Science.gov

Sample records for artificial neural nets

  1. Hadamard design and artificial neural nets

    SciTech Connect

    Kuerten, K.E. Universitaet Wien ); Klingen, N. )

    1993-04-01

    Hadamard theory is shown to play an important role in the generation of Boolean decision functions, a fundamental tool in the field of artificial neural network design. Based on a group-theoretic introduction of a complete set of Hadamard vectors, whose matrices are of the order of a power of two, the authors classify subsets according to the degree of their linear dependence. They show in the thermodynamic limit that essentially the whole Hadamard space is occupied by representatives with defect not exceeding two or three. 15 refs., 1 fig.

  2. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, L.; Hajela, P.

    1992-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  3. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1990-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  4. Applications of artificial neural nets in clinical biomechanics.

    PubMed

    Schöllhorn, W I

    2004-11-01

    The purpose of this article is to provide an overview of current applications of artificial neural networks in the area of clinical biomechanics. The body of literature on artificial neural networks grew intractably vast during the last 15 years. Conventional statistical models may present certain limitations that can be overcome by neural networks. Artificial neural networks in general are introduced, some limitations, and some proven benefits are discussed. PMID:15475120

  5. Surface daytime net radiation estimation using artificial neural networks

    DOE PAGESBeta

    Jiang, Bo; Zhang, Yi; Liang, Shunlin; Zhang, Xiaotong; Xiao, Zhiqiang

    2014-11-11

    Net all-wave surface radiation (Rn) is one of the most important fundamental parameters in various applications. However, conventional Rn measurements are difficult to collect because of the high cost and ongoing maintenance of recording instruments. Therefore, various empirical Rn estimation models have been developed. This study presents the results of two artificial neural network (ANN) models (general regression neural networks (GRNN) and Neuroet) to estimate Rn globally from multi-source data, including remotely sensed products, surface measurements, and meteorological reanalysis products. Rn estimates provided by the two ANNs were tested against in-situ radiation measurements obtained from 251 global sites between 1991–2010more » both in global mode (all data were used to fit the models) and in conditional mode (the data were divided into four subsets and the models were fitted separately). Based on the results obtained from extensive experiments, it has been proved that the two ANNs were superior to linear-based empirical models in both global and conditional modes and that the GRNN performed better and was more stable than Neuroet. The GRNN estimates had a determination coefficient (R2) of 0.92, a root mean square error (RMSE) of 34.27 W·m–2 , and a bias of –0.61 W·m–2 in global mode based on the validation dataset. In conclusion, ANN methods are a potentially powerful tool for global Rn estimation.« less

  6. Surface daytime net radiation estimation using artificial neural networks

    SciTech Connect

    Jiang, Bo; Zhang, Yi; Liang, Shunlin; Zhang, Xiaotong; Xiao, Zhiqiang

    2014-11-11

    Net all-wave surface radiation (Rn) is one of the most important fundamental parameters in various applications. However, conventional Rn measurements are difficult to collect because of the high cost and ongoing maintenance of recording instruments. Therefore, various empirical Rn estimation models have been developed. This study presents the results of two artificial neural network (ANN) models (general regression neural networks (GRNN) and Neuroet) to estimate Rn globally from multi-source data, including remotely sensed products, surface measurements, and meteorological reanalysis products. Rn estimates provided by the two ANNs were tested against in-situ radiation measurements obtained from 251 global sites between 1991–2010 both in global mode (all data were used to fit the models) and in conditional mode (the data were divided into four subsets and the models were fitted separately). Based on the results obtained from extensive experiments, it has been proved that the two ANNs were superior to linear-based empirical models in both global and conditional modes and that the GRNN performed better and was more stable than Neuroet. The GRNN estimates had a determination coefficient (R2) of 0.92, a root mean square error (RMSE) of 34.27 W·m–2 , and a bias of –0.61 W·m–2 in global mode based on the validation dataset. In conclusion, ANN methods are a potentially powerful tool for global Rn estimation.

  7. Application of artificial neural nets to Shashlik calorimetry

    NASA Astrophysics Data System (ADS)

    Bonesini, M.; Gumenyuk, S.; Paganoni, M.; Petrovykh, L.; Terranova, F.

    1997-02-01

    Artificial Neural Networks (ANN) are powerful tools widely used in high-energy physics to solve track finding and particle identification problems. An entirely new class of application is related to the problem of recovering the information lost during data taking or signal transmission. Good performances can be reached by ANN when the events are described by quite regular patterns. Such a method was used for the DELPHI luminosity monitor (STIC) to recover calorimeter dead channels. A comparison with more traditional techniques is also given.

  8. A comparison of polynomial approximations and artificial neural nets as response surfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.; Barthelemy, Jean-Francois M.

    1992-01-01

    Artificial neural nets and polynomial approximations were used to develop response surfaces for several test problems. Based on the number of functional evaluations required to build the approximations and the number of undetermined parameters associated with the approximations, the performance of the two types of approximations was found to be comparable. A rule of thumb is developed for determining the number of nodes to be used on a hidden layer of an artificial neural net, and the number of designs needed to train an approximation is discussed.

  9. Artificial awareness for robots using artificial neural nets to monitor robotic workcells

    SciTech Connect

    Tucker, S.D.; Ray, L.P.

    1997-04-01

    Current robotic systems are unable to recognize most unexpected changes in the work environment, such as tool breakage, workpiece motion, or sensor failure. Unless halted by a human operator, they are likely to continue actions that are at best inappropriate, and at worst may cause damage to the workpiece or robot. This project investigated use of Artificial Neural Networks (ANNs) to learn the expected characteristics of sensor data during normal operations, recognize when data no longer is consistent with normal operation, suspend operations and alert a human operator. Data on force and torque applied at the robot tool tip were collected from two workcells: a robotic deburring system and a robot material-handling system. Data were collected for normal operations and for operations in which a fault condition was introduced. Data simulating sensor failure and excessive sensor noise were generated. Artificial Neural Networks (ANN) were trained to classify operating conditions; several ANN architectures were tested. The selected ANNs were able to correctly classify all valid operating conditions and the majority of fault conditions over the entire range of operating conditions, having {open_quotes}learned{close_quotes} the expected force/torque data. Most faults introduced appreciable error in the data; these were correctly classified. However, a small minority of faults did not give rise to a detectable difference in force and torque data. It is believed that these faults could be detected using other sensors. The computational workload varies with the implementation, but is moderate: up to 2.3 megaflops. This makes implementation of a real-time workcell monitor feasible.

  10. Discussion of using artificial neural nets to identify the well-test interpretation model

    SciTech Connect

    Yeung, K. ); Chakrabarty, C. ); Wu, S. )

    1994-09-01

    Use of artificial neural nets (ANN's) to identify noisy and apparently unrecognizable patterns is common for many real-world problems, ranging from applications such as speech recognition to stock market prediction. ANN approaches are often good candidates for recognizing patterns when rigid mathematical models do not exist or are insufficient to meet a full-scale identification requirement. Al-Kaabi and Lee's proposal of using ANN's to identify the well-test interpretation model is appropriate because well-test data is often highly nonlinear and noisy. The purpose of this discussion is to present some of the authors results in a similar study and to suggest a simple technique that would enhance the use of ANN's in Al-Kaabi and Lee's approach.

  11. Comparison of polynomial approximations and artificial neural nets for response surfaces in engineering optimization

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.

    1991-01-01

    Engineering optimization problems involve minimizing some function subject to constraints. In areas such as aircraft optimization, the constraint equations may be from numerous disciplines such as transfer of information between these disciplines and the optimization algorithm. They are also suited to problems which may require numerous re-optimizations such as in multi-objective function optimization or to problems where the design space contains numerous local minima, thus requiring repeated optimizations from different initial designs. Their use has been limited, however, by the fact that development of response surfaces randomly selected or preselected points in the design space. Thus, they have been thought to be inefficient compared to algorithms to the optimum solution. A development has taken place in the last several years which may effect the desirability of using response surfaces. It may be possible that artificial neural nets are more efficient in developing response surfaces than polynomial approximations which have been used in the past. This development is the concern of the work.

  12. Smallest artificial molecular neural-net for collective and emergent information processing

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Anirban; Sahu, Satyajit; Fujita, Daisuke

    2009-09-01

    While exploring the random diffusion of 2 bit molecular switches (we define as molecular neuron) on an atomic flat Au (111) substrate, we have found that at least four molecules are required to construct a functional neural net. Surface electron density wave enables communication of one to many molecules at a time—a prerequisite for the parallel processing. Here we have shown that in a neural net of several molecules, some of them could dynamically store information as memory and consistently replicate the fundamental relationship that is found only in a collective and emergent computing system like our brain.

  13. Detection and location of pipe damage by artificial-neural-net-processed moire error maps

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Cahall, Scott C.

    1993-05-01

    A novel automated inspection technique to recognize, locate, and quantify damage is developed. This technique is based on two already existing technologies: video moire metrology and artificial neural networks. Contour maps generated by video moire techniques provide an accurate description of surface structure that can then be automated by means of neutral networks. Artificial neural networks offer an attractive solution to the automated interpretation problem because they can generalize from the learned samples and provide an intelligent response for similar patterns having missing or noisy data. Two dimensional video moire images of pipes with dents of different depths, at several rotations, were used to train a multilayer feedforward neural network by the backpropagation algorithm. The backpropagation network is trained to recognize and classify the video moire images according to the dent's depth. Once trained, the network outputs give an indication of the probability that a dent has been found, a depth estimate, and the axial location of the center of the dent. This inspection technique has been demonstrated to be a powerful tool for the automatic location and quantification of structural damage, as illustrated using dented pipes.

  14. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  15. An artificial neural net and error backpropagation to reconstruct single photon emission computerized tomography data.

    PubMed

    Knoll, P; Mirzaei, S; Müllner, A; Leitha, T; Koriska, K; Köhn, H; Neumann, M

    1999-02-01

    At present, algorithms used in nuclear medicine to reconstruct single photon emission computerized tomography (SPECT) data are usually based on one of two principles: filtered backprojection and iterative methods. In this paper a different algorithm, applying an artificial neural network (multilayer perception) and error backpropagation as training method are used to reconstruct transaxial slices from SPECT data. The algorithm was implemented on an Elscint XPERT workstation (i486, 50 MHz), used as a routine digital image processing tool in our departments. Reconstruction time for a 64 x 64 matrix is approximately 45 s/transaxial slice. The algorithm has been validated by a mathematical model and tested on heart and Jaszczak phantoms. Phantom studies and very first clinical results ((111)In octreotide SPECT, 99mTc MDP bone SPECT) show in comparison with filtered backprojection an enhancement in image quality. PMID:10076982

  16. Refractory neural nets and vision

    NASA Astrophysics Data System (ADS)

    Fall, Thomas C.

    2014-02-01

    Biological understandings have served as the basis for new computational approaches. A prime example is artificial neural nets which are based on the biological understanding of the trainability of neural synapses. In this paper, we will investigate features of the biological vision system to see if they can also be exploited. These features are 1) the neuron's refractory period - the period of time after the neuron fires before it can fire again and 2) the ocular microtremor which moves the retinal neural array relative to the image. The short term memory due to the refractory period allows the before and after movement views to be compared. This paper will discuss the investigation of the implications of these two features.

  17. Application of neural nets in structural optimization

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1993-01-01

    The biological motivation for Artificial Neural Net developments is briefly discussed, and the most popular paradigm, the feedforward supervised learning net with error back propagation training algorithm, is introduced. Possible approaches for utilization in structural optimization is illustrated through simple examples. Other currently ongoing developments for application in structural mechanics are also mentioned.

  18. Quantum Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Williams, Colin P.

    1997-01-01

    The capacity of classical neurocomputers is limited by the number of classical degrees of freedom which is roughly proportional to the size of the computer. By Contrast, a Hypothetical quantum neurocomputer can implement an exponentially large number of the degrees of freedom within the same size. In this paper an attempt is made to reconcile linear reversible structure of quantum evolution with nonlinear irreversible dynamics for neural nets.

  19. Neural nets on the MPP

    NASA Technical Reports Server (NTRS)

    Hastings, Harold M.; Waner, Stefan

    1987-01-01

    The Massively Parallel Processor (MPP) is an ideal machine for computer experiments with simulated neural nets as well as more general cellular automata. Experiments using the MPP with a formal model neural network are described. The results on problem mapping and computational efficiency apply equally well to the neural nets of Hopfield, Hinton et al., and Geman and Geman.

  20. Synchronization in neural nets

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.; Haggerty, John

    1988-01-01

    The paper presents an artificial neural network concept (the Synchronizable Oscillator Networks) where the instants of individual firings in the form of point processes constitute the only form of information transmitted between joining neurons. In the model, neurons fire spontaneously and regularly in the absence of perturbation. When interaction is present, the scheduled firings are advanced or delayed by the firing of neighboring neurons. Networks of such neurons become global oscillators which exhibit multiple synchronizing attractors. From arbitrary initial states, energy minimization learning procedures can make the network converge to oscillatory modes that satisfy multi-dimensional constraints. Such networks can directly represent routing and scheduling problems that consist of ordering sequences of events.

  1. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  2. Artificial neural superposition eye.

    PubMed

    Brückner, Andreas; Duparré, Jacques; Dannberg, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2007-09-17

    We propose an ultra-thin imaging system which is based on the neural superposition compound eye of insects. Multiple light sensitive pixels in the footprint of each lenslet of this multi-channel configuration enable the parallel imaging of the individual object points. Together with the digital superposition of related signals this multiple sampling enables advanced functionalities for artificial compound eyes. Using this technique, color imaging and a circumvention for the trade-off between resolution and sensitivity of ultra-compact camera devices have been demonstrated in this article. The optical design and layout of such a system is discussed in detail. Experimental results are shown which indicate the attractiveness of microoptical artificial compound eyes for applications in the field of machine vision, surveillance or automotive imaging. PMID:19547555

  3. Weakly connected neural nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1990-01-01

    A new neural network architecture is proposed based upon effects of non-Lipschitzian dynamics. The network is fully connected, but these connections are active only during vanishingly short time periods. The advantages of this architecture are discussed.

  4. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  5. Stochastic neural nets and vision

    NASA Astrophysics Data System (ADS)

    Fall, Thomas C.

    1991-03-01

    A stochastic neural net shares with the normally defined neural nets the concept that information is processed by a system consisting of a set of nodes (neurons) connected by weighted links (axons). The normal neural net takes in inputs on an initial layer of neurons which fire appropriately; a neuron of the next layer fires depending on the sum of weights of the axons leading to it from fired neurons of the first layer. The stochastic neural net differs in that the neurons are more complex and that the vision activity is a dynamic process. The first layer (viewing layer) of neurons fires stochastically based on the average brightness of the area it sees and then has a refractory period. The viewing layer looks at the image for several clock cycles. The effect is like those photo sensitive sunglasses that darken in bright light. The neurons over the bright areas are most likely in a refractory period (and this can't fire) and the neurons over the dark areas are not. Now if we move the sensing layer with respect to the image so that a portion of the neurons formerly over the dark are now over the bright, they will likely all fire on that first cycle. Thus, on that cycle, one would see a flash from that portion significantly stronger than surrounding regions. Movement the other direction would produce a patch that is darker, but this effect is not as noticeable. These effects are collected in a collection layer. This paper will discuss the use of the stochastic neural net for edge detection and segmentation of some simple images.

  6. Multifunctional hybrid optical/digital neural net

    NASA Astrophysics Data System (ADS)

    Casasent, David P.

    1990-08-01

    A multi-functional hybrid neural net is described. It is hybrid since it uses a digital hardware Hecht-Nielsen Corporation (HNC) neural net for adaptive learning and an optical neural net for on-line processing/classification. It is also hybrid in its combination of pattern recognition and neural net techniques. The system is multi-functional. It can function as an optimization and adaptive pattern recognition neural net as well as an auto and heteroassociative processor. I . W. JTRODUCTION Neural nets (NNs) have recently received enormous attention [1 -2] with increasing attention to the use of optical processors and a variety of new learning algorithms. Section 2 describes our hybrid NN with attention to Its fabrication and the role for optical and digital processors. Section 3 details Its use as an associative processor. Section 4 highlights is use in 3 optimization NN problems (a mixture NN a multitarget tracker (MTT) NN and a matrix inversion NN). Section 5 briefly notes it use as a production NN system and symbolic NN. Section 6 describes its use as an adaptive pattern recognition (PR) NN (that marries PR and NN techniques). 2. HYBRID ARCHITECTURE Figure 1 shows our basic hybrid NN [3]. The optical portion of the system is a matrix-vector (M-V) processor whose vector output P3 is the product of the vector at P1 and the matrix at P2. An HNC digital hardware NN is used during learning determine the interconnection weights forP2. If P2 is a spatial light modulator (SLM) its contents can be updated (using gated learning) from thedigital NN. The operations in most adaptive PR NN learning algorithms are sufficiently complex thatthey are best implemented digitally. In addition the learning operations required are often not well suited for optical realization for optimization NNs the weights are fixed and in adaptive learning learning is off-line and once completed the weights can often be fixed. Four gates are shown that determine the final output or the new P1

  7. A practical guide to neural nets

    SciTech Connect

    Nelson, M.M.; Illingworth, W.T.

