Kwiatkowska, Dorota; Routier-Kierzkowska, Anne-Lise
2009-01-01
Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf-like bracts and flower primordia during the reproductive phase. Although the shapes of all the three types of primordia are very similar during their early developmental stages, areal growth rates and anisotropy of apex surface growth accompanying formation of leaf or bract primordia are profoundly different from those during formation of flower primordia. This provides an example of different modes of de novo formation of a given shape. Moreover, growth accompanying the formation of the boundary between the SAM and flower primordium is entirely different from growth at the adaxial leaf or bract primordium boundary. In the latter, areal growth rates at the future boundary are the lowest of all the apex surface, while in the former they are relatively very high. The direction of maximal growth rate is latitudinal (along the future boundary) in the case of leaf or bract primordium but meridional (across the boundary) in the case of flower. The replica method does not enable direct analysis of growth in the direction perpendicular to the apex surface (anticlinal direction). Nevertheless, the reconstructed surfaces of consecutive replicas taken from an individual apex allow general directions of SAM surface bulging accompanying primordium formation to be recognized. Precise alignment of consecutive reconstructions shows that the direction of initial bulging during the leaf or bract formation is nearly parallel to the shoot axis (upward bulging), while in the case of flower it is perpendicular to the axis (lateral bulging). In future, such 3D reconstructions can be used to assess
Geometry program for aerodynamic lifting surface theory
NASA Technical Reports Server (NTRS)
Medan, R. T.
1973-01-01
A computer program that provides the geometry and boundary conditions appropriate for an analysis of a lifting, thin wing with control surfaces in linearized, subsonic, steady flow is presented. The kernel function method lifting surface theory is applied. The data which is generated by the program is stored on disk files or tapes for later use by programs which calculate an influence matrix, plot the wing planform, and evaluate the loads on the wing. In addition to processing data for subsequent use in a lifting surface analysis, the program is useful for computing area and mean geometric chords of the wing and control surfaces.
The surface geometry of exotic nuclei
Carlson, B. V.; Baldini-Neto, E.; Hirata, D.; Peru-Desenfants, S.; Berger, J.-F.; Chamon, L. C.
2007-02-12
We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data.
Ideal spiral bevel gears: A new approach to surface geometry
NASA Technical Reports Server (NTRS)
Huston, R. L.; Coy, J. J.
1980-01-01
The fundamental geometrical characteristics of spiral bevel gear tooth surfaces are discussed. The parametric representation of an ideal spiral bevel tooth is developed based on the elements of involute geometry, differential geometry, and fundamental gearing kinematics. A foundation is provided for the study of nonideal gears and the effects of deviations from ideal geometry on the contact stresses, lubrication, wear, fatigue life, and gearing kinematics.
Triangle geometry processing for surface modeling and cartesian grid generation
Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY
2002-09-03
Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.
Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)
2002-01-01
Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.
Turbulent boundary layer over porous surfaces with different surface geometries
NASA Technical Reports Server (NTRS)
Kong, F. Y.; Schetz, J. A.
1982-01-01
The turbulent boundary layer over three porous walls with different surface geometries was studied in order to investigate the individual influences of porosity and small roughness, as well as their combined effects, on turbulent boundary layer behavior. The tests were conducted in a 2 m x 2 m tunnel on a large axisymmetric model at speeds corresponding to Re(L) = 5,000,000-6,000,000. The development of the turbulent boundary layer was compared for that of sintered metal, bonded screening, and perforated sheet and then to that for the flow over a solid smooth wall and a solid, sand-roughened wall. The comparisons reveal that the effect of porosity is to shift the logarithmic region of the wall law down by a certain amount from the solid wall results and to increase the skin friction values by about 30-40%. The downward shift of the logarithmic region of the wall law and the increase of the skin friction value by the combined effects of small roughness and porosity are found to be roughly the sum of their individual effects.
Surface geometry of tryptophan adsorbed on gold colloidal nanoparticles
NASA Astrophysics Data System (ADS)
Hussain, Shafqat; Pang, Yoonsoo
2015-09-01
Two distinct surface-enhanced Raman (SER) spectra of tryptophan depending on the surface adsorption geometry were obtained by using colloidal gold nanoparticles reduced by borohydride and citrate ions. According to the vibrational assignments based on DFT simulations, the SER spectra of tryptamine and 3-indolepropionic acid, and the pH dependence of tryptophan SER spectrum, we found that some indole ring vibrations are very sensitive to the surface adsorption geometry of the molecules. With citrate-reduced gold colloids, tryptophan and related molecules mainly adsorb via the protonated amine group while maintaining a perpendicular geometry of the indole ring to the surface. However, a flat geometry of the indole ring to the surface is preferred on the borohydride-reduced gold colloids where the surface adsorption occurs mainly through the indole ring π electrons. By comparing our results with previous reports on the SER spectra of tryptophan on various silver and gold surfaces, we propose a general adsorption model of tryptophan on metal nanosurfaces.
Effect of crack surface geometry on fatigue crack closure
Drury, W.J.; Gokhale, A.M.; Antolovich, S.D.
1995-10-01
The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measure of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. The objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such a height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scale-dependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.
Effect of crack surface geometry on fatigue crack closure
NASA Astrophysics Data System (ADS)
Drury, W. J.; Gokhale, Arun M.; Antolovich, S. D.
1995-10-01
The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measures of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. Our objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such as height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scaledependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.; Griego, Jeffrey Randall; Reinovsky, Robert Emil; Turchi, Peter John
2015-08-06
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.
Using Dynamic Geometry Software for the Intersection Surfaces
ERIC Educational Resources Information Center
Koparan, Timur; Yilmaz, Gül Kaleli
2015-01-01
The purpose of this study is to define prospective teacher views about using dynamic geometry software for intersection surfaces. The study was conducted as a case study. For this purpose, data collection tool was developed based on the opinion of two experts. The data collection tool consists of 4 open-ended questions related to the intersection…
Hexatic order and surface ripples in spherical geometries.
Lenz, P; Nelson, D R
2001-09-17
In flat geometries, two-dimensional hexatic order has only a minor effect on capillary waves on a liquid substrate and on undulation modes in lipid bilayers. However, extended bond-orientational order alters the long-wavelength spectrum of these ripples in spherical geometries. We calculate this frequency shift and suggest that it might be detectable in lipid bilayer vesicles, at the surface of liquid metals, and in multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability induced in the later two systems by an excess of electric charge. PMID:11580526
Martian Surface Properties: Inferences from Resolved Differences in Crater Geometries
NASA Technical Reports Server (NTRS)
Valiant, G. J.; Stewart, S. T.
2004-01-01
Impact craters are a natural probe of planetary sub-surfaces, both from the excavated material and from crater geometries, which are sensitive to material properties of the target. One of the most intriguing aspects of Martian craters is the morphology of the ejecta blankets. All fresh and many older Martian craters larger than a few km are surrounded by ejecta blankets which appear fluidized, with morphologies believed to form by entrainment of liquid water. In addition to the ejecta morphology, quantitative information about the subsurface composition may be derived from geometrical measurements, e.g., rim uplift height and ejecta blanket volumes. In order to use craters to derive subsurface composition or test rampart morphology formation hypotheses, accurate measurements with quantified error estimates are required. We have developed and tested a toolkit for measurements of crater geometry using the MOLA altimetry data. Here, we present the results from geometry measurements on fresh craters in Lunae Planum and Utopia Planitia.
Viscous damping of microcantilevers with modified surfaces and geometries
NASA Astrophysics Data System (ADS)
Ergincan, O.; Palasantzas, G.; Kooi, B. J.
2012-08-01
Noise measurements were performed to determine the quality factor Q and the resonating frequency shift as a function of gas pressure P for microcantilevers with modified surfaces and geometries. In the molecular and continuum regimes, energy loss is dominated by the surrounding fluid leading to reduction of the Q factor and shift of the resonance frequency by Δf, which becomes significant in the continuum regime showing sensitivity on surface changes. This is shown via three methods: frequency shift Δf vs. P, Q factor vs. P, and direct calculation using surface roughness details acquired via atomic force microscopy.
Hypocentral trend surface analysis: Probing the geometry of Benioff Zones
NASA Astrophysics Data System (ADS)
Bevis, Michael; Isacks, Bryan L.
1984-07-01
A hypocentral trend surface is a continuous function of latitude and longtitude fitted by least squares to a set of hypocenters so that it predicts depth to the "middle" of a Benioff Zone. In this paper we take a relatively simple approach to hypocentral trend surface analysis. The hypocentral trend surface is constructed from a spherical surface harmonic expansion whose coefficients are selected so as to minimize the standard vertical deviation between hypocenters and trend surface. The vertical deviation of a hypocenter from the hypocentral trend surface is called its residual. Consideration of a hypocentral trend surface cannot be divorced from consideration of the associated residuals and their spatial distribution. Any analysis of Benioff Zone geometry trades-off presumed thickness of the zone with its presumed shape. This trade-off can be investigated by examining suites of candidate hypocentral trend surfaces (together with their associated residual distributions) generated by varying the number of degrees of freedom available to the trend surface. Hypocentral trend surfaces are generated for three high quality sets of hypocenters obtained by local seismic networks in Honshu (Japan), Cook Inlet (Alaska) and South Peru. Hypocenters beneath Honshu generate a bimodal distribution of residuals about their trend surface. The vertical separation of the upper and lower sheets of this Double Benioff Zone averages about 33 km. No Double Benioff Zone configuration is discovered below Cook Inlet or South Peru. Regional trend surfaces are established for intermediate-depth teleseismic data from South and Middle America. In South America (0°-40°S) teleseismic data suggest that along-strike transitions between "flat" and moderately steeply dipping sections of the Benioff Zone are achieved by flexure of a coherent slab rather than by fragmentation of the slab into tear-bound flaps or separate tongues of lithosphere. Hypocentral trend surface analysis of teleseismic data
3D stochastic geophysical inversion for contact surface geometry
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Farquharson, Colin; Bijani, Rodrigo
2015-04-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. As such, 3D geological Earth models typically comprise wireframe contact surfaces of tessellated triangles or other polygonal planar facets. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy is to consider a fundamentally different type of inversion that works directly with models that comprise surfaces representing contacts between rock units. We are researching such an approach, our goal being to perform geophysical forward and inverse modelling directly with 3D geological models of any complexity. Geological and geophysical models should be specified using the same parameterization such that they are, in essence, the same Earth model. We parameterize the wireframe contact surfaces in a 3D model as the coordinates of the nodes (facet vertices). The physical properties of each rock unit in a model remain fixed while the geophysical inversion controls the position of the contact surfaces via the control nodes, perturbing the surfaces as required to fit the geophysical data responses. This is essentially a "geometry inversion", which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. We apply global optimization strategies to solve the inverse problem, including stochastic sampling to obtain statistical information regarding the likelihood of particular features in the model, helping to assess the viability of a proposed model. Jointly inverting multiple types of geophysical data is simple
Effects of hillslope geometry on surface and subsurface flows
NASA Astrophysics Data System (ADS)
Sabzevari, T.; Noroozpour, S.
2014-07-01
Dividing a catchment to subcatchment or hillslope scales allows for better scrutiny of the changes in spatial distribution of rainfall, soil attributes and plant cover across the catchment. An instantaneous unit hydrograph model is suggested for simulating runoff hydrographs for complex hillslopes. This model is able to estimate surface and subsurface flows of the catchment based on the Dunne-Black mechanism. For this purpose, a saturation model is used to separate the saturated and unsaturated zones in complex hillslopes. The profile curvatures (concave, straight and convex) and plan shapes (convergent, parallel and divergent) of complex hillslopes are considered, in order to compute the travel time of surface and subsurface flows. The model was used for prediction of the direct runoff hydrograph and subsurface flow hydrograph of Walnut Gulch No. 125 catchment in Arizona (USA). Based on results, the geometry of hillslopes can change the peak of the direct runoff hydrograph up to two-fold, either higher or lower. The divergent hillslopes show higher peaks in comparison with the parallel and convergent hillslopes. The highest and lowest peak flows correspond to divergent-concave and convergent-straight hillslopes, respectively.
Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis
2012-01-01
Background Sonchus arvensis is used in the treatment of various human aliments as a traditional medicine in Pakistan. In the study its various fractions are characterized for scavenging of diverse free radicals. Results Results of the present study revealed that various fractions of Sonchus arvensis significantly scavenged the free radicals (DPPH·, ABTS·+, ·OH, superoxide), however its methanolic fraction is more potent than other fractions. Significant correlation was found between DPPH·, ABTS·+, superoxide radical and total antioxidant activity with total flavonoids and phenolics contents. Phytochmical analysis revealed the presence kaempferol, quercetin, orientin, rutin, hyperoside, catechin and myricetin. Conclusion From the present data it is concluded that various fractions of Sonchus arvensis significantly scavenged the free radical, which might be due the presence of polyphenolic constituent. PMID:23107458
Hydromechanical Normal Deformation Experiments and Coupling to Fracture Surface Geometry
NASA Astrophysics Data System (ADS)
Thörn, J.; Fransson, A. M.
2015-12-01
Civil engineering structures founded in fractured crystalline rock, such as the Fennoscandian Shield (Norway-Sweden-Finland) requires allowance for both stability and/or deformations of the rock mass and groundwater ingress and groundwater pressure changes. Coupling these issues could be the key to solving the challenges that arise from construction of e.g. hydropower dams, road and railroad tunnels, and most certainly the construction of nuclear waste repositories within fractured crystalline rock, all of which are currently planned in Sweden. Excavation related deformation in fractures may cause groundwater leakage even from the most elaborate pre-excavation grouting works. A better understanding on hydraulically (or grouting) induced deformations in the near-field of tunnels, where the stress field is re-distributed due to the opening may both provide a basis for more accurate numerical modelling and grouting or excavation procedures that minimize the damage on the completed grouting fans. Subjects of this study were experiments conducted as measurement of deformations in boreholes close to tunnels due to stepwise injection tests, and laboratory hydromechanical experiments conducted as flow and normal deformation measurements in a permeameter during cycles of up to 2.5 MPa confining pressure, and subsequent surface scanning of the samples for coupling of HM-results to geometric appearance, aperture and contact geometry. When expressed in terms of hydraulic aperture (b) and fracture normal stiffness (kn) the results of both in situ and lab experiments support a previously suggested relationship based on field data where kn is inversely proportional to roughly b2. The relationship was assumed to be valid for low compressive stress across fractures with limited previous deformation. One important data set used to establish the relationship was transmissivity and storage coefficients from hydraulic interference tests previously performed at Äspö Hard Rock
Biological control studies on Convolvulus arvensis L. with fungal pathogens
Technology Transfer Automated Retrieval System (TEKTRAN)
Field bindweed (Convolvulus arvensis) is a perennial, noxious weed in Europe and in many agricultural areas of the world, including Turkey. Some pathogenic fungi were identified with potential to control bindweed and some of them could be used as mycoherbicide components. In the summers of 2008, 200...
Effect of detailed surface geometry on riblet drag reduction performance
NASA Technical Reports Server (NTRS)
Walsh, Michael J.
1990-01-01
A comparison is made of the effect of small changes in v-groove geometry, for several riblet films applicable for drag reduction to commercial transport aircraft, whose nominal v-groove dimension is of the order of 0.002 inch. The films were tested in a water towing-tank facility. The results obtained indicate that small riblet peak geometry variations can result in a deterioration of riblet drag-reduction efficacy of as much as 40 percent, while interriblet valley curvature was found not to be critical to riblet performance.
Keller, K S; Olsson, M H M; Yang, M; Stipp, S L S
2015-04-01
Molecular dynamics (MD) simulations were used to explore adsorption on calcite, from a 1:1 mixture of ethanol and water, on planar {10.4} and stepped, i.e. vicinal, surfaces. Varying the surface geometry resulted in different adsorption patterns, which would directly influence the ability of ethanol to control calcite crystal growth, dissolution, and adsorption/desorption of other ions and molecules. Ethanol forms a well-ordered adsorbed layer on planar faces and on larger terraces, such as between steps and defects, providing little chance for water, with its weaker attachment, to displace it. However, on surfaces with steps, adsorption affinity depends on the length of the terraces between the steps. Long terraces allow ethanol to form a well-ordered, hydrophobic layer, but when step density is high, ethanol adsorption is less ordered, allowing water to associate at and near the steps and even displacing pre-existing ethanol. Water adsorbed at steps forms mass transport pathways between the bulk solution and the solid surface. Our simulations confirm the growth inhibiting properties of ethanol, also explaining how certain crystal faces are more stabilized because of their surface geometry. The -O(H) functional group on ethanol forms tight bonds with calcite; the nonpolar, -CH3 ends, which point away from the surface, create a hydrophobic layer that changes surface charge, thus wettability, and partly protects calcite from precipitation and dissolution. These tricks could easily be adopted by biomineralizing organisms, allowing them to turn on and off crystal growth. They undoubtedly also play a role in the wetting properties of mineral surfaces in commercial CaCO3 manufacture, oil production, and contamination remediation. PMID:25790337
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.
1993-01-01
For a fixed heat flow, the surface flow velocity of a convecting layer is not strongly sensitive to the variation of viscosity as a function of depth. Thus, the inferred absence of a low viscosity asthenosphere on Venus can not account for the limited surface motions there. The surface velocity is dependent on the convective geometry. Cartesian geometry convection can produce large surface velocities if the high viscosity surface layer is broken in places by weak zones. On the other hand, a high viscosity surface layer may inhibit the development of large surface velocities in axisymmetric convection.
