Sample records for arto pulk eva-liisa

  1. Treatment of Heart Failure With Associated Functional Mitral Regurgitation Using the ARTO System: Initial Results of the First-in-Human MAVERIC Trial (Mitral Valve Repair Clinical Trial).

    PubMed

    Rogers, Jason H; Thomas, Martyn; Morice, Marie-Claude; Narbute, Inga; Zabunova, Milana; Hovasse, Thomas; Poupineau, Mathieu; Rudzitis, Ainars; Kamzola, Ginta; Zvaigzne, Ligita; Greene, Samantha; Erglis, Andrejs

    2015-07-01

    MAVERIC (Mitral Valve Repair Clinical Trial) reports the safety and efficacy of the ARTO system in patients with symptomatic heart failure and functional mitral regurgitation (FMR). The ARTO system percutaneously modifies the mitral annulus to improve leaflet coaptation in FMR. The MAVERIC trial is a prospective, nonrandomized first-in-human study. Key inclusion criteria were systolic heart failure New York Heart Association functional classes II to IV, FMR grade ≥2+, left ventricular (LV) ejection fraction ≤40%, LV end-diastolic diameter >50 mm and ≤75 mm. Exclusion criteria were clinical variables that precluded feasibility of the ARTO procedure. Primary outcomes were safety (30-day major adverse events) and efficacy (MR reduction, LV volumes, and functional status). Eleven patients received the ARTO system, and there were no procedural adverse events. From baseline to 30 days, there were meaningful improvements. Effective regurgitant orifice area decreased from 30.3 ± 11.1 mm(2) to 13.5 ± 7.1 mm(2) and regurgitant volumes from 45.4 ± 15.0 ml to 19.5 ± 10.2 ml. LV end-systolic volume index improved from 77.5 ± 24.3 ml/m(2) to 68.5 ± 21.4 ml/m(2), and LV end-diastolic volume index 118.7 ± 28.6 ml/m(2) to 103.9 ± 21.2 ml/m(2). Mitral annular anteroposterior diameter decreased from 45.0 ± 3.3 mm to 38.7 ± 3.0 mm. Functional status was 81.8% New York Heart Association functional class III/IV improving to 54.6% functional class I/II. At 30 days, there were 2 adverse events: 1 pericardial effusion requiring surgical drainage; and 1 asymptomatic device dislodgement. The ARTO system is a novel transcatheter device that can be used safely with meaningful efficacy in the treatment of FMR. (Mitral Valve Repair Clinical Trial [MAVERIC]; NCT02302872). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  3. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support the EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  4. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  5. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  6. Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET)

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2017-01-01

    During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA

  7. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  8. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie

    2016-01-01

    The EVA (Extravehicular Activity) Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, searchable repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, the one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision control system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, and also for hundreds of other NASA and contract employees. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  9. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  10. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torella, Francesco, E-mail: f.torella@liverpool.ac.uk; Chan, Tze Y., E-mail: tze.chan@rlbuht.nhs.uk; Shaikh, Usman, E-mail: usman.shaikh@rlbuht.nhs.uk

    2015-10-15

    Endovascular sealing with the Nellix{sup ®} endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when moremore » conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible.« less

  11. Development of an EVA systems cost model. Volume 3: EVA systems cost model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

  12. Real-Time EVA Troubleshooting

    NASA Technical Reports Server (NTRS)

    Leestma, David

    2013-01-01

    David Leestma was EV-1 for the STS-41G extravehicular activity (EVA) with Kathy Sullivan (first American female spacewalker). They conducted an EVA to fully demonstrate the feasibility of refueling satellites from the Space Shuttle, and performed the first contingency EVA task involving the Ku-band antenna. STS-41G was the fourth Space Shuttle mission to perform an EVA, and Leestma related his experiences with training, the spacesuit, and EVA tasks that were conducted on October 11, 1984 during this mission.

  13. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  14. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  15. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  16. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  17. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  18. Shuttle EVA description and design criteria

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The STS extravehicular mobility unit, orbiter EVA provisions, EVA equipment, factors affecting employment of EVA, EVA mission integration, baselined extravehicular activity are discussed. Design requirements are also discussed.

  19. EVA design: lessons learned.

    PubMed

    Ross, J L

    1994-01-01

    Extravehicular Activities (EVAs) are very demanding and specialized space flight activities. There are many aspects to consider in the design of hardware, tools, and procedures to be used on an EVA mission. To help minimize costs and optimize the EVA productivity, experience shows that astronauts should become involved early in the design process.

  20. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  1. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  2. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  3. Effect of EVA on thermal stability, flammability, mechanical properties of HDPE/EVA/Mg(OH)2 composites

    NASA Astrophysics Data System (ADS)

    Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.

    2017-06-01

    In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.

  4. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  5. Development of Damp-Heat Resistant Self-Primed EVA and Non-EVA Encapsulant Formulations at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Jorgensen, G. J.

    2005-11-01

    Self-primed ethylene-vinyl acetate (EVA) and non-EVA (PMG) encapsulant formulations were developed that have greater resistance to damp heat exposure at 85 deg C and 85% relative humidity (RH) (in terms of adhesion strength to glass substrates) than a commonly used commercial EVA product. The self-primed EVA formulations were developed on the basis of high-performing glass priming formulations that have previously proven to significantly enhance the adhesion strength of unprimed and primed EVA films on glass substrates during damp heat exposure. The PMG encapsulant formulations were based on an ethylene-methylacrylate copolymer containing glycidyl methacrylate.

  6. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  7. EVA Systems Technology Gaps and Priorities 2017

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Buffington, Jesse A.

    2017-01-01

    Performance of Extra-Vehicular Activities (EVA) has been and will continue to be a critical capability for human space flight. Human exploration missions beyond LEO will require EVA capability for either contingency or nominal activities to support mission objectives and reduce mission risk. EVA systems encompass a wide array of products across pressure suits, life support systems, EVA tools and unique spacecraft interface hardware (i.e. EVA Translation Paths and EVA Worksites). In a fiscally limited environment with evolving transportation and habitation options, it is paramount that the EVA community's strategic planning and architecture integration products be reviewed and vetted for traceability between the mission needs far into the future to the known technology and knowledge gaps to the current investments across EVA systems. To ascertain EVA technology and knowledge gaps many things need to be brought together, assessed and analyzed. This includes an understanding of the destination environments, various mission concept of operations, current state of the art of EVA systems, EVA operational lessons learned, and reference advanced capabilities. A combined assessment of these inputs should result in well-defined list of gaps. This list can then be prioritized depending on the mission need dates and time scale of the technology or knowledge gap closure plan. This paper will summarize the current state of EVA related technology and knowledge gaps derived from NASA's Exploration EVA Reference Architecture and Operations Concept products. By linking these products and articulating NASA's approach to strategic development for EVA across all credible destinations an EVA could be done in, the identification of these gaps is then used to illustrate the tactical and strategic planning for the EVA technology development portfolio. Finally, this paper illustrates the various "touch points" with other human exploration risk identification areas including human health and

  8. EVA Skills Training

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

  9. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  10. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to

  11. Space shuttle EVA opportunities. [a technology assessment

    NASA Technical Reports Server (NTRS)

    Bland, D. A., Jr.

    1976-01-01

    A technology assessment is presented on space extravehicular activities (EVA) that will be possible when the space shuttle orbiter is completed and launched. The use of EVA in payload systems design is discussed. Also discussed is space crew training. The role of EVA in connection with the Large Space Telescope and Skylab are described. The value of EVA in constructing structures in space and orbital assembly is examined. Excellent color illustrations are provided which show the proposed EVA functions that were described.

  12. Real-Time EVA Troubleshooting

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski focused on the Shuttle Transportation System (STS)-120 Solar Array Repair Extravehicular Activity (EVA) with personal anecdotes and then spoke about what it takes to have a successful EVA during the event, what types of problems can occur during an EVA, particularly with the spacesuit and the safety of the crew, and how to resolve these quickly, safely, and efficiently. He also described the participants and the types of decisions and actions each had to take to ensure success. He described "Team 4," in Houston and on-orbit, as well as anecdotes from his STS-86 and STS-100 missions. Parazynski provided a retrospective on the EVA tools and procedures NASA used in the aftermath of Columbia for shuttle Thermal Protection System (TPS) inspection and repair. He described his role as the lead astronaut during this effort, and covered all the Neutral Buoyancy Laboratory (NBL), KC-135, precision air-bearing floor (PABF), vacuum chamber, and 1-G testing performed to develop the tools and techniques that were flown. Parazynski discussed how the EVA community worked together to resolve a huge safety issue, and how his work in the spacesuit was critical to overcoming a design limitation of the Space Shuttle.

  13. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-06

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  14. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  15. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  16. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028082 (9 Nov. 2013) --- Russian cosmonaut Sergey Ryazanskiy, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Ryazanskiy and Russian cosmonaut Oleg Kotov (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  17. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028067 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  18. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028101 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  19. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028094 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  20. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028107 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  1. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028102 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  2. Russian EVA 36

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028569 (9 Nov. 2013) --- Russian cosmonaut Oleg Kotov, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, uses a still camera during a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Russian cosmonaut Sergey Ryazanskiy (out of frame) continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  3. EVA 4 - Massimino during EVA

    NASA Image and Video Library

    2002-03-07

    STS109-323-013 (7 March 2002) --- Astronaut Michael J. Massimino moves about in the cargo bay of the Space Shuttle Columbia while performing work on the Hubble Space Telescope (HST), partially visible behind him. Astronauts Massimino and James H. Newman (out of frame), mission specialists, were participating in the fourth STS-109 space walk (EVA-4).

  4. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  5. Go for EVA!

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this educational video series, 'Liftoff to Learning', astronauts from the STS-37 Space Shuttle Mission (Jay Apt, Jerry Ross, Ken Cameron, Steve Nagel, and Linda Godwin) show what EVA (extravehicular activity) means, talk about the history and design of the space suits and why they are designed the way they are, describe different ways they are used (payload work, testing and maintenance of equipment, space environment experiments) in EVA work, and briefly discuss the future applications of the space suits. Computer graphics and animation is included.

  6. Phillips during EVA

    NASA Image and Video Library

    2005-08-18

    ISS011-E-11958 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (out of frame), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.

  7. Phillips during EVA

    NASA Image and Video Library

    2005-08-18

    ISS011-E-11944 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (out of frame), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of station assembly and maintenance, the 34th conducted from the station itself, and the 16th from the Pirs Docking Compartment.

  8. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  9. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  10. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  11. Phillips during EVA

    NASA Image and Video Library

    2005-08-18

    ISS011-E-11948 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (seen in Phillip’;s helmet visor), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.

  12. Phillips during EVA

    NASA Image and Video Library

    2005-08-18

    ISS011-E-11949 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (seen in Phillip’;s helmet visor), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.

  13. Phillips during EVA

    NASA Image and Video Library

    2005-08-18

    ISS011-E-11947 (18 August 2005) --- Attired in a Russian Orlan spacesuit, astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, participates in a session of extravehicular activity (EVA). The 4 hour 58 minute spacewalk by Phillips and cosmonaut Sergei K. Krikalev (seen in Phillip’;s helmet visor), commander representing Russia's Federal Space Agency, was the 62nd EVA in support of Station assembly and maintenance, the 34th conducted from the Station itself, and the 16th from the Pirs Docking Compartment.

  14. Russian EVA 36

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028787 (9 Nov. 2013) --- Russian cosmonauts Oleg Kotov (left) and Sergey Ryazanskiy, both Expedition 37 flight engineers, attired in Russian Orlan spacesuits, participate in a session of extravehicular activity (EVA) in support of assembly and maintenance on the International Space Station. During the five-hour, 50-minute spacewalk, Kotov and Ryazanskiy continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22. Earth’s horizon and the blackness of space provide the backdrop for the scene.

  15. Advanced development of non-discoloring EVA-based PV encapsulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley, W.H.; Galica, J.P.; Argo, S.C.

    1996-01-01

    The purpose of this investigation was to better define the problem of field yellowing of EVA-based PV encapsulant, through laboratory study of probable chemical mechanisms and the development of stabilization strategies for protecting EVA from discoloration. EVA from fielded modules was analyzed for vinyl acetate content, unsaturation, and additive levels. These test results were then compared to results from Xenon Arc Weather-Ometer aged glass/EVA/glass laminates made in the laboratory. Variables evaluated in Weather-Ometer aged laminates included ``standard-cure`` A9918P EVA, ``fast-cure`` 15295P EVA, low iron glass superstrate containing cerium oxide, and systematic elimination or addition of specific additives. Six significant findingsmore » were revealed: 1) Improved ``standard-cure`` and ``fast-cure`` type EVA encapsulants, formulations X9903P and X15303P, respectively, showed little or no yellowing after extended Weather-Ometer exposure; 2) The use of {open_quote}{open_quote}fast-cure{close_quote}{close_quote} EVA reduced discoloration when compared with {open_quote}{open_quote}standard-cure{close_quote}{close_quote} A9918P EVA; 3) Glass superstrate containing cerium oxide resulted in a reduced rate of EVA discoloration; 4) {open_quote}{open_quote}Fast-cure{close_quote}{close_quote} EVA used with glass superstrate containing cerium oxide showed no visible yellowing after 32 weeks in the Weather-Ometer{emdash}a period estimated to be roughly equivalent to 20{endash}30 years of exposure in the Southwest; 5) Severely discolored EVA samples from the field showed no measurable loss of acetate group and little detectable unsaturation; and 6) EVA encapsulant with a Tefzel cover exhibited no yellowing after extended Weather-Ometer exposure. {copyright} {ital 1996 American Institute of Physics.}« less

  16. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  17. EVA console personnel during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Susan P. Rainwater monitors an extravehicular activity (EVA) simulation from the EVA console at JSC's Mission Control Center (MCC) during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  18. Applications of EVA guidelines and design criteria. Volume 3: EVA systems cost model formating

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    The development of a model for estimating the impact of manned EVA costs on future payloads is discussed. Basic information on the EV crewman requirements, equipment, physical and operational characteristics, and vehicle interfaces is provided. The cost model is being designed to allow system designers to quantify the impact of EVA on vehicle and payload systems.

  19. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  20. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6893 (3 August 2005) --- Astronaut Soichi Noguchi, STS-114 mission specialist representing Japan Aerospace Exploration Agency (JAXA), participates in the mission’;s third session of extravehicular activity (EVA).

  1. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6897 (3 August 2005) --- Astronaut Soichi Noguchi, STS-114 mission specialist representing Japan Aerospace Exploration Agency (JAXA), participates in the mission’;s third session of extravehicular activity (EVA).

  2. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  3. EVA Health and Human Performance Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Abercromby, A. F.; Norcross, J.; Jarvis, S. L.

    2016-01-01

    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  4. Modified EVA Encapsulant Formulations for Low Temperature Processing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Z.; Pern, F. J.; Glick, S. H.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: We have developed several new ethylene-vinyl acetate (EVA) formulations modified on the basis of NREL patented EVA formulations [1]. The new formulations can be cured to a desired gel content of {approx}80% in the ambient at temperatures 20-30 C lower than the typical conditions in vacuum (i.e. {approx}150 C). Glass/glass laminates showed transmittance spectra that are essentially the same as that of EVA 15295P in the visible and NIR regions but higher in the UV region. Results of fluorescence analysis of the ambient-processed new EVA formulations showed the concentrations of the curing-generatedmore » {alpha},{beta}-unsaturated carbonyl chromophores, which are responsible for the UV induced EVA discoloration and photodegradation, were considerably lower than that of EVA 15295P, therefore suggesting a better photochemical stability of new EVA formulations.« less

  5. Helms during EVA on the ISS

    NASA Image and Video Library

    2001-04-06

    STS102-325-023 (11 March 2001) --- Astronaut Susan J. Helms completes a scheduled space walk task on the International Space Station (ISS). This extravehicular activity (EVA), on which Helms was joined by astronaut James S. Voss (out of frame), was the first of two scheduled STS-102 EVA sessions. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.

  6. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  7. Development of new EVA formulations for improved performance at NREL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.

    1997-02-01

    We review in chronological order the research stages and fundamental concepts involved in developing modified and new EVA formulations for improved performance against photo-induced degradation and discoloration. The new NREL EVA formulations use additives totally different from the present commercial formulations (EVA A9918 and EVA 15295). Validation of their long-term photostability and thermostability is presently under way. Together with UV-absorbing glass superstrates, they may offer better success in achieving a more reliable module performance and longer service life without significant EVA discoloration problems, which are commonly experienced with EVA A9918 and, at a lesser rate, EVA 15295. {copyright} {ital 1997more » American Institute of Physics.}« less

  8. EVA

    NASA Image and Video Library

    2012-08-23

    ISS032-E-024171 (30 Aug. 2012) --- Backdropped over Andros Island and other parts of the Bahamas, NASA astronaut Sunita Williams and Japan Aerospace Exploration Agency astronaut Aki Hoshide (out of frame), both Expedition 32 flight engineers, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station.

  9. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  10. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  11. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  12. EVA 25

    NASA Image and Video Library

    2013-12-24

    View of Rick Mastracchio,in his Extravehicular Mobility Unit (EMU),working to mate spare Pump Module (PM) Quick Disconnects (QDs) during International Space Station (ISS) Extravehicular Activity (EVA) 25. Image was released by astronaut on Twitter.

  13. Adhesion Strength Study of EVA Encapsulants on Glass Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Glick, S. H.

    2003-05-01

    An extensive peel-test study was conducted to investigate the various factors that may affect the adhesion strength of photovoltaic module encapsulants, primarily ethylene-vinyl acetate (EVA), on glass substrates of various laminates based on a common configuration of glass/encapsulant/backfoil. The results show that"pure" or"absolute" adhesion strength of EVA-to-glass was very difficult to obtain because of tensile deformation of the soft, semi-elastic EVA layer upon pulling. A mechanically"strong enough" backing foil on the EVA was critical to achieving the"apparent" adhesion strength. Peel test method with a 90-degree-pull yielded similar results to a 180-degree-pull. The 90-degree-pull method better revealed the four stages ofmore » delamination failure of the EVA/backfoil layers. The adhesion strength is affected by a number of factors, which include EVA type, formulation, backfoil type and manufacturing source, glass type, and surface priming treatment on the glass surface or on the backfoil. Effects of the glass-cleaning method and surface texture are not obvious. Direct priming treatments used in the work did not improve, or even worsened, the adhesion. Aging of EVA by storage over~5 years reduced notably the adhesion strength. Lower adhesion strengths were observed for the blank (unformulated) EVA and non-EVA copolymers, such as poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-co-butylacrylate) (PEBA). Their adhesion strengths increased if the copolymers were cross-linked. Transparent fluoropolymer superstrates such as TefzelTM and DureflexTM films used for thin-film PV modules showed low adhesion strengths to the EVA at a level of~2 N/mm.« less

  14. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  15. Russian EVA 36.