    1991-01-01

    The concept of neural networks, their operation, and applications are reviewed. Topics discussed include definitions, terminology, and concepts of neural networks, the principal issues and problems addressed by neural network technology, recent developments in the field of artificial intelligence, characteristics and limitations of neural networks, and various neural network architectures. Other topics covered include the basic learning mechanisms of neural networks, examples of neural network applications, implementations of neural networks, some current problems in neural network research, and suggestions for future research. 126 refs.

  8. Artificial neural networks in medicine

    SciTech Connect

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  9. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  10. Artificial nets from superconducting nanogranules

    SciTech Connect

    Ovchinnikov, Yu. N.; Kresin, V. Z.

    2012-06-15

    We show that a large transport current can flow through superconducting nets composed of nano-clusters. Although thermal and quantum fluctuations lead to a finite value of dissipation, this value can be very small in one- and two-dimensional systems for realistic parameters of the nanoclusters and distances between them. The value of the action for vortex tunneling at zero temperature can be made sufficiently large to make the dissipation negligibly small. We estimate the temperature T{sub 0} of the transition from the thermal activation to quantum tunneling.

  11. Tuning of power system stabilizers using an artificial neural network

    SciTech Connect

    Hsu, Y.Y.; Chen, C.R. )

    1991-12-01

    This paper reports on tuning of power system stabilizers (PSS) which is investigated using an artificial neural network (ANN). To have good damping characteristics over a wide range of operating conditions, it is desirable to adapt the PSS parameters in real-time based on generator loading conditions. To do this, a pair of on-line measurements, i.e. generator real power output (P) and power factor (PF), which are representative of generator operating condition, are chosen as the input signals to the neural net. The outputs of the neural net are the desired PSS parameters. The neural net, once trained by a set of input-output patterns in the training set, can yield proper PSS parameters under any generator loading condition. Digital simulations of a synchronous machine subject to a major disturbance of three-phase fault under different operating conditions are performed to demonstrate the effectiveness of the proposed neural network.

  12. Correcting wave predictions with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Makarynskyy, O.; Makarynska, D.

    2003-04-01

    The predictions of wind waves with different lead times are necessary in a large scope of coastal and open ocean activities. Numerical wave models, which usually provide this information, are based on deterministic equations that do not entirely account for the complexity and uncertainty of the wave generation and dissipation processes. An attempt to improve wave parameters short-term forecasts based on artificial neural networks is reported. In recent years, artificial neural networks have been used in a number of coastal engineering applications due to their ability to approximate the nonlinear mathematical behavior without a priori knowledge of interrelations among the elements within a system. The common multilayer feed-forward networks, with a nonlinear transfer functions in the hidden layers, were developed and employed to forecast the wave characteristics over one hour intervals starting from one up to 24 hours, and to correct these predictions. Three non-overlapping data sets of wave characteristics, both from a buoy, moored roughly 60 miles west of the Aran Islands, west coast of Ireland, were used to train and validate the neural nets involved. The networks were trained with error back propagation algorithm. Time series plots and scatterplots of the wave characteristics as well as tables with statistics show an improvement of the results achieved due to the correction procedure employed.

  13. Neural Net Safety Monitor Design

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a floating limiter (FL) concept1 that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly floating and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually hit the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The

  14. Devices and circuits for nanoelectronic implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Turel, Ozgur

    Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.

  15. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  16. Overview of artificial neural networks.

    PubMed

    Zou, Jinming; Han, Yi; So, Sung-Sau

    2008-01-01

    The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter. PMID:19065803

  17. Artificial neural networks in neurosurgery.

    PubMed

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery. PMID:24987050

  18. Accelerator diagnosis and control by Neural Nets

    SciTech Connect

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs.

  19. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  20. Creativity in design and artificial neural networks

    SciTech Connect

    Neocleous, C.C.; Esat, I.I.; Schizas, C.N.

    1996-12-31

    The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.

  1. Introduction to artificial neural networks.

    PubMed

    Grossi, Enzo; Buscema, Massimo

    2007-12-01

    The coupling of computer science and theoretical bases such as nonlinear dynamics and chaos theory allows the creation of 'intelligent' agents, such as artificial neural networks (ANNs), able to adapt themselves dynamically to problems of high complexity. ANNs are able to reproduce the dynamic interaction of multiple factors simultaneously, allowing the study of complexity; they can also draw conclusions on individual basis and not as average trends. These tools can offer specific advantages with respect to classical statistical techniques. This article is designed to acquaint gastroenterologists with concepts and paradigms related to ANNs. The family of ANNs, when appropriately selected and used, permits the maximization of what can be derived from available data and from complex, dynamic, and multidimensional phenomena, which are often poorly predictable in the traditional 'cause and effect' philosophy. PMID:17998827

  2. Analysis of torsional oscillations using an artificial neural network

    SciTech Connect

    Hsu, Y.Y.; Jeng, L,H. )

    1992-12-01

    In this paper, a novel approach using an artificial neural network (ANN) is proposed for the analysis of torsional oscillations in a power system. In the developed artificial neural network, those system variables such as generator loadings and capacitor compensation ratio which have major impacts on the damping characteristics of torsional oscillatio modes are employed as the inputs. The outputs of the neural net provide the desired eigenvalues for torsional modes. Once the connection weights of the neural network have been learned using a set of training data derived off-line, the neural network can be applied to torsional analysis in real-time situations. To demonstrate the effectiveness of the proposed neural net, torsional analysis is performed on the IEEE First Benchmark Model. It is concluded from the test results that accurate assessment of the torsional mode eigenvalues can be achieved by the neural network in a very efficient manner. Thereofore, the proposed neural network approach can serve as a valuable tool to system operators in conducting SSR analysis in operational planning.

  3. Learning in Artificial Neural Systems

    NASA Technical Reports Server (NTRS)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  4. The power of neural nets

    NASA Technical Reports Server (NTRS)

    Ryan, J. P.; Shah, B. H.

    1987-01-01

    Implementation of the Hopfield net which is used in the image processing type of applications where only partial information about the image may be available is discussed. The image classification type of algorithm of Hopfield and other learning algorithms, such as the Boltzmann machine and the back-propagation training algorithm, have many vital applications in space.

  5. Detection of Structural Abnormalities Using Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.

    1996-01-01

    This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.

  6. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  7. Neural-net Processed Electronic Holography for Rotating Machines

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2003-01-01

    This report presents the results of an R&D effort to apply neural-net processed electronic holography to NDE of rotors. Electronic holography was used to generate characteristic patterns or mode shapes of vibrating rotors and rotor components. Artificial neural networks were trained to identify damage-induced changes in the characteristic patterns. The development and optimization of a neural-net training method were the most significant contributions of this work, and the training method and its optimization are discussed in detail. A second positive result was the assembly and testing of a fiber-optic holocamera. A major disappointment was the inadequacy of the high-speed-holography hardware selected for this effort, but the use of scaled holograms to match the low effective resolution of an image intensifier was one interesting attempt to compensate. This report also discusses in some detail the physics and environmental requirements for rotor electronic holography. The major conclusions were that neural-net and electronic-holography inspections of stationary components in the laboratory and the field are quite practical and worthy of continuing development, but that electronic holography of moving rotors is still an expensive high-risk endeavor.

  8. A mixture neural net for multispectral imaging spectrometer processing

    NASA Technical Reports Server (NTRS)

    Casasent, David; Slagle, Timothy

    1990-01-01

    Each spatial region viewed by an imaging spectrometer contains various elements in a mixture. The elements present and the amount of each are to be determined. A neural net solution is considered. Initial optical neural net hardware is described. The first simulations on the component requirements of a neural net are considered. The pseudoinverse solution is shown to not suffice, i.e. a neural net solution is required.

  9. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  10. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  11. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  12. Neural net forecasting for geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Hernandez, J. V.; Tajima, T.; Horton, W.

    1993-01-01

    We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).

  13. Neural Net Gains Estimation Based on an Equivalent Model

    PubMed Central

    Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory

    2016-01-01

    A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system. PMID:27366146

  14. Neural Net Gains Estimation Based on an Equivalent Model.

    PubMed

    Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory

    2016-01-01

    A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system. PMID:27366146

  15. Load forecasting using artificial neural networks

    SciTech Connect

    Pham, K.D.

    1995-12-31

    Artificial neural networks, modeled after their biological counterpart, have been successfully applied in many diverse areas including speech and pattern recognition, remote sensing, electrical power engineering, robotics and stock market forecasting. The most commonly used neural networks are those that gained knowledge from experience. Experience is presented to the network in form of the training data. Once trained, the neural network can recognized data that it has not seen before. This paper will present a fundamental introduction to the manner in which neural networks work and how to use them in load forecasting.

  16. An artificial neural network for wavelet steganalysis

    NASA Astrophysics Data System (ADS)

    Davidson, Jennifer; Bergman, Clifford; Bartlett, Eric

    2005-08-01

    Hiding messages in image data, called steganography, is used for both legal and illicit purposes. The detection of hidden messages in image data stored on websites and computers, called steganalysis, is of prime importance to cyber forensics personnel. Automating the detection of hidden messages is a requirement, since the shear amount of image data stored on computers or websites makes it impossible for a person to investigate each image separately. This paper describes research on a prototype software system that automatically classifies an image as having hidden information or not, using a sophisticated artificial neural network (ANN) system. An ANN software package, the ISU ACL NetWorks Toolkit, is trained on a selection of image features that distinguish between stego and nonstego images. The novelty of this ANN is that it is a blind classifier that gives more accurate results than previous systems. It can detect messages hidden using a variety of different types of embedding algorithms. A Graphical User Interface (GUI) combines the ANN, feature selection, and embedding algorithms into a prototype software package that is not currently available to the cyber forensics community.

  17. Document analysis with neural net circuits

    NASA Technical Reports Server (NTRS)

    Graf, Hans Peter

    1994-01-01

    Document analysis is one of the main applications of machine vision today and offers great opportunities for neural net circuits. Despite more and more data processing with computers, the number of paper documents is still increasing rapidly. A fast translation of data from paper into electronic format is needed almost everywhere, and when done manually, this is a time consuming process. Markets range from small scanners for personal use to high-volume document analysis systems, such as address readers for the postal service or check processing systems for banks. A major concern with present systems is the accuracy of the automatic interpretation. Today's algorithms fail miserably when noise is present, when print quality is poor, or when the layout is complex. A common approach to circumvent these problems is to restrict the variations of the documents handled by a system. In our laboratory, we had the best luck with circuits implementing basic functions, such as convolutions, that can be used in many different algorithms. To illustrate the flexibility of this approach, three applications of the NET32K circuit are described in this short viewgraph presentation: locating address blocks, cleaning document images by removing noise, and locating areas of interest in personal checks to improve image compression. Several of the ideas realized in this circuit that were inspired by neural nets, such as analog computation with a low resolution, resulted in a chip that is well suited for real-world document analysis applications and that compares favorably with alternative, 'conventional' circuits.

  18. An Artificial Neural Networks Method for Solving Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2010-09-01

    While there already exists many analytical and numerical techniques for solving PDEs, this paper introduces an approach using artificial neural networks. The approach consists of a technique developed by combining the standard numerical method, finite-difference, with the Hopfield neural network. The method is denoted Hopfield-finite-difference (HFD). The architecture of the nets, energy function, updating equations, and algorithms are developed for the method. The HFD method has been used successfully to approximate the solution of classical PDEs, such as the Wave, Heat, Poisson and the Diffusion equations, and on a system of PDEs. The software Matlab is used to obtain the results in both tabular and graphical form. The results are similar in terms of accuracy to those obtained by standard numerical methods. In terms of speed, the parallel nature of the Hopfield nets methods makes them easier to implement on fast parallel computers while some numerical methods need extra effort for parallelization.

  19. Data compression using artificial neural networks

    SciTech Connect

    Watkins, B.E.

    1991-09-01

    This thesis investigates the application of artificial neural networks for the compression of image data. An algorithm is developed using the competitive learning paradigm which takes advantage of the parallel processing and classification capability of neural networks to produce an efficient implementation of vector quantization. Multi-Stage, tree searched, and classification vector quantization codebook design are adapted to the neural network design to reduce the computational cost and hardware requirements. The results show that the new algorithm provides a substantial reduction in computational costs and an improvement in performance.

  20. Comparing artificial and biological dynamical neural networks

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2006-05-01

    Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.

  1. Optimization of Training Sets for Neural-Net Processing of Characteristic Patterns from Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2001-01-01

    Artificial neural networks have been used for a number of years to process holography-generated characteristic patterns of vibrating structures. This technology depends critically on the selection and the conditioning of the training sets. A scaling operation called folding is discussed for conditioning training sets optimally for training feed-forward neural networks to process characteristic fringe patterns. Folding allows feed-forward nets to be trained easily to detect damage-induced vibration-displacement-distribution changes as small as 10 nm. A specific application to aerospace of neural-net processing of characteristic patterns is presented to motivate the conditioning and optimization effort.

  2. Speech synthesis with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Weijters, Ton; Thole, Johan

    1992-10-01

    The application of neural nets to speech synthesis is considered. In speech synthesis, the main efforts so far have been to master the grapheme to phoneme conversion. During this conversion symbols (graphemes) are converted into other symbols (phonemes). Neural networks, however, are especially competitive for tasks in which complex nonlinear transformations are needed and sufficient domain specific knowledge is not available. The conversion of text into speech parameters appropriate as input for a speech generator seems such a task. Results of a pilot study in which an attempt is made to train a neural network for this conversion are presented.

  3. Optical neural nets for scene analysis

    NASA Astrophysics Data System (ADS)

    Casasent, David

    1991-04-01

    This project involves hybrid optical/digital neural nets (NNs) with attention to one of the most formidable NN problems: scene analysis and pattern recognition. Our research is unique in its attention to a hybrid optical/digital NN architecture that is very multifunctional. We describe the various novel uses for optics we employ within a NN and how our hybrid architecture can implement most major NNs (specifically: associative processors, optimization NNs, NNs to handle multiple objects in the field of view, and adaptive learning NNs). We also include new matrix inversion NN concepts. Our scene analysis algorithm work includes a new feature space, a new hybrid pattern recognition/neural net algorithm (the ACNNO, our symbolic correlator production system NN (that handles multiple objects in the field of view in parallel), and an advanced piecewise quadratic NN (PQNN) concept. Our major thrust has been the optical laboratory realization of these NN algorithms. Our initial work in this area is noted and includes: new error source modeling simulations of our initial and new real time optical laboratory system, a description of our newest optical laboratory system, and initial test results obtained with it.

  4. Psychometric Measurement Models and Artificial Neural Networks

    ERIC Educational Resources Information Center

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  5. [Application of artificial neural networks in infectious diseases].

    PubMed

    Xu, Jun-fang; Zhou, Xiao-nong

    2011-02-28

    With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years. PMID:21823326

  6. Web traffic prediction with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gluszek, Adam; Kekez, Michal; Rudzinski, Filip

    2005-02-01

    The main aim of the paper is to present application of the artificial neural network in the web traffic prediction. First, the general problem of time series modelling and forecasting is shortly described. Next, the details of building of dynamic processes models with the neural networks are discussed. At this point determination of the model structure in terms of its inputs and outputs is the most important question because this structure is a rough approximation of the dynamics of the modelled process. The following section of the paper presents the results obtained applying artificial neural network (classical multilayer perceptron trained with backpropagation algorithm) to the real-world web traffic prediction. Finally, we discuss the results, describe weak points of presented method and propose some alternative approaches.

  7. Predicting permeability from porosity using artificial neural networks

    SciTech Connect

    Rogers, S.J.; Fang, J.H.; Chen, H.C. Kopaska-Merkel, D.C.

    1995-12-01

    Permeability values in a borehole are predicted by an artificial neural network from the porosity values at the same depths. THe network used in this study employs an architecture called backpropagation that is good at making predictions. The traditional approach for permeability prediction is regression analysis, the relationship between porosity and permeability is assumed to be known. In reality, the functional form of this relationship, i.e., the model equation, is unknown. In contrast, the neural-network approach assumes no functional relationship. Six wells from Big Escambia Creek (Jurassic Smackover carbonate) field in southern Alabama were used to test predicting permeability from porosity using a neural network. Porosity and spatial data alone were used to predict permeability because these data are readily available from any hydrocarbon field. Three scenarios were performed; in each one, a subset of the six wells was used for a training set, one well for calibration, and one or two wells were used for prediction. For each scenario, simple linear regression was also used to predict permeability from porosity. The neural net predicted permeability much better than did regression in one scenario; in the other two scenarios the two methods performed equally well. The neural net predicted permeability accurately using minimal data, but other kinds of information (e.g., log- or core-derived lithologic information) are easily incorporated if available. In addition, compartmentalization of carbonate reservoirs may be recognizable by this approach.

  8. Artificial neural network simulation of battery performance

    SciTech Connect

    O`Gorman, C.C.; Ingersoll, D.; Jungst, R.G.; Paez, T.L.

