Science.gov

Sample records for artificial small shallow

  1. Artificial neural networks for small dataset analysis.

    PubMed

    Pasini, Antonello

    2015-05-01

    Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654

  2. Attitude stability analyses for small artificial satellites

    NASA Astrophysics Data System (ADS)

    Silva, W. R.; Zanardi, M. C.; Formiga, J. K. S.; Cabette, R. E. S.; Stuchi, T. J.

    2013-10-01

    The objective of this paper is to analyze the stability of the rotational motion of a symmetrical spacecraft, in a circular orbit. The equilibrium points and regions of stability are established when components of the gravity gradient torque acting on the spacecraft are included in the equations of rotational motion, which are described by the Andoyer's variables. The nonlinear stability of the equilibrium points of the rotational motion is analysed here by the Kovalev-Savchenko theorem. With the application of the Kovalev-Savchenko theorem, it is possible to verify if they remain stable under the influence of the terms of higher order of the normal Hamiltonian. In this paper, numerical simulations are made for a small hypothetical artificial satellite. Several stable equilibrium points were determined and regions around these points have been established by variations in the orbital inclination and in the spacecraft principal moment of inertia. The present analysis can directly contribute in the maintenance of the spacecraft's attitude.

  3. Artificial neural networks for small dataset analysis

    PubMed Central

    2015-01-01

    Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654

  4. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    PubMed Central

    Nelson, Leonard Y.; Seibel, Eric J.

    2012-01-01

    Abstract. An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results. PMID:22894502

  5. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2012-07-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results.

  6. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes δ18O, δ2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 μgL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 μgL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination

  7. Shallow Plumbing Systems for Small-Volume Basaltic Volcanoes

    NASA Astrophysics Data System (ADS)

    Keating, G. N.; Valentine, G. A.; Krier, D. J.; Perry, F. V.

    2006-12-01

    We characterize the subvolcanic geometry of small-volume basaltic volcanoes (magmatic volatile-driven eruptions, 0.1 to 0.5 km3) based on a synthesis of field studies of 5 basaltic volcanoes with varying degrees of erosion exposing feeder dikes, conduits, and vent areas <250 m depth. Study areas include East Grants Ridge (New Mexico), Basalt Ridge, East Basalt Ridge, Paiute Ridge, and Southeast Crater Flat (Nevada). Basaltic feeder dikes ~250 to 100 m deep have typical widths of 4 - 12 m, with smooth host-rock contacts (rhyolite tuff). At depths <100 m, heterogeneities in the host rock form preferential pathways for small dike splays and sills, resulting in a 30-m effective width at 50 m depth. The development of a complex conduit above ~50-70 m depth is reflected in bifurcating dikes and brecciation and stoping of the country rock. The overall zone of effect <50 m depth is <110 m wide (220 m elongated along the feeder dike). Based on comparisons with theoretical conduit flow models, the width of the feeder dike from 250 to 500 m depth is expected to range from 1 to 10 m and is expected to decrease to about 1-2 meters below ~500 m. The flaring shape of the observed feeder systems is similar to results of theoretical modeling using lithostatic pressure- balanced flow conditions. Sizes of observed conduits differ from modeled dimensions by up to a factor of 10 in the shallow (<50 m) subsurface, but >100 m depth the difference is a factor of two to five. This difference is primarily due to the fact that observed eroded conduits record the superimposed effects of multiple eruptive events while theoretical model results define dimensions necessary for a single, steady eruption phase. The complex details of magma-host rock interactions observed at the study areas (contact welding, brecciation, bifurcating dikes and sills, and stoping) represent the mechanisms by which the lithostatic pressure-balanced geometry is attained. The similarity in the normalized shapes of

  8. Remote sensing of water depths in shallow waters via artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ceyhun, Özçelik; Yalçın, Arısoy

    2010-09-01

    Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for

  9. Determination and evaluation of the phosphorus load of an artificial shallow lake.

    PubMed

    Schneider, Y; Grube, S; Weilandt, M

    2008-01-01

    Enhanced eutrophication of lakes due to high nutrient loads from anthropogenic sources has become a worldwide problem. Dying ecosystems and limitation of uses are the consequences. In Bochum, Germany, Lake Umminger is an integral part of a recreation area, but also receives high nutrient loads from the local sewer system, as could be shown with the help of water and nutrient balances. Mass algae growth, the dying of fish and production of digestion gas implied a demand to rehabilitate the lake. Primarily, the urgency and sanitation potential as well as the applicability of external and internal enhancement measures had to be evaluated. The trophic classification needed was based upon the German guideline for the classification of the water quality of natural lakes according to trophic criteria, mainly using Vollenweider's eutrophication model. This paper focuses on a description and analysis of the problems that arose during the application of this model to Lake Umminger, stating that shallow, artificial lakes cannot be evaluated correctly with the existing methods. Although some suggestions for further improvement are given, the development of new evaluation criteria was not in the scope of the study presented. PMID:19039180

  10. Numerical Comparison of Artificial Recharge by Small-diameter Wells to Common Systems

    NASA Astrophysics Data System (ADS)

    Händel, F.; Liu, G.; Dietrich, P.; Liedl, R.; Fank, J.; Fank, A.; Butler, J. J.

    2013-12-01

    Scarcity of potable water has reached to a critical level all around the world. To address the temporal inequality of demand and availability of water resources, as well as additional purposes like enhancing water quality, artificial recharge is increasingly used. For shallow infiltration, such recharge methods as surface infiltration basins and trenches are commonly applied. However, these methods have significant disadvantages, e.g., enhanced clogging, evaporation, and an increased need of land use. Therefore, a new method for artificial recharge using shallow small-diameter wells is investigated. Such wells can be installed by Direct Push (DP) and water is allowed to infiltrate into aquifers by natural gravity, so that their installation and operation costs are very low. In this work, this method is compared numerically to a surface infiltration basin and a system applying horizontal filter pipes. For this, the work is divided into two parts. First, a rigorous comparison is done between the DP well and the infiltration basin. The simulated aquifer is composed of an unsaturated zone of 12 m and a saturated zone of 8 m. The results show the dependency of both methods on different components of the hydraulic conductivity, and highlight the advantages of the DP well over the basin. A small number of 5-cm shallow wells of 12 m length can be used to recharge water at the same infiltration rate as from a 60 m2 basin. When a layer of low hydraulic conductivity is present, the infiltration capacity of surface basins is significantly reduced while the adverse impacts on the wells are less pronounced due to the horizontal flow above the low conductivity layer (larger distance of water movement away from the screen). In the second part of this work, the DP wells will be compared to an operating horizontal, vadose zone artificial recharge system in Southern Styria, Austria. The water table is 3 m deep and horizontal filter pipes are used to recharge water into the shallow

  11. Habitat values for artificial oyster ( Crassostrea ariakensis) reefs compared with natural shallow-water habitats in Changjiang River estuary

    NASA Astrophysics Data System (ADS)

    Quan, Weimin; Zheng, Lin; Li, Beijun; An, Chuanguang

    2013-09-01

    Oyster reefs have an equivalent, complex 3-dimensional structure to vegetated habitats and may provide similar functions in estuarine environments. Nevertheless, few studies have compared oyster reefs with adjacent natural shallow-water habitats. Here the resident benthic macroinvertebrate communities in an artificial oyster ( Crassostrea ariakensis) reef and in adjacent natural estuarine shallow-water habitats (salt marsh, intertidal mudflat, and subtidal soft bottom) in the Changjiang (Yangtze) River estuary were described. The mean total densities and biomass, Margalef's species richness, Pielou's evenness and Shannon-Weaver biodiversity indices of the resident benthic macroinvertebrate communities differed significantly among the habitats. Significantly higher densities and biomass of benthic macroinvertebrates occurred in the oyster reef compared with the other three habitats. Ordination plots showed a clear separation in benthic macroinvertebrate communities among the four habitat types. The results demonstrated that the artificial oyster reef supported distinct and unique benthic communities, playing an important role in the complex estuarine habitat by supplying prey resources and contributing to biodiversity. In addition, the results suggested that the oyster reef had been restored successfully.

  12. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    NASA Astrophysics Data System (ADS)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  13. Water quality parameters response to temperature change in small shallow lakes

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Li, Hua; Liang, Xinqiang; Yao, Yuxin; Zhou, Li; Cui, Xinyi

    Effects of temperature (T) on water quality of three small shallow lakes in Taihu Lake region of China were investigated. The annual temperature was classified into three levels: low temperature (LT, 4 °C < T ⩽ 10 °C), middle temperature (MT, 10 °C < T ⩽ 20 °C), and high temperature (HT, 20 °C < T ⩽ 30 °C). Results showed that total nitrogen (TN) and total phosphorus (TP) concentrations might go to a fixed value (or range) in small shallow lakes receiving domestic sewage and farm drainage water. Nitrogen concentrations in the lakes were mainly in the form of nitrate (NO3-) at above concerned three temperature levels, and nitrogen concentrations in the forms of TN, TIN, and NO3- were increased with the increase of nutrient input. At the LT and MT levels, there was a series of good cubic curve relationships between temperatures and three N forms (TN, NO3- and NH4+). The temperatural inflexion change points in the curves were nearly at 7 °C and 14 °C, respectively. However, no significant relationship between temperature and any water quality parameter was observed at the HT level. The significant relationship of TIN to TN, NO3- to TN and NH4+ to dissolve oxygen (DO) was exist in three temperature portions, and TP to Chemical oxygen demand (COD, determined by potassium permanganate oxidation methods) in LT and MT, TP to pH or DO in HT also exist. COD were less than 6 mg L-1 at each temperature level, and pH values were the largest in HT than it in LT or MT. Thus, changes between temperature and water quality parameters (TN, NO3-, NH4+ and TP) obviously nearly in 7 °C or 14 °C in lakes show that water self-purification of natural small shallow lakes were obviously with temperature changed.

  14. 2014-2015 Tritium values in small and shallow aquifers in northern Apennines

    NASA Astrophysics Data System (ADS)

    Deiana, Manuela; Mussi, Mario; Ronchetti, Francesco

    2016-04-01

    Tritium data relating to actual rainfall in north of Italy and in particular in the northern Apennines are rare or missing. The reasons of this lack of data frequently depends on the high cost of analysis and the necessity of high amount of water to perform the analysis itself. In order to obtain these data a valid alternative can be analyze the amount of Tritium in unconfined, shallow and small aquifer not affect by human activities (such as sewage). Recent studies, applied to the hydrogeology of the Po plain or of the Apennine slopes, highlight, in rainfall water recharging shallow aquifer, tritium values ranging between 6 T.U. and 12 T.U., higher than those detected in other and different areas of Italy or of the South Europe. The aim of this paper is to highlight first results of tritium analyses performed on spring draining shallow aquifers in northern Apennines, characterized by the absence of human activities. The peculiarity of sampling point (spring are characterized by small and well defined catchment areas as well small differences between the infiltration/recharge elevation and the spring elevation) makes results representative of mean tritium value of rainfall recharge in the studied area. In detail, during 2014-2015 three springs located at different elevation in Secchia Valley have been sampled and analyzed. Tritium analyses performed on a total of 5 samples highlight the following results: the maximum value (5.0±0.7 T.U.) is detected in water collected in November whereas the minimum value ( 3.7±0.6 T.U.) is obtained in May. Therefore a mean annual value of 4.2±0.7 T.U. in the studied area have been highlighted.

  15. Application of artificial neural networks to assess pesticide contamination in shallow groundwater

    USGS Publications Warehouse

    Sahoo, G.B.; Ray, C.; Mehnert, E.; Keefer, D.A.

    2006-01-01

    In this study, a feed-forward back-propagation neural network (BPNN) was developed and applied to predict pesticide concentrations in groundwater monitoring wells. Pesticide concentration data are challenging to analyze because they tend to be highly censored. Input data to the neural network included the categorical indices of depth to aquifer material, pesticide leaching class, aquifer sensitivity to pesticide contamination, time (month) of sample collection, well depth, depth to water from land surface, and additional travel distance in the saturated zone (i.e., distance from land surface to midpoint of well screen). The output of the neural network was the total pesticide concentration detected in the well. The model prediction results produced good agreements with observed data in terms of correlation coefficient (R = 0.87) and pesticide detection efficiency (E = 89%), as well as good match between the observed and predicted "class" groups. The relative importance of input parameters to pesticide occurrence in groundwater was examined in terms of R, E, mean error (ME), root mean square error (RMSE), and pesticide occurrence "class" groups by eliminating some key input parameters to the model. Well depth and time of sample collection were the most sensitive input parameters for predicting the pesticide contamination potential of a well. This infers that wells tapping shallow aquifers are more vulnerable to pesticide contamination than those wells tapping deeper aquifers. Pesticide occurrences during post-application months (June through October) were found to be 2.5 to 3 times higher than pesticide occurrences during other months (November through April). The BPNN was used to rank the input parameters with highest potential to contaminate groundwater, including two original and five ancillary parameters. The two original parameters are depth to aquifer material and pesticide leaching class. When these two parameters were the only input parameters for the BPNN

  16. Hydrogeophysical characterization of shallow unconsolidated sediments for the artificial groundwater recharge in a water curtain cultivation area

    NASA Astrophysics Data System (ADS)

    Shin, Jehyun; Hwang, Seho; Won, Byeongho; Kim, Yongcheol

    2013-04-01

    A water curtain cultivation system is usually used to offer a stable heat source using a geothermal heat of groundwater. However, it may cause groundwater drawdown by an excessive use of groundwater such as over-pumping. Therefore, as part of an effort to develop a sustainable water curtain system, artificial groundwater recharge is projected to minimize groundwater shortage problem and recover groundwater level. Geophysical approaches are systematically applied to characterize unconsolidated sediments and riverside porous aquifers for the artificial groundwater recharge in a water curtain cultivation area. Resistivity survey is applied to map the distribution of subsurface structure, especially unconsolidated sediments. A series of test holes are drilled, and water level, temperature, and groundwater electrical conductivity are monitored to characterize hydrogeological properties of the site. The natural gamma and induction profiles enable us to estimate stratigraphic cross section and interpret inter-borehole. Borehole compensated neutron porosity is derived for a small-diameter, dual-detector neutron logs. Consequently, geophysical methods could enhance knowledge of the physical properties of unconsolidated sediments, and they are expected to evaluate injection feasibility of artificial groundwater recharge systems to the sustainable water resource management.

  17. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems

    PubMed Central

    Simon, Marianne; Jardillier, Ludwig; Deschamps, Philippe; Moreira, David; Restoux, Gwendal; Bertolino, Paola; López-García, Purificación

    2014-01-01

    Summary Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well-known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 μm-size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR –Stramenopiles, Alveolata, Rhizaria–, Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters. PMID:25115943

  18. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Kuo, Li-Wei; Song, Sheng-Rong; Suppe, John; Yeh, En-Chao

    2016-03-01

    Fault mirrors (FMs) are naturally polished and glossy fault slip surfaces that can record seismic deformation at shallow depths. They are important for investigating the processes controlling dynamic fault slip. We characterize FMs in borehole samples from the hanging wall damage zone of the active Hsiaotungshi reverse fault, Taiwan. Here we report the first documented occurrence of the combination of silica gel and melt patches coating FMs, with the silica gel resembling those observed on experimentally formed FMs that were cataclastically generated. In addition, the melt patches, which are unambiguous indicators of coseismic slip, suggest that the natural FMs were produced at seismic rates, presumably resulting from flash heating at asperities on the slip surfaces. Since flash heating is efficient at small slip, we propose that these natural FMs represent fossils of small earthquakes, formed in either coseismic faulting and folding or aftershock deformation in the active Taiwan fold-and-thrust belt.

  19. Artificial Muscle: Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle (Small 15/2016).

    PubMed

    Lee, Junghan; Ko, Sachan; Kwon, Cheong Hoon; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-04-01

    On page 2085, S. J. Kim and co-workers introduce a reversibly rotatable and highly glucose-sensitive carbon multiwalled nanotube (MWNT) yarn artificial muscle. This yarn is created using a boronic acid-conjugated hyaluronic acid/cholesterol nanogel (HC-BA NG) deposited on a two-end-tethered structural actuator. By exploiting the swelling/de-swelling of HC-BA NG, the MWNT yarn actuator shows a reversible torsional actuation with short response time and high sensitivity for monitoring changes in glucose concentration with 5-100 mM range. This actuator can be utilized for an implantable glucose monitoring sensor. PMID:27076046

  20. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    PubMed

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  1. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals

    PubMed Central

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  2. Capillary Rise on Legs of a Small Animal and on Artificially Textured Surfaces Mimicking Them

    PubMed Central

    Tani, Marie; Ishii, Daisuke; Ito, Shuto; Hariyama, Takahiko; Shimomura, Masatsugu; Okumura, Ko

    2014-01-01

    The wharf roach Ligia exotica is a small animal that lives by the sea and absorbs water from the sea through its legs by virtue of a remarkable array of small blades of micron scale. We find that the imbibition dynamics on the legs is rather complex on a microscopic scale, but on a macroscopic scale the imbibition length seems to simply scale linearly with elapsed time. This unusual dynamics of imbibition, which usually slows down with time, is advantageous for long-distance water transport and results from repetition of unit dynamics. Inspired by the remarkable features, we study artificially textured surfaces mimicking the structure on the legs of the animal. Unlike the case of the wharf roach, the linear dynamics were not reproduced on the artificial surfaces, which may result from more subtle features on the real legs that are not faithfully reflected on the artificial surfaces. Instead, the nonlinear dynamics revealed that hybrid structures on the artificial surfaces speed up the water transport compared with non-hybrid ones. In addition, the dynamics on the artificial surfaces turn out to be well described by a composite theory developed here, with the theory giving useful guiding principles for designing hybrid textured surfaces for rapid imbibition and elucidating physical advantages of the microscopic design on the legs. PMID:24849071

  3. Boundary layer dynamics in a small shallow valley near the Alps (ScaleX campaign)

    NASA Astrophysics Data System (ADS)

    Zeeman, Matthias; Adler, Bianca; Banerjee, Tirtha; Brugger, Peter; De Roo, Frederik; Emeis, Stefan; Matthias, Mauder; Schäfer, Klaus; Wolf, Benjamin; Schmid, Hans Peter

    2016-04-01

    Mountainous terrain presents a challenge for the experimental determination of exchange processes. The Alps modulate synoptic flow and introduce circulation systems that reach into the forelands. In addition, the Prealpine landscape is heterogeneous itself, dominated by patches of forestry on the slopes and agriculture on flat areas. That combined complexity is manifest in atmospheric circulations at multiple scales. We investigated the diurnal evolution of the atmospheric boundary layer with focus on the connection between surface exchange processes and atmospheric circulations at the regional to local scale. The experiment is part of an ongoing, multi-disciplinary study on scale dependencies in the distribution of energy and matter (ScaleX) at the TERENO Prealpine observatory in Germany. We observed vertical profiles of wind speed and air temperature up to 1000 m above ground during June and July 2015 in a small shallow Prealpine valley in Bavaria, Germany. Wind vectors and temperature were observed using ground-based optical, acoustic and radiometric remote sensing techniques. Spatial patterns in wind speed and direction were determined using eddy covariance systems, 3D Doppler LIDAR and acoustic sounding (RASS). Three Doppler LIDAR units were configured to form a virtual tower at the beam intersect. Temperature profiles were observed using radio-acoustic sounding (RASS) and a microwave radiometer (HATPRO). The temporal and spatial resolutions of the resulting vertical profiles were between 1-15 min and between 3-100 m, respectively. The observed variability in wind vectors and stability shows evidence of the link between flow phenomena at micro- to mesoscale and local biosphere-atmosphere exchange processes. We present first results and discuss the predictability of the impact of local and regional (alpine) landscape features on flow and structures in the atmospheric boundary layer.

  4. High-resolution shallow marine seismic surveys off Busan and Pohang, Korea, using a small-scale multichannel system

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Park, Keun-Pil; Koo, Nam-Hyung; Yoo, Dong-Geun; Kang, Dong-Hyo; Kim, Young-Gun; Hwang, Kyu-Duk; Kim, Jong-Chon

    2004-05-01

    A small-scale multichannel high-resolution shallow marine seismic survey was designed to improve the quality of high-resolution seismic data using a multichannel array while preserving cost effectiveness and expedience of the conventional shallow single-channel seismic survey. To evaluate the potential of these modified methods, test surveys were carried out off Busan and Pohang, Korea. A 10- or 30-in 3 small air gun, 30- or 40-m-long streamer cable and PC-based recording system with A/D converter were used to acquire digital high-resolution seismic data. In the data processing, deconvolution and static corrections were very effective in improving the resolution. Resolution and signal to noise (S/N) ratio were increased by acquiring multichannel data in comparison to conducting the same survey with a single-channel array. In the data of Busan survey, thin internal reflectors with 1-2 m resolution were clearly discernable after processing and compared with 3.5-kHz subbottom profiler data. Faults with ˜0.8 m throw were detected in the data of Pohang survey. The results of this study show that small-scale multichannel seismic surveys may be an effective way to image shallow subsurface structures and can be used in various engineering and environmental applications, sedimentary research and marine resources exploration.

  5. Macroscopic Artificial Magnetic Honeycomb Lattice of Thermally Controlled Ultra-Small Bonds

    NASA Astrophysics Data System (ADS)

    Summers, Brock; Dahal, Ashutosh; Debeer-Schitt, Lisa; Gunasekera, Jagath; Singh, Deepak

    The two-dimensional artificial magnetic honeycomb lattice system is evolving into a new research arena to explore a plethora of novel magnetism that are predicted to occur as functions of temperature and magnetic field: a long-range spin ice, spin liquid, an entropy-driven magnetic charge-ordered state involving topological vortex pairs and a spin-order due to the spin chirality. We have created macroscopic samples of artificial magnetic honeycomb lattices of Cobalt and Permalloy having connected ultra-small elements (bonds), with length scales of sub-10 nm to 30 nm, which have never before been possible. The equivalent energy of the resulting systems is 10-100 K and is thus amenable to both temperature- and field-dependent exploration of novel magnetic phenomena. We have performed detailed magnetic and small angle neutron scattering measurements (SANS) on the newly fabricated honeycomb lattice of Permalloy that show the thermal character of the system. Furthermore, the experimental data reveals the onset of magnetic ordered regimes in temperature that are consistent with the predicted novel phase diagram in artificial honeycomb lattice. Research is supported by U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0014461.

  6. CO2-induced small water solubility in olivine and implications for properties of the shallow mantle

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhi; Liu, Dingding; Xia, Qunke

    2014-10-01

    H2O and CO2 are important components of fluids in the mantle at ∼30-150 km depth, and may affect strongly water dissolution in nominally anhydrous olivine; however, available experimental hydrogenation of olivine has been nearly exclusively carried out in coexistence with H2O (CO2-free). In this study, the effect of CO2 on water solubility in olivine has been investigated by H-annealing natural olivine under peridotite- and fluid-saturated conditions. Experiments were conducted at 1.5-5 GPa and 1100-1300 °C, with oxygen fugacity controlled by Ni-NiO and with either H2O or H2O-CO2 as buffering fluid. The olivine shows no change in composition during the experiments. The infrared spectra of the hydrated olivine are characterized by prominent OH bands from ∼3650 to 3000 cm in all the runs, at both high frequency (>3450 cm) and low frequency (<3450 cm), and the H2O solubility is ∼120-370 ppm for the olivine in coexisting with H2O, and ∼65-180 ppm for the olivine in coexisting with H2O-CO2. When CO2 is present in the buffering fluid, the H2O solubility of olivine is reduced by a factor of ∼2, due to effect on the partitioning of water between minerals and coexisting fluid, and the measured H2O solubility shows independence on fluid composition (the molar ratio of CO2 to CO2 + H2O at ∼0.2-0.5) given pressure, temperature and oxygen fugacity. Olivine equilibrated in the shallow mantle is probably dominated by OH groups in the wavenumber ∼3650-3000 cm, and the intensity of OH bands at low frequency may be higher than or comparable to those at higher frequencies. The storage capacity of water in the shallow mantle in previous estimates may have been overestimated by a factor of at least ∼4 if the observed effect of CO2 on water solubility is correct. Our results have profound influence on understanding partial melting, electrical conductivity anomalies and metasomatism in the shallow mantle.