NASA Astrophysics Data System (ADS)
Kiefer, W. S.
1993-02-01
For a fixed heat flow, the surface flow velocity of a convecting layer is not strongly sensitive to the variation of viscosity as a function of depth. Thus, the inferred absence of a low viscosity asthenosphere on Venus can not account for the limited surface motions there. The surface velocity is dependent on the convective geometry. Cartesian geometry convection can produce large surface velocities if the high viscosity surface layer is broken in places by weak zones. On the other hand, a high viscosity surface layer may inhibit the development of large surface velocities in axisymmetric convection.
Holographic entanglement entropy of anisotropic minimal surfaces in LLM geometries
NASA Astrophysics Data System (ADS)
Kim, Chanju; Kim, Kyung Kiu; Kwon, O.-Kab
2016-08-01
We calculate the holographic entanglement entropy (HEE) of the Zk orbifold of Lin-Lunin-Maldacena (LLM) geometries which are dual to the vacua of the mass-deformed ABJM theory with Chern-Simons level k. By solving the partial differential equations analytically, we obtain the HEEs for all LLM solutions with arbitrary M2 charge and k up to μ02 -order where μ0 is the mass parameter. The renormalized entanglement entropies are all monotonically decreasing near the UV fixed point in accordance with the F-theorem. Except the multiplication factor and to all orders in μ0, they are independent of the overall scaling of Young diagrams which characterize LLM geometries. Therefore we can classify the HEEs of LLM geometries with Zk orbifold in terms of the shape of Young diagrams modulo overall size. HEE of each family is a pure number independent of the 't Hooft coupling constant except the overall multiplication factor. We extend our analysis to obtain HEE analytically to μ04 -order for the symmetric droplet case.
Detecting Translation Errors in CAD Surfaces and Preparing Geometries for Mesh Generation
Petersson, N Anders; Chand, K K
2001-08-27
The authors have developed tools for the efficient preparation of CAD geometries for mesh generation. Geometries are read from IGES files and then maintained in a boundary-representation consisting of a patchwork of trimmed and untrimmed surfaces. Gross errors in the geometry can be identified and removed automatically while a user interface is provided for manipulating the geometry (such as correcting invalid trimming curves or removing unwanted details). Modifying the geometry by adding or deleting surfaces and/or sectioning it by arbitrary planes (e.g. symmetry planes) is also supported. These tools are used for robust and accurate geometry models for initial mesh generation and will be applied to in situ mesh generation requirements of moving and adaptive grid simulations.
Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry
NASA Technical Reports Server (NTRS)
Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.
2004-01-01
Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the
Rotating optical geometry sensor for inner pipe-surface reconstruction
NASA Astrophysics Data System (ADS)
Ritter, Moritz; Frey, Christan W.
2010-01-01
The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.
Geometry of surfaces associated to Grassmannian sigma models
NASA Astrophysics Data System (ADS)
Delisle, L.; Hussin, V.; Zakrzewski, W. J.
2015-04-01
We investigate the geometric characteristics of constant Gaussian curvature surfaces obtained from solutions of the G(m, n) sigma model. Most of these solutions are related to the Veronese sequence. We show that we can distinguish surfaces with the same Gaussian curvature using additional quantities like the topological charge and the mean curvature. The cases of G(1,n) = CPn-1 and G(2,n) are used to illustrate these characteristics.
Technology Transfer Automated Retrieval System (TEKTRAN)
Field bindweed (Convolvulus arvensis L.) is an exotic perennial vine that is invasive in the USA and problematic in Turkey. In May 2012, diseased Convolvulus arvensis plants were found near Ondokuz Mayis University, Samsun, Turkey. Symptoms were irregular tan-colored necrotic lesions on leaves. Leav...
Neural network tomography: network replication from output surface geometry.
Minnett, Rupert C J; Smith, Andrew T; Lennon, William C; Hecht-Nielsen, Robert
2011-06-01
Multilayer perceptron networks whose outputs consist of affine combinations of hidden units using the tanh activation function are universal function approximators and are used for regression, typically by reducing the MSE with backpropagation. We present a neural network weight learning algorithm that directly positions the hidden units within input space by numerically analyzing the curvature of the output surface. Our results show that under some sampling requirements, this method can reliably recover the parameters of a neural network used to generate a data set. PMID:21377326
On the Use of CAD-Native Predicates and Geometry in Surface Meshing
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.
1999-01-01
Several paradigms for accessing computer-aided design (CAD) geometry during surface meshing for computational fluid dynamics are discussed. File translation, inconsistent geometry engines, and nonnative point construction are all identified as sources of nonrobustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing.
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
Costa, Filippo; Monorchio, Agostino; Manara, Giuliano
2016-01-01
A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process. PMID:27181841
NASA Astrophysics Data System (ADS)
Costa, Filippo; Monorchio, Agostino; Manara, Giuliano
2016-05-01
A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process.
Geometry Laboratory (GEOLAB) surface modeling and grid generation technology and services
NASA Technical Reports Server (NTRS)
Kerr, Patricia A.; Smith, Robert E.; Posenau, Mary-Anne K.
1995-01-01
The facilities and services of the GEOmetry LABoratory (GEOLAB) at the NASA Langley Research Center are described. Included in this description are the laboratory functions, the surface modeling and grid generation technologies used in the laboratory, and examples of the tasks performed in the laboratory.
On the Use of CAD-Native Predicates and Geometry in Surface Meshing
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.
1999-01-01
Several paradigms for accessing CAD geometry during surface meshing for CFD are discussed. File translation, inconsistent geometry engines and non-native point construction are all identified as sources of non-robustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing. The native approach is demonstrated through an algorithm for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique specially developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space. The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. The algorithm terminates after achieving a prespecified measure of mesh quality and produces a triangulation such that no angle is less than a given angle bound, a or greater than pi - 2alpha. This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to the output triangulations for a variety of CAD parts, the discussion presents related theoretical results which assert the existence of such an angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.
Technology Transfer Automated Retrieval System (TEKTRAN)
Field bindweed (Convolvulus arvensis L.) is extremely susceptible to aminocyclopyrachlor compared to other weed species. Laboratory studies were conducted to determine if absorption, translocation, and metabolism of aminocyclopyrachlor in field bindweed differs from other, less susceptible species....
NASA Astrophysics Data System (ADS)
Dokukin, M. E.; Guz, N. V.; Woodworth, C. D.; Sokolov, I.
2015-03-01
Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation.
Dokukin, M. E.; Guz, N. V.; Woodworth, C.D.; Sokolov, I.
2015-01-01
Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. PMID:25844044
A numerical study of the effect of urban geometry upon the surface energy budget
NASA Astrophysics Data System (ADS)
Sakakibara, Yasushi
This numerical study investigates the effect of urban canyon geometry upon the thermal environment using a parking lot model and an urban canyon model in identical meteorological conditions. The urban canyon model assumes two buildings on opposite sides of a street, no windows or interior anthropogenic heat source, an infinitely long east-west oriented canyon, and waterproof surfaces. The simulated surface temperatures agree well with those obtained by field measurement. The energy balance of the urban canyon is represented by that of the canyon top, which is an imaginary surface. The urban canyon, whose top surface is a plane above the canyon at the same level as the roof surface of the building, absorbs more heat in the daytime and releases more at night than the parking lot. The urban thermal environment depends on an urban geometry which particular to the urban canyon model produces reduced small sky view factors and complicated daytime shadow patterns. The results show that this urban geometry contributes to urban heat island formation.
Coverage-dependent geometries of nanowires on Ge(0 0 1)-Au surfaces: modification of trenches.
Seino, Kaori; Bechstedt, Friedhelm
2016-07-20
Despite intense research the microscopic atomic structure of Au-induced nanowires on Ge(0 0 1) substrates is still under discussion. We analyse a variety of structural models for Au-induced nanowires on the Ge(0 0 1) surface using first-principles calculations. Here we focus on subridge modifications at higher Au coverages and study geometries based on the giant missing row model with Ge-Ge dimers in the grooves between the nanowires due to replacing them by Ge-Au heterodimers or Au-Au homodimers. Stable geometries are predicted for higher Au coverages, which however have only a minor influence on the electronic structure. The findings are interpreted that the Au coverage and the actual geometry may vary in the various experiments according to the preparation conditions. PMID:27227337
Coverage-dependent geometries of nanowires on Ge(0 0 1)-Au surfaces: modification of trenches
NASA Astrophysics Data System (ADS)
Seino, Kaori; Bechstedt, Friedhelm
2016-07-01
Despite intense research the microscopic atomic structure of Au-induced nanowires on Ge(0 0 1) substrates is still under discussion. We analyse a variety of structural models for Au-induced nanowires on the Ge(0 0 1) surface using first-principles calculations. Here we focus on subridge modifications at higher Au coverages and study geometries based on the giant missing row model with Ge–Ge dimers in the grooves between the nanowires due to replacing them by Ge–Au heterodimers or Au–Au homodimers. Stable geometries are predicted for higher Au coverages, which however have only a minor influence on the electronic structure. The findings are interpreted that the Au coverage and the actual geometry may vary in the various experiments according to the preparation conditions.
An interactive user-friendly approach to surface-fitting three-dimensional geometries
NASA Technical Reports Server (NTRS)
Cheatwood, F. Mcneil; Dejarnette, Fred R.
1988-01-01
A surface-fitting technique has been developed which addresses two problems with existing geometry packages: computer storage requirements and the time required of the user for the initial setup of the geometry model. Coordinates of cross sections are fit using segments of general conic sections. The next step is to blend the cross-sectional curve-fits in the longitudinal direction using general conics to fit specific meridional half-planes. Provisions are made to allow the fitting of fuselages and wings so that entire wing-body combinations may be modeled. This report includes the development of the technique along with a User's Guide for the various menus within the program. Results for the modeling of the Space Shuttle and a proposed Aeroassist Flight Experiment geometry are presented.
Dormancy in Seeds of Charlock (Sinapis arvensis L.)
Edwards, Miriam
1976-01-01
Charlock (Sinapis arvensis L.) seeds were imbibed with 10 mm GA3 for 24 hours at 0 C. After equilibration at 25 C, a 5-fold increase in radioactivity in the amino acids labeled from 2-14C-acetate was observed within 2 hours. The total amount of amino acids was reduced to half, and the specific radioactivity increased approximately 10-fold, indicating a diversion of metabolites for amino acid and protein synthesis in GA3-treated seeds. The rate of incorporation of l-14 C-leucine into protein was doubled. Autoradiographs showed that enhancement of protein synthesis was localized in the shoot and root meristems, the developing vascular tissues, and in the endosperm cells inside the testa. Images PMID:16659732
Bao, Y; Guérout, R; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B
2010-12-17
We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with a depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 10%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material. PMID:21231564
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.; Mendelson, A.
1977-01-01
The line method of analysis is applied to the Navier-Cauchy equations of elastic equilibrium to calculate the displacement field in a finite geometry bar containing a variable depth rectangular surface crack under extensionally applied uniform loading. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. Using the obtained displacement field, normal stresses, and the stress-intensity factor variation along the crack periphery are calculated for different crack depth to bar thickness ratios. Crack opening displacements and stress-intensity factors are also obtained for a through-thickness, center-cracked bar with variable thickness. The reported results show a considerable potential for using this method in calculating stress-intensity factors for commonly encountered surface crack geometries in finite solids
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.; Mendelson, A.
1975-01-01
The line method of analysis is applied to the Navier-Cauchy equations of elastic equilibrium to calculate the displacement field in a finite geometry bar containing a variable depth rectangular surface crack under extensionally applied uniform loading. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. Using the obtained displacement field, normal stresses and the stress intensity factor variation along the crack periphery are calculated for different crack depth to bar thickness ratios. Crack opening displacements and stress intensity factors are also obtained for a through-thickness, center cracked bar with variable thickness. The reported results show a considerable potential for using this method in calculating stress intensity factors for commonly encountered surface crack geometries in finite solids.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials. PMID:23181297
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
Instability of a Möbius Strip Minimal Surface and a Link with Systolic Geometry
NASA Astrophysics Data System (ADS)
Pesci, Adriana I.; Goldstein, Raymond E.; Alexander, Gareth P.; Moffatt, H. Keith
2015-03-01
We describe the first analytically tractable example of an instability of a nonorientable minimal surface under parametric variation of its boundary. A one-parameter family of incomplete Meeks Möbius surfaces is defined and shown to exhibit an instability threshold as the bounding curve is opened up from a double-covering of the circle. Numerical and analytical methods are used to determine the instability threshold by solution of the Jacobi equation on the double covering of the surface. The unstable eigenmode shows excellent qualitative agreement with that found experimentally for a closely related surface. A connection is proposed between systolic geometry and the instability by showing that the shortest noncontractable closed geodesic on the surface (the systolic curve) passes near the maximum of the unstable eigenmode.
NASA Astrophysics Data System (ADS)
Shahbazmohamadi, Sina; Jordan, Eric H.
2012-12-01
Creation of three-dimensional representations of surfaces from images taken at two or more view angles is a well-established technique applied to optical images and is frequently used in combination with scanning electron microscopy (SEM). The present work describes specific steps taken to optimize and enhance the repeatability of three-dimensional surfaces reconstructed from SEM images. The presented steps result in an approximately tenfold improvement in the repeatability of the surface reconstruction compared to more standard techniques. The enhanced techniques presented can be used with any SEM friendly samples. In this work the modified technique was developed in order to accurately quantify surface geometry changes in metallic bond coats used with thermal barrier coatings (TBCs) to provide improved turbine hot part durability. Bond coat surfaces are quite rough, and accurate determination of surface geometry change (rumpling) requires excellent repeatability. Rumpling is an important contributor to TBC failure, and accurate quantification of rumpling is important to better understanding of the failure behavior of TBCs.
NASA Astrophysics Data System (ADS)
Majkic, M. D.; Nedeljkovic, N. N.; Galijas, S. M. D.
2010-07-01
We elaborated the time-symmetric, two-state vector model to investigate the intermediate stages of the electron capture into the Rydberg states of multiply charged ions interacting with solid surface under the grazing incidence geometry. The neutralization distances for the ions XeZ+ interacting with Al-surface are calculated, for core charges Z ?[5,30]. The corresponding mean neutralization distances are in agreement with the data deduced from the measured kinetic energy gain due to the image acceleration of the ions.
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1975-01-01
A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.
Biofilm formation in geometries with different surface curvature and oxygen availability
NASA Astrophysics Data System (ADS)
Chang, Ya-Wen; Fragkopoulos, Alexandros A.; Marquez, Samantha M.; Kim, Harold D.; Angelini, Thomas E.; Fernández-Nieves, Alberto
2015-03-01
Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth.
High-resolution, real-time simultaneous 3D surface geometry and temperature measurement.
An, Yatong; Zhang, Song
2016-06-27
This paper presents a method to simultaneously measure three-dimensional (3D) surface geometry and temperature in real time. Specifically, we developed 1) a holistic approach to calibrate both a structured light system and a thermal camera under exactly the same world coordinate system even though these two sensors do not share the same wavelength; and 2) a computational framework to determine the sub-pixel corresponding temperature for each 3D point as well as discard those occluded points. Since the thermal 2D imaging and 3D visible imaging systems do not share the same spectrum of light, they can perform sensing simultaneously in real time: we developed a hardware system that can achieve real-time 3D geometry and temperature measurement at 26 Hz with 768 × 960 points per frame. PMID:27410608
Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry
Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen; Muto, Takayuki; Dong, Ruobing; Hashimoto, Jun; Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi; Itoh, Youchi; Carson, Joseph; Follette, Katherine B.; Mayama, Satoshi; Sitko, Michael; Janson, Markus; Grady, Carol A.; Kudo, Tomoyuki; and others
2014-11-01
We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.
Surface Geometry of Protoplanetary Disks Inferred From Near-Infrared Imaging Polarimetry
NASA Astrophysics Data System (ADS)
Takami, Michihiro; Hasegawa, Yasuhiro; Muto, Takayuki; Gu, Pin-Gao; Dong, Ruobing; Karr, Jennifer L.; Hashimoto, Jun; Kusakabe, Nobuyuki; Chapillon, Edwige; Tang, Ya-Wen; Itoh, Youchi; Carson, Joseph; Follette, Katherine B.; Mayama, Satoshi; Sitko, Michael; Janson, Markus; Grady, Carol A.; Kudo, Tomoyuki; Akiyama, Eiji; Kwon, Jungmi; Takahashi, Yasuhiro; Suenaga, Takuya; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Currie, Thayne; Egner, Sebastian E.; Feldt, Markus; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko; Henning, Thomas; Hodapp, Klaus W.; Honda, Mitsuhiko; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; McElwain, Michael W.; Matsuo, Taro; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Wisniewski, John P.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide
2014-11-01
We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Effects of surface wettability and edge geometry on drop motion through an orifice
NASA Astrophysics Data System (ADS)
Bordoloi, Ankur; Longmire, Ellen
2012-11-01
In geothermal energy recovery and CO2 sequestration, drops move through a porous structure by displacing a surrounding liquid. Both the pore geometry and surface wettability influence the drop motion. We simplify the pore structure to a thin plate with a circular orifice. The plate is held horizontally inside a rectangular tank filled with silicone oil. Drops of water/glycerin with Bond numbers (Bo) of 1-10 are released above and axisymmetric to the orifice, encountering the plate after reaching their terminal speed. We use high speed imaging to examine the effects of orifice-to-drop diameter ratio (d/D), orifice surface wettability (hydrophilic/hydrophobic) and edge geometry on the passage of drop fluid through the orifice. We generate regime maps for d/D and Bo delineating domains of drop capture, passage, and passage with breakup. For d/D < 1, sharp edges are observed to yield contact between the drop and orifice so that surface wettability influences the subsequent dynamics. On the other hand, rounded edges appear to prevent direct contact so that the dynamics are unaffected by the surface wettability. Supported by DOE (DOE EERE-PMC-10EE0002764).