    1998-12-31

    Although they appear deceptively simple, batteries embody a complex set of interacting physical and chemical processes. While the discrete engineering characteristics of a battery such as the physical dimensions of the individual components, are relatively straightforward to define explicitly, their myriad chemical and physical processes, including interactions, are much more difficult to accurately represent. Within this category are the diffusive and solubility characteristics of individual species, reaction kinetics and mechanisms of primary chemical species as well as intermediates, and growth and morphology characteristics of reaction products as influenced by environmental and operational use profiles. For this reason, development of analytical models that can consistently predict the performance of a battery has only been partially successful, even though significant resources have been applied to this problem. As an alternative approach, the authors have begun development of a non-phenomenological model for battery systems based on artificial neural networks. Both recurrent and non-recurrent forms of these networks have been successfully used to develop accurate representations of battery behavior. The connectionist normalized linear spline (CMLS) network has been implemented with a self-organizing layer to model a battery system with the generalized radial basis function net. Concurrently, efforts are under way to use the feedforward back propagation network to map the {open_quotes}state{close_quotes} of a battery system. Because of the complexity of battery systems, accurate representation of the input and output parameters has proven to be very important. This paper describes these initial feasibility studies as well as the current models and makes comparisons between predicted and actual performance.

  9. Computer-assisted diagnosis of lung nodule detection using artificial convoultion neural network

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Lin, Jyh-Shyan; Freedman, Matthew T.; Mun, Seong K.

    1993-09-01

    Several fuzzy assignment methods for the output association with convolution neural network are proposed for general medical image pattern recognition. A non-conventional method of using rotation and shift invariance is also proposed to enhance the neural net performance. These methods in conjunction with the convolution neural network technique are generally applicable to the recognition of medical disease patterns in gray scale imaging. The structure of the artificial neural network is a simplified network structure of neocognitron. Two- dimensional local connection as a group is the fundamental architecture for the signal propagation in the convolution (vision type) neural network. Weighting coefficients of convolution kernels are formed by neural network through backpropagated training for this artificial neural net. In addition, radiologists' reading procedure was modeled in order to instruct the artificial neural network to recognize the pre-defined image patterns and those of interest to experts. We have tested this method for lung nodule detection. The performance studies have shown the potential use of this technique in a clinical environment. Our computer program uses a sphere profile double-matching technique for initial nodule search. We set searching parameters in a highly sensitive level to identify all potential disease areas. The artificial convolution neural network acts as a final detection classifier to determine if a disease pattern is shown on the suspected image area. The total processing time for the automatic detection of lung nodules using both pre-scan and convolution neural network evaluation is about 10 seconds in a DEC Alpha workstation.

  10. Neural-net based real-time economic dispatch for thermal power plants

    SciTech Connect

    Djukanovic, M.; Milosevic, B.; Calovic, M.; Sobajic, D.J.

    1996-12-01

    This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal units. The approach can take into account the operational requirements and network losses. The proposed economic dispatch uses an artificial neural network (ANN) for generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from the Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal systems, based on the neural-net theory for simplified solution algorithms and improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories, by applying neural-net forecasts of system load patterns.

  11. Extraction of shoreline features by neural nets and image processing

    SciTech Connect

    Ryan, T.W.; Sementilli, P.J.; Yuen, P.; Hunt, B.R. )

    1991-07-01

    This paper demonstrates the capability of using neural networks as a tool for delineation of shorelines. The neural nets used are multilayer perceptrons, i.e., feed-forward nets with one or more layers of nodes between the input and output nodes. The back-propagation learning algorithm is used as the adaptation rule. 24 refs.

  12. Development of programmable artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  13. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  14. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, L.J.; Keller, P.E.

    1997-10-28

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.

  15. Artificial neural networks for small dataset analysis.

    PubMed

    Pasini, Antonello

    2015-05-01

    Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654

  16. Artificial neural networks for small dataset analysis

    PubMed Central

    2015-01-01

    Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654

  17. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E. )

    1989-10-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed.

  18. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  19. Proceedings of intelligent engineering systems through artificial neural networks

    SciTech Connect

    Dagli, C.H. . Dept. of Engineering Management); Kumara, S.R. . Dept. of Industrial Management Systems Engineering); Shin, Y.C. . School of Mechanical Engineering)

    1991-01-01

    This book contains the edited versions of the technical presentation of ANNIE '91, the first international meeting on Artificial Neural Networks in Engineering. The conference covered the theory of Artificial Neural Networks and its contributions in the engineering domain and attracted researchers from twelve countries. The papers in this edited book are grouped into four categories: Artificial Neural Network Architectures; Pattern Recognition; Adaptive Control, Diagnosis and Process Monitoring; and Neuro-Engineering Systems.

  20. Artificial convolution neural network techniques and applications for lung nodule detection.

    PubMed

    Lo, S B; Lou, S A; Lin, J S; Freedman, M T; Chien, M V; Mun, S K

    1995-01-01

    We have developed a double-matching method and an artificial visual neural network technique for lung nodule detection. This neural network technique is generally applicable to the recognition of medical image pattern in gray scale imaging. The structure of the artificial neural net is a simplified network structure of human vision. The fundamental operation of the artificial neural network is local two-dimensional convolution rather than full connection with weighted multiplication. Weighting coefficients of the convolution kernels are formed by the neural network through backpropagated training. In addition, we modeled radiologists' reading procedures in order to instruct the artificial neural network to recognize the image patterns predefined and those of interest to experts in radiology. We have tested this method for lung nodule detection. The performance studies have shown the potential use of this technique in a clinical setting. This program first performed an initial nodule search with high sensitivity in detecting round objects using a sphere template double-matching technique. The artificial convolution neural network acted as a final classifier to determine whether the suspected image block contains a lung nodule. The total processing time for the automatic detection of lung nodules using both prescan and convolution neural network evaluation was about 15 seconds in a DEC Alpha workstation. PMID:18215875

  1. A Novel Higher Order Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Xu, Shuxiang

    2010-05-01

    In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.

  2. Synchronous machine steady-state stability analysis using an artificial neural network

    SciTech Connect

    Chen, C.R.; Hsu, Y.Y. . Dept. of Electrical Engineering)

    1991-03-01

    A new type of artificial neural network is proposed for the steady-state stability analysis of a synchronous generator. In the developed artificial neutral network, those system variables which play an important role in steady-state stability such as generator outputs and power system stabilizer parameters are employed as the inputs. The output of the neural net provides the information on steady-state stability. Once the connection weights of the neural network have been learned using a set of training data derived off-line, the neural net can be applied to analyze the steady-state stability of the system time. To demonstrate the effectiveness of the proposed neural net, steady-state stability analysis is performed on a synchronous generator connected to a large power system. It is found that the proposed neural net requires much less training time than the multilayer feedforward network with backpropagation-momentum learning algorithm. It is also concluded from the test results that correct stability assessment can be achieved by the neural network.

  3. Artificial neural networks and Abelian harmonic analysis

    NASA Astrophysics Data System (ADS)

    Rodriguez, Domingo; Pertuz-Campo, Jairo

    1991-12-01

    This work deals with the use of artificial neural networks (ANN) for the digital processing of finite discrete time signals. The effort concentrates on the efficient replacement of fast Fourier transform (FFT) algorithms with ANN algorithms in certain engineering and scientific applications. The FFT algorithms are efficient methods of computing the discrete Fourier transform (DFT). The ubiquitous DFT is utilized in almost every digital signal processing application where harmonic analysis information is needed. Applications abound in areas such as audio acoustics, geophysics, biomedicine, telecommunications, astrophysics, etc. To identify more efficient methods to obtain a desired spectral information will result in a reduction in the computational effort required to implement these applications.

  4. Digital Image Compression Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.

    1993-01-01

    The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.

  5. FPGA-based artificial neural network using CORDIC modules

    NASA Astrophysics Data System (ADS)

    Liddicoat, Albert A.; Slivovsky, Lynne A.; McLenegan, Tim; Heyer, Don

    2006-08-01

    Artificial neural networks have been used in applications that require complex procedural algorithms and in systems which lack an analytical mathematic model. By designing a large network of computing nodes based on the artificial neuron model, new solutions can be developed for computational problems in fields such as image processing and speech recognition. Neural networks are inherently parallel since each neuron, or node, acts as an autonomous computational element. Artificial neural networks use a mathematical model for each node that processes information from other nodes in the same region. The information processing entails computing a weighted average computation followed by a nonlinear mathematical transformation. Some typical artificial neural network applications use the exponential function or trigonometric functions for the nonlinear transformation. Various simple artificial neural networks have been implemented using a processor to compute the output for each node sequentially. This approach uses sequential processing and does not take advantage of the parallelism of a complex artificial neural network. In this work a hardware-based approach is investigated for artificial neural network applications. A Field Programmable Gate Arrays (FPGAs) is used to implement an artificial neuron using hardware multipliers, adders and CORDIC functional units. In order to create a large scale artificial neural network, area efficient hardware units such as CORDIC units are needed. High performance and low cost bit serial CORDIC implementations are presented. Finally, the FPGA resources and the performance of a hardware-based artificial neuron are presented.

  6. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1995-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.

  7. Molnets: An Artificial Chemistry Based on Neural Networks

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Luk, Johnny; Segovia-Juarez, Jose L.; Lohn, Jason; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The fundamental problem in the evolution of matter is to understand how structure-function relationships are formed and increase in complexity from the molecular level all the way to a genetic system. We have created a system where structure-function relationships arise naturally and without the need of ad hoc function assignments to given structures. The idea was inspired by neural networks, where the structure of the net embodies specific computational properties. In this system networks interact with other networks to create connections between the inputs of one net and the outputs of another. The newly created net then recomputes its own synaptic weights, based on anti-hebbian rules. As a result some connections may be cut, and multiple nets can emerge as products of a 'reaction'. The idea is to study emergent reaction behaviors, based on simple rules that constitute a pseudophysics of the system. These simple rules are parameterized to produce behaviors that emulate chemical reactions. We find that these simple rules show a gradual increase in the size and complexity of molecules. We have been building a virtual artificial chemistry laboratory for discovering interesting reactions and for testing further ideas on the evolution of primitive molecules. Some of these ideas include the potential effect of membranes and selective diffusion according to molecular size.

  8. Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

  9. Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Buggele, Alvin E.

    1996-01-01

    Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.

  10. Use of artifical neural nets to predict permeability in Hugoton Field

    SciTech Connect

    Thompson, K.A.; Franklin, M.H.; Olson, T.M.

    1996-12-31

    One of the most difficult tasks in petrophysics is establishing a quantitative relationship between core permeability and wireline logs. This is a tough problem in Hugoton Field, where a complicated mix of carbonates and clastics further obscure the correlation. One can successfully model complex relationships such as permeability-to-logs using artificial neural networks. Mind and Vision, Inc.`s neural net software was used because of its orientation toward depth-related data (such as logs) and its ability to run on a variety of log analysis platforms. This type of neural net program allows the expert geologist to select a few (10-100) points of control to train the {open_quotes}brainstate{close_quotes} using logs as predicters and core permeability as {open_quotes}truth{close_quotes}. In Hugoton Field, the brainstate provides an estimate of permeability at each depth in 474 logged wells. These neural net-derived permeabilities are being used in reservoir characterization models for fluid saturations. Other applications of this artificial neural network technique include deterministic relationships of logs to: core lithology, core porosity, pore type, and other wireline logs (e.g., predicting a sonic log from a density log).

  11. Use of artifical neural nets to predict permeability in Hugoton Field

    SciTech Connect

    Thompson, K.A.; Franklin, M.H.; Olson, T.M. )

    1996-01-01

    One of the most difficult tasks in petrophysics is establishing a quantitative relationship between core permeability and wireline logs. This is a tough problem in Hugoton Field, where a complicated mix of carbonates and clastics further obscure the correlation. One can successfully model complex relationships such as permeability-to-logs using artificial neural networks. Mind and Vision, Inc.'s neural net software was used because of its orientation toward depth-related data (such as logs) and its ability to run on a variety of log analysis platforms. This type of neural net program allows the expert geologist to select a few (10-100) points of control to train the [open quotes]brainstate[close quotes] using logs as predicters and core permeability as [open quotes]truth[close quotes]. In Hugoton Field, the brainstate provides an estimate of permeability at each depth in 474 logged wells. These neural net-derived permeabilities are being used in reservoir characterization models for fluid saturations. Other applications of this artificial neural network technique include deterministic relationships of logs to: core lithology, core porosity, pore type, and other wireline logs (e.g., predicting a sonic log from a density log).

  12. Functional expansion representations of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  13. Mesh deformation based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej

    2011-09-01

    In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.

  14. Artificial neural network for multifunctional areas.

    PubMed

    Riccioli, Francesco; El Asmar, Toufic; El Asmar, Jean-Pierre; Fagarazzi, Claudio; Casini, Leonardo

    2016-01-01

    The issues related to the appropriate planning of the territory are particularly pronounced in highly inhabited areas (urban areas), where in addition to protecting the environment, it is important to consider an anthropogenic (urban) development placed in the context of sustainable growth. This work aims at mathematically simulating the changes in the land use, by implementing an artificial neural network (ANN) model. More specifically, it will analyze how the increase of urban areas will develop and whether this development would impact on areas with particular socioeconomic and environmental value, defined as multifunctional areas. The simulation is applied to the Chianti Area, located in the province of Florence, in Italy. Chianti is an area with a unique landscape, and its territorial planning requires a careful examination of the territory in which it is inserted. PMID:26718948

  15. Dynamic Artificial Neural Networks with Affective Systems

    PubMed Central

    Schuman, Catherine D.; Birdwell, J. Douglas

    2013-01-01

    Artificial neural networks (ANNs) are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP) and long term depression (LTD), and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance. PMID:24303015

  16. Application of artificial neural networks to the design optimization of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  17. A neural net approach to space vehicle guidance

    NASA Technical Reports Server (NTRS)

    Caglayan, Alper K.; Allen, Scott M.

    1990-01-01

    The space vehicle guidance problem is formulated using a neural network approach, and the appropriate neural net architecture for modeling optimum guidance trajectories is investigated. In particular, an investigation is made of the incorporation of prior knowledge about the characteristics of the optimal guidance solution into the neural network architecture. The online classification performance of the developed network is demonstrated using a synthesized network trained with a database of optimum guidance trajectories. Such a neural-network-based guidance approach can readily adapt to environment uncertainties such as those encountered by an AOTV during atmospheric maneuvers.

  18. Spatial predictive mapping using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Noack, S.; Knobloch, A.; Etzold, S. H.; Barth, A.; Kallmeier, E.

    2014-11-01

    The modelling or prediction of complex geospatial phenomena (like formation of geo-hazards) is one of the most important tasks for geoscientists. But in practice it faces various difficulties, caused mainly by the complexity of relationships between the phenomena itself and the controlling parameters, as well by limitations of our knowledge about the nature of physical/ mathematical relationships and by restrictions regarding accuracy and availability of data. In this situation methods of artificial intelligence, like artificial neural networks (ANN) offer a meaningful alternative modelling approach compared to the exact mathematical modelling. In the past, the application of ANN technologies in geosciences was primarily limited due to difficulties to integrate it into geo-data processing algorithms. In consideration of this background, the software advangeo® was developed to provide a normal GIS user with a powerful tool to use ANNs for prediction mapping and data preparation within his standard ESRI ArcGIS environment. In many case studies, such as land use planning, geo-hazards analysis and prevention, mineral potential mapping, agriculture & forestry advangeo® has shown its capabilities and strengths. The approach is able to add considerable value to existing data.

  19. Microarray data classified by artificial neural networks.

    PubMed

    Linder, Roland; Richards, Tereza; Wagner, Mathias

    2007-01-01

    Systems biology has enjoyed explosive growth in both the number of people participating in this area of research and the number of publications on the topic. The field of systems biology encompasses the in silico analysis of high-throughput data as provided by DNA or protein microarrays. Along with the increasing availability of microarray data, attention is focused on methods of analyzing the expression rates. One important type of analysis is the classification task, for example, distinguishing different types of cell functions or tumors. Recently, interest has been awakened toward artificial neural networks (ANN), which have many appealing characteristics such as an exceptional degree of accuracy. Nonlinear relationships or independence from certain assumptions regarding the data distribution are also considered. The current work reviews advantages as well as disadvantages of neural networks in the context of microarray analysis. Comparisons are drawn to alternative methods. Selected solutions are discussed, and finally algorithms for the effective combination of multiple ANNs are presented. The development of approaches to use ANN-processed microarray data applicable to run cell and tissue simulations may be slated for future investigation. PMID:18220242

  20. Prospecting droughts with stochastic artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ochoa-Rivera, Juan Camilo

    2008-04-01

    SummaryA non-linear multivariate model based on an artificial neural network multilayer perceptron is presented, that includes a random component. The developed model is applied to generate monthly streamflows, which are used to obtain synthetic annual droughts. The calibration of the model was undertaken using monthly streamflow records of several geographical sites of a basin. The model calibration consisted of training the neural network with the error back-propagation learning algorithm, and adding a normally distributed random noise. The model was validated by comparing relevant statistics of synthetic streamflow series to those of historical records. Annual droughts were calculated from the generated streamflow series, and then the expected values of length, intensity and magnitude of the droughts were assessed. An exercise on identical basis was made applying a second order auto-regressive multivariate model, AR(2), to compare its results with those of the developed model. The proposed model outperforms the AR(2) model in reproducing the future drought scenarios.

  1. NETS

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1993-01-01

    NETS development tool provides environment for simulation and development of neural networks - computer programs that "learn" from experience. Written in ANSI standard C, program allows user to generate C code for implementation of neural network.