    NASA Image and Video Library

    2013-11-09

    ISS037-E-028076 (9 Nov. 2013) --- Russian cosmonaut Sergey Ryazanskiy, Expedition 37 flight engineer, attired in a Russian Orlan spacesuit, uses a digital still camera to expose a photo of his helmet visor during a session of extravehicular activity (EVA) as work continues on the International Space Station. Also visible in the reflections in the visor are Russian cosmonaut Oleg Kotov, flight engineer, and various components of the space station and a blue and white portion of Earth. During the five-hour, 50-minute spacewalk, Kotov and Ryazanskiy continued the setup of a combination EVA workstation and biaxial pointing platform that was installed during an Expedition 36 spacewalk on Aug. 22.

  16. Extravehicular Activity (EVA) Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements--and to protect our science from human contamination--we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and surfaces for analysis, but there was no US EVA tool for that job. NASA engineers developed an EVA-compatible swab tool that can be used to collect data on current hardware, which will influence eventual Mars life support and EVA hardware designs.

  17. Polyblends of LDPE with EVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deanin, R.D.; Hou, T.J.A.

    1993-12-31

    Melt processability of LDPE was improved by blending with EVA copolymers containing 10-28% VA. Softening of modules was controlled primarily by overall VA content of the blends. Tensile necking was converted to smooth rubbery elongation by adding larger amounts of VA. Transparency was produced by adding EVA containing 10% VA and then stretching the polyblend film. These parameters give the film manufacturer wide control over processability and properties.

  18. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  19. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xue; Kan, Shifeng; Liu, Zhen

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression ofmore » EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.« less

  20. Morphological and Mechanical Properties of Polypropylene[PP]/Poly(Ethylene Vinyl Acetate)[EVA] Blends. I. Homopolymer PP/Eva Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez-Vargas, E.

    2000-10-01

    Morphological and mechanical properties of polypropylene [PP]/poly(ethylene vinyl acetate) [EVA] blends have been studied. Infrared results using thin films first indicated a transition toward compatibility between both components at concentrations above 40% EVA. The transition was verified with different experimental techniques and it was associated to morphological changes and mechanical properties. The PP/EVA blends were mechanically evaluated in terms of impact and tensile strength to determine the influence of blending on the performance properties of these materials. Agreement was found between the transition and the enhancement of both elongation at break and impact strength.

  1. Artemyev post-EVA

    NASA Image and Video Library

    2014-06-19

    Cosmonaut Oleg Artemyev, Expedition 40 flight engineer, is photographed still wearing his liquid cooling and ventilation garment after a Russian Extravehicular Activity (EVA). Artemyev is standing in his crew quarters (CQ).

  2. EVA-Compatible Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements—and to protect our science from human contamination—we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and suit surfaces for analysis, but requires a specialized tool for the job. Engineers at the National Aeronautics and Space Administration (NASA) recently developed an Extravehicular Activity (EVA)-compatible swab tool that can be used to sample current space suits and life support systems. Data collected now will influence Mars life support and EVA hardware early in the planning process, before design changes become difficult and expensive.NASA’s EVA swab tool pairs a Space Shuttle-era tool handle with a commercially available swab tip mounted into a custom-designed end effector. A glove-compatible release mechanism allows the handle to quickly switch between swab tips, much like a shaving razor handle can snap onto a disposable blade cartridge. Swab tips are stowed inside individual sterile containers, each fitted with a microbial filter that allows the container to equalize atmospheric pressure, but prevents cabin contaminants from rushing into the container when passing from the EVA environment into a pressurized cabin. A bank of containers arrayed inside a tool caddy allows up to six individual samples to be collected during a given spacewalk.NASA plans to use the tool in 2016 to collect samples from various spacesuits during ground testing to determine what (if any) human-borne microbial contamination leaks from the suit under simulated thermal vacuum conditions. Next, the tool will be used on board the International Space Station to assess the types of microbial contaminants found on external environmental control and life support system vents. Data will support

  3. Mars EVA Suit Airlock (MESA)

    NASA Astrophysics Data System (ADS)

    Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

    The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation

  4. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  5. Potential roles for EVA and telerobotics in a unified worksite

    NASA Astrophysics Data System (ADS)

    Akin, David; Howard, Russel D.

    1993-02-01

    Although telerobotics and extravehicular activity (EVA) are often portrayed as competitive approaches to space operations, ongoing research in the Space Systems Laboratory (SSL) has demonstrated the utility of cooperative roles in an integrated EVA/telerobotic work site. Working in the neutral buoyancy simulation environment, tests were performed on interactive roles or EVA subjects and telerobots in structural assembly and satellite servicing tasks. In the most elaborate of these tests to date, EVA subjects were assisted by the SSL's Beam Assembly Teleoperator (BAT) in several servicing tasks planned for Hubble Space Telescope, using the high-fidelity crew training article in the NASA Marshall Neutral Buoyancy Simulator. These tests revealed several shortcomings in the design of BAT for satellite servicing and demonstrated the utility of a free-flying or RMS-mounted telerobot for providing EVA crew assistance. This paper documents the past tests, including the use of free-flying telerobots to effect the rescue of a simulated incapacitated EVA subject, and details planned future efforts in this area, including the testing of a new telerobotic system optimized for the satellite servicing role, the development of dedicated telerobotic devices designed specifically for assisting EVA crew, and conceptual approaches to advanced EVA/telerobotic operations such as the Astronaut Operations Vehicle.

  6. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  7. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit

  8. EVA Glove Research Team

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  9. A Human Factors Analysis of EVA Time Requirements

    NASA Technical Reports Server (NTRS)

    Pate, Dennis W.

    1997-01-01

    Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

  10. Astronaut Ronald Evans photographed during transearth coast EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.

  11. EVA 3

    NASA Image and Video Library

    2004-08-03

    S114-E-6856 (3 August 2005) --- Backdropped by the blackness of space, astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration Agency (JAXA), traverses along the P6 truss near the arrays on the international space station during the mission’s third session of extravehicular activity (EVA).

  12. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis.

    PubMed

    Shen, Xue; Kan, Shifeng; Liu, Zhen; Lu, Guang; Zhang, Xiaoyan; Chen, Yingyu; Bai, Yun

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis

    NASA Technical Reports Server (NTRS)

    Hagale, Thomas J.; Price, Larry R.

    2000-01-01

    The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.

  14. "Astronaut STS-123 EVA 1, NBL Training"

    NASA Image and Video Library

    2007-04-18

    • Event (Mission for flight / Class for training): STS-118 (13A.1) • Title: STS-118 EVA 1 NBL • Date: 4-18-07 • Location: NBL • Key words: 118, 13A.1, S5, NBL • Description: NBL underwater photos of STS-118 EVA 1 S5 install.

  15. Mission control activity during STS-61 EVA

    NASA Image and Video Library

    1993-12-07

    Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.

  16. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  17. European EVA decompression sickness risks

    NASA Astrophysics Data System (ADS)

    Vogt, Lorenz; Wenzel, Jürgen; Skoog, A. I.; Luck, S.; Svensson, Bengt

    For the first manned flight of Hermes there will be a capability of performing EVA. The European EVA Space Suit will be an anthropomorphic system with an internal pressure of 500 hPa of pure oxygen. The pressure reduction from the Hermes cabin pressure of 1013 hPa will induce a risk for Decompression Sickness (DCS) for the EVA crewmember if no adequate protective procedures are implemented. Specific decompression procedures have to be developed. From a critical review of the literature and by using knowledge gained from research conducted in the past in the fields of diving and aerospace medicine safe protective procedures are proposed for the European EVA scenario. An R factor of 1.2 and a tissue half-time ( t1/2) of 360 minutes in a single-tissue model have been identified as appropriate operational values. On the basis of an acceptable risk level of approximately 1%, oxygen prebreathing times are proposed for (a) direct pressure reduction from 1013 hPa to a suit pressure of 500 hPa, and (b) staged decompression using a 700 hPa intermediate stage in the spacecraft cabin. In addition, factors which influence individual susceptibility to DCS are identified. Recommendations are also given in the areas of crew selection and medical monitoring requirements together with therapeutic measures that can be implemented in the Hermes scenario. A method for demonstration of the validity of proposed risks and procedures is proposed.

  18. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    View of Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participating in Russian extravehicular activity (EVA) 33. Also visible are the Progress spacecraft docked to the Pirs Docking Compartment (DC1) with the Service Module (SM) .

  19. Minimizing EVA Airlock Time and Depress Gas Losses

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Lafuse, Sharon A.

    2008-01-01

    This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

  20. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6918 (3 August 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, anchored to a foot restraint on the extended International Space Station’;s Canadarm2, participates in the mission’;s third session of extravehicular activity (EVA). The blackness of space and Earth’;s horizon form the backdrop for the image.

  1. EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-06919 (3 Aug. 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, anchored to a foot restraint on the extended International Space Station’;s Canadarm2, participates in the mission’;s third session of extravehicular activity (EVA). The blackness of space and Earth’;s horizon form the backdrop for the image.

  2. Astronaut Ronald Evans photographed during transearth coast EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans left side is the mapping camera cassette. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.

  3. Russian EVA 39.

    NASA Image and Video Library

    2014-08-18

    ISS040E099104 (08/18/2014) --- View of Cosmonaut Oleg Artemyev (blue stripe), Expedition 40 flight engineer outside the International Space Station, taken while performing maintenance work on the Russian segment during the Russian EVA 39 on Aug 18 2014.

  4. Shkaplerov works with EVA Hardware in the SM

    NASA Image and Video Library

    2012-02-03

    ISS030-E-061158 (3 Feb. 2012) --- Russian cosmonaut Oleg Kononenko, Expedition 30 flight engineer, works with extravehicular activity (EVA) hardware in the Zvezda Service Module of the International Space Station in preparation for an EVA scheduled for Feb. 16, 2012.

  5. Shkaplerov works with EVA Hardware in the SM

    NASA Image and Video Library

    2012-02-03

    ISS030-E-061157 (3 Feb. 2012) --- Russian cosmonaut Anton Shkaplerov, Expedition 30 flight engineer, works with extravehicular activity (EVA) hardware in the Zvezda Service Module of the International Space Station in preparation for an EVA scheduled for Feb. 16, 2012.

  6. Russian EVA 39

    NASA Image and Video Library

    2014-08-18

    ISS040E099874 (08/18/2014) --- Cosmonauts Alexander Skvortsov (red stripe - foreground) and Oleg Artemyev (blue stripe - background), Expedition 40 flight engineers, move to the Russian Service Module for repairs during International Space Station Russian EVA 39 on Aug. 18, 2014.

  7. EVA: Evryscopes for the Arctic and Antarctic

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Law, N.; Tasuya, O.; Fors, O.; Dennihy, E.; Carlberg, R.; Tuthill, P.; Ashley, M.; Soonthornthum, B.

    2017-06-01

    We are planning to build Evryscopes for the Arctic and Antarctic (EVA), which will enable the first ultra-wide-field, high-cadence sky survey to be conducted from both Poles. The system is based on the successful Evryscope concept, already installed and operating since 2015 at Cerro Tololo in Chile with the following characteristics: robotic operation, 8,000 square degrees simultaneous sky coverage, 2-minute cadence, milli-mag level photometric accuracy, pipelined data processing for real-time analysis and full data storage for off-line analysis. The initial location proposed for EVA is the PEARL station on Ellesmere island; later also an antarctic location shall be selected. The science goals enabled by this unique combination of almost full-sky coverage and high temporal cadence are numerous, and include among others ground-breaking forays in the fields of exoplanets, stellar variability, asteroseismology, supernovae and other transient events. The EVA polar locations will enable uninterrupted observations lasting in principle over weeks and months. EVA will be fully robotic. We discuss the EVA science drivers and expected results, and present the logistics and the outline of the project which is expected to have first light in the winter of 2018. The cost envelope can be kept very competitive thanks to R&D already employed for the CTIO Evryscope, to our experience with both Arctic and Antarctic locations, and to the use of off-the-shelf components.

  8. New monitoring by thermogravimetry for radiation degradation of EVA

    NASA Astrophysics Data System (ADS)

    Boguski, J.; Przybytniak, G.; Łyczko, K.

    2014-07-01

    The radiation ageing of ethylene vinyl-acetate copolymer (EVA) as the jacket of cable applied in nuclear power plant was carried out by gamma rays irradiation, and the degradation was monitored by a thermo-gravimetric analysis (TGA). The EVA decomposition rate in air by the isothermal at 400 °C decreased with increase of dose and also with decrease of the dose rate. The behavior of EVA jacket of cable indicated that the decomposition rate at 400 °C was reduced with increase of oxidation. The elongation at break by tensile test for the radiation aged EVA was closely related to the decomposition rate at 400 °C; therefore, the TGA might be applied for a diagnostic technique of the cable degradation.

  9. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  10. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC

  11. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  12. Williams during EVA 36

    NASA Image and Video Library

    2016-08-19

    Extravehicular crewmember 1 (EV1) Jeff Williams pauses for a photo after installing a Hemispherical (Hemi) Reflector Cover on Pressurized Mating Adapter 2 (PMA-2) during Extravehicular Activity 36 (EVA 36).

  13. Astronaut David Scott practicing for Gemini 8 EVA

    NASA Image and Video Library

    1966-02-01

    S66-19284 (1 Feb. 1966) --- Astronaut David R. Scott practicing for Gemini-8 extravehicular activity (EVA) in building 4 of the Manned Spacecraft Center on the air bearing floor. He is wearing the Hand-Held Maneuvering Unit which he will use during the EVA. Photo credit: NASA

  14. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  15. STS-64 extravehicular activity (EVA) hardware view

    NASA Image and Video Library

    1993-01-21

    S93-26920 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space. Photo credit: NASA or National Aeronautics and Space Administration

  16. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  17. Development of an EVA systems cost model. Volume 2: Shuttle orbiter crew and equipment translation concepts and EVA workstation concept development and integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    EVA crewman/equipment translational concepts are developed for a shuttle orbiter payload application. Also considered are EVA workstation systems to meet orbiter and payload requirements for integration of workstations into candidate orbiter payload worksites.

  18. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  19. STS-64 extravehicular activity (EVA) hardware view

    NASA Image and Video Library

    1993-01-21

    S93-26918 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space. Unidentified technicians and engineers look on. Photo credit: NASA or National Aeronautics and Space Administration

  20. A Novel Recombinant Enterovirus Type EV-A89 with Low Epidemic Strength in Xinjiang, China

    PubMed Central

    Fan, Qin; Zhang, Yong; Hu, Lan; Sun, Qiang; Cui, Hui; Yan, Dongmei; Sikandaner, Huerxidan; Tang, Haishu; Wang, Dongyan; Zhu, Zhen; Zhu, Shuangli; Xu, Wenbo

    2015-01-01

    Enterovirus A89 (EV-A89) is a novel member of the EV-A species. To date, only one full-length genome sequence (the prototype strain) has been published. Here, we report the molecular identification and genomic characterization of a Chinese EV-A89 strain, KSYPH-TRMH22F/XJ/CHN/2011, isolated in 2011 from a contact of an acute flaccid paralysis (AFP) patient during AFP case surveillance in Xinjiang China. This was the first report of EV-A89 in China. The VP1 coding sequence of this strain demonstrated 93.2% nucleotide and 99.3% amino acid identity with the EV-A89 prototype strain. In the P2 and P3 regions, the Chinese EV-A89 strain demonstrated markedly higher identity than the prototype strains of EV-A76, EV-A90, and EV-A91, indicating that one or more recombination events between EV-A89 and these EV-A types might have occurred. Long-term evolution of these EV types originated from the same ancestor provides the spatial and temporal circumstances for recombination to occur. An antibody sero-prevalence survey against EV-A89 in two Xinjiang prefectures demonstrated low positive rates and low titres of EV-A89 neutralization antibody, suggesting limited range of transmission and exposure to the population. This study provides a solid foundation for further studies on the biological and pathogenic properties of EV-A89. PMID:26685900

  1. A Novel Recombinant Enterovirus Type EV-A89 with Low Epidemic Strength in Xinjiang, China.

    PubMed

    Fan, Qin; Zhang, Yong; Hu, Lan; Sun, Qiang; Cui, Hui; Yan, Dongmei; Sikandaner, Huerxidan; Tang, Haishu; Wang, Dongyan; Zhu, Zhen; Zhu, Shuangli; Xu, Wenbo

    2015-12-21

    Enterovirus A89 (EV-A89) is a novel member of the EV-A species. To date, only one full-length genome sequence (the prototype strain) has been published. Here, we report the molecular identification and genomic characterization of a Chinese EV-A89 strain, KSYPH-TRMH22F/XJ/CHN/2011, isolated in 2011 from a contact of an acute flaccid paralysis (AFP) patient during AFP case surveillance in Xinjiang China. This was the first report of EV-A89 in China. The VP1 coding sequence of this strain demonstrated 93.2% nucleotide and 99.3% amino acid identity with the EV-A89 prototype strain. In the P2 and P3 regions, the Chinese EV-A89 strain demonstrated markedly higher identity than the prototype strains of EV-A76, EV-A90, and EV-A91, indicating that one or more recombination events between EV-A89 and these EV-A types might have occurred. Long-term evolution of these EV types originated from the same ancestor provides the spatial and temporal circumstances for recombination to occur. An antibody sero-prevalence survey against EV-A89 in two Xinjiang prefectures demonstrated low positive rates and low titres of EV-A89 neutralization antibody, suggesting limited range of transmission and exposure to the population. This study provides a solid foundation for further studies on the biological and pathogenic properties of EV-A89.