NASA Technical Reports Server (NTRS)
Li, C. J.; Devries, W. R.; Ludema, K. C.
1983-01-01
Measurements made with a stylus surface tracer which provides a digitized representation of a surface profile are discussed. Parameters are defined to characterize the height (e.g., RMS roughness, skewness, and kurtosis) and length (e.g., autocorrelation) of the surface topography. These are applied to the characterization of crank shaft journals which were manufactured by different grinding and lopping procedures known to give significant differences in crank shaft bearing life. It was found that three parameters (RMS roughness, skewness, and kurtosis) are necessary to adequately distinguish the character of these surfaces. Every surface specimen has a set of values for these three parameters. They can be regarded as a set coordinate in a space constituted by three characteristics axes. The various journal surfaces can be classified along with the determination of a proper wavelength cutoff (0.25 mm) by using a method of separated subspace. The finite radius of the stylus used for profile tracing gives an inherent measurement error as it passes over the fine structure of the surface. A mathematical model is derived to compensate for this error.
Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng
2000-05-01
Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.
High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images
NASA Technical Reports Server (NTRS)
Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)
2001-01-01
The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.
Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis.
Moyes, C L; Lilley, J M; Casais, C A; Cole, S G; Haeger, P D; Dale, P J
2002-01-01
One concern over growing herbicide-tolerant crops is that herbicide-tolerance genes may be transferred into the weeds they are designed to control. Brassica napus (oilseed rape) has a number of wild relatives that cause weed problems and the most widespread of these is Sinapis arvensis (charlock). Sinapis arvensis seed was collected from 102 populations across the UK, within and outside B. napus-growing areas. These populations were tested for sexual compatibility with B. napus and it was found that none of them hybridized readily in the glasshouse. In contrast to previous studies, we have found that hybrids can be formed naturally with S. arvensis as the maternal parent. Six diverse B. napus cultivars (Capricorn, Drakkar, Falcon, Galaxy, Hobson and Regent) were tested for their compatibility with S. arvensis but no cultivar hybridized readily in the glasshouse. We were unable to detect gene transfer from B. napus to S. arvensis in the field, confirming the extremely low probability of hybridization predicted from the glasshouse work. PMID:11903908
The reproductive strategies of the heterocarpic annual Calendula arvensis (Asteraceae)
NASA Astrophysics Data System (ADS)
Ruiz De Clavijo, E.
2005-09-01
Achene polymorphism and various aspects of the reproductive biology of the annual Calendula arvensis L. (Field marigold), were studied to determine the reproductive strategies of the plant. This species normally produces three types of achene: rostrate, cymbiform and annular. Rostrate and cymbiform achenes are larger and heavier than annular achenes, and are adapted to long-range dispersal (by epizoochory and anemochory, respectively). In contrast, annular achenes are smaller in size and weight, and are adapted to short-range dispersal. Achenes germinate over a broad range of temperatures (both in light and in darkness), exhibiting cymbiform achenes the highest germination percentages and annular achenes the lowest under all conditions tested. A fraction of the three types of achenes exhibit dormancy and presumably enter the soil seedbank. Achene types adapted for long-range dispersal (rostrate and cymbiform achenes) produce seedlings that are best able to emerge from deeper burial depths, and that are initially stronger and exhibit earlier flowering than the plants from the annular achenes (which are likely to disperse over shorter distances). These features, together with the fact that fruiting occurs even in the absence of pollinators (automatic geitonogamy), the different mechanisms for achene dispersal (zoochory, anemochory and myrmerochory), and the extended germination, flowering and fruiting periods, facilitate establishment and expansion of this species in unpredictable and disturbed habitats.
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Akbar, R.; West, R. D.; Colliander, A.; Kim, S.; Dunbar, R. S.
2015-12-01
The NASA Soil Moisture Active-Passive Mission (SMAP), launched in January 2015, provides near-daily global surface soil moisture estimates via combined Active Radar and Passive Radiometer observations at various spatial resolutions. The goal of this mission is to enhance our understanding of global carbon and water cycles. This presentation will focus on a comprehensive assessment of the SMAP high resolution radar backscatter data (formally the L1C_S0_HiRes data product) obtained over a 3 km Woody Savanna region in north-central California during a 2.5 month period starting late May 2015. The effects of spacecraft observation geometry (fore- and aft-looks as well as ascending and descending obits) along with regional topography on soil moisture estimation abilities will be examined. Furthermore surface soil moisture retrievals, obtained through utilization of different combinations of observation geometries, will be compared to an existing network of in situsensors. Current electromagnetic scattering and emission models do not properly account for surface topography, therefore physical forward model predictions and observations have unaccounted mismatch errors which also affect soil moisture estimation accuracies. The goal of this study is to quantify these soil moisture prediction errors and highlight the need for new and complete Electromagnetic modeling efforts.
The shielding effect of small-scale martian surface geometry on ultraviolet flux
NASA Astrophysics Data System (ADS)
Moores, J. E.; Smith, P. H.; Tanner, R.; Schuerger, A. C.; Venkateswaran, K. J.
2007-12-01
The atmosphere of Mars does little to attenuate incoming ultraviolet (UV) radiation. Large amounts of UV radiation sterilize the hardiest of terrestrial organisms within minutes, and chemically alter the soil such that organic molecules at or near the surface are rapidly destroyed. Thus the survival of any putative martian life near the surface depends to a large extent on how much UV radiation it receives. Variations in small-scale geometry of the surface such as pits, trenches, flat faces and overhangs can have a significant effect on the incident UV flux and may create "safe havens" for organisms and organic molecules. In order to examine this effect, a 1-D radiative transfer sky model with 836 meshed points (plus the Sun) was developed which includes both diffuse and direct components of the surface irradiance. This model derives the variation of UV flux with latitude and an object's Geometric Shielding Ratio (a ratio which describes the geometry of each situation). The best protection is offered by overhangs with flux reduced to a factor of 1.8±0.2×10 of the unprotected value, a reduction which does not vary significantly by latitude. Pits and cracks are less effective with a reduction in UV flux of only up to 4.5±0.5×10 for the modeled scenarios; however, they are more effective for the same geometric shielding ratio than overhangs at high latitudes due to the low height of the Sun in the sky. Lastly, polar faces of rocks have the least effective shielding geometry with at most a 1.1±0.1×10 reduction in UV flux. Polar faces of rocks are most effective at mid latitudes where the Sun is never directly overhead, as at tropical latitudes, and never exposes the back of the rock, as at polar latitudes. In the most favorable cases, UV flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks. As well, hardy terrestrial microorganisms such as Bacillus pumilus could persist for up to 100 sols on
A Geometry-Driven Optical Flow Warping for Spatial Normalization of Cortical Surfaces
Tosun, Duygu; Prince, Jerry L.
2008-01-01
Spatial normalization is frequently used to map data to a standard coordinate system by removing inter-subject morphological differences, thereby allowing for group analysis to be carried out. The work presented in this paper is motivated by the need for an automated cortical surface normalization technique that will automatically identify homologous cortical landmarks and map them to the same coordinates on a standard manifold. The geometry of a cortical surface is analyzed using two shape measures that distinguish the sulcal and gyral regions in a multi-scale framework. A multichannel optical flow warping procedure aligns these shape measures between a reference brain and a subject brain, creating the desired normalization. The partial differential equation that carries out the warping is implemented in a Euclidean framework in order to facilitate a multi-resolution strategy, thereby permitting large deformations between the two surfaces. The technique is demonstrated by aligning 33 normal cortical surfaces and showing both improved structural alignment in manually labeled sulci and improved functional alignment in positron emission tomography data mapped to the surfaces. A quantitative comparison between our proposed surface-based spatial normalization method and a leading volumetric spatial normalization method is included to show that the surface-based spatial normalization performs better in matching homologous cortical anatomies. PMID:19033090
Evaluation of Missing Pellet Surface Geometry on Cladding Stress Distribution and Magnitude
Capps, Nathan A.; Montgomery, Robert O.; Sunderland, Dion J.; Spencer, Ben; Pytel, Martin; Wirth, Brian D.
2014-10-01
Missing pellet surface (MPS) defects are local geometric defects that periodically occur in nuclear fuel pellets, usually as a result of the mishandling during the manufacturing process. The presences of these defects can lead to clad stress concentrations that are substantial enough to cause a through wall failure for certain conditions of power level, burnup, and power increase. Consequently, the impact of potential MPS defects has limited the rate of power increase or ramp rates in both PWR and BWR systems. Improved 3D MPS models that consider the effect of the MPS geometry can provide better understanding of the margins against PCMI clad failure. The Peregrine fuel performance code has been developed as a part the Consortium of Advanced Simulations of Light Water Reactors (CASL) to consider the inherently multi-physics and multi-dimensional mechanisms that control fuel behavior, including cladding failure by the presence of MPS defects. This paper presents an evaluation of the cladding stress concentrations as a function of MPS defect geometry. The results are the first step in a probabilistic approach to assess cladding failure during power maneuvers. This analysis provides insight into how varying pellet defect geometries affect the distribution of the cladding stress and fuel and cladding temperature and will be used to develop stress concentration factors for 2D and 3D models.
The effect of surface anisotropy and viewing geometry on the estimation of NDVI from AVHRR
Meyer, D.; Verstraete, M.; Pinty, B.
1995-01-01
Since terrestrial surfaces are anisotropic, all spectral reflectance measurements obtained with a small instantaneous field of view instrument are specific to these angular conditions, and the value of the corresponding NDVI, computed from these bidirectional reflectances, is relative to the particular geometry of illumination and viewing at the time of the measurement. This paper documents the importance of these geometric effects through simulations of the AVHRR data acquisition process, and investigates the systematic biases that result from the combination of ecosystem-specific anisotropies with instrument-specific sampling capabilities. Typical errors in the value of NDVI are estimated, and strategies to reduce these effects are explored. -from Authors
Phukan, Ujjal J; Mishra, Sonal; Timbre, Khilesh; Luqman, Suaib; Shukla, Rakesh Kumar
2014-05-01
Waterlogging is becoming a critical threat to plants growing in areas prone to flooding. Some plants adapt various morphological and biochemical alterations which are regulated transcriptionally to cope with the situation. A comparative study of waterlogging response in two different varieties of Mentha namely Mentha piperita and Mentha arvensis was performed. M. arvensis showed better response towards waterlogging in comparison to M. piperita. M. arvensis maintained a healthy posture by utilizing its carbohydrate content; also, it showed a flourished vegetative growth under waterlogged condition. Soluble protein, chlorophyll content, relative water content, and nitric oxide scavenging activity were comparatively more salient in M. arvensis during this hypoxia treatment. Lipid peroxidation was less in M. arvensis. M. arvensis also showed vigorous outgrowth of adventitious roots to assist waterlogging tolerance. To further investigate the possible gene transcripts involved in this response, we did cDNA subtraction of waterlogging treated M. piperita and M. arvensis seedlings. cDNA subtraction has identified thirty seven novel putative Expressed Sequence Tags which were further classified functionally. Functional classification revealed that maximum percentage of proteins belonged to hypothetical proteins followed by proteins involved in biosynthesis. Some of the identified ESTs were further quantified for their induced expression in M. arvensis in comparison to M. piperita through quantitative real-time PCR. PMID:24154494
Multiple patterns of diblock copolymer confined in irregular geometries with soft surface
NASA Astrophysics Data System (ADS)
Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun
2015-12-01
The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.
Automatic Generation of CFD-Ready Surface Triangulations from CAD Geometry
NASA Astrophysics Data System (ADS)
Aftosmis, M. J.; Delanaye, M.; Haimes, R.
1998-12-01
This paper presents an approach for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, without translation, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique which was developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space, The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. Sites are inserted using a variety of priority queues to ensure that new insertions will address the worst triangles first, As a result of this strategy, the algorithm will return its 'best' mesh for a given (prespecified) number of sites. Alternatively, the algorithm may be allowed to terminate naturally after achieving a prespecified measure of mesh quality. The resulting triangulations are 'CFD-ready' in that: (1) Edges match the underlying part model to within a specified tolerance. (2) Triangles on disjoint surfaces in close proximity have matching length-scales. (3) The algorithm produces a triangulation such that no angle is less than a given angle bound, alpha, or greater than Pi - 2alpha This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to tile output triangulations for a variety of CAD parts, tile discussion presents related theoretical results which assert the existence of such all angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.
Automatic Generation of CFD-Ready Surface Triangulations from CAD Geometry
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Delanaye, M.; Haimes, R.; Nixon, David (Technical Monitor)
1998-01-01
This paper presents an approach for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, without translation, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique which was developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space, The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. Sites are inserted using a variety of priority queues to ensure that new insertions will address the worst triangles first, As a result of this strategy, the algorithm will return its 'best' mesh for a given (prespecified) number of sites. Alternatively, the algorithm may be allowed to terminate naturally after achieving a prespecified measure of mesh quality. The resulting triangulations are 'CFD-ready' in that: (1) Edges match the underlying part model to within a specified tolerance. (2) Triangles on disjoint surfaces in close proximity have matching length-scales. (3) The algorithm produces a triangulation such that no angle is less than a given angle bound, alpha, or greater than Pi - 2alpha This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to tile output triangulations for a variety of CAD parts, tile discussion presents related theoretical results which assert the existence of such all angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.
Future lunar mission Active X-ray Spectrometer development: Surface roughness and geometry studies
NASA Astrophysics Data System (ADS)
Naito, M.; Hasebe, N.; Kusano, H.; Nagaoka, H.; Kuwako, M.; Oyama, Y.; Shibamura, E.; Amano, Y.; Ohta, T.; Kim, K. J.; Lopes, J. A. M.
2015-07-01
The Active X-ray Spectrometer (AXS) is considered as one of the scientific payload candidates for a future Japanese mission, SELENE-2. The AXS consists of pyroelectric X-ray generators and a Silicon Drift Detector to conduct X-Ray Fluorescence spectroscopy (XRF) on the Moon to measure major elements: Mg, Al, Si, Ca, Ti, and Fe; minor elements: Na, K, P, S, Cr and Mn; and the trace element Ni depending on their concentration. Some factors such as roughness, grain size and porosity of sample, and the geometry of X-ray incidence, emission and energy will affect the XRF measurements precision. Basic studies on the XRF are required to develop the AXS. In this study, fused samples were used to make homogeneous samples free from the effect of grain size and porosity. Experimental and numerical studies on the XRF were conducted to evaluate the effects from incidence and emission angles and surface roughness. Angle geometry and surface roughness will be optimized for the design of the AXS on future missions from the results of the experiment and the numerical simulation.
Influence of Thickness and Contact Surface Geometry of Condylar Stem of TMJ Implant on Its Stability
NASA Astrophysics Data System (ADS)
Arabshahi, Zohreh; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul; Azari, Abbas
The aim of this study is to examine the effect thickness and contact surface geometry of condylar stem of TMJ implant on its stability in total reconstruction system and evaluate the micro strain resulted in bone at fixation screw holes in jaw bone embedded with eight different designs of temporomandibular joint implants. A three dimensional model of a lower mandible of an adult were developed from a Computed Tomography scan images. Eight different TMJ implant designs and fixation screws were modeled. Three dimensional finite element models of eight implanted mandibles were analyzed. The forces assigned to the masticatory muscles for incisal clenching were applied consisting of nine important muscular loads. In chosen loading condition, The results indicated that the anatomical curvature contact surface design of TMJ implant can moderately improve the stability and the strain resulted in fixation screw holes in thinner TMJ implant was diminished in comparison with other thicknesses.
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Zobrist, A. L.; Walker, R. E.; Gokhman, B.
1985-01-01
Performance requirements regarding geometric accuracy have been defined in terms of end product goals, but until recently no precise details have been given concerning the conditions under which that accuracy is to be achieved. In order to achieve higher spatial and spectral resolutions, the Thematic Mapper (TM) sensor was designed to image in both forward and reverse mirror sweeps in two separate focal planes. Both hardware and software have been augmented and changed during the course of the Landsat TM developments to achieve improved geometric accuracy. An investigation has been conducted to determine if the TM meets the National Map Accuracy Standards for geometric accuracy at larger scales. It was found that TM imagery, in terms of geometry, has come close to, and in some cases exceeded, its stringent specifications.
Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents
NASA Technical Reports Server (NTRS)
Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)
2001-01-01
Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.
Use of non-quadratic yield surfaces in design of optimal deep-draw blank geometry
Logan, R.W.
1995-12-01
Planar anisotropy in the deep-drawing of sheet can lead to the formation of ears in cylindrical cups and to undesirable metal flow in the blankholder in the general case. For design analysis purposes in non-linear finite-element codes, this anisotropy is characterized by the use of an appropriate yield surface which is then implemented into codes such as DYNA3D . The quadratic Hill yield surface offers a relatively straightforward implementation and can be formulated to be invariant to the coordinate system. Non-quadratic yield surfaces can provide more realistic strength or strain increment ratios, but they may not provide invariance and thus demand certain approximations. Forms due to Hosford and Badat et al. have been shown to more accurately address the earning phenomenon. in this work, use is made of these non-quadratic yield surfaces in order to determine the optimal blank shape for cups and other shapes using ferrous and other metal blank materials with planar anisotropy. The analyses are compared to previous experimental studies on non-uniform blank motion due to anisotropy and asymmetric geometry.
