01-01

    Defines artificial intelligence (AI) and expert systems; describes library applications utilizing AI to automate creation of document representations, request formulations, and design and modify search strategies for information retrieval systems; discusses expert system development for information services; and reviews impact of these…

  12. Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth and variation in life-history strategy

    NASA Astrophysics Data System (ADS)

    Vermeij, M. J. A.

    2006-03-01

    The development of a coral community was monitored for 6 years (1998-2004) on 46 m2 of artificial settlement substrate in Curaçao, Netherlands Antilles. Growth and survival of recruits ( n=1385) belonging to 16 different species were quantified in relation to characteristics of the benthic community developing around them. The early life history dynamics (i.e. growth rate, growth strategy and survival) of corals differed among species although these differences were small for species occupying similar habitats (i.e. underside versus topside of substratum). In contrast to recruit survival, juvenile growth rates were highly variable and unrelated to benthic community structure, at least at the scale of this study. Competing benthic organisms affected coral recruitment success through space preemption (mainly by macroalgae) or recruit overgrowth (mainly by sponges). The results highlight the small spatial scale (mm-cm) at which the processes responsible for recruitment success or failure occur and emphasize the need to include such small-scale observations in studies of coral early life-phase dynamics.

  13. Artificial intelligence

    SciTech Connect

    Firschein, O.

    1984-01-01

    This book presents papers on artificial intelligence. Topics considered include knowledge engineering, expert systems, applications of artificial intelligence to scientific reasoning, planning and problem solving, error recovery in robots through failure reason analysis, programming languages, natural language, speech recognition, map-guided interpretation of remotely-sensed imagery, and image understanding architectures.

  14. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are also briefly…

  15. 1992 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1992 Life Support Systems Analysis Workshop was sponsored by NASA's Office of Aeronautics and Space Technology (OAST) to integrate the inputs from, disseminate information to, and foster communication among NASA, industry, and academic specialists. The workshop continued discussion and definition of key issues identified in the 1991 workshop, including: (1) modeling and experimental validation; (2) definition of systems analysis evaluation criteria; (3) integration of modeling at multiple levels; and (4) assessment of process control modeling approaches. Through both the 1991 and 1992 workshops, NASA has continued to seek input from industry and university chemical process modeling and analysis experts, and to introduce and apply new systems analysis approaches to life support systems. The workshop included technical presentations, discussions, and interactive planning, with sufficient time allocated for discussion of both technology status and technology development recommendations. Key personnel currently involved with life support technology developments from NASA, industry, and academia provided input to the status and priorities of current and future systems analysis methods and requirements.

  16. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    SciTech Connect

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko; Hiratsuka, Masaharu; Sano, Akiko; Osawa, Kanako; Okazaki, Akiyo; Katoh, Motonobu; Kazuki, Yasuhiro; Oshimura, Mitsuo; Tomizuka, Kazuma

    2008-05-09

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-{beta}-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 days after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.

  17. Benefits and Limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: A mini-review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary, peer-reviewed literature, published from 1998-2007, pertaining to rearing of predatory beetles, true bugs and lacewings was reviewed and synthesized. Advances in rearing were revealed in relation to the influence of factitious prey and artificial diets on predator life parameters. Egg...

  18. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  19. Design and performance of heart assist or artificial heart control systems

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Gebben, V. D.

    1978-01-01

    The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.

  20. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  1. Life Support Systems for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Anderson, Molly

    2008-01-01

    Engineers designing life support systems for NASA s next Lunar Landers face unique challenges. As with any vehicle that enables human spaceflight, the needs of the crew drive most of the lander requirements. The lander is also a key element of the architecture NASA will implement in the Constellation program. Many requirements, constraints, or optimization goals will be driven by interfaces with other projects, like the Crew Exploration Vehicle, the Lunar Surface Systems, and the Extravehicular Activity project. Other challenges in the life support system will be driven by the unique location of the vehicle in the environments encountered throughout the mission. This paper examines several topics that may be major design drivers for the lunar lander life support system. There are several functional requirements for the lander that may be different from previous vehicles or programs and recent experience. Some of the requirements or design drivers will change depending on the overall Lander configuration. While the configuration for a lander design is not fixed, designers can examine how these issues would impact their design and be prepared for the quick design iterations required to optimize a spacecraft.