  2. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  3. Bilateral Sequential Cochlear Implantation in Patients With Enlarged Vestibular Aqueduct (EVA) Syndrome.

    PubMed

    Manzoor, Nauman F; Wick, Cameron C; Wahba, Marian; Gupta, Amit; Piper, Robin; Murray, Gail S; Otteson, Todd; Megerian, Cliff A; Semaan, Maroun T

    2016-02-01

    To analyze audiometric outcomes after bilateral cochlear implantation in patients with isolated enlarged vestibular aqueduct (EVA) syndrome and associated incomplete partition (IP) malformations. Secondary objective was to analyze rate of cerebrospinal fluid (CSF) gusher in patients with IP-EVA spectrum deformities and compare this with the existing literature. Retrospective chart review. Thirty-two patients with EVA syndrome who received unilateral or bilateral cochlear implants between June 1999 and January 2014 were identified in the University Hospitals Case Medical Center cochlear implant database. Isolated EVA (IEVA) and Incomplete Partition Type II (IP-II) malformations were identified by reviewing high-resolution computed tomography (HRCT) imaging. Demographic information, age at implantation, surgical details, postimplantation audiometric data including speech reception thresholds (SRT), word, and sentence scores were reviewed and analyzed. Intra- and postoperative complications were analyzed as well and compared with the literature. Seventeen patients (32 implanted ears) had pediatric cochlear implantation for EVA-associated hearing loss. Data from 16 controls (32 implanted ears) were used to compare audiometric and speech outcomes of EVA cohort. Mean age at implantation was 6.8 years for EVA cohort and 6.0 years for controls. There was no statistically significant difference in long-term postoperative SRT, monaurally aided word scores, and binaurally tested word scores between pediatric EVA group and controls. The EVA patients had a long-term mean sentence score of 85.92%. A subset of EVA patients implanted at mean age of 3.18 years (n = 15 ears) had similar audiometric outcomes to another control group with Connexin 26 mutations (n = 20 ears) implanted at a similar age. Further subset analysis revealed no significant differences in age at implantation, SRT, and word scores in patients with IEVA and IP-II malformation. There was no significant

  4. EVA view taken during STS-102

    NASA Image and Video Library

    2001-03-11

    STS102-312-004 (11 March 2001) --- Astronaut James S. Voss works while anchored to the remote manipulator system (RMS) robot arm on the Space Shuttle Discovery. This extravehicular activity (EVA), on which Voss was joined by astronaut Susan J. Helms (out of frame), was the first of two scheduled STS-102 space walks. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.

  5. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  6. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035256 (22 Aug. 2013) --- Russian cosmonauts Alexander Misurkin (top) and Fyodor Yurchikhin, both Expedition 36 flight engineers, are pictured in the Zvezda Service Module of the International Space Station following a session of extravehicular activity (EVA). Misurkin and Yurchikhin are wearing blue thermal undergarments that complement the Russian Orlan spacesuit.

  7. CETA truck and EVA restraint system

    NASA Technical Reports Server (NTRS)

    Beals, David C.; Merson, Wayne R.

    1991-01-01

    The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

  8. Effect of VA and MWNT contents on the rheological and physical properties of EVA

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ho; Lee, Seungwon; Kim, Byoung Chul; Shin, Bong-Seob; Jeon, Jong-Young; Chae, Dong Wook

    2016-02-01

    Ethylene vinyl acetate (EVA) copolymers with two different VA contents (15 and 33 wt.%, denoted by EVA15 and EVA33, respectively) were melt compounded with multi-walled carbon nanotubes (MWNTs) and the effect of VA and nanotube contents on the rheological, thermal and morphological properties was investigated. The addition of nanotubes into both EVAs increased the onset temperature of crystallization and broadened the peak, but further addition from 3 wt.% slightly decreased the temperature with increasing nanotube contents. In the wide angle X-ray diffraction patterns the peak of EVA15 was little affected by the presence of nanotubes but that of EVA33 slightly shifted to higher degree and became sharper with increasing nanotube contents. Dynamic viscosity (η') increased with nanotube contents giving abrupt increase at 2 wt.% nanotubes. Loss tangent decreased with increasing nanotube contents exhibiting the plateau-like behavior over most of the frequency range from 2 wt.% nanotubes. In the Casson plot, yield stress increased with nanotube content and its increasing extent was more notable for more VA content. In the Cole-Cole plot, the presence of nanotubes from 2 wt.% gave rise to the deviation from the single master curve by decreasing the slope. The deviated extent of EVA33 became more remarkable with increasing nanotube contents than that of EVA15. The stress-strain curve showed that more improved tensile modulus and yield stress were achieved by the introduction of MWNTs for EVA 33 than for EVA15. Tensile strength of EVA33 increased with increasing nanotube contents, while that of EVA15 decreased.

  9. Activity during first EVA of STS-72 mission

    NASA Image and Video Library

    1996-01-15

    STS072-305-034 (15 Jan. 1996) --- Astronaut Daniel T. Barry, mission specialist, works in the cargo bay of the Space Shuttle Endeavour during the first of two extravehicular activities (EVA). Barry was joined by astronaut Leroy Chiao for the EVA. The two joined four other NASA astronauts for a week and a half aboard Endeavour.

  10. Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy

    PubMed Central

    Zhang, Shu; Lin, Xin; Li, Ge; Shen, Xue; Niu, Di; Lu, Guang; Fu, Xin; Chen, Yingyu; Cui, Ming; Bai, Yun

    2017-01-01

    EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult heart. Data from experiments showed that loss of Eva1a in the adult heart increased cardiac fibrosis, promoted cardiac hypertrophy, and led to cardiomyopathy and death. Further investigation suggested that this effect was associated with impaired autophagy and increased apoptosis in Eva1a knockout hearts. Moreover, knockout of Eva1a activated Mtor signalling and the subsequent inhibition of autophagy. In addition, Eva1a knockout hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation, leading to the lack of ATP generation. Collectively, these data demonstrated that Eva1a improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing autophagy. In conclusion, our results demonstrated that Eva1a may have an important role in maintaining cardiac homeostasis. PMID:28151473

  11. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    PubMed

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  12. U.S. Exploration EVA: ConOps, Interfaces and Test Objectives for Airlocks

    NASA Technical Reports Server (NTRS)

    Buffington, J.

    2017-01-01

    NASA is moving forward on defining the xEVA System Architecture and its implications to the spacecraft that host exploration EVA systems. This presentation provides an overview of the latest information for NASA's Concept of Operations (ConOps), Interfaces and corresponding Test Objectives for Airlocks hosting the xEVA System.

  13. ESEM analysis of polymeric film in EVA-modified cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, D.A.; Monteiro, P.J.M.

    2005-10-01

    Portland cement pastes modified by 20% weight (polymer/cement ratio) of poly(ethylene-co-vinyl acetate) (EVA) were prepared, cured, and immersed in water for 11 days. The effects of water saturation and drying on the EVA polymeric film formed in cement pastes were observed using environmental scanning electron microscopy (ESEM). This technique allowed the imaging of the EVA film even in saturated samples. The decrease of the relative humidity inside the ESEM chamber did not cause any visual modification of the polymeric film during its drying.

  14. EVA 27

    NASA Image and Video Library

    2014-10-07

    ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.

  15. Payload bay activity during second EVA of STS-72 mission

    NASA Image and Video Library

    1996-01-16

    STS072-393-008 (17 Jan. 1996) --- Astronaut Leroy Chiao gives a thumbs up signal, marking the success of his second extravehicular activity (EVA) in three days. Chiao was joined by astronaut Winston E. Scott on this EVA.

  16. Thermal processing of EVA encapsulants and effects of formulation additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugardmore » P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.« less

  17. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Image and Video Library

    1973-08-06

    S73-31976 (5 Aug. 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the Aug. 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop. Photo credit: NASA

  18. Curbeen during first EVA

    NASA Image and Video Library

    2006-12-13

    ISS014-E-09523 (12 Dec. 2006) --- Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, participates in the mission's first of three planned sessions of extravehicular activity (EVA) as construction resumes on the International Space Station. A power tool, attached to Curbeam's spacesuit, floats at left.

  19. The main results of EVA medical support on the Mir Space Station

    NASA Astrophysics Data System (ADS)

    Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  20. The main results of EVA medical support on the Mir Space Station.

    PubMed

    Katuntsev, V P; Osipov, Yu Yu; Barer, A S; Gnoevaya, N K; Tarasenkov, G G

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely. c2003 Elsevier Ltd. All rights reserved.

  1. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  2. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  3. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  4. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  5. Astronaut Musgrave performing EVA during STS-6

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Views of Mission Specialist F. Story Musgrave performing an extravehicular activity (EVA) during the STS-6 mission. In this view, Musgrave uses hand holds in the payload bay door hinge line to move towards the aft payload bay (30215); Musgrave conducts a simulation of a contingency EVA in the aft payload bay. This was designed to return the inertial upper stage (IUS) support equipment's tilt table device to its normal stowed configuration in the event of failure of an automatic system. A cloud-covered earth can be seen in the background (30216).

  6. Thermal processing of EVA encapsulants and effects of formulation additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.

    1996-09-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as-formulated EVA films. A9918P and 15295P, and solution-cast films of Elvax{trademark} (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark},more » used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155 C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.« less

  7. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  8. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    Astronaut physical performance capabilities in micro gravity EV A or on planetary surfaces when encumbered by a life support suit and debilitated by a long exposure to micro gravity will be less than unencumbered pre flight capabilities. The big question addressed by human factors engineers is: what can the astronaut be expected to do on EVA or when we arrive at a planetary surface? A second question is: what aids to performance will be needed to enhance the human physical capability? These questions are important for a number of reasons. First it is necessary to carry out accurate planning of human physical demands to ensure that time and energy critical tasks can be carried out with confidence. Second it is important that the crew members (and their ground or planetary base monitors) have a realistic picture of their own capabilities, as excessive fatigue can lead to catastrophic failure. Third it is important to design appropriate equipment to enhance human sensory capabilities, locomotion, materials handling and manipulation. The evidence from physiological research points to musculoskeletal, cardiovascular and neurovestibular degradation during long duration exposure to micro gravity . The evidence from the biomechanics laboratory (and the Neutral Buoyancy Laboratory) points to a reduction in range of motion, strength and stamina when encumbered by a pressurized suit. The evidence from a long history of EVAs is that crewmembers are indeed restricted in their physical capabilities. There is a wealth of evidence in the literature on the causes and effects of degraded human performance in the laboratory, in sports and athletics, in industry and in other physically demanding jobs. One approach to this challenge is through biomechanical and performance modeling. Such models must be based on thorough task analysis, reliable human performance data from controlled studies, and functional extrapolations validated in analog contexts. The task analyses currently carried

  9. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  10. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  11. Astronaut Carl Walz during EVA in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Carl E. Walz reaches for equipment from the provisional stowage assembly (PSA) in Discvoery's cargo bay during a lengthy period of extravehicular activity (EVA). The hatch to Discovery's airlock is open nearby. Sun glare is evident above the orbiter. The picture was taken with a 35mm camera by astronaut James H. Newman, who shared EVA duties with Walz.

  12. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA)

    PubMed Central

    Brancher, Luiza R.; Nunes, Maria Fernanda de O.; Grisa, Ana Maria C.; Pagnussat, Daniel T.; Zeni, Mára

    2016-01-01

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite. PMID:28787851

  13. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    PubMed

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  14. Russian EVA no. 39.

    NASA Image and Video Library

    2014-08-18

    ISS040E099355 (08/18/2014) --- Russian cosmonaut Alexander Skvortsov (red stripes), Expedition 40 flight engineer, attired in a Russian Orlan spacesuit outside the International Space Station, participates in a session of extravehicular activity (EVA) number 39 in support of science and maintenance. The Solar array is visible in the background.

  15. EVA Suit Microbial Leakage

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2016-01-01

    NASA has a strategic knowledge gap (B5-3) about what life signatures leak/vent from our Extravehicular Activity (EVA) systems. This will impact how we search for evidence of life on Mars. Characterizing contamination leaks from our suits will help us comply with planetary protection guidelines, and better plan human exploration missions.

  16. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  17. Ada Compiler Validation Summary Report: Certificate Number: 900121S1. 10251 Computer Sciences Corporation MC Ada V1.2.Beta/Concurrent Computer Corporation Concurrent/Masscomp 5600 Host To Concurrent/Masscomp 5600 (Dual 68020 Processor Configuration) Target

    DTIC Science & Technology

    1990-04-23

    developed Ada Real - Time Operating System (ARTOS) for bare machine environments(Target), ACW 1.1I0. " ; - -M.UIECTTERMS Ada programming language, Ada...configuration) Operating System: CSC developed Ada Real - Time Operating System (ARTOS) for bare machine environments Memory Size: 4MB 2.2...Test Method Testing of the MC Ado V1.2.beta/ Concurrent Computer Corporation compiler and the CSC developed Ada Real - Time Operating System (ARTOS) for

  18. Human-Centric Teaming in a Multi-Agent EVA Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower.An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.

  19. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  20. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  1. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  2. Preparation, characterization and application of EVA film containing Eu3+ complex with 1-tridecanecarboxylic acid ligand

    NASA Astrophysics Data System (ADS)

    Dong, Jin; Lin, Baoping

    2017-11-01

    In this study, on the basis of complex Eu(DBM)3Phen which was widely applied in polymer matrices, quaternary complex Eu(DBM)2Phen(TA) was synthesized by the introduction of 1-tridecanecarboxylic acid (TA). XRD analyses show that Eu(DBM)2Phen(TA) inclines to amorphization compared with Eu(DBM)3Phen which is crystal. Ethylene-vinyl acetate (EVA) film doped with Eu(DBM)2Phen(TA) was prepared by casting method. SEM and AFM analyses show that the compatibility of Eu(DBM)2Phen(TA) with EVA is better than that of Eu(DBM)3Phen with EVA. Under the same addition amount of Eu3+ complexes, visible light transmittance of Eu(DBM)2Phen(TA)/EVA film is obviously greater than that of Eu(DBM)3Phen/EVA film, and the fluorescence intensity of Eu(DBM)2Phen(TA)/EVA film is only slightly lower than that of Eu(DBM)3Phen/EVA film. With the optimum addition amount of Eu3+ complexes, the energy conversion efficiency of the polycrystalline silicon solar cell coated with Eu(DBM)2Phen(TA)/EVA film is improved to 12.14%, and in comparison, that of the solar cell coated with Eu(DBM)3Phen/EVA film is only 11.98%. Hence Eu(DBM)2Phen(TA)/EVA film has a potential prospect as luminescent down-shifting material.

  3. Genomic characterization of two new enterovirus types, EV-A114 and EV-A121.

    PubMed

    Deshpande, Jagadish M; Sharma, Deepa K; Saxena, Vinay K; Shetty, Sushmitha A; Qureshi, Tarique Husain I H; Nalavade, Uma P

    2016-12-01

    Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.

  4. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain

  5. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  6. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  7. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  8. The development of a test methodology for the evaluation of EVA gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Cleland, John; Winfield, Dan

    1988-01-01

    This paper describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: range of motion, strength, tactile perception, dexterity, fatigue, and comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure.

  9. Astronaut Ronald Evans is suited up for EVA training

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

  10. Gerst during EVA

    NASA Image and Video Library

    2014-10-07

    ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.

  11. Wiseman during EVA

    NASA Image and Video Library

    2014-10-07

    ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.

  12. Russian EVA 34

    NASA Image and Video Library

    2013-08-16

    ISS036-E-033400 (16 Aug. 2013) --- Russian cosmonaut Alexander Misurkin (lower left), Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the seven-hour, 29-minute spacewalk ? the longest ever conducted by a pair of Russian cosmonauts ? Misurkin and Fyodor Yurchikhin (out of frame) rigged cables for the future arrival of a Russian laboratory module and installed an experiment panel.

  13. Russian EVA 34

    NASA Image and Video Library

    2013-08-16

    ISS036-E-033402 (16 Aug. 2013) --- Russian cosmonaut Alexander Misurkin (lower left), Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the seven-hour, 29-minute spacewalk ? the longest ever conducted by a pair of Russian cosmonauts ? Misurkin and Fyodor Yurchikhin (out of frame) rigged cables for the future arrival of a Russian laboratory module and installed an experiment panel.

  14. A primer on EVA for health care providers.

    PubMed

    Grant, James L

    2007-01-01

    Unlike accounting earnings, economic profit (EVA) is a measure of a company's true earnings because it fully "accounts" for the costs of all forms of financing, including debt and equity. In the EVA view, a company is not truly profitable unless it earns a return on capital that bests the opportunity cost of capital. That being said, the question addressed here is how to measure the economic profit of providers in the health care sector, which is largely comprised of not-for-profit organizations such as clinics, laboratories, and hospitals.

  15. Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication

    NASA Astrophysics Data System (ADS)

    Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.

    2017-04-01

    This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.

  16. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  17. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  18. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  19. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.

    PubMed

    Even-Tzur, Nurit; Weisz, Ety; Hirsch-Falk, Yifat; Gefen, Amit

    2006-01-01

    Modern sport shoes are designed to attenuate mechanical stress waves, mainly through deformation of the viscoelastic midsole which is typically made of ethylene vinyl acetate (EVA) foam. Shock absorption is obtained by flow of air through interconnected air cells in the EVA during shoe deformation under body-weight. However, when the shoe is overused and air cells collapse or thickness of the EVA is reduced, shock absorption capacity may be affected, and this may contribute to running injuries. Using lumped system and finite element models, we studied heel pad stresses and strains during heel-strike in running, considering the viscoelastic constitutive behavior of both the heel pad and EVA midsole. In particular, we simulated wear cases of the EVA, manifested in the modeling by reduced foam thickness, increased elastic stiffness, and shorter stress relaxation with respect to new shoe conditions. Simulations showed that heel pad stresses and strains were sensitive to viscous damping of the EVA. Wear of the EVA consistently increased heel pad stresses, and reduced EVA thickness was the most influential factor, e.g., for a 50% reduction in thickness, peak heel pad stress increased by 19%. We conclude that modeling of the heel-shoe interaction should consider the viscoelastic properties of the tissue and shoe components, and the age of the studied shoe.