NASA Astrophysics Data System (ADS)
Ross, C.; Rowe, C. D.; Pollock, S. G.; Swanson, M.; Tarling, M.; Backeberg, N. R.; Coulson, S.; Barshi, N.; Bate, C.; Dascher-Cousineau, K.; Scibek, J.; Harrichhausen, N.; Timofeev, A.; Rakoczy, P.; Nisbet, H.; Castro, A.; Smith, H.
2015-12-01
Earthquake rupture surfaces are typically treated as single rupture planes. However, the observation of four linked, non-parallel to sub-parallel slip surfaces on a mining induced earthquake in 2004 shows that rupture geometries may be more complicated (Heesakkers et al., 2011). Multiple pseudotachylyte-bearing fault surfaces are exposed within a 1.1 km wide mylonite zone of the Paleozoic Norumbega fault system. The pseudotachylytes are present in two juxtaposed mylonite zones: the Ray Corner mylonite and a mylonite derived from Scarboro Formation metavolcanics. The Ray Corner mylonite crosscuts pelitic schists of the Cape Elizabeth Formation, at upper greenschist-facies conditions (quartz + feldspar + chlorite + muscovite ± titanite ± pyrite). The pseudotachylyte veins formed late in the deformational history, during a period of predominantly brittle dextral offset. The pseudotachylytes are cryptocrystalline and have rounded porphyroclasts of quartz and feldspar. Microstructural observations show evidence for static and dynamic recrystallization overprinting the primary quench textures, suggesting that previous generations of rupture surfaces have been recycled into the mylonitic fabric (Price et al., 2012). Many of the pseudotachylyte veins have a sharp boundary on one side and are poorly defined on the other, providing insight to the propagation direction. This confirms that the paleo-earthquake ruptures occurred at conditions where quartz and feldspar were able to deform plastically, near the base of the seismogenic zone. Using differential GPS, we mapped the geometry of pseudotachylyte fault veins, injection veins, and slip surface intersections. At Ray Corner, there are 7 layer-parallel pseudotachylytes in a 4 m wide zone with linking and subsequent oblique pseudotachylytes. Some intersections between pseudotachylytes are dilational, depending on the intersection angle and relative displacement on the two faults. At these sites, pseudotachylyte melt sourced
Connecting the surface of the Sun to the Heliosphere : wind speed and magnetic field geometry
NASA Astrophysics Data System (ADS)
Pinto, Rui
2016-07-01
The large-scale solar wind speed distribution varies in time in response to the cyclic variations of the strength and geometry of the magnetic field of the corona. Based on this idea, semi-empirical predictive laws for the solar wind speed (such as in the widely-used WSA law) use simple parameters describing the geometry of the coronal magnetic field. In practice, such scaling laws require ad-hoc corrections and empirical fits to in-situ spacecraft data, and a predictive law based solely on physical principles is still missing. I will discuss improvements to this kind of laws based on the analysis of very large samples of wind acceleration profiles in open flux-tubes (both from MHD simulations and potential-field extrapolations), and possible strategies for corona and heliosphere model coupling. I will, furthermore present an ongoing modelling effort to determine the magnetic connectivity, paths and propagation delays of any type of disturbance (slow/fast solar wind, waves, energetic particles, ballistic propagation) between the solar surface and any point in the interplanetary space at any time. This is a key point for the exploitation of data from Solar Orbiter and Solar Probe Plus, and more generally for establishing connections between remote and in-situ spacecraft data. This is work is supported by the FP7 project #606692 (HELCATS).
NASA Astrophysics Data System (ADS)
Schultz, K.; Sachs, M. K.; Heien, E. M.; Rundle, J. B.; Fernandez, J.; Turcotte, D.; Donnellan, A.
2014-12-01
With the ever increasing number of geodetic monitoring satellites, it is vital to have a variety of geophysical numerical simulators to produce sample/model datasets. Just as hurricane forecasts are derived from the consensus among multiple atmospheric models, earthquake forecasts cannot be derived from a single comprehensive model. Here we present the functionality of Virtual California, a numerical simulator that can generate sample surface deformations, surface gravity changes, and InSAR interferograms in addition to producing earthquake statistics and forecasts.Virtual California is a boundary element code designed to explore the seismicity of today's fault systems. For arbitrary input fault geometry, Virtual California can output simulated seismic histories of 50,000 years or more. Using co-seismic slips from the output data, we generate surface deformation maps, surface gravity change maps, and InSAR interferograms as viewed by an orbiting satellite. Furthermore, using the times between successive earthquakes we generate probability distributions and earthquake forecasts.Virtual California is now supported by the Computational Infrastructure for Geodynamics. The source code is available for download and it comes with a users' manual. The manual includes instructions on how to generate fault models from scratch, how to deploy the simulator across a parallel computing environment, etc.http://geodynamics.org/cig/software/vc/
Postlethwaite, J.; Nesic, S. . Dept of Chemical Engineering)
1993-10-01
Erosion rates were measured along the length of a tubular flow cell of type 304 (UNS S30400) stainless steel (SS) carrying dilute slurries of silica sand (0.43 mm diam) and smooth glass beads of a similar size. The segmented test cell contained a sudden constriction, a sudden expansion, and a groove to produce disturbed flow conditions. Erosion rates were reduced by changes in the cell wall geometry that resulted from erosion at positions of high local metal loss and from erosion further downstream because of the reduction in turbulence and particle dispersion. Smoothing of the sand particles in the test system halved the erosion rates; however, reduced erosion rates obtained with the sand were 2 orders of magnitude higher than those produced with the glass beads. This difference was attributed to surface microroughness of the particles.
Booth, Ivan; Fairhurst, Stephen
2007-04-15
We study the geometry and dynamics of both isolated and dynamical trapping horizons by considering the allowed variations of their foliating two-surfaces. This provides a common framework that may be used to consider both their possible evolutions and their deformations as well as derive the well-known flux laws. Using this framework, we unify much of what is already known about these objects as well as derive some new results. In particular we characterize and study the 'almost isolated' trapping horizons known as slowly evolving horizons. It is for these horizons that a dynamical first law holds and this is analogous and closely related to the Hawking-Hartle formula for event horizons.
NASA Astrophysics Data System (ADS)
Zhang, Shixue
2015-10-01
The method to get high-orbit satellite basic information such as geometry and material characteristic, is an important goal in the field of space posture apperception. In this paper, we calculate the satellite magnitude by comparing the output value of camera's CCD between the known fixed star and the satellite. We select certain reference stars to calculate the luminance value of a certain object on the acquired image using a background-removing method. We make time-domain analysis of the measurement data, and get the statistic result. With the knowledge of the theory brightness of the target, we estimate the geometric characteristics of the target. We have got a serious of the images of a certain satellite on large telescope. The experimental results demonstrate that, the accuracy of the measured magnitude is better than 0.12Mv, and the estimation error of the target reflection surface size is less than 15%.
NASA Astrophysics Data System (ADS)
Orantin, N.
2007-09-01
The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and combinatorics of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that fine tuning the parameters ensure that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct.
Effect of Subsonic Inlet Lip Geometry on Predicted Surface and Flow Mach Number Distributions
NASA Technical Reports Server (NTRS)
Albers, J. A.; Miller, B. A.
1973-01-01
The effect of subsonic inlet lip geometry on predicted surface and flow Mach number distributions is illustrated. The theoretical results were obtained from incompressible potential flow calculations corrected for compressibility. The major emphasis of this investigation is on the low-speed (takeoff and landing) operating conditions. The low-speed results were obtained for a range of three geometric variables of interest: contraction ratio, defined as the ratio of highlight area to throat area; internal lip major - to minor-axis ratio; and internal lip shape. The low-speed results were obtained at both static conditions and a free-stream velocity of 42.6m/sec, with incidence angles ranging from 0 deg to 50 deg. The results indicate that of the three geometric variables considered, contraction ratio had the largest effect on the surface Mach number distributions. The effects of inlet diameter ratio and blunting of the external forebody on maximum external surface Mach numbers are illustrated at a cruise Mach number of 0.8.
Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin
2016-04-01
Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact
Surface Geometry and Stomatal Conductance Effects on Evaporation From Aquatic Macrophytes
NASA Astrophysics Data System (ADS)
Anderson, Michael G.; Idso, Sherwood B.
1987-06-01
Evaporative water loss rates of several floating and emergent aquatic macrophytes were studied over a 4-year period through comparison of daily evaporative water losses from similar-sized vegetated (E) and open water (E0) surfaces. Two species with planate floating leaves (water fern and water lily) yielded E/E0 values of 0.90 for one and four growing seasons, respectively, and displayed stomatal regulation of potential evaporation. Water hyacinths grown in ponds with different diameters exhibited E/E0 ratios which decreased with increasing pond diameter for both short (0.06-0.36 m) and tall (0.63-0.81 m) plants, producing high linear correlations with amount of peripheral vegetative surface area. The latter relationships suggested an E/E0 value less than unity for a relatively extensive canopy of short water hyacinths and a value of the order of 1.4 for a tall canopy possessing similar two-dimensional surface area characteristics. The latter results were also demonstrated in a separate study utilizing polyurethane foam to insulate the peripheral exposure of tall water hyacinth canopies from advective energy. Finally, simultaneous stomatal conductance and daily E/E0 measurements on cattail and water hyacinth canopies with identical tank diameters indicated that although the mean stomatal conductance of the peripheral exposure of the cattail canopy was 72% less than that of the water hyacinth canopy, its total evaporative water loss was nearly equivalent, due to its greater height. Reducing the surface area of the peripheral cattail exposure by the fractional amount suggested by the stomatal conductance measurements harmonized its surface geometry-evaporation relationship with that of the water hyacinth canopy and once again demonstrated the reality of stomatal control of potential evaporation.
Effect of Sulfate on Selenium Uptake And Chemical Speciation in Convolvulus Arvensis L
Cruz-Jimenez, G.; Peralta-Video, J.R.; Rosa, G.de la; Meitzner, G.; Parson, J.G.; Gardea-Torresdey, J.L.
2007-08-08
Hydroponic experiments were performed to study several aspects of Se uptake by C. arvensis plants. Ten day old seedlings were exposed for eight days to different combinations of selenate (SeO{sub 4}{sup 2-}), sulfate (SO{sub 4}{sup 2-}), and selenite (SeO{sub 3}{sup 2-}). The results showed that in C. arvensis, SO{sub 4}{sup 2-} had a negative effect (P < 0.05) on SeO{sub 4}{sup 2-} uptake. However, a positive interaction produced a significant increase in SO{sub 4}{sup 2-} uptake when SeO{sub 4}{sup 2-} was at high concentration in the media. X-ray absorption spectroscopy studies showed that C. arvensis plants converted more than 70% of the supplied SeO{sub 3}{sup 2-} into organoselenium compounds. However, only approximately 50% of the supplied SeO{sub 4}{sup 2-} was converted into organoselenium species while the residual 50% remained in the inorganic form. Analysis using LC-XANES fittings confirmed that the S metabolic pathway was affected by the presence of Se. The main Se compounds that resembled those Se species identified in C. arvensis were Se-cystine, Se-cysteine, SeO{sub 3}{sup 2-}, and SeO{sub 4}{sup 2-}, whereas for S the main compounds were cysteine, cystine, oxidized glutathione, reduced glutathione, and SO{sub 4}{sup 2-}. The results of these studies indicated that C. arvensis could be considered as a possible option for the restoration of soil moderately contaminated with selenium even in the presence of sulfate.
Deep RNA-Seq to unlock the gene bank of floral development in Sinapis arvensis.
Liu, Jia; Mei, Desheng; Li, Yunchang; Huang, Shunmou; Hu, Qiong
2014-01-01
Sinapis arvensis is a weed with strong biological activity. Despite being a problematic annual weed that contaminates agricultural crop yield, it is a valuable alien germplasm resource. It can be utilized for broadening the genetic background of Brassica crops with desirable agricultural traits like resistance to blackleg (Leptosphaeria maculans), stem rot (Sclerotinia sclerotium) and pod shatter (caused by FRUITFULL gene). However, few genetic studies of S. arvensis were reported because of the lack of genomic resources. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive dataset for S. arvensis for the first time. We used Illumina paired-end sequencing technology to sequence the S. arvensis flower transcriptome and generated 40,981,443 reads that were assembled into 131,278 transcripts. We de novo assembled 96,562 high quality unigenes with an average length of 832 bp. A total of 33,662 full-length ORF complete sequences were identified, and 41,415 unigenes were mapped onto 128 pathways using the KEGG Pathway database. The annotated unigenes were compared against Brassica rapa, B. oleracea, B. napus and Arabidopsis thaliana. Among these unigenes, 76,324 were identified as putative homologs of annotated sequences in the public protein databases, of which 1194 were associated with plant hormone signal transduction and 113 were related to gibberellin homeostasis/signaling. Unigenes that did not match any of those sequence datasets were considered to be unique to S. arvensis. Furthermore, 21,321 simple sequence repeats were found. Our study will enhance the currently available resources for Brassicaceae and will provide a platform for future genomic studies for genetic improvement of Brassica crops. PMID:25192023
Spatial reorientation by geometry with freestanding objects and extended surfaces: a unifying view
Pecchia, Tommaso; Vallortigara, Giorgio
2012-01-01
The macroscopic, three-dimensional surface layout geometry of an enclosure apparently provides a different contribution for spatial reorientation than the geometric cues associated with freestanding objects arranged in arrays with similar geometric shape. Here, we showed that a unitary spatial representation can account for the capability of animals to reorient both by extended surfaces and discrete objects in a small-scale spatial task. We trained domestic chicks to locate a food-reward from an opening on isolated cylinders arranged either in a geometrically uninformative (square-shaped) or informative (rectangular-shaped) arrays. The arrays were located centrally within a rectangular-shaped enclosure. Chicks trained to access the reward from a fixed position of openings proved able to reorient according to the geometric cues specified by the shape of the enclosure in all conditions. Chicks trained in a fixed position of opening with geometric cues provided both by the arena and the array proved able to reorient according to each shape separately. However, chicks trained to access the reward from a variable position of openings failed to reorient. The results suggest that the physical constrains associated with the presence of obstacles in a scene, rather than their apparent visual extension, are crucial for spatial reorientation. PMID:22237909
Spatial reorientation by geometry with freestanding objects and extended surfaces: a unifying view.
Pecchia, Tommaso; Vallortigara, Giorgio
2012-06-01
The macroscopic, three-dimensional surface layout geometry of an enclosure apparently provides a different contribution for spatial reorientation than the geometric cues associated with freestanding objects arranged in arrays with similar geometric shape. Here, we showed that a unitary spatial representation can account for the capability of animals to reorient both by extended surfaces and discrete objects in a small-scale spatial task. We trained domestic chicks to locate a food-reward from an opening on isolated cylinders arranged either in a geometrically uninformative (square-shaped) or informative (rectangular-shaped) arrays. The arrays were located centrally within a rectangular-shaped enclosure. Chicks trained to access the reward from a fixed position of openings proved able to reorient according to the geometric cues specified by the shape of the enclosure in all conditions. Chicks trained in a fixed position of opening with geometric cues provided both by the arena and the array proved able to reorient according to each shape separately. However, chicks trained to access the reward from a variable position of openings failed to reorient. The results suggest that the physical constrains associated with the presence of obstacles in a scene, rather than their apparent visual extension, are crucial for spatial reorientation. PMID:22237909
Milne, A D; Lee, J M
1999-01-01
The direct current electromagnetic tracking device has seen increasing use in biomechanics studies of joint kinematics and anatomical surface geometry. In these applications, a stylus is attached to a sensor to measure the spatial location of three-dimensional landmarks. Stylus calibration is performed by rotating the stylus about a fixed point in space and using regression analysis to determine the tip offset vector. Measurement errors can be induced via several pathways, including; intrinsic system errors in sensor position or angle and tip offset calibration errors. A detailed study was performed to determine the errors introduced in digitizing small surfaces with different stylus lengths (35, 55, and 65 mm) and approach angles (30 and 45 degrees) using a plastic calibration board and hemispherical models. Two-point discrimination errors increased to an average of 1.93 mm for a 254 mm step size. Rotation about a single point produced mean errors of 0.44 to 1.18 mm. Statistically significant differences in error were observed with increasing approach angles (p < 0.001). Errors of less than 6% were observed in determining the curvature of a 19 mm hemisphere. This study demonstrates that the "Flock of Birds" can be used as a digitizing tool with accuracy better than 0.76% over 254 mm step sizes. PMID:11143353
SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry
Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T; Haga, A; Saotome, N; Arai, N
2014-06-01
Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)
NASA Astrophysics Data System (ADS)
Mitra, Partha P.; Sen, Pabitra N.