  2. A Paradigmatic Example of an Artificially Intelligent Instructional System.

    ERIC Educational Resources Information Center

    Brown, John Seely; Burton, Richard R.

    1978-01-01

    Describes the philosophy of intelligent instructional systems and presents an example of such a system, BLOCKS. The notion of BLOCKS as a paradigmatic system is explicated from both the system development and educational points of view. (Author/VT)

  3. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts.

    PubMed

    Donovan, F M

    1975-01-01

    A major problem in improving artificial heart designs is the absence of methods for accurate in vitro testing of artificial heart systems. A mock circulatory system has been constructed which hydraulically simulates the systemic and pulmonary circulations of the normal human. The device is constructed of 1/2 in. acrylic sheet and has overall dimensions of 24 in. wide, 16 in. tall, and 8 in. deep. The artificial heart to be tested is attached to the front of the device, and pumps fluid from the systemic venous chamber into the pulmonary arterial chamber and from the pulmonary venous chamber into the systemic arterial chamber. Each of the four chambers is hermetically sealed. The compliance of each chamber is determined by the volume of air trapped above the fluid in that chamber. The pulmonary and systemic resistances are set automatically by bellows-operated valves to simulate the barroreceptor response in the systemic arteries and the passive pulmonary resistance response in the pulmonary arteries. Cardiac output is measured by a turbine flowmeter in the systemic circulation. Results using the Kwan-Gett artificial heart show a good comparison between the mock circulatory system response and the calf response. PMID:1225373

  4. The Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Ko, K.

    1985-01-01

    A Controlled Ecological Life Support System (CELSS) is needed which would convert waste water to usable water, waste products to food, and CO2 to O2 to permit long duration space flight. Algae, representing the autotroph, and mice, representing the heterotroph are placed together in a controlled, gas closed environment to examine the gas exchange rate of O2 and CO2. The eventual goal is to develop biological controls that can stabilize atmospheres.

  5. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  6. [Design of an artificial sphincter system with bio-feedback function based on MSP430].

    PubMed

    Wang, Yong-kan; Yan, De-tian

    2005-11-01

    In this paper, we advance a new treating method for rectectomy postoperative anus incontinence, which is called "artificial sphincter system with biofeedback-function". The system simulates the function of human's sphincter and has entered into a stage of simulation experiments on animals. PMID:16494055

  7. Regenerative life support system research and concepts

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Life support systems that involve recycling of atmospheres, water, food and waste are so complex that models incorporating all the interactions and relationships are vital to design, development, simulations, and ultimately to control of space qualified systems. During early modeling studies, FORTRAN and BASIC programs were used to obtain numerical comparisons of the performance of different regenerative concepts. Recently, models were made by combining existing capabilities with expert systems to establish an Intelligent Design Support Environment for simpliflying user interfaces and to address the need for the engineering aspects. Progress was also made toward modeling and evaluating the operational aspects of closed loop life support systems using Time-step and Dynamic simulations over a period of time. Example models are presented which show the status and potential of developed modeling techniques. For instance, closed loop systems involving algae systeMs for atmospheric purification and food supply augmentation, plus models employing high plants and solid waste electrolysis are described and results of initial evaluations are presented.

  8. Magnetostatic bias in Kagome artificial spin ice systems

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, I.