  7. On the Rigid-Lid Approximation for Two Shallow Layers of Immiscible Fluids with Small Density Contrast

    NASA Astrophysics Data System (ADS)

    Duchêne, Vincent

    2014-08-01

    The rigid-lid approximation is a commonly used simplification in the study of density-stratified fluids in oceanography. Roughly speaking, one assumes that the displacements of the surface are negligible compared with interface displacements. In this paper, we offer a rigorous justification of this approximation in the case of two shallow layers of immiscible fluids with constant and quasi-equal mass density. More precisely, we control the difference between the solutions of the Cauchy problem predicted by the shallow-water (Saint-Venant) system in the rigid-lid and free-surface configuration. We show that in the limit of a small density contrast, the flow may be accurately described as the superposition of a baroclinic (or slow) mode, which is well predicted by the rigid-lid approximation, and a barotropic (or fast) mode, whose initial smallness persists for large time. We also describe explicitly the first-order behavior of the deformation of the surface and discuss the case of a nonsmall initial barotropic mode.

  8. The relationship between fish assemblages and the helminth communities of a prey fish, in a group of small shallow lakes.

    PubMed

    Fernández, Maria V; Brugni, Norma L; Viozzi, Gustavo P; Semenas, Liliana

    2010-12-01

    Galaxias maculatus (small puyen) is an abundant native fish distributed in lakes and rivers of the Patagonia, and it is the frequent prey of other fishes, fish-eating birds, and mammals. Previous studies have shown that it is parasitized by 33 metazoan species and that the richness and composition of the parasite communities vary between lakes. The aim of the present work was to analyze the relationship between the composition of fish assemblages and the helminth component community structure of G. maculatus . Ten environmentally similar, small, shallow lakes, belonging to the Nahuel Huapi Lake basin, were chosen because of the differences in the native fish assemblages. Parasite community structure in G. maculatus varied according to the fish assemblage of each lake. The presence of the piscivorous fish Percichthys trucha regularly produced variations in the composition and richness at the component and infracommunity levels, as well as the percentage of autogenic parasite species in G. maculatus . PMID:21158611

  9. Distribution and significance of small, artificial water bodies across the United States landscape

    USGS Publications Warehouse

    Smith, S.V.; Renwick, W.H.; Bartley, J.D.; Buddemeier, R.W.

    2002-01-01

    At least 2.6 million small, artificial water bodies dot the landscape of the conterminous United States; most are in the eastern half of the country. These features account for approximately 20% of the standing water area across the United States, and their impact on hydrology, sedimentology, geochemistry, and ecology is apparently large in proportion to their area. These features locally elevate evaporation, divert and delay downstream water flow, and modify groundwater interactions. They apparently intercept about as much eroded soil as larger, better-documented reservoirs. Estimated vertical accretion rates are much higher, hence, inferred sedimentary chemical reactions must be different in the small features than in larger ones. Finally, these features substantially alter the characteristics of aquatic habitats across the landscape. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Controlling dispersion forces between small particles with artificially created random light fields

    NASA Astrophysics Data System (ADS)

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-06-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.

  11. Self-organizing Ising model of artificial financial markets with small-world network topology

    NASA Astrophysics Data System (ADS)

    Zhao, Haijie; Zhou, Jie; Zhang, Anghui; Su, Guifeng; Zhang, Yi

    2013-01-01

    We study a self-organizing Ising-like model of artificial financial markets with underlying small-world (SW) network topology. The asset price dynamics results from the collective decisions of interacting agents which are located on a small-world complex network (the nodes symbolize the agents of a financial market). The model incorporates the effects of imitation, the impact of external news and private information. We also investigate the influence of different network topologies, from regular lattice to random graph, on the asset price dynamics by adjusting the probability of the rewiring procedure. We find that a specific combination of model parameters reproduce main stylized facts of real-world financial markets.

  12. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  13. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  14. Shallow plumbing systems for small-volume basaltic volcanoes, 2: Evidence from crustal xenoliths at scoria cones and maars

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.

    2012-04-01

    for conduit/dike widening in magmatic versus phreatomagmatic eruptions. Namely, ascending eruptive mixtures driven by magmatic volatiles widen their relatively shallow conduits by erosion and mechanical failure of the walls and ejection of the resulting xenoliths. Maar-forming eruptions produce wide and deep diatremes mainly by mechanical disruption of country rock during many discrete magma-water explosions at varying depths in the subsurface. Deep explosions cause debris jets that may not erupt, and the disrupted country rock and juvenile material gradually churns and mixes within the diatreme. Only a small fraction of the debris is ejected from the crater by especially strong and/or shallow explosions, to form tephra ring deposits.

  15. Small doses from artificial UV sources elucidate the photo-production of vitamin D.

    PubMed

    McKenzie, Richard; Liley, Ben; Johnston, Paul; Scragg, Robert; Stewart, Alistair; Reeder, Anthony I; Allen, Martin W

    2013-09-01

    To clarify the relation between UV exposure and vitamin D status, 201 volunteers wore personal electronic UV dosimeters during daylight hours, to record their UV exposure over a 10 week period when ambient UV levels were significantly less than the summer maxima. Blood samples to determine serum 25-hydroxyvitamin D3 [25(OH)D3] levels were taken at the end of week 4 and week 8. Participants were then given a single full-body exposure of approximately 2 SED from one of four artificial UV sources with different spectral outputs and a further blood sample taken at study completion, nominally week 10. The artificial UV exposure reversed the mean seasonal decline in 25(OH)D3. Increases in 25(OH)D3 from week 8 to week 10 were related to total UV exposure, including the ambient sun exposures. These exposures were weighted by the erythemal action spectrum and separately for three different action spectra for pre-vitamin D production. For the erythema weighting function, 25(OH)D3 increased 1.78 ± 0.25 nmol per litre per SED, a value consistent with other studies. Any differences due to age, BMI, gender, and skin reflectance were not statistically significant. Ethnicity differences were the only significant factor, with Asians producing the least vitamin D, and Maori the most. There was no statistically significant improvement in consistency between sources for any of the three pre-vitamin weightings compared with that for erythema. Further work is needed to verify which vitamin D action spectrum is most appropriate. Nevertheless, these small doses of UV from artificial sources were helpful in quantifying the relationship between UV exposure and vitamin D status among the New Zealand population. PMID:23807653

  16. Assessment of small-diameter shallow wells for managed aquifer recharge at a site in southern Styria, Austria

    NASA Astrophysics Data System (ADS)

    Händel, Falk; Liu, Gaisheng; Fank, Johann; Friedl, Franz; Liedl, Rudolf; Dietrich, Peter

    2016-07-01

    An approach to establish the recharge component of managed aquifer recharge (MAR) has recently been proposed that uses small-diameter shallow wells installed using relatively inexpensive drilling methods such as direct push. As part of further development of that approach, a generalized procedure is presented for a technical and economic assessment of the approach's potential in comparison to other systems. Following this procedure, the use of small-diameter wells was evaluated both experimentally and numerically for a site located in southern Styria, Austria. MAR is currently done at the site using a horizontal pipe infiltration system, and system expansion has been proposed with a target rate of 12 l/s using small-diameter wells as one possible option. A short-duration single-well field recharge experiment (recharge rate 1.3-3.5 l/s) was performed (recharge by gravity only). Numerical modeling of the injection test was used to estimate hydraulic conductivity (K). Quasi-steady-state, single-well recharge simulations for different locations, as well as a long-term transient simulation, were performed using the K value calibrated from the field injection test. Results indicate that a recharge capacity of 4.1 l/s was achievable with a maximum head rise of 0.2 m at the injection well. Finally, simulations were performed for three different well fields (4, 6 and 8 wells, respectively) designed to infiltrate a target rate of 12 l/s. The experimental and numerical assessments, supported by a cost analysis of the small-diameter wells, indicate that the small-diameter wells are a viable, cost-effective recharge approach at this and other similar sites.

  17. Fault mirrors of seismically active faults: A fossil of small earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Kuo, L.; Song, S.; Suppe, J.

    2013-12-01

    Many faults are decorated with naturally polished and glossy surfaces named fault mirrors (FMs) formed during slips. The characterization of FMs is of paramount importance to investigate physico-chemical processes controlling dynamic fault mechanics during earthquakes. Here we present detailed microstructural and mineralogical observations of the FMs from borehole cores of seismically active faults. The borehole cores were recovered from 600 to 800 m depth located in the hanging wall of the Hsiaotungshi fault in Taiwan which ruptured during 1935 Mw7.1 Hsinchu-Taichung earthquake. Scanning electron microscope (SEM) images of FMs show that two distinct textural domains, fault gouge and coated materials (nanograins, melt patchs, and graphite), were cut by a well-defined boundary. Melt patches and graphite, determined by X-ray diffraction (XRD), Transmission electron microscope (TEM), and SEM-EDS analysis, were found to be distributed heterogeneously on the slip surfaces. On the basis of the current kinematic cross section of the Hsiaotungshi fault, all the FMs were exhumed less than 5 km, where ambient temperatures are less than 150°C. It seems that the amorphous materials on the FMs were generated by seismic slips. The sintering nanograins coating the slip surfaces was also suggested to be produced at high slip rates from both natural observation and recent rock deformation experiments. In addition, graphite could be produced by seismic slips and lubricate the fault based on the rock deformation experiments. Our observation suggests that the FMs were composed of several indicators of coseismic events (melt patches, sintering nanograins, and graphite) corresponding to small thermal perturbation generated by seismic slips. Although the contribution of these coseismic indicators on frictional behavior remains largely unknown, it suggests that multiple dynamic weakening mechanisms such as flash heating, powder lubrication and graphitization may be involved during

  18. Small quasi-static displacements associated with shallow LP seismic sources

    NASA Astrophysics Data System (ADS)

    Thun, J.; Bean, C. J.; Lokmer, I.

    2014-12-01

    Seismic long-period (LP) events are still not completely understood, in part because our source models are poorly constrained. In particular individual LP events are usually inverted using a very limited bandwidth, which might mask important aspects of the source. Following advances from earthquake seismology where sources are inverted using joint static and dynamic data we investigate the possibility of using seismometers as deformation sensors, where 'static' displacements are hypothesised to be in the micrometre range (Bean et al. 2014). We use data from high-density networks on a variety of volcanoes. The first component of this study focuses on the extraction of small static displacement steps from seismometer data. The main challenges we face include low signal-to-noise ratios and ambiguity of the extracted ground motion due to the tilt-sensitivity of the instruments. We use a combination of laboratory experiments on seismometers and numerical simulations to investigate the processing steps needed to perform the 'step' extraction task and to guide the interpretation of the resulting data. The method is applied to signals recorded near the summits of Turrialba volcano (Costa Rica) and Mt Etna (Italy), which exhibit ramp-like displacement waveforms, coincidently associated by 'dynamic' LP recordings. Our interim conclusion is that these LP sources likely have a measurable static component in the source. Our next step is to use this static component to better constrain LP source inversions.

  19. Eutrophication History of Small Shallow Lakes in Estonia: Evidence from Multiproxy Analysis of Lake Sediments

    NASA Astrophysics Data System (ADS)

    Koff, T.; Marzecova, A.; Vandel, E.; Mikomägi, A.; Avi, E.

    2015-12-01

    Human activities have impacted aquatic systems through the release of contaminants and the regulation of surface and groundwater. Although environmental monitoring has been essential in detecting eutrophication, biodiversity loss or water quality deterioration, monitoring activities are limited in time and are thus not sufficient in their scope to identify causality and thresholds. Paleolimnological studies increasingly show that the response of lakes to climatic and human influences is complex, multidimensional, and often indirectly mediated through watershed processes. In this study we examine the history of eutrophication processes in small lakes in Estonia using the multi-proxy analysis of sediment. Study sites represent lakes with different anthropogenic stressors: urbanisation and recreational use, run-off from an oil shale mine, and fish-kills and liming measures. We have used diverse analytical methods, such as elemental analysis, stable isotopes, fossil pigments, diatoms and Cladocera remains. The information derived from sedimentary indicators broadly agrees with the historical evidence of eutrophication and pollution. Moreover, the sediment records are indispensable for identifying additional issues such as: 1) earlier onset of cultural eutrophication; 2) the significant impact of catchment erosion on the deterioration of lake quality, particularly cyanobacterial blooms; and 3) changes in sedimentation processes with significance for internal biogeochemical cycling of nutrients. Importantly, the integration of several methods has significantly improved interpretation of sedimentary data and elucidated the different strengths of various indicator types. The project findings prove to be highly relevant for both the prediction of the ecological responses of lakes to different anthropogenic impacts and the establishment of reasonable reference target conditions in restoration schemes, as well as for methodological improvements of the sediment analysis.

  20. Artificial Avidin-Based Receptors for a Panel of Small Molecules.

    PubMed

    Lehtonen, Soili I; Tullila, Antti; Agrawal, Nitin; Kukkurainen, Sampo; Kähkönen, Niklas; Koskinen, Masi; Nevanen, Tarja K; Johnson, Mark S; Airenne, Tomi T; Kulomaa, Markku S; Riihimäki, Tiina A; Hytönen, Vesa P

    2016-01-15

    Proteins with high specificity, affinity, and stability are needed for biomolecular recognition in a plethora of applications. Antibodies are powerful affinity tools, but they may also suffer from limitations such as low stability and high production costs. Avidin and streptavidin provide a promising scaffold for protein engineering, and due to their ultratight binding to D-biotin they are widely used in various biotechnological and biomedical applications. In this study, we demonstrate that the avidin scaffold is suitable for use as a novel receptor for several biologically active small molecules: Artificial, chicken avidin-based proteins, antidins, were generated using a directed evolution method for progesterone, hydrocortisone, testosterone, cholic acid, ketoprofen, and folic acid, all with micromolar to nanomolar affinity and significantly reduced biotin-binding affinity. We also describe the crystal structure of an antidin, sbAvd-2(I117Y), a steroid-binding avidin, which proves that the avidin scaffold can tolerate significant modifications without losing its characteristic tetrameric beta-barrel structure, helping us to further design avidin-based small molecule receptors. PMID:26550684

  1. Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins).

    PubMed

    Correa, Agustín; Pacheco, Sabino; Mechaly, Ariel E; Obal, Gonzalo; Béhar, Ghislaine; Mouratou, Barbara; Oppezzo, Pablo; Alzari, Pedro M; Pecorari, Frédéric

    2014-01-01

    Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (Ki = 45 nM) and CelD (Ki = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general. PMID:24823716

  2. Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins)

    PubMed Central

    Mechaly, Ariel E.; Obal, Gonzalo; Béhar, Ghislaine; Mouratou, Barbara; Oppezzo, Pablo; Alzari, Pedro M.; Pecorari, Frédéric

    2014-01-01

    Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (Ki = 45 nM) and CelD (Ki = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general. PMID:24823716

  3. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants

    NASA Astrophysics Data System (ADS)

    Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.

    2016-03-01

    A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly (P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher (P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.

  4. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Bo-Suk; Hwang, Won-Woo; Kim, Dong-Jo; Chit Tan, Andy

    2005-03-01

    The need to increase machine reliability and decrease production loss due to faulty products in highly automated line requires accurate and reliable fault classification technique. Wavelet transform and statistical method are used to extract salient features from raw noise and vibration signals. The wavelet transform decomposes the raw time-waveform signals into two respective parts in the time space and frequency domain. With wavelet transform prominent features can be obtained easily than from time-waveform analysis. This paper focuses on the development of an advanced signal classifier for small reciprocating refrigerator compressors using noise and vibration signals. Three classifiers, self-organising feature map, learning vector quantisation and support vector machine (SVM) are applied in training and testing for feature extraction and the classification accuracies of the techniques are compared to determine the optimum fault classifier. The classification technique selected for detecting faulty reciprocating refrigerator compressors involves artificial neural networks and SVMs. The results confirm that the classification technique can differentiate faulty compressors from healthy ones and with high flexibility and reliability.

  5. Small scale seismic measurement bench to assess imaging methods - application to Full Waveform Inversion of a shallow structure

    NASA Astrophysics Data System (ADS)

    Leparoux, D.; Bretaudeau, F.; Brossier, R.; Operto, S.; Virieux, J.

    2011-12-01

    Seismic imaging of subsurface is useful for civil engineering and landscape management topics. The usual methods use surface waves phase velocities or first arrival times of body waves. However, for complex structures, such methods can be inefficient and Full Waveform Inversion (FWI) promises relevant performances because all the signal is taken into account. FWI has been originally developed for deep explorations (Pratt et al. 1999). Heterogeneities and strong attenuation in the near surface make difficult the adaptation of the FWI to shallower media (Bretaudeau et al. 2009). For this reason, we have developed a physical modeling measurement bench that performs small scale seismic recording in well controlled contexts (Bretaudeau et al. 2011). In this paper we assess the capacity of the FWI method (Brossier 2010) for imaging a subsurface structure including a low velocity layer and a lateral variation of interfaces. The analog model is a 180mm long and 50mm thick layered epoxy resin block (fig. 1). Seismic data generated with a punctual piezoelectric source emitting a 120KHz Ricker wavelet at the medium surface were collected by an heterodyne laser interferometer. The laser allows recording the absolute normal particle displacement without contact, avoiding disturbances caused by coupling. The laser interferometer and the piezoelectric source were attached to automated arms that could be moved over the model surface to a precision of 0.01mm (fig. 1). The acquisition survey includes 241 receiver and 37 source positions respectively spaced at 1 and 5 mm. Figure 2 shows 2D maps of the Vs parameter after inversion of data sequentially processed with 13 frequencies. The geometry of the sloped interface is recovered. A low velocity zone is imaged but with a thickness thinner than expected. Moreover, artifacts appear in the near surface. Experimental modeling results showed the capacity of the FWI in this case and provided key issues for further works about inversion by

  6. Artificial mouth opening fosters anoxic conditions that kill small estuarine fish

    NASA Astrophysics Data System (ADS)

    Becker, Alistair; Laurenson, Laurie J. B.; Bishop, Kylie

    2009-05-01

    -establishing populations within the estuary. It is clear from this research that artificial openings of estuaries should be avoided during low flow periods when oxygen concentrations are low. It also appears that many of the small estuarine resident species common in seasonally open estuaries are capable of recolonising estuaries following fish kills. The effects on larger, longer lived resident species are not known but likely to be more detrimental due to longer time required for them to reach sexual maturity.

  7. Effects of shallow subvolcanic magma storage regions on magma evolution and eruptions dynamics of small mafic centers

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Wallace, P. J.; McKay, D.; Ruscitto, D. M.

    2009-12-01

    The existence of shallow subvolcanic dike and sill complexes has long been recognized in field investigations of mafic cinder cones and shield volcanoes. Evidence that these subvolcanic storage regions develop during (rather than separate from) eruptive activity comes from detailed studies of tephra deposits and lava flows produced during cinder cone eruptions. These deposits show both the variable volatile contents of olivine-hosted melt inclusions and pervasive microphenocryst crystallization, both of which indicate temporary magma storage at shallow levels prior to eruption. The consequences of such shallow magma storage for both eruption dynamics and syn-eruptive magma evolution have not previously been considered. Here we use both physical (density, crystallinity) and compositional (bulk, melt inclusion) data from the 1943-1952 eruption of Parícutin, Mexico to examine the impact of shallow pre-eruptive storage on both the eruption process and on the dramatic evolution in magma composition first described by Wilcox (1954). We supplement these observations with data from recent (1500-2000 ybp) mafic cinder cone eruptions in central Oregon. Our data show that shallow subvolcanic storage of magma permits pre-eruptive degassing and crystallization, which, in turn, are responsible for the (typically) wide density range of basaltic scoria observed in cinder cone activity. As pre-eruptive gas loss will diminish the volatiles available to fuel explosive activity, we further speculate that the ease of syn-eruptive dike and sill formation, which is likely to be controlled by both the rate of magma supply and the specific tectonic setting, may modulate the explosive potential of cinder cone eruptions. Additionally, all of the deposits that we have studied have a range in bulk composition, with the earliest tephra the most mafic and the latest lava the most silicic of the eruptive sequence. This observation suggests that an additional consequence of shallow magma storage

  8. Spatial and Temporal Dynamics in the Relationship of Phytoplankton Biomass and Limnological Variables in a Small Artificial Lake

    NASA Astrophysics Data System (ADS)

    Li, Feipeng; Zhang, Haiping; Zhu, Yiping; Chen, Ling; Zhao, Jianfu

    2010-11-01

    Zhongxin Lake is an artificial freshwater lake located in Qianwei Village of Chongming Island, the third largest island in China. Besides its culture function and aesthetic value, it is also an ideal target, which can be regarded as an enclosed and simplified ecosystem with little external pollution. The objective of the study is to determine the spatial and temporal dynamics in the relationship between phytoplankton and main limnological variables. An intensive observation and monitoring program was performed more than one year at six sampling points along five locally connected watercourses. Nutrient levels and their seasonal variables might be the main factors which control the temporal development of phytoplankton. Chlorophyll-a (chl-a) levels peaked from late August to September and showed a significant positive correlation with water temperature, turbidity, total nitrogen (TN), total phosphorus (TP) and dissolved total phosphorus (DTP). Wind driven flow and geographical features appears to be the limiting factors for the spatial dynamics of phytoplankton. Higher average chl-a levels caused higher turbidity in the south and middle watercourses which are separated by dams and where shallow-circulation flow can be hardly maintained. Low average chl-a levels were recorded in the north watercourse in conditions of lower water levels, direct connection with the east watercourse and west watercourse and higher prevailing wind driven flow. The findings have strongly shown the influence of nutrients and hydro-meteorological variables as important factors of spatial and temporal dynamics of phytoplankton biomass.

  9. Membrane transport of andrographolide in artificial membrane and rat small intestine.

    PubMed

    Daodee, Supawadee; Wangboonskul, Jinda; Jarukamjorn, Kanokwan; Sripanidkulchai, Bung-orn; Murakami, Teruo

    2007-06-15

    In the present study, the possible drug interactions of andrographolide with co-administering drugs such as acetaminophen, amoxycillin, aspirin, chlorpheniramine and norfloxacin to treat various infectious and inflammatory diseases that may be induced during absorption process were examined using artificial lipophilic membrane and everted rat intestine. The membrane transport of andrographolide across the artificial membrane was not affected by different pH of the medium (simulated gastric and intestinal fluids), different concentrations of andrographolide and co-administered drugs examined. In everted rat intestine, above co-administered drugs examined showed no significant effect on andrographolide membrane transport. The participation of efflux transporters such as P-glycoprotein and MRP2 in andrographolide transport was then examined, since andrographolide is a diterpene compound and some diterpene compounds are known as P-glycoprotein substrates. Cyclosporine, a P-glycoprotein/MRP2 inhibitor, significantly suppressed the efflux transport of andrographolide in distal region of intestine, whereas probenecid, an MRP inhibitor, showed no significant effect in both proximal and distal regions of intestine. These results suggest that P-glycoprotein, but not MRP, is participated in the intestinal absorption of andrographolide and P-glycoprotein-mediated drug interactions occur depending on the co-administered drugs and its concentrations. PMID:19093450

  10. Predicting the impacts of climate change on nonpoint source pollutant loads from agricultural small watershed using artificial neural network.