  20. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  1. Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803.

    PubMed

    Pils, D; Schmetterer, G

    2001-09-25

    Synechocystis sp. PCC 6803 contains three respiratory terminal oxidases (RTOs): cytochrome c oxidase (Cox), quinol oxidase (Cyd), and alternate RTO (ARTO). Mutants lacking combinations of the RTOs were used to characterize these key enzymes of respiration. Pentachlorophenol and 2-heptyl-4-hydroxy-quinoline-N-oxide inhibited Cyd completely, but had little effect on electron transport to the other RTOs. KCN inhibited all three RTOs but the in vivo K(I) for Cox and Cyd was quite different (7 vs. 27 microM), as was their affinity for oxygen (K(M) 1.0 vs. 0.35 microM). ARTO has a very low respiratory activity. However, when uptake of 3-O-methylglucose, an active H+ co-transport, was used to monitor energization of the cytoplasmic membrane, ARTO was similarly effective as the other RTOs. As removal of the gene for cytochrome c(553) had the same effects as removal of ARTO genes, we propose that the ARTO might be a second Cox. The possible functions, localization and regulation of the RTOs are discussed.

  2. Health and Safety Benefits of Small Pressurized Suitport Rovers as EVA Surface Support Vehicles

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Abercromby, Andrew F. J.

    2008-01-01

    Pressurized safe-haven providing SPE protection and decompression sickness (DCS) treatment capabilities within 20 mins at all times. Up to 50% reduction in time spent in EVA suits (vs. Unpressurized Rovers) for equal or greater Boots-on-Surface EVA exploration time. Reduces suit-induced trauma and provides improved options for nutrition, hydration, and waste-management. Time spent inside SPR during long translations may be spent performing resistive and cardiovascular exercise. Multiple shorter EVAs versus single 8 hr EVAs increases DCS safety and decreases prebreathe requirements. SPRs also offer many potential operational, engineering and exploration benefits not addressed here.

  3. Enhanced Adhesion of EVA Laminates to Primed Glass Substrates Subjected to Damp-Heat Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Jorgensen, G. J.

    2005-02-01

    We investigated the effectiveness of glass-surface priming to promote enhanced adhesion of EVA laminates during damp-heat exposure at 85 C and 85% relative humidity. The primary objective was to develop advanced encapsulant formulations by incorporation of various primer formulations that exhibit improved adhesion during damp-heat exposure. Several primer formulations were identified that greatly enhanced the EVA adhesion strength, including to the extent that peeling could not be initiated, even for the laminates of the glass substrate/fast-cure EVA15295P/TPE backsheet (a Tedlar/polyester/EVA tri-laminate) that were exposed in a damp-heat test chamber for more than 750 h. The results show that a synergisticmore » increase in the interfacial hydrophobicity, siloxane density, and cross-linking density are the key attributes to the improvement in the EVA adhesion strength.« less

  4. Information requirements and methodology for development of an EVA crewmember's heads up display

    NASA Astrophysics Data System (ADS)

    Petrek, J. S.

    This paper presents a systematic approach for developing a Heads Up Display (HUD) to be used within the helmet of the Extra Vehicular Activity (EVA) crewmember. The information displayed on the EVA HUD will be analogous to EVA Flight Data File (FDF) information, which is an integral part of NASA's current Space Transportation System. Another objective is to determine information requirements and media techniques ultimately leading to the helmet-mounted HUD presentation technique.

  5. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems.

    PubMed

    Schneider, Christian; Langer, Robert; Loveday, Donald; Hair, Dirk

    2017-09-28

    The potential for use of polymers in controlled drug delivery systems has been long recognized. Since their appearance in the literature, a wide range of degradable and non-degradable polymers have been demonstrated in drug delivery devices. The significance and features of ethylene-vinyl acetate (EVA) copolymers in initial research and development led to commercial drug delivery systems. This review examines the breadth of EVA use in drug delivery, and will aid the researcher in locating key references and experimental results, as well as understanding the features of EVA as a highly versatile, biocompatible polymer for drug delivery devices. Topics will include. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. CREW TRAINING (EXTRAVEHICULAR ACTIVITY [EVA]) - STS-41G - JSC

    NASA Image and Video Library

    1984-07-06

    S84-36956 (1 July 1984) --- Astronaut Robert L. Crippen, 41-G crew commander, prepares his SCUBA mask prior to submerging into the weightless environment training facility's 25 ft. deep pool to observe a simulation exercise for two fellow 41-G crewmembers assigned to an extravehicular activity (EVA) in space. Not pictured are Astronauts Kathryn D. Sullivan and David C. Leestma, mission specialists who will perform the EVA during the eight-day mission scheduled for October of this year.

  7. Next Generation Life Support: High Performance EVA Glove

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  8. EVA Skills training in the NBL

    NASA Image and Video Library

    2012-11-27

    ESA astronaut and first astronaut from the United Kingdom, Timothy Peake, with NASA astronaut Scott Tingle (unassigned) during EVA Skills training in the NBL. Photo Date: November 27, 2012. Location: NBL - Pool Topside. Photographer: Robert Markowitz

  9. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035204 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  10. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035130 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  11. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035129 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  12. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035124 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  13. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035133 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  14. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035205 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  15. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035126 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  16. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035163 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers.

  17. Russian EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027391 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  18. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  19. EVA assembly of large space structure element

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

    1981-01-01

    The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

  20. Robinson during EVA 3

    NASA Image and Video Library

    2005-06-29

    S114-E-6221 (3 August 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, on the end of the station’s Canadarm2 (out of frame), slowly and cautiously makes his way to the underside of Space Shuttle Discovery to remove gap fillers from between the orbiter’s heat-shielding tiles during the mission’s third session of extravehicular activity (EVA).

  1. Robinson during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6215 (3 August 2005) --- Astronaut Stephen K. Robinson, STS-114 mission specialist, on the end of the station’s Canadarm2 (out of frame), slowly and cautiously makes his way to the underside of Space Shuttle Discovery to remove gap fillers from between the orbiter’s heat-shielding tiles during the mission’s third of three sessions of extravehicular activity (EVA).

  2. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    One of the more mission-critical tasks performed in space is extravehicular activity (EVA) which requires the astronaut to be external to the station or spacecraft, and subsequently at risk from the many threats posed by space. These threats include, but are not limited to: no significant atmosphere, harmful electromagnetic radiation, micrometeoroids, and space debris. To protect the astronaut from this environment, a special EVA suit is worn which is designed to maintain a sustainable atmosphere (at 1/3 atmosphere) and provide protection against the hazards of space. While the EVA suit serves these functions well, it does impose limitations on the astronaut as a consequence of the safety it provides. Since the astronaut is in a virtual vacuum, any atmospheric pressure inside the suit serves to pressurize the suit and restricts mobility of flexible joints (such as fabric). Although some of the EVA suit joints are fixed, rotary-style joints, most of the mobility is achieved by the simple flexibility of the fabric. There are multiple layers of fabric, each of which serves a special purpose in the safety of the astronaut. These multiple layers add to the restriction of motion the astronaut experiences in the space environment. Ground-based testing is implemented to evaluate the capability of EVA-suited astronauts to perform the various tasks in space. In addition to the restriction of motion imposed by the EVA suit, most EVA activity is performed in a micro-gravity (weight less) environment. To simulate weightlessness EVA-suited testing is performed in a neutral buoyancy simulator (NBS). The NBS is composed of a large container of water (pool) in which a weightless environment can be simulated. A subject is normally buoyant in the pressurized suit; however he/she can be made neutrally buoyant with the addition of weights. In addition, most objects the astronaut must interface with in the NBS sink in water and flotation must be added to render them "weightless". The

  3. Astronaut Story Musgrave during STS-6 EVA

    NASA Image and Video Library

    1983-04-07

    STS006-45-124 (7 April 1983) --- Astronaut F. Story Musgrave, STS-6 mission specialist, translates down the Earth-orbiting space shuttle Challenger’s payload bay door hinge line with a bag of latch tools. This photograph is among the first five still frames that recorded the April 7 extravehicular activity (EVA) of Dr. Musgrave and Donald H. Peterson, the flight’s other mission specialist. It was photographed with a handheld 70mm camera from inside the cabin by one of two crew members who remained on the flight deck during the EVA. Dr. Musgrave’s task here was to evaluate the techniques required to move along the payload bay’s edge with tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wind and orbital maneuvering system (OMS) pod are seen back dropped against the blackness of space. The gold-foil protected object partially out of frame on the right is the airborne support equipment for the now vacated inertial upper stage (IUS) which aided the deployment of the tracking and data relay satellite on the flight’s first day. Astronauts Paul J. Weitz, command and Karol J. Bobko, pilot, remained inside the Challenger during the EVA. Photo credit: NASA

  4. The Education of Eva Hoffman.

    ERIC Educational Resources Information Center

    Proefriedt, William

    1991-01-01

    Reviews the autobiography of Eva Hoffman, "Lost in Translation: A Life in a New Language" (Dutton, 1989). Hoffman, whose family left Poland in the 1950s, offers a consciously bicultural view of the immigrant experience, in contrast to many autobiographies of those who forsake the old world for the new. (DM)

  5. Astronaut Ronald Evans photographed during transearth coast EVA

    NASA Image and Video Library

    1972-12-17

    AS17-152-23391 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, Evans, command module pilot, retrieved film cassettes from the lunar sounder, mapping camera and panoramic camera. The cylindrical object at Evans' left side is the mapping camera cassette. The total time for the trans-Earth EVA was one hour, seven minutes, 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at G.E.T. of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.

  6. Astronaut Ronald Evans photographed during transearth coast EVA

    NASA Image and Video Library

    1972-12-17

    AS17-152-23393 (17 Dec. 1972) --- Astronaut Ronald E. Evans is photographed performing extravehicular activity during the Apollo 17 spacecraft's trans-Earth coast. During his EVA, command module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The cylindrical object at Evans' left side is the Mapping Camera cassette. The total time for the trans-Earth EVA was one hour seven minutes 18 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) and ending at ground elapsed timed of 258:42 (3:35 p.m.) on Sunday, Dec. 17, 1972.

  7. Helms holds onto the Rigid Umbilical during EVA

    NASA Image and Video Library

    2001-03-11

    STS102-314-003 (11 March 2001) --- Astronaut Susan J. Helms works while holding onto a rigid umbilical and with her feet anchored to the remote manipulator system (RMS) robot arm on the Space Shuttle Discovery. This extravehicular activity (EVA), on which Helms was joined by astronaut James S. Voss (out of frame), was the first of two scheduled STS-102 space walks. The pair, destined to become members of the Expedition Two crew aboard the station later in the mission, rode aboard Discovery into orbit and at the time of this EVA were still regarded as STS-102 mission specialists.

  8. EVA 4

    NASA Image and Video Library

    2006-12-18

    ISS014-E-10089 (18 Dec. 2006) --- European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, uses a digital still camera to expose a photo of his helmet visor during the mission's fourth session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station. Also visible in the reflections in the visor is astronaut Robert L. Curbeam Jr., mission specialist, as he works with the port overhead solar array wing on the station's P6 truss. The spacewalkers worked in tandem, using specially prepared, tape-insulated tools, to guide the array wing neatly inside its blanket box during the 6-hour, 38-minute spacewalk.

  9. Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.

    1994-12-31

    Several factors that may affect the net discoloration rate of the ethylene-vinyl acetate (EVA) copolymer encapsulants used in crystalline-Si photovoltaic (c-Si PV) modules upon accelerated exposure have been investigated by employing UV-visible spectrophotometry, spectrocolorimetry, and fluorescence analysis. A number of laminated films, including the two typical EVA formulations, A9918 and 15295, were studied. The results indicate that the rate of EVA discoloration is affected by the (1) curing agent and curing conditions; (2) presence and concentration of curing-generated, UV-excitable chromophores; (3) UV light intensity; (4) loss rate of the UV absorber, Cyasorb UV 531; (5) lamination; (6) film thickness; andmore » (7) photobleaching rate due to the diffusion of air into the laminated films. In general, the loss rate of the UV absorber and the rate of discoloration from light yellow to brown follow a sigmoidal pattern. A reasonable correlation for net changes in transmittance at 420 nm, yellowness index, and fluorescence peak area (or intensity) ratio is obtained as the extent of EVA discoloration progressed.« less

  10. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  11. STS-103 crewmembers during NBL EVA training

    NASA Image and Video Library

    1999-06-21

    S99-06194 (21 June 1999) --- Astronaut C. Michael Foale, mission specialist, rehearses Extravehicular Activity (EVA) with the Hubble Space Telescope (HST) mockup in the Neutral Buoyancy Laboratory (NBL).

  12. Photos taken inside ISS during EVA day

    NASA Image and Video Library

    2013-07-09

    Astronaut Karen Nyberg,Expedition 36 flight engineer,is photographed at the Space Station Remote Manipulator System (SSRMS) controls in the U.S. Laboratory during a session of extravehicular activity (EVA).

  13. Current status of EVA degradation in Si modules and interface stability in CdTe/CdS modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czanderna, A.W.

    1994-06-30

    The goals, objectives, background, technical approach, status, and accomplishments on the PV Module Reliability Research Task are summarized for FY 1993. The accomplishments are reported in two elements, ethylene vinyl acetate (EVA) degradation and stability in CdTe/CdS modules. The EVA results are presented under the headings modified EVA and potential EVA replacements, degradation mechanisms, efficiency losses from yellowed EVA, and equipment acquisitions. The results on CdTe/CdS modules are presented under subheadings of stability of the SnO[sub 2]/CdS interface and degradation at the CdTe/CdS interface.

  14. Emergency vehicle alert system (EVAS)

    NASA Technical Reports Server (NTRS)

    Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna

    1995-01-01

    The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.

  15. Improved photostability of NREL-developed EVA pottant formulations for PV module encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.

    1997-12-31

    Several new formulations of ethylene vinyl acetate (EVA)-based encapsulant have been developed at NREL and have greatly improved photostability against UV-induced discoloration. The new EVA formulations use stabilizers and a curing agent entirely different from any of those used in existing formulations known to the authors. No discoloration was observed for the laminated and cured samples that were exposed to a {approximately}5-sun UV light (300--400 nm) from a solar simulator at a black panel temperature (BPT) of 44 {+-} 2 C for {approximately}3250 h followed by at 85 C for {approximately}850 h, an equivalent of approximately 9.4 years for anmore » average 6-h daily, 1-sun solar exposure in Golden, Colorado. Under the same conditions, substantial discoloration and premature delamination were observed for two commercial EVA formulations. Encapsulation with the new EVA formulations should extend the long-term stability for PV modules in the field, especially when coupled with UV-filtering, Ce-containing glass superstrates.« less

  16. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44

  17. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6412 (3 August 2005) --- Space Shuttle Discovery’s underside thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA).

  18. A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema.

    PubMed

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chua, Beng Hooi; Alonso, Sylvie; Chow, Vincent T K; Chua, Kaw Bing

    2016-06-30

    Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)-the main cause of EV-A71 infection-related mortality-is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications.

  19. Astronaut Russell Schweickart inside simulator for EVA training

    NASA Image and Video Library

    1968-12-11

    S68-55391 (11 Dec. 1968) --- Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission, is seen inside Chamber "A," Space Environment Simulation Laboratory, Building 32, participating in dry run activity in preparation for extravehicular activity which is scheduled in Chamber "A." The purpose of the scheduled training is to familiarize the crewmen with the operation of EVA equipment in a simulated space environment. In addition, metabolic and workload profiles will be simulated on each crewman. Astronauts Schweickart and Alan L. Bean, backup lunar module pilot, are scheduled to receive thermal-vacuum training simulating Earth-orbital EVA.

  20. The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits.

    PubMed

    Yu, Yang; Feng, Linjing; Li, Junnan; Lan, Xiaoxin; A, Lixiang; Lv, Xiaoyan; Zhang, Ming; Chen, Li

    2017-09-15

    The present study was aim to explore aging-dependent changes in hippocampal autophagy and apoptosis in a natural aging rat model from adult to old stages and to discover a suitable age for treating neurodegenerative diseases. Wistar rats at 5, 18 and 24months of age were used to mimic the adulthood, initial old, and old phases, respectively. The learning and cognitive ability of the rats was detected by the Morris water maze test. Morphological changes in the hippocampus were observed. Expressions of apoptosis and autophagy-related proteins were examined by Western blot. The adult group (5months) exhibited high levels of autophagy related p-ULK p-ULK-1/ULK-1 ratio, Beclin-1, LC3II and cell survival, maintaining normal learning and cognitive function and integrated hippocampal morphology. The initial old group (18 months) presented a reduced number of neurons and cognitive deficits, and exhibited high levels of apoptosis related Bax/Bcl-2 ratio, Caspase-3 activation and autophagy related p-ULK p-ULK-1/ULK-1 ratio, Beclin-1, LC3II compared to the adult group. The old group (24 months) exhibited a high level of apoptosis related Bax/Bcl-2 ratio, Caspase-3 activation and a low level of autophagy related p-ULK p-ULK-1/ULK-1 ratio, Beclin-1, LC3II compared to its younger group, as well as significant neuronal death and cognitive deficits. The degree of autophagy was generally consistent with its negative regulator, the PI3K/Akt/mTOR axis, in all groups. Our data suggest that cognitive deficits are first observed in the initial old stage. The levels of autophagy and apoptosis tend to be opposite in the adult and old phases. High levels of autophagy and apoptosis coexist in the initial old stage. Our study indicates that up-regulation of autophagy in the initial old phase to anti-cognitive deficits must be further evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark; Johnston, Alistair

    1996-01-01

    The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.