  2. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  3. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  4. Artificial Neural Network applied to lightning flashes

    NASA Astrophysics Data System (ADS)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  5. Stochastic architecture for Hopfield neural nets

    NASA Technical Reports Server (NTRS)

    Pavel, Sandy

    1992-01-01

    An expandable stochastic digital architecture for recurrent (Hopfield like) neural networks is proposed. The main features and basic principles of stochastic processing are presented. The stochastic digital architecture is based on a chip with n full interconnected neurons with a pipeline, bit processing structure. For large applications, a flexible way to interconnect many such chips is provided.

  6. A real time neural net estimator of fatigue life

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1990-01-01

    A neural net architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the Intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopump blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines. This neural net estimator of fatigue life is seen as the enabling technology to achieve component life prognosis, and therefore would be an important part of life extending control for reusable rocket engines.

  7. Optical neural net for classifying imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Barnard, Etienne; Casasent, David P.

    1989-01-01

    The problem of determining the composition of an unknown input mixture from its measured spectrum, given the spectra of a number of elements, is studied. The Hopfield minimization procedure was used to express the determination of the compositions as a problem suitable for solution by neural nets. A mathematical description of the problem was developed and used as a basis for a neural network solution and an optical implementation.

  8. A Design of Neural-Net Based Decouplers

    NASA Astrophysics Data System (ADS)

    Tokuda, Makoto; Yamamoto, Toru; Monden, Yoshimi

    In process industries such as the chemical plants, a good control performance cannot be obtained by simply using the linear controllers, since most processes are nonlinear multivariable systems with mutual interactions. And now, in various fields, the neural networks are well known as the representative schemes to describe the nonlinear elements included in the systems. Also, many types of neural-net based control systems have been proposed, since they have the ability of function approximation, the training ability and versatility. However, the neural networks tend to require great deal of training iteration or careful adjustments of user-specified parameters. In this paper, a design method of neural-net based decouplers is proposed for nonlinear multivariable systems. Here, the decoupler is generated by the sum of a static decoupler and a neural-net based decoupler. The former is used so that the influence of mutual interactions is roughly removed, and the latter plays a role of compensating the nonlinearities and decoupling the remaining mutual interactions. Thus, by designing the control system as the hybrid system, the burden in training the neural networks can be considerably reduced. Finally, the effectiveness of the proposed control scheme is evaluated on a simulation example.

  9. Application of artificial neural networks to composite ply micromechanics

    NASA Technical Reports Server (NTRS)

    Brown, D. A.; Murthy, P. L. N.; Berke, L.

    1991-01-01

    Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.

  10. Forecasting Zakat collection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Sy Ahmad Ubaidillah, Sh. Hafizah; Sallehuddin, Roselina

    2013-04-01

    'Zakat', "that which purifies" or "alms", is the giving of a fixed portion of one's wealth to charity, generally to the poor and needy. It is one of the five pillars of Islam, and must be paid by all practicing Muslims who have the financial means (nisab). 'Nisab' is the minimum level to determine whether there is a 'zakat' to be paid on the assets. Today, in most Muslim countries, 'zakat' is collected through a decentralized and voluntary system. Under this voluntary system, 'zakat' committees are established, which are tasked with the collection and distribution of 'zakat' funds. 'Zakat' promotes a more equitable redistribution of wealth, and fosters a sense of solidarity amongst members of the 'Ummah'. The Malaysian government has established a 'zakat' center at every state to facilitate the management of 'zakat'. The center has to have a good 'zakat' management system to effectively execute its functions especially in the collection and distribution of 'zakat'. Therefore, a good forecasting model is needed. The purpose of this study is to develop a forecasting model for Pusat Zakat Pahang (PZP) to predict the total amount of collection from 'zakat' of assets more precisely. In this study, two different Artificial Neural Network (ANN) models using two different learning algorithms are developed; Back Propagation (BP) and Levenberg-Marquardt (LM). Both models are developed and compared in terms of their accuracy performance. The best model is determined based on the lowest mean square error and the highest correlations values. Based on the results obtained from the study, BP neural network is recommended as the forecasting model to forecast the collection from 'zakat' of assets for PZP.

  11. Programmable synaptic devices for electronic neural nets

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Thakoor, A. P.

    1990-01-01

    The architecture, design, and operational characteristics of custom VLSI and thin film synaptic devices are described. The devices include CMOS-based synaptic chips containing 1024 reprogrammable synapses with a 6-bit dynamic range, and nonvolatile, write-once, binary synaptic arrays based on memory switching in hydrogenated amorphous silicon films. Their suitability for embodiment of fully parallel and analog neural hardware is discussed. Specifically, a neural network solution to an assignment problem of combinatorial global optimization, implemented in fully parallel hardware using the synaptic chips, is described. The network's ability to provide optimal and near optimal solutions over a time scale of few neuron time constants has been demonstrated and suggests a speedup improvement of several orders of magnitude over conventional search methods.

  12. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  13. Detection of Wildfires with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Umphlett, B.; Leeman, J.; Morrissey, M. L.

    2011-12-01

    Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty

  14. Artificial neural network model for material characterization by indentation

    NASA Astrophysics Data System (ADS)

    Tho, K. K.; Swaddiwudhipong, S.; Liu, Z. S.; Hua, J.

    2004-09-01

    Analytical methods to interpret the indentation load-displacement curves are difficult to formulate and solve due to material and geometric nonlinearities as well as complex contact interactions. In this study, large strain-large deformation finite element analyses were carried out to simulate indentation experiments. An artificial neural network model was constructed for the interpretation of indentation load-displacement curves. The data from finite element analyses were used to train and validate the artificial neural network model. The artificial neural network model was able to accurately determine the material properties when presented with the load-displacement curves that were not used in the training process. The proposed artificial neural network model is robust and directly relates the characteristics of the indentation load-displacement curve to the elasto-plastic material properties.

  15. DEM interpolation based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jiao, Limin; Liu, Yaolin

    2005-10-01

    This paper proposed a systemic resolution scheme of Digital Elevation model (DEM) interpolation based on Artificial Neural Networks (ANNs). In this paper, we employ BP network to fit terrain surface, and then detect and eliminate the samples with gross errors. This paper uses Self-organizing Feature Map (SOFM) to cluster elevation samples. The study area is divided into many more homogenous tiles after clustering. BP model is employed to interpolate DEM in each cluster. Because error samples are eliminated and clusters are built, interpolation result is better. The case study indicates that ANN interpolation scheme is feasible. It also shows that ANN can get a more accurate result by comparing ANN with polynomial and spline interpolation. ANN interpolation doesn't need to determine the interpolation function beforehand, so manmade influence is lessened. The ANN interpolation is more automatic and intelligent. At the end of the paper, we propose the idea of constructing ANN surface model. This model can be used in multi-scale DEM visualization, and DEM generalization, etc.

  16. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  17. Geophysical phenomena classification by artificial neural networks

    SciTech Connect

    Gough, M.P.; Bruckner, J.R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN`s) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN`s were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  18. Artificial neural network models for image understanding

    NASA Astrophysics Data System (ADS)

    Kulkarni, Arun D.; Byars, P.

    1991-06-01

    In this paper we introduce a new class of artificial neural network (ANN) models based on transformed domain feature extraction. Many optical and/or digital recognition systems based on transformed domain feature extraction are available in practice. Optical systems are inherently parallel in nature and are preferred for real time applications, whereas digital systems are more suitable for nonlinear operations. In our ANN models we combine advantages of both digital and optical systems. Many transformed domain feature extraction techniques have been developed during the last three decades. They include: the Fourier transform (FT), the Walsh Hadamard transform (WHT), the discrete cosine transform (DCT), etc. As an example, we have developed ANN models using the FT and WHT domain features. The models consist of two stages, the feature extraction stage and the recognition stage. We have used back-propagation and competitive learning algorithms in the recognition stage. We have used these ANN models for invariant object recognition. The models have been used successfully to recognize various types of aircraft, and also have been tested with test patterns. ANN models based on other transforms can be developed in a similar fashion.

  19. Groundwater remediation optimization using artificial neural networks

    SciTech Connect

    Rogers, L. L., LLNL

    1998-05-01

    One continuing point of research in optimizing groundwater quality management is reduction of computational burden which is particularly limiting in field-scale applications. Often evaluation of a single pumping strategy, i.e. one call to the groundwater flow and transport model (GFTM) may take several hours on a reasonably fast workstation. For computational flexibility and efficiency, optimal groundwater remediation design at Lawrence Livermore National Laboratory (LLNL) has relied on artificial neural networks (ANNS) trained to approximate the outcome of 2-D field-scale, finite difference/finite element GFTMs. The search itself has been directed primarily by the genetic algorithm (GA) or the simulated annealing (SA) algorithm. This approach has advantages of (1) up to a million fold increase in speed of remediation pattern assessment during the searches and sensitivity analyses for the 2-D LLNL work, (2) freedom from sequential runs of the GFTM (enables workstation farming), and (3) recycling of the knowledge base (i.e. runs of the GFTM necessary to train the ANNS). Reviewed here are the background and motivation for such work, recent applications, and continuing issues of research.

  20. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    We have tested and deployed Artificial Neural Network (ANN) data mining techniques to analyze remotely sensed multi-channel imaging data from MODIS, GOES, and AVHRR. The goal is to train the ANN to learn the signatures of wildfires in remotely sensed data in order to automate the detection process. We train the ANN using the set of human-detected wildfires in the U.S., which are provided by the Hazard Mapping System (HMS) wildfire detection group at NOAA/NESDIS. The ANN is trained to mimic the behavior of fire detection algorithms and the subjective decision- making by N O M HMS Fire Analysts. We use a local extremum search in order to isolate fire pixels, and then we extract a 7x7 pixel array around that location in 3 spectral channels. The corresponding 147 pixel values are used to populate a 147-dimensional input vector that is fed into the ANN. The ANN accuracy is tested and overfitting is avoided by using a subset of the training data that is set aside as a test data set. We have achieved an automated fire detection accuracy of 80-92%, depending on a variety of ANN parameters and for different instrument channels among the 3 satellites. We believe that this system can be deployed worldwide or for any region to detect wildfires automatically in satellite imagery of those regions. These detections can ultimately be used to provide thermal inputs to climate models.

  1. Comparing and Contrasting Neural Net Solutions to Classical Statistical Solutions.

    ERIC Educational Resources Information Center

    Van Nelson, C.; Neff, Kathryn J.

    Data from two studies in which subjects were classified as successful or unsuccessful were analyzed using neural net technology after being analyzed with a linear regression function. Data were obtained from admission records of 201 students admitted to undergraduate and 285 students admitted to graduate programs. Data included grade point…

  2. Neural net diagnostics for VLSI test

    NASA Technical Reports Server (NTRS)

    Lin, T.; Tseng, H.; Wu, A.; Dogan, N.; Meador, J.

    1990-01-01

    This paper discusses the application of neural network pattern analysis algorithms to the IC fault diagnosis problem. A fault diagnostic is a decision rule combining what is known about an ideal circuit test response with information about how it is distorted by fabrication variations and measurement noise. The rule is used to detect fault existence in fabricated circuits using real test equipment. Traditional statistical techniques may be used to achieve this goal, but they can employ unrealistic a priori assumptions about measurement data. Our approach to this problem employs an adaptive pattern analysis technique based on feedforward neural networks. During training, a feedforward network automatically captures unknown sample distributions. This is important because distributions arising from the nonlinear effects of process variation can be more complex than is typically assumed. A feedforward network is also able to extract measurement features which contribute significantly to making a correct decision. Traditional feature extraction techniques employ matrix manipulations which can be particularly costly for large measurement vectors. In this paper we discuss a software system which we are developing that uses this approach. We also provide a simple example illustrating the use of the technique for fault detection in an operational amplifier.

  3. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  4. Advances in Artificial Neural Networks - Methodological Development and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  5. Multiple image sensor data fusion through artificial neural networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...

  6. Decision net, directed graph, and neural net processing of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki; Barnard, Etienne

    1989-01-01

    A decision-net solution involving a novel hierarchical classifier and a set of multiple directed graphs, as well as a neural-net solution, are respectively presented for large-class problem and mixture problem treatments of imaging spectrometer data. The clustering method for hierarchical classifier design, when used with multiple directed graphs, yields an efficient decision net. New directed-graph rules for reducing local maxima as well as the number of perturbations required, and the new starting-node rules for extending the reachability and reducing the search time of the graphs, are noted to yield superior results, as indicated by an illustrative 500-class imaging spectrometer problem.

  7. Computation and control with neural nets

    SciTech Connect

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-10-04

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.

  8. Applications of artificial neural networks; Proceedings of the Meeting, Orlando, FL, Apr. 18-20, 1990

    SciTech Connect

    Rogers, S.K.

    1990-01-01

    The present conference discusses artificial neural networks (ANNs) for automatic target recognition, theory of networks for learning, abductive networks, target recognition in parallel networks, ANN recognition of atomic and molecular species, multispectral image fusion with ANNs, radar warning/emitter identification processing by ANNs, IR target motion estimation by ANNs, and the analog hardware implementation of neocognition networks. Also discussed are a multidimensional Kohonen net on a HyperCube, robot learning, probabilistic neural networks, ANNs for interpolation and extrapolation, knowledge-base browsing with hybrid distributed/local connectionist networks, predicate calculus for ANNs, abductive networks for electronic warfare, uncertainty computations in ANNs, and the classification power of multiple-layer ANNs.

  9. Neural net learning issues in classification of free text documents

    SciTech Connect

    Dasigi, V.R.; Mann, R.C.

    1996-03-01

    In intelligent analysis of large amounts of text, not any single clue indicates reliably that a pattern of interest has been found. When using multiple clues, it is not known how these should be integrated into a decision. In the context of this investigation, we have been using neural nets as parameterized mappings that allow for fusion of higher level clues extracted from free text. By using higher level clues and features, we avoid very large networks. By using the dominant singular values computed by Latent Semantic Indexing (LSI) and applying neural network algorithms for integrating these values and the outputs from other ``sensors,`` we have obtained preliminary encouraging results with text classification.

  10. Fast neural net simulation with a DSP processor array.

    PubMed

    Muller, U A; Gunzinger, A; Guggenbuhl, W

    1995-01-01

    This paper describes the implementation of a fast neural net simulator on a novel parallel distributed-memory computer. A 60-processor system, named MUSIC (multiprocessor system with intelligent communication), is operational and runs the backpropagation algorithm at a speed of 330 million connection updates per second (continuous weight update) using 32-b floating-point precision. This is equal to 1.4 Gflops sustained performance. The complete system with 3.8 Gflops peak performance consumes less than 800 W of electrical power and fits into a 19-in rack. While reaching the speed of modern supercomputers, MUSIC still can be used as a personal desktop computer at a researcher's own disposal. In neural net simulation, this gives a computing performance to a single user which was unthinkable before. The system's real-time interfaces make it especially useful for embedded applications. PMID:18263299

  11. Automatic labeling and characterization of objects using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Hill, Scott E.; Cromp, Robert F.

    1989-01-01

    Existing NASA supported scientific data bases are usually developed, managed and populated in a tedious, error prone and self-limiting way in terms of what can be described in a relational Data Base Management System (DBMS). The next generation Earth remote sensing platforms, i.e., Earth Observation System, (EOS), will be capable of generating data at a rate of over 300 Mbs per second from a suite of instruments designed for different applications. What is needed is an innovative approach that creates object-oriented databases that segment, characterize, catalog and are manageable in a domain-specific context and whose contents are available interactively and in near-real-time to the user community. Described here is work in progress that utilizes an artificial neural net approach to characterize satellite imagery of undefined objects into high-level data objects. The characterized data is then dynamically allocated to an object-oriented data base where it can be reviewed and assessed by a user. The definition, development, and evolution of the overall data system model are steps in the creation of an application-driven knowledge-based scientific information system.

  12. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  13. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. PMID:20713305

  14. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  15. A real time neural net estimator of fatigue life

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1990-01-01

    A neural network architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopumps blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high-frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines.

  16. Optoelectronic analogs of self-programming neural nets - Architecture and methodologies for implementing fast stochastic learning by simulated annealing

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.

    1987-01-01

    Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.

  17. Wood Defect Identification Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Cao, Jun; Wang, Feng-Hu; Sun, Jian-Ping; Liu, Yu

    Defects in wooden material reduce the value of timber. In order to save and improve the utilization of the timber, many studies are carried out on the ways to detect defects in wood. The recent development of computer technology, data processing technology and signal processing technology provides researchers with more damage identification problem solution ideas and methods. This article studies the vibration characteristics of wood. With an exploration of the wavelet analysis and artificial neural network for the wood composite material defects based on non-destructive testing, an artificial neural network model is established for wood-based composite materials non-destructive testing technology.

  18. Use of artificial neural networks in prostate cancer.

    PubMed

    Errejon, A; Crawford, E D; Dayhoff, J; O'Donnell, C; Tewari, A; Finkelstein, J; Gamito, E J

    2001-01-01

    Artificial neural networks (ANNs) are a type of artificial intelligence software inspired by biological neuronal systems that can be used for nonlinear statistical modeling. In recent years, these applications have played an increasing role in predictive and classification modeling in medical research. We review the basic concepts behind ANNs and examine the role of this technology in selected applications in prostate cancer research. PMID:11790276

  19. Functional approximation using artificial neural networks in structural mechanics

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo

    1993-01-01

    The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.

  20. AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK

    SciTech Connect

    Chady, T.; Caryk, M.; Piekarczyk, B.