    PubMed

    Lee, Eunjeong; Seong, Chounghyun; Hakkwan, Kim; Park, Seungwoo; Kang, Moonseong

    2010-01-01

    This study described the development and validation of an artificial neural network (ANN) for the purpose of analyzing the effects of climate change on nonpoint source (NPS) pollutant loads from agricultural small watershed. The runoff discharge was estimated using ANN algorithm. The performance of ANN modelwas examined using observed data from s tudy watershed. The simulationresults agreed well with observed values during calibration and validation periods. NPS pollutant loads were calculated from load-discharge relationship driven by long-term monitoring data. LARS-WG (Long Ashton Research Station-Weather Generator) model was used to generate rainfall data. The calibrated ANN model and load-discharge relationship with the generated data from LARS-WGwere applied to analyze the effects of climate change on NPS pollutant loads from the agricultural small watershed. The results showed that the ANN model provided valuable approach i n estimating future runof f discharge, and the NPS pollutantloads. PMID:20923094

  11. Coarse grid shallow water simulations of rainfall-runoff in small catchments with modified friction law to account for unresolved microtopography

    NASA Astrophysics Data System (ADS)

    Özgen, Ilhan; Serrano-Taslim, Miguel; Zhao, Jiaheng; Liang, Dongfang; Hinkelmann, Reinhard

    2016-04-01

    In recent years, the fully dynamic shallow water equations have been successfully used to simulate rainfall-runoff in natural catchments. Hereby, the hydrodynamics of the surface runoff is greatly influenced by local topographical features. Thus, it is desirable to use high-resolution models which resolve the topography of the study area sufficiently. However, high-resolution simulations across catchment scales are often unfeasible due to finite computer resources. In this contribution, the shallow water equations are solved on a coarse resolution, leaving significant topographical features unresolved. The coarsened grid size leads to a smaller cell number and therefore reduces computational cost. The influence of the topography is accounted for with an artificial friction source term which is dependent on the inundation ratio, i.e. the ratio of water depth to roughness height, the slope and two additional parameters, namely a dimensionless friction coefficient and a geometric conveyance parameter. Subgrid scale information is used to determine these parameters. The friction approach is applied in two different ways: (1) a global average roughness height for the entire catchment is calculated and used as input, (2) the roughness height is calculated individually in each cell which introduces additional heterogeneity to the model. In two test cases, the individual roughness height-based approach is compared to results of the global roughness height-based approach and to igh-resolution model results. The comparison shows slight improvement in the results if the roughness height is assigned individually, however overall the improvement is negligible. Both models enable to run the simulations about three orders of magnitude faster than the high-resolution model.

  12. Novel approach to the fabrication of an artificial small bone using a combination of sponge replica and electrospinning methods

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hee; Lee, Byong-Taek

    2011-06-01

    In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material.

  13. Sources, fate, and effects of PAHs in shallow water environments: a review with special reference to small watercraft

    USGS Publications Warehouse

    Albers, P.H.

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons with two to seven fused carbon (benzene) rings that can have substituted groups attached. Shallow coastal, estuarine, lake, and river environments receive PAHs from treated wastewater, stormwater runoff, petroleum spills and natural seeps, recreational and commercial boats, natural fires, volcanoes, and atmospheric deposition of combustion products. Abiotic degradation of PAHs is caused by photooxidation, photolysis in water, and chemical oxidation. Many aquatic microbes, plants, and animals can metabolize and excrete ingested PAHs; accumulation is associated with poor metabolic capabilities, high lipid content, and activity patterns or distributions that coincide with high concentrations of PAHs. Resistance to biological transformation increases with increasing number of carbon rings. Four- to seven-ring PAHs are the most difficult to metabolize and the most likely to accumulate in sediments. Disturbance by boating activity of sediments, shorelines, and the surface microlayer of water causes water column re-entry of recently deposited or concentrated PAHs. Residence time for PAHs in undisturbed sediment exceeds several decades. Toxicity of PAHs causes lethal and sublethal effects in plants and animals, whereas some substituted PAHs and metabolites of some PAHs cause mutations, developmental malformations, tumors, and cancer. Environmental concentrations of PAHs in water are usually several orders of magnitude below levels that are acutely toxic, but concentrations can be much higher in sediment. The best evidence for a link between environmental PAHs and induction of cancerous neoplasms is for demersal fish in areas with high concentrations of PAHs in the sediment.

  14. The Influence of Topographic and Dynamic Cyclic Variables on the Distribution of Small Cetaceans in a Shallow Coastal System

    PubMed Central

    de Boer, Marijke N.; Simmonds, Mark P.; Reijnders, Peter J. H.; Aarts, Geert

    2014-01-01

    The influence of topographic and temporal variables on cetacean distribution at a fine-scale is still poorly understood. To study the spatial and temporal distribution of harbour porpoise Phocoena phocoena and the poorly known Risso’s dolphin Grampus griseus we carried out land-based observations from Bardsey Island (Wales, UK) in summer (2001–2007). Using Kernel analysis and Generalized Additive Models it was shown that porpoises and Risso’s appeared to be linked to topographic and dynamic cyclic variables with both species using different core areas (dolphins to the West and porpoises to the East off Bardsey). Depth, slope and aspect and a low variation in current speed (for Risso’s) were important in explaining the patchy distributions for both species. The prime temporal conditions in these shallow coastal systems were related to the tidal cycle (Low Water Slack and the flood phase), lunar cycle (a few days following the neap tidal phase), diel cycle (afternoons) and seasonal cycle (peaking in August) but differed between species on a temporary but predictable basis. The measure of tidal stratification was shown to be important. Coastal waters generally show a stronger stratification particularly during neap tides upon which the phytoplankton biomass at the surface rises reaching its maximum about 2–3 days after neap tide. It appeared that porpoises occurred in those areas where stratification is maximised and Risso’s preferred more mixed waters. This fine-scale study provided a temporal insight into spatial distribution of two species that single studies conducted over broader scales (tens or hundreds of kilometers) do not achieve. Understanding which topographic and cyclic variables drive the patchy distribution of porpoises and Risso’s in a Headland/Island system may form the initial basis for identifying potentially critical habitats for these species. PMID:24466031

  15. Characterization of a Subtropical Hawksbill Sea Turtle (Eretmocheyles imbricata) Assemblage Utilizing Shallow Water Natural and Artificial Habitats in the Florida Keys

    PubMed Central

    Gorham, Jonathan C.; Clark, David R.; Bresette, Michael J.; Bagley, Dean A.; Keske, Carrie L.; Traxler, Steve L.; Witherington, Blair E.; Shamblin, Brian M.; Nairn, Campbell J.

    2014-01-01

    In order to provide information to better inform management decisions and direct further research, vessel-based visual transects, snorkel transects, and in-water capture techniques were used to characterize hawksbill sea turtles in the shallow marine habitats of a Marine Protected Area (MPA), the Key West National Wildlife Refuge in the Florida Keys. Hawksbills were found in hardbottom and seagrass dominated habitats throughout the Refuge, and on man-made rubble structures in the Northwest Channel near Cottrell Key. Hawksbills captured (N = 82) were exclusively juveniles and subadults with a straight standard carapace length (SSCL) ranging from 21.4 to 69.0cm with a mean of 44.1 cm (SD = 10.8). Somatic growth rates were calculated from 15 recaptured turtles with periods at large ranging from 51 to 1188 days. Mean SSCL growth rate was 7.7 cm/year (SD = 4.6). Juvenile hawksbills (<50 cm SSCL) showed a significantly higher growth rate (9.2 cm/year, SD = 4.5, N = 11) than subadult hawksbills (50–70 cm SSCL, 3.6 cm/year, SD = 0.9, N = 4). Analysis of 740 base pair mitochondrial control region sequences from 50 sampled turtles yielded 12 haplotypes. Haplotype frequencies were significantly different compared to four other Caribbean juvenile foraging aggregations, including one off the Atlantic coast of Florida. Many-to-one mixed stock analysis indicated Mexico as the primary source of juveniles in the region and also suggested that the Refuge may serve as important developmental habitat for the Cuban nesting aggregation. Serum testosterone radioimmunoassay results from 33 individuals indicated a female biased sex ratio of 3.3 females: 1 male for hawksbills in the Refuge. This assemblage of hawksbills is near the northern limit of the species range, and is one of only two such assemblages described in the waters of the continental United States. Since this assemblage resides in an MPA with intensive human use, basic information on the

  16. Characterization of a subtropical hawksbill sea turtle (Eretmocheyles imbricata) assemblage utilizing shallow water natural and artificial habitats in the Florida Keys.

    PubMed

    Gorham, Jonathan C; Clark, David R; Bresette, Michael J; Bagley, Dean A; Keske, Carrie L; Traxler, Steve L; Witherington, Blair E; Shamblin, Brian M; Nairn, Campbell J

    2014-01-01

    In order to provide information to better inform management decisions and direct further research, vessel-based visual transects, snorkel transects, and in-water capture techniques were used to characterize hawksbill sea turtles in the shallow marine habitats of a Marine Protected Area (MPA), the Key West National Wildlife Refuge in the Florida Keys. Hawksbills were found in hardbottom and seagrass dominated habitats throughout the Refuge, and on man-made rubble structures in the Northwest Channel near Cottrell Key. Hawksbills captured (N = 82) were exclusively juveniles and subadults with a straight standard carapace length (SSCL) ranging from 21.4 to 69.0cm with a mean of 44.1 cm (SD = 10.8). Somatic growth rates were calculated from 15 recaptured turtles with periods at large ranging from 51 to 1188 days. Mean SSCL growth rate was 7.7 cm/year (SD = 4.6). Juvenile hawksbills (<50 cm SSCL) showed a significantly higher growth rate (9.2 cm/year, SD = 4.5, N = 11) than subadult hawksbills (50-70 cm SSCL, 3.6 cm/year, SD = 0.9, N = 4). Analysis of 740 base pair mitochondrial control region sequences from 50 sampled turtles yielded 12 haplotypes. Haplotype frequencies were significantly different compared to four other Caribbean juvenile foraging aggregations, including one off the Atlantic coast of Florida. Many-to-one mixed stock analysis indicated Mexico as the primary source of juveniles in the region and also suggested that the Refuge may serve as important developmental habitat for the Cuban nesting aggregation. Serum testosterone radioimmunoassay results from 33 individuals indicated a female biased sex ratio of 3.3 females: 1 male for hawksbills in the Refuge. This assemblage of hawksbills is near the northern limit of the species range, and is one of only two such assemblages described in the waters of the continental United States. Since this assemblage resides in an MPA with intensive human use, basic information on the

  17. Effect of swirling flow on platelet concentration distribution in small-caliber artificial grafts and end-to-end anastomoses

    NASA Astrophysics Data System (ADS)

    Zhan, Fan; Fan, Yu-Bo; Deng, Xiao-Yan

    2011-10-01

    Platelet concentration near the blood vessel wall is one of the major factors in the adhesion of platelets to the wall. In our previous studies, it was found that swirling flows could suppress platelet adhesion in small-caliber artificial grafts and end-to-end anastomoses. In order to better understand the beneficial effect of the swirling flow, we numerically analyzed the near-wall concentration distribution of platelets in a straight tube and a sudden tubular expansion tube under both swirling flow and normal flow conditions. The numerical models were created based on our previous experimental studies. The simulation results revealed that when compared with the normal flow, the swirling flow could significantly reduce the near-wall concentration of platelets in both the straight tube and the expansion tube. The present numerical study therefore indicates that the reduction in platelet adhesion under swirling flow conditions in small-caliber arterial grafts, or in end-to-end anastomoses as observed in our previous experimental study, was possibly through a mechanism of platelet transport, in which the swirling flow reduced the near-wall concentration of platelets.

  18. Quantitative measurement by artificial vision of small bubbles in flowing mercury

    SciTech Connect

    Paquit, Vincent C; Wendel, Mark W; Felde, David K; Riemer, Bernie

    2011-01-01

    At the Spallation Neutron Source (SNS), an accelerator-based neutron source located at the Oak Ridge National Laboratory (Tennessee, USA), the production of neutrons is obtained by accelerating protons against a mercury target. This self-cooling target, however, suffers rapid heat deposition by the beam pulse leading to large pressure changes and thus to cavitations that may be damaging to the container. In order to locally compensate for pressure increases, a small-bubble population is added to the mercury flow using gas bubblers. The geometry of the bubblers being unknown, we are testing several bubblers configurations and are using machine vision techniques to characterize their efficiency by quantitative measurement of the created bubble population. In this paper we thoroughly detail the experimental setup and the image processing techniques used to quantitatively assess the bubble population. To support this approach we are comparing our preliminary results for different bubblers and operating modes, and discuss potential improvements.

  19. Quantitative measurement by artificial vision of small bubbles in flowing mercury

    NASA Astrophysics Data System (ADS)

    Paquit, Vincent C.; Wendel, Mark W.; Felde, David K.; Riemer, Bernie W.

    2011-03-01

    At the Spallation Neutron Source (SNS), an accelerator-based neutron source located at the Oak Ridge National Laboratory (Tennessee, USA), the production of neutrons is obtained by accelerating protons against a mercury target. This self-cooling target, however, suffers rapid heat deposition by the beam pulse leading to large pressure changes and thus to cavitations that may be damaging to the container. In order to locally compensate for pressure increases, a small-bubble population is added to the mercury flow using gas bubblers. The geometry of the bubblers being unknown, we are testing several bubblers' configurations and are using machine vision techniques to characterize their efficiency by quantitative measurement of the created bubble population. In this paper we thoroughly detail the experimental setup and the image processing techniques used to quantitatively assess the bubble population. To support this approach we are comparing our preliminary results for different bubblers and operating modes, and discuss potential improvements.

  20. Shallow submarine volcano group in the early stage of island arc development: Geology and petrology of small islands south off Hahajima main island, the Ogasawara Islands

    NASA Astrophysics Data System (ADS)

    Kanayama, Kyoko; Umino, Susumu; Ishizuka, Osamu

    2014-05-01

    Small Islands south off Hahajima, the southernmost of the Ogasawara Archipelago, consist of primitive basalts (<12 wt.% MgO) to dacite erupted during the transitional stage immediately following boninite volcanism on the incipient arc to sustained typical oceanic arc. Strombolian to Hawaiian fissure eruptions occurring on independent volcanic centers for the individual islands under a shallow sea produced magnesian basalt to dacite fall-out tephras, hyaloclastite and a small volume of pillow lava, which were intruded by NE-trending dikes. These volcanic strata are correlated to the upper part (<40 Ma) of the Hahajima main island. Volcanic rock samples have slightly lower FeO*/MgO ratios than the present volcanic front lavas, and are divided into three types with high, medium and low La/Yb ratios. Basalt to dacite of high- and medium-La/Yb types show both tholeiitic (TH) and calc-alkaline (CA) differentiation trends. Low-La/Yb type belongs only to TH basalt. The multiple magma types are coexistence on the each island. TH basalts have phenocrysts of olivine, clinopyroxene and plagioclase, while CA basalts are free from plagioclase phenocrysts.

  1. Seismic source functions from free-field ground motions recorded on SPE: Implications for source models of small, shallow explosions

    NASA Astrophysics Data System (ADS)

    Rougier, Esteban; Patton, Howard J.

    2015-05-01

    Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.

  2. Reactivation of MASPIN in non-small cell lung carcinoma (NSCLC) cells by artificial transcription factors (ATFs)

    PubMed Central

    Beltran, Adriana S

    2011-01-01

    Tumor suppressor genes have antiproliferative and antimetastatic functions and thus, they negatively affect tumor progression. Reactivating specific tumor suppressor genes would offer an important therapeutic strategy to block tumor progression. Mammary serine protease inhibitor (MASPIN) is a tumor suppressor gene that is not mutated or rearranged in tumor cells, but is silenced during metastatic progression by transcriptional and epigenetic mechanisms. In this work, we have investigated the ability of artificial transcription factors (ATFs) to reactivate MASPIN expression and to reduce tumor growth and metastatic dissemination in non-small cell lung carcinoma (NSCLC) cell lines carrying a hypermethylated MASPIN promoter. We found that the ATFs linked to transactivator domains were able to demethylate the MASPIN promoter. Consistently, we observed that co-treatment of ATF-transduced cells with methyltransferase inhibitors enhanced MASPIN expression as well as induction of tumor cell apoptosis. In addition to tumor suppressive functions, restoration of endogenous MASPIN expression was accompanied by inhibition of metastatic dissemination in nude mice. ATF-mediated reactivation of MASPIN lead to changes in cell motility and to induction of E-CADHERIN. These data suggest that ATFs are able to reprogram aggressive lung tumor cells towards a more epithelial, differentiated phenotype and represent novel therapeutic agents for metastatic lung cancers. PMID:20948306

  3. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    SciTech Connect

    Sathish, Narayanan; Yuan Yan

    2010-11-25

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-{Delta}65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  4. E. coli Resuspension During an Artificial High-flow Event in a Small First-order Creek

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Guber, A. K.; Shelton, D. R.; Hill, R. L.

    2009-04-01

    Stream, pond, and lake sediments can serve as environmental reservoirs for E. coli, including pathogenic strains. Substantial increases in E. coli concentrations observed in stream water during rainfall events are often attributed exclusively to runoff from agricultural fields, pastures, and riparian areas. However, this increase can, to various extents, be caused by the resuspension of E. coli from sediment. The separation of runoff vs. sediment E. coli sources is not possible based exclusively on creek water sampling during natural rainfalls. The objectives of this work were (a) to create and monitor an artificial high-flow event that would cause E. coli concentration changes solely due to resuspension and settling, (b) to develop a model of E. coli transport in creek water as affected by resuspension and settling. The study site, at the USDA-Beltsville Agricultural Research Center, is in the mid-Atlantic coastal plain of Maryland. The site contains a small first-order stream that is instrumented with four stations for monitoring stream flow and bacteria concentrations. The creek runs within a riparian corridor of variable width from about 65 m at its narrowest point, to more than 100 m. The creek bed is from 100 to 150 cm wide. Prior to the high-flow experiment, the creek sediment was grab-sampled weekly for 2 months for E. coli concentrations at three locations downstream from stations 1, 2 and 4. Time and sample position across the creek were not significant factors affecting E. coli concentrations in sediment; location along the creek was a significant factor. Initial E. coli concentrations in top 1 cm (just prior to flow) averaged 4500, 2500, and 500 cell per g of sediment at locations 1 and 2 and 4, respectively. The E. coli concentrations in sediments decreased exponentially with depth by about one order of magnitude per 2 cm. The artificial flow event was created by releasing 80 tons of tap water on a tarp-covered stream bank at 11 m above the station 1

  5. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  6. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to Multifrequency HF Doppler Radar. I. Method of Calculation and Its Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-10-01

    The method of calculating the total drift velocity vector of small-scale artificial ionospheric irregularities as measured by the effective Doppler frequency shift of aspect-scattered signals from several diagnostic illumination transmitters operated at different frequencies is discussed. The technique of adaptive simulation of decameter radio waves propagating in an inhomogeneous magnetized ionosphere with allowance for the aspect scattering effects due to small-scale field-aligned irregularities is developed. A multifrequency HF Doppler radar for simultaneous measurement of the Doppler spectra of radio signals at a set of frequencies is described.

  7. Seismic imaging of small horizontal scale structures of the shallow thermocline on the western Brittany continental shelf (North-East Atlantic)

    NASA Astrophysics Data System (ADS)

    Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.

    2012-12-01

    The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each

  8. P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design

    PubMed Central

    Fahlgren, Noah; Hill, Steven T.; Carrington, James C.; Carbonell, Alberto

    2016-01-01

    Summary: The Plant Small RNA Maker Site (P-SAMS) is a web tool for the simple and automated design of artificial miRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) for efficient and specific targeted gene silencing in plants. P-SAMS includes two applications, P-SAMS amiRNA Designer and P-SAMS syn-tasiRNA Designer. The navigation through both applications is wizard-assisted, and the job runtime is relatively short. Both applications output the sequence of designed small RNA(s), and the sequence of the two oligonucleotides required for cloning into ‘B/c’ compatible vectors. Availability and implementation: The P-SAMS website is available at http://p-sams.carringtonlab.org. Contact: acarbonell@ibmcp.upv.es or nfahlgren@danforthcenter.org PMID:26382195

  9. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Cheng, Yongzhou; Chen, Xiaoyan; Liu, Zhaopu; Long, Xiaohua

    2016-04-01

    Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of diff erent dietary additives [w/w: 2% small peptides, 0.01% probiotics (Bacillus licheniformis) and 0.2% prebiotics (inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations (13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics (combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme (total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control (28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.

  10. Effect of the Artificial Sweetener, Acesulfame Potassium, a Sweet Taste Receptor Agonist, on Glucose Uptake in Small Intestinal Cell Lines

    PubMed Central

    Zheng, Ye; Sarr, Michael G.

    2012-01-01

    Sweet taste receptors may enhance glucose absorption. AIM To explore the cell biology of sweet taste receptors on glucose uptake. HYPOTHESIS Artificial sweeteners increase glucose uptake via activating sweet taste receptors in the enterocyte to translocate GLUT2 to the apical membrane through the PLC βII pathway. METHODS Caco-2, RIE-1, and IEC-6 cells, starved from glucose for 1 h were pre-incubated with 10 mM acesulfame potassium (AceK). Glucose uptake was measured by incubating cells for 1 to 10 min with 0.5–50 mM glucose with or without U-73122, chelerythrine, and cytochalasin B. RESULTS In Caco-2 and RIE-1 cells, 10 mM AceK increased glucose uptake by 20~30% at glucose ≥ 25 mM, but not in lesser glucose concentrations (≤10 mM), nor at 1 min or 10 min incubations. U-73122 inhibited uptake at glucose ≥ 25 mM and for 5 min incubation; chelerythrine and cytochalasin B had similar effects. No effect occurred in IEC-6 cells. SUMMARY Activation of sweet taste receptors had no effect on glucose uptake in low (<25 mM) glucose concentrations but increased uptake at greater concentrations (≥ 25 mM). CONCLUSIONS Role of artificial sweeteners on glucose uptake appears to act in part by effects on the enterocyte itself. PMID:22948835

  11. Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study

    NASA Astrophysics Data System (ADS)

    Aubert, A. H.; Gascuel-Odoux, C.; Gruau, G.; Akkal, N.; Faucheux, M.; Fauvel, Y.; Grimaldi, C.; Hamon, Y.; Jaffrézic, A.; Lecoz-Boutnik, M.; Molénat, J.; Petitjean, P.; Ruiz, L.; Merot, P.

    2013-04-01

    High-frequency, long-term and multisolute measurements are required to assess the impact of human pressures on water quality due to (i) the high temporal and spatial variability of climate and human activity and (ii) the fact that chemical solutes combine short- and long-term dynamics. Such data series are scarce. This study, based on an original and unpublished time series from the Kervidy-Naizin headwater catchment (Brittany, France), aims to determine solute transfer processes and dynamics that characterise this strongly human-impacted catchment. The Kervidy-Naizin catchment is a temperate, intensive agricultural catchment, hydrologically controlled by shallow groundwater. Over 10 yr, five solutes (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon) were monitored daily at the catchment outlet and roughly every four months in the shallow groundwater. The concentrations of all five solutes showed seasonal variations but the patterns of the variations differed from one solute to another. Nitrate and chloride exhibit rather smooth variations. In contrast, sulphate as well as organic and inorganic carbon is dominated by flood flushes. The observed nitrate and chloride patterns are typical of an intensive agricultural catchment hydrologically controlled by shallow groundwater. Nitrate and chloride originating mainly from organic fertilisers accumulated over several years in the shallow groundwater. They are seasonally exported when upland groundwater connects with the stream during the wet season. Conversely, sulphate as well as organic and inorganic carbon patterns are not specific to agricultural catchments. These solutes do not come from fertilisers and do not accumulate in soil or shallow groundwater; instead, they are biogeochemically produced in the catchment. The results allowed development of a generic classification system based on the specific temporal patterns and source locations of each solute. It also considers the stocking period

  12. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Re, Giuseppe; White, James D. L.; Muirhead, James D.; Ort, Michael H.