    2016-04-01

    The magnetostatic bias in elongated nanomagnetic elements arranged in artificial Kagome spin ice arrays is studied by micromagnetic simulations. Using the Nmag package the reversal of a given element has been simulated under the influence of its four nearest neighbors with their magnetic states fixed in all possible configurations, which amount to 24=16 states that can be classified under five distinct cases. The hysteresis loop of each element is greatly influenced by the magnetic state of the nearest neighbors, not only by the expected shift due to dipolar interaction bias, but as it regards the loop shape and width itself. This presents a correction to the usual macrospin calculation based on the assumption that the loop is shifted by a biasing field (equal to the local dipole field) but the loop width (and shape in general) does not change. Although coercive and biasing fields depend strongly on the dimensions their relative strength has only weak thickness dependence for a fixed length to width aspect ratio. Therefore the behavior of such arrays is expected to be to a large degree size invariant apart from an appropriate maximum external applied field scaling.

  9. Signal processing using artificial neural network for BOTDA sensor system.

    PubMed

    Azad, Abul Kalam; Wang, Liang; Guo, Nan; Tam, Hwa-Yaw; Lu, Chao

    2016-03-21

    We experimentally demonstrate the use of artificial neural network (ANN) to process sensing signals obtained from Brillouin optical time domain analyzer (BOTDA). The distributed temperature information is extracted directly from the local Brillouin gain spectra (BGSs) along the fiber under test without the process of determination of Brillouin frequency shift (BFS) and hence conversion from BFS to temperature. Unlike our previous work for short sensing distance where ANN is trained by measured BGSs, here we employ ideal BGSs with different linewidths to train the ANN in order to take the linewidth variation due to different conditions from the training and testing phases into account, making it feasible for long distance sensing. Moreover, the performance of ANN is compared with other two techniques, Lorentzian curve fitting and cross-correlation method, and our results show that ANN has higher accuracy and larger tolerance to measurement error, especially at large frequency scanning step. We also show that the temperature extraction from BOTDA measurements employing ANN is significantly faster than the other two approaches. Hence ANN can be an excellent alternative tool to process BGSs measured by BOTDA and obtain temperature distribution along the fiber, especially when large frequency scanning step is adopted to significantly reduce the measurement time but without sacrifice of sensing accuracy. PMID:27136863

  10. Unified Mars detection system. [life detection

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.; Johnson, R. D.

    1976-01-01

    A life-detection system is described which is designed to detect and characterize possible Martian biota and to gather information about the chemical environment of Mars, especially the water and amino acid contents of the soil. The system is organized around a central mass spectrometer that can sensitively analyze trace gases from a variety of different experiments. Some biological assays and soil-chemistry tests that have been performed in the laboratory as typical experiment candidates for the system are discussed, including tests for soil-organism metabolism, measurements of soil carbon contents, and determinations of primary aliphatic amines (amino acids and protein) in soils. Two possible test strategies are outlined, and the operational concept of the detection system is illustrated. Detailed descriptions are given for the mass spectrometer, gas inlet, incubation box, test cell modules, seal drive mechanism, soil distribution assembly, and electronic control system.

  11. Apollo portable life support system performance report

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The performance of the Apollo portable life support system (PLSS) on actual lunar missions is discussed. Both subjective comments by the crewmen and recorded telemetry data are evaluated although emphasis is on the telemetry data. Because the most important information yielded by the PLSS deals with determination of crewman metabolic rates, these data and their interpretation are explained in detail. System requirements are compared with actual performance, and the effect of performance margins on mission planning are described. Mission preparation testing is described to demonstrate how the mission readiness of the PLSS and the crewmen in verified, and to show how the PLSS and the crewmen are calibrated for mission evaluation.

  12. Teaching artificial neural systems to drive: Manual training techniques for autonomous systems

    NASA Technical Reports Server (NTRS)

    Shepanski, J. F.; Macy, S. A.

    1987-01-01

    A methodology was developed for manually training autonomous control systems based on artificial neural systems (ANS). In applications where the rule set governing an expert's decisions is difficult to formulate, ANS can be used to extract rules by associating the information an expert receives with the actions taken. Properly constructed networks imitate rules of behavior that permits them to function autonomously when they are trained on the spanning set of possible situations. This training can be provided manually, either under the direct supervision of a system trainer, or indirectly using a background mode where the networks assimilates training data as the expert performs its day-to-day tasks. To demonstrate these methods, an ANS network was trained to drive a vehicle through simulated freeway traffic.