    2009-03-03

    The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.

  1. Automated Defect Classification Using AN Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Chady, T.; Caryk, M.; Piekarczyk, B.

    2009-03-01

    The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.

  2. Using neural nets to measure ocular refractive errors: a proposal

    NASA Astrophysics Data System (ADS)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-12-01

    We propose the development of a functional system for diagnosing and measuring ocular refractive errors in the human eye (astigmatism, hypermetropia and myopia) by automatically analyzing images of the human ocular globe acquired with the Hartmann-Schack (HS) technique. HS images are to be input into a system capable of recognizing the presence of a refractive error and outputting a measure of such an error. The system should pre-process and image supplied by the acquisition technique and then use artificial neural networks combined with fuzzy logic to extract the necessary information and output an automated diagnosis of the refractive errors that may be present in the ocular globe under exam.

  3. Introducing Artificial Neural Networks through a Spreadsheet Model

    ERIC Educational Resources Information Center

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  4. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  5. Artificial-neural-network-based failure detection and isolation

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.

    1998-03-01

    This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.

  6. Artificial Neural Networks in Policy Research: A Current Assessment.

    ERIC Educational Resources Information Center

    Woelfel, Joseph

    1993-01-01

    Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…

  7. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    ERIC Educational Resources Information Center

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  8. Face recognition: Eigenface, elastic matching, and neural nets

    SciTech Connect

    Zhang, J.; Yan, Y.; Lades, M.

    1997-09-01

    This paper is a comparative study of three recently proposed algorithms for face recognition: eigenface, autoassociation and classification neural nets, and elastic matching. After these algorithms were analyzed under a common statistical decision framework, they were evaluated experimentally on four individual data bases, each with a moderate subject size, and a combined data base with more than a hundred different subjects. Analysis and experimental results indicate that the eigenface algorithm, which is essentially a minimum distance classifier, works well when lighting variation is small. Its performance deteriorates significantly as lighting variation increases. The elastic matching algorithm, on the other hand, is insensitive to lighting, face position, and expression variations and therefore is more versatile. The performance of the autoassociation and classification nets is upper bounded by that of the eigenface but is more difficult to implement in practice.

  9. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  10. HVAC pipe/duct sizing using artificial neural networks

    SciTech Connect

    Yeh, S.J.D.; Wong, K.F.V.

    1995-12-31

    The main objective of this study is to demonstrate that artificial neural networks (ANN`s) serve as useful aids to Heating, Ventilating and Air-Conditioning (HVAC) system design. In the present work, the design process for sizing fluid systems in HVAC is simulated by using ANN`S. Four ANN`s have been constructed in a personal computer, one for air duct sizing and three for pipe sizing. The air duct network was trained to output the friction rate and duct size. The three pipe sizing neural networks product pressure drops and pipe diameters. By using the trained artificial neural networks, data can be obtained instantly with errors less than 3%. Thus, ANN`s have been shown to simplify traditional methods and procedures in HVAC pipe and air duct sizing.

  11. Artificial Neural Networks Applied To Landslide Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Casagli, N.; Catani, F.; Ermini, L.

    Landslide hazard mapping is often performed through the identification and analysis of hillslope instability factors. GIS techniques are widely applied for the manage- ment of hillslope factors as thematic data rated by the attribution of scores based on the assumed role played by each factor controlling the development of a sliding pro- cess. Other more refined methods, based on the principle that the present and the past are keys to the future, have been also developed, thus allowing to perform less sub- jective analyses, in which landslide susceptibility is assessed by statistical relation- ships between the past landslides and the hillslope instability factors. The objective of this research is to define a method able to foresee landslide susceptibility through the application of Artificial Neural Networks (ANN). The Riomaggiore catchment, a sub-watershed of the Reno River basin located in the Northern Apennine at half way between Florence and Bologna, was chosen as the test site. The utilized ANN (AiNet 1.25) was trained by vector-based GIS data corresponding to five hillslope factors: a) geology, b) slope, c), curvature, d) land cover e) contributing area. The intersection between the hillslope factors, all ranked in nominal scales, singled out 3263 homoge- neous domains (Unique Condition Unit) containing unique combinations of hillslope factors. The final model was formed by vectors in which the hillslope factors, once organized as Boolean variables, are represented by 20 binary numbers. The compari- son between the most recent inventory of the landslides in the Riomaggiore catchment and the hazardous areas, as predicted by the ANN, showed very satisfactory results and allowed us to validate the methodology.

  12. Artificial neural networks for decision-making in urologic oncology.

    PubMed

    Anagnostou, Theodore; Remzi, Mesut; Lykourinas, Michael; Djavan, Bob

    2003-06-01

    The authors are presenting a thorough introduction in Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. The article covers a description of Artificial Neural Network methodology and points out the differences of Artificial Intelligence to traditional statistic models in terms of serving patients and clinicians, in a different way than current statistical analysis. Since Artificial Intelligence is not yet fully understood by many practicing clinicians, the authors have reviewed a careful selection of articles in order to explore the clinical benefit of Artificial Intelligence applications in modern Urology questions and decision-making. The data are from real patients and reflect attempts to achieve more accurate diagnosis and prognosis, especially in prostate cancer that stands as a good example of difficult decision-making in everyday practice. Experience from current use of Artificial Intelligence is also being discussed, and the authors address future developments as well as potential problems such as medical record quality, precautions in using ANNs or resistance to system use, in an attempt to point out future demands and the need for common standards. The authors conclude that both methods should continue to be used in a complementary manner. ANNs still do not prove always better as to replace standard statistical analysis as the method of choice in interpreting medical data. PMID:12767358

  13. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular

  14. A neutron spectrum unfolding computer code based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in

  15. Chlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurements.

    PubMed

    Ferreira, Monique S; Galo, Maria De Lourdes B T

    2013-01-01

    Considering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks. PMID:23828358

  16. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  17. Unsupervised classification of neural spikes with a hybrid multilayer artificial neural network.

    PubMed

    García, P; Suárez, C P; Rodríguez, J; Rodríguez, M

    1998-07-01

    The understanding of the brain structure and function and its computational style is one of the biggest challenges both in Neuroscience and Neural Computation. In order to reach this and to test the predictions of neural network modeling, it is necessary to observe the activity of neural populations. In this paper we propose a hybrid modular computational system for the spike classification of multiunits recordings. It works with no knowledge about the waveform, and it consists of two moduli: a Preprocessing (Segmentation) module, which performs the detection and centering of spike vectors using programmed computation; and a Processing (Classification) module, which implements the general approach of neural classification: feature extraction, clustering and discrimination, by means of a hybrid unsupervised multilayer artificial neural network (HUMANN). The operations of this artificial neural network on the spike vectors are: (i) compression with a Sanger Layer from 70 points vector to five principal component vector; (ii) their waveform is analyzed by a Kohonen layer; (iii) the electrical noise and overlapping spikes are rejected by a previously unreported artificial neural network named Tolerance layer; and (iv) finally the spikes are labeled into spike classes by a Labeling layer. Each layer of the system has a specific unsupervised learning rule that progressively modifies itself until the performance of the layer has been automatically optimized. The procedure showed a high sensitivity and specificity also when working with signals containing four spike types. PMID:10223516

  18. Neural networks: A versatile tool from artificial intelligence

    SciTech Connect

    Yama, B.R.; Lineberry, G.T.

    1996-12-31

    Artificial Intelligence research has produced several tools for commercial application in recent years. Artificial Neural Networks (ANNs), Fuzzy Logic, and Expert Systems are some of the techniques that are widely used today in various fields of engineering and business. Among these techniques, ANNs are gaining popularity due to their learning and other brain-like capabilities. Within the mining industry, ANN technology is being utilized with large payoffs for real-time process control applications. In this paper, a brief introduction to ANNs and the associated terminology is given. The neural network development process is outlined, followed by the back-propagation learning algorithm. Next, the development of two multi-layer, feed-forward neural networks is described and the results axe presented. One network is developed for prediction of strength of intact rock specimens, and another network is developed for prediction of mineral concentrations. Preliminary results indicate a predictive error less than 10% using cross-validation on a limited data set. The performance of the neural network for prediction of mineral concentrations was compared with kriging. It was found that the neural network performed not only satisfactorily, but in some cases performed better than, the kriging model.

  19. SU-F-BRD-11: Prediction of Dosimetric Endpoints From Patient Geometry Using Neural Nets

    SciTech Connect

    O'Connell, D; Chow, P; Agazaryan, N; Jani, S; Low, D; Lamb, J

    2014-06-15

    Purpose: The previously-published overlap volume histogram (OVH) technique lends itself naturally to prediction of the dose received by a given volume of tissue (e.g. D90) in intensity-modulated radiotherapy (IMRT) treatment plans. Here we extend the OVH technique using artificial neural networks in order to predict the volume of tissue receiving a given dose (e.g. V90) in both prostate IMRT and conventional breast radiotherapy. Methods: Twenty-nine prostate treatment plans and forty-three breast treatment plans were analyzed. The spatial relationships between the prostate and rectum and between the breast and ipsilateral lung were characterized using OVHs. The OVH is a cumulative histogram representing the fractional volume of the risk organ overlapped by a series of isotropic expansions of the planning target volume (PTV). Seven cases were identified as outliers and replanned. OVH points were used as inputs to a one hidden layer feed forward artificial neural network with quality parameters of the corresponding plan, such as the rectum V50, as targets. A 3-fold cross-validation was used to estimate the prediction error. Results: The root mean square (RMS) error between the predicted rectum V50s and the planned values was 2.3, which was 35% of the standard deviation of V50 for the twenty-nine plans. The RMS error of prediction of V20 of the ipsilateral lung in breast cases was 3.9, which was 90% of the standard deviation of the V20 values in the breast plan database. Conclusion: This study demonstrates that artificial neural nets can be used to extend the OVH technique to predict dosimetric endpoints taking the form of a volume receiving a given dose, rather than the minimum dose received by a given volume. Prediction of ipsilateral lung dose in breast radiotherapy using the OVH technique remains a work in progress.

  20. Artificial neural networks technology for neutron spectrometry and dosimetry.

    PubMed

    Vega-Carrillo, H R; Hernández-Dávila, V M; Manzanares-Acuña, E; Gallego, E; Lorente, A; Iñiguez, M P

    2007-01-01

    Artificial Neural Network Technology has been applied to unfold neutron spectra and to calculate 13 dosimetric quantities using seven count rates from a Bonner Sphere Spectrometer with a (6)LiI(Eu). Two different networks, one for spectrometry and another for dosimetry, were designed. To train and test both networks, 177 neutron spectra from the IAEA compilation were utilised. Spectra were re-binned into 31 energy groups, and the dosimetric quantities were calculated using the MCNP code and the fluence-to-dose conversion coefficients from ICRP 74. Neutron spectra and UTA4 response matrix were used to calculate the expected count rates in the Bonner spectrometer. Spectra and H(10) of (239)PuBe and (241)AmBe were experimentally obtained and compared with those determined with the artificial neural networks. PMID:17522034

  1. Spectral Classification of Unresolved Binary Stars with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Weaver, Wm. Bruce

    2000-09-01

    An artificial neural network technique has been developed to perform two-dimensional spectral classification of the components of binary stars. The spectra are based on the 15 Å resolution near-infrared (NIR) spectral classification system described by Torres-Dodgen & Weaver. Using the spectrum with no manual intervention except wavelength registration, a single artificial neural network (ANN) can classify these spectra with Morgan-Keenan types with an average accuracy of about 2.5 types (subclasses) in temperature and about 0.45 classes in luminosity for up to 3 mag of difference in luminosity. The error in temperature classification does not increase substantially until the secondary contributes less than 10% of the light of the system. By following the coarse-classification ANN with a specialist ANN, the mean absolute errors are reduced to about 0.5 types in temperature and 0.33 classes in luminosity. The resulting ANN network was applied to seven binary stars.

  2. Numerical solution of differential equations by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1995-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  3. Using Artificial Neural Networks to Assess Changes in Microbial Communities

    SciTech Connect

    Brandt, C.C.; Macnaughton, S.; Palumbo, A.V.; Pfiffner, S.M.; Schryver, J.C.

    1999-04-19

    We evaluated artificial neural networks (ANNs) as a technique for assessing changes in soil microbial communities following exposure to metals. We analyzed signature lipid biomarker (SLB) data collected from two soil microcosm experiments using traditional statistical techniques and ANN. Two phases of data analysis were done; pattern recognition and prediction. In general, the ANNs were better able to detect patterns and relationships in the SLB data than were the traditional statistical techniques.

  4. Artificial neural network modeling of p-cresol photodegradation

    PubMed Central

    2013-01-01

    Background The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. Results The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97. Conclusion Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study. PMID:23731706

  5. Classifying auroras using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Rydesater, Peter; Brandstrom, Urban; Steen, Ake; Gustavsson, Bjorn

    1999-03-01

    In Auroral Large Imaging System (ALIS) there is need of stable methods for analysis and classification of auroral images and images with for example mother of pearl clouds. This part of ALIS is called Selective Imaging Techniques (SIT) and is intended to sort out images of scientific interest. It's also used to find out what and where in the images there is for example different auroral phenomena's. We will discuss some about the SIT units main functionality but this work is mainly concentrated on how to find auroral arcs and how they are placed in images. Special case have been taken to make the algorithm robust since it's going to be implemented in a SIT unit which will work automatic and often unsupervised and some extends control the data taking of ALIS. The method for finding auroral arcs is based on a local operator that detects intensity differens. This gives arc orientation values as a preprocessing which is fed to a neural network classifier. We will show some preliminary results and possibilities to use and improve this algorithm for use in the future SIT unit.

  6. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.

  7. The importance of artificial neural networks in biomedicine

    SciTech Connect

    Burke, H.B.

    1995-12-31

    The future explanatory power in biomedicine will be at the molecular-genetic level of analysis (rather than the epidemiologic-demographic or anatomic-cellular levels). This is the level of complex systems. Complex systems are characterized by nonlinearity and complex interactions. It is difficult for traditional statistical methods to capture complex systems because traditional methods attempt to find the model that best fits the statistician`s understanding of the phenomenon; complex systems are difficult to understand and therefore difficult to fit with a simple model. Artificial neural networks are nonparametric regression models. They can capture any phenomena, to any degree of accuracy (depending on the adequacy of the data and the power of the predictors), without prior knowledge of the phenomena. Further, artificial neural networks can be represented, not only as formulae, but also as graphical models. Graphical models can increase analytic power and flexibility. Artificial neural networks are a powerful method for capturing complex phenomena, but their use requires a paradigm shift, from exploratory analysis of the data to exploratory analysis of the model.

  8. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan. PMID:24078053

  9. A TLD dose algorithm using artificial neural networks

    SciTech Connect

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-12-31

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters.

  10. Science of artificial neural networks; Proceedings of the Meeting, Orlando, FL, Apr. 21-24, 1992

    SciTech Connect

    Ruck, D.W.

    1992-01-01

    The present conference discusses high-order neural networks with adaptive architecture, a parallel cascaded one-step learning machine, stretch and hammer neural networks, visual grammars for neural networks, the net pruning of a multilayer perceptron, neural correlates of the sensorial and cognitive control of behavior, neural nets for massively parallel optimization, parametric and additive perturbations for global optimization, design rules for multilayer perceptrons, the negative transfer problem in neural networks, and a vision-based neural multimap pattern recognition architecture. Also discussed are function prediction with recurrent neural networks, fuzzy neural computing systems, edge detection via fuzzy neural networks, modeling confusion for autonomous systems, self-organization by fuzzy clustering, neural nets in information retrieval, neighborhoods and trajectories in Kohonen maps, the random structure of error surfaces, and conceptual recognition by neural networks.

  11. Orbit-centered atmospheric density prediction using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pérez, David; Wohlberg, Brendt; Lovell, Thomas Alan; Shoemaker, Michael; Bevilacqua, Riccardo

    2014-05-01

    At low Earth orbits, drag force is a significant source of error for propagating the motion of a spacecraft. The main factor driving the changes on the drag force is neutral density. Global atmospheric models provide estimates for the density which are significantly affected by bias due to misrepresentations of the underlying physics and limitations on the statistical models. In this work a localized predictor based on artificial neural networks is presented. Localized refers to the focus being on a specific orbit, rather than a global prediction. The predictor uses density measurements or estimates on a given orbit and a set of proxies for solar and geomagnetic activities to predict the value of the density along the future orbit of the spacecraft. The performance of the localized predictor is studied for different neural network structures, testing periods of high and low solar and geomagnetic activities and different prediction windows. Comparison with previously developed methods show substantial benefits in using artificial neural networks, both in prediction accuracy and in the potential for spacecraft onboard implementation. In fact, the proposed neural networks are computationally efficient and would be straightforward to integrate into onboard software.

  12. Neural-Net Based Optical NDE Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  13. Handwriting recognition using a reduced character method and neural nets

    NASA Astrophysics Data System (ADS)

    Bourbakis, Nikolaos G.; Koutsougeras, Cris; Jameel, A.