  2. Effective Teamwork: The EVA NBL Experience

    NASA Technical Reports Server (NTRS)

    Crocker, Lori

    2007-01-01

    This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

  3. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008315 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  4. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008195 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  5. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008325 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  6. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008219 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  7. Astronaut Kathryn Sullivan checks SIR-B antenna during EVA

    NASA Image and Video Library

    1984-10-11

    41G-13-032 (11 Oct. 1984) --- Astronaut Kathryn D. Sullivan checks the latch of the SIR-B antenna in the space shuttle Challenger's open cargo bay during her historic extravehicular activity (EVA) on Oct. 11, 1984. Earlier, America's first woman to perform an EVA and astronaut David C. Leestma, participated in an in-space simulation of refueling a spacecraft in orbit. The Orbital Refueling System (ORS) is just beyond the astronaut mission specialist's helmet. To the left is the Large Format Camera (LFC). The LFC and ORS are stationed on a device called the Mission Peculiar Support Structure (MPESS). Crew members consisted of astronauts Robert L. Crippen, commander; Jon A. McBride, pilot; along with Kathryn D. Sullivan, Sally K. Ride, and David D. Leestma, all mission specialists; and Canadian astronaut Marc Garneau and Paul D. Scully-Power, both payload specialist. EDITOR'S NOTE: The STS-41G mission had the first American female EVA (Sullivan); first seven-person crew; first orbital fuel transfer; and the first Canadian (Garneau).

  8. Application of EVA guidelines and design criteria. Volume 2: EVA workstation conceptual designs

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Several EV workstation concepts were developed and are documented. The workstation concepts were developed following a comprehensive analysis of potential EV missions, functions, and tasks as interpreted from NASA and contractor space shuttle and space station studies, mission models, and related reports. The design of a versatile, portable EVA workstation is aimed at reducing the design and development costs for each mission and aiding in the development of on-orbit serviceable payloads.

  9. Tile survey taken during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6366 (3 August 2005) --- Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during today’s extravehicular activities (EVA). Robinson’s shadow is visible on the thermal protection tiles.

  10. Characterization of the Radiation Shielding Properties of US andRussian EVA Suits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-10-26

    Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measuredmore » using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.« less

  11. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  12. Electrostatic Discharge Issues in International Space Station Program EVAs

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

  13. STS-64 Extravehicular activity (EVA) training view in WETF

    NASA Image and Video Library

    1994-08-10

    S94-39775 (August 1994) --- Astronaut Carl J. Meade, STS-64 mission specialist, listens to ground monitors during a simulation of a spacewalk scheduled for his September mission. Meade, who shared the rehearsal in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) pool with crewmate astronaut Mark C. Lee, is equipped with a training version of new extravehicular activity (EVA) hardware called the Simplified Aid for EVA Rescue (SAFER) system. The hardware includes a mobility-aiding back harness and a chest-mounted hand control module. Photo credit: NASA or National Aeronautics and Space Administration

  14. STS-64 Extravehicular activity (EVA) training view in WETF

    NASA Image and Video Library

    1994-08-10

    S94-39762 (August 1994) --- Astronaut Carl J. Meade, STS-64 mission specialist, listens to ground monitors prior to a simulation of a spacewalk scheduled for his September mission. Meade, who shared the rehearsal in Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) pool with crewmate astronaut Mark C. Lee (out of frame), is equipped with a training version of new extravehicular activity (EVA) hardware called the Simplified Aid for EVA Rescue (SAFER) system. The hardware includes a mobility-aiding back harness and a chest-mounted hand control module. Photo credit: NASA or National Aeronautics and Space Administration

  15. EVA - A Textual Data Processing Tool.

    ERIC Educational Resources Information Center

    Jakopin, Primoz

    EVA, a text processing tool designed to be self-contained and useful for a variety of languages, is described briefly, and its extensive coded character set is illustrated. Features, specifications, and database functions are noted. Its application in development of a Slovenian literary dictionary is also described. (MSE)

  16. Results of EVA/mobile transporter space station truss assembly tests

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Heard, Walter L., Jr.; Bush, Harold G.; Lake, M. S.; Jensen, J. K.; Wallsom, R. E.; Phelps, J. E.

    1988-01-01

    Underwater neutral buoyance tests were conducted to evaluate the use of a Mobile Transporter concept in conjunction with EVA astronauts to construct the Space Station Freedom truss structure. A three-bay orthogonal tetrahedral truss configuration with a 15 foot square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices (mobile foot restraints). The average unit assembly time (which included integrated installation of utility trays) was 27.6 s/strut, or 6 min/bay. The results of these tests indicate that EVA assembly of space station size structures can be significantly enhanced when using a Mobile Transporter equipped with astronaut positioning devices. Rapid assembly time can be expected and are dependent primarily on the rate of translation permissible for on-orbit operations. The concept used to demonstate integrated installation of utility trays requires minimal EVA handling and consequentially, as the results show, has little impact on overall assembly time.

  17. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035177 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers. Parts of solar array panels on the orbital outpost are visible in the background,

  18. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035198 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers. A section of the space station is visible in the reflections in his helmet visor.

  19. Russian EVA 35

    NASA Image and Video Library

    2013-08-22

    ISS036-E-035200 (22 Aug. 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, attired in a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 58-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame) completed the replacement of a laser communications experiment with a new platform for a small optical camera system, the installation of new spacewalk aids and an inspection of antenna covers. A section of the space station is visible in the reflections in his helmet visor.

  20. Russian EVA-31

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020683 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  1. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  2. ASTRONAUT KERWIN, JOSEPH P. - EXTRAVEHICULAR ACTIVITY (EVA) - SKYLAB (SL)-2

    NASA Image and Video Library

    1973-06-01

    S73-27562 (June 1973) --- Scientist-astronaut Joseph P. Kerwin, Skylab 2 science pilot, performs extravehicular activity (EVA) at the Skylab 1 and 2 space station cluster in Earth orbit, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the station. Kerwin is just outside the Airlock Module. Kerwin assisted astronaut Charles Conrad Jr., Skylab 2 commander, during the successful EVA attempt to free the stuck solar array system wing on the Orbital Workshop. Photo credit: NASA

  3. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, J., E-mail: james.p.allan14@gmail.com; ChapmanBDSP, Saffron House, 6-10 Kirby Street, London, EC1N 8EQ; Pinder, H.

    2016-03-15

    Samples of Ethylene-Vinyl Acetate (EVA) were doped with particles of Boron Nitride (BN) in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC) technique. The thermal conductivity of parent EVA was increased from 0.24 W/m ⋅ K to 0.80 W/m ⋅ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimentalmore » results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.« less

  4. EVA Physiology, Systems and Performance [EPSP] Project

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  5. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  6. Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008221 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, works on the new Columbus laboratory as he participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  7. Kondratyev during EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027361 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  8. Kondratyev during EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027368 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  9. Spaceborne construction and operations planning - Decision rules for selecting EVA, telerobot, and combined work-systems

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    1992-01-01

    An approach is presented for selecting an appropriate work-system for performing construction and operations tasks by humans and telerobots. The decision to use extravehicular activity (EVA) performed by astronauts, extravehicular robotics (EVR), or a combination of EVA and EVR is determined by the ratio of the marginal costs of EVA, EVR, and IVA. The approach proposed here is useful for examining cost trade-offs between tasks and performing trade studies of task improvement techniques (human or telerobotic).

  10. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6387 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA).

  11. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  12. Correlation between surface carbon concentration and adhesive strength at the Si cell/EVA interface in a PV module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhere, N.G.; Wollam, M.E.; Gadre, K.S.

    1997-12-31

    Silicon solar cell/EVA composite is being studied with an objective to further improve the manufacturing technology of PV modules. Sample extraction and adhesion strength measurement process has been modified. Silicon and EVA samples were extracted from solar cells of new and field-deployed modules. Optical microscopy, SEM, and AES of samples from new modules revealed EVA islands covering most of the silicon cell surface indicating a cohesive failure. A good correlation was observed between the adhesive strength and surface concentration of carbon. A low carbon concentration which indicated less EVA clinging to cell surface always resulted in low adhesive strengths. Themore » correlation provides a simple technique for inferring properties of EVA.« less

  13. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Image and Video Library

    1984-11-14

    51A-104-049 (14 Nov. 1984) --- Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days aboard the Earth-orbiting Discovery, holds up a for sale sign. Astronaut Joseph P. Allen IV, who also participated in the two EVA, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in lower right corner, with Westar nearer Discovery's aft. Dr. Allen, standing on the mobile foot restraint, connected to the remote manipulator system. Photo credit: NASA

  14. EVA Roadmap: New Space Suit for the 21st Century

    NASA Technical Reports Server (NTRS)

    Yowell, Robert

    1998-01-01

    New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.

  15. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  16. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  17. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  18. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  19. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021529 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  20. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021561 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  1. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021537 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  2. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021569 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  3. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021562 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  4. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021515 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  5. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021506 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  6. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021503 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  7. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021535 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  8. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021525 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  9. Mastracchio during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021510 (11 April 2010) --- NASA astronaut Rick Mastracchio, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Mastracchio and astronaut Clayton Anderson (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  10. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021558 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  11. Tani during EVA 14

    NASA Image and Video Library

    2008-01-30

    ISS016-E-026454 (30 Jan. 2008) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in a session of extravehicular activity (EVA) as maintenance and construction continue on the International Space Station. During the 7-hour, 10-minute spacewalk, Tani and astronaut Peggy Whitson (out of frame), commander, replaced a motor, known as the Bearing Motor Roll Ring Module (BMRRM), at the base of one of the station's solar wings. The BMRRM is part of the Beta Gimbal Assembly, which experienced electrical failures Dec. 8.

  12. Study of space shuttle EVA/IVA support requirements. Volume 1: Technical summary report

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    Results are summarized which were obtained for equipment requirements for the space shuttle EVA/IVA pressure suit, life support system, mobility aids, vehicle support provisions, and energy 4 support. An initial study of tasks, guidelines, and constraints and a special task on the impact of a 10 psia orbiter cabin atmosphere are included. Supporting studies not related exclusively to any one group of equipment requirements are also summarized. Representative EVA/IVA task scenarios were defined based on an evaluation of missions and payloads. Analysis of the scenarios resulted in a total of 788 EVA/IVA's in the 1979-1990 time frame, for an average of 1.3 per shuttle flight. Duration was estimated to be under 4 hours on 98% of the EVA/IVA's, and distance from the airlock was determined to be 70 feet or less 96% of the time. Payload water vapor sensitivity was estimated to be significant on 9%-17% of the flights. Further analysis of the scenarios was carried out to determine specific equipment characteristics, such as suit cycle and mobility requirements.

  13. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  14. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6396 (3 August 2005) --- Space Shuttle Discovery’s underside thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). Lake Nasser along the Nile River, Egypt is visible near Discovery’s starboard wing.

  15. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  16. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  17. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  18. Changes in the EV-A71 Genome through Recombination and Spontaneous Mutations: Impact on Virulence.

    PubMed

    Mandary, Madiiha Bibi; Poh, Chit Laa

    2018-06-12

    Enterovirus 71 (EV-A71) is a major etiological agent of hand, foot and mouth disease (HFMD) that mainly affects young children less than five years old. The onset of severe HFMD is due to neurological complications bringing about acute flaccid paralysis and pulmonary oedema. In this review, we address how genetic events such as recombination and spontaneous mutations could change the genomic organization of EV-A71, leading to an impact on viral virulence. An understanding of the recombination mechanism of the poliovirus and non-polio enteroviruses will provide further evidence of the emergence of novel strains responsible for fatal HFMD outbreaks. We aim to see if the virulence of EV-A71 is contributed solely by the presence of fatal strains or is due to the co-operation of quasispecies within a viral population. The phenomenon of quasispecies within the poliovirus is discussed to reflect viral fitness, virulence and its implications for EV-A71. Ultimately, this review gives an insight into the evolution patterns of EV-A71 by looking into its recombination history and how spontaneous mutations would affect its virulence.

  19. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065720 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  20. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065733 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  1. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065722 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  2. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065734 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  3. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065736 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  4. Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065735 (14 Feb. 2010) --- NASA astronaut Nicholas Patrick, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Patrick and Robert Behnken (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  5. Behnken during EVA 2

    NASA Image and Video Library

    2010-02-14

    S130-E-007858 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission’s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  6. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065731 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  7. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065750 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  8. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065758 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  9. Behnken during EVA 2

    NASA Image and Video Library

    2010-02-14

    S130-E-007862 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission’s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  10. Behnken during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065751 (14 Feb. 2010) --- NASA astronaut Robert Behnken, STS-130 mission specialist, participates in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and astronaut Nicholas Patrick (out of frame), mission specialist, connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  11. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017370 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station.

  12. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007850 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  13. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007853 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  14. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007771 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  15. Love during EVA 1

    NASA Image and Video Library

    2008-02-11

    S122-E-007794 (11 Feb. 2008) --- Astronaut Stanley Love, STS-122 mission specialist, participates in the first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the almost eight-hour spacewalk, Love and astronaut Rex Walheim (out of frame), mission specialist, installed a grapple fixture on the Columbus laboratory and prepared electrical and data connections on the module while it rested inside Space Shuttle Atlantis' payload bay. The crewmembers also began work to replace a large nitrogen tank used for pressurizing the station's ammonia cooling system.

  16. Tani during EVA 14

    NASA Image and Video Library

    2008-01-30

    ISS016-E-026022 (30 Jan. 2008) --- The face of astronaut Daniel Tani, Expedition 16 flight engineer, is easily recognizable as he participates in a session of extravehicular activity (EVA) as maintenance and construction continue on the International Space Station. During the 7-hour, 10-minute spacewalk, Tani and astronaut Peggy Whitson (out of frame), commander, replaced a motor, known as the Bearing Motor Roll Ring Module (BMRRM), at the base of one of the station's solar wings. The BMRRM is part of the Beta Gimbal Assembly, which experienced electrical failures Dec. 8.

  17. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  18. Views of EVA performed during STS-6

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two STS-6 mission specialists busy near the aft bulkhead were photographed with a 70mm camera. Astronauts F. Story Musgrave (at winch device near center) and Donald H. Peterson are setting up winch operations at the aft bulkhead as a simulation for a contingency extravehicular activity (EVA). The orbital maneuvering system (OMS) pods are seen in the background (30211); Musgrave translates down the Challenger's payload bay door hinge line with a bag of latch tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wing and OMS pod are seen in the background. The gold-foil protected object on the right is the airborne support equipment for the inertial upper stage (IUS) (30212); Peterson (starboard side) and Musgrave evaluate the handrail system on the starboard longeron and aft bulkhead during an EVA. Behind them the vertical stabilizer and OMS pods frame a portion of Mexico's state of Jalisco (30213); Musgrave sus

  19. EVA Human Health and Performance Benchmarking Study Overview and Development of a Microgravity Protocol

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Jarvis, Sarah; Bekdash, Omar; Cupples, Scott; Abercromby, Andrew

    2017-01-01

    The primary objective of this study is to develop a protocol to reliably characterize human health and performance metrics for individuals working inside various EVA suits under realistic spaceflight conditions. Expected results and methodologies developed during this study will provide the baseline benchmarking data and protocols with which future EVA suits and suit configurations (e.g., varied pressure, mass, center of gravity [CG]) and different test subject populations (e.g., deconditioned crewmembers) may be reliably assessed and compared. Results may also be used, in conjunction with subsequent testing, to inform fitness-for-duty standards, as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  20. Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

  1. Walheim and Love during EVA 3

    NASA Image and Video Library

    2008-02-15

    S122-E-008750 (15 Feb. 2008) --- Astronaut Rex Walheim (foreground), mission specialist, shares a spacewalk task with astronaut Stanley Love (partially obscured at top of frame), mission specialist. The two astronauts had paired up for the first of three scheduled STS-122 sessions of extravehicular activity earlier in the week and came back out for this final EVA on Feb. 15.

  2. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-11-01

    Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA) forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm) aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  3. View of Astronaut Bruc McCandless during EVA

    NASA Image and Video Library

    1984-02-11

    S84-27023 (7 Feb 1984) --- This 70mm frame shows astronaut Bruce McCandless II moving in to conduct a test involving the Trunion Pin Attachment Device (TPAD) he carries and the Shuttle Pallet Satellite (SPAS-01A) partially visible at bottom of frame. SPAS was a stand-in for the damaged Solar Maximum Satellite (SMS) which will be visited for repairs by the STS-41C Shuttle crew in early spring. This particular Extravehicular Activity (EVA) session was a rehearsal for the SMS visit. The test and the actual visit to the SMS both involve the use of jet-powered, hand-controlled Manned Maneuvering Unit (MMU). The one McCandless uses is the second unit to be tested on this flight. Astronaut Robert L. Stewart got a chance to work with both MMU's on the two EVA's.

  4. The economic value added (EVA) resulting from medical care of functional amblyopia, strabismus, (pathologies of binocular vision) and asthma.

    PubMed

    Beauchamp, Cynthia L; Felius, Joost; Beauchamp, George R

    2010-01-01

    Value analysis in health care calculates the economic value added (EVA) that results from improvements in health and health care. Our purpose was to develop an EVA model and to apply the model to typical and hypothetical (instantaneous and perfect) cures for amblyopia, surgical strabismus and asthma, as another, but non-ophthalmological disease standard for comparison, in the United States. The model is based on changes in utility and longevity, the associated incremental costs, and an estimate of the value of life. Univariate sensitivity analyses were performed to arrive at a plausible range of outcomes. For the United States, the EVA for current practice amblyopia care is 12.9B dollars (billion) per year, corresponding to a return on investment (ROI) of 10.4% per yr. With substantial increases in investment aimed at maximal improvement ("perfect cure"), the EVA is 32.7B per yr, with ROI of 5.3% per yr. The EVA for typical surgical strabismus care is 10.3B per yr. A perfect cure may yield EVA of 9.6B per yr. The EVA for asthma is 1317B per yr (ROI 20.4% per yr.., while a perfect cure may yield EVA of 110 B per yr. Sensitivity analysis demonstrated the relatively large effects of incidence, utility, and longevity, while incremental costs have a relatively minor effect on the EVA. The economic value added by improvements in patient-centered outcomes is very large. Failing to make the necessary investments in research, prevention, detection, prompt treatment and rehabilitation of these diseases, at virtually any conceivable cost, appears economically, medically, morally and ethically deficient and consequently wasteful at very least economically for our society.