  13. How to build an information gathering and processing system: lessons from naturally and artificially intelligent systems.

    PubMed

    Chappell, Jackie; Demery, Zoe P; Arriola-Rios, Veronica; Sloman, Aaron

    2012-02-01

    Imagine a situation in which you had to design a physical agent that could collect information from its environment, then store and process that information to help it respond appropriately to novel situations. What kinds of information should it attend to? How should the information be represented so as to allow efficient use and re-use? What kinds of constraints and trade-offs would there be? There are no unique answers. In this paper, we discuss some of the ways in which the need to be able to address problems of varying kinds and complexity can be met by different information processing systems. We also discuss different ways in which relevant information can be obtained, and how different kinds of information can be processed and used, by both biological organisms and artificial agents. We analyse several constraints and design features, and show how they relate both to biological organisms, and to lessons that can be learned from building artificial systems. Our standpoint overlaps with Karmiloff-Smith (1992) in that we assume that a collection of mechanisms geared to learning and developing in biological environments are available in forms that constrain, but do not determine, what can or will be learnt by individuals. PMID:22008634

  14. Novel artificial anal sphincter system based on transcutaneous energy transmission system tested in vivo.

    PubMed

    Wang, Yongbing; Liu, Hua; Xu, Qianqian; Yan, Guozheng

    2013-12-01

    This paper proposes a novel artificial anal sphincter system (AASS) for severe fecal incontinence. The AASS is composed of an artificial anal sphincter (AAS), an external transcutaneous energy transmission system (TETS), and an external control device. The AAS is composed of a cuff, a micropump, a reservoir, and a remote control device. It is designed to be implanted into the body of the patient. The function of the AAS is to open and close the patient's natural anus. Patients suffering from loss of their natural sphincter lose rectal sensation and are thus unable to perceive imminent fecal incontinence. In order to restore rectal sensation, a pressure sensor in the AAS cuff is designed to detect pressure in the colon. The pressure reflects the present quantity of colon contents, allowing patients to control the AAS to open or close the anus according to the pressure. The TETS is designed to provide electrical energy to the implanted AAS without wire connections. The external control device is designed to receive the pressure information from the AAS and send the patient's command to the implanted device. This paper provides a thorough discussion of the design of the novel AASS and describes the performance of the AASS when tested in vivo on two Beagle dogs who were chosen to be the subjects for receiving the implant. The experimental results verified that the performance of the AASS met the functional requirements it was designed for; however, the trial also revealed some challenges to be further studied. PMID:24362899

  15. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system.

    PubMed

    Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M

    2014-05-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt. PMID:25685507

  16. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  17. Power Management in Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Crawford, Sekou; Pawlowski, Christopher; Finn, Cory; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Effective management of power can reduce the cost of launch and operation of regenerative life support systems. Variations in power may be quite severe and may manifest as surges or spikes, While the power plant may have some ability to deal with these variations, with batteries for example, over-capacity is expensive and does nothing to address the fundamental issue of excessive demand. Because the power unit must be sized to accommodate the largest demand, avoiding power spikes has the potential to reduce the required size of the power plant while at the same time increasing the dependability of the system. Scheduling of processors can help to reduce potential power spikes. However, not all power-consuming equipment is easily scheduled. Therefore, active power management is needed to further decrease the risk of surges or spikes. We investigate the use of a hierarchical scheme to actively manage power for a model of a regenerative life support system. Local level controllers individually determine subsystem power usage. A higher level controller monitors overall system power and detects surges or spikes. When a surge condition is detected, the higher level controller conducts an 'auction' and describes subsystem power usage to re-allocate power. The result is an overall reduction in total power during a power surge. The auction involves each subsystem making a 'bid' to buy or sell power based on local needs. However, this re-allocation cannot come at the expense of life support function. To this end, participation in the auction is restricted to those processes meeting certain tolerance constraints. These tolerances represent acceptable limits within which system processes can be operated. We present a simulation model and discuss some of our results.