    2016-08-01

    Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (<1 km), which yield a spectrum of eruptive styles including weak to moderate explosive activity, violent phreatomagmatism, and lava effusion. Jagged Rocks Complex in the late Miocene Hopi Buttes Volcanic field (Arizona, USA) exposes the frozen remnants of the feeding systems for one or a few monogenetic volcanoes. It provides information on how a shallow magmatic plumbing system evolved within a stable non-marine sedimentary basin, and the processes by which magma flowing through dikes fragmented and conduits were formed. We have identified three main types of fragmental deposits, (1) buds (which emerge from dikes), (2) pyroclastic massifs, and (3) diatremes; these represent three different styles and intensities of shallow-depth magma fragmentation. They may develop successively and at different sites during the evolution of a monogenetic volcano. The deposits consist of a mixture of pyroclasts with varying degrees of welding and country-rock debris in various proportions. Pyroclasts are commonly welded together, but also reveal in places features consistent with phreatomagmatism, such as blocky shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

  13. Temperature-dependent recombination velocity analysis on artificial small angle grain boundaries using electron beam induced current method

    NASA Astrophysics Data System (ADS)

    Kojima, Takuto; Tachibana, Tomihisa; Ohshita, Yoshio; Prakash, Ronit R.; Sekiguchi, Takashi; Yamaguchi, Masafumi

    2016-02-01

    The details of the process of carrier recombination via the Shockley-Read-Hall (SRH) defect level, at the grain boundaries of multicrystalline silicon, were investigated. For this, the temperature-dependent recombination velocities, as determined by experiments, were analyzed by the application of an electron beam induced current method. For the model, the misorientation angles at the grain boundaries were defined using a multi-seed casting-growth method. The results of our experiments indicated different temperature behaviors at low and high temperatures. These can be explained by controlling the process anticipated by the SRH model, that is, the process whereby minority carriers (electrons) are captured at lower temperatures, followed by the reemission of the carriers before recombination with Arrhenius behavior at higher temperatures. The minority capture process appeared to conform to the power law T-α temperature behavior. Thus, there are two candidate electron capture mechanisms, namely, cascade phonon emission capture for shallow centers and excitonic-Auger capture for deep centers. The activation energy for the reemission of carriers was around 0.1 eV. These findings regarding the temperature dependence are essentially independent of the misorientation angles, suggesting a common defect level and recombination mechanism. The difference in the recombination velocities can be regarded as being derived from the difference in the density at the defect level.

  14. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported. PMID:27266257

  15. Radiographic detection of artificially created horizontal root fracture using different cone beam CT units with small fields of view

    PubMed Central

    Kamburoğlu, K; Önder, B; Murat, S; Avsever, H; Yüksel, S; Paksoy, CS

    2013-01-01

    Objectives: To compare limited cone beam computerized tomography (CBCT) units with different field of views (FOVs) and voxel sizes in detecting artificially created horizontal root fracture (HRF) in extracted human teeth. Methods: Artificial HRF was created in the horizontal plane in 40 teeth. Another 40 intact teeth served as a control group. 80 teeth were placed in the respective maxillary anterior sockets of a human dry skull in groups. Six image sets were obtained: (1) Accuitomo 170, 40 × 40 mm FOV (0.080 mm3); (2) Accuitomo 170, 60 × 60 mm FOV (0.125 mm3); (3) Kodak 9000, 50 × 37 mm FOV (0.076 mm3); (4) Kodak 9000, 50 × 37 mm FOV (0.100 mm3); (5) Vatech Pax-Duo3D 50 × 50 mm FOV (0.080 mm3) and (6) Vatech Pax-Duo3D 85 × 85 mm FOV (0.120 mm3). Images were evaluated twice by five observers. Kappa values were calculated for observer agreement. Areas under the receiver operating characteristic (ROC) curves (Az values) were calculated, and the Az values for each image type were compared using t-tests (α = 0.05). Results: Intraobserver kappa coefficients ranged from 0.81 to 0.95 for the Accuitomo 170 images, from 0.80 to 0.92 for the Kodak 9000 images and from 0.76 to 0.95 for Vatech PanX-Duo3D. The Az values for different image types and observers ranged from 0.93 to 0.97 for Accuitomo 170 images, from 0.93 to 0.98 for Kodak 9000 images and from 0.93 to 0.97 for the Vatech PanX-Duo3D images. No statistically significant differences (p > 0.05) were found between the Az values. Conclusions: Limited CBCT units performed similarly in detecting simulated HRF. PMID:23420851

  16. Small and dim target detection via lateral inhibition filtering and Artificial Bee colony based selective visual attention.

    PubMed

    Duan, Haibin; Deng, Yimin; Wang, Xiaohua; Xu, Chunfang

    2013-01-01

    This paper proposed a novel bionic selective visual attention mechanism to quickly select regions that contain salient objects to reduce calculations. Firstly, lateral inhibition filtering, inspired by the limulus' ommateum, is applied to filter low-frequency noises. After the filtering operation, we use Artificial Bee Colony (ABC) algorithm based selective visual attention mechanism to obtain the interested object to carry through the following recognition operation. In order to eliminate the camera motion influence, this paper adopted ABC algorithm, a new optimization method inspired by swarm intelligence, to calculate the motion salience map to integrate with conventional visual attention. To prove the feasibility and effectiveness of our method, several experiments were conducted. First the filtering results of lateral inhibition filter were shown to illustrate its noise reducing effect, then we applied the ABC algorithm to obtain the motion features of the image sequence. The ABC algorithm is proved to be more robust and effective through the comparison between ABC algorithm and popular Particle Swarm Optimization (PSO) algorithm. Except for the above results, we also compared the classic visual attention mechanism and our ABC algorithm based visual attention mechanism, and the experimental results of which further verified the effectiveness of our method. PMID:23991033

  17. Small and Dim Target Detection via Lateral Inhibition Filtering and Artificial Bee Colony Based Selective Visual Attention

    PubMed Central

    Duan, Haibin; Deng, Yimin; Wang, Xiaohua; Xu, Chunfang

    2013-01-01

    This paper proposed a novel bionic selective visual attention mechanism to quickly select regions that contain salient objects to reduce calculations. Firstly, lateral inhibition filtering, inspired by the limulus’ ommateum, is applied to filter low-frequency noises. After the filtering operation, we use Artificial Bee Colony (ABC) algorithm based selective visual attention mechanism to obtain the interested object to carry through the following recognition operation. In order to eliminate the camera motion influence, this paper adopted ABC algorithm, a new optimization method inspired by swarm intelligence, to calculate the motion salience map to integrate with conventional visual attention. To prove the feasibility and effectiveness of our method, several experiments were conducted. First the filtering results of lateral inhibition filter were shown to illustrate its noise reducing effect, then we applied the ABC algorithm to obtain the motion features of the image sequence. The ABC algorithm is proved to be more robust and effective through the comparison between ABC algorithm and popular Particle Swarm Optimization (PSO) algorithm. Except for the above results, we also compared the classic visual attention mechanism and our ABC algorithm based visual attention mechanism, and the experimental results of which further verified the effectiveness of our method. PMID:23991033

  18. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to a Multifrequency HF Doppler Radar. II. Observation and Modeling Results

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-11-01

    We present the results of observations of the Doppler frequency shift for the radar radio signals of broadcast and exact-time RWM stations, which are scattered by small-scale artificial ionospheric irregularities. By the method described in our previous paper [1] and using the multifrequency HF Doppler radar, estimates were made for a three-dimensional vector of the drift velocity of irregularities. It is shown that the drift velocity of irregularities can vary considerably both in magnitude and direction for short periods of time. The velocity lies in a wide range of values, 20-270 m/s, but sometimes it exceeds 500-700 m/s. The most probable drift velocity ranges from 40 to 70 m/s.

  19. Artificial Limbs

    MedlinePlus

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as ...

  20. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  1. Prediction of elasticity constants in small biomaterial samples such as bone. A comparison between classical optimization techniques and identification with artificial neural networks.

    PubMed

    Lucchinetti, E; Stüssi, E

    2004-01-01

    Measuring the elasticity constants of biological materials often sets important constraints, such as the limited size or the irregular geometry of the samples. In this paper, the identification approach as applied to the specific problem of accurately retrieving the material properties of small bone samples from a measured displacement field is discussed. The identification procedure can be formulated as an optimization problem with the goal of minimizing the difference between computed and measured displacements by searching for an appropriate set of material parameters using dedicated algorithms. Alternatively, the backcalculation of the material properties from displacement maps can be implemented using artificial neural networks. In a practical situation, however, measurement errors strongly affect the identification results, calling for robust optimization approaches in order accurately to retrieve the material properties from error-polluted sample deformation maps. Using a simple model problem, the performances of both classical and neural network driven optimization are compared. When performed before the collection of experimental data, this evaluation can be very helpful in pinpointing potential problems with the envisaged experiments such as the need for a sufficient signal-to-noise ratio, particularly important when working with small tissue samples such as specimens cut from rodent bones or single bone trabeculae. PMID:15648663

  2. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  3. Effects of Temperature, Salinity and Fish in Structuring the Macroinvertebrate Community in Shallow Lakes: Implications for Effects of Climate Change

    PubMed Central

    Brucet, Sandra; Boix, Dani; Nathansen, Louise W.; Quintana, Xavier D.; Jensen, Elisabeth; Balayla, David; Meerhoff, Mariana; Jeppesen, Erik

    2012-01-01

    Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes. PMID:22393354

  4. Artificial small-scale field-aligned irregularities in the high latitude F region of the ionosphere induced by an X-mode HF heater wave

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Rietveld, M. T.; Ivanova, I. M.; Baddeley, L. J.

    2011-04-01

    The effects on the high-latitude F region of the ionosphere by X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) are analysed. The experiments were conducted using the EISCAT/Heating facility and UHF radar at Tromsø, Norway, the CUTLASS (SuperDARN) radar and the EISCAT ionosonde (dynasonde). The results show that the X-mode HF pump wave, radiated into the magnetic zenith from the HF heater, can generate very strong small-scale artificial field aligned irregularities (AFAIs) in the F-region of the high-latitude ionosphere. These irregularities, with spatial scales across the geomagnetic field of the order of 8-15 m, are generated when the heater frequency is above the ordinary-mode critical frequency but comparable with the extraordinary-mode critical frequency. The generation of the X-mode AFAIs was accompanied by electron temperature (Te) enhancements up to 50% above the background level and an increase in the electron density (Ne) by up to 30%.

  5. Coming Soon: A Wearable Artificial Kidney?

    MedlinePlus

    ... gov/news/fullstory_159246.html Coming Soon: A Wearable Artificial Kidney? Small trial suggests device might be ... themselves of clunky machines, moving about with a "wearable artificial kidney" instead. That's the promise of a ...

  6. Small, low cost, artificial kidney

    NASA Technical Reports Server (NTRS)

    Lavender, A. R.; Markley, F. W.

    1972-01-01

    Disposable hemodialyzer is described that can be used at home by non-medically trained personnel. Short lengths of semipermeable membrane tubes are arranged in parallel, supported by plastic mesh and encased in epoxy at ends. Tubes are connected to input and output blood manifolds which are separated by dialysate chamber. Daily dialysis requires only two hours or less.

  7. Parameterization of precipitating shallow convection

    NASA Astrophysics Data System (ADS)

    Seifert, Axel

    2015-04-01

    Shallow convective clouds play a decisive role in many regimes of the atmosphere. They are abundant in the trade wind regions and essential for the radiation budget in the sub-tropics. They are also an integral part of the diurnal cycle of convection over land leading to the formation of deeper modes of convection later on. Errors in the representation of these small and seemingly unimportant clouds can lead to misforecasts in many situations. Especially for high-resolution NWP models at 1-3 km grid spacing which explicitly simulate deeper modes of convection, the parameterization of the sub-grid shallow convection is an important issue. Large-eddy simulations (LES) can provide the data to study shallow convective clouds and their interaction with the boundary layer in great detail. In contrast to observation, simulations provide a complete and consistent dataset, which may not be perfectly realistic due to the necessary simplifications, but nevertheless enables us to study many aspects of those clouds in a self-consistent way. Today's supercomputing capabilities make it possible to use domain sizes that not only span several NWP grid boxes, but also allow for mesoscale self-organization of the cloud field, which is an essential behavior of precipitating shallow convection. By coarse-graining the LES data to the grid of an NWP model, the sub-grid fluctuations caused by shallow convective clouds can be analyzed explicitly. These fluctuations can then be parameterized in terms of a PDF-based closure. The necessary choices for such schemes like the shape of the PDF, the number of predicted moments, etc., will be discussed. For example, it is shown that a universal three-parameter distribution of total water may exist at scales of O(1 km) but not at O(10 km). In a next step the variance budgets of moisture and temperature in the cloud-topped boundary layer are studied. What is the role and magnitude of the microphysical correlation terms in these equations, which

  8. Applicability of nonresonant artificial diamagnetics

    NASA Astrophysics Data System (ADS)

    Jelinek, L.; Lapine, M.; McPhedran, R. C.

    2014-09-01

    Artificial diamagnetics are prominent for achieving extraordinarily strong diamagnetism in a wide frequency range. However, as far as the magnetic fields outside the artificial medium are concerned, bulk conductors show a very similar pattern. The question arises whether the complicated internal structure of artificial diamagnetics can, to this end, be replaced by a simpler object. We show that for an electrically small body, internal structuring is likely to make the effective diamagnetic response weaker than that of a simple conducting object.

  9. Impact of hard-bottom substrata on the small-scale distribution of fish and decapods in shallow subtidal temperate waters

    NASA Astrophysics Data System (ADS)

    Wehkamp, Stephanie; Fischer, Philipp

    2013-03-01

    The micro-scale spatial distribution patterns of a demersal fish and decapod crustacean assemblage were assessed in a hard-bottom kelp environment in the southern North Sea. Using quadrats along line transects, we assessed the in situ fish and crustacean abundance in relation to substratum types (rock, cobbles and large pebbles) and the density of algae. Six fish and four crustacean species were abundant, with Ctenolabrus rupestris clearly dominating the fish community and Galathea squamifera dominating the crustacean community. Differences in the substratum types had an even stronger effect on the micro-scale distribution than the density of the dominating algae species. Kelp had a negative effect on the fish abundances, with significantly lower average densities in kelp beds compared with adjacent open areas. Averaged over all of the substrata, the most attractive substratum for the fish was large pebbles . In contrast, crustaceans did not show a specific substratum affinity. The results clearly indicate that, similar to other complex systems, significant micro-scale species-habitat associations occur in northern hard-bottom environments. However, because of the frequently harsh environmental conditions, these habitats are mainly sampled from ships with sampling gear, and the resulting data cannot be used to resolve small-scale species-habitat associations. A detailed substratum classification and community assessment, often only possible using SCUBA diving, is therefore important to reach a better understanding of the functional relationships between species and their environment in northern temperate waters, knowledge that is very important with respect to the increasing environmental pressure caused by global climate change.

  10. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Linda C.; And Others

    1988-01-01

    A series of articles focuses on artificial intelligence research and development to enhance information systems and services. Topics discussed include knowledge base designs, expert system development tools, natural language processing, expert systems for reference services, and the role that artificial intelligence concepts should have in…

  11. Artificial intelligence

    SciTech Connect

    Firschein, O.

    1984-01-01

    This book presents papers on artificial intelligence. Topics considered include knowledge engineering, expert systems, applications of artificial intelligence to scientific reasoning, planning and problem solving, error recovery in robots through failure reason analysis, programming languages, natural language, speech recognition, map-guided interpretation of remotely-sensed imagery, and image understanding architectures.

  12. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are also briefly…

  13. On the dissolution/reaction of small-grain Bioglass ® 45S5 and F-modified bioactive glasses in artificial saliva (AS)

    NASA Astrophysics Data System (ADS)

    Aina, Valentina; Bertinetti, Luca; Cerrato, Giuseppina; Cerruti, Marta; Lusvardi, Gigliola; Malavasi, Gianluca; Morterra, Claudio; Tacconi, Linda; Menabue, Ledi

    2011-02-01

    The reaction of small-grain Bioglass® 45S5 in artificial saliva (AS), to produce a layer of hydroxy-apatite (HA) and/or hydroxy-carbonate apatite (HCA), has been studied and compared to the results obtained in a simple buffered solution (TRIS). Some potentially bioactive glasses based on the composition of Bioglass® and containing CaF2 (HCaCaF2 5% and HNaCaF2 5%) have also been studied, in order to analyze the effects/changes produced when a F-containing glass surface is contacted with AS. The insertion of fluorine has been proposed to improve bioactive glass bone-bonding ability, and to parallel fluorine-containing glass-ceramics currently used in dentistry. ICP-OES analysis of the solution, and FTIR spectroscopy of the solid samples provided compositional information on the stages of reaction. These data were integrated with XRD and the textural and morphological data, obtained by specific surface areas determination and TEM-EDS measurements. In the case of Bioglass® 45S5, a comparison at corresponding reaction times indicates that the precipitation of an amorphous Ca-phosphate phase is faster in AS, but the crystallization of HA/HCA is delayed in AS with respect to the TRIS solution. For fluoride-containing glasses, the sample HCaCaF2 5%, in which CaF2 replaces part of CaO, possesses the fastest rate for HA/HCA crystallization (1 week) in AS. Some lines of interpretation for these results are proposed.

  14. Artificial urushi.

    PubMed

    Kobayashi, S; Uyama, H; Ikeda, R

    2001-11-19

    A new concept for the design and laccase-catalyzed preparation of "artificial urushi" from new urushiol analogues is described. The curing proceeded under mild reaction conditions to produce the very hard cross-linked film (artificial urushi) with a high gloss surface. A new cross-linkable polyphenol was synthesized by oxidative polymerization of cardanol, a phenol derivative from cashew-nut-shell liquid, by enzyme-related catalysts. The polyphenol was readily cured to produce the film (also artificial urushi) showing excellent dynamic viscoelasticity. PMID:11763444

  15. Shallow moonquakes - How they compare with earthquakes

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    1980-01-01

    Of three types of moonquakes strong enough to be detectable at large distances - deep moonquakes, meteoroid impacts and shallow moonquakes - only shallow moonquakes are similar in nature to earthquakes. A comparison of various characteristics of moonquakes with those of earthquakes indeed shows a remarkable similarity between shallow moonquakes and intraplate earthquakes: (1) their occurrences are not controlled by tides; (2) they appear to occur in locations where there is evidence of structural weaknesses; (3) the relative abundances of small and large quakes (b-values) are similar, suggesting similar mechanisms; and (4) even the levels of activity may be close. The shallow moonquakes may be quite comparable in nature to intraplate earthquakes, and they may be of similar origin.

  16. Imaging shallow objects with scattered guided waves

    SciTech Connect

    Herman, Gerard C.; Milligan, Paul A.; Huggins, Robert J.; Rector, James W.

    1999-10-01

    Current surface seismic reflection techniques based on the common-midpoint (CMP) reflection stacking method cannot be readily used to image small objects in the first few meters of a weathered layer. We discuss a seismic imaging method to detect such objects; it uses the first-arrival (guided) wave, scattered by shallow heterogeneities and converted into scattered Rayleigh waves. These guided waves and Rayleigh waves are dominant in the shallow weathered layer and therefore might be suitable for shallow object imaging. We applied this method to a field data set and found that we could certainly image meter-size objects up to about 3 m off to the side of a survey line consisting of vertical geophones. There are indications that cross-line horizontal geophone data could be used to identify shallow objects up to 10 m offline in the same region.

  17. Noise From Shallow Underwater Explosions

    NASA Astrophysics Data System (ADS)

    Soloway, Alexander G.

    Naval activities such as ordnance disposal, demolition and requisite training, can involve detonation of small explosive charges in shallow water that have the potential to harm nearby marine life. Measurements of the underwater sound generated by sub-surface explosions were collected as part of a naval training exercise. In this thesis the noise levels from these explosions will be investigated using peak pressure, sound exposure level and energy spectral density. Measurements of very-low frequency Scholte interface waves will also be presented and used to investigate elastic parameters in the sediment.

  18. Refining the shallow slip deficit

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Tong, Xiaopeng; Sandwell, David T.; Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois

    2016-03-01

    Geodetic slip inversions for three major (Mw > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor-Cucapah) show a 15-60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4-6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3-19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could `make up' a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include

  19. An artificial molecular pump.

    PubMed

    Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration. PMID:25984834

  20. An artificial molecular pump

    NASA Astrophysics Data System (ADS)

    Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.

  1. Artificial noses.

    PubMed

    Stitzel, Shannon E; Aernecke, Matthew J; Walt, David R

    2011-08-15

    The mammalian olfactory system is able to detect many more odorants than the number of receptors it has by utilizing cross-reactive odorant receptors that generate unique response patterns for each odorant. Mimicking the mammalian system, artificial noses combine cross-reactive sensor arrays with pattern recognition algorithms to create robust odor-discrimination systems. The first artificial nose reported in 1982 utilized a tin-oxide sensor array. Since then, however, a wide range of sensor technologies have been developed and commercialized. This review highlights the most commonly employed sensor types in artificial noses: electrical, gravimetric, and optical sensors. The applications of nose systems are also reviewed, covering areas such as food and beverage quality control, chemical warfare agent detection, and medical diagnostics. A brief discussion of future trends for the technology is also provided. PMID:21417721

  2. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  3. Automating Shallow Seismic Imaging

    SciTech Connect

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could

  4. Data analysis and hydrological modelling of frozen ground, shallow groundwater formation and river flow co-evolution at small watersheds of Russia in continuous, discontinuous permafrost and the zone of seasonal ground freezing

    NASA Astrophysics Data System (ADS)

    Lebedeva, Luidmila; Semenova, Olga

    2015-04-01

    Frozen ground distribution and its properties control the presence of aquifuge and aquifers. Correct representation of interactions between infiltrating water, ground ice, permafrost or seasonal freezing table and river flow is challenging for hydrological modelling in cold regions. Observational data of ground water levels, thawing depths in different landscapes or topographical units and meteorological information with high temporal and spatial resolution are required to analyze seasonal and interannual evolution of groundwater in active layer and its linkage to river flow. Such data are extremely rare in vast and remote regions of Russia. There are few historical datasets inherited from former USSR containing unique collection of long-term daily observations of water fluxes, frozen ground characteristics and groundwater levels. The data from three water balance stations were employed in our study with overall goal to analyze co-evolution of thawing layer, shallow groundwater and river flow by data processing and process-based modelling. Three instrumented small watersheds are situated in continuous, discontinuous permafrost zones and at the territory with seasonally frozen ground. They present different climates, landscapes and geology. The Kolyma water-balance station is located in mountainous region of continuous permafrost in North-Eastern Russia. The watershed area of 22 km2 is covered by bare rocks, mountain tundra, sparse larch forest and wet larch forest depending on slope aspect and inclination. The Bomnak water-balance station (22 km2) is situated in discontinuous permafrost zone in upper part of the Amur River basin and characterized by unmerged permafrost. Dominant landscapes are birch forest and bogs. The Pribaltiyskaya water-balance station (40 km2) located in Latvia is characterized by seasonally frozen ground and is covered by mixed forest and arable land. Process-based Hydrograph model was employed in the study. The model was developed

  5. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve. PMID:26957450

  6. An artificial gravity demonstration experiment

    NASA Technical Reports Server (NTRS)

    Rupp, C.; Lemke, L.; Penzo, P.

    1989-01-01

    An artificial gravity experiment which is tethered to a Delta second stage and which uses the Small Expendable Deployer System is proposed. Following tether deployment, the Delta vehicle performs the required spin-up maneuver and can then be passivated. A surplus reentry vehicle houses the artificial gravity life science experiments. When the experiments are completed, the reentry phase of the experiment is initiated by synchronizing the spin of the configuration with the required deorbit impulse.

  7. Artificial halos

    NASA Astrophysics Data System (ADS)

    Selmke, Markus

    2015-09-01

    Judged by their frequency and beauty, ice halos easily rival rainbows as a prominent atmospheric optics phenomenon. This article presents experimental halo demonstrations of varying complexity. Using a single commercially available hexagonal glass prism, a variety of artificial halos can be simulated. The experiments include laser beam path analysis, a modified classic spinning prism experiment, and a novel Monte-Carlo machine for three-dimensional rotations. Each of these experiments emulates different conditions of certain halo displays, and in combination, they allow a thorough understanding of these striking phenomena.