1992-01-01
We derive an expression for the magnetization M(k,Δ) in a pulsed-field-gradient experiment for spins diffusing in a confined space with relaxation at the pore walls. Here k=γδg, δ= pulse width, g= gradient strength, γ= the gyromagnetic ratio, and Δ is the time between gradient pulses. We show that the deviation of -ln[M(k,Δ)/M(0,Δ)] from quadratic behavior in k in experiments in porous media can be a more sensitive probe of the microgeometry (size, connectivity, size distribution, shape, etc.), than either the enhancement of 1/T1 over the bulk water value, or the macroscopic diffusion coefficient, which is derived from the slope of -ln[M(k,Δ)/M(0,Δ)] at small k2, in the limit of large Δ. We propose some simple models of randomly oriented tubes and sheets to interpret the k dependence of the amplitude beyond the leading small-k quadratic behavior. When the macroscopic diffusion coefficient is unobtainable, due to the decay, the present considerations should be useful in extracting geometrical information. The effective diffusion constant derived from NMR exactly equals that derived from electrical conductivity only when the surface relaxivity is zero, but can be close to each other in favorable circumstances even for finite surface relaxivity. Exact solutions with partially absorbing boundary conditions are obtained for a slab and a sphere to infer that the normalized amplitude M(k,Δ,ρ)/M(0,Δ,ρ) depends only weakly on the surface relaxivity ρ for monodisperse convex-shaped pores in the parameter ranges of interest. We also obtain expressions for the mean lifetime of the amplitude in the geometries considered.
NASA Astrophysics Data System (ADS)
Liu, Feng-Bin; Li, Jing-Lin; Chen, Wen-Bin; Cui, Yan; Jiao, Zhi-Wei; Yan, Hong-Juan; Qu, Min; Di, Jie-Jian
2016-02-01
To elucidate the effects of physisorbed active ions on the geometries and electronic structures of hydrogenated diamond films, models of HCO 3 - , H3O+, and OH- ions physisorbed on hydrogenated diamond (100) surfaces were constructed. Density functional theory was used to calculate the geometries, adsorption energies, and partial density of states. The results showed that the geometries of the hydrogenated diamond (100) surfaces all changed to different degrees after ion adsorption. Among them, the H3O+ ion affected the geometry of the hydrogenated diamond (100) surfaces the most. This is well consistent with the results of the calculated adsorption energies, which indicated that a strong electrostatic attraction occurs between the hydrogenated diamond (100) surface and H3O+ ions. In addition, electrons transfer significantly from the hydrogenated diamond (100) surface to the adsorbed H3O+ ion, which induces a downward shift in the HOMO and LUMO energy levels of the H3O+ ion. However, for active ions like OH- and HCO 3 - , no dramatic change appears for the electronic structures of the adsorbed ions.
Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects
NASA Astrophysics Data System (ADS)
Pacifico, J.; van Leeuwen, Y. M.; Spuch-Calvar, M.; Sánchez-Iglesias, A.; Rodríguez-Lorenzo, L.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.
2009-03-01
In this work we compare the standard imaging of various types of nanoparticles deposited on surfaces by atomic force microscopy (AFM) with a complementary analysis of the same samples by either electrostatic force microscopy (EFM) or magnetic force microscopy (MFM). Experiments were carried out on gold nanoparticles (decahedrons and stars) and two different iron oxide systems: goethite (α-FeOOH) and hematite (α-Fe2O3). Regardless of the particular geometry, the EFM signal appears to be stronger on edges or tips of pure gold nanoparticles. Both EFM and MFM experiments were also carried out on iron oxide particles. Apart from the structural analysis, we analyzed the influence of a shell layer deposited on the gold and iron oxide particles, the shell being amorphous SiO2. Although the silica layer was found to have an insulating effect around the particles, in all cases EFM/MFM measurements could still be performed by the proper choice of the scan lift height (with an eventual slight increase of the sample bias, where applicable).
Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects.
Pacifico, J; van Leeuwen, Y M; Spuch-Calvar, M; Sánchez-Iglesias, A; Rodríguez-Lorenzo, L; Pérez-Juste, J; Pastoriza-Santos, I; Liz-Marzán, L M
2009-03-01
In this work we compare the standard imaging of various types of nanoparticles deposited on surfaces by atomic force microscopy (AFM) with a complementary analysis of the same samples by either electrostatic force microscopy (EFM) or magnetic force microscopy (MFM). Experiments were carried out on gold nanoparticles (decahedrons and stars) and two different iron oxide systems: goethite (alpha-FeOOH) and hematite (alpha-Fe(2)O(3)). Regardless of the particular geometry, the EFM signal appears to be stronger on edges or tips of pure gold nanoparticles. Both EFM and MFM experiments were also carried out on iron oxide particles. Apart from the structural analysis, we analyzed the influence of a shell layer deposited on the gold and iron oxide particles, the shell being amorphous SiO(2). Although the silica layer was found to have an insulating effect around the particles, in all cases EFM/MFM measurements could still be performed by the proper choice of the scan lift height (with an eventual slight increase of the sample bias, where applicable). PMID:19417504
Brown, Philip S.; Bhushan, Bharat
2016-01-01
Superoleophobic plastic surfaces are useful in a wide variety of applications including anti-fouling, self-cleaning, anti-smudge, and low-drag. Existing examples of superoleophobic surfaces typically rely on poorly adhered coatings or delicate surface structures, resulting in poor mechanical durability. Here, we report a facile method for creating re-entrant geometries desirable for superoleophobicity via entrapment of nanoparticles in polycarbonate surfaces. Nanoparticle incorporation occurs during solvent-induced swelling and subsequent crystallization of the polymer surface. The resulting surface was found to comprise of re-entrant structures, a result of the nanoparticle agglomerates acting as nucleation points for polymer crystallization. Examples of such surfaces were further functionalized with fluorosilane to result in a durable, super-repellent surface. This method of impregnating nanoparticles into polymer surfaces could prove useful in improving the anti-bacterial, mechanical, and liquid-repellent properties of plastic devices. PMID:26876479
Brown, Philip S; Bhushan, Bharat
2016-01-01
Superoleophobic plastic surfaces are useful in a wide variety of applications including anti-fouling, self-cleaning, anti-smudge, and low-drag. Existing examples of superoleophobic surfaces typically rely on poorly adhered coatings or delicate surface structures, resulting in poor mechanical durability. Here, we report a facile method for creating re-entrant geometries desirable for superoleophobicity via entrapment of nanoparticles in polycarbonate surfaces. Nanoparticle incorporation occurs during solvent-induced swelling and subsequent crystallization of the polymer surface. The resulting surface was found to comprise of re-entrant structures, a result of the nanoparticle agglomerates acting as nucleation points for polymer crystallization. Examples of such surfaces were further functionalized with fluorosilane to result in a durable, super-repellent surface. This method of impregnating nanoparticles into polymer surfaces could prove useful in improving the anti-bacterial, mechanical, and liquid-repellent properties of plastic devices. PMID:26876479
NASA Astrophysics Data System (ADS)
Brown, Philip S.; Bhushan, Bharat
2016-02-01
Superoleophobic plastic surfaces are useful in a wide variety of applications including anti-fouling, self-cleaning, anti-smudge, and low-drag. Existing examples of superoleophobic surfaces typically rely on poorly adhered coatings or delicate surface structures, resulting in poor mechanical durability. Here, we report a facile method for creating re-entrant geometries desirable for superoleophobicity via entrapment of nanoparticles in polycarbonate surfaces. Nanoparticle incorporation occurs during solvent-induced swelling and subsequent crystallization of the polymer surface. The resulting surface was found to comprise of re-entrant structures, a result of the nanoparticle agglomerates acting as nucleation points for polymer crystallization. Examples of such surfaces were further functionalized with fluorosilane to result in a durable, super-repellent surface. This method of impregnating nanoparticles into polymer surfaces could prove useful in improving the anti-bacterial, mechanical, and liquid-repellent properties of plastic devices.
Evans, Alistair R.; McHenry, Colin R.
2015-01-01
The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620
Shasany, A K; Khanuja, S P; Dhawan, S; Kumar, S
2000-09-01
Menthol is a highly valued monoterpene produced by Japanese mint (Mentha arvensis) as a natural product with wide applications in cosmetics, confectionery, flavours, beverages and therapeutics. Selection of high menthol yielding genotypes is therefore the ultimate objective of all genetic improvement programmes in Mentha arvensis. A positive correlation was observed in the present study between menthol content in oils of evaluated genotypes and the level of tolerance to externally supplied menthol of explants of these genotypes in culture medium. The easy use of this relationship as a selectable biochemical marker opens the practical applicability of large scale in vitro screening of the germplasm, clones and breeders' material for selection of elite genotypes. PMID:11022228
A rare chemical burn due to Ranunculus arvensis: three case reports.
Kocak, Abdullah O; Saritemur, Murat; Atac, Kenan; Guclu, Sibel; Ozlu, Ibrahim
2016-01-01
Ranunculus arvensis, a plant that is a member of Ranunculaceae family, generally used for local treatment of joint pain, muscle pain, burns, lacerations, edema, abscess drainage, hemorrhoids, and warts among the population. In this case report, we presented three patients who developed chemical skin burns after using R. arvensis plant locally for knee pain. The destructive effect of the plant has been reported previously to be more in fresh plants and less in dried plants. Although protoanemonin, which is considered as the main toxic substance, was reported to be absent in dried or boiled plants, the plant was boiled, cooled, and wrapped over the region with pain in our cases. Therefore, we thought that protoanemonin may be considered to be heat resistant. Also, the burn management proceeded up to surgery by using the flap technique in one of our patients in contrast to the cases found in published reports who were treated by antibiotics and dressings. PMID:26922695
Gyenes, V; Béres, I; Lehoczky, E; Kazinczi, G; Nyári, A
2005-01-01
It is clearly seen from data that roots of Convolvulus arvensis L. have more and less intensive regenerative period during growing season. The more intensive period is in autumn, because in that time roots culminate nutrients, carbohydrate as starch and sugar. The less intensive regenerative or shoot-growing period is in spring, called "late spring bud dormancy". Experiments were conducted to get more information and further details about the regenerative capacity of roots close to and far from the collar of Convolvulus arvensis L. Root segments closer to collar have an intensive regenerative capacity than those ones further to collar. By data of Bakke et al. (1939) is well known, roots exhumed from deep soil layers are able to create shoots with low intensity. So finally we can exclaim that regenerative capacity is decreasing further to collar. Using mechanical weed control it is sufficient to till the upper layer of soil, but many times. Chemical treatments are most effective in the integrated weed control. It is clearly seen that auxin-type herbicide such as 2,4-D, fluroxipir, MCPA. dicamba give the best result. They gave 95% weed control effect used them separately or in combination with other herbicides. Combination of Banvel 480 S (dicamba) and Logran 75 WG (triasulfuron) introduced 95% weed control effect. Only one time got absolutely 100% weed control effect, in the case of Glyphosate active substance. Caused total plant destruction. Excellent result was given with the application of Pledge 50WP (flumioxazin). Herbicides mentioned above are absolutely allowed to take an important and significant part in chemical plant protection against Convolvulus arvensis L. Other herbicides like Granstar 75DF (tribenuron-methyl), Basis 75DF (rimsulfuron + tifensulfuron-methyl) and Huszár (jodosulfuron-methyl-sodium + mefenpir-diethyl) are not so effective against Convolvulus arvensis L., as compared to the previous ones. PMID:16637219
Lee, Jae Hyup; Baek, Myong-Hyun; Kim, Young Eun; Seo, Jun-Hyuk; Song, Dong Ryul; Ryu, Hyun-Seung; Lee, Choon-Ki; Chang, Bong-Soon
2013-11-01
Intervertebral disc spacers using bioactive ceramics have been used to treat degenerative spinal disease. Tooth-shaped spacers are commonly used to prevent migration, but there is a possibility of fracture when inserted or after insertion. Intervertebral disc spacers with either an isosceles triangle-shaped tooth (T1) or a right triangle-shaped tooth (T2) were used as a control group. The design factors for the experimental group were modified to prevent fractures induced by stress concentration, and the surfaces of the spacers were designed as either an isosceles triangle-shaped valley (V1) or a right triangle-shaped valley (V2). Linear analysis using finite element model (FEM) was performed, and Von Mises stress distribution was calculated by applying 1000 N of uniformly distributed load. Samples of the V2 design were made with bioactive glass-ceramics (BGS-7) and evaluated for compressive strength, fatigue degree, and impact strength. Von Mises stress was highest at the first tooth from the posterior side for the control group and at the center for the experimental group. Compared with the control group, the experimental group showed 18.4% and 82.5% reduction (V1 vs. T1 and V2 vs. T2, respectively) in the maximum stress at the bottom of the valleys. The FEM analysis revealed that the V2 design had the most even load distribution. The V2 samples with bioactive glass-ceramics were evaluated for compressive strength, and all six samples were not fractured up to 24 000 N. However, the average impact strength was 19.42 kN, suggesting that momentary force caused damage at a lower load than compression with a steady speed. The BGS-7 intervertebral disc spacer with V2 design was not fractured during the fatigue test at maximum pressure of 8000 N, R ≥10, 5 Hz, and 5 million cycles. These data confirm that the BGS-7 spacer with the V2 design may be clinically applicable. Collectively, the modified surface geometry of the experimental group significantly lowered Von
2011-01-01
Ranunculus arvensis (corn buttercup) is a plant species of the genus Ranunculus that is frequently used in the Far East to treat rheumatic diseases and several dermatological disorders. In Turkey, the plant is seen in the eastern and southeastern Anatolian highlands, which are underdeveloped areas of the country. Herein, we report three patients who used Ranunculus arvensis for the treatment of arthralgia and osteoarthritis. A distinctive phytodermatitis developed on the right thumb in one patient (48-year-old male), on the anterior aspect of both knees in another patient (70-year-old female) and all around both knees in a third (59-year-old female). The patients were treated with topical antibiotics and daily wound dressing, and none of them experienced any complications. Ranunculus arvensis was confirmed as the cause of the phytodermatitis in the three cases. Poultices of plants applied to the skin demonstrate beneficial effects on many dermatological and rheumatic diseases; however, they have several adverse effects that should not be ignored. In this study, we also present a review of 25 cases reported in the literature. PMID:21408003
Hu, Jian; Tanabe, Masahiro; Sato, Jun; Uosaki, Kohei; Ikeda, Katsuyoshi
2014-07-23
Surface enhanced Raman scattering (SERS) spectra of organic monolayers were measured on various types of polycrystalline and single crystalline Pt substrates with nanometric or atomic surface features, including heteroepitaxial Pt monolayers, using sphere-plane type nanogap structures. Although atomic geometry and electronic structures of a metal surface significantly influence metal-molecule interactions, such effects are often hindered in conventional SERS measured on a roughened surface because of the spectral information averaging at various adsorption sites. In this study, the use of atomically defined Pt surfaces revealed detailed surface effects; the observed preferential adsorption geometry on each surface was well explained by atomic surface arrangements. The peak shift of the intramolecular vibration in the anchor group was in good agreement with the variation of the d-band center of Pt substrates. Moreover, in electrochemical SERS study the Stark shift of an extramolecular vibrational mode at around 400 cm(-1), which is not accessible in infrared absorption spectroscopy, was monitored on an atomically defined heteroepitaxial Pt monolayer electrode. PMID:24802029
NASA Astrophysics Data System (ADS)
Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.
2016-06-01
We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.
Effects of detector geometry on measured lineshapes and intensities in surface scattering
NASA Astrophysics Data System (ADS)
Hinch, B. J.; Frankl, D. R.; Allison, W.
1987-02-01
A general expression for the detector response to a given beam flux distribution is given. Illustrative examples are worked out for some simple idealized cases and it is shown that both the measured lineshape and the measured intensity depend on the details of incident beam and detector geometry.
Hochkirch, Axel; Mertes, Tamara; Rautenberg, Julia
2012-03-01
Biological invasions can affect the structure and function of ecosystems and threaten native plant species. Since most weeds rely on mutualistic relationships in their new environment, they may act as new competitors for pollinators. Pollinator competition is likely to be density dependent, but it is often difficult to disentangle competition caused by flower quality from effects caused by flower quantity. In order to test the effects of the presence and number of flowers of the invasive weed Bunias orientalis on the insect visitation rates in a native species (Sinapis arvensis), we performed two replacement experiments using plants with standardised flower numbers. The visitation rates in S. arvensis were significantly higher than in B. orientalis and the number of insect visits dropped significantly with increasing density of S. arvensis flowers. These results suggest that intraspecific competition among flowers of S. arvensis is stronger than the competitive effect of alien flowers. As flowers of B. orientalis do not seem to distract visitors from S. arvensis, it is unlikely that pollinator competition between these two plant species plays a crucial role. However, it cannot be excluded that mass blossom stands of B. orientalis may distract flower visitors from nativespecies. PMID:22314667
NASA Astrophysics Data System (ADS)
Hochkirch, Axel; Mertes, Tamara; Rautenberg, Julia
2012-03-01
Biological invasions can affect the structure and function of ecosystems and threaten native plant species. Since most weeds rely on mutualistic relationships in their new environment, they may act as new competitors for pollinators. Pollinator competition is likely to be density dependent, but it is often difficult to disentangle competition caused by flower quality from effects caused by flower quantity. In order to test the effects of the presence and number of flowers of the invasive weed Bunias orientalis on the insect visitation rates in a native species ( Sinapis arvensis), we performed two replacement experiments using plants with standardised flower numbers. The visitation rates in S. arvensis were significantly higher than in B. orientalis and the number of insect visits dropped significantly with increasing density of S. arvensis flowers. These results suggest that intraspecific competition among flowers of S. arvensis is stronger than the competitive effect of alien flowers. As flowers of B. orientalis do not seem to distract visitors from S. arvensis, it is unlikely that pollinator competition between these two plant species plays a crucial role. However, it cannot be excluded that mass blossom stands of B. orientalis may distract flower visitors from native species.