  18. Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Majumdar, M.

    1985-01-01

    One of the major problems facing researchers in the design of a life support system is to construct it so that it will be capable of regulating waste materials and gases, while at the same time supporting the inhabitants with adequate food and oxygen. The basis of any gaseous life supporting cycle is autotrophs (plants that photosynthesize). The major problem is to get the respiratory quotient (RQ) of the animals to be equivalent to the assimilatory quotient (AQ) of the plants. A technique is being developed to control the gas exchange. The goal is to determine the feasibility of manipulating the plant's AQ by altering the plants environment in order to eliminate the mismatch between the plant's AQ and the animal's RQ.

  19. Detection Technique for Artificially Illuminated Objects in the Outer Solar System and Beyond

    PubMed Central

    Loeb, Abraham

    2012-01-01

    Abstract Existing and planned optical telescopes and surveys can detect artificially illuminated objects, comparable in total brightness to a major terrestrial city, at the outskirts of the Solar System. Orbital parameters of Kuiper belt objects (KBOs) are routinely measured to exquisite precisions of<10−3. Here, we propose to measure the variation of the observed flux F from such objects as a function of their changing orbital distances D. Sunlight-illuminated objects will show a logarithmic slope α ≡ (d log F/d log D)=−4, whereas artificially illuminated objects should exhibit α=−2. The proposed Large Synoptic Survey Telescope (LSST) and other planned surveys will provide superb data and allow measurement of α for thousands of KBOs. If objects with α=−2 are found, follow-up observations could measure their spectra to determine whether they are illuminated by artificial lighting. The search can be extended beyond the Solar System with future generations of telescopes on the ground and in space that would have the capacity to detect phase modulation due to very strong artificial illumination on the nightside of planets as they orbit their parent stars. Key Words: Astrobiology—SETI—Kuiper belt objects—Artificial illumination. Astrobiology 12, 290–294. PMID:22490065

  20. A multiuser detector based on artificial bee colony algorithm for DS-UWB systems.

    PubMed

    Yin, Zhendong; Liu, Xiaohui; Wu, Zhilu

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638

  1. Thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.

  2. Bioregenerative life support systems for microgravity

    NASA Technical Reports Server (NTRS)

    Nevill, Gail E., Jr.; Hessel, Michael I., Jr.; Rodriguez, Jose; Morgan, Steve (Editor)

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) project centers on growing plants and recycling wastes in space. The current version of the biomass production chamber (BPC) uses a hydroponic system for nutrient delivery. To optimize plant growth and conserve system resources, the content of the nutrient solution which feeds the plants must be constantly monitored. The macro-nutrients (greater than ten ppm) in the solution include nitrogen, phosphorous, potassium, calcium, magnesium, and sulphur; the micro-nutrients (less than ten ppm) include iron, copper, manganese, zinc, and boron. The goal of this project is to construct a computer-controlled system of ion detectors that will accurately measure the concentrations of several necessary ions in solution. The project focuses on the use of a sensor array to eliminate problems of interference and temperature dependence.

  3. Artificial feel system using magneto-rheological fluid on aircraft control stick

    NASA Astrophysics Data System (ADS)

    Manoharan, Vignesh; Kim, Daewon

    2016-04-01

    The conventional feel system in aircraft occupies large space in the cockpit and has complicated designs. The primary objective of this research is to develop an artificial feel force system that can overcome some drawbacks of the current system. A novel feel system using magneto-rheological (MR) fluid is constructed to precisely control the shear stress under the magnetic field. To validate the functionality of the MR artificial feel system, the final system is fabricated and multiple tests are performed to acquire force-velocity characteristics that are compared to the mathematical model derived. In addition, the PID closed loop control algorithm is developed to simulate the dynamic system model. Both experimental and simulation results are compared to validate the derived system model. The system response time and sampling rates are evaluated and compared to the conventional system at the end. It is concluded that the developed artificial feel system can precisely control and acts as a fail proof system when incorporated with a modern fly-by-wire aircraft system.