  8. Principal Component Analysis Coupled with Artificial Neural Networks—A Combined Technique Classifying Small Molecular Structures Using a Concatenated Spectral Database

    PubMed Central

    Gosav, Steluţa; Praisler, Mirela; Birsa, Mihail Lucian

    2011-01-01

    In this paper we present several expert systems that predict the class identity of the modeled compounds, based on a preprocessed spectral database. The expert systems were built using Artificial Neural Networks (ANN) and are designed to predict if an unknown compound has the toxicological activity of amphetamines (stimulant and hallucinogen), or whether it is a nonamphetamine. In attempts to circumvent the laws controlling drugs of abuse, new chemical structures are very frequently introduced on the black market. They are obtained by slightly modifying the controlled molecular structures by adding or changing substituents at various positions on the banned molecules. As a result, no substance similar to those forming a prohibited class may be used nowadays, even if it has not been specifically listed. Therefore, reliable, fast and accessible systems capable of modeling and then identifying similarities at molecular level, are highly needed for epidemiological, clinical, and forensic purposes. In order to obtain the expert systems, we have preprocessed a concatenated spectral database, representing the GC-FTIR (gas chromatography-Fourier transform infrared spectrometry) and GC-MS (gas chromatography-mass spectrometry) spectra of 103 forensic compounds. The database was used as input for a Principal Component Analysis (PCA). The scores of the forensic compounds on the main principal components (PCs) were then used as inputs for the ANN systems. We have built eight PC-ANN systems (principal component analysis coupled with artificial neural network) with a different number of input variables: 15 PCs, 16 PCs, 17 PCs, 18 PCs, 19 PCs, 20 PCs, 21 PCs and 22 PCs. The best expert system was found to be the ANN network built with 18 PCs, which accounts for an explained variance of 77%. This expert system has the best sensitivity (a rate of classification C = 100% and a rate of true positives TP = 100%), as well as a good selectivity (a rate of true negatives TN = 92.77%). A

  9. Artificial rheotaxis

    PubMed Central

    Palacci, Jérémie; Sacanna, Stefano; Abramian, Anaïs; Barral, Jérémie; Hanson, Kasey; Grosberg, Alexander Y.; Pine, David J.; Chaikin, Paul M.

    2015-01-01

    Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes. PMID:26601175

  10. Artificial Hydrogenases

    PubMed Central

    Barton, Bryan E.; Olsen, Matthew T.; Rauchfuss, Thomas B.

    2010-01-01

    Decades of biophysical study on the hydrogenase (H2ase) enzymes have yielded sufficient information to guide the synthesis of analogues of their active sites. Three families of enzymes serve as inspiration for this work: the [FeFe]-, [NiFe]-, and [Fe]-H2ases, all of which feature iron centers bound to both CO and thiolate. Artificial H2ases effect the oxidation of H2 of H2 and the reverse reaction, the reduction of protons. These reactions occur via the intermediacy of metal hydrides. The inclusion of amine bases within the catalysts is an important design feature that is emulated in related bioinspired catalysts. Continuing challenges are the low reactivity of H2 towards biomimetic H2ases. PMID:20356731

  11. Artificial rheotaxis.

    PubMed

    Palacci, Jérémie; Sacanna, Stefano; Abramian, Anaïs; Barral, Jérémie; Hanson, Kasey; Grosberg, Alexander Y; Pine, David J; Chaikin, Paul M

    2015-05-01

    Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes. PMID:26601175

  12. Rapid shallow breathing index.

    PubMed

    Karthika, Manjush; Al Enezi, Farhan A; Pillai, Lalitha V; Arabi, Yaseen M

    2016-01-01

    Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505

  13. Rapid shallow breathing index

    PubMed Central

    Karthika, Manjush; Al Enezi, Farhan A.; Pillai, Lalitha V.; Arabi, Yaseen M.

    2016-01-01

    Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505

  14. AUTOMATING SHALLOW SEISMIC IMAGING

    SciTech Connect

    Steeples, Don W.

    2003-09-14

    The current project is a continuation of an effort to develop ultrashallow seismic imaging as a cost-effective method potentially applicable to DOE facilities. The objective of the present research is to develop and demonstrate the use of a cost-effective, automated method of conducting shallow seismic surveys, an approach that represents a significant departure from conventional seismic-survey field procedures. Initial testing of a mechanical geophone-planting device suggests that large numbers of geophones can be placed both quickly and automatically. The development of such a device could make the application of SSR considerably more efficient and less expensive. The imaging results obtained using automated seismic methods will be compared with results obtained using classical seismic techniques. Although this research falls primarily into the field of seismology, for comparison and quality-control purposes, some GPR data will be collected as well. In the final year of th e research, demonstration surveys at one or more DOE facilities will be performed. An automated geophone-planting device of the type under development would not necessarily be limited to the use of shallow seismic reflection methods; it also would be capable of collecting data for seismic-refraction and possibly for surface-wave studies. Another element of our research plan involves monitoring the cone of depression of a pumping well that is being used as a proxy site for fluid-flow at a contaminated site. Our next data set will be collected at a well site where drawdown equilibrium has been reached. Noninvasive, in-situ methods such as placing geophones automatically and using near-surface seismic methods to identify and characterize the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies for DOE and others.

  15. A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws.

    PubMed

    Guan, Xuefei; He, Jingjing; Rasselkorde, El Mahjoub

    2015-02-01

    A direct time-domain reconstruction and sizing method of synthetic aperture focusing technique (SAFT) is developed to improve the spatial resolution and sizing accuracy for phased-array ultrasonic inspections. The basic idea of the reconstruction algorithm is to coherently superimpose multiple A-scan measurements, incorporating the phase information of the sampling points. The algorithm involves data mapping and in-phase summation according to time-of-flight (TOF). Data mapping refers to the process of placing each of the sampling points to a two-/three-dimensional grid that represents the geometry model of the object being inspected. The value for each of the cells of the grid is a summation of all sampling points mapped into the cell. A sizing method based on the concept of 6 dB-drop is proposed to characterize the flaw boundary. The extents, orientation and the shape of the flaw can then be inferred to provide more information for life assessment calculations. Lab experiments are performed using a 10 MHz phased-array ultrasonic transducer to collect data from a cylinder material block with closely spaced artificial flaws and from a material block with a natural flaw. The developed method is used to process the experimental data to characterize the flaws. Using the developed method, the improvement of spatial resolution is observed. Results indicate that four closely spaced 0.794 mm-diameter flat-bottomed holes are clearly identified, and the quantification of size and orientation of the natural flaw is very close to the actual measurement made from digital microscopy after cutting the testing piece apart. PMID:25448426

  16. Artificial Reefs--A Coastal Classroom Project.

    ERIC Educational Resources Information Center

    Dindo, John J.

    1986-01-01

    Discusses the construction of artificial reefs for such uses as commercial fishing and recreational boating. Describes a class project in which students construct a small artificial reef and observe the changes over time in terms of temperature, salinity, flora and fauna. (TW)

  17. Artificial Respiration and Artificial Circulation

    PubMed Central

    Brook, Joseph; Brook, Morris H.; Lopez, Jose F.

    1965-01-01

    A training program in the newer methods of treatment of acute cardiopulmonary emergencies which was developed at the University Hospital, University of Saskatchewan, is reported. Artificial respiration by the chance rescuer, primary and secondary resuscitation, and post-resuscitation measures involving the use of special drugs and equipment by trained personnel are described. Figures and tables designed for wall-mounting and ready reference in an emergency situation are presented. Firstaid ventilatory adjuncts for use by trained personnel are classified and critically appraised, and the propriety of their use is emphasized. A plea is made to the medical profession and allied agencies to assume the responsibility of spreading knowledge of the new techniques more widely. Unless effective treatment is instituted early enough to prevent death or permanent anoxic damage to heart and brain, follow-through therapy will often be fruitless. PMID:14339303

  18. Volga shallow offing dynamics investigation based on space photography

    NASA Astrophysics Data System (ADS)

    Kovalev, E. E.

    Volga mouth region is investigated much better, than sea mouths of other river in Russia. In spite of the fact, not enough attention was devoted to Volga shallow offing. Volga shallow offing covers area about 9,3 ths. sq. km and has great significance for Caspian sea fish industry, because environmental conditions of this region and neighboring shallows of Northern Caspian Sea are determinative for passage, spawning and young fish growth of valuable sorts of fish. Insufficient investigation of Volga shallow offing is caused as by difficulty of access to this region through small depths (1 - 2 m) and intensive vegetation, so by data deficiency. Data deficiency notably intensified during recent 10 - 15 years, when significant reduction of hydro-meteorological investigations in Volga mouth area occurred. Gradual accumulation of on-site data, development of new technologies of map material analysis and space photography data processing allows to expect new scientific and application results. The purpose of our investigation concludes in determination of space-time mechanism of hydro-meteorological processes in Volga shallow offing based on space photography materials. Main results of our investigation can be summarized in following basic statements: (1) The most efficient method of Volga shallow offing investigation appears to be combined application of space photography data and on-site materials. (2) Electronic atlas of Volga shallow offing photomaps for the period of 1975 to 1997 yrs. is created. (3) Maps of above-water flora of Volga shallow offing for 1975 and 1997 yrs are created. (4) Electronic atlas of streams in Volga shallow offing for the period of 1975 to 1997 yrs. is created. On basis of it four maps of drain streams at Volga shallow offing are created. (5) Landscape zoning of Volga shallow offing is made and most active and passive regions are determined depending on drain streams and water vegetation. (6) It is shown, that development of Volga shallow

  19. Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1990-01-01

    In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.

  20. Accelerated shallow water modeling

    NASA Astrophysics Data System (ADS)

    Gandham, Rajesh; Medina, David; Warburton, Timothy

    2015-04-01

    ln this talk we will describe our ongoing developments in accelerated numerical methods for modeling tsunamis, and oceanic fluid flows using two dimensional shallow water model and/or three dimensional incompressible Navier Stokes model discretized with high order discontinuous Galerkin methods. High order discontinuous Galerkin methods can be computationally demanding, requiring extensive computational time to simulate real time events on traditional CPU architectures. However, recent advances in computing architectures and hardware aware algorithms make it possible to reduce simulation time and provide accurate predictions in a timely manner. Hence we tailor these algorithms to take advantage of single instruction multiple data (SIMD) architecture that is seen in modern many core compute devices such as GPUs. We will discuss our unified and extensive many-core programming library OCCA that alleviates the need to completely re-design the solvers to keep up with constantly evolving parallel programming models and hardware architectures. We will present performance results for the flow simulations demonstrating performance leveraging multiple different multi-threading APIs on GPU and CPU targets.

  1. Growth and mortality of Cichla spp. (Perciformes, Cichlidae) introduced in Volta Grande Reservoir (Grande River) and in a small artificial lake in Southeastern Brazil.

    PubMed

    Gomiero, L M; Carmassi, A L; Rondineli, G R; Villares Junior, G A; Braga, F M S

    2010-11-01

    The growth and mortality parameters were estimated through the analysis of length frequency distribution for species of Cichla spp. introduced into a lake in Leme (SP), and in Volta Grande reservoir (SP-MG). In Leme, Cichla kelberi presented larger frequency in the inferior classes of lengths, larger instantaneous rate of natural mortality, and smaller number of cohorts than C. kelberi and C. piquiti in Volta Grande. The values of growth performance obtained for the species were similar, corroborating the validity of the estimated growth and mortality parameters. The increase of the growth rate in small and less diverse environments occurs due to predation. The genus Cichla adapts well in locations in which it is introduced, however this adaptation shows itself to be strongly adjusted to each particular location, determining great plasticity and establishment capacity. PMID:21180920

  2. Close binaries in near and shallow contact stages

    NASA Astrophysics Data System (ADS)

    Zhu, L. Y.; Qian, S. B.; Zejda, M.; Mikulášek, Z.

    2013-02-01

    After a detailed investigation of new observations obtained by small telescopes, we found a group of near and shallow contact binaries with decreasing period including BS Vul, MR Com, EP Cep, ES Cep and V369 Cep. BS Vul and V369 Cep are primary-filling near-contact binaries, while MR Com, EP Cep and ES Cep are shallow contact binaries. With their decrease in period, BS Vul and V369 Cep will evolve to the shallow-contact systems with higher mass ratios, just like ES Cep. The period decease of shallow contact binaries could be caused by the combined effect of the thermal relaxation oscillation (TRO) and variable angular momentum loss (AML). This produces contact binaries in oscillating circles that evolve towards the lower mass ratio direction. That means systems resemble ES Cep will evolve to those systems with lower mass ratio, such as MR Com and EP Cep.

  3. Mississippi oxbow lake sediment quality during an artificial flood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface sediment quality was assessed during a 35-day artificial flood in a shallow (<1.5 m) oxbow lake along the Coldwater River, Mississippi, using Hyalella azteca 28-day bioassays. Seventeen pesticides were monitored in sediments before, during and after flooding, with increases in atrazine and ...

  4. Shallow flow vortex formation and control

    NASA Astrophysics Data System (ADS)

    Fu, Haojun

    Vortical structures in shallow flow past a vertical cylinder are addressed in this investigation. A cinema technique of digital particle image velocimetry (DPIV) provided quantitative representations of the wholefield flow patterns in both instantaneous and averaged forms. Techniques for passive and active control of these vortices, and their influence on the loading of the bed, were explored. In a fully-developed, laminar shallow flow, the unstable structure in the near-wake of the cylinder correlates with the horseshoe (necklace) vortex system about the upstream surface of the cylinder. A coherent varicose mode of vortex formation is observed in the near-wake, even though the classical large-scale vortex shedding is suppressed due to bed friction effects. It is also demonstrated that when the near-wake is stable at a sufficiently low value of Reynolds number, applications of external perturbations lead to destabilization of the wake. Classes of small-scale three-dimensional structures arise in a fully-turbulent shallow flow past a surface-piercing cylinder. A prevalent feature is an upward moving jet-like flow from the bed surface, through the center of the developing quasi-two-dimensional primary vortex, at a location in the very near-wake of the cylinder. Passive control via base-bleed through a narrow streamwise slot leads to substantially delay/attenuation of vortex formation in the near-wake. The large-scale near-wake structure is recoverable through combined positive-active control, in the form of rotational perturbations in the presence of small magnitude base bleed. These alterations of the near-wake structure occur in conjunction with modifications of the streamline topology and Reynolds stress at the bed, as well as the shallow approach flow. Active control via rotational perturbations of the cylinder at the most unstable shear-layer frequency promotes well-defined vortical structures in the separating shearlayer, which contribute to the earlier

  5. Inflatable artificial sphincter

    MedlinePlus

    ... works well. When you need to urinate, the cuff of the artificial sphincter can be relaxed so ... pain. An artificial sphincter has three parts: A cuff, which fits around your urethra, the tube that ...

  6. SHALLOW GROUNDWATER USE BY ALFALFA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One proposal for drainage water disposal is to reuse drainage water for irrigation of salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept of serial biological concentration requires in-situ crop water reuse from shallow gr...

  7. Non-classical shallow water flows

    NASA Astrophysics Data System (ADS)

    Edwards, Carina M.; Howison, S. D.; Ockendon, H.; Ockendon, J. R.

    2008-02-01

    This paper deals with violent discontinuities in shallow water flows with large Froude number F. On a horizontal base, the paradigm problem is that of the impact of two fluid layers in situations where the flow can be modelled as two smooth regions joined by a singularity in the flow field. Within the framework of shallow water theory, we show that, over a certain time-scale, this discontinuity may be described by a delta shock, which is a weak solution of the underlying conservation laws in which the depth and mass and momentum fluxes have both delta function and step function components. We also make some conjectures about how this model evolves from the traditional model for jet impacts in which a spout is emitted. For flows on a sloping base, we show that for flow with an aspect ratio of O(F-2) on a base with an O(1) or larger slope, the governing equations admit a new type of discontinuous solution that is also modelled as a delta shock. The physical manifestation of this discontinuity is a small tube' of fluid bounding the flow. The delta-shock conditions for this flow are derived and solved for a point source on an inclined plane. This latter delta-shock framework also sheds light on the evolution of the layer impact on a horizontal base

  8. Artificial Molecular Machines.

    PubMed

    Balzani; Credi; Raymo; Stoddart

    2000-10-01

    The miniaturization of components used in the construction of working devices is being pursued currently by the large-downward (top-down) fabrication. This approach, however, which obliges solid-state physicists and electronic engineers to manipulate progressively smaller and smaller pieces of matter, has its intrinsic limitations. An alternative approach is a small-upward (bottom-up) one, starting from the smallest compositions of matter that have distinct shapes and unique properties-namely molecules. In the context of this particular challenge, chemists have been extending the concept of a macroscopic machine to the molecular level. A molecular-level machine can be defined as an assembly of a distinct number of molecular components that are designed to perform machinelike movements (output) as a result of an appropriate external stimulation (input). In common with their macroscopic counterparts, a molecular machine is characterized by 1) the kind of energy input supplied to make it work, 2) the nature of the movements of its component parts, 3) the way in which its operation can be monitored and controlled, 4) the ability to make it repeat its operation in a cyclic fashion, 5) the timescale needed to complete a full cycle of movements, and 6) the purpose of its operation. Undoubtedly, the best energy inputs to make molecular machines work are photons or electrons. Indeed, with appropriately chosen photochemically and electrochemically driven reactions, it is possible to design and synthesize molecular machines that do work. Moreover, the dramatic increase in our fundamental understanding of self-assembly and self-organizational processes in chemical synthesis has aided and abetted the construction of artificial molecular machines through the development of new methods of noncovalent synthesis and the emergence of supramolecular assistance to covalent synthesis as a uniquely powerful synthetic tool. The aim of this review is to present a unified view of the field

  9. A Dynamic Eddy Viscosity Model for the Shallow Water Equations Solved by Spectral Element and Discontinuous Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Suckale, Jenny; Giraldo, Francis X.; Constantinescu, Emil

    2016-04-01

    We present the solution of the viscous shallow water equations where viscosity is built as a residual-based subgrid scale model originally designed for large eddy simulation of compressible [1] and stratified flows [2]. The necessity of viscosity for a shallow water model not only finds motivation from mathematical analysis [3], but is supported by physical reasoning as can be seen by an analysis of the energetics of the solution. We simulated the flow of an idealized wave as it hits a set of obstacles. The kinetic energy spectrum of this flow shows that, although the inviscid Galerkin solutions -by spectral elements and discontinuous Galerkin [4]- preserve numerical stability in spite of the spurious oscillations in the proximity of the wave fronts, the slope of the energy cascade deviates from the theoretically expected values. We show that only a sufficiently small amount of dynamically adaptive viscosity removes the unwanted high-frequency modes while preserving the overall sharpness of the solution. In addition, it yields a physically plausible energy decay. This work is motivated by a larger interest in the application of a shallow water model to the solution of tsunami triggered coastal flows. In particular, coastal flows in regions around the world where coastal parks made of mitigation hills of different sizes and configurations are considered as a means to deviate the power of the incoming wave. References [1] M. Nazarov and J. Hoffman (2013) "Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods" Int. J. Numer. Methods Fluids, 71:339-357 [2] S. Marras, M. Nazarov, F. X. Giraldo (2015) "Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES" J. Comput. Phys. 301:77-101 [3] J. F. Gerbeau and B. Perthame (2001) "Derivation of the viscous Saint-Venant system for laminar shallow water; numerical validation" Discrete Contin. Dyn. Syst. Ser. B, 1:89?102 [4] F

  10. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  11. An artificial muscle computer

    NASA Astrophysics Data System (ADS)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  12. Shallow-water conservation laws

    NASA Astrophysics Data System (ADS)

    Ostapenko, V. V.

    2015-10-01

    The derivation of basic conservation laws in the shallow-water theory from the multidimensional integral laws of conservation of mass and total momentum describing the plane-parallel flow of an ideal incompressible fluid above a horizontal bottom is proposed. The restrictions on flow parameters arising in this case have the integral form and are much weaker in comparison with the requirement of flow potentiality and the condition of long-wavelength approximation. The last fact substantiates the use of the shallow-water model for the mathematical modeling of a much wider class of wave flows, the parameters of which are not related directly to the restrictions of the long-wavelength approximation.

  13. Total artificial hearts: past, present, and future.

    PubMed

    Cohn, William E; Timms, Daniel L; Frazier, O H

    2015-10-01

    A practical artificial heart has been sought for >50 years. An increasing number of people succumb to heart disease each year, but the number of hearts available for transplantation remains small. Early total artificial hearts mimicked the pumping action of the native heart. These positive-displacement pumps could provide adequate haemodynamic support and maintain the human circulation for short periods, but large size and limited durability adversely affected recipients' quality of life. Subsequent research into left ventricular assist devices led to the use of continuous-flow blood pumps with rotating impellers. Researchers have attempted to integrate this technology into modern total artificial hearts with moderate clinical success. The importance of pulsatile circulation remains unclear. Future research is, therefore, needed into positive-displacement and rotary total artificial hearts. PMID:26031698

  14. Shallow cells in directional solidification

    NASA Technical Reports Server (NTRS)

    Merchant, G. J.; Davis, S. H.

    1989-01-01

    The existing theory on two-dimensional transitions (appropriate to thin parallel-plate geometries) is presented in such a way that it is possible to identify easily conditions for the onset of shallow cells. Conditions are given under which succinonitrile-acetone mixtures should undergo supercritical bifurcation in experimentally accessible ranges. These results suggest a means for the quantitative test of the Mullins and Sekerka (1964) model and its weakly nonlinear extensions.

  15. Impacts of Artificial Reefs on Surrounding Ecosystems

    NASA Astrophysics Data System (ADS)

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish

  16. Vortex Formation in Shallow Flows

    NASA Astrophysics Data System (ADS)

    Rockwell, Donald

    2006-11-01

    Vortical structures having a scale much larger than the depth of the flow, which arise in bluff body wakes, jets, and mixing layers generated in shallow layers, show distinctive features due to the influence of bed friction. Cinema techniques of high-image-density particle image velocimetry are employed to characterize quasi-two-dimensional and three-dimensional aspects of the vortex development in terms of: patterns of vorticity; flow topology involving definition of critical points; and global spectral and cross-spectral analyses, based on simultaneous time records at thousands of grid points of the cinema imaging. Taken together, these representations lead to an understanding of the relationship between coherent vortex development and unsteadiness along the bed and, furthermore, provide a basis for exploration of concepts generic to separated shear layers in shallow flows. These concepts include: suppression of a primary mode of vortex formation due to bed friction and emergence of another mode; resonant coupling between a gravity wave of the shallow layer and vortex formation, leading to large-scale vortices; and passive and active (open loop) control, which can either retard or enhance the onset of vortex formation. These studies suggest opportunities for further investigation on both experimental and numerical fronts. Collaboration with Haojun Fu, Alis Ekmekci, Jung-Chang Lin, and Muammer Ozgoren is gratefully acknowledged.

  17. 1982 THERMAL SHALLOW RESERVOIR TESTING

    SciTech Connect

    Mogen, P.; Pittinger, L.; Magers, M.

    1985-01-22

    An extensive study of the Thermal Shallow Reservoir at The Geysers was performed in 1982 to improve our understanding of the source and flow patterns of steam in the shallow anomaly and how they relate to the Thermal 4 blowout. This project included gathering and analyzing pressure transient, enthalpy, tracer and chemical data and developing a reservoir model that was consistent with this data. Following the pressure transient testing and analysis, a convection-plume with lateral-flow model was proposed. Subsequent analysis of enthalpy, tracer and chemical data corroborated this model. The high flowrate wells--Thermal 4, Thermal 10, Thermal 11 and Magma 1--produce from the high-pressure, high-permeability upflow zone. The source of this upflow is a limited fracture system connecting the shallow anomaly with the underlying main reservoir. The outlying low-pressure, low-permeability wells are supplied by lateral flow of steam from the central area. The pressure gradient from the core to the periphery is caused by condensation in the flanks.