NASA Astrophysics Data System (ADS)
Coh, Senia
Tetraphenylporphyrin (TPP)-derived molecules have been studied extensively as efficient photosensitizers when chemisorbed on the metal oxide substrates in dye-sensitized solar cells. Still, many fundamental electronic properties of the dye/oxide interface are not understood and need careful consideration. In this thesis we present a comprehensive study of the electronic structure, energy level alignment and the adsorption geometry of the TPP-derived dye molecules adsorbed on TiO2(110), ZnO(1120) and Ag(100) single crystal surfaces using ultra-high vacuum (UHV) based surface sensitive techniques. The alignment of the molecular energy levels with respect to the TiO 2 and ZnO band edges for all TPP-derived molecules we studied was found to be insensitive to either the nature of the functional groups located on the phenyl rings, presence of zinc as a central metal ion and different binding geometry of the molecules. Binding geometry, molecule-molecule interaction and the aggregation effects in the adsorbed layer, that were observed in the UV-visible spectra of the molecules adsorbed on ZnO substrate were not observed in the ultraviolet photoemission (UPS) and inverse photoemission (IPS) spectra of the occupied and unoccupied molecular states. Using near edge X-ray absorption fine structure (NEXAFS) and scanning tunneling microscopy (STM), binding geometry of the two representative TPP-derivatives was directly determined to be upright, with the porphyrin ring under large angle with respect to the surface for the p-ZnTCPP molecules and with the porphyrin ring parallel to the surface for the m-ZnTCPP molecules. We observe that the energies and the energy level alignment of the ZnTPP molecular levels measured in UPS and IPS depend on the substrate on which the molecules are adsorbed (Ag(100) or TiO2(110) single crystal surfaces). The differences are attributed to different charge screening properties of these two materials. Image charges created in the substrates during
NASA Technical Reports Server (NTRS)
Lucero, John M.
2003-01-01
A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.
NASA Astrophysics Data System (ADS)
Harris, Chad T.; Haw, Dustin W.; Handler, William B.; Chronik, Blaine A.
2013-09-01
Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils.
Marocico, C. A.; Knoester, J.
2011-11-15
We use a Green's tensor method to investigate the spontaneous emission rate of a molecule and the energy-transfer rate between molecules placed in two types of layered geometries: a slab geometry and a planar waveguide. We focus especially on the role played by surface-plasmon polaritons in modifying the spontaneous emission and energy-transfer rates as compared to free space. In the presence of more than one interface, the surface-plasmon polariton modes split into several branches, and each branch can contribute significantly to modifying the electromagnetic properties of atoms and molecules. Enhancements of several orders of magnitude both in the spontaneous emission rate of a molecule and the energy-transfer rate between molecules are obtained and, by tuning the parameters of the geometry, one has the ability to control the range and magnitude of these enhancements. For the energy-transfer rate interference effects between contributions of different plasmon-polariton branches are observed as oscillations in the distance dependence of this rate.
Skandrani, Ines; Boubaker, Jihed; Bhouri, Wissem; Limem, Ilef; Kilani, Soumaya; Ben Sghaier, Mohamed; Neffati, Aicha; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila
2010-01-01
The in vitro antiproliferative, apoptotic, and antioxidant activities from leaf extracts of Moricandia arvensis, which are used in traditional cooking and medicines, were investigated. The MTT assay revealed that only TOF (total oligomer flavonoids), ethyl acetate (EA), chloroform (Chl), and petroleum ether (PE) extracts inhibited the proliferation of K562 cells. Apoptosis plays a very important role in the treatment of cancer by promoting the apoptosis of cancer cells and limiting the concurrent death of normal cells. Thus, the possible effects of M. arvensis extracts on the induction of apoptosis in human leukemic cells (K562 cells) were investigated. The electrophoretic analysis of DNA fragmentation confirms that TOF, Chl, PE, and EA extracts provoke DNA fragmentation. Using the lipid peroxidation inhibitory assay, the antioxidant capacity of M. arvensis extracts was evaluated by the ability of each extract to inhibit malondialdehyde formation. It was revealed that EA and TOF extracts are the most active in scavenging the hydroxyl radicals. PMID:19995267
Ardekani, Siamak; Jain, Saurabh; Sanzi, Alianna; Corona-Villalobos, Celia P; Abraham, Theodore P; Abraham, M Roselle; Zimmerman, Stefan L; Wu, Katherine C; Winslow, Raimond L; Miller, Michael I; Younes, Laurent
2016-04-01
The focus of this study was to develop advanced mathematical tools to construct high-resolution 3D models of left-ventricular (LV) geometry to evaluate focal geometric differences between patients with hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) using cardiac magnetic resonance (MR) cross-sectional images. A limiting factor in 3D analysis of cardiac MR cross-sections is the low out-of-plane resolution of the acquired images. To overcome this problem, we have developed a mathematical framework to construct a population-based high-resolution 3D LV triangulated surface (template) in which an iterative matching algorithm maps a surface mesh of a normal heart to a set of cross-sectional contours that were extracted from short-axis cine cardiac MR images of patients who were diagnosed with either HCM or HHD. A statistical analysis was conducted on deformations that were estimated at each surface node to identify shape differences at end-diastole (ED), end-systole (ES), and motion-related shape variation from ED to ES. Some significant shape difference in radial thickness was detected at ES. Differences of LV 3D surface geometry were identified focally on the basal anterior septum wall. Further research is needed to relate these findings to the HCM morphological substrate and to design a classifier to discriminate among different etiologies of LV hypertrophy. PMID:26766206
Geometry of Optimal Paths around Focal Singular Surfaces in Differential Games
Melikyan, Arik Bernhard, Pierre
2005-06-15
We investigate a special type of singularity in non-smooth solutions of first-order partial differential equations, with emphasis on Isaacs' equation. This type, called focal manifold, is characterized by the incoming trajectory fields on the two sides and a discontinuous gradient. We provide a complete set of constructive equations under various hypotheses on the singularity, culminating with the case where no a priori hypothesis on its geometry is known, and where the extremal trajectory fields need not be collinear. We show two examples of differential games exhibiting non-collinear fields of extremal trajectories on the focal manifold, one with a transversal approach and one with a tangential approach.
Belchenko, Yu; Sanin, A.; Sotnikov, O.
2014-02-15
Negative ion extraction from continuous-wave (CW) magnetron and semiplanotron discharges was studied and it was compared with that for the source with Penning electrode geometry. The CW negative ion beam up current to 13 mA was extracted from the magnetron source with emission aperture of 3.5 mm in diameter, while the beam with current up to 8 mA was obtained from the semiplanotron source modification. Characteristics of CW magnetron and semiplanotron sources are presented and analyzed.
Effect of Geometry on the Preparation of Fatigue Specimens with Predetermined Surface Roughness
NASA Astrophysics Data System (ADS)
Kuroda, Masatoshi; Mori, Takayuki
In the present study, the applicability of the design of experiments (DOE) approach to the design of the long fatigue specimens of austenitic stainless steels with controlled surface roughness has been studied. The response surface models which can predict the surface roughness parameters Ra and Rz as a function of the final cutting conditions (axial feed rate and radial cutting depth) of the lathe were obtained by the analysis of variance (ANOVA) for the experimental data. It was found that the surface roughness parameters Ra and Rz obtained by the model prediction were in good accordance with the experiments. However, special care should be taken to minimise the specimen deflection generated during the machining process. It was concluded that the response surface models obtained were applicable to design the long fatigue specimens with controlled surface roughness.
Gillespie, D.R.H.; Wang, Z.; Ireland, P.T.; Kohler, S.T.
1998-01-01
Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems, which rely on plate inserts. In this paper, it is shown that the surface that forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate, are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer have been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.
Boesi, R.; Polidori, C.; Andrietti, F.; Gayubo, S.F.; Tormos, J.; Asis, J.D.
2007-03-15
Recently re-named as a sub-species of Mellinus arvensis, Mellinus arvensis obscurus Handlirsch 1888 was investigated ecologically and morphologically in Nepal, in order to underline the most important differences with the well known M. arvensis arvensis. Mellinus arvensis obscurus females nested in clumped aggregations on inclined plains at high altitudes, both on sunny bare soil and on a shaded grassy one. Beginning of monsoon season probably interfered with wasp activity, and females performed few provisioning flights during the day. Prey consisted of a broad range of Diptera, except for one case of a spider. Many females were observed not provisioning a nest but floating on the nesting site, and many intraspecific interactions suggested a high degree of usurpation attempts. At least one species of flies and two of ants probably acted as natural enemies of the wasp. Morphological observations on females showed that the Nepal population shares more similarities (shape of tergite I, body punctation) with the European populations than with the closer Japanese population; melanization is strong, according to west-east and altitudinal cline. The mature larva of M. arvensis obscurus Handlirsch is described, illustrated, and compared with the other mature larva of the genus. The differences between both larvae mainly lie in the presence/absence, and number or differentiation of integumental structures. We conclude that morphological traits are more important than ecological and behavioral ones in distinguishing M. arvensis obscurus from M. arvensis arvensis. (author) [Spanish] En el presente articulo se aportan los resultados y conclusiones de un estudio, llevado a cabo en Nepal, en el que se abordaron aspectos ecologicos, comportamentales y morfologicos (tanto del ultimo estado de la fase larvaria como del adulto) de Mellinus arvensis obscurus Handlirsch 1888. El principal objetivo del estudio radicaba en mostrar las principales diferencias que separan a esta
Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry
NASA Astrophysics Data System (ADS)
Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.
2011-12-01
Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.
In the urbanization of watersheds, impervious surface is the primary agent of hydrologic change. The impact of impervious surface on hydrology and sediment transport is understood only in terms of unverified models not specifically adapted for urban watersheds. Therefore, in this...
Bredbenner, Todd L.; Eliason, Travis D.; Potter, Ryan S.; Mason, Robert L.; Havill, Lorena M.; Nicolella, Daniel P.
2010-01-01
We hypothesize that variability in knee subchondral bone surface geometry will differentiate between patients at risk and those not at risk for developing osteoarthritis (OA) and suggest that statistical shape modeling (SSM) methods form the basis for developing a diagnostic tool for predicting the onset of OA. Using a subset of clinical knee MRI data from the osteoarthritis initiative (OAI), the objectives of this study were to (1) utilize SSM to compactly and efficiently describe variability in knee subchondral bone surface geometry and (2) determine the efficacy of SSM and rigid body transformations to distinguish between patients who are not expected to develop osteoarthritis (i.e. Control group) and those with clinical risk factors for OA (i.e. Incidence group). Quantitative differences in femur and tibia surface geometry were demonstrated between groups, although differences in knee joint alignment measures were not statistically significant, suggesting that variability in individual bone geometry may play a greater role in determining joint space geometry and mechanics. SSM provides a means of explicitly describing complete articular surface geometry and allows the complex spatial variation in joint surface geometry and joint congruence between healthy subjects and those with clinical risk of developing or existing signs of OA to be statistically demonstrated. PMID:20227696
Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.
Skandrani, Ines; Bouhlel, Ines; Limem, Ilef; Boubaker, Jihed; Bhouri, Wissem; Neffati, Aicha; Ben Sghaier, Mohamed; Kilani, Soumaya; Ghedira, Kamel; Ghedira-Chekir, Leila
2009-02-01
The mutagenic potential of total aqueous, total oligomers flavonoids (TOF), ethyl acetate (EA), chloroform (Chl), petroleum ether (PE) and methanol (MeOH) extracts from aerial parts of Moricandia arvensis was assessed using Ames Salmonella tester strains TA100 and TA1535 with and without metabolic activation (S9), and using plasmid pBluescript DNA assay. None of the different extracts produced a mutagenic effect, except aqueous extract when incubated with Salmonella typhimurium TA100 after metabolic activation. Likewise, the antimutagenicity of the same extracts was tested using the "Ames test". Our results showed that M. arvensis extracts possess antimutagenic effects against sodium azide (SA) in the two tested Salmonella assay systems, except metabolized aqueous and PE extracts when tested with S. typhimurium TA100 assay system. Different extracts were also found to be effective in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals, except PE and aqueous extracts. Antioxidant capacity of the tested extracts was evaluated using the enzymatic (xanthine/xanthine oxidase assay) (X/XOD) and the non enzymatic (NBT/Riboflavine assay) systems. TOF extract was the more effective one in inhibiting both xanthine oxidase activity and NBT reduction. PMID:19015021
Normal Mastoid Air Cell System Geometry: Has Surface Area Been Overestimated?
Byun, Sung Wan; Lee, Seung-Sin; Park, Jin Young; Yoo, Jeong Hyun
2016-01-01
Objectives The aim of this study was to emphasize the necessity of a standard in segmentation threshold and algorithm for measuring volume and surface area of mastoid air cell system (MACS). Methods First, we obtained axial computed tomography scans of 54 normal temporal bones from 27 subjects. Then, we manipulated Hounsfield units (HU) image data in DICOM (digital imaging and communications in medicine) files directly using our program. The volume and surface area of MACS were computed and compared at segmentation thresholds (HU) from –700 to 0 at intervals of 50 using 2 algorithms; square pixel based (SP) algorithm and marching square (MS) algorithm. Results No significant difference was found between the volumes computed by SP and MS algorithms at each segmentation threshold. The surface area computed by SP algorithm, however, was significantly larger than that by MS algorithm. We could minimize this significant difference through a modification of the SP algorithm. As the lower HU threshold value was set, the smaller volume was measured. The surface area showed a plateau at a threshold of approximately –200 HU. The segmentation threshold had greater influence on the measured volume of MACS than the algorithm did. Conclusion A standard method for measuring volume and surface area of MACS is thought to be necessary. We suggest that the MS algorithm and –200 HU of the threshold could be a standard in the measurement of volume and surface area of MACS. PMID:26976023
NASA Astrophysics Data System (ADS)
Nield, Simon P.; Townley, Lloyd R.; Barr, Anthony D.
1994-08-01
A numerical model is used to examine groundwater flow in vertical section near surface water bodies, such as lakes, wetlands, ponds, rivers, canals, and drainage and irrigation channels. Solutions are generated partly by superposition to achieve computational efficiency. A large number of flow regimes are identified, with their characteristics controlled by regional water tabel gradients, recharge to the aquifer, water body length, aquifer anisotropy, and the hydraulic resistance of the bottom sediments. Different flow regimes are distinguished by the presence and nature of groundwater mounds or depressions near the edges of a surface water body and by corresponding stagnation points. Ranges of values for dimensionless flow parameters over which particular regimes occur are determined for six representative geometries and presented in the form of transition diagrams. Increasing anisotropy or sediment resistance and decreasing the length of a water body relative to aquifer thickness are shown to have similar effects on flow geometry, the main effect being an increasing tendency for stagnation points to form in the interior of the aquifer. Flow-through behavior becomes more prevalent with decreaisng anisotropy and sediment resistance and increasing water body length.
Marzal, F; Gonzalez, E; Minana, A; Baeza, A
2002-06-01
A full-scale installation which simulates a surface treatment tank provided with a push-pull ventilation system has been designed. This study examines the influence of the geometry of the push element on the capture efficiency of the system. It is observed that: (i) capture efficiency increases with the number of holes because of the continuous curtain formed, the size of the holes having no significant effect within the range studied (5-20 mm diameter); (ii) the push element is best supported on the tank wall so that no air from outside penetrates below the emitting jets because in this way the impact of the curtain on the tank occurs earlier and losses are less; (iii) the best results are obtained when the holes are directed downwards towards the tank surface at an angle of between 22 and 45 degrees. PMID:12176707
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Tadjfar, M.; Welch, W. J. C.; Duck, P. W.
1989-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite-difference and spectral methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T-S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves.
Jugulam, M; Ziauddin, Asma; So, Kenny K Y; Chen, Shu; Hall, J Christopher
2015-01-01
Auxinic herbicides (e.g. dicamba) are extensively used in agriculture to selectively control broadleaf weeds. Although cultivated species of Brassicaceae (e.g. Canola) are susceptible to auxinic herbicides, some biotypes of Sinapis arvensis (wild mustard) were found dicamba resistant in Canada. In this research, dicamba tolerance from wild mustard was introgressed into canola through embryo rescue followed by conventional breeding. Intergeneric hybrids between S. arvensis (2n = 18) and B. napus (2n = 38) were produced through embryo rescue. Embryo formation and hybrid plant regeneration was achieved. Transfer of dicamba tolerance from S. arvensis into the hybrid plants was determined by molecular analysis and at the whole plant level. Dicamba tolerance was introgressed into B. napus by backcrossing for seven generations. Homozygous dicamba-tolerant B. napus lines were identified. The ploidy of the hybrid progeny was assessed by flow cytometry. Finally, introgression of the piece of DNA possibly containing the dicamba tolerance gene into B. napus was confirmed using florescence in situ hybridization (FISH). This research demonstrates for the first time stable introgression of dicamba tolerance from S. arvensis into B. napus via in vitro embryo rescue followed by repeated backcross breeding. Creation of dicamba-tolerant B. napus varieties by this approach may have potential to provide options to growers to choose a desirable herbicide-tolerant technology. Furthermore, adoption of such technology facilitates effective weed control, less tillage, and possibly minimize evolution of herbicide resistant weeds. PMID:26536372
Technology Transfer Automated Retrieval System (TEKTRAN)
Biotypes of the broad-leaved wild mustard (Sinapis arvensis L.) found in wheat fields of the Aegean and Marmara regions of Turkey, were characterized and shown to have developed resistance to sulfonylurea (chlorsulfuron), an inhibitor of acetolactate synthase (ALS). DNA sequence analysis of the ALS...