  4. Vein matching using artificial neural network in vein authentication systems

    NASA Astrophysics Data System (ADS)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  5. Hollow fiber membrane systems for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1976-01-01

    The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.

  6. Environmental Control and Life Support System Mockup

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center in Huntsville, Alabama, is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. This photograph shows the mockup of the the ECLSS to be installed in the Node 3 module of the ISS. From left to right, shower rack, waste management rack, Water Recovery System (WRS) Rack #2, WRS Rack #1, and Oxygen Generation System (OGS) rack are shown. The WRS provides clean water through the reclamation of wastewaters and is comprised of a Urine Processor Assembly (UPA) and a Water Processor Assembly (WPA). The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the WPA. The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. The OGS produces oxygen for breathing air for the crew and laboratory animals, as well as for replacing oxygen loss. The OGS is comprised of a cell stack, which electrolyzes (breaks apart the hydrogen and oxygen molecules) some of the clean water provided by the WRS, and the separators that remove the gases from the water after electrolysis.

  7. Sensor Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)

    1995-01-01

    Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.

  8. Studies of zeolite-based artificial photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu

    Y were obtained. The Ru complexes were anchored on the surface of zeolites via ion-exchange or "ship-in-bottle" synthesis. The spectroscopic properties of the NanoY-entrapped species including methyl viologen (MV2+), RuL were measured via transmission techniques. The zeolite-encapsulated species were found to have red-shift absorption and emission bands and longer MLCT life times. By incorporating both donors Ru complexes and acceptors MV2+ in NanoY, electron transfer kinetics was examined. LFP study showed a slower back-electron-transfer rate as compared to forward electron transfer. Photochemically generated long-lived charge separation is the key step in processes that aim for conversion of solar energy into chemical energy. We incorporated RuL complex on the surface of a pinhole-free zeolite membrane by quaternization of L and surrounded with intrazeolitic bipyridinium ions (N,N'-trimethyl-2,2'-bipyridinium ion, 3DQ2+). Visible-light irradiation of the Ru complex side of the membrane in the presence of a sacrificial electron donor led to formation of PVS-· on the other side. Pore-blocking disilazane-based chemistry allows for Na+ to migrate through the membrane to maintain charge balance, while keeping the 3DQ2+ entrapped in the zeolite. These results provided encouragement that the zeolite membrane based architecture has the necessary features for not only incorporating molecular assemblies with long-lived charge separation but also for ready exploitation of the spatially separated charges to store visible light energy in chemical species. The pore-narrowing strategy applied under mild conditions can be used in control-release of active substances such as drug, pesticides, and herbicides. Methyl viologen (MV2+) was chosen as the guest molecule, since it is widely used as an herbicide and its release is of interest in agricultural applications. To explore the controlled-release capability of the surface-modified zeolite, MV2+-encapsulated zeolite Y particles were

  9. Artificial Intelligence for Explosive Ordnance Disposal System (AI-EOD)

    SciTech Connect

    Madrid, R.; Williams, B.; Holland, J.

    1992-01-01

    Based on a dynamically configurable neural net that learns in a single pass of the training data, this paper describes a system used by the military in the identification of explosive ordnance. Allowing the technician to input incomplete, contradictory, and wrong information, this system combines expert systems and neural nets to provide a state-of-the-art search, retrieval, and image and text management system.

  10. Artificial Intelligence for Explosive Ordnance Disposal System (AI-EOD)

    SciTech Connect

    Madrid, R.; Williams, B.; Holland, J.

    1992-03-01

    Based on a dynamically configurable neural net that learns in a single pass of the training data, this paper describes a system used by the military in the identification of explosive ordnance. Allowing the technician to input incomplete, contradictory, and wrong information, this system combines expert systems and neural nets to provide a state-of-the-art search, retrieval, and image and text management system.