  5. Preparations for Underwater EVA training for the STS 41-G crew

    NASA Image and Video Library

    1984-07-05

    S84-36900 (29 June 1984) ---Astronauts Robert L. Crippen (right) and Jon A. McBride, crew commander and pilot, respectively, for NASA's 41-G Space Shuttle mission, don self contained underwater breathing apparatus (SCUBA) gear prior to their underwater to observe a simulation of an extravehicular activity (EVA) to be performed on their mission. Astronauts Kathryn D. Sullivan and David C. Leestma, two of three mission specialists on the seven-member crew, are scheduled for the EVA. The underwater training took place in the Johnson Space Center's weightless environment training facility (WET-F).

  6. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  7. MS Grunsfeld and Linnehan on middeck after EVA 1

    NASA Image and Video Library

    2002-03-04

    STS109-349-027 (4 March 2002) --- Astronauts John M. Grunsfeld and Richard M. Linnehan, STS-109 payload commander and mission specialist, respectively, wearing the liquid cooling and ventilation garment that complements the Extravehicular Mobility Unit (EMU) space suit, are photographed on the mid deck of the Space Shuttle Columbia after the mission’s first session of extravehicular activity (EVA). The EVA-1 team replaced one of the telescope’s two second-generation solar arrays, which is also known as SA2, and a Diode Box Assembly. The solar array was replaced with a new, third-generation solar array, which is called SA3. The space walkers also did some prep work for STS-109’s other space walks.

  8. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  9. Mission control activity during STS-61 EVA-1

    NASA Image and Video Library

    1993-12-05

    Joseph Fanelli, at the Integrated Communications Officer console, monitors the televised activity of Astronauts Story Musgrave and Jeffrey A. Hoffman. The vetern astronauts were performing the first extravehicular activity (EVA-1) of the STS-61 Hubble Space Telescope (HST) servicing mission.

  10. Effect of PEG6000 on the in vitro and in vivo transdermal permeation of ondansetron hydrochloride from EVA1802 membranes.

    PubMed

    Krishnaiah, Yellela S R; Rama, Bukka; Raghumurthy, Vanambattina; Ramanamurthy, Kolapalli V; Satyanarayana, Vemulapalli

    2009-01-01

    The objective was to evaluate ethylene vinyl acetate (EVA) copolymer membranes with vinyl acetate content of 18% w/w (EVA1802) for transdermal delivery of ondansetron hydrochloride. The EVA1802 membranes containing selected concentrations (0, 5, 10 and 15% w/w) of PEG6000 were prepared, and subjected to in vitro permeation studies from a nerodilol-based drug reservoir. Flux of ondansetron from EVA1802 membranes without PEG6000 was 64.1 +/- 0.6 microg/cm(2.)h, and with 10%w/w of PEG6000 (EVA1802-PEG6000-10) it increased to 194.9 +/- 4.6 microg/cm(2.)h. However, with 15%w/w of PEG6000, EVA1802 membranes produced a burst release of drug which in turn decreased drug flux. The EVA1802-PEG6000-10 membrane was coated with an adhesive emulsion, applied to rat epidermis and subjected to in vitro permeation studies against controls. Flux of ondansetron from transdermal patch across rat epidermis was 111.7 +/- 1.3 microg/cm(2.)h, which is about 1.3 times the required flux. A TTS was fabricated using adhesive-coated EVA1802-PEG6000-10 membrane and other TTS components, and subjected to in vivo delivery in human volunteers against a control. It was concluded from the comparative pharmacokinetic study that TTS of ondansetron, prepared with EVA1802-PEG6000-10 membrane, provided average steady-state plasma concentration on par with multiple-dosed oral tablets, but with a low percent of peak-to-trough fluctuation.

  11. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017499 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station. A blue and white Earth provides the background for the scene.

  12. Whitson during EVA 13

    NASA Image and Video Library

    2007-12-18

    ISS016-E-017501 (18 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA). During the 6-hour, 56-minute spacewalk, Whitson and astronaut Daniel Tani (out of frame), flight engineer, looked for the cause of partial loss of electrical power to one of the International Space Station's two Beta Gimbal Assemblies (BGA) for starboard solar wings and examined damage to the starboard Solar Alpha Rotary Joint (SARJ). The spacewalk was the 100th for the construction and maintenance of the station. A blue and white Earth provides the background for the scene.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021060 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021061 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020596 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021284 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021044 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  18. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021296 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  19. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021028 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  20. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020884 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  1. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021046 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021078 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020610 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021024 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021058 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021085 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020619 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020576 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020594 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  10. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021081 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  11. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020601 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021072 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020856 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021037 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020581 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021293 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021286 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  18. Parazynski during EVA 3

    NASA Image and Video Library

    2007-10-30

    ISS016-E-007423 (30 Oct. 2007) --- Astronaut Scott Parazynski, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Parazynski and astronaut Doug Wheelock (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks. Also, Parazynski inspected the port Solar Alpha Rotary Joint (SARJ) to gather comparison data for the starboard rotary joint.

  19. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020892 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  20. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021054 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  1. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021080 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021067 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. Eva1 Maintains the Stem-like Character of Glioblastoma-Initiating Cells by Activating the Noncanonical NF-κB Signaling Pathway.

    PubMed

    Ohtsu, Naoki; Nakatani, Yuka; Yamashita, Daisuke; Ohue, Shiro; Ohnishi, Takanori; Kondo, Toru

    2016-01-01

    Glioblastoma (GBM)-initiating cells (GIC) are a tumorigenic subpopulation that are resistant to radio- and chemotherapies and are the source of disease recurrence. Therefore, the identification and characterization of GIC-specific factors is critical toward the generation of effective GBM therapeutics. In this study, we investigated the role of epithelial V-like antigen 1 (Eva1, also known as myelin protein zero-like 2) in stemness and GBM tumorigenesis. Eva1 was prominently expressed in GICs in vitro and in stem cell marker (Sox2, CD15, CD49f)-expressing cells derived from human GBM tissues. Eva1 knockdown in GICs reduced their self-renewal and tumor-forming capabilities, whereas Eva1 overexpression enhanced these properties. Eva1 deficiency was also associated with decreased expression of stemness-related genes, indicating a requirement for Eva1 in maintaining GIC pluripotency. We further demonstrate that Eva1 induced GIC proliferation through the activation of the RelB-dependent noncanonical NF-κB pathway by recruiting TRAF2 to the cytoplasmic tail. Taken together, our findings highlight Eva1 as a novel regulator of GIC function and also provide new mechanistic insight into the role of noncanonical NF-κB activation in GIC, thus offering multiple potential therapeutic targets for preclinical investigation in GBM. ©2015 American Association for Cancer Research.

  4. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  5. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner works to deploy a large stinger device designed for locking onto the orbiting satellites via entering a spent engine's nozzle.

  6. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  7. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  8. EVA to trouble-shoot amonia leak

    NASA Image and Video Library

    2012-11-01

    ISS033-E-017373 (1 Nov. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, participates in a session of extravehicular activity (EVA) outside the International Space Station on Nov. 1, 2012. During the six-hour, 38-minute spacewalk, Hoshide and NASA astronaut Sunita Williams (out of frame), commander, ventured outside the orbital outpost to perform work and to support ground-based troubleshooting of an ammonia leak.

  9. EVA to trouble-shoot amonia leak

    NASA Image and Video Library

    2012-11-01

    ISS033-E-017337 (1 Nov. 2012) --- NASA astronaut Sunita Williams, Expedition 33 commander, participates in a session of extravehicular activity (EVA) outside the International Space Station on Nov. 1, 2012. During the six-hour, 38-minute spacewalk, Williams and Japan Aerospace Exploration Agency astronaut Aki Hoshide (out of frame), flight engineer, ventured outside the orbital outpost to perform work and to support ground-based troubleshooting of an ammonia leak.

  10. EVA to trouble-shoot amonia leak

    NASA Image and Video Library

    2012-11-01

    ISS033-E-017354 (1 Nov. 2012) --- NASA astronaut Sunita Williams (right), Expedition 33 commander; and Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, participate in a session of extravehicular activity (EVA) outside the International Space Station on Nov. 1, 2012. During the six-hour, 38-minute spacewalk, Williams and Hoshide ventured outside the orbital outpost to perform work and to support ground-based troubleshooting of an ammonia leak.

  11. View of MISSE 8 during EVA 1

    NASA Image and Video Library

    2011-05-20

    iss027e034948 (5/20/2011) --- Close-up view of Materials International Space Station Experiment (MISSE) 8 and ExPRESS (Expedite the Processing of Experiments to Space Station) Logistics Carrier-2 (ELC-2) taken during MISSE 8 installation. Image was taken by Extravehicular crewmember 1 (EV1) during Expedition 27 / STS-134 Extravehicular Activity 1 (EVA 1).

  12. Skylab 3, Owen K. Garriott on EVA

    NASA Image and Video Library

    2009-01-15

    SL3-122-2610 (6 Aug. 1973) --- Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, looks at the camera as he participates in the Aug. 6, 1973 extravehicular activity (EVA) during which he and astronaut Jack R. Lousma, pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Photo credit: NASA

  13. Skylab 3, Owen K. Garriott on EVA

    NASA Image and Video Library

    1973-08-06

    SL3-122-2609 (6 Aug. 1973) --- Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, looks at the camera as he participates in the Aug. 6, 1973 extravehicular activity (EVA) during which he and astronaut Jack R. Lousma, pilot, deployed the twin pole solar shield to help shade the Orbital Workshop (OWS). Photo credit: NASA

  14. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Eva Szabo is Chief of the Lung and Upper Aerodigestive Cancer Research Group at the NCI Division of Cancer Prevention. She graduated from Yale University with a BS in Molecular Biophysics and Biochemistry, received her MD from Duke University, and completed her internal medicine residency at Bellevue-NYU Medical Center. After completing her medical oncology fellowship at

  15. Reducing cyclone pressure drop with evasés

    USDA-ARS?s Scientific Manuscript database

    Cyclones are widely used to separate particles from gas flows and as air emissions control devices. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Evasés or exit diffusers potentially could reduce exit pressure losses without affecting collection...

  16. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  17. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009246 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  18. EVA 3 - Linnehan portrait

    NASA Image and Video Library

    2002-03-06

    STS109-322-028 (6 March 2002) --- Astronaut Richard M. Linnehan, STS-109 mission specialist, participates in the third of five space walks to perform work on the Hubble Space Telescope (HST). Linnehan's sun shield reflects astronaut John M. Grunsfeld and the blue and white Earth's hemisphere as well as one of the telescope's new solar arrays. The third overall STS-109 extravehicular activity (EVA) marked the second of three for Linnehan and Grunsfeld, payload commander. On this particular walk, the two turned off the telescope in order to replace the power control unit or PCU--the heart of its power system. Grunsfeld took this photo with a 35mm camera.

  19. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Wohlgemuth, J.; Gu, X.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of themore » standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.« less

  20. Baseline tests of the EVA change-of-pace coupe electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Maslowski, E. A.; Dustin, M. O.

    1977-01-01

    The EVA Change-of-Pace Coupe, is an electric passenger vehicle, to characterize the state-of-the-art of electric vehicles. The EVA Change-of-Pace Coupe is a four passenger sedan that has been coverted to an electric vehicle. It is powered by twenty 6 volt traction batteries through a silicon controlled rectifier chopper controller actuated by a foot throttle to change the voltage applied to the series wound, direct current motor. Braking is accomplished with a vacuum assist hydraulic braking system. Regenerative braking is also provided.

  1. Astronaut William S. McArthur in training for contingency EVA in WETF

    NASA Image and Video Library

    1993-09-10

    S93-43840 (6 Sept 1993) --- Astronaut William S. McArthur, mission specialist, participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. For simulation purposes, McArthur was about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  2. FY13 High Performance EVA Glove (HPEG) Collaboration: Glove Injury Data Mining Effort - Training Data Overview

    NASA Technical Reports Server (NTRS)

    Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar

    2014-01-01

    From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.

  3. Structure of EvaA: a paradigm for sugar 2,3-dehydratases.

    PubMed

    Kubiak, Rachel L; Thoden, James B; Holden, Hazel M

    2013-03-26

    Unusual deoxysugars found appended to natural products often provide or enhance the pharmacokinetic activities of the parent compound. The preferred carbohydrate donors for the biosynthesis of such glycosylated natural products are the dTDP-linked sugars. Many of the biologically relevant dTDP-deoxysugars are constructed around the 2,6-dideoxyhexoses or the 2,3(4),6-trideoxyhexoses. A key step in the biosynthesis of these sugars is the removal of the hexose C-2' hydroxyl group and the oxidation of the C-3' hydroxyl group to a carbonyl moiety. Enzymes that catalyze these reactions are referred to as 2,3-dehydratases and have been, for the most part, largely uncharacterized. Here we report the first structural analysis of a sugar 2,3-dehydratase. For this investigation, the enzyme, EvaA, was cloned from Amycolatopsis orientalis, and the structure was solved and refined to a nominal resolution of 1.7 Å. On the basis of the resulting model, it is clear that EvaA belongs to the large Nudix hydrolase superfamily and is most similar to GDP-mannose hydrolase. Each subunit of the EvaA dimer folds into two domains that clearly arose via gene duplication. Two dTDP-sugar binding pockets, A and B, are present in each EvaA subunit. On the basis of site-directed mutagenesis experiments and activity assays, it appears that pocket A functions as the active site and pocket B is simply a remnant left behind from the gene duplication event. As 2,3-dehydration is crucial for the biosynthesis of many unusual deoxysugars, this investigation provides key structural insight into this widely conserved reaction.

  4. Lopez-Alegria during EVA 17A

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14523 (22 Feb. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Lopez-Alegria and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  5. Lopez-Alegria during EVA 17A

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14531 (22 Feb. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Lopez-Alegria and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  6. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14467 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  7. Lopez-Alegria during EVA 17A

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14561 (22 Feb. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Lopez-Alegria and cosmonaut Mikhail Tyurin (out of frame), flight engineer representing Russia's Federal Space Agency, were able to retract a stuck antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  8. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14469 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  9. Walheim and Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008200 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel (top) and NASA astronaut Rex Walheim, both STS-122 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Walheim and Schlegel worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  10. Walheim and Schlegel during EVA 2

    NASA Image and Video Library

    2008-02-13

    S122-E-008199 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel (right) and NASA astronaut Rex Walheim, both STS-122 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Walheim and Schlegel worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.

  11. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6405 (3 August 2005) --- Space Shuttle Discovery’s underside nosecone thermal protection tiles are featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). Part of the P1 truss and a solar array are visible in the background. The blackness of space and a blue and white Earth form the backdrop for the image.

  12. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011590 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  13. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011593 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  14. EVA: Collaborative Distributed Learning Environment Based in Agents.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Tellez, Rolando Quintero

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

  15. EVA: An Interactive Web-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Arenas, Adolfo Guzman

    2002-01-01

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…

  16. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  17. EVA Crewmembers emerging from the air lock into the middeck.

    NASA Image and Video Library

    1993-01-19

    STS054-06-019 (17 Jan. 1993) --- Astronaut Susan J. Helms almost squeezes into the tight quarters of Endeavour's airlock to share space with her fellow mission specialists -- both attired in extravehicular mobility units (EMU) spacesuits. Astronauts Mario Runco Jr. (hands on outer edge of hatch) and Gregory J. Harbaugh spent four-plus hours on the extravehicular activity (EVA) on January 17, 1993. Helms trained with the pair for several months in preparation for the EVA. From the shirt-sleeved environment of Endeavour, she maintained communications with the two throughout the spacewalk. Also onboard NASA's newest Shuttle for the six-day mission were astronauts John H. Casper, mission commander; and Donald R. McMonagle, pilot. The photograph was taken with a 35mm camera.

  18. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  19. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from

  20. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  1. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  2. Expedition 41 Crewmember during EVA 28

    NASA Image and Video Library

    2014-10-15

    ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.

  3. EVA 2 - MS Newman with camera

    NASA Image and Video Library

    2002-03-05

    STS109-E-5642 (5 March 2002) --- Astronaut James H. Newman, mission specialist, peers into Columbia's crew cabin during a brief break in work on the Hubble Space Telescope (HST), latched down just a few feet behind him in Columbia's cargo bay. Astronauts Newman and Michael J. Massimino are making their first extravehicular activity (EVA) of the mission, following the act of two other crewmembers on the previous day. The image was recorded with a digital still camera.

  4. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  5. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009315 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  6. Marshburn during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009303 (27 July 2009) --- Astronaut Tom Marshburn, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and astronaut Christopher Cassidy (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  7. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009322 (27 July 2009) --- Astronauts Tom Marshburn (left) and Christopher Cassidy, both STS-127 mission specialists, participate in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Marshburn and Cassidy secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  8. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009248 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  9. Cassidy during EVA-5

    NASA Image and Video Library

    2009-07-27

    S127-E-009347 (27 July 2009) --- Astronaut Christopher Cassidy, STS-127 mission specialist, participates in the mission's fifth and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the four-hour, 54-minute spacewalk, Cassidy and astronaut Tom Marshburn (out of frame), mission specialist, secured multi-layer insulation around the Special Purpose Dexterous Manipulator known as Dextre, split out power channels for two space station Control Moment Gyroscopes, installed video cameras on the front and back of the new Japanese Exposed Facility and performed a number of “get ahead” tasks, including tying down some cables and installing handrails and a portable foot restraint to aid future spacewalkers.

  10. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047827 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  11. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008906 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  12. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009312 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  13. Drew during EVA-1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030930 (28 Feb. 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Drew and NASA astronaut Steve Bowen (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  14. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047841 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  15. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009074 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  16. Drew during EVA-1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030929 (28 Feb. 2011) --- NASA astronaut Alvin Drew, STS-133 mission specialist, participates in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Drew and NASA astronaut Steve Bowen (out of frame), mission specialist, installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  17. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009283 (21 May 2010) --- NASA astronauts Michael Good (top center) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  18. Bowen durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030715 (28 Feb. 2011) --- NASA astronauts Steve Bowen and Alvin Drew (mostly obscured at center right), both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  19. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047842 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  20. Reisman during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047855 (21 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Reisman and NASA astronaut Michael Good (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  1. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009253 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  2. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008866 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  3. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009255 (21 May 2010) --- NASA astronauts Michael Good (bottom center) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  4. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047864 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  5. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008863 (21 May 2010) --- NASA astronauts Garrett Reisman (right) and Michael Good, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  6. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009298 (21 May 2010) --- NASA astronauts Michael Good (partially obscured at left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  7. Bowen durring EVA 1

    NASA Image and Video Library

    2011-02-28

    ISS026-E-030865 (28 Feb. 2011) --- NASA astronauts Steve Bowen and Alvin Drew (mostly obscured at center right), both STS-133 mission specialists, participate in the mission?s first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 34-minute spacewalk, Bowen and Drew installed the J612 power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese ?Message in a Bottle? experiment to space.