  18. Alternative attractors of shallow lakes.

    PubMed

    Scheffer, M

    2001-07-17

    Ponds and shallow lakes can be very clear with abundant submerged plants, or very turbid due to a high concentration of phytoplankton and suspended sediment particles. These strongly contrasting ecosystem states have been found to represent alternative attractors with distinct stabilizing feedback mechanisms. In the turbid state, the development of submerged vegetation is prevented by low underwater light levels. The unprotected sediment frequently is resuspended by wave action and by fish searching for food causing a further decrease of transparency. Since there are no plants that could serve as refuges, zooplankton is grazed down by fish to densities insufficient to control algal blooms. In contrast, the clear state in eutrophic shallow lakes is dominated by aquatic macrophytes. The submerged macrophytes prevent sediment resuspension, take up nutrients from the water, and provide a refuge for zooplankton against fish predation. These processes buffer the impacts of increased nutrient loads until they become too high. Consequently, the response of shallow lakes to eutrophication tends to be catastrophic rather than smooth, and various lakes switch back and forth abruptly between a clear and a turbid state repeatedly without obvious external forcing. Importantly, a switch from a turbid to a stable clear state often can be invoked by means of biomanipulation in the form of a temporary reduction of the fish stock. PMID:12806081

  19. Simple explanations for shallow landslides!?

    NASA Astrophysics Data System (ADS)

    Graf, Frank; Rickli, Christian

    2016-04-01

    In order to find easily recordable and practicable parameters for estimating the resistance of steep slopes against superficial soil failure, 218 comprehensively documented shallow landslides triggered in forested area have been analysed. The parameters investigated are divided into three principal subject areas: soil mechanics, vegetation, and topography. From the soil mechanical perspective, the shear parameters angle of internal friction Φ' and cohesion c' were pivotal. Information on them derived from field classification, laboratory analyses of grain size distribution (USCS) as well as from direct shear and triaxial compression tests with corresponding soil material. In respect of vegetation, forest aspects were of particular interest e.g. tree species composition, degree of coverage, layering, development stage, health, and gap size. Topographically, the focus was on terrain morphology, inclination, exposition, and altitude. It turned out that applying a three-step filter based on the aforementioned parameter categories yielded a retrospectively explanation power of 97% (n=212). The respective main criteria that were serially applied are: soil mechanics: slope inclination α is less than 5° steeper than the angle of internal friction Φ' of the corresponding soil material vegetation: forests are in a multi-layered or well structured pole or tree wood stage with a tree coverage degree of > 40% topography: the line of slope - transverse profile of the area of shallow landslide is NOT concave-flat, flat-concave, or convex-concave The application of the first step, the "5° -criterion", revealed that about 50% (n=107) of the slopes with the superficial soil failures were more than 5° steeper than the angle of internal friction Φ' of the soil material. In the second step, the vegetation-criteria explained another 40% (n=90) insofar that the corresponding requirements were not met. The topography step, finally, showed that additional 15 shallow landslides (7

  20. The Study on the Migration of Radionuclides in the Shallow Land

    SciTech Connect

    Li, S.; Wang, Z.; Li, Z.; Zhao Y.; Guo, Z.; Guo, L.; Shi, Y.; Ogawa, H.; Maeda, T.; Matsumoto, J.; Mukai, M.; Tanaka, T.

    2002-02-25

    >From 1995 through 2001 a cooperative study project on the migration of radionuclides in shallow land was carried out by CIRP and JAERI, which covers field test, laboratory simulation test, other laboratory studies and related model development. The radionuclides studied involve 90Sr, 237Np, 238Pu. For comparison the nonradioactive elements Sr, Nd and Ce were also studied. The field test was performed both in aerated zone and aquifer zone of loess. In the aerated zone the nuclide migration in engineering materials were also studied. The study in the aerated zone was carried out in 9 pits with the size of 2m x 2m under natural conditions or artificial sprinkling conditions. The study in the aquifer was carried out in a new built Underground Research Facility with the area of 142m2. The test results show that the order of adsorption activity of the nuclide on the loess is 238Pu > 237Np > 90Sr and Nd, Ce > Sr. During the 3 years period of test the migration of 238Pu and Nd, Ce was not observable in both aerated zone and aquifer zone, the nuclide of 237Np migrated a small distance, and the nuclide of 90Sr had a relative large migration. The migration of the nuclides in engineering materials was not detected, which include cement, degraded cement, cement mortar, Chinese bentonite and Japanese bentonite.

  1. Artificial insemination in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial insemination is a relative simple yet powerful tool geneticists can employ for the propagation of economically important traits in livestock and poultry. In this chapter, we address the fundamental methods of the artificial insemination of poultry, including semen collection, semen evalu...

  2. Equine artificial insemination.

    PubMed

    Merkt, H

    1976-07-24

    The use and techniques of artificial insemination for horses in Germany over the last 30 years is described. Artificial insemination appears to produce pregnancy percentages equal to those from normal breeding methods and its continued availability under veterinary supervision is recommended in conditions where disease, disability or distance debar normal service. PMID:960520

  3. Onion artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  4. The influence of grid resolution on the prediction of natural and road-related shallow landslides

    NASA Astrophysics Data System (ADS)

    Penna, D.; Borga, M.; Aronica, G. T.; Brigandì, G.; Tarolli, P.

    2014-06-01

    This work evaluates the predictive power of the quasi-dynamic shallow landslide model QD-SLaM to simulate shallow landslide locations in a small-scale Mediterranean landscape, namely, the lower portion (2.6 km2) of the Giampilieri catchment, located in Sicily (Italy). The catchment was impacted by a sequence of high-intensity storms over the years 2007-2009, resulting in widespread landsliding, with a total landslide initiation area amounting to 2.6% of the basin area. The effect of high-resolution digital terrain models (DTMs) on the quality of model predictions is tested by considering four DTM resolutions: 2, 4, 10 and 20 m. Moreover, the impact of the dense forest road network on the model performance is evaluated by separately considering road-related landslides and natural landslides. The landslide model does not incorporate the description of road-related failures and is applied without calibration of the model parameters. The model predictive power is shown to be DTM-resolution dependent. Use of coarser resolution has a smoothing effect on terrain attributes, with local slope angles decreasing and contributing areas becoming larger. The percentage of watershed area represented by the model as unconditionally unstable (i.e. failing even without the addition of water from precipitation) ranges between 6.3% at 20 m DTM and 13.8% at 2 m DTM, showing an overestimation of the mapped landslide area. We consider this prediction as an indication for likely failing sites in future storms rather than areas proved stable during previous storms. When assessed over the sample of mapped non-road-related landslides, better model performances are reported for 4 and 10 m DTM resolution, thus highlighting the fact that higher DTM resolution does not necessarily mean better model performances. Model performances over road-related failures are lower than for the natural cases, and slightly increase with decreasing DTM resolution. These findings indicate that to realize the full

  5. Artificial reef observations from a manned submersible off southeast Florida

    USGS Publications Warehouse

    Shinn, E.A.; Wicklund, R.I.

    1989-01-01

    Examination of 16 artificial reef structures in depths ranging from 30-120m indicated that the highest numbers of fish are found around reefs in water shallower than 46m. Fewer fish, especially those with tropical coral reef affinities, <46m was probably caused by a thermocline. Algae and reef community encrusters, abundant on shallower structures, were absent below 46m. Structures that penetrated above the thermocline, such as upright oil rigs and a hopper barge, were also effective reefs. The open structure and high profile of the rigs enhance their use as artificial reefs by providing a range of well-aerated habitats. Greatest diversity and numbers of fish were observed at the Miami sewer outfall. -from Authors

  6. Horizontal drilling in shallow reservoirs

    SciTech Connect

    Murray, W.F. Jr.; Schrider, L.A.; McCallister, J.V.; Mazza, R.L.

    1993-12-31

    Belden & Blake and the US DOE will cofund a horizontal well to be drilled in the Clinton Sandstone as part of the DOE`s multi well program titled ``Horizontal Drilling in Shallow Geologic Complex Reservoirs.`` This well will be located in Mahoning County, Ohio in an area which has demonstrated above average Clinton gas production. To the best of our knowledge, this will be the first horizontal well drilled to the Clinton Sand formation in Ohio. Since many of the remaining Clinton Sand drilling sites are of poorer reservoir quality, they may not be developed unless technology such as horizontal drilling can be successfully demonstrated.

  7. Distinguishing features of shallow angle plunging jets

    NASA Astrophysics Data System (ADS)

    Deshpande, Suraj S.; Trujillo, Mario F.

    2013-08-01

    Numerical simulations employing an algebraic volume-of-fluid methodology are used to study the air entrainment characteristics of a water jet plunging into a quiescent water pool at angles ranging from θ = 10° to θ = 90° measured from the horizontal. Our previous study of shallow angled jets [S. S. Deshpande, M. F. Trujillo, X. Wu, and G. L. Chahine, "Computational and experimental characterization of a liquid jet plunging into a quiescent pool at shallow inclination," Int. J. Heat Fluid Flow 34, 1-14 (2012)], 10.1016/j.ijheatfluidflow.2012.01.011 revealed the existence of a clearly discernible frequency of ingestion of large air cavities. This is in contrast with chaotic entrainment of small air pockets reported in the literature in case of steeper or vertically plunging jets. In the present work, the differences are addressed by first quantifying the cavity size and entrained air volumes for different impingement angles. The results support the expected trend - reduction in cavity size (D43) as θ is increased. Time histories of cavity volumes in the vicinity of the impingement region confirm the visual observations pertaining to a near-periodic ingestion of large air volumes for shallow jets (10°, 12°), and also show that such cavities are not formed for steep or vertical jets. Each large cavity (defined as Dc/Dj ≳ 3) exists in close association with a stagnation point flow. A local mass and momentum balance shows that the high stagnation pressure causes a radial redirection of the jet, resulting in a flow that resembles the initial impact of a jet on the pool. In fact, for these large cavities, their speed matches closely Uimpact/2, which coincides with initial cavity propagation for sufficiently high Froude numbers. Furthermore, it is shown that the approximate periodicity of air entrainment scales linearly with Froude number. This finding is confirmed by a number of simulations at θ = 12°. Qualitatively, for steeper jets, such large stagnation

  8. Artificial ecosystem selection.

    PubMed

    Swenson, W; Wilson, D S; Elias, R

    2000-08-01

    Artificial selection has been practiced for centuries to shape the properties of individual organisms, providing Darwin with a powerful argument for his theory of natural selection. We show that the properties of whole ecosystems can also be shaped by artificial selection procedures. Ecosystems initiated in the laboratory vary phenotypically and a proportion of the variation is heritable, despite the fact that the ecosystems initially are composed of thousands of species and millions of individuals. Artificial ecosystem selection can be used for practical purposes, illustrates an important role for complex interactions in evolution, and challenges a widespread belief that selection is most effective at lower levels of the biological hierarchy. PMID:10890915

  9. A cellular control architecture for compliant artificial muscles.

    PubMed

    Odhner, Lael U; Ueda, Jun; Asada, H Harry

    2006-01-01

    Dividing an artificial muscle material into a network of small cells could provide performance benefits and eliminate unwanted behaviors such as hysteresis. This paper presents a scheme for the position control or compliance control of an artificial muscle having this kind of cellular structure. Each cell contracts or relaxes probabilistically in response to a global feedback control loop, which measures only the aggregate force and displacement of the muscle. The stochastic nature of the cells produces smooth, reliable global behavior in the artificial muscle. By choosing a control law such that the expected response of the artificial muscle is equal to the desired response, good tracking control is achieved. PMID:17946978

  10. Shallow (0-10) seismic investigation of a distressed earthen levee, New Orleans, USA

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.; Hicks, J.; Vera, E. E.

    2009-12-01

    earthen levee, shear modulus minima in a constructed profile, correlate with zones of estimated high saturation porosity (80%) high organic content and undercomapcted clay-rich sediments. We interpret that despite nominal full soil saturation, small in-situ intergaranular, free gas maintains Vp values low (~140 m/s). However, Vp/Vs ratios increase to values > 14 within gas-free sands of the underlying St. Bernard delta lobe complex (2000 -4000 yr) at shallow depths (~ 5m).

  11. Natural hazards in the Alps triggered by ski slope engineering and artificial snow production

    NASA Astrophysics Data System (ADS)

    de Jong, C.

    2012-04-01

    In the Alps there is increasing concern of man-made triggering of natural hazards in association with ski slope engineering and pressures from climate change. However literature on the topic is rare. Ski run development has been intensified in the past decade to accommodate a higher density of skiers. In order to absorb the increased flux of skiers promoted by continually increasing lift capacity, ski runs are subject to more and more enlargement, straightening and leveling. This has required large-scale re-leveling of slopes with the removal of soil and protective vegetation using heavy machinery during the summer season. Slope-ward incision on steep slopes, creation of artificial embankments by leeward deposition and development of straight ski runs perpendicular to steep slopes have resulted in both shallow and deep erosion, gullying, triggering of small landslides and even bedload transport in marginal channels. Other natural hazards have been triggered directly or indirectly due to intensification of artificial snow production. This has increased exponentially in the last decade in order to secure the skiing season under increasingly warm temperatures and erratic snowfall and decreasing snow depth and snow duration in association with climate change. The consequences are multiple. Firstly, in order to economize both costs and quantity of artificial snow production, ski runs are leveled as far as possible in order to avoid topographical irregularities, protruding vegetation or rocks. The combination of topsoil removal and prolonged duration of artificial snow cover results in a decreased vegetation cover and period as well as species alteration. Together with greatly decreased permeability of the underground, snowmelt and intensive summer precipitation trigger surface runoff, erosion and even small landslides. After more than a decade of intensive cover by artificial snow, most such steep ski runs at altitudes above 1400 m are reduced into highly erosive

  12. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  13. Artificial Sweeteners and Cancer

    MedlinePlus

    ... artificial sweeteners and cancer? Saccharin Studies in laboratory rats during the early 1970s linked saccharin with the ... cause cancer in laboratory animals .” Subsequent studies in rats showed an increased incidence of urinary bladder cancer ...

  14. Introduction to artificial intelligence

    SciTech Connect

    Gevarter, W.B.

    1987-09-01

    The author discusses the development of artificial intelligence (AI). He explains the basic elements of AI: Heuristic search, knowledge representation, AI languages and tools, Natural Language Processing, computer vision, expert systems and problem solving and planning.

  15. Monitoring of a slope affected by shallow landslides: preliminary results

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Zizioli, Davide; Bordoni, Massimiliano; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2013-04-01

    Shallow landslides can be defined as slope movements, due to extreme rainfall events, affecting superficial deposits of small thickness; their failure surface is, generally, located within the soil-bedrock interface. Although they involve small volumes of soil, due to their close proximity to urbanized areas, they cause significant damage to structures and infrastructures and, sometimes, human losses. Therefore, identifying at slope scale the soil hydrological and mechanical processes which control the shallow landslide triggering mechanisms is becoming of crucial interest in order to assess the shallow landslide susceptibility using physically based models and to develop early-warning system. For doing this an experimental monitoring station was installed in an area of the North-Eastern Oltrepo Pavese (Northern Apennines, Italy), where several shallow landslide events occurred in the last years. The objectives of the research are: (a) to monitor the saturated and unsaturated zone response to seasonal and extreme rainfall events in order to identify the processes that determine the formation of shallow landslides; (b) to determine how antecedent precipitation could affect pore pressure development. The test site slope is representative of other sites in Northern Apennines subjected to shallow landslides: it is characterized by medium-high gradient (more than 15°), the land use is constituted by trees and shrubs developed on abandoned vineyards, the bedrock is made up of gravel, sand and poorly cemented conglomerates. The geotechnical characterization of superficial deposits was based on soils analysis conducted according to the ASTM standard, including assessment of the physical parameters of materials (grain size distribution, bulk and dry densities and Atterberg Limits), the shear strength parameters (direct shear and triaxial tests). A pedological and mineralogical characterization of the site were also carried out. The experimental station consists in a

  16. Artificial light sources.

    PubMed

    Anderson, T F

    1986-04-01

    A wide variety of artificial light sources exists for use in the diagnosis and treatment of photosensitivity disorders. A discussion of the advantages and disadvantages of these light sources (including gas discharge arcs, fluorescent lamps, and other apparatus) illustrates the importance of matching the emission spectrum of the light source, the spectral response of the radiometer, and the photobiologic action spectrum. Environmental and occupational exposure to artificial light sources may contribute to photosensitivity disorders. PMID:3955892

  17. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  18. Acoustic MIMO communications in a very shallow water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  19. Heidegger and artificial intelligence

    SciTech Connect

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  20. Effects of light pollution on the emergent fauna of shallow marine ecosystems: Amphipods as a case study.

    PubMed

    Navarro-Barranco, Carlos; Hughes, Lauren Elizabeth

    2015-05-15

    Light pollution from coastal urban development is a widespread and increasing threat to biodiversity. Many amphipod species migrate between the benthos and the pelagic environment and light seems is a main ecological factor which regulates migration. We explore the effect of artificial lighting on amphipod assemblages using two kind of lights, LED and halogen, and control traps in shallow waters of the Great Barrier Reef. Both types of artificial light traps showed a significantly higher abundance of individuals for all species in comparison to control traps. LED lights showed a stronger effect over the amphipod assemblages, with these traps collecting a higher number of individuals and differing species composition, with some species showing a specific attraction to LED light. As emergent amphipods are a key ecological group in the shallow water environment, the impact of artificial light can affect the broader functioning of the ecosystem. PMID:25817311

  1. Shallow land burial technology: Humid

    NASA Astrophysics Data System (ADS)

    Davis, E. C.; Yeh, G. T.

    Trench lining and grouting, are being demonstrated and evaluated experimental trenches containing compacted low-level waste. Two finite-element hydrologic models were developed to model water movement and solute transport at a waste disposal site. Though the economic analysis of the two trench treatments favored Hypalon lining, results of field experiments examining waste hydrologic isolation favored the cement-bentonite grout treatment. Data from water pump-out and water pump-in tests suggest that the original goal of constructing watertight liners in three experimental trenches was not achieved. Trench-cover subsidence measured over two of the three lined trenches did not occur over any of the three grouted or three control (untreated) trenches. Results indicate that the cement-bentonite treatment provides a degree of waste isolation not afforded by the lined and control trenches and should be considered for use at shallow land burial (SLB) sites with water-related problems.

  2. Sentence Processing in an Artificial Language: Learning and Using Combinatorial Constraints

    ERIC Educational Resources Information Center

    Amato, Michael S.; MacDonald, Maryellen C.

    2010-01-01

    A study combining artificial grammar and sentence comprehension methods investigated the learning and online use of probabilistic, nonadjacent combinatorial constraints. Participants learned a small artificial language describing cartoon monsters acting on objects. Self-paced reading of sentences in the artificial language revealed comprehenders'…

  3. Shallow-water models for gravity currents

    NASA Astrophysics Data System (ADS)

    Montgomery, Patrick James

    Gravity currents, produced by the instantaneous release of a finite volume of dense fluid beneath a layer of lighter fluid and overlying a spatially-varying rigid bottom boundary, are modelled as discontinuous solutions to the systems of nonlinear hyperbolic conservation laws arising from a shallow-water model. Equations of motion for two stably-stratified fluids of constant density are derived for the incompressible Navier-Stokes Equations for small aspect ratio flow in an Eulerian fluid, and the equations are nondimensionalized using a gravity current scaling so that they may be stated as a first order system of partial differential equations. The model equations neglect the effects of turbulence, entrainment, density stratification, and viscosity, but include the Coriolis force, variable topography, and bottom friction. Special cases are stated for one-layer three-dimensional axisymmetric flow, and in the two-dimensional case for flow with a free surface, rigid lid, thin upper or lower layer, or small density differences. These equations are then stated as a nonlinear system of conservation laws. The model equations are classified as hyperbolic, with defined regions of hyperbolicity stated where possible. When in conservation form, discontinuous solutions are considered, and the Rankine-Hugoniot jump conditions derived for solutions which are trivial on one side of the shock. The initial release problem is shown to be well-posed by the method of localization. By approximating a gravity current front as a vertical discontinuity, the initial release problem is solved numerically by use of a relaxation method designed for systems of hyperbolic conservation laws and adapted to include boundary conditions and forcing terms. The usefulness of this method is demonstrated by several diagrams which show the effects of bottom slope and friction in the two-dimensional case, and of bottom slope and rotation in the three-dimensional one. Since the relaxation method is

  4. Microfluidic manipulation with artificial/bioinspired cilia.

    PubMed

    den Toonder, Jaap M J; Onck, Patrick R

    2013-02-01

    A recent development, inspired by nature, is the use of 'artificial cilia' to create pumping and/or mixing in microfluidic devices. Cilia are small hairs that can be found in biology and are used for (fluid) actuation and sensing. Microscopic actuators resembling cilia, actuated to move under the influence of various stimuli such as electrostatic field, magnetic field, and even light, have been developed by a number of groups and shown to be capable of generating flow and mixing in microfluidic environments. The research on artificial cilia started about a decade ago and is rapidly expanding. In addition to being relevant for potential application in lab-on-a-chip devices, the work on artificial cilia forms a beautiful example of how a biological system can form the successful basis for both scientific research and technological applications. In this review, we will give an overview of the most important approaches in this exciting field. PMID:23245658

  5. Artificial consciousness, artificial emotions, and autonomous robots.

    PubMed

    Cardon, Alain

    2006-12-01

    Nowadays for robots, the notion of behavior is reduced to a simple factual concept at the level of the movements. On another hand, consciousness is a very cultural concept, founding the main property of human beings, according to themselves. We propose to develop a computable transposition of the consciousness concepts into artificial brains, able to express emotions and consciousness facts. The production of such artificial brains allows the intentional and really adaptive behavior for the autonomous robots. Such a system managing the robot's behavior will be made of two parts: the first one computes and generates, in a constructivist manner, a representation for the robot moving in its environment, and using symbols and concepts. The other part achieves the representation of the previous one using morphologies in a dynamic geometrical way. The robot's body will be seen for itself as the morphologic apprehension of its material substrata. The model goes strictly by the notion of massive multi-agent's organizations with a morphologic control. PMID:17016730

  6. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads. PMID:18253168

  7. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  8. Doped Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, Cynthia; Libal, Andras; Reichhardt, Charles

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  9. Artificial gravity experiment satellites

    NASA Astrophysics Data System (ADS)

    Harada, Tadashi

    1992-07-01

    An overview of the conceptual study of an artificial gravity experiment satellite based on the assumption of a launch by the H-2 launch vehicle with a target launch date in the Year 2000 is presented. While many satellites provided with artificial gravity have been reported in relation to a manned Mars exploration spacecraft mission, the review has been conducted on missions and test subjects only for experimental purposes. Mission requirements were determined based on the results of reviews on the mission, test subjects, and model missions. The system baseline and development plan were based on the results of a study on conceptual structure and scale of the system, including measures to generate artificial gravity. Approximate scale of the system and arm length, mission orbit, visibility of the operation orbit from ground stations in Japan, and satellite attitude on the mission orbit are outlined.

  10. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  11. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    PubMed

    Reis, Vanessa Moura Dos; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future. PMID:27119151

  12. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil

    PubMed Central

    dos Reis, Vanessa Moura; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013–2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future. PMID:27119151

  13. Deep and shallow inelastic scattering

    SciTech Connect

    Ray, Heather

    2015-05-15

    In this session we focused on the higher energy deep and shallow inelastic particle interactions, DIS and SIS. DIS interactions occur when the energy of the incident particle beam is so large that the beam is able to penetrate the nucleons inside of the target nuclei. These interactions occur at the smallest level possible, that of the quark-gluon, or parton, level. SIS interactions occur in an intermediate energy range, just below the energy required for DIS interactions. The DIS cross section formula contains structure functions that describe our understanding of the underlying parton structure of nature. The full description of DIS interactions requires three structure functions: two may be measured in charged lepton or neutrino scattering, but one can only be extracted from neutrino DIS data. There are reasons to expect that the impact of nuclear effects could be different for neutrinos engaging in the DIS interaction, vs those felt by leptons. In fact, fits by the nCTEQ collaboration have found that the neutrino-Fe structure functions appear to differ from those extracted from lepton scattering data [1]. To better understand the global picture of DIS and SIS, we chose a three-pronged attack that examined recent experimental results, data fits, and latest theory predictions. Experimental results from neutrino and lepton scattering, as well as collider experiments, were presented.

  14. Shallow Carbon Sequestration Demonstration Project

    SciTech Connect

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  15. Atmospheric Vortices in Shallow Convection.

    NASA Astrophysics Data System (ADS)

    Hess, G. D.; Spillane, K. T.; Lourensz, R. S.

    1988-03-01

    Observations of funnel clouds over Port Phillip Bay, Victoria, Australia, indicate that they occur during outbreaks of cool air from the Southern Ocean advecting over the relatively warm bay waters. These clouds act as tracers for shallow convection vortices with dynamics similar to large dust devils. The related phenomena of waterspouts and tornadoes differ from these vortices by requiring deep convection and downdraft and updraft interactions associated with rain processes.Deardorff (1978a) suggests that a necessary condition for the formation of dust devils is /L of the order of 100 or more, where h is the convective boundary layer height and L the Obukhov length. Calculations of /L over the bay and over land for the days of observation are consistent with this suggestion. They indicate that significant rotation may occur at /L as low as 50. This information, if confirmed, may make it possible to use boundary layer numerical models to forecast likely conditions of dust devil occurrence over mesoscale regions, which would be of benefit to pilots of light aircraft and helicopters.