    1995-03-01

    This paper deals with the recognition of handwriting text character by using a reduced character methodology and neural nets (BNN, RNN). The reduced characters methodology is based on the representation (mapping) of the text characters on a small size 2-D array of 12 X 9. For the recognition process each character is considered as a composition of `main' and `secondary' features. The main features are the necessary and important parts of a character for its recognition. The secondary (or artistic) features are the parts of a character which contribute to its various representations. The reduced character methodology presented in this paper attempts to prove that the recognition of a reduced size character provides a robust approach for recognition of handwritten text. The RNN approach for handwritten character recognition is based upon recurrent neural networks. The recurrent networks have a feedback mechanism. The feedback mechanism acts to integrate new values of feature vector with their predecessors. The output is supervised according to a target function. These networks can deal with inputs and outputs that are explicit functions of time. A new way of associating shape information was used, which gives very consistent results for handwritten character recognition. In this scheme the `shadow' each character was considered to find was the distances between the margins of the character. The distances are normalized with respect to the maximum distance in the entire shape to minimize the effect of disproportionately formed characters. For this effort two neural networks and an attributed graph approach are used and their results are compared on a set of 5000 handwritten characters.

  14. Background considerations in the analysis of PIXE spectra by Artificial Neural Systems.

    NASA Astrophysics Data System (ADS)

    Correa, R.; Morales, J. R.; Requena, I.; Miranda, J.; Barrera, V. A.

    2016-05-01

    In order to study the importance of background in PIXE spectra to determine elemental concentrations in atmospheric aerosols using artificial neural systems ANS, two independently trained ANS were constructed, one which considered as input the net number of counts in the peak, and another which included the background. In the training and validation phases thirty eight spectra of aerosols collected in Santiago, Chile, were used. In both cases the elemental concentration values were similar. This fact was due to the intrinsic characteristic of ANS operating with normalized values of the net and total number of counts under the peaks, something that was verified in the analysis of 172 spectra obtained from aerosols collected in Mexico city. Therefore, networks operating under the mode which include background can reduce time and cost when dealing with large number of samples.

  15. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants

    SciTech Connect

    Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B.; Sobajic, D.J.; Pao, Y.H. |

    1995-12-01

    This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

  16. Moiré fringe center determination using artificial neural network

    NASA Astrophysics Data System (ADS)

    Woo, W. H.; Yen, K. S.

    2015-07-01

    Moiré methods are commonly used in various engineering metrological practices such as deformation measurements and surface topography. In the past, most of the applications required human intervention in fringe pattern analysis and image processing development to analyze the moiré patterns. In a recent application of using circular gratings moiré pattern, researchers developed graphical analysis method to determine the in-plane (2-D) displacement change between the two circular gratings by analyzing the moiré pattern change. In this work, an artificial neural network approach was proposed to detect and locate moiré fringe centers of circular gratings without image preprocessing and curve fitting. The intensity values in columns of the transformed circular moiré pattern were extracted as the input to the neural network. Moiré fringe centers extracted using graphical analysis method were used as the target for the neural network training. The neural network produced reasonably accurate output with an average mean error of an average mean error of less than 1 unit pixel with standard deviation of less than 4 unit pixels in determining the location of the moiré fringe centers. The result showed that the neural network approach is applicable in moiré fringe centers determination and its feasibility in automating moiré pattern analysis with further improvement.

  17. Control of Wind Tunnel Operations Using Neural Net Interpretation of Flow Visualization Records

    NASA Technical Reports Server (NTRS)

    Buggele, Alvin E.; Decker, Arthur J.

    1994-01-01

    Neural net control of operations in a small subsonic/transonic/supersonic wind tunnel at Lewis Research Center is discussed. The tunnel and the layout for neural net control or control by other parallel processing techniques are described. The tunnel is an affordable, multiuser platform for testing instrumentation and components, as well as parallel processing and control strategies. Neural nets have already been tested on archival schlieren and holographic visualizations from this tunnel as well as recent supersonic and transonic shadowgraph. This paper discusses the performance of neural nets for interpreting shadowgraph images in connection with a recent exercise for tuning the tunnel in a subsonic/transonic cascade mode of operation. That mode was operated for performing wake surveys in connection with NASA's Advanced Subsonic Technology (AST) noise reduction program. The shadowgraph was presented to the neural nets as 60 by 60 pixel arrays. The outputs were tunnel parameters such as valve settings or tunnel state identifiers for selected tunnel operating points, conditions, or states. The neural nets were very sensitive, perhaps too sensitive, to shadowgraph pattern detail. However, the nets exhibited good immunity to variations in brightness, to noise, and to changes in contrast. The nets are fast enough so that ten or more can be combined per control operation to interpret flow visualization data, point sensor data, and model calculations. The pattern sensitivity of the nets will be utilized and tested to control wind tunnel operations at Mach 2.0 based on shock wave patterns.

  18. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    SciTech Connect

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-03

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  19. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural

  20. Neural net formulations for organically modified, hydrophobic silica aerogel

    SciTech Connect

    Noever, D.; Sibille, L.; Cronise, R.; Baskaran, S.; Hunt, A.

    1997-07-01

    Organic modification of aerogel chemical formulations is known to transfer desirable hydrophobicity to lightweight solids. However, the effects of chemical modification on other material constants such as elasticity, compliance, and sound dampening present a difficult optimization problem. Here a statistical treatment of a 9-variable optimization is accomplished with multiple regression and an artificial neural network (ANN). The ANN shows 95 percent prediction success for the entire data set of elasticity, compared to a multidimensional linear regression which shows a maximum correlation coefficient, R=0.782. In this case, using the Number of Categories Criterion for the standard multiple regression, traditional statistical methods can distinguish fewer than 1.83 categories (high and low elasticity) and cannot group or cluster the data to give more refined partitions. A non-linear surface requires at least 3 categories (high, low, and medium elasticities) to define its curvature. To predict best and worst gellation conditions, organic modification is most consistent with changed elasticity for sterically large groups and high hydroxyl concentrations per unit surface area. The isocontours for best silica and hydroxyl concentration have a complex saddle, the geometrical structure of which would elude a simple experimental design based on usual gradient descent methods for finding optimum. {copyright} {ital 1997 Materials Research Society.}

  1. Development of a neural net paradigm that predicts simulator sickness

    SciTech Connect

    Allgood, G.O.

    1993-03-01

    A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real time as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.

  2. A brief overview and introduction to artificial neural networks.

    PubMed

    Buscema, Massimo

    2002-01-01

    This article is designed to acquaint professionals working in the field of substance use intervention with a range of artificial intelligence nonlinear, powerful tools, artificial neural networks, concepts, and paradigms. The family of ANNs, when appropriately selected and used, permits the maximization of what can be derived from available data as well as our studying and understanding the many people, processes, and phenomena which comprise substance use and its intervention. The latter represent complex, dynamic, multidimensional phenomena which are unpredictable and uncontrollable in the traditional "cause and effect" sense. As such they are likely to be nonlinear in their very essence. Using linear-based paradigms for planned intervention with nonlinear phenomena brooks the all-too-common possibility of using inappropriate intervention paradigms and/or drawing misleading conclusions about what is and/or has happened. PMID:12180558

  3. Artificial neural network for location estimation in wireless communication systems.

    PubMed

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments. PMID:22736978

  4. Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware

    NASA Technical Reports Server (NTRS)

    Zee, Frank

    1995-01-01

    The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.

  5. Prediction of Universal Time using the artificial neural network

    NASA Astrophysics Data System (ADS)

    Richard, J. Y.; Lopes, P.; Barache, C.; Bizouard, C.; Gambis, D.

    2014-12-01

    The monitoring of the Earth Orientation Parameters (EOP) variations is the main task of the Earth orientation Center of the IERS. In addition, for various applications linked in particular to navigation, precise orbit determination or leap seconds announcements, short and long term predictions are required. The method which is currently applied for predictions is based on deterministic processes, Least Square fitting, autoregressive filtering (Gambis and Luzum 2011). We present an alternative method, the Artificial Neural Networks (ANN) which has have already been successfully applied for pattern recognition. It has been tested as well by various authors for EOP predictions but with so far no real improvement compared to the current methods (Schuh et. al. 2002). New formalisms recently developed allow reconsidering the use of neural networks for EOP predictions. Series of simulations were performed for both short and long term predictions. Statistics and comparisons with the current methods are presented.

  6. Design of Jetty Piles Using Artificial Neural Networks

    PubMed Central

    2014-01-01

    To overcome the complication of jetty pile design process, artificial neural networks (ANN) are adopted. To generate the training samples for training ANN, finite element (FE) analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN) with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost. PMID:25177724

  7. Application of Artificial Neural Networks for estimating index floods

    NASA Astrophysics Data System (ADS)

    Šimor, Viliam; Hlavčová, Kamila; Kohnová, Silvia; Szolgay, Ján

    2012-12-01

    This article presents an application of Artificial Neural Networks (ANNs) and multiple regression models for estimating mean annual maximum discharge (index flood) at ungauged sites. Both approaches were tested for 145 small basins in Slovakia in areas ranging from 20 to 300 km2. Using the objective clustering method, the catchments were divided into ten homogeneous pooling groups; for each pooling group, mutually independent predictors (catchment characteristics) were selected for both models. The neural network was applied as a simple multilayer perceptron with one hidden layer and with a back propagation learning algorithm. Hyperbolic tangents were used as an activation function in the hidden layer. Estimating index floods by the multiple regression models were based on deriving relationships between the index floods and catchment predictors. The efficiencies of both approaches were tested by the Nash-Sutcliffe and a correlation coefficients. The results showed the comparative applicability of both models with slightly better results for the index floods achieved using the ANNs methodology.

  8. Artificial neural network ensembles and their application in pooled flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Burn, Donald H.

    2004-09-01

    Recent theoretical and empirical studies show that the generalization ability of artificial neural networks can be improved by combining several artificial neural networks in redundant ensembles. In this paper, a review is given of popular ensemble methods. Six approaches for creating artificial neural network ensembles are applied in pooled flood frequency analysis for estimating the index flood and the 10-year flood quantile. The results show that artificial neural network ensembles generate improved flood estimates and are less sensitive to the choice of initial parameters when compared with a single artificial neural network. Factors that may affect the generalization of an artificial neural network ensemble are analyzed. In terms of the methods for creating ensemble members, the model diversity introduced by varying the initial conditions of the base artificial neural networks to reduce the prediction error is comparable with more sophisticated methods, such as bagging and boosting. When the same method for creating ensemble members is used, combining member networks using stacking is generally better than using simple averaging. An ensemble size of at least 10 artificial neural networks is suggested to achieve sufficient generalization ability. In comparison with parametric regression methods, properly designed artificial neural network ensembles can significantly reduce the prediction error.

  9. Adaptive conventional power system stabilizer based on artificial neural network

    SciTech Connect

    Kothari, M.L.; Segal, R.; Ghodki, B.K.

    1995-12-31

    This paper deals with an artificial neural network (ANN) based adaptive conventional power system stabilizer (PSS). The ANN comprises an input layer, a hidden layer and an output layer. The input vector to the ANN comprises real power (P) and reactive power (Q), while the output vector comprises optimum PSS parameters. A systematic approach for generating training set covering wide range of operating conditions, is presented. The ANN has been trained using back-propagation training algorithm. Investigations reveal that the dynamic performance of ANN based adaptive conventional PSS is quite insensitive to wide variations in loading conditions.

  10. Using Artificial Neural Networks to Assess Microbial Communities

    SciTech Connect

    Almeida, J.S.; Brand, C.C.; Palumbo, A.V.; Pfiffner, S.M.; Schryver, J.C.

    1998-09-08

    We are evaluating artificial neural networks (ANNs) as tools for assessing changes in soil microbial communities following exposure to metals. We analyzed signature lipid biomarker data collected from two soil microcosm experiments using an autoassociative ANN. In one experiment, the microcosms were exposed to O, 100, or 250 ppm of metals, and in the other experiment the microcosms were exposed to O or 500 ppm of metals. The ANNs were able to distinguish between microcosms exposed and not exposed to metals in both experiments.

  11. Stress calculation of crankshaft using artificial neural network

    SciTech Connect

    Shiomi, Kazuyuki; Watanabe, Sei

    1995-12-31

    A system that calculates the stress concentration factor of the crankpin fillet from six characteristic dimensions of the crankshaft was developed using an artificial neural network. The learning database was constructed based on the finite element analysis, and an ``adaptive transfer function algorithm`` was used for the learning calculations. The calculation errors of the stress concentration factors applied to crankshafts of small utility engines and outboard motors were found to be within {minus}6.9 to +6.3% of the measured values. With this system, designers can calculate the stress concentrated at crankpin fillets precisely in a short time.

  12. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  13. Dynamic Modeling of time series using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Nair, A. D.; Principe, Jose C.

    1995-12-01

    Artificial Neural Networks (ANN) have the ability to adapt to and learn complex topologies, they represent new technology with which to explore dynamical systems. Multi-step prediction is used to capture the dynamics of the system that produced the time series. Multi-step prediction is implemented by a recurrent ANN trained with trajectory learning. Two separate memories are employed in training the ANN, the common tapped delay-line memory and the new gamma memory. This methodology has been applied to the time series of a white dwarf and to the quasar 3C 345.

  14. Artificial neural networks as a tool for galaxy classification.

    NASA Astrophysics Data System (ADS)

    Lahav, O.

    The author describes an Artificial Neural Network (ANN) approach to classification of galaxy images and spectra. ANNs can replicate the classification of galaxy images by a human expert to the same degree of agreement as that between two human experts. Similar methods are applied to classification of galaxy spectra. In particular, Principal Component Analysis of galaxy spectra can be used to compress the data, to suppress noise and to provide input to the ANNs. These and other classification methods will soon be applied to the Anglo-Australian 2-degree-Field redshift survey of 250,000 galaxies.

  15. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  16. Artificial neural network approaches for fluorescence lifetime imaging techniques.

    PubMed

    Wu, Gang; Nowotny, Thomas; Zhang, Yongliang; Yu, Hong-Qi; Li, David Day-Uei

    2016-06-01

    A novel high-speed fluorescence lifetime imaging (FLIM) analysis method based on artificial neural networks (ANN) has been proposed. In terms of image generation, the proposed ANN-FLIM method does not require iterative searching procedures or initial conditions, and it can generate lifetime images at least 180-fold faster than conventional least squares curve-fitting software tools. The advantages of ANN-FLIM were demonstrated on both synthesized and experimental data, showing that it has great potential to fuel current revolutions in rapid FLIM technologies. PMID:27244414

  17. Application of artificial neural networks to eating disorders.

    PubMed

    Buscema, M; Mazzetti di Pietralata, M; Salvemini, V; Intraligi, M; Indrimi, M

    1998-02-01

    An experimental application of Artificial Neural Networks to Eating Disorders is presented. The sample, composed of 172 cases (all women) collected at the Centre for the Diagnosis and Treatment of Eating Disorders of the 1st Medical Division of the St. Eugenio Hospital of Rome, was subdivided, on the basis of the diagnosis made by the specialist of the St. Eugenio, into four classes: Anorexia Nervosa (AN), Nervous Bulimia (NB), Binge Eating Disorders (BED) and Psychogenic Eating Disorders that are Not Otherwise Specified (PED-NOS). The data base was composed of 124 different variables: generic information, alimentary behavior, eventual treatment and hospitalization, substance use, menstrual cycles, weight and height, hematochemical and instrumental examinations, psychodiagnostic tests, etc. The goal of this experiment was to verify the accuracy of the Neural Networks in recognising anorexic and bulimic patients. This article describes 6 experiments, using a Feed Forward Neural Network, each one using different variables. Starting from only the generic variables (life styles, family environment, etc.) and hematoclinical and instrumental examinations, a Neural Networks provided 86.94% of the prediction precision. This work is meant to be a first contribution to creating diagnostic procedures for Eating Disorders, that would be simple and easy-to-use by professionals who are neither psychologists nor psychiatrists nor psychotherapists but who are, however, among the first to meet these patients and who are therefore called upon to give such patients the very first pieces of advice on seeking proper treatment. PMID:9533740

  18. Neural coding of passive lump detection in compliant artificial tissue

    PubMed Central

    Gwilliam, James C.; Yoshioka, Takashi; Hsiao, Steven S.

    2014-01-01

    Here, we investigate the neural mechanisms of detecting lumps embedded in artificial compliant tissues. We performed a combined psychophysical study of humans performing a passive lump detection task with a neurophysiological study in nonhuman primates (Macaca mulatta) where we recorded the responses of peripheral mechanoreceptive afferents to lumps embedded at various depths in intermediates (rubbers) of varying compliance. The psychophysical results reveal that human lump detection is greatly degraded by both lump depth and decreased compliance of the intermediate. The neurophysiology results reveal that only the slowly adapting type 1 (SA1) afferents provide a clear spatial representation of lumps at all depths and that the representation is affected by lump size, depth, and compliance of the intermediate. The rapidly adapting afferents are considerably less sensitive to the lump. We defined eight neural response measures that we hypothesized could explain the psychophysical behavior, including peak firing rate, spatial spread of neural activity, and additional parameters derived from these measures. We find that peak firing rate encodes the depth of the lump, and the neural spatial spread of the SA1 response encodes for lump size but not lump shape. We also find that the perception of lump size may be affected by the compliance of the intermediate. The results show that lump detection is based on a spatial population code of the SA1 afferents, which is distorted by the depth of the lump and compliance of the tissue. PMID:24805077

  19. The Development of Animal Behavior: From Lorenz to Neural Nets

    NASA Astrophysics Data System (ADS)

    Bolhuis, Johan J.