  8. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047845 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  9. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047833 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  10. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-008868 (21 May 2010) --- NASA astronauts Michael Good and Garrett Reisman (partially obscured), both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  11. STS-132 EVA-3

    NASA Image and Video Library

    2010-05-21

    S132-E-009242 (21 May 2010) --- NASA astronauts Michael Good (left) and Garrett Reisman, both STS-132 mission specialists, participate in the mission’s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and Reisman completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  12. Good during EVA 3

    NASA Image and Video Library

    2010-05-21

    ISS023-E-047828 (21 May 2010) --- NASA astronaut Michael Good, STS-132 mission specialist, participates in the mission?s third and final session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 46-minute spacewalk, Good and NASA astronaut Garrett Reisman (out of frame), mission specialist, completed the installation of the final two of the six new batteries for the B side of the port 6 solar array. In addition, the astronauts installed a backup ammonia jumper cable between the port 4 and 5 trusses of the station, transferred a Power and Data Grapple Fixture from the shuttle to the station, and reconfigured some tools.

  13. The combination effects of licl and the active leflunomide metabolite, A771726, on viral-induced interleukin 6 production and EV-A71 replication.

    PubMed

    Hung, Hui-Chen; Shih, Shin-Ru; Chang, Teng-Yuan; Fang, Ming-Yu; Hsu, John T-A

    2014-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3β inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1β) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.

  14. STS-109 MS Massimino during second EVA

    NASA Image and Video Library

    2002-03-05

    STS109-E-5386 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, checks a tool in the cargo bay of the Space Shuttle Columbia during the STS-109 mission's second day of extravehicular activity (EVA). Astronauts Massimino and James H. Newman worked to replace the second set of solar arrays on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.

  15. STS-109 MS Massimino during second EVA

    NASA Image and Video Library

    2002-03-05

    STS109-E-5388 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, checks a tool in the cargo bay of the Space Shuttle Columbia during the STS-109 mission's second day of extravehicular activity (EVA). Astronauts Massimino and James H. Newman worked to replace the second set of solar arrays on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.

  16. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011479 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  17. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011459 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  18. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011481 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  19. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011441 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  20. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011747 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  1. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011642 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  2. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011440 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  3. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011480 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  4. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011745 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  5. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011598 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  6. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011477 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  7. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011439 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  8. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011640 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  9. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011608 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  10. View of Mission Control during lunar surface Apollo 11 EVA

    NASA Image and Video Library

    1969-07-20

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, during the lunar surface extravehicular activity (EVA) of Apollo 11 Astronauts Neil A. Armstrong and Edwin E. Aldrin Jr.

  11. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  12. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Image and Video Library

    1993-04-03

    S93-31706 (3 April 1993) --- With the aid of technicians and training staffers astronaut David A. Wolf prepares to participate in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Sharing a moveable platform with Wolf was astronaut Shannon W. Lucid (out of frame). For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  13. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the

  14. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  15. Evaluation of safety of hypobaric decompressions and EVA from positions of probabilistic theory

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. P.

    Formation and subsequent evolution of gas bubbles in blood and tissues of subjects exposed to decompression are casual processes in their nature. Such character of bubbling processes in a body predetermines probabilistic character of decompression sickness (DCS) incidence in divers, aviators and astronauts. Our original probabilistic theory of decompression safety is based on stochastic models of these processes and on the concept of critical volume of a free gas phase in body tissues. From positions of this theory, the probability of DCS incidence during single-stage decompressions and during hypobaric decompressions under EVA in particular, is defined by the distribution of possible values of nucleation efficiency in "pain" tissues and by its critical significance depended on the parameters of a concrete decompression. In the present study the following is shown: 1) the dimensionless index of critical nucleation efficiency for "pain" body tissues is a more adequate index of decompression stress in comparison with Tissue Ratio, TR; 2) a priory the decompression under EVA performed according to the Russian protocol is more safe than decompression under EVA performed in accordance with the U.S. protocol; 3) the Russian space suit operated at a higher pressure and having a higher "rigidity" induces a stronger inhibition of mechanisms of cavitation and gas bubbles formation in tissues of a subject located in it, and by that provides a more considerable reduction of the DCS risk during real EVA performance.

  16. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-024 (For Release October 1996) --- Cosmonaut Yuriy I. Onufriyenko was photographed by astronaut and cosmonaut guest researcher Shannon W. Lucid as the Mir-21 commander performed a scheduled Extravehicular Activity (EVA) at a truss assembly in the early days of Lucid’s extended stay aboard Russia’s Mir Space Station.

  17. Investigation of the effects of Extra Vehicular Activity (EVA) and Launch and Entry (LES) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.

    1992-01-01

    Human capabilities such as dexterity, manipulability, and tactile perception are unique and render the hand as a very versatile, effective and a multipurpose tool. This is especially true for unknown environments such as the EVA environment. In the microgravity environment interfaces, procedures, and activities are too complex, diverse, and defy advance definition. Under these conditions the hand becomes the primary means of locomotion, restraint, and material handling. Facilitation of these activities, with simultaneous protection from the cruel EVA environment are the two, often conflicting, objectives of glove design. The objectives of this study was (1) to assess the effects of EVA gloves at different pressures on human hand capabilities, (2) to devise a protocol for evaluating EVA gloves, (3) to develop force time relations for a number of EVA glove pressure combinations, and (4) to evaluate two types of launch and entry suit gloves. The objectives were achieved through three experiments. The experiments for achieving objectives 1, 2, and 3 were performed in the glove box in building 34. In experiment 1 three types of EVA gloves were tested at five pressure differentials. A number of performance measures were recorded. In experiment 2 the same gloves as in experiment 1 were evaluated in a reduced number of pressure conditions. The performance measure was endurance time. Six subjects participated in both the experiments. In experiment 3 two types of launch and entry suit gloves were evaluated using a paradigm similar to experiment 1. Currently the data is being analyzed. However for this report some summary analyses have been performed. The results indicate that a) With EVA gloves strength is reduced by nearly 50 percent, b) performance decrements increase with increasing pressure differential, c) TMG effects are not consistent across the three gloves tested, d) some interesting gender glove interactions were observed, some of which may have been due to the

  18. AMS Blanket and TTCS Wedge Install during EVA 32

    NASA Image and Video Library

    2015-10-28

    Close-up view of the Alpha Magnetic Spectrometer-02 (AMS-02), in the area where the Tracker Thermal Control System (TTCS) wedge will be installed. Image was taken by Extravehicular Crewmember 2 (EV2) during Extravehicular Activity 32 (EVA 32) and released on social media.

  19. EVA 5 - Grunsfeld installs radiator

    NASA Image and Video Library

    2002-03-08

    STS109-315-007 (8 March 2002) --- Astronaut John M. Grunsfeld, STS-109 payload commander, anchored on the end of the Space Shuttle Columbia’s Remote Manipulator System (RMS) robotic arm, moves toward the giant Hubble Space Telescope (HST) temporarily hosted in the orbiter’s cargo bay. Astronaut Richard M. Linnehan (out of frame) works in tandem with Grunsfeld during this fifth and final session of extravehicular activity (EVA). Activities for the space walk centered around the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) to install a Cryogenic Cooler and its Cooling System Radiator.

  20. View taken during EVA 1

    NASA Image and Video Library

    1998-12-07

    S88-E-5060 (12-08-98) --- Astronaut James H. Newman is seen near the Unity module during late phases of the first of three scheduled spacewalks on STS-88. At the end of the extravehicular activity (EVA), astronauts Newman and Jerry L. Ross, both mission specialists, were successful in mating 40 cables and connectors running 76 feet from the Zarya control module to Unity, with the 35-ton complex towering over Endeavour's cargo bay. The spacewalk last 7 hours and 21 minutes. This photo was taken with an electronic still camera (ESC) at 03:50:28 GMT, Dec. 8.

  1. Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine.

    PubMed

    Yang, Bingyi; Liu, Fengfeng; Liao, Qiaohong; Wu, Peng; Chang, Zhaorui; Huang, Jiao; Long, Lu; Luo, Li; Li, Yu; Leung, Gabriel M; Cowling, Benjamin J; Yu, Hongjie

    2017-12-01

    Hand, foot and mouth disease (HFMD) is usually caused by several serotypes from human enterovirus A species, including enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16). Two inactivated monovalent EV-A71 vaccines have been recently licensed in China and monovalent CV-A16 vaccine and bivalent EV-A71 and CV-A16 vaccine are under development. Using notifications from the national surveillance system, we describe the epidemiology and dynamics of HFMD in the country, before the introduction of EV-A71 vaccination, from 2008 through 2015. Laboratory-identified serotype categories, i.e. CV-A16, EV-A71 and other enteroviruses, circulated annually. EV-A71 remained the most virulent serotype and was the major serotype for fatal cases (range: 88.5-95.4%) and severe cases (range: 50.7-82.3%) across years. Except for 2013 and 2015, when other enteroviruses were more frequently found in mild HFMD (48.8% and 52.5%), EV-A71 was more frequently detected from mild cases in the rest of the years covered by the study (range: 39.4-52.6%). The incidence rates and severity risks of HFMD associated with all serotype categories were the highest for children aged 1 year and younger, and decreased with increasing age. This study provides baseline epidemiology for evaluation of vaccine impact and potential serotype replacement.

  2. Preparation, Characterization and Thermo-Chromic Properties of EVA/VO₂ Laminate Films for Smart Window Applications and Energy Efficiency in Building.

    PubMed

    Srirodpai, Onruthai; Wootthikanokkhan, Jatuphorn; Nawalertpanya, Saiwan; Yuwawech, Kitti; Meeyoo, Vissanu

    2017-01-11

    Thermochromic films based on vanadium dioxide (VO₂)/ethylene vinyl acetate copolymer (EVA) composite were developed. The monoclinic VO₂ particles was firstly prepared via hydrothermal and calcination processes. The effects of hydrothermal time and tungsten doping agent on crystal structure and morphology of the calcined metal oxides were reported. After that, 1 wt % of the prepared VO₂ powder was mixed with EVA compound, using two different mixing processes. It was found that mechanical properties of the EVA/VO₂ films prepared by the melt process were superior to those of which prepared by the solution process. On the other hand, percentage visible light transmittance of the solution casted EVA/VO₂ film was greater than that of the melt processed composite film. This was related to the different gel content of EVA rubber and state of dispersion and distribution of VO₂ within the polymer matrix phase. Thermochromic behaviors and heat reflectance of the EVA/VO₂ film were also verified. In overall, this study demonstrated that it was possible to develop a thermochromic film using the polymer composite approach. In this regard, the mixing condition was found to be one of the most important factors affecting morphology and thermo-mechanical properties of the films.

  3. STS-109 crewmembers discuss EVA strategy in airlock

    NASA Image and Video Library

    2002-03-04

    STS109-E-5333 (4 March 2002) --- Three STS-109 crew members assigned to extravehicular activity (EVA) duty on the Hubble Space Telescope (HST) discuss strategy on the mid deck of the Space Shuttle Columbia. From the left are astronauts Richard M. Linnehan, John M. Grunsfeld and Michael J. Massimino. The image was recorded with a digital still camera.

  4. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  5. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  6. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1994-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

  7. Moments applied in the manual assembly of space structures - Ease biomechanics results from STS-61B. [Experimental Assembly of Structures in EVA

    NASA Technical Reports Server (NTRS)

    Cousins, D.; Akin, D. L.

    1989-01-01

    Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.

  8. Wilson at RWS for STS-131 EVA 3 SSRMS Support

    NASA Image and Video Library

    2010-04-13

    View of Stephanie Wilson as she works at the Robotics Workstation (RWS) in US Laboratory Destiny as she conducts a Space Station Remote Manipulator System (SSRMS) Ammonia Tank Assembly (ATA) retrieval in support of STS-131 EVA 3.

  9. Tile survey seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6388 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson, STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). Robinson’s shadow is visible on the thermal protection tiles and a portion of the Canadian-built remote manipulator system (RMS) robotic arm and the Nile River is visible at bottom.

  10. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Image and Video Library

    1993-04-03

    S93-31701 (3 April 1993) --- Displaying the flexibility of his training version of the Shuttle Extravehicular Mobility Unit (EMU) space suit, astronaut David A. Wolf participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Behind Wolf, sharing the platform with him was astronaut Shannon W. Lucid. For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  11. STS-26 crewmembers participate in contingency EVA exercise in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, mission specialists George D. Nelson and John M. Lounge, wearing extravehicular mobility units (EMUs), participate in contingency extravehicular activity (EVA) exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Overall view of WETF underwater activity shows Nelson (foreground) working with EVA wrench as Lounge looks on and SCUBA-equipped divers monitor procedures. A mockup of the tracking and data relay satellite C (TDRS-C) appears behind astronauts in payload bay (PLB). In the event of in-cabin remote control failure, the procedure Nelson is conducting would upright the tracking and data relay satellite C (TDRS-C) from its stowed position to its deployment position. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  12. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  13. The EVA space suit development in Europe.

    PubMed

    Skoog, A I

    1994-01-01

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  14. Understanding Skill in EVA Mass Handling. Volume 4; An Integrated Methodology for Evaluating Space Suit Mobility and Stability

    NASA Technical Reports Server (NTRS)

    McDonald, P. Vernon; Newman, Dava

    1999-01-01

    The empirical investigation of extravehicular activity (EVA) mass handling conducted on NASA's Precision Air-Bearing Floor led to a Phase I SBIR from JSC. The purpose of the SBIR was to design an innovative system for evaluating space suit mobility and stability in conditions that simulate EVA on the surface of the Moon or Mars. The approach we used to satisfy the Phase I objectives was based on a structured methodology for the development of human-systems technology. Accordingly the project was broken down into a number of tasks and subtasks. In sequence, the major tasks were: 1) Identify missions and tasks that will involve EVA and resulting mobility requirements in the near and long term; 2) Assess possible methods for evaluating mobility of space suits during field-based EVA tests; 3) Identify requirements for behavioral evaluation by interacting with NASA stakeholders;.4) Identify necessary and sufficient technology for implementation of a mobility evaluation system; and 5) Prioritize and select technology solutions. The work conducted in these tasks is described in this final volume of the series on EVA mass handling. While prior volumes in the series focus on novel data-analytic techniques, this volume addresses technology that is necessary for minimally intrusive data collection and near-real-time data analysis and display.

  15. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  16. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    PubMed

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation.

  17. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral

  18. The properties of neutron shielding and flame retardant of EVA polymer after modified by EB accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Guo-hui; He, Man-li; Jiang, Dan-feng; He, Fan; Chang, Shu-quan; Dai, Yao-dong

    2017-11-01

    According to the requirements for neutron shielding and flame retardant properties of some nuclear devices, a new kind of polymer composite materials based on ethylene and vinyl acetate (EVA) polymer have been studied. EVA is the copolymer of ethylene and vinyl acetate, It can be used as materials for applications due to its flexibility, good processability, and low cost. Insulating EVA can be used for cable sheath, automotive sound damping and many other appication. Boron nitride (BN), zinc borate (ZB), magnesium hydroxide (MH) and EVA consisted the compounds with the properties of neutron shielding and flame retardant. With increasing of the contents of BN and ZB, the neutron shielding performance of materials increased up to 33.08%. With the increasing contents of MH and ZB as flame retardant, oxygen index of material have been improved. The elongation at break and tensile strength of material decreased with the increasing of filler powders. Sheet E was chosen and modified by electron beam accelerator in different doses. After modification by electron beam irradiation the sheets showed varying degrees of transformation in the OI, neutron shielding rate and mechanical properties.

  19. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  20. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  1. Whitson after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09719 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, photographed in her thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  2. Preparation, Characterization and Thermo-Chromic Properties of EVA/VO2 Laminate Films for Smart Window Applications and Energy Efficiency in Building

    PubMed Central

    Srirodpai, Onruthai; Wootthikanokkhan, Jatuphorn; Nawalertpanya, Saiwan; Yuwawech, Kitti; Meeyoo, Vissanu

    2017-01-01

    Thermochromic films based on vanadium dioxide (VO2)/ethylene vinyl acetate copolymer (EVA) composite were developed. The monoclinic VO2 particles was firstly prepared via hydrothermal and calcination processes. The effects of hydrothermal time and tungsten doping agent on crystal structure and morphology of the calcined metal oxides were reported. After that, 1 wt % of the prepared VO2 powder was mixed with EVA compound, using two different mixing processes. It was found that mechanical properties of the EVA/VO2 films prepared by the melt process were superior to those of which prepared by the solution process. On the other hand, percentage visible light transmittance of the solution casted EVA/VO2 film was greater than that of the melt processed composite film. This was related to the different gel content of EVA rubber and state of dispersion and distribution of VO2 within the polymer matrix phase. Thermochromic behaviors and heat reflectance of the EVA/VO2 film were also verified. In overall, this study demonstrated that it was possible to develop a thermochromic film using the polymer composite approach. In this regard, the mixing condition was found to be one of the most important factors affecting morphology and thermo-mechanical properties of the films. PMID:28772413

  3. EVA-1 functions as an UNC-40 Co-receptor to enhance attraction to the MADD-4 guidance cue in Caenorhabditis elegans.

    PubMed

    Chan, Kevin Ka Ming; Seetharaman, Ashwin; Bagg, Rachel; Selman, Guillermo; Zhang, Yuqian; Kim, Joowan; Roy, Peter J

    2014-08-01

    We recently discovered a secreted and diffusible midline cue called MADD-4 (an ADAMTSL) that guides migrations along the dorsoventral axis of the nematode Caenorhabditis elegans. We showed that the transmembrane receptor, UNC-40 (DCC), whose canonical ligand is the UNC-6 (netrin) guidance cue, is required for extension towards MADD-4. Here, we demonstrate that MADD-4 interacts with an EVA-1/UNC-40 co-receptor complex to attract cell extensions. EVA-1 is a conserved transmembrane protein with predicted galactose-binding lectin domains. EVA-1 functions in the same pathway as MADD-4, physically interacts with both MADD-4 and UNC-40, and enhances UNC-40's sensitivity to the MADD-4 cue. This enhancement is especially important in the presence of UNC-6. In EVA-1's absence, UNC-6 interferes with UNC-40's responsiveness to MADD-4; in UNC-6's absence, UNC-40's responsiveness to MADD-4 is less dependent on EVA-1. By enabling UNC-40 to respond to MADD-4 in the presence of UNC-6, EVA-1 may increase the precision by which UNC-40-directed processes can reach their MADD-4-expressing targets within a field of the UNC-6 guidance cue.