  16. Broadband performance of time-reversing arrays in shallow water

    NASA Astrophysics Data System (ADS)

    Sabra, Karim Ghazi

    Active acoustic time reversal is the process of recording the signal from a remote source with a transducer array, and then replaying the signal in a time-reversed fashion to retro-direct the replayed sound back to the remote source to form a retrofocus, in an unknown environment. Time-Reversing Arrays (TRAs) perform well in the absence of acoustic absorption losses and temporal changes in the environment when there is sufficient array aperture and high signal-to-noise ratio. Future active sonar and underwater communication systems for use in unknown shallow ocean waters may be developed from the automatic spatial and temporal focusing properties of TRAs. The performance of TRAs can be determined by four criteria: the size, the longevity and the field amplitude of the array's retrofocus, as well as the correlation of the retrofocus signal with a time-reversed version of the original signal. Four issues related to TRAs performance are investigated in this thesis: (i) the impact of noise, (ii) the influence of array and source motion, (iii) the effects of oceanic currents, and (iv) the effectiveness of blind deconvolution of the original signal via artificial time-reversal. Noise influences TRA performance twice because the array both listens and transmits. Degradation of TRA's performance caused by noise in the acoustic environment is investigated through an analytical formulation that can be reduced to an algebraic relationship for a simple noise model. Numerical experiments that illustrate this effort are also shown. Another limitation of TRA performance is the Doppler effect induced by the dynamic source-array configuration or the moving medium. Normal modes and parabolic equation simulations illustrate these influences for various oceanic waveguides and array geometry. Finally a novel blind deconvolution technique, artificial time-reversal (ATR), is developed for providing an estimate of an unknown source signal propagating in an unknown shallow oceanic

  17. Geomorphological mapping of shallow landslides using UAVs

    NASA Astrophysics Data System (ADS)

    Fiorucci, Federica; Giordan, Daniele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto

    2015-04-01

    The mapping of event shallow landslides is a critical activity, due to the large number of phenomena, mostly with small dimension, affecting extensive areas. This is commonly done through aerial photo-interpretation or through field surveys. Nowadays, landslide maps can be realized exploiting other methods/technologies: (i) airborne LiDARs, (ii) stereoscopic satellite images, and (iii) unmanned aerial vehicles (UAVs). In addition to the landslide maps, these methods/technologies allow the generation of updated Digital Terrain Models (DTM). In December 2013, in the Collazzone area (Umbria, Central Italy), an intense rainfall event triggered a large number of shallow landslides. To map the landslides occurred in the area, we exploited data and images obtained through (A) an airborne LiDAR survey, (B) a remote controlled optocopter (equipped with a Canon EOS M) survey, and (C) a stereoscopic satellite WorldView II MS. To evaluate the mapping accuracy of these methods, we select two landslides and we mapped them using a GPS RTK instrumentation. We consider the GPS survey as the benchmark being the most accurate system. The results of the comparison allow to highlight pros and cons of the methods/technologies used. LiDAR can be considered the most accurate system and in addition it allows the extraction and the classification of the digital surface models from the surveyed point cloud. Conversely, LiDAR requires additional time for the flight planning, and specific data analysis user capabilities. The analysis of the satellite WorldView II MS images facilitates the landslide mapping over large areas, but at the expenses of a minor resolution to detect the smaller landslides and their boundaries. UAVs can be considered the cheapest and fastest solution for the acquisition of high resolution ortho-photographs on limited areas, and the best solution for a multi-temporal analysis of specific landslide phenomena. Limitations are due to (i) the needs of optimal climatic

  18. Comparison between different approaches of modeling shallow landslide susceptibility: a case history in the area of Oltrepo Pavese, Northern Italy

    NASA Astrophysics Data System (ADS)

    Zizioli, D.; Meisina, C.; Valentino, R.; Montrasio, L.

    2012-04-01

    Shallow landslides are triggered by intense rainfalls of short duration. Even though they involve only small portions of hilly and mountainous terrains, they are the cause of heavy damages to people and infrastructures. The identification of shallow landslide prone-areas is, therefore, a necessity to plan mitigation measures. On the 27th and 28th of April 2009, the area of Oltrepo Pavese, northern Italy, was affected by a very intense rainfall event, which caused a great number of shallow landslides. These instability phenomena meanly occurred on slopes taken up by vineyards and caused damages to many roads and one human loss. On the basis of aerial photographs taken immediately after the event and field surveys, it was possible to detect more than 1,600 landslides. After acquiring all the information dealing with topography, geotechnical properties of the involved soils and land use, a susceptibility analysis on territorial scale has been carried out. The paper deals with the application and the comparison, on the study area, of different methods for the susceptibility assessment: a) the physically-based stability models TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model, Baum et al., 2008), which is designed for modelling the potential occurrences of shallow landslides by incorporating the transient pressure response to rainfall and downward infiltration processes and SLIP (Shallow Landslides Instability Prediction; Montrasio, 2000; Montrasio and Valentino, 2008), which allows to dynamically take into account the connection between the stability condition of a slope, the characteristics of the soil, and the rainfall amounts, including also previous rainfalls; b) the logistic regression and the Neural Artificial Network (ANN) that take into account some important predisposing factors in the study area (slope angle, landform classification, the potential solar radiation, soil thickness, permeability, topographic ruggedness index

  19. Artificial intelligence. Second edition

    SciTech Connect

    Winston, P.H.

    1984-01-01

    This book introduces the basic concepts of the field of artificial intelligence. It contains material covering the latest advances in control, representation, language, vision, and problem solving. Problem solving in design and analysis systems is addressed. Mitcell's version-space learning procedure, Morevec's reduced-images stereo procedure, and the Strips problem solver are covered.

  20. The Artificial Planet

    NASA Astrophysics Data System (ADS)

    Glover, D. R.

    An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

  1. Micromachined Artificial Haircell

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)

    2010-01-01

    A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.

  2. Artificial intelligence and robotics

    SciTech Connect

    Peden, I.C.; Braddock, J.V.; Brown, W.; Langendorf, R.M.

    1982-09-01

    This report examines the state-of-the-art in artificial intelligence and robotics technologies and their potential in terms of Army needs. Assessment includes battlefield technology, research and technology insertions, management considerations and recommendations related to research and development personnel, and recommendations regarding the Army's involvement in the automated plant.

  3. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  4. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  5. Applications of artificial intelligence

    SciTech Connect

    Gilmore, J.F.

    1984-01-01

    This book presents papers given at a conference on expert systems and artificial intelligence. Topics considered at the conference included the location of multiple faults by diagnostic expert systems, knowledge-based systems, natural language, image processing, computer vision, and identification systems.

  6. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  7. Artificial intelligence within AFSC

    NASA Technical Reports Server (NTRS)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  8. Database in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  9. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  10. Artificial limb connection

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1974-01-01

    Connection simplifies and eases donning and removing artificial limb; eliminates harnesses and clamps; and reduces skin pressures by allowing bone to carry all tensile and part of compressive loads between prosthesis and stump. Because connection is modular, it is easily modified to suit individual needs.

  11. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  12. Unconventional shallow biogenic gas systems

    USGS Publications Warehouse

    Shurr, G.W.; Ridgley, J.L.

    2002-01-01

    Unconventional shallow biogenic gas falls into two distinct systems that have different attributes. Early-generation systems have blanketlike geometries, and gas generation begins soon after deposition of reservoir and source rocks. Late-generation systems have ringlike geometries, and long time intervals separate deposition of reservoir and source rocks from gas generation. For both types of systems, the gas is dominantly methane and is associated with source rocks that are not thermally mature. Early-generation biogenic gas systems are typified by production from low-permeability Cretaceous rocks in the northern Great Plains of Alberta, Saskatchewan, and Montana. The main area of production is on the southeastern margin of the Alberta basin and the northwestern margin of the Williston basin. The huge volume of Cretaceous rocks has a generalized regional pattern of thick, non-marine, coarse clastics to the west and thinner, finer grained marine lithologies to the east. Reservoir rocks in the lower part tend to be finer grained and have lower porosity and permeability than those in the upper part. Similarly, source beds in the units have higher values of total organic carbon. Patterns of erosion, deposition, deformation, and production in both the upper and lower units are related to the geometry of lineament-bounded basement blocks. Geochemical studies show that gas and coproduced water are in equilibrium and that the fluids are relatively old, namely, as much as 66 Ma. Other examples of early-generation systems include Cretaceous clastic reservoirs on the southwestern margin of Williston basin and chalks on the eastern margin of the Denver basin. Late-generation biogenic gas systems have as an archetype the Devonian Antrim Shale on the northern margin of the Michigan basin. Reservoir rocks are fractured, organic-rich black shales that also serve as source rocks. Although fractures are important for production, the relationships to specific geologic structures are

  13. Shallow cumulus rooted in photosynthesis

    NASA Astrophysics Data System (ADS)

    Vila-Guerau Arellano, J.; Ouwersloot, H.; Horn, G.; Sikma, M.; Jacobs, C. M.; Baldocchi, D.

    2014-12-01

    We investigate the interaction between plant evapotranspiration, controlled by photosynthesis (for a low vegetation cover by C3 and C4 grasses), and the moist thermals that are responsible for the formation and development of shallow cumulus clouds (SCu). We perform systematic numerical experiments at fine spatial scales using large-eddy simulations explicitly coupled to a plant-physiology model. To break down the complexity of the vegetation-atmospheric system at the diurnal scales, we design the following experiments with increasing complexity: (a) clouds that are transparent to radiation, (b) clouds that shade the surface from the incoming shortwave radiation and (c) plant stomata whose apertures react with an adjustment in time to cloud perturbations. The shading by SCu leads to a strong spatial variability in photosynthesis and the surface energy balance. As a result, experiment (b) simulates SCu that are characterized by less extreme and less skewed values of the liquid water path and cloud-base height. These findings are corroborated by the calculation of characteristics lengths scales of the thermals and clouds using autocorrelation and spectral analysis methods. We find that experiments (a) and (b) are characterized by similar cloud cover evolution, but different cloud population characteristics. Experiment (b), including cloud shading, is characterized by smaller clouds, but closer to each other. By performing a sensitivity analysis on the exchange of water vapor and carbon dioxide at the canopy level, we show that the larger water-use efficiency of C4 grass leads to two opposing effects that directly influence boundary-layer clouds: the thermals below the clouds are more vigorous and deeper driven by a larger buoyancy surface flux (positive effect), but are characterized by less moisture content (negative effect). We conclude that under the investigated mid-latitude atmospheric and well-watered soil conditions, SCu over C4 grass fields is characterized

  14. Physiological Considerations of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.

    1985-01-01

    Reasons for the development of artificial gravity environments on spacecraft are outlined. The physiological effects of weightlessness on the human cardiovascular skeletal, and vestibular systems are enumerated. Design options for creating artificial gravity environments are shown.

  15. Nanocontroller update: building a better artificial neuron.

    PubMed

    Frenger, Paul

    2002-01-01

    Recent progress in microprocessor design has produced sophisticated 8-bit single-chip microcontrollers in small packages. These user-programmable "nanocontrollers", some with as few as eight pins, now include a variety of linear on-chip components. Miniscule complex mixed digital and analog systems are now possible. This paper outlines some of these advances, then describes how using these new microcontroller features to create a better artificial neuron have improved the author's ten-year-old neural network design. PMID:12085647

  16. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  17. Rearing insects on artificial diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are reared in the laboratory for various purposes. They may be reared either on their natural food or artificial diets. Developing artificial diets may be difficult and time consuming but once optimized, artificial diets usually are simple to prepare and easy to use. Because they are process...

  18. Physiological Considerations of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.

    1985-01-01

    Weightlessness produces significant physiological changes. Whether these changes will stabilize or achieve medical significance is not clear. Artificial gravity is the physiological countermeasure, and the tether system represents an attractive approach to artificial gravity. The need for artificial gravity is examined.

  19. Shallow-deep transitions of impurities in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Ranjan, V.; Singh, Vijay A.

    2003-03-01

    We study the hydrogenic impurity in a quantum dot (QD). We employ the effective mass theory with realistic barrier and variable effective mass. The model is simple, but it predicts features not previously observed. We observe that the shallow hydrogenic impurity becomes deeper as the dot size (R) is reduced and with further reduction of the dot size it becomes shallow and at times resonant with the conduction band. Such a shallow-deep (SHADE) transition is investigated and a critical size in terms of the impurity Bohr radius (aI*) is identified. A relevant aspect of a QD is reduction in the dielectric constant, epsilon, as its size decreases. Employing a size dependent epsilon(R), we demonstrate that the impurity level gets exceptionally deep in systems for which aI* is small. Thus, carrier "freeze out" is a distinct possibility in a wide class of materials such as ZnS, CdS, etc. The behavior of the impurity level with dot size is understood on the basis of simple scaling arguments. Calculations are presented for III-V (AlGaAs) and II-VI (ZnS, CdS) QDs. We speculate that the deepening of the impurity level is related to the high luminescence efficiency of QDs. It is suggested that quantum dots offer an opportunity for defect engineering.

  20. Shallow-deep transitions of impurities in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Ranjan, V.; Singh, Vijay A.

    2001-06-01

    We study the hydrogenic impurity in a quantum dot (QD). We employ the effective mass theory with realistic barrier and variable effective mass. The model is simple, but it predicts features not previously observed. We observe that the shallow hydrogenic impurity becomes deeper as the dot size (R) is reduced and with further reduction of the dot size it becomes shallow and at times resonant with the conduction band. Such a shallow-deep (SHADE) transition is investigated and a critical size in terms of the impurity Bohr radius (aI*) is identified. A relevant aspect of a QD is reduction in the dielectric constant, ɛ, as its size decreases. Employing a size dependent ɛ(R), we demonstrate that the impurity level gets exceptionally deep in systems for which aI* is small. Thus, carrier "freeze out" is a distinct possibility in a wide class of materials such as ZnS, CdS, etc. The behavior of the impurity level with dot size is understood on the basis of simple scaling arguments. Calculations are presented for III-V (AlGaAs) and II-VI (ZnS, CdS) QDs. We speculate that the deepening of the impurity level is related to the high luminescence efficiency of QDs. It is suggested that quantum dots offer an opportunity for defect engineering.

  1. Sediment dynamics in shallow tidal basins: In situ observations, satellite retrievals, and numerical modeling in the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Carniello, L.; Silvestri, S.; Marani, M.; D'Alpaos, A.; Volpe, V.; Defina, A.

    2014-04-01

    The morphological evolution of shallow tidal systems strongly depends on gradients in transport that control sediment erosion and deposition. A spatially refined quantitative description of suspended sediment patterns and dynamics is therefore a key requirement to address issues connected with dynamical trends, responses, and conservation of these systems. Here we use a combination of numerical models of sediment transport dynamics, high temporal resolution point observations, and high spatial resolution remote sensing data to overcome the intrinsic limitations of traditional monitoring approaches and to establish the robustness of numerical models in reproducing space-time suspended sediment concentration (SSC) patterns. The comparison of SSC distributions in the Venice Lagoon (Italy) computed with a numerical model with SSC retrievals from remote sensing data allows us to define the ability of the model to properly describe spatial patterns and gradients in the SSC fields. The use of point observations similarly allows us to constrain the model temporally, thus leading to a complete space-time evaluation of model abilities. Our results highlight the fundamental control exerted on sediment transport intensity and patterns by the sheltering effect associated with artificial and natural intertidal landforms. Furthermore, we show how the stabilizing effect of benthic vegetation is a main control of sediment dynamics at the system scale, confirming a notion previously established in the laboratory or at small field scales.

  2. On the Calculation of Shallow Shells

    NASA Technical Reports Server (NTRS)

    Ambartsumyan, S. A.

    1956-01-01

    This paper considers a sufficiently thin shallow shell of nonzero Gaussian curvature. It also presents a system of symmetrically constructed differential equations, constructed by the mixed method through the stress function and the displpacement function.

  3. Growth Characteristics Downstream of a Shallow Bump: Computation and Experiment

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Grosch, Chester E.

    1996-01-01

    Measurements of the velocity field created by a shallow bump on a wall revealed that an energy peak in the spanwise spectrum associated with the driver decays and an initially small-amplitude secondary mode rapidly grows with distance downstream of the bump. Linear theories could not provide an explanation for this growing mode. The present Navier-Stokes simulation replicates and confirms the experimental results. Insight into the structure of the flow was obtained from a study of the results of the calculations and is presented.

  4. Mixing and shocks in geophysical shallow water models

    NASA Astrophysics Data System (ADS)

    Jacobson, Tivon

    In the first section, a reduced two-layer shallow water model for fluid mixing is described. The model is a nonlinear hyperbolic quasilinear system of partial differential equations, derived by taking the limit as the upper layer becomes infinitely deep. It resembles the shallow water equations, but with an active buoyancy. Fluid entrainment is supposed to occur from the upper layer to the lower. Several physically motivated closures are proposed, including a robust closure based on maximizing a mixing entropy (also defined and derived) at shocks. The structure of shock solutions is examined. The Riemann problem is solved by setting the shock speed to maximize the production of mixing entropy. Shock-resolving finite-volume numerical models are presented with and without topographic forcing. Explicit shock tracking is required for strong shocks. The constraint that turbulent energy production be positive is considered. The model has geophysical applications in studying the dynamics of dense sill overflows in the ocean. The second section discusses stationary shocks of the shallow water equations in a reentrant rotating channel with wind stress and topography. Asymptotic predictions for the shock location, strength, and associated energy dissipation are developed by taking the topographic perturbation to be small. The scaling arguments for the asymptotics are developed by demanding integrated energy and momentum balance, with the result that the free surface perturbation is of the order of the square root of the topographic perturbation. Shock formation requires that linear waves be nondispersive, which sets a solvability condition on the mean flow and which leads to a class of generalized Kelvin waves. Two-dimensional shock-resolving numerical simulations validate the asymptotic expressions and demonstrate the presence of stationary separated flow shocks in some cases. Geophysical applications are considered. Overview sections on shock-resolving numerical methods

  5. Stably Stratified Flow in a Shallow Valley

    NASA Astrophysics Data System (ADS)

    Mahrt, L.

    2016-07-01

    Stratified nocturnal flow above and within a small valley of approximately 12-m depth and a few hundred metres width is examined as a case study, based on a network of 20 sonic anemometers and a central 20-m tower with eight levels of sonic anemometers. Several regimes of stratified flow over gentle topography are conceptually defined for organizing the data analysis and comparing with the existing literature. In our case study, a marginal cold pool forms within the shallow valley in the early evening but yields to larger ambient wind speeds after a few hours, corresponding to stratified terrain-following flow where the flow outside the valley descends to the valley floor. The terrain-following flow lasts about 10 h and then undergoes transition to an intermittent marginal cold pool towards the end of the night when the larger-scale flow collapses. During this 10-h period, the stratified terrain-following flow is characterized by a three-layer structure, consisting of a thin surface boundary layer of a few metres depth on the valley floor, a deeper boundary layer corresponding to the larger-scale flow, and an intermediate transition layer with significant wind-directional shear and possible advection of lee turbulence that is generated even for the gentle topography of our study. The flow in the valley is often modulated by oscillations with a typical period of 10 min. Cold events with smaller turbulent intensity and duration of tens of minutes move through the observational domain throughout the terrain-following period. One of these events is examined in detail.

  6. Artificial neural superposition eye.

    PubMed

    Brückner, Andreas; Duparré, Jacques; Dannberg, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2007-09-17

    We propose an ultra-thin imaging system which is based on the neural superposition compound eye of insects. Multiple light sensitive pixels in the footprint of each lenslet of this multi-channel configuration enable the parallel imaging of the individual object points. Together with the digital superposition of related signals this multiple sampling enables advanced functionalities for artificial compound eyes. Using this technique, color imaging and a circumvention for the trade-off between resolution and sensitivity of ultra-compact camera devices have been demonstrated in this article. The optical design and layout of such a system is discussed in detail. Experimental results are shown which indicate the attractiveness of microoptical artificial compound eyes for applications in the field of machine vision, surveillance or automotive imaging. PMID:19547555

  7. Whither Artificial Reproduction?

    PubMed Central

    Percival-Smith, Robin

    1985-01-01

    Artificial reproduction now offers sub fertile couples a number of options which raise scientific and ethical questions. This article discusses the Canadian and British experiences in formulating regulations and legislation in this important field. Current work on mammalian embryo research foretells the direction which human research will take. This article stresses the need for family physicians' participation in the ethical decisions that accompany these new developments. PMID:21274181

  8. Applications Of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Trivedi, Mohan M.; Gilmore, John F.

    1986-03-01

    Intelligence evolves out of matter, so said the Sankhya philosophers of ancient India. The discipline of artificial intelligence (Al), which was established some 30 years ago, has confirmed the validity of the above assertion. Recently, a number of AI applications have been successfully demonstrated, generating a great deal of excitement and interest in scientific and technical circles. In this special issue of Optical Engineering a representative set of applications that incorporate Al principles is presented.

  9. Developing better artificial bones.

    PubMed

    Flinn, Edward D

    2003-01-01

    Researchers at the Center for Commercial Applications of Combustion in Space at the Colorado School of Mines are preparing the Space-DRUMS (Dynamically Responding Ultrasonic Matrix Systems) materials processing facility for transport to the International Space Station. The Space-DRUMS uses acoustic pressure beams to maintain the position of a suspended liquid or solid. Space-DRUMS will be used to extend experiments with tricalcium phosphate in the development of artificial bone material. PMID:12524712

  10. Artificial gravity Mars spaceship

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1989-01-01

    Experience gained in the study of artificial gravity for a manned trip to Mars is reviewed, and a snowflake-configured interplanetary vehicle cluster of habitat modules, descent vehicles, and propulsion systems is presented. An evolutionary design is described which permits sequential upgrading from five to nine crew members, an increase of landers from one to as many a three per mission, and an orderly, phased incorporation of advanced technologies as they become available.

  11. [Liver and artificial liver].

    PubMed

    Chamuleau, R A

    1998-06-01

    Despite good results of orthotopic liver transplantation in patients with fulminant hepatic failure the need still exists for an effective and safe artificial liver, able to temporarily take over the complex liver function so as to bridge the gap with transplantation or regeneration. Attempts to develop non-biological artificial livers have failed, mostly when controlled clinical trials were performed. In the last decade several different types of bioartificial livers have been devised, in which the biocomponent consists of freshly isolated porcine hepatocytes or a human hepatoblastoma cell line. The majority use semipermeable hollow fibers known from artificial kidney devices. The liver cells may lie either inside or outside the lumen of these fibers. In vitro analysis of liver function and animal experimental work showing that the bioartificial liver increases survival justify clinical application. Bioartificial livers are connected to patients extracorporeally by means of plasmapheresis circuit for periods of about 6 hours. In different trials about 40 patients with severe liver failure have been treated. No important adverse effects have not been reported in these phase I trials. Results of controlled studies are urgently needed. As long as no satisfactory immortalised human liver cell line with good function is available, porcine hepatocytes will remain the first choice, provided transmission of porcine pathogens to man is prevented. PMID:9752034

  12. Polish artificial heart program.

    PubMed

    El Fray, Miroslawa; Czugala, Monika

    2012-01-01

    Despite significant advances in the development of artificial heart substitutes, anthrombogenic materials and surfaces remain to be the main challenge for implants, which can prevent thrombosis that leads to rejection. The goal of material engineering is essentially to design polymeric materials of high durability and optimal thrombogenicity in mechanical heart prosthesis, being developed recently in a frame of the polish artificial heart program. For these reasons, various surface modifications are being continuously developed for a 'gold standard' material, which is a polyurethane (PU) thermoplastic elastomer and they will be shortly reviewed. However, new polymeric materials can meet medical word's attention if they are able to provide similar or better characteristics in term of bulk and surface properties. Specifically, if they will show appropriate surface topography, which is the most influential in determining the response of live tissues toward biomaterials. Nanostructured polyester thermoplastic elastomers of high biodurability as an alternative to PU materials for artificial heart are challenging new materials, and they will be discussed briefly. PMID:22110047

  13. Biologically inspired robots as artificial inspectors

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  14. Carbon dioxide fixation by artificial photosynthesis

    SciTech Connect

    Ibusuki, Takashi; Koike, Kazuhide; Ishitani, Osamu

    1993-12-31

    Green plants can absorb atmospheric CO{sub 2} and transform it to sugars, carbohydrates through their photosynthetic systems, but they become the source of CO{sub 2} when they are dead. This is the reason why artificial leaves which can be alive forever should be developed to meet with global warming due to the increase of CO{sub 2} concentration. The goal of artificial photosynthesis is not to construct the same system as the photosynthetic one, but to mimic the ability of green plants to utilize solar energy to make high energy chemicals. Needless to say, the artificial photosynthetic system is desired to be as simple as possible and to be as efficient as possible. From the knowledge on photosynthesis and the results of previous investigations, the critical components of artificial photosynthetic system are understood as follows: (1) light harvesting chromophore, (2) a center for electron transfer and charge separation, (3) catalytic sites for converting small molecules like water and CO{sub 2} (mutilelectron reactions) which are schematically described.