    In the study of behavioral development both causal and functional approaches have been used, and they often overlap. The concept of ontogenetic adaptations suggests that each developmental phase involves unique adaptations to the environment of the developing animal. The functional concept of optimal outbreeding has led to further experimental evidence and theoretical models concerning the role of sexual imprinting in the evolutionary process of sexual selection. From a causal perspective it has been proposed that behavioral ontogeny involves the development of various kinds of perceptual, motor, and central mechanisms and the formation of connections among them. This framework has been tested for a number of complex behavior systems such as hunger and dustbathing. Imprinting is often seen as a model system for behavioral development in general. Recent advances in imprinting research have been the result of an interdisciplinary effort involving ethology, neuroscience, and experimental psychology, with a continual interplay between these approaches. The imprinting results are consistent with Lorenz' early intuitive suggestions and are also reflected in the architecture of recent neural net models.

  20. Adaptive evolutionary artificial neural networks for pattern classification.

    PubMed

    Oong, Tatt Hee; Isa, Nor Ashidi Mat

    2011-11-01

    This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms. PMID:21968733

  1. Evolutionary artificial neural networks for hydrological systems forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Yung-hsiang; Chang, Fi-John

    2009-03-01

    SummaryThe conventional ways of constructing artificial neural network (ANN) for a problem generally presume a specific architecture and do not automatically discover network modules appropriate for specific training data. Evolutionary algorithms are used to automatically adapt the network architecture and connection weights according to the problem environment without substantial human intervention. To improve on the drawbacks of the conventional optimal process, this study presents a novel evolutionary artificial neural network (EANN) for time series forecasting. The EANN has a hybrid procedure, including the genetic algorithm and the scaled conjugate gradient algorithm, where the feedforward ANN architecture and its connection weights of neurons are simultaneously identified and optimized. We first explored the performance of the proposed EANN for the Mackey-Glass chaotic time series. The performance of the different networks was evaluated. The excellent performance in forecasting of the chaotic series shows that the proposed algorithm concurrently possesses efficiency, effectiveness, and robustness. We further explored the applicability and reliability of the EANN in a real hydrological time series. Again, the results indicate the EANN can effectively and efficiently construct a viable forecast module for the 10-day reservoir inflow, and its accuracy is superior to that of the AR and ARMAX models.

  2. Prediction aluminum corrosion inhibitor efficiency using artificial neural network (ANN)

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Sh; Kalhor, E. G.; Nabavi, S. R.; Alamiparvin, L.; Pogaku, R.

    2016-06-01

    In this study, activity of some Schiff bases as aluminum corrosion inhibitor was investigated using artificial neural network (ANN). Hence, corrosion inhibition efficiency of Schiff bases (in any type) were gathered from different references. Then these molecules were drawn and optimized in Hyperchem software. Molecular descriptors generating and descriptors selection were fulfilled by Dragon software and principal component analysis (PCA) method, respectively. These structural descriptors along with environmental descriptors (ambient temperature, time of exposure, pH and the concentration of inhibitor) were used as input variables. Furthermore, aluminum corrosion inhibition efficiency was used as output variable. Experimental data were split into three sets: training set (for model building) and test set (for model validation) and simulation (for general model). Modeling was performed by Multiple linear regression (MLR) methods and artificial neural network (ANN). The results obtained in linear models showed poor correlation between experimental and theoretical data. However nonlinear model presented satisfactory results. Higher correlation coefficient of ANN (R > 0.9) revealed that ANN can be successfully applied for prediction of aluminum corrosion inhibitor efficiency of Schiff bases in different environmental conditions.

  3. Neural-Net Processed Characteristic Patterns for Measurement of Structural Integrity of Pressure Cycled Components

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    2001-01-01

    A neural-net inspection process has been combined with a bootstrap training procedure and electronic holography to detect changes or damage in a pressure-cycled International Space Station cold plate to be used for cooling instrumentation. The cold plate was excited to vibrate in a normal mode at low amplitude, and the neural net was trained by example to flag small changes in the mode shape. The NDE (nondestructive-evaluation) technique is straightforward but in its infancy; its applications are ad-hoc and uncalibrated. Nevertheless previous research has shown that the neural net can detect displacement changes to better than 1/100 the maximum displacement amplitude. Development efforts that support the NDE technique are mentioned briefly, followed by descriptions of electronic holography and neural-net processing. The bootstrap training procedure and its application to detection of damage in a pressure-cycled cold plate are discussed. Suggestions for calibrating and quantifying the NDE procedure are presented.

  4. The use of neural nets for matching compressors with diesel engines

    SciTech Connect

    Nelson, S.A. II; Filipi, Z.S.; Assanis, D.N.

    1996-12-31

    A technique which uses trained neural nets to model the compressor in the context of a turbocharged diesel engine simulation is introduced. This technique replaces the usual interpolation of compressor maps with the evaluation of a smooth mathematical function, thus providing engine simulations with greater robustness and flexibility. Following presentation of the methodology, the proposed neural net technique is validated against data from a truck type, 6-cylinder, 14 liter diesel engine. Furthermore, with the introduction of an additional parameter, the proposed neural net can be trained to simulate an entire family of compressors. As a demonstration, five compressors of different sizes are represented with the neural net model, and used for matching calculations with intercooled and non-intercooled engine configurations at different speeds. This novel approach readily allows for evaluation of various options prior to prototype production, and is thus a powerful design tool for selection of the best compressor for a given diesel engine system.

  5. Artificial Neural Network Analysis in Preclinical Breast Cancer

    PubMed Central

    Motalleb, Gholamreza

    2014-01-01

    Objective: In this study, artificial neural network (ANN) analysis of virotherapy in preclinical breast cancer was investigated. Materials and Methods: In this research article, a multilayer feed-forward neural network trained with an error back-propagation algorithm was incorporated in order to develop a predictive model. The input parameters of the model were virus dose, week and tamoxifen citrate, while tumor weight was included in the output parameter. Two different training algorithms, namely quick propagation (QP) and Levenberg-Marquardt (LM), were used to train ANN. Results: The results showed that the LM algorithm, with 3-9-1 arrangement is more efficient compared to QP. Using LM algorithm, the coefficient of determination (R2) between the actual and predicted values was determined as 0.897118 for all data. Conclusion: It can be concluded that this ANN model may provide good ability to predict the biometry information of tumor in preclinical breast cancer virotherapy. The results showed that the LM algorithm employed by Neural Power software gave the better performance compared with the QP and virus dose, and it is more important factor compared to tamoxifen and time (week). PMID:24381857

  6. Neural nets in information retrieval: a case study of the 1987 Pravda

    NASA Astrophysics Data System (ADS)

    Scholtes, Jan C.

    1992-07-01

    This paper presents an implemented neural method for free-text information filtering. A specific interest (or `query') is taught to a Kohonen feature map. By using this network as a neural filter on a dynamic free-text data base, only associated subjects are selected from this data base. The method is compared with some classical statistical information-retrieval algorithms. Various simulations show that the neural net indeed converges toward a proper representation of the query. The algorithm seems well scalable (linear complexity in time and space) resulting in high speeds, little memory needs, and easy maintainability. By combining research results from connectionist natural language processing (NLP) and information retrieval (IR), a better understanding of neural nets in NLP, a clearer view of the relation between neural nets and statistical pattern recognition, and an increased information retrieval quality are obtained.

  7. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACINTOSH VERSION)

    NASA Technical Reports Server (NTRS)

    Phillips, T. A.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  8. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)

    NASA Technical Reports Server (NTRS)

    Baffes, P. T.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  9. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)

    NASA Technical Reports Server (NTRS)

    Baffes, P. T.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  10. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACINTOSH VERSION)

    NASA Technical Reports Server (NTRS)

    Phillips, T. A.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  11. [The Identification of the Origin of Chinese Wolfberry Based on Infrared Spectral Technology and the Artificial Neural Network].

    PubMed

    Li, Zhong; Liu, Ming-de; Ji, Shou-xiang

    2016-03-01

    The Fourier Transform Infrared Spectroscopy (FTIR) is established to find the geographic origins of Chinese wolfberry quickly. In the paper, the 45 samples of Chinese wolfberry from different places of Qinghai Province are to be surveyed by FTIR. The original data matrix of FTIR is pretreated with common preprocessing and wavelet transform. Compared with common windows shifting smoothing preprocessing, standard normal variation correction and multiplicative scatter correction, wavelet transform is an effective spectrum data preprocessing method. Before establishing model through the artificial neural networks, the spectra variables are compressed by means of the wavelet transformation so as to enhance the training speed of the artificial neural networks, and at the same time the related parameters of the artificial neural networks model are also discussed in detail. The survey shows even if the infrared spectroscopy data is compressed to 1/8 of its original data, the spectral information and analytical accuracy are not deteriorated. The compressed spectra variables are used for modeling parameters of the backpropagation artificial neural network (BP-ANN) model and the geographic origins of Chinese wolfberry are used for parameters of export. Three layers of neural network model are built to predict the 10 unknown samples by using the MATLAB neural network toolbox design error back propagation network. The number of hidden layer neurons is 5, and the number of output layer neuron is 1. The transfer function of hidden layer is tansig, while the transfer function of output layer is purelin. Network training function is trainl and the learning function of weights and thresholds is learngdm. net. trainParam. epochs=1 000, while net. trainParam. goal = 0.001. The recognition rate of 100% is to be achieved. It can be concluded that the method is quite suitable for the quick discrimination of producing areas of Chinese wolfberry. The infrared spectral analysis technology

  12. Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets

    PubMed Central

    Dzyubenko, Egor; Gottschling, Christine

    2016-01-01

    Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis. PMID:26881114

  13. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    SciTech Connect

    Saini, K. K.; Saini, Sanju

    2008-10-07

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  14. DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging

    SciTech Connect

    Barhen, J.; Protopopescu, V.; Reister, D.

    1999-07-10

    A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools.

  15. Modelling of a fluidized bed dryer using artificial neural network

    SciTech Connect

    Balasubramanian, A.; Ramachandra Rao, V.S.; Panda, R.C.

    1996-10-01

    Proper modelling of a fluidized bed dryer (FBD) is important to design model based control strategies. A FBD is a nonlinear multivariable system with nonminimum phase characteristics. Due to the complexities in FBD conventional Modelling techniques are cumbersome. Artificial neural network (ANN) with its inherent ability to learn and absorb nonlinearities, presents itself as a convenient tool for modelling such systems. In this work, an ANN model for a continuous drying FBD is presented. A three layer fully connected feedforward network with three inputs and two outputs is used. A back propagation learning algorithm is employed to train the network. The training data is obtained from computer simulation of a FBD model from published literature. The trained network is evaluated using randomly generated data as input and observed to predict the behavior of FBD adequately.

  16. Modeling biodegradation and kinetics of glyphosate by artificial neural network.

    PubMed

    Nourouzi, Mohsen M; Chuah, Teong G; Choong, Thomas S Y; Rabiei, F

    2012-01-01

    An artificial neural network (ANN) model was developed to simulate the biodegradation of herbicide glyphosate [2-(Phosphonomethylamino) acetic acid] in a solution with varying parameters pH, inoculum size and initial glyphosate concentration. The predictive ability of ANN model was also compared with Monod model. The result showed that ANN model was able to accurately predict the experimental results. A low ratio of self-inhibition and half saturation constants of Haldane equations (< 8) exhibited the inhibitory effect of glyphosate on bacteria growth. The value of K(i)/K(s) increased when the mixed inoculum size was increased from 10(4) to 10(6) bacteria/mL. It was found that the percentage of glyphosate degradation reached a maximum value of 99% at an optimum pH 6-7 while for pH values higher than 9 or lower than 4, no degradation was observed. PMID:22424071

  17. Incomplete fuzzy data processing systems using artificial neural network

    NASA Technical Reports Server (NTRS)

    Patyra, Marek J.

    1992-01-01

    In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.

  18. Magnesium degradation as determined by artificial neural networks.

    PubMed

    Willumeit, Regine; Feyerabend, Frank; Huber, Norbert

    2013-11-01

    Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role. PMID:23470548

  19. Practical application of artificial neural networks in the neurosciences

    NASA Astrophysics Data System (ADS)

    Pinti, Antonio

    1995-04-01

    This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.

  20. Artificial neural network modeling of plasmonic transmission lines.

    PubMed

    Andrawis, Robert R; Swillam, Mohamed A; El-Gamal, Mohamed A; Soliman, Ezzeldin A

    2016-04-01

    In this paper, new models based on an artificial neural network (ANN) are developed to predict the propagation characteristics of plasmonic nanostrip and coupled nanostrips transmission lines. The trained ANNs are capable of providing the required propagation characteristics with good accuracy and almost instantaneously. The nonlinear mapping performed by the trained ANNs is written as closed-form expressions, which facilitate the direct use of the results obtained in this research. The propagation characteristics of the investigated transmission lines include the effective refractive index and the characteristic impedance. The time needed to simulate 1000 different versions of the transmission line structure is about 48 h, using a full-wave electromagnetic solver compared to 3 s using the developed ANN model. PMID:27139685

  1. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Collister, Adrian A.; Lahav, Ofer

    2004-04-01

    We introduce ANNz, a freely available software package for photometric redshift estimation using artificial neural networks. ANNz learns the relation between photometry and redshift from an appropriate training set of galaxies for which the redshift is already known. Where a large and representative training set is available, ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the rms redshift error in the range 0<~z<~0.7 is σrms=0.023. Nonideal conditions (spectroscopic sets that are small or brighter than the photometric set for which redshifts are required) are simulated, and the impact on the photometric redshift accuracy is assessed.2

  2. Applications of Artificial Neural Networks (ANNs) in Food Science

    SciTech Connect

    HUang, Yiqun; Kangas, Lars J.; Rasco, Barbara A.

    2007-02-01

    Abstract Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decade, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs have a great deal of promise for modeling complex tasks in process control and simulation, and in applications of machine perception including machine vision and the electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in this field.

  3. The application of artificial neural networks in indirect cost estimation

    NASA Astrophysics Data System (ADS)

    Leśniak, Agnieszka

    2013-10-01

    Estimating of the costs of construction project is one of the most important task in the management of the project. The total costs can be divided into direct costs that are related to executing the works, and indirect costs that accompany delivery. A precise costs estimation is usually a highly labour and time-intensive task especially when using manual calculation methods. This paper presents Artificial Neural Network (ANN) approach to predicting index of indirect cost of construction projects in Poland. A quantitative study was undertaken on the factors conditioning indirect costs of polish construction projects and a determination was made of the actual costs incurred by enterprises during project implementation. As a result of these studies, a data set was assembled covering 72 real-life cases of building projects constructed in Poland.

  4. CCD Image Identification: An Artificial Neural Networks Approach

    NASA Astrophysics Data System (ADS)

    El-Bassuny Alawy, A.; et al.

    An Artificial Neural Network (ANN) technique in supervised mode has been developed to classify stellar, cosmic and noise identities on CCD frames. It has been implemented and coded in the C language for Personal Computers users. Its learning factors and training (cumulative, rms and decision) errors have been investigated. Two sets comprising a few hundred images of stars, cosmic rays and noise of different levels were adopted to train and test the algorithm developed. The present approach has been applied on a CCD frame of the star cluster M67. The results were discussed in comparison with those obtained from DAOPHOTII code out of the same frame. It has been shown that the present approach is fast, precise, efficient and reliable as well as requiring no prior input data for identification.

  5. Automatic segmentation of cerebral MR images using artificial neural networks

    SciTech Connect

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-12-31

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem.

  6. Inflow forecasting using Artificial Neural Networks for reservoir operation

    NASA Astrophysics Data System (ADS)

    Chiamsathit, Chuthamat; Adeloye, Adebayo J.; Bankaru-Swamy, Soundharajan

    2016-05-01

    In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic (Type A); (2) inflow known and assumed to be the forecast (Type F); (3) inflow known and assumed to be the historic mean for month (Type M); and (4) inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N). Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.

  7. Artificial neural networks for document analysis and recognition.

    PubMed

    Marinai, Simone; Gori, Marco; Soda, Giovanni; Society, Computer

    2005-01-01

    Artificial neural networks have been extensively applied to document analysis and recognition. Most efforts have been devoted to the recognition of isolated handwritten and printed characters with widely recognized successful results. However, many other document processing tasks, like preprocessing, layout analysis, character segmentation, word recognition, and signature verification, have been effectively faced with very promising results. This paper surveys the most significant problems in the area of offline document image processing, where connectionist-based approaches have been applied. Similarities and differences between approaches belonging to different categories are discussed. A particular emphasis is given on the crucial role of prior knowledge for the conception of both appropriate architectures and learning algorithms. Finally, the paper provides a critical analysis on the reviewed approaches and depicts the most promising research guidelines in the field. In particular, a second generation of connectionist-based models are foreseen which are based on appropriate graphical representations of the learning environment. PMID:15628266

  8. A novel technology for fabricating customizable VLSI artificial neural network chips

    SciTech Connect

    Fu, C.Y.; Law, B.; Chapline, G.; Swenson, D.

    1992-02-05

    This paper describes an implementation of hardware neural networks using highly linear thin-film resistor technology and an 8-bit binary weight circuit to produce customizable artificial neural network chips and systems. These neural networks are programmed using precision laser cutting and deposition. The fast turnaround of laser-based customization allows us to explore different neural network architectures and to rapidly program the synaptic weights. Our customizable chip allows us to expand an artificial network laterally and vertically. This flexibility permits us to build very large neural network systems.