  4. EVA-1 Functions as an UNC-40 Co-receptor to Enhance Attraction to the MADD-4 Guidance Cue in Caenorhabditis elegans

    PubMed Central

    Bagg, Rachel; Selman, Guillermo; Zhang, Yuqian; Kim, Joowan; Roy, Peter J.

    2014-01-01

    We recently discovered a secreted and diffusible midline cue called MADD-4 (an ADAMTSL) that guides migrations along the dorsoventral axis of the nematode Caenorhabditis elegans. We showed that the transmembrane receptor, UNC-40 (DCC), whose canonical ligand is the UNC-6 (netrin) guidance cue, is required for extension towards MADD-4. Here, we demonstrate that MADD-4 interacts with an EVA-1/UNC-40 co-receptor complex to attract cell extensions. EVA-1 is a conserved transmembrane protein with predicted galactose-binding lectin domains. EVA-1 functions in the same pathway as MADD-4, physically interacts with both MADD-4 and UNC-40, and enhances UNC-40's sensitivity to the MADD-4 cue. This enhancement is especially important in the presence of UNC-6. In EVA-1's absence, UNC-6 interferes with UNC-40's responsiveness to MADD-4; in UNC-6's absence, UNC-40's responsiveness to MADD-4 is less dependent on EVA-1. By enabling UNC-40 to respond to MADD-4 in the presence of UNC-6, EVA-1 may increase the precision by which UNC-40-directed processes can reach their MADD-4-expressing targets within a field of the UNC-6 guidance cue. PMID:25122090

  5. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065714 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  6. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065710 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  7. Behnken and Patrick during EVA-2

    NASA Image and Video Library

    2010-02-14

    ISS022-E-065725 (14 Feb. 2010) --- NASA astronauts Robert Behnken (right) and Nicholas Patrick, both STS-130 mission specialists, participate in the mission?s second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the five-hour, 54-minute spacewalk, Behnken and Patrick connected two ammonia coolant loops, installed thermal covers around the ammonia hoses, outfitted the Earth-facing port on the Tranquility node for the relocation of its Cupola, and installed handrails and a vent valve on the new module.

  8. Tile survey taken during EVA 3

    NASA Image and Video Library

    2005-08-03

    S114-E-6376 (3 August 2005) --- A close-up view of a portion of the thermal protection tiles on Space Shuttle Discovery’s underside is featured in this image photographed by astronaut Stephen K. Robinson (out of frame), STS-114 mission specialist, during the mission’s third session of extravehicular activities (EVA). While perched on a Space Station truss, astronaut Soichi Noguchi (background), mission specialist representing Japan Aerospace Exploration Agency (JAXA), acts as observer and communication relay station between fellow spacewalker Robinson and astronaut Andrew S. W. Thomas aboard Discovery.

  9. EASE (Experimental Assembly of Structures in EVA) overview of selected results

    NASA Technical Reports Server (NTRS)

    Akin, David L.

    1987-01-01

    Experimental Assembly of Structures in EVA (EASE) objectives, experimental protocol, neutral buoyancy simulation, task time distribution, assembly task performance, metabolic rate/biomedical readouts are summarized. This presentation is shown in charts, figures, and graphs.

  10. A mobile transporter concept for EVA assembly of future spacecraft

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Bush, Harold G.; Heard, Walter L., Jr.; Lake, Mark S.; Jensen, J. Kermit

    1990-01-01

    This paper details the ground test program for the NASA Langley Research Center Mobile Transporter concept. The Mobile Transporter would assist EVA astronauts in the assembly of the Space Station Freedom. 1-g and simulated O-g (neutral buoyancy) tests were conducted to evaluate the use of the Mobile Transporter. A three-bay (44 struts) orthogonal tetrahedral truss configuration with a 15-foot-square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices. The average unit assembly time was 28 seconds/strut. The results of these tests indicate that the use of a Mobile Transporter for EVA assembly of Space Station size structure is viable and practical. Additionally, the Mobile Transporter could be used to construct other spacecraft such as the submillimeter astronomical laboratory, space crane, and interplanetary (i.e., Mars and lunar) spacecraft.

  11. Ordering Chaos: Eva Miller--Multnomah County Library, Portland, OR

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    Eva Miller has a knack for creating order out of disorder. She single-handedly brought Oregon's virtual reference service, Answerland, live in just under 90 days, says Rivkah Sass, now director of the Omaha Public Library. Miller created its web site, designed the graphics, developed marketing materials, and recruited and trained librarians--all…

  12. Astronaut David Scott gives salute beside U.S. flag during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11863 (1 Aug. 1971) --- Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed United States flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module (LM), "Falcon," is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about three statue miles) away. This photograph was taken by astronaut James B. Irwin, lunar module pilot. While astronauts Scott and Irwin descended in the LM to explore the moon, astronaut Alfred M. Worden, command module pilot, remained in lunar orbit in the Command and Service Modules (CSM).

  13. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.

  14. Exterior view of ISS during EVA 28

    NASA Image and Video Library

    2014-10-15

    ISS041-E-067002 (7 Oct. 2014) --- NASA astronaut Reid Wiseman, Expedition 41 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 13-minute spacewalk, Wiseman and European Space Agency astronaut Alexander Gerst (out of frame), flight engineer, worked outside the space station's Quest airlock relocating a failed cooling pump to external stowage and installing gear that provides back up power to external robotics equipment.

  15. Whitson during Expedition 16 EVA 10/Alpha

    NASA Image and Video Library

    2007-11-09

    ISS016-E-010001 (9 Nov. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and cosmonaut Yuri I. Malenchenko (out of frame), flight engineer representing Russia's Federal Space Agency, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.

  16. Whitson during Expedition 16 EVA 10/Alpha

    NASA Image and Video Library

    2007-11-09

    ISS016-E-009989 (9 Nov. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Whitson and cosmonaut Yuri I. Malenchenko (out of frame), flight engineer representing Russia's Federal Space Agency, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.

  17. Malenchenko during Expedition 16 EVA 10/Alpha

    NASA Image and Video Library

    2007-11-09

    ISS016-E-009981 (9 Nov. 2007) --- Cosmonaut Yuri I. Malenchenko, Expedition 16 flight engineer representing Russia's Federal Space Agency, participates in a session of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the spacewalk Malenchenko and astronaut Peggy A. Whitson (out of frame), commander, prepared for the relocation of the Pressurized Mating Adapter 2 (PMA-2) and the subsequent move of the new Harmony node to its permanent ISS home.

  18. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  19. Perrin smiles through the visor of his EVA helmet while working beside the MBS during STS-111 EVA 2

    NASA Image and Video Library

    2002-06-11

    STS111-307-017 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist representing CNES, the French Space Agency, participates in the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the spacewalk, Perrin and Chang-Diaz attached power, data and video cables from the International Space Station (ISS) to the Mobile Base System (MBS) and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  20. Astronaut Shannon Lucid in training for contingency EVA for STS-58 in WETF

    NASA Image and Video Library

    1993-04-03

    S93-31697 (3 April 1993) --- Astronaut Shannon W. Lucid participates in training for contingency Extravehicular Activity (EVA) for the STS-58 mission. Behind Lucid, sharing a moveable platform with her, is astronaut David A. Wolf (out of frame). For simulation purposes, the two mission specialists were about to be submerged to a point of neutral buoyancy in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Though the Spacelab Life Sciences (SLS-2) mission does not include a planned EVA, all crews designate members to learn proper procedures to perform outside the spacecraft in the event of failure of remote means to accomplish those tasks.

  1. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    PHOTO DATE: 11-03-10 LOCATION: Bldg. 9NW - TPST Training Area SUBJECT: STS-335 crew training, EVA TPS Overview with instructor John Ray WORK ORDER: 03247-BS__STS335TILEREPAIR_11-03-10 PHOTOGRAPHER: BILL STAFFORD

  2. Korzun after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09725 (14 August 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, attired in his thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Korzun and astronaut Peggy A. Whitson, flight engineer, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts. Korzun, who represents Rosaviakosmos, is also scheduled for a spacewalk on August 22, 2002.

  3. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  4. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  5. EVA 3 - Wheelock on Destiny laboratory module

    NASA Image and Video Library

    2007-10-30

    S120-E-007581 (30 Oct. 2007) --- Astronaut Doug Wheelock, STS-120 mission specialist, participates in the third scheduled session of extravehicular activity (EVA) as construction continues on the International Space Station. During the 7-hour, 8-minute spacewalk Wheelock and astronaut Scott Parazynski (out of frame), mission specialist, installed the P6 truss segment with its set of solar arrays to its permanent home, installed a spare main bus switching unit on a stowage platform, and performed a few get-ahead tasks.

  6. SKYLAB (SL)-3 - TELEVISION (EXTRAVEHICULAR ACTIVITY [EVA])

    NASA Image and Video Library

    1973-08-27

    S73-33161 (24 Aug. 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, hooks up a 23-foot, two-inch connecting cable for the rate gyro six pack during extravehicular activity (EVA) on Aug. 24, 1973, as seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The rate gyros were mounted inside the Multiple Docking Adapter opposite the Apollo Telescope Mount control and display console. Photo credit: NASA

  7. Astronauts Allen and Gemar during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronauts Charles D. (Sam) Gemar, and Andrew M. Allen participate in a training exercise at JSC's Crew Compartment Trainer (CCT), located in the Space Vehicle Mockup Facility. Gemar sits inside the airlock as Allen reviews procedures for EVA.

  8. Skylab Astronaut participates in EVA to deploy twin pole solar shield

    NASA Image and Video Library

    1973-08-06

    SL3-118-2182 (6 Aug. 1973) --- Skylab 3 astronaut participates in the Aug. 6, 1973 extravehicular activity (EVA) during which the twin pole solar shield was deployed to help shade the Orbital Workshop (OWS). Photo credit: NASA

  9. Mission control activity during STS-61 EVA-2

    NASA Image and Video Library

    1993-12-05

    Harry Black, at the Integrated Communications Officer's console in the Mission Control Center (MCC), monitors the second extravehicular activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Others pictured, left to right, are Judy Alexander, Kathy Morrison and Linda Thomas. Note monitor scene of one of HST's original solar array panels floating in space moments after being tossed away by Astronaut Kathryn C. Thornton.

  10. Mission control activity during STS-61 EVA-2

    NASA Image and Video Library

    1993-12-05

    STS61-S-094 (5 Dec 1993) --- Kyle Herring, second left, illustrates a point during mission commentary for the second Extravehicular Activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Astronaut Jerry L. Ross (center), a space walker on two previous NASA shuttle missions, amplified Herring's explanations. At the flight surgeon's console is Dr. Klaus Lohn (third right) of the Institute for Flight Medicine in Koln, Germany.

  11. Diagnostic Value of SLC26A4 Mutation Status in Hereditary Hearing Loss With EVA: A PRISMA-Compliant Meta-Analysis.

    PubMed

    Lu, Ya-Jie; Yao, Jun; Wei, Qin-Jun; Xing, Guang-Qian; Cao, Xin

    2015-12-01

    Many SLC26A4 mutations have been identified in patients with nonsyndromic enlarged vestibular aqueduct (EVA). However, the roles of SLC26A4 genotypes and phenotypes in hereditary deafness remain unexplained. This study aims to perform a meta-analysis based on the PRISMA statement to evaluate the diagnostic value of SLC26A4 mutant alleles and their correlations with multiethnic hearing phenotypes in EVA patients. The systematic literature search of the PubMed, Wiley Online Library, EMBASE, Web of Science, and Science Direct databases was conducted in English for articles published before July 15, 2015. Two investigators independently reviewed retrieved literature and evaluated eligibility. Discrepancy was resolved by discussion and a third investigator. Quality of included studies was evaluated using Newcastle-Ottawa Quality Assessment Scale. Data were synthesized using random-effect or fixed-effect models. The effect sizes were estimated by measuring odds ratios (ORs) with 95% confidence interval (CI). Twenty-five eligible studies involved 2294 cases with EVA data. A total of 272 SLC26A4 variations were found in deafness with EVA and 26 mutations of SCL26A4 had higher frequency. The overall OR was 646.71 (95% CI: 383.30-1091.15, P = 0.000). A total of 22 mutants were considered statistically significant in all ethnicities (ORs >1, P < 0.05). In particular, 8 mutants were specificity of EVA phenotypes in mutations of SLC26A4 for Asia deafness populations (ORs >1, P < 0.05), 4 mutants for Europe and North America (ORs >1, P < 0.05), and the IVS7-2A>G mutations in SLC26A4 were found to have the highest frequency in deafness individuals with EVA phenotype (62.42%). Moreover, subgroups for studies limited to cases with EVA phenotype, 11 mutants relevant risks (RRs) were P < 0.05, especially for IVS7-2A>G bi-allelic mutants assayed in a deafness population (RR = 0.880, P = 0.000). Diagnostic accuracy of SLC26A4 mutation results also identified

  12. Techniques for Improving the Performance of Future EVA Maneuvering Systems

    NASA Technical Reports Server (NTRS)

    Williams, Trevor W.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small propulsive backpack that was developed as an in-house effort at Johnson Space Center; it is a lightweight system which attaches to the underside of the Primary Life Support Subsystem (PLSS) backpack of the Extravehicular Mobility Unit (EMU). SAFER provides full six-axis control, as well as Automatic Attitude Hold (AAH), by means of a set of cold-gas nitrogen thrusters and a rate sensor-based control system. For compactness, a single hand controller is used, together with mode switching, to command all six axes. SAFER was successfully test-flown on the STS-64 mission in September 1994 as a Development Test Objective (DTO); development of an operational version is now proceeding. This version will be available for EVA self-rescue on the International Space Station and Mir, starting with the STS-86/Mir-7 mission in September 1997. The DTO SAFER was heavily instrumented, and produced in-flight data that was stored in a 12 MB computer memory on-board. This has allowed post-flight analysis to yield good estimates for the actual mass properties (moments and products of inertia and center of mass location) encountered on-orbit. By contrast, Manned Maneuvering Unit (MMU) post-flight results were generated mainly from analysis of video images, and so were not very accurate. The main goal of the research reported here was to use the detailed SAFER on-orbit mass properties data to optimize the design of future EVA maneuvering systems, with the aim being to improve flying qualities and/or reduce propellant consumption. The Automation, Robotics and Simulation Division Virtual Reality (VR) Laboratory proved to be a valuable research tool for such studies. A second objective of the grant was to generate an accurate dynamics model in support of the reflight of the DTO SAFER on STS-76/Mir-3. One complicating factor was the fact that a hand controller stowage box was added to the underside of SAFER on this flight; the position of

  13. Bowen works electric batteries during EVA 1

    NASA Image and Video Library

    2010-05-17

    S132-E-008102 (17 May 2010) --- NASA astronaut Steve Bowen, STS-132 mission specialist, participates in the mission's first session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 25-minute spacewalk, Bowen and NASA astronaut Garrett Reisman (out of frame), mission specialist, loosened bolts holding six replacement batteries, installed a second antenna for high-speed Ku-band transmissions and adding a spare parts platform to Dextre, a two-armed extension for the station’s robotic arm.

  14. STS-133 crew members Drew, Kopra and Stott during EVA Tile Repair.

    NASA Image and Video Library

    2010-03-30

    JSC2010-E-044337 (30 March 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, participates in an EVA tile repair training session in the Space Vehicle Mockup Facility at NASA's Johnson Space Center.

  15. STS-31 Crew Training: Firefighting, Food Tasting, EVA Prep and Post

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  16. STS-31 crew training: firefighting, food tasting, EVA prep and post

    NASA Astrophysics Data System (ADS)

    1990-03-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  17. Astronaut James Irwin gives salute beside U.S. flag during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11866 (1 Aug. 1971) --- Astronaut James B. Irwin, lunar module pilot, gives a military salute while standing beside the deployed United States flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module (LM) "Falcon" is in the center. On the right is the Lunar Roving Vehicle (LRV). This view is looking almost due south. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by astronaut David R. Scott, Apollo 15 commander. While astronauts Scott and Irwin descended in the LM to explore the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  18. Augmented robotic device for EVA hand manoeuvres

    NASA Astrophysics Data System (ADS)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  19. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    PubMed

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  20. Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Ma, Wen; Wu, Xiao; Qian, Lijun; Jiang, Shan

    2018-04-01

    Intumescent flame retardant (IFR) EVA composites were prepared based on a hyperbranched triazine charring-foaming agent (HTCFA) and ammonium polyphosphate (APP). The synergistic effect of HTCFA and APP on the flame retardancy and thermal behavior of the composites were investigated through flammability tests, cone calorimeter measurements, thermogravimetric analysis (TGA) including evolved gas analysis (TG-IR) and residue analysis (Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS), x-ray Photoelectron Spectroscopy (XPS) and scanning electron microscopy (SEM)). The flammability test results showed HTCFA/APP (1/3) system presented the best synergistic effect in flame-retardant EVA composites with the highest LOI value and UL-94 V-0 rating. As for cone calorimeter results, IFR changed the combustion behavior of EVA and resulted in remarkable decrease of flammability and smoke product. TGA results showed the synergistic effect between APP and HTCFA could strengthen the char-forming ability of composites. TG-IR results indicated the melt viscosities and gas release with increasing temperature were well-correlated for EVA/IFR composite. The residue analysis results from SEM, LRS, FT-IR and XPS revealed IFR promoted forming more compact graphitic char layer, connected by rich P–O–C and P–N structures.