  15. Geophysical characterization of shallow karst

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Jordi, Claudio; Sollberger, David; Doetsch, Joseph; Kaufmann, Manuela; Robertsson, Johan; Maurer, Hansruedi; Greenhalgh, Stewart

    2015-04-01

    -wave velocity tomograms and resistivity images exhibit significant parameter variations in both the horizontal and vertical directions; the P-wave tomograms, for example, indicate velocity changes from a few hundred to a few thousand m/s over short distances for carbonate rocks close to the surface. These variations in physical parameters are likely caused by changes in the lithology and in the degree of karstification, with the latter seeming to be the dominating factor. With respect to the karst impact on seismic wave propagation, we observe pronounced lateral changes in the characteristics of the densely sampled wavefield. For example, distinct changes in the surface-wavetrain characteristics can be related to strong lateral seismic-velocity changes observed in the tomograms. ERT-derived resistivity models show sub-horizontal layering at the 10-meter scale with an orientation (dip, strike) that agrees with the geological model of the area. The complementary EM soundings largely concur with the shallow ERT models, but ERT and EM results show only moderate correlation with the P-wave tomograms indicating that seismic and electric/electromagnetic properties of the karstified carbonates are only weakly linked. The GPR images show shallowly dipping reflectors with dips that are in overall agreement with observed dips of the surface-exposed bedding.

  16. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments

    USGS Publications Warehouse

    Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.

    2000-01-01

    High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.

  17. Contrasting Fish Behavior in Artificial Seascapes with Implications for Resources Conservation

    PubMed Central

    Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe

    2013-01-01

    Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the

  18. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  19. Three dimensional water quality modeling of a shallow subtropical estuary.

    PubMed

    Wan, Yongshan; Ji, Zhen-Gang; Shen, Jian; Hu, Guangdou; Sun, Detong

    2012-12-01

    Knowledge of estuarine hydrodynamics and water quality comes mostly from studies of large estuarine systems. The processes affecting algae, nutrients, and dissolved oxygen (DO) in small and shallow subtropical estuaries are relatively less studied. This paper documents the development, calibration, and verification of a three dimensional (3D) water quality model for the St. Lucie Estuary (SLE), a small and shallow estuary located on the east coast of south Florida. The water quality model is calibrated and verified using two years of measured data. Statistical analyses indicate that the model is capable of reproducing key water quality characteristics of the estuary within an acceptable range of accuracy. The calibrated model is further applied to study hydrodynamic and eutrophication processes in the estuary. Modeling results reveal that high algae concentrations in the estuary are likely caused by excessive nutrient and algae supplies in freshwater inflows. While algal blooms may lead to reduced DO concentrations near the bottom of the waterbody, this study indicates that stratification and circulation induced by freshwater inflows may also contribute significantly to bottom water hypoxia in the estuary. It is also found that high freshwater inflows from one of the tributaries can change the circulation pattern and nutrient loading, thereby impacting water quality conditions of the entire estuary. Restoration plans for the SLE ecosystem need to consider both a reduction of nutrient loading and regulation of the freshwater discharge pattern. PMID:23122270

  20. Polar Vortices in Shallow Water Simulations of Gas Giants

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Emanuel, Kerry

    2014-11-01

    Jupiter, Saturn and Neptune each exhibit unique polar atmospheric behavior. Assuming these flows are due to shallow dynamics, we explore the parameter space potentially responsible for the difference between each planet's polar features. The best observations have come from the Cassini misson to Saturn. Among many discoveries, a massive, warm and cyclonic vortex has been observed on each pole. The South Polar Vortex (SPV), specifically, has the highest measured temperatures on Saturn, a double eyewall, deep eye and a rapid cyclonic jet with the second highest windspeeds observed on the planet. Numerous small, vortical, and potentially convective systems are embedded within the large-scale flow of the SPV. Given these observations, we explore one potential mechanism of polar vortex maintenance: up-scale, poleward vorticity flux due to vortical hot towers (VHTs). Large GCMs cannot yet resolve local deep convection in the weather layer. Using a reduced gravity shallow water model on a polar beta plane, we represent convective towers with mass-flux driven vortex pairs and allow them to move freely. We show that there exist multiple regimes of polar flow, and that small and/or quickly rotating planets with sufficient total energy favor a polar cyclone in our simulations.

  1. Artificial intelligence in hematology.

    PubMed

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems. PMID:16203606

  2. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  3. Artificial gravity field

    NASA Astrophysics Data System (ADS)

    Markley, Larry C.; Lindner, John F.

    Using computer algebra to run Einstein's equations "backward", from field to source rather than from source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that generates the field contains exotic matter of negative energy density but also relies importantly on pressures and shears, which we describe. The same techniques can be readily used to design other interesting spacetimes and thereby elucidate the connection between the source and field in general relativity.

  4. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  5. Artificial Vision: Vision of a Newcomer

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Sawai, Hajime; Tano, Yasuo

    The Japanese Consortium for an Artificial Retina has developed a new stimulating method named Suprachoroidal-Transretinal Stimulation (STS). Using STS, electrically evoked potentials (EEPs) were effectively elicited in Royal College of Surgeons (RCS) rats and in rabbits and cats with normal vision, using relatively small stimulus currents, such that the spatial resolution appeared to be adequate for a visual prosthesis. The histological analysis showed no damage to the rabbit retina when electrical currents sufficient to elicit distinct EEPs were applied. It was also shown that transcorneal electrical stimulation (TES) to the retina prevented the death of retinal ganglion cells (RGCs). STS, which is less invasive than other retinal prostheses, could be one choice to achieve artificial vision, and the optimal parameters of electrical stimulation may also be effective for the neuroprotection of residual RGCs.

  6. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Herlong, H.H.; Bradley, P.M.

    2001-01-01

    Microbial communities indigenous to a shallow groundwater system near Beaufort, SC, degraded milligram per liter concentrations of methyl tert-butyl ether (MTBE) under natural and artificial oxic conditions. Significant MTBE biodegradation was observed where anoxic, MTBE-contaminated groundwater discharged to a concrete-lined ditch. In the anoxic groundwater adjacent to the ditch, concentrations of MTBE were > 1 mg/L. Where groundwater discharge occurs, dissolved oxygen (DO) concentrations beneath the ditch exceeded 1.0 mg/L to a depth of 1.5 m, and MTBE concentrations decreased to <1 ??g/L prior to discharge. MTBE mass flux calculations indicate that 96% of MTBE mass loss occurs in the relatively small oxic zone prior to discharge. Samples of a natural microbial biofilm present in the oxic zone beneath the ditch completely degraded [U-14C]MTBE to [14C]CO2 in laboratory liquid culture studies, with no accumulation of intermediate compounds. Upgradient of the ditch in the anoxic, MTBE and BTEX-contaminated aquifer, addition of a soluble oxygen release compound resulted in oxic conditions and rapid MTBE biodegradation by indigenous microorganisms. In an observation well located closest to the oxygen addition area, DO concentrations increased from 0.4 to 12 mg/L in <60 days and MTBE concentrations decreased from 20 to 3 mg/L. In the same time period at a downgradient observation well, DO increased from <0.2 to 2 mg/L and MTBE concentrations decreased from 30 to <5 mg/L. These results indicate that microorganisms indigenous to the groundwater system at this site can degrade milligram per liter concentrations of MTBE under natural and artificial oxic conditions.

  7. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions.

    PubMed

    Landmeyer, J E; Chapelle, F H; Herlong, H H; Bradley, P M

    2001-03-15

    Microbial communities indigenous to a shallow groundwater system near Beaufort, SC, degraded milligram per liter concentrations of methyl tert-butyl ether (MTBE) under natural and artificial oxic conditions. Significant MTBE biodegradation was observed where anoxic, MTBE-contaminated groundwater discharged to a concrete-lined ditch. In the anoxic groundwater adjacent to the ditch, concentrations of MTBE were > 1 mg/L. Where groundwater discharge occurs, dissolved oxygen (DO) concentrations beneath the ditch exceeded 1.0 mg/Lto a depth of 1.5 m, and MTBE concentrations decreased to <1 microg/L prior to discharge. MTBE mass flux calculations indicate that 96% of MTBE mass loss occurs in the relatively small oxic zone prior to discharge. Samples of a natural microbial biofilm present in the oxic zone beneath the ditch completely degraded [U-14C]MTBE to [14C]CO2 in laboratory liquid culture studies, with no accumulation of intermediate compounds. Upgradient of the ditch in the anoxic, MTBE- and BTEX-contaminated aquifer, addition of a soluble oxygen release compound resulted in oxic conditions and rapid MTBE biodegradation by indigenous microorganisms. In an observation well located closest to the oxygen addition area, DO concentrations increased from 0.4 to 12 mg/L in <60 days and MTBE concentrations decreased from 20 to 3 mg/L. In the same time period at a downgradient observation well, DO increased from <0.2 to 2 mg/L and MTBE concentrations decreased from 30 to <5 mg/L. These results indicate that microorganisms indigenous to the groundwater system at this site can degrade milligram per liter concentrations of MTBE under natural and artificial oxic conditions. PMID:11347923

  8. A Shallow Layer Approach for Geo-flow emplacement

    NASA Astrophysics Data System (ADS)

    Costa, A.; Folch, A.; Mecedonio, G.

    2009-04-01

    Geophysical flows such as lahars or lava flows severely threat the communities located on or near the volcano flanks. Risks and damages caused by the propagation of this kind of flows require a quantitative description of this phenomenon and reliable tools for forecasting their emplacement. Computational models are a valuable tool for planning risk mitigation countermeasures, such as human intervention to force flow diversion, artificial barriers, and allow for significant economical and social benefits. A FORTRAN 90 code based on a Shallow Layer Approach for Geo-flows (SLAG) for describing transport and emplacement of diluted lahars, water and lava was developed in both serial and parallel version. Three rheological models, such as those describing i) a viscous, ii) a turbulent, and iii) a dilatant flow respectively, were implemented in order to describe transport of lavas, water and diluted lahars. The code was made user-friendly by creating some interfaces that allow the user to easily define the problem, extract and interpolate the topography of the simulation domain. Moreover SLAG outputs can be written in both GRD format (e.g., Surfer), NetCDF format, or visualized directly in GoogleEarth. In SLAG the governing equations were treated using a Godunov splitting method following George (2008) algorithm based on a Riemann solver for the shallow water equations that decomposes an augmented state variable the depth, momentum, momentum flux, and bathymetry into four propagating discontinuities or waves. For our application, the algorithm was generalized for solving the energy equation. For validating the code in simulating real geophysical flows, we performed few simulations the lava flow event of the the 3rd and 4th January 1992 Etna eruption, the July 2001 Etna lava flows, January 2002 Nyragongo lava flows and few test cases for simulating transport of diluted lahars. Ref: George, D.L. (2008), Augmented Riemann Solvers for the Shallow Water Equations over Variable

  9. Unravelling the nocturnal appearance of bogue Boops boops shoals in the anthropogenically modified shallow littoral.

    PubMed

    Mavraki, N; Georgiadis, M; Koutsikopoulos, C; Tzanatos, E

    2016-05-01

    In the present study the role of the nocturnal migration of bogue Boops boops shoals to anthropogenically modified shallow littoral locations was examined, evaluating four alternative hypotheses: (1) feeding, (2) reproduction, (3) attraction of B. boops to artificial light and (4) concealment in the darkness related to predation avoidance. All hypotheses apart from predation avoidance were rejected, as B. boops tended to concentrate in shaded locations of wider illuminated areas, a finding not only important concerning fish behaviour, but also with significant management implications. PMID:27094613

  10. Shallow waters: The ``other'' Gulf

    SciTech Connect

    Perdue, J.M.

    2000-04-01

    The US Minerals Management Service (MMS) reported 3.21 billion bbl of petroleum and 30.8 Tcf of natural gas remained at the end of 1997 as proved reserves on the shelf. That is a 14.6% increase in oil reserves and a 4.5% increase in gas reserves compared to the previous year's estimates. An additional 1.03 billion bbl of oil and 3.9 Tcf of gas are estimated to be unproved reserves in 51 unproved active fields, with 16 other unproved fields not yet studied. The small fields that remain on the continental shelf account for 22% of US oil production (800,000 b/d) and 27% of the country's natural gas production (13 Bcf). Of the nearly 8,200 active leases on the shelf, a mere 200 account for the lion's share of this oil and gas. But that doesn't mean there aren't any new fields left to find.

  11. The total artificial heart

    PubMed Central

    Cook, Jason A.; Shah, Keyur B.; Quader, Mohammed A.; Cooke, Richard H.; Kasirajan, Vigneshwar; Rao, Kris K.; Smallfield, Melissa C.; Tchoukina, Inna

    2015-01-01

    The total artificial heart (TAH) is a form of mechanical circulatory support in which the patient’s native ventricles and valves are explanted and replaced by a pneumatically powered artificial heart. Currently, the TAH is approved for use in end-stage biventricular heart failure as a bridge to heart transplantation. However, with an increasing global burden of cardiovascular disease and congestive heart failure, the number of patients with end-stage heart failure awaiting heart transplantation now far exceeds the number of available hearts. As a result, the use of mechanical circulatory support, including the TAH and left ventricular assist device (LVAD), is growing exponentially. The LVAD is already widely used as destination therapy, and destination therapy for the TAH is under investigation. While most patients requiring mechanical circulatory support are effectively treated with LVADs, there is a subset of patients with concurrent right ventricular failure or major structural barriers to LVAD placement in whom TAH may be more appropriate. The history, indications, surgical implantation, post device management, outcomes, complications, and future direction of the TAH are discussed in this review. PMID:26793338

  12. Development of artificial empathy.

    PubMed

    Asada, Minoru

    2015-01-01

    We have been advocating cognitive developmental robotics to obtain new insight into the development of human cognitive functions by utilizing synthetic and constructive approaches. Among the different emotional functions, empathy is difficult to model, but essential for robots to be social agents in our society. In my previous review on artificial empathy (Asada, 2014b), I proposed a conceptual model for empathy development beginning with emotional contagion to envy/schadenfreude along with self/other differentiation. In this article, the focus is on two aspects of this developmental process, emotional contagion in relation to motor mimicry, and cognitive/affective aspects of the empathy. It begins with a summary of the previous review (Asada, 2014b) and an introduction to affective developmental robotics as a part of cognitive developmental robotics focusing on the affective aspects. This is followed by a review and discussion on several approaches for two focused aspects of affective developmental robotics. Finally, future issues involved in the development of a more authentic form of artificial empathy are discussed. PMID:25498950

  13. SHALLOW HABITATS IN TWO RHODE ISLAND SYSTEMS: II. PATTERNS OF SIZE, STRUCTURE AND FUNCTIONAL GROUPS

    EPA Science Inventory

    We are examining habitats in small estuarine coves that may be important for the development of ecological indicators of integrity. We sampled nekton in Coggeshall Cove (shallow estuarine cove) in summer 1999 and 2000 and Ninigret Pond (coastal lagoon) in summer 2000. Coggeshall ...

  14. DEVELOPMENT OF THE THERMAL SHALLOW RESERVOIR

    SciTech Connect

    Raasch, G.D.

    1985-01-22

    The Geysers was discovered in 1847, and its therapeutic mineral baths were widely recognized by 1880. It was not until 1921, however, that the first steam well at The Geysers was drilled. Between 1922 and 1925, eight additional wells were drilled and tested as reported by Allen and Day. Development activity ceased until 1955 when Magma Power Company drilled the first ''commercial'' well. This success led to additional drilling in the Thermal Shallow Reservoir and the commissioning of a 12 MW power plant in September 1960, followed by a 14 MW power plant in February, 1963. This completed the commercial development of the Thermal shallow Reservoir.

  15. On the role of artificial viscosity in Navier-Stokes solvers

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Dowell, Earl H.; Bliss, Donald B.

    1989-01-01

    A method is proposed to determine directly the amount of artificial viscosity needed for stability using an eigenvalue analysis for a finite difference representation of the Navier-Stokes equations. The stability and growth of small perturbations about a steady flow over the airfoils are analyzed for various amounts of artificial viscosity. The eigenvalues were determined for a small perturbation about a steady inviscid flow over a NACA 0012 airfoil at a Mach number of 0.8 and angle of attack of 0 degrees. The movement of the eigenvalue constellation with respect to the amount of artificial viscosity is studied. The stability boundries as a function of the amount of artificial viscosity from both the eigenvalue analysis and the time marching scheme are also presented. This procedure not only allows for determining the effect of varying amounts of artificial viscosity, but also for the effects of different forms of terms for artificial viscosity.

  16. Artificial meteor test towards: On-demand meteor shower

    NASA Astrophysics Data System (ADS)

    Abe, S.; Okajima, L.; Sahara, H.; Watanabe, T.; Nojiri, Y.; Nishizono, T.

    2016-01-01

    An arc-heated wind tunnel is widely used for ground-based experiments to simulate environments of the planetary atmospheric entry under hypersonic and high-temperature conditions. In order to understand details of a meteor ablation such as temperature, composition ratio and fragmentation processes, the artificial meteor test was carried out using a JAXA/ISAS arc-heated wind tunnel. High-heating rate around 30 MW/m2 and High-enthalpy conditions, 10000 K arc-heated flow at velocity around 6 km/s were provided. Newly developed artificial metallic meteoroids and real meteorites such as Chelyabinsk were used for the ablation test. The data obtained by near-ultraviolet and visible spectrograph (200 and 1100nm) and high-speed camera (50 μs) have been examined to develop more efficient artificial meteor materials. We will test artificial meteors from a small satellite in 2018.

  17. Exploration of Artificial Frustrated Magnets

    SciTech Connect

    Samarth, Nitin; Schiffer, Peter

    2015-02-17

    This program encompasses experimental and theoretical studies of arrays of nanometer-scale magnets known as “artificial frustrated magnets”. These magnets are small and closely spaced, so that their behavior as a collective group is complex and reveals insights into how such collections of interacting objects behave as a group. In particular, the placement of the magnets is such that the interactions between them are “frustrated”, in that they compete with each other. These systems are analogs to a class of magnetic materials in which the lattice geometry frustrates interactions between individual atomic moments, and in which a wide range of novel physical phenomena have been recently observed. The advantage to studying the arrays is that they are both designable and resolvable: i.e., the experiments can control all aspects of the array geometry, and can also observe how individual elements of the arrays behave. This research program demonstrated a number of phenomena including the role of multiple collective interactions, the feasibility of using systems with their magnetism aligned perpendicular to the plane of the array, the importance of disorder in the arrays, and the possibility of using high temperatures to adjust the magnet orientations. All of these phenomena, and others explored in this program, add to the body of knowledge around collective magnetic behavior and magnetism in general. Aside from building scientific knowledge in an important technological area, with relevance to computing and memory, the program also gave critical support to the education of students working on the experiments.

  18. Artificial wetlands performance: nitrogen removal.

    PubMed

    Durán-de-Bazúa, Carmen; Guido-Zárate, Alejandro; Huanosta, Thalía; Padrón-López, Rosa Martha; Rodríguez-Monroy, Jesús

    2008-01-01

    Artificial wetlands (AW) are a promising option for wastewater treatment in small communities due to their high performance in nutrients removal and low operation and maintenance costs. Nitrogen can favour the growth of algae in water bodies causing eutrophication when present at high concentrations. Nitrogen can be removed through different mechanisms (e.g. nitrification-denitrification, adsorption and plant uptake). Environmental conditions such as temperature and relative humidity can play an important role in the performance of these systems by promoting the growth of macrophytes such as reeds and cattails (e.g. Phragmites australis, Typha latifolia respectively). In this paper, two AW systems were compared, one located in Mexico City, Mexico at an altitude higher than 2,000 m above the sea level, and the second one located in Villahermosa, Tabasco, Mexico at an a altitude near the sea level (27 m). Both systems comprised five reactors (147-L plastic boxes) filled with volcanic slag and gravel and intermittently fed with synthetic water. The removal nitrogen efficiency found for the system located in Mexico City was higher than that of the Tabasco system (90 and 80% as TKN respectively). The higher temperatures in the Tabasco system did not enhanced the nitrogen removal as expected. PMID:18957747

  19. Artificial organs: recent progress in artificial hearing and vision.

    PubMed

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas. PMID:19330498

  20. "Still Planners Run Deep": Shallow Reasoning For Fast Replanning

    NASA Astrophysics Data System (ADS)

    Cromarty, Andrew S.; Shapiro, Daniel G.; Fehling, Michael R.

    1984-06-01

    Artificial intelligence planning systems attempting to achieve human-like performance typically bring to bear a wealth of real-world knowledge in order to select actions consistent with the system's goals and its assessment of the state of its environment. Unfortunately, as machine reasoning systems become larger and more general, they frequently become correspondingly slower and hence less effective at their intended task. Meanwhile, most human actors can deal competently with quite complex environments without compelling evidence that they plan by relying principally upon (or even understanding) formal reasoning and planning techniques such as resolution theorem proving, dynamic programming, and backward chaining. We suggest that humans can plan and replan so quickly because of two important principles: (a) their internal represention of the world is well suited to the planning problems they solve, and (b) their plans have much less depth than most powerful machine reasoning systems. A good substitute for deep planning may be a "broad but shallow" planning strategy that generates plans terminated in parameterized action sequences ("behaviors") which are chunked at a relatively high level of abstraction, combined with a context-dependent salience measure that differentially cues plan fragments or "behaviors" to propose themselves as candidates during time-critical planning operations.

  1. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts...

  2. WHIDBEY ISLAND INTERTIDAL AND SHALLOW SUBTIDAL BENTHOS

    EPA Science Inventory

    The objectives of this study were to quantitatively characterize the benthos of the intertidal and shallow subtidal areas of three habitats on the west coast of Whidbey Island. The study area was between +6.0' above mean low water to -10.0 m below mean low water. Stratified rando...

  3. California earthquakes: why only shallow focus?

    PubMed

    Brace, W F; Byerlee, J D

    1970-06-26

    Frictional sliding on sawcuts and faults in laboratory samples of granite and gabbro is markedly temperature-dependent. At pressures from 1 to 5 kilobars, stick-slip gave way to stable sliding as temperature was increased from 200 to 500 degrees Celsius. Increased temperature with depth could thus cause the abrupt disappearance of earthquakes noted at shallow depths in California. PMID:17759338

  4. On the Theory of Thin Shallow Shells

    NASA Technical Reports Server (NTRS)

    Nazarov, A. A.

    1956-01-01

    This report is concerned with the theory of thin shallow shells. It does not employ the lines of curvature as the coordinate system, but employs "almost cartesian coordinates" or the coordinates obtained by cutting the surface into two mutually orthogonal systems of parallel planes.

  5. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on Special Aquatic Sites § 230.43...

  6. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... water circulation patterns; (2) releasing nutrients that increase undesirable algal populations;...

  7. Grain transport mechanics in shallow flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  8. Grain transport mechanics in shallow overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  9. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on Special Aquatic Sites § 230.43...

  10. 40 CFR 230.43 - Vegetated shallows.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Vegetated shallows. 230.43 Section 230.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on Special Aquatic Sites § 230.43...