Technology Transfer Automated Retrieval System (TEKTRAN)
Biotypes of the broad-leaved wild mustard (Sinapis arvensis L.) found in wheat fields of the Aegean and Marmara regions of Turkey, were characterized and shown to have developed resistance to sulfonylurea (chlorsulfuron), an inhibitor of acetolactate synthase (ALS). DNA sequence analysis of the ALS...
Jugulam, M.; Ziauddin, Asma; So, Kenny K. Y.; Chen, Shu; Hall, J. Christopher
2015-01-01
Auxinic herbicides (e.g. dicamba) are extensively used in agriculture to selectively control broadleaf weeds. Although cultivated species of Brassicaceae (e.g. Canola) are susceptible to auxinic herbicides, some biotypes of Sinapis arvensis (wild mustard) were found dicamba resistant in Canada. In this research, dicamba tolerance from wild mustard was introgressed into canola through embryo rescue followed by conventional breeding. Intergeneric hybrids between S. arvensis (2n = 18) and B. napus (2n = 38) were produced through embryo rescue. Embryo formation and hybrid plant regeneration was achieved. Transfer of dicamba tolerance from S. arvensis into the hybrid plants was determined by molecular analysis and at the whole plant level. Dicamba tolerance was introgressed into B. napus by backcrossing for seven generations. Homozygous dicamba-tolerant B. napus lines were identified. The ploidy of the hybrid progeny was assessed by flow cytometry. Finally, introgression of the piece of DNA possibly containing the dicamba tolerance gene into B. napus was confirmed using florescence in situ hybridization (FISH). This research demonstrates for the first time stable introgression of dicamba tolerance from S. arvensis into B. napus via in vitro embryo rescue followed by repeated backcross breeding. Creation of dicamba-tolerant B. napus varieties by this approach may have potential to provide options to growers to choose a desirable herbicide-tolerant technology. Furthermore, adoption of such technology facilitates effective weed control, less tillage, and possibly minimize evolution of herbicide resistant weeds. PMID:26536372
Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface
Gao, Junfeng; Zhao, Jijun
2012-01-01
Using ab initio methods, we have investigated the structures and stabilities of SiN clusters (N ≤ 24) on Ag(111) surface as the initial stage of silicene growth. Unlike the dome-shaped graphene clusters, Si clusters prefer nearly flat structures with low buckling, more stable than directly deposition of the 3D freestanding Si clusters on Ag surface. The p-d hybridization between Ag and Si is revealed as well as sp2 characteristics in SiN@Ag(111). Three types of silicene superstructures on Ag(111) surface have been considered and the simulated STM images are compared with experimental observations. Molecular dynamic simulations show high thermal stability of silicene on Ag(111) surfaces, contrast to that on Rh(111). The present theoretical results constitute a comprehensive picture about the interaction mechanism of silicene on Ag(111) surface and explain the superiority of Ag substrate for silicene growth, which would be helpful for improving the experimentally epitaxial growth of silicene. PMID:23155482
NASA Astrophysics Data System (ADS)
Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter
2012-12-01
With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ* excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ*-excited states which are non-adiabatically coupled among themselves and to a nπ*-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed.
Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence
NASA Astrophysics Data System (ADS)
Baldanza, Silvia; Cornish, Alix; Nicklin, Richard E. J.; Zheleva, Zhasmina V.; Held, Georg
2014-11-01
Adsorption of L-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π* resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√{ 13} × 2√{ 13}) R 13 ° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.
Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis.
Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; Defelipe, Javier; Merchán-Pérez, Angel
2013-01-01
Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface-the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474
Wave modulation: the geometry, kinematics, and dynamics of surface-wave packets
NASA Astrophysics Data System (ADS)
Pizzo, Nicholas; Melville, W. Kendall
2015-11-01
We derive moment evolution equations of the modified nonlinear Schrodinger equation (MNLSE) with application to interpreting the geometry, kinematics and dynamics of focusing deep-water wave packets. Our theory predicts modifications to the group velocity and associates wave packet convergence with the breakdown of equipartition between kinetic and potential energy. The evolution of the first moment of the energy density yields a natural way to interpret the concept of group velocity for these compact wave groups, predicting a velocity increase as the packet focuses, and is found to be up to 10% larger than that predicted by linear theory, consistent with laboratory observations. The second moment yields a virial theorem, associating energy convergence with deviations from equipartition. The derivation of these moment equations relies crucially on the variational structure of the spatial version of the MNLSE, and the subsequent derivation of three conservations laws. These predictions are then examined numerically for focusing wave packets governed by both the MNLSE as well as the full potential flow equations, and the results are discussed in the context of existing theoretical, numerical and laboratory studies.
SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows
NASA Astrophysics Data System (ADS)
Canelas, Ricardo B.; Crespo, Alejandro J. C.; Domínguez, Jose M.; Ferreira, Rui M. L.; Gómez-Gesteira, Moncho
2016-05-01
A unified discretization of rigid solids and fluids is introduced, allowing for resolved simulations of fluid-solid phases within a meshless framework. The numerical solution, attained by Smoothed Particle Hydrodynamics (SPH) and a variation of Discrete Element Method (DEM), the Distributed Contact Discrete Element Method (DCDEM) discretization, is achieved by directly considering solid-solid and solid-fluid interactions. The novelty of the work is centred on the generalization of the coupling of the DEM and SPH methodologies for resolved simulations, allowing for state-of-the-art contact mechanics theories to be used in arbitrary geometries, while fluid to solid and vice versa momentum transfers are accurately described. The methods are introduced, analysed and discussed. Initial validations on the DCDEM and the fluid coupling are presented, drawing from test cases in the literature. An experimental campaign serves as a validation point for complex, large scale solid-fluid flows, where a set of blocks in several configurations is subjected to a dam-break wave. Blocks are tracked and positions are then compared between experimental data and the numerical solutions. A Particle Image Velocimetry (PIV) technique allows for the quantification of the flow field and direct comparison with numerical data. The results show that the model is accurate and is capable of treating highly complex interactions, such as transport of debris or hydrodynamic actions on structures, if relevant scales are reproduced.
Atomic geometry, electronic states and possible hydrogen passivation of the InP(1 1 1)A surface
NASA Astrophysics Data System (ADS)
Chuasiripattana, K.; Srivastava, G. P.
2006-08-01
We present a first-principles theoretical study of the atomic geometry and electronics states of the InP(1 1 1)A surface under In- and P-rich conditions. The In-rich surface, characterised by an In vacancy per unit ( 2×2) cell, obeys the electron counting rule (ECR) and is semiconducting. Under P-rich conditions we have considered two surface reconstructions: ( 2×2) with 3/4 monolayer (ML) P coverage and ( √{3}×√{3}) with 1 ML coverage. In complete agreement with a recent experimental work by Li et al., it is found that the ( √{3}×√{3}) reconstruction is more stable than the ( 2×2) reconstruction. However, the ( √{3}×√{3}) reconstruction has a metallic band structure and thus does not satisfy the ECR. The stability of this reconstruction is explained to arise from a competition between the ECR and a significant elastic deformation in the surface region. We confirm the suggestion by Li et al. that this surface can be passivated both chemically as well as electronically with 1/4 ML coverage of hydrogen.
Calculation of ion-surface collisions for a wide range of scattering geometries
NASA Astrophysics Data System (ADS)
Torralba, M. C.; Bolcatto, P. G.; Goldberg, E. C.
2003-08-01
A theoretical calculation that accounts for a fairly complete description of the resonant charge-exchange process occuring in the H+ scattering by metal surfaces is presented. Realistic trajectories defined by the binary collision model are considered. The interaction with nuclei and electrons of the all surface atoms that the projectile can see along its trajectory is calculated within a mean-field approximation, and in this form the contributions of the short-range interaction terms to the energy level shift are well contemplated. The long-range contributions and the motion of the projectile respect to the surface reference frame are also taken into account to define the level shift. All these ingredients are incorporated into a quantum mechanical description of the time evolution. The negative ion fractions calculated in this form show an excellent agreement with the experimental data for three different incoming energies and for a wide range of exit angles.
Characterization of internal geometry / covered surface defects with a visible light sensing system
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2016-05-01
Previous work has used visible light scanning to detect and characterize defects in 3D printed objects. This paper focuses on assessing the internal structures and external surfaces (that will be later hidden) of complex objects. These features make in-process defect detection far more important than it would be with an object that can be fully assessed with a post-completion scan, as it is required both for in-process correction and end-product quality assurance. This paper presents work on the use of a multi-camera visible light 3D scanning system to identify defects with printed objects' interior and covered / obscured exterior surfaces.
Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.
2003-01-01
X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES
THE LAYERED NET SURFACE PROBLEMS IN DISCRETE GEOMETRY AND MEDICAL IMAGE SEGMENTATION.
Wu, Xiaodong; Chen, Danny Z; Li, Kang; Sonka, Milan
2007-01-01
Efficient detection of multiple inter-related surfaces representing the boundaries of objects of interest in d-D images (d >/= 3) is important and remains challenging in many medical image analysis applications. In this paper, we study several layered net surface (LNS) problems captured by an interesting type of geometric graphs called ordered multi-column graphs in the d-D discrete space (d >/= 3 is any constant integer). The LNS problems model the simultaneous detection of multiple mutually related surfaces in three or higher dimensional medical images. Although we prove that the d-D LNS problem (d >/= 3) on a general ordered multi-column graph is NP-hard, the (special) ordered multi-column graphs that model medical image segmentation have the self-closure structures and thus admit polynomial time exact algorithms for solving the LNS problems. Our techniques also solve the related net surface volume (NSV) problems of computing well-shaped geometric regions of an optimal total volume in a d-D weighted voxel grid. The NSV problems find applications in medical image segmentation and data mining. Our techniques yield the first polynomial time exact algorithms for several high dimensional medical image segmentation problems. Experiments and comparisons based on real medical data showed that our LNS algorithms and software are computationally efficient and produce highly accurate and consistent segmentation results. PMID:20221409
Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis
Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel
2013-01-01
Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474
ERIC Educational Resources Information Center
Kelly, Debbie M.; Bischof, Walter F.
2008-01-01
We investigated how human adults orient in enclosed virtual environments, when discrete landmark information is not available and participants have to rely on geometric and featural information on the environmental surfaces. In contrast to earlier studies, where, for women, the featural information from discrete landmarks overshadowed the encoding…
Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.
2008-01-01
High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate
Sapra, Vipul; Taneja, Sonali; Kumar, Mohit
2013-01-01
Aim: This in vitro study assessed the surface quality of three nanoparticle composites with four commercially available polishing systems. Materials and Methods: A total of 180 specimens (10 × 2 mm) were prepared in metal molds using three nanocomposites, Filtek Z-350 XT, Ceram-X Mono, and Tetric N-Ceram. Sixty specimens of each material were then randomly assigned to five study groups. Control specimens were left untreated and the remaining specimens were subjected to polishing with SpinBrite, CompoMaster, AstroPol, and SofLex polishing systems. Average roughness (Ra) and average ten-point roughness (Rz) were calculated using Perthometer, and the data were analyzed by two-way analysis of variance (ANOVA) and post-hoc Tukey's tests. Results: For all the materials, the roughest surfaces were observed for control specimens, with no statistically significant differences between the material groups. For Filtek Z-350 XT, the decrease in surface roughness after two-step polishing was insignificant. For Ceram-X, SpinBrite specimens showed similar degree of roughness as control specimens. For Tetric N-Ceram, no significant decrease in roughness was observed after one-step polishing. Two-way ANOVA (interaction of subgroups and groups) did not show a significant association with the outcome. Conclusions: For nanofilled composites (Filtek Z-350 XT), the surface roughness decreased with the increase in number of polishing steps, whereas one-step and multi-step polishing procedures produced similar quality of smoothness for nanohybrid composites (Ceram-X, Tetric N-Ceram). Ra and Rz values of surface roughness are a function of type of finishing/polishing only. PMID:24347894
NASA Astrophysics Data System (ADS)
Schermer, Elizabeth; Redfield, Tim
2013-04-01
The distribution and geometry of relict surfaces adjacent to the northern Norwegian passive margin can help constrain the post-rift evolution of the onshore region. A swath map of relict surfaces, covering the coast of Senja Island and extending SE to the drainage divide, was constructed from DEMs, aerial photos and an NGU digital map database of Quaternary features. The map and histograms of elevation distribution depict three distinctly stepped, coast-parallel belts of preserved relict surfaces. The belts increase in mean elevation from coast to the southeast and, to a certain degree, correlate with the bedrock geology. Overall, the relict surfaces dip to the NW. Locally SE dipping surfaces in the coastal and central belts may be controlled by post-surface reactivation of normal faults. The coastal belt coincides with a fault-bounded horst of Precambrian rock. Although deeply incised by Alpine glaciers and fjords, relict surfaces are preserved on ridge tops and local broad peaks at 700-800 m. A central belt of much lower relief and with surfaces averaging 900-1100 m high coincides with Caledonian nappe rocks and exhibits few preserved surfaces. An inner belt of extensive and well preserved surfaces averaging 1300-1400m high coincides with peaks and the gently rolling upland of the Scandinavian mountain crest. Here, NW-trending paleoridges and paleovalleys are evident in contours of the highest surfaces. NW-SE topographic profiles (perpendicular to the COB) show distinct steps in the maximum height of the relict surfaces, interpreted to coincide with mapped normal faults whose vertical offsets (throw) may be up to 600-700 m. The geometry of relict surfaces is consistent with multiple rock column uplift events. Published apatite fission track (AFT) apparent ages are ~200 Ma (range ~170-220 Ma), indicating the onshore bedrock was within ~2-3 km of the surface since Early Jurassic time. No distinct AFT age offsets can be resolved within the data, limiting net throw
Gu, Haiwei; Yang, Shuiping; Li, Jianqiang; Hu, Bin; Chen, Huanwen; Zhang, Lili; Fei, Qiang
2010-04-01
A novel geometry-independent neutral desorption (GIND) device was successfully developed, which made neutral desorption (ND) sampling easier and more robust on virtually all types of surfaces. The GIND device features a small air-tight enclosure with fixed space between the ND gas emitter, the sample surface, and the sample collector. Besides easy fabrication and convenient use, this configuration facilitates efficient neutral sample transfer and results in high sensitivity by preventing material loss during the ND process. The effects of various operating parameters of the GIND device such as desorption gas composition, surface wetness, gas flow rate, distance between the surface and the gas emitter, internal diameter of the sample outlet, and GIND device material were experimentally investigated. By using the GIND device, trace amounts of typical explosives such as TNT, RDX, HMX, TATP, etc., were successfully sampled from many different kinds of surfaces, including human skin, glove, glass, envelope, plastic, leather, glass, and clothes. GIND-sampled explosives were detected by multiple-stage extractive electrospray ionization mass spectrometry (EESI-MS). Ion/molecule reactions of explosives such as RDX and TATP were implemented in the EESI source for the rapid detection with enhanced sensitivity and specificity. The typical time for a single sample analysis was a few seconds. Successful transportation of the neutral analytes over a distance longer than 10 m was demonstrated, without either significant signal loss or serious delay of signal response. The limit of detection for these explosives in the study was in the range of ca. 59-842 fg (S/N = 3, n = 8) on various surfaces. Acceptable relative standard deviation (RSD) values (ca. 4.6-10.2%, n = 8) were obtained for all the surfaces tested, showing the successful sampling of trace non-volatile explosive compounds (sub-picogram) by the GIND device for the EESI mass spectrometric analysis. PMID:20349542
Effect of surface interactions and geometry on the motion of micro bio robots
NASA Astrophysics Data System (ADS)
Wong, Denise; Beattie, Elizabeth E.; Steager, Edward B.; Kumar, Vijay
2013-10-01
Micro Bio Robots (MBRs) are synthetic microstructures with a monolayer of flagellated bacteria adhered to the surface. The flagella of the bacteria propel the microstructure causing it to rotate and translate in a fluidic environment on a planar surface in the absence of external forces. This paper investigates the force contributions of bacteria adhered to the edge versus the center of the micro-structure by selectively altering their behavior using near-UV light. In particular, we investigate the forces that cause predominant clockwise MBR rotation when viewed from above. Additionally, asymmetric shapes, particularly gears, are used to compare the effect of the adherent bacteria with that of collisions among free-swimming bacteria and the microstructure. We find that bacteria adhered near the edge of the MBR interact with the glass substrate under the MBR, accounting for statistically biased clockwise rotation of MBRs.
Joint effects of illumination geometry and object shape in the perception of surface reflectance
Olkkonen, Maria; Brainard, David H
2011-01-01
Surface properties provide useful information for identifying objects and interacting with them. Effective utilization of this information, however, requires that the perception of object surface properties be relatively constant across changes in illumination and changes in object shape. Such constancy has been studied separately for changes in these factors. Here we ask whether the separate study of the illumination and shape effects is sufficient, by testing whether joint effects of illumination and shape changes can be predicted from the individual effects in a straightforward manner. We found large interactions between illumination and object shape in their effects on perceived glossiness. In addition, analysis of luminance histogram statistics could not account for the interactions. PMID:23145259
NASA Astrophysics Data System (ADS)
Higuchi, Toshiharu; Nakamura, Osamu; Matsumoto, Sadao; Uda, Eiichirou
1999-05-01
A study was conducted to investigate the emission characteristics and barium recovery characteristics after ion bombardment of two types of Ir-coated dispenser cathodes having a pore density on the surface layer of the cathodes of 4×10 4 and 1.3×10 4 pores/mm 2. Cathode current was measured under pulse operation in a range of 0.1-9% duty cycle. When the duty cycle dependence of emissions was examined, the current densities of both cathodes were the same in the case of 0.1% duty cycle, delivering about 12 A/cm 2. The work functions also showed the same value. However, evaluations of 4% duty cycle and 9% duty cycle found that the cathode with a higher pore density showed emission characteristics higher by 50% and 70%. Regarding the recovery time of barium and oxygen after argon ion bombardment with Auger electron spectroscopy (AES), the low-pore-density cathode required as long as 3 min for recovery, whereas the high-pore-density cathode recovered in 1.1 min. From the above experiments, it was clarified that emission characteristics under high duty and barium recovery characteristics after ion bombardment can be improved by increasing the pore density of the surface layer. The basic mechanisms leading to these results were also theoretically considered by solving surface diffusion equations.