  9. Prediction of Austenite Formation Temperatures Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Schulze, P.; Schmidl, E.; Grund, T.; Lampke, T.

    2016-03-01

    For the modeling and design of heat treatments, in consideration of the development/ transformation of the microstructure, different material data depending on the chemical composition, the respective microstructure/phases and the temperature are necessary. Material data are, e.g. the thermal conductivity, heat capacity, thermal expansion and transformation data etc. The quality of thermal simulations strongly depends on the accuracy of the material data. For many materials, the required data - in particular for different microstructures and temperatures - are rare in the literature. In addition, a different chemical composition within the permitted limits of the considered steel alloy cannot be predicted. A solution for this problem is provided by the calculation of material data using Artificial Neural Networks (ANN). In the present study, the start and finish temperatures of the transformation from the bcc lattice to the fcc lattice structure of hypoeutectoid steels are calculated using an Artificial Neural Network. An appropriate database containing different transformation temperatures (austenite formation temperatures) to train the ANN is selected from the literature. In order to find a suitable feedforward network, the network topologies as well as the activation functions of the hidden layers are varied and subsequently evaluated in terms of the prediction accuracy. The transformation temperatures calculated by the ANN exhibit a very good compliance compared to the experimental data. The results show that the prediction performance is even higher compared to classical empirical equations such as Andrews or Brandis. Therefore, it can be assumed that the presented ANN is a convenient tool to distinguish between bcc and fcc phases in hypoeutectoid steels.

  10. Representation and learning of nonlinear compliance using neural nets

    SciTech Connect

    Asada, Haruhiko . Dept. of Mechanical Engineering)

    1993-12-01

    A new approach to compliant motion control using neural networks is presented. In the paper, compliance is treated as a nonlinear mapping from a measured force to a corrected motion. The nonlinear mapping by a multilayer neural network is represented, which allows us to deal with complex control strategies that cannot be represented by linear compliance, such as in stiffness and damping control.

  11. Application of an artificial neural network to pump card diagnosis

    SciTech Connect

    Ashenayi, K. ); Lea, J.F. ); Kemp, F. , Dallas, TX ); Nazi, G.A.

    1994-12-01

    Beam pumping is the most frequently used artificial-lift technique for oil production. Downhole pump cards are used to evaluate performance of the pumping unit. Pump cards can be generated from surface dynamometer cards using a 1D wave equation with viscous damping, as suggested by Gibbs and Neely. Pump cards contain significant information describing the behavior of the pump. However, interpretation of these cards is tedious and time-consuming; hence, an automated system capable of interpreting these cards could speed interpretation and warn of pump failures. This work presents the results of a DOS-based computer program capable of correctly classifying pump cards. The program uses a hybrid artificial neural network (ANN) to identify significant features of the pump card. The hybrid ANN uses classical and sinusoidal perceptrons. The network is trained using an error-back-propagation technique. The program correctly identified pump problems for more than 180 different training and test pump cards. The ANN takes a total of 80 data points as input. Sixty data points are collected from the pump card perimeter, and the remaining 20 data points represent the slope at selected points on the pump card perimeter. Pump problem conditions are grouped into 11 distinct classes. The network is capable of identifying one or more of these problem conditions for each pump card. Eight examples are presented and discussed.

  12. Training Spiking Neural Models Using Artificial Bee Colony

    PubMed Central

    Vazquez, Roberto A.; Garro, Beatriz A.

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  13. Training spiking neural models using artificial bee colony.

    PubMed

    Vazquez, Roberto A; Garro, Beatriz A

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  14. Didactic Strategy Discussion Based on Artificial Neural Networks Results.

    NASA Astrophysics Data System (ADS)

    Andina, D.; Bermúdez-Valbuena, R.

    2009-04-01

    Artificial Neural Networks (ANNs) are a mathematical model of the main known characteristics of biological brian dynamics. ANNs inspired in biological reality have been useful to design machines that show some human-like behaviours. Based on them, many experimentes have been succesfully developed emulating several biologial neurons characteristics, as learning how to solve a given problem. Sometimes, experimentes on ANNs feedback to biology and allow advances in understanding the biological brian behaviour, allowing the proposal of new therapies for medical problems involving neurons performing. Following this line, the author present results on artificial learning on ANN, and interpret them aiming to reinforce one of this two didactic estrategies to learn how to solve a given difficult task: a) To train with clear, simple, representative examples and feel confidence in brian generalization capabilities to achieve succes in more complicated cases. b) To teach with a set of difficult cases of the problem feeling confidence that the brian will efficiently solve the rest of cases if it is able to solve the difficult ones. Results may contribute in the discussion of how to orientate the design innovative succesful teaching strategies in the education field.

  15. Simulation of an array-based neural net model

    NASA Technical Reports Server (NTRS)

    Barnden, John A.

    1987-01-01

    Research in cognitive science suggests that much of cognition involves the rapid manipulation of complex data structures. However, it is very unclear how this could be realized in neural networks or connectionist systems. A core question is: how could the interconnectivity of items in an abstract-level data structure be neurally encoded? The answer appeals mainly to positional relationships between activity patterns within neural arrays, rather than directly to neural connections in the traditional way. The new method was initially devised to account for abstract symbolic data structures, but it also supports cognitively useful spatial analogue, image-like representations. As the neural model is based on massive, uniform, parallel computations over 2D arrays, the massively parallel processor is a convenient tool for simulation work, although there are complications in using the machine to the fullest advantage. An MPP Pascal simulation program for a small pilot version of the model is running.

  16. Clustering proteins into families using artificial neural networks.

    PubMed

    Ferrán, E A; Ferrara, P

    1992-02-01

    An artificial neural network was used to cluster proteins into families. The network, composed of 7 x 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of 447 proteins, belonging to 13 different families. As a result of the training, and without any a priori indication of the number or composition of the expected families, the network self-organized the activation of its neurons into topologically ordered maps in which almost all the proteins (96.7%) were correctly clustered into the corresponding families. In a second computational experiment, a similar network was trained with one family of the previous learning set (76 cytochrome c sequences). The new neural map clustered these proteins into 25 different neurons (five in the first experiment), wherein phylogenetically related sequences were positioned close to each other. This result shows that the network can adapt the clustering resolution to the complexity of the learning set, a useful feature when working with an unknown number of clusters. Although the learning stage is time consuming, once the topological map is obtained, the classification of new proteins is very fast. Altogether, our results suggest that this novel approach may be a useful tool to organize the search for homologies in large macromolecular databases. PMID:1314686

  17. Classification of Images Acquired with Colposcopy Using Artificial Neural Networks

    PubMed Central

    Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A

    2014-01-01

    OBJECTIVE To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. PURPOSE Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. RESULTS After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. CONCLUSION Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study. PMID:25374454

  18. An artificial neural network based matching metric for iris identification

    NASA Astrophysics Data System (ADS)

    Broussard, Randy P.; Kennell, Lauren R.; Ives, Robert W.; Rakvic, Ryan N.

    2008-02-01

    The iris is currently believed to be the most accurate biometric for human identification. The majority of fielded iris identification systems are based on the highly accurate wavelet-based Daugman algorithm. Another promising recognition algorithm by Ives et al uses Directional Energy features to create the iris template. Both algorithms use Hamming distance to compare a new template to a stored database. Hamming distance is an extremely fast computation, but weights all regions of the iris equally. Work from multiple authors has shown that different regions of the iris contain varying levels of discriminatory information. This research evaluates four post-processing similarity metrics for accuracy impacts on the Directional Energy and wavelets based algorithms. Each metric builds on the Hamming distance method in an attempt to use the template information in a more salient manner. A similarity metric extracted from the output stage of a feed-forward multi-layer perceptron artificial neural network demonstrated the most promise. Accuracy tables and ROC curves of tests performed on the publicly available Chinese Academy of Sciences Institute of Automation database show that the neural network based distance achieves greater accuracy than Hamming distance at every operating point, while adding less than one percent computational overhead.

  19. Detection of interplanetary activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gothoskar, Pradeep; Khobragade, Shyam

    1995-12-01

    Early detection of interplanetary activity is important when attempting to associate, with better accuracy, interplanetary phenomena with solar activity and geomagnetic disturbances. However, for a large number of interplanetary observations to be done every day, extensive data analysis is required, leading to a delay in the detection of transient interplanetary activity. In particular, the interplanetary scintillation (IPS) observations done with Ooty Radio Telescope (ORT) need extensive human effort to reduce the data and to model, often subjectively, the scintillation power spectra. We have implemented an artificial neural network (ANN) to detect interplanetary activity using the power spectrum scintillation. The ANN was trained to detect the disturbed power spectra, used as an indicator of the interplanetary activity, and to recognize normal and strong scattering spectra from a large data base of IPS spectra. The coincidence efficiency of classification by the network compared with the experts' judgement to detect the normal, disturbed and strong scattering spectra was found to be greater than 80 per cent. The neural network, when applied during the IPS mapping programme to provide early indication of interplanetary activity, would significantly help the ongoing efforts to predict geomagnetic disturbances.

  20. Reliability and risk analysis using artificial neural networks

    SciTech Connect

    Robinson, D.G.

    1995-12-31

    This paper discusses preliminary research at Sandia National Laboratories into the application of artificial neural networks for reliability and risk analysis. The goal of this effort is to develop a reliability based methodology that captures the complex relationship between uncertainty in material properties and manufacturing processes and the resulting uncertainty in life prediction estimates. The inputs to the neural network model are probability density functions describing system characteristics and the output is a statistical description of system performance. The most recent application of this methodology involves the comparison of various low-residue, lead-free soldering processes with the desire to minimize the associated waste streams with no reduction in product reliability. Model inputs include statistical descriptions of various material properties such as the coefficients of thermal expansion of solder and substrate. Consideration is also given to stochastic variation in the operational environment to which the electronic components might be exposed. Model output includes a probabilistic characterization of the fatigue life of the surface mounted component.

  1. Bootstrapped neural nets versus regression kriging in the digital mapping of pedological attributes: the automatic and time-consuming perspectives

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio

    2013-04-01

    Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.

  2. A radial basis function neural network based on artificial immune systems for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Yan, Qin; Zhong, Yanfei

    2008-12-01

    The radial basis function (RBF) neural network is a powerful method for remote sensing image classification. It has a simple architecture and the learning algorithm corresponds to the solution of a linear regression problem, resulting in a fast training process. The main drawback of this strategy is the requirement of an efficient algorithm to determine the number, position, and dispersion of the RBF. Traditional methods to determine the centers are: randomly choose input vectors from the training data set; vectors obtained from unsupervised clustering algorithms, such as k-means, applied to the input data. These conduce that traditional RBF neural network is sensitive to the center initialization. In this paper, the artificial immune network (aiNet) model, a new computational intelligence based on artificial immune networks (AIN), is applied to obtain appropriate centers for remote sensing image classification. In the aiNet-RBF algorihtm, each input pattern corresonds to an antigenic stimulus, while each RBF candidate center is considered to be an element, or cell, of the immune network model. The steps are as follows: A set of candidate centers is initialized at random, where the initial number of candidates and their positions is not crucial to the performance. Then, the clonal selection principle will control which candidates will be selected and how they will be upadated. Note that the clonal selection principle will be responsible for how the centers will represent the training data set. Finally, the immune network will identify and eliminate or suppress self-recognizing individuals to control the number of candidate centers. After the above learning phase, the aiNet network centers represent internal images of the inuput patterns presented to it. The algorithm output is taken to be the matrix of memory cells' coordinates that represent the final centers to be adopted by the RBF network. The stopping criterion of the proposed algorithm is given by a pre

  3. Automatic Recognition of Ocean Structures from Satellite Images by Means of Neural Nets and Expert Systems

    NASA Astrophysics Data System (ADS)

    Guindos-Rojas, F.; Cantón-Garbín, M.; Torres-Arriaza, J. A.; Peralta-López, M.; Piedra-Fernández, J. A.; Molina-Martínez, A.

    2004-09-01

    Images received from satellites have became a great source of information about our environment. This is raw information that needs experts to make the most of it, but there are not many experts and the work is too much. The solution to this problem is the compilation of human experience into automatic systems that could do the same work. We depict here the structure for a knowledge based system capable of taking the place of human experts when it is properly trained. This structure has been used to build an automatic recognition system that process AVHRR images from NOAA satellites to detect and locate ocean phenomena of interest like upwellings, eddies and island wakes. The model covers every phase of the process from the source image, once it is corrected and geocoded, to the final features map. In the most delicate phase of the process pipeline, artificial neural nets and rule-based expert systems are used in a parallel redundant way so results can be validated by comparing the outcome of both subsystems. The automatic knowledge driven image processing system has been trained with ubiquitous and localized information and has proved his qualities with images of Canary Island, Mediterranean Sea and Cantabric and Portuguese coasts.

  4. The utilization of neural nets in populating an object-oriented database

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Hill, Scott E.; Cromp, Robert F.

    1989-01-01

    Existing NASA supported scientific data bases are usually developed, managed and populated in a tedious, error prone and self-limiting way in terms of what can be described in a relational Data Base Management System (DBMS). The next generation Earth remote sensing platforms (i.e., Earth Observation System, (EOS), will be capable of generating data at a rate of over 300 Mbs per second from a suite of instruments designed for different applications. What is needed is an innovative approach that creates object-oriented databases that segment, characterize, catalog and are manageable in a domain-specific context and whose contents are available interactively and in near-real-time to the user community. Described here is work in progress that utilizes an artificial neural net approach to characterize satellite imagery of undefined objects into high-level data objects. The characterized data is then dynamically allocated to an object-oriented data base where it can be reviewed and assessed by a user. The definition, development, and evolution of the overall data system model are steps in the creation of an application-driven knowledge-based scientific information system.

  5. Larger bases and mixed analog/digital neural nets

    SciTech Connect

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, and bounds on the size of threshold gate circuits. Based on an explicit numerical algorithm for Kolmogorov`s superpositions the authors show that minimum size neural networks--for implementing any Boolean function--have the identity function as the activation function. Conclusions and several comments on the required precision are ending the paper.

  6. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  7. Surrogate modeling of deformable joint contact using artificial neural networks.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2015-09-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  8. Nighttime cloud properties retrieval using MODIS and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pérez, J. C.; Cerdeña, A.; González, A.

    The aim of this work is to develop a methodology for inferring water cloud macro and microphysical properties from nighttime MODIS imagery This method is based on the inversion of a theoretical radiative transfer model that simulates the radiances detected in each of the sensor infrared bands In this case LibRadtran package Mayer and Kylling 2005 was used which allows us the calculation of the radiation field in the Earth s atmosphere given a specified set of atmospheric and cloud parameters However due to the complexity of this forward model its inversion cannot be performed in an analytical way To accomplish this task we propose an operational technique based on artificial neural networks ANNs whose main characteristic is the ability to retrieve cloud properties much faster than conventional methods Platnick et al 2003 Gonzalez et al 2002 Thus the procedure is as follows Using the theoretical radiative model a Look Up Table LUT is generated for a great variety of surface cloud and atmospheric conditions This dataset is divided randomly into a training set two-thirds of the items and a test set one third of the items which are used to train the neural network in order to fit the inversion problem In this study multilayer perceptrons MLPs with two hidden layers are used and the backpropagation with momentum method is used in the training process Furthermore to accelerate the convergence of ANN s evolutionary techniques are used to search the ANN configuration that provides the best fit Furthermore in order to check the

  9. Hybrid neural net and rule based system for boiler monitoring and diagnosis

    SciTech Connect

    Kraft, T.; Okagaki, K.; Ishii, R.; Surko, P. ); Brandon, A.; DeWeese, A.; Peterson, S.; Bjordal, R. )

    1991-01-01

    A fully recurrent neural net is coupled with a rule-based expert system in this operator adviser system. The neural net has been trained to recognize normal high-efficiency operating behavior of the power plant boiler, and the rule-based expert system diagnoses problems and suggests maintenance and/or operator actions when the boiler strays outside the envelope of normal operating conditions. The fully recurrent neural net provides an accurate model of a boiler even when the load demand is changing rapidly and the boiler operating conditions varying over a wide range. The hybrid system has been quicker and easier to generate than a strictly rule-based one, and has been designed to be more easily portable to other units This paper describes the ongoing development work for monitoring SDGE and E's South Bay Plant, Unit. 1.

  10. Time series predictions with neural nets: Application to airborne pollen forecasting

    NASA Astrophysics Data System (ADS)

    Arizmendi, C. M.; Sanchez, J. R.; Ramos, N. E.; Ramos, G. I.

    1993-09-01

    Pollen allergy is a common disease causing rhinoconjunctivitis (hay fever) in 5 10% of the population. Medical studies have indicated that pollen related diseases could be highly reduced if future pollen contents in the air could be predicted. In this work we have developed a new forecasting method that applies the ability of neural nets to predict the future behaviour of chaotic systems in order to make accurate predictions of the airborne pollen concentration. The method requires that the neural net be fed with non-zero values, which restricts the method predictions to the period following the start of pollen flight. The operational method outlined here constitutes a different point of view with respect to the more generally used forecasts of time series analysis, which require input of many meteorological parameters. Excellent forecasts were obtained training a neural net by using only the time series pollen concentration values.