Surface Geometry and Geomorphology of the Rodgers Creek Fault, San Francisco Bay Area
NASA Astrophysics Data System (ADS)
Hecker, S.
2007-12-01
The Rodgers Creek fault, part of the right-lateral San Andreas fault system in the San Francisco Bay area, is geometrically segmented by bends on multiple scales. North of Sonoma Mountain, along the northern half of the fault, sections of the fault trace trend approximately parallel to the direction of relative plate motion (~N34°W) and display a right-stepping pattern across releasing double bends. Within the releasing bends, the fault trends >5° oblique to plate motion and shows geomorphic evidence of extension. The largest right bend, ~1 km at Santa Rosa, corresponds to the lowest elevations along the fault. To the south, the fault makes a broad restraining double bend around the southwest flank of Sonoma Mountain and trends up to ~13° compressively oblique to plate motion. Long-term uplift (Sonoma Mountain) east of the bend suggests a reduction in slip on the fault to the south. The restraining bend corresponds to the north end of a pronounced aseismic region along the fault that may represent a spatial change in the mode of strain accommodation. Aerial photo analysis (1:6 k) of well-preserved geomorphology at the south end of the Rodgers Creek fault, where the fault makes another left bend with respect to plate motion, reveals a section that is undergoing progressive inversion from localized transtension (at a right bend) to transpression. This inversion is manifest as a northwest- lengthening zone of uplift within the fault zone. The youngest push-ups appear to be overprinting a relict pull-apart and sag pond. This and possibly older sag deposits along the margin of the uplift may mark former positions of a releasing geometry in the fault trace, presently located directly north of the uplift front. Geometric and overprinting relations suggest that the main trace of the fault rotates and translates through the passing bends. This mode of fault-bend migration contrasts with a previously proposed model in which new transverse structures develop progressively
Appelo, D; Petersson, N A
2007-12-17
The isotropic elastic wave equation governs the propagation of seismic waves caused by earthquakes and other seismic events. It also governs the propagation of waves in solid material structures and devices, such as gas pipes, wave guides, railroad rails and disc brakes. In the vast majority of wave propagation problems arising in seismology and solid mechanics there are free surfaces. These free surfaces have, in general, complicated shapes and are rarely flat. Another feature, characterizing problems arising in these areas, is the strong heterogeneity of the media, in which the problems are posed. For example, on the characteristic length scales of seismological problems, the geological structures of the earth can be considered piecewise constant, leading to models where the values of the elastic properties are also piecewise constant. Large spatial contrasts are also found in solid mechanics devices composed of different materials welded together. The presence of curved free surfaces, together with the typical strong material heterogeneity, makes the design of stable, efficient and accurate numerical methods for the elastic wave equation challenging. Today, many different classes of numerical methods are used for the simulation of elastic waves. Early on, most of the methods were based on finite difference approximations of space and time derivatives of the equations in second order differential form (displacement formulation), see for example [1, 2]. The main problem with these early discretizations were their inability to approximate free surface boundary conditions in a stable and fully explicit manner, see e.g. [10, 11, 18, 20]. The instabilities of these early methods were especially bad for problems with materials with high ratios between the P-wave (C{sub p}) and S-wave (C{sub s}) velocities. For rectangular domains, a stable and explicit discretization of the free surface boundary conditions is presented in the paper [17] by Nilsson et al. In summary
Surface-tension-driven Stokes flow: A numerical method based on conformal geometry
NASA Astrophysics Data System (ADS)
Buchak, Peter; Crowdy, Darren G.
2016-07-01
A novel numerical scheme is presented for solving the problem of two dimensional Stokes flows with free boundaries whose evolution is driven by surface tension. The formulation is based on a complex variable formulation of Stokes flow and use of conformal mapping to track the free boundaries. The method is motivated by applications to modelling the fabrication process for microstructured optical fibres (MOFs), also known as "holey fibres", and is therefore tailored for the computation of multiple interacting free boundaries. We give evidence of the efficacy of the method and discuss its performance.
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.; Gold, D. P.
1974-01-01
Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.
NASA Astrophysics Data System (ADS)
Bennett, A. J.; Harrison, R. G.
2006-06-01
A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9h was 1.76±0.002pAm-2.
Effects of geometry and jet velocity on noise associated with an upper-surface-blowing model
NASA Technical Reports Server (NTRS)
Clark, L. R.; Yu, J. C.
1977-01-01
The noise characteristics associated with various upper surface blowing configurations were investigated using a small model consisting of a plate and flap assembly (simulated wing with flap) attached to a rectangular nozzle. Nozzle aspect ratio, flow-run length, and flap-deflection angle were the experimental parameters studied. Three nozzle-exit velocities were used. The normalized noise spectra obtained for different nozzle aspect ratios proved to be similar in terms of Strouhal number based on jet velocity and flow-run length. Consequently, the need for knowing local flow velocity and length scales (for example, at the flap trailing edge) as required in some of the existing noise prediction schemes is eliminated. Data are compared with results computed from three different noise prediction schemes, and the validity of each scheme is assessed. A simple method is proposed to evaluate the frequency dependence of acoustic shielding obtained with the simulated wing flap.
Sensing (un)binding events via surface plasmons: effects of resonator geometry
NASA Astrophysics Data System (ADS)
Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael
2016-04-01
The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations
Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry.
Brown, Ana M; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A; Atwater, Harry A
2016-01-26
The behavior of metals across a broad frequency range from microwave to ultraviolet frequencies is of interest in plasmonics, nanophotonics, and metamaterials. Depending on the frequency, losses of collective excitations in metals can be predominantly classical resistive effects or Landau damping. In this context, we present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. Specifically, we include ab initio predictions of phonon-assisted optical excitations in metals, which are critical to bridging the frequency range between resistive losses at low frequencies and direct interband transitions at high frequencies. In the commonly used plasmonic materials, gold, silver, copper, and aluminum, we find that resistive losses compete with phonon-assisted carrier generation below the interband threshold, but hot carrier generation via direct transitions dominates above threshold. Finally, we predict energy-dependent lifetimes and mean free paths of hot carriers, accounting for electron-electron and electron-phonon scattering, to provide insight toward transport of plasmonically generated carriers at the nanoscale. PMID:26654729
Jacob, Jesly; R, Ajith; Mathew, Vincent
2011-11-20
The optical near-field surface plasmon effects of a triangular system of silver nanoshell cylinders are numerically studied using the two-dimensional finite difference time domain method. The dependence of interparticle distance, shell thickness of the cylinder, dielectric constant of shell core as well as embedding medium, and orientation of the optical source plane on the plasmonic resonances of the nanocylinder shells is studied. The plasmonic resonances are found to have strong dependence on the interparticle distance. As the size of the particle is increased, the field intensity peak shows a redshift. The resonance condition varies with the dielectric constant of the environment as well as the core. In addition, the orientation of the incident source plane has a significant role in the near-field intensity distribution. Since the near-field intensity has the same trend as that of the scattering cross section, the results can be used in the design of various applications like sensing, antennas, and waveguides. PMID:22108888
NASA Astrophysics Data System (ADS)
Daydou, Y.; Pinet, P.; Souchon, A.; Chevrel, S.
2012-04-01
the ISEP facility (Imaging Spectrogoniometer for Planetary Exploration) operating at the Midi-Pyrénées Observatory, Toulouse, France and documenting the optical and photometric properties of natural rocky surfaces and soils on their reflectance properties, when measured from the crystal to the macroscopic scale (200 x 200 mm).
Surface transport in the Ria de Vigo - Transport barriers in a tidal estuary with a complex geometry
NASA Astrophysics Data System (ADS)
Huhn, F.; von Kameke, A.; Montero, P.; Allen-Perkins, S.; Venancio, A.; Pérez-Muñuzuri, V.
2012-04-01
We study the submesoscale surface transport in the Ria de Vigo, NW Spain, an estuary with tidal and wind-driven circulation, analyzing the output of the coastal model MOHID with state-of-the-art Lagrangian methods, and comparing the results to drifter experiments. We extract Lagrangian Coherent Structures (LCS) as ridges in fields of the Finite-Time Lyapunov Exponent (FTLE) that can be identified with transport barriers. The LCS reveal the fundamental structure of the modelled circulation in the estaury that is a superposition of the tidal inflow and outflow, the wind-driven currents and the long-term drift on the shelf. In the Ria de Vigo, LCS are attached to prominent coastal boundaries, as islands or capes, indicating that the geometry of the flow patterns is dominated by bathymetry. Although the vertical flow which is not represented in the horizontal surface flow can be important at the coast, the found transport patterns can be seen as the surface footprint of the 3D circulation in the estaury. Comparing the trajectories of real surface drifters from four deployments to the computed transport barriers in different typical meteorological sitiations, we find that the drifter trajectories are in agreement with the different coherent water masses predicted by the model. The knowledge of the global transport patterns of water masses in this highly populated coastal region is indispensable for the assessment of the fate of contaminations, like possible oil spills or released waste water, but also for biological studies that deal with the drift of eggs and larvae of fish and other marine species, or investigate plankton blooms.
Laine, Elodie; Carbone, Alessandra
2015-01-01
Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684
Use of a geometry optimized fiber-optic surface-enhanced Raman scattering sensor in trace detection.
Lucotti, Andrea; Pesapane, Andrea; Zerbi, Giuseppe
2007-03-01
A novel SERS (surface-enhanced Raman scattering) sensor has been recently developed; its peculiar geometry is able to increase considerably both the SERS active surface and the number of internal reflections at the interface between silica and silver, thus allowing an increase of the signal intensity. The aim of this work is to demonstrate that this sensor could be efficiently used to detect some molecules such as illegally used veterinary medicine (crystal violet and malachite green) below the ppb detection limit. The advantages of this sensor with respect to other detection techniques are not only the higher sensitivity, but also the fast response and the possibility of coupling with a portable Raman spectrometer for "on-field" measurements. The ability of the sensor to work under real environmental conditions in the presence of many cationic and anionic species has been tested both in solutions containing sodium and chlorine ions and in water coming from the aqueduct of Milan and from the (normally polluted) river Serio. PMID:17389065
NASA Technical Reports Server (NTRS)
Vidal, A.; Mueller, K.; Golombek, M. P.
2003-01-01
We undertook axial surface mapping of selected wrinkle ridges on Solis Planum, Mars in order to assess the subsurface geometry of blind thrusts proposed to exist beneath them. This work builds on previous work that defined structural families of wrinkle ridges based on their surface morphology in this region. Although a growing consensus exists for models of wrinkle ridge kinematics and mechanics, a number of current problems remain. These include the origin of topographic offset across the edges of wrinkle ridges, the relationship between broad arches and superposed ridges, the origin of smaller wrinkles, and perhaps most importantly, the trajectory of blind thrusts that underlie wrinkle ridges and accommodate shortening at deeper crustal levels. We are particularly interested in defining the depths at which blind thrusts flatten under wrinkle ridges in order to provide constraints on the brittle-ductile transition during Early Hesperian time. We also seek to test whether wrinkle ridges on Solis Planum develop above reactivated faults or newly formed ones.
NASA Astrophysics Data System (ADS)
Luke, Keung L.
1994-02-01
There are two well-known point source-based methods for the evaluation of the surface recombination velocity s from normal-collector geometry electron-beam-induced current (EBIC) line scans. The first was proposed by Jastrzebski, Lagowski, and Gatos [Appl. Phys. Lett. 27, 537 (1975)], the second was by Watanabe, Actor, and Gatos (WAG) [IEEE Trans. Electron Dev. ED-24, 1172 (1977)]. Scheer, Wilhelm, and Lewerenz [J. Appl. Phys. 66, 5412 (1989)] were unsuccessful in using the first method to extract s from their EBIC data. Hakimzadeh, Möller, and Bailey [J. Appl. Phys. 72, 2919 (1992)] applied the second method to evaluate s from their EBIC data without accounting for the mismatch between the theoretical requirement and the experimental condition relating to source size and electron penetration depth at which the WAG expression is to be evaluated. In this article these two methods are evaluated and their applicability to both point and extended-source data is examined quantitatively. Their limitations and shortcomings led us to suggest a way to extend the applicability of the WAG expression to include extended sources and to formulate two new Gaussian source-based methods to evaluate the surface recombination velocity. A number of computed curves are provided to facilitate the application of these proposed new methods to GaAs and other semiconductors with diffusion lengths in the range of 0.5-3.0 μm and (surface recombination velocity/diffusion coefficient) values in the range of 103-106 cm-1.
NASA Astrophysics Data System (ADS)
Holland, K. T.; Palmsten, M. L.
2014-12-01
We have developed a probabilistic framework for riverine discharge estimation that describes more than 725,000 average daily streamflow observations from the U.S. Geological Survey's Surface Water Field Measurement Program at 1999 sites located throughout the continental United States and collected since 2000. These data, combined with geomorphic parameter information obtained from the National Hydrography Dataset and the National Elevation Dataset, were used to train Bayesian Networks consisting of 9-15 parameters. Hydraulic geometry relationships were used to constrain power law coefficients such that observed time series representing the measured daily discharge could be correlated with synthetic time series governing hydraulic width, depth and velocity at each site. This approach allows the training set to represent natural flow conditions and not the somewhat irregular timing of the field surveys. Sensitivity analysis of network is presented, along with over 500 worldwide validation cases to demonstrate network accuracy when confidently constrained. Making discharge predictions that combine field data with empirical relations though the use of a probabilistic framework is advantageous in that it explicitly accounts for uncertainty in the interpretation of results. This allows objective assessment of the predictive performance when applied to qualitative decisions relevant to environmental managers.
NASA Astrophysics Data System (ADS)
Gundlach, L.; Szarko, J.; Socaciu-Siebert, L. D.; Neubauer, A.; Ernstorfer, R.; Willig, F.
2007-03-01
Polarization and angle-resolved two-photon photoelectron spectroscopy was employed to determine the adsorption geometry of di-tert-butyl-perylene when anchored via two different acid groups on rutile TiO2(110) . With the carboxylic acid group as anchor and a rigid bridge group the binding geometry of the chromophore was found with the long molecular axis perpendicular to the surface. In contrast, with the phosphonic acid as anchor group the long axis of perylene showed a tilt angle of around 66° with respect to the surface normal and an alignment in the direction perpendicular to [001]. Our experimental results agree with adsorption geometries recently predicted from DFT calculations by Persson’s group.
Del Santo, Francesco; Gelli, Francesca; Ginanneschi, Federica; Popa, Traian; Rossi, Alessandro
2007-08-13
Evidence exists that shoulder joint geometry influences recruitment efficiency and force-generating capacity of hand muscles [Ginanneschi, F., Del Santo, F., Dominici, F., Gelli, F., Mazzocchio, R., Rossi, A., 2005. Changes in corticomotor excitability of hand muscles in relation to static shoulder positions. Exp. Brain Res. 161 (3), 374-382; Dominici, F., Popa, T., Ginanneschi, F., Mazzocchio, R., Rossi, A., 2005. Cortico-motoneural output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Exp. Brain Res. 164 (4), 500-504]. The present study was designed to examine the impact of changing shoulder joint position on the relation between surface EMG amplitude and isometric force production of the abductor digiti minimi muscle (ADM). EMG-force relation of ADM was examined in two shoulder positions: 30 degrees adduction (ANT) and 30 degrees abduction (POST) on the horizontal plane, i.e. under higher and lower force-generating capacity, respectively. The relation was studied over the full range isometric force (10-100% of maximum force in 10% increments, 3 s duration) by analysing root mean square (RMS), median frequency (Mf) of the power spectrum and non-linear recurrence quantification analysis (percentage of determinism: %DET) of the surface EMG signals. We found that in POST, the slope of the RMS-force relation was significantly higher than in ANT, while its general shape (strictly linear) was preserved. Averaged Mf of the EMG power spectrum was significantly higher in POST that in ANT, while no difference in %DET was observed between the two shoulder positions. The higher slope of the EMG-force relation in POST than in ANT is interpreted in terms of increased gain of the excitatory drive-firing rate relation. It is concluded that discharge from sensory receptors signalling shoulder position may act to regulate the gain of the excitatory drive-firing rate relation of motoneurones in order to compensate for reduced
Bhunia, Snehasis; Forster, Stefan; Vyas, Nidhi; Schmitt, Hans-Christian; Ojha, Animesh K
2015-12-01
Fourier transform Raman (FT-Raman) spectra of neat pyridine (Py) and surface enhanced Raman scattering (SERS) spectra of Py with silver nanoparticles (AgNPs) solution at different molar concentrations (X=1.5M, 1.0M, 0.50 M, 0.25 M, and 0.125 M) were recorded using 1064 nm excitation wavelength. The intensity of Raman bands at ∼1003 (ν11) and ∼1035 (ν21) cm(-1) of Py is enhanced in the SERS spectra. Two new Raman bands were observed at ∼1009 (ν12) and ∼1038 (ν22) cm(-1) in the SERS spectra. These bands correspond to the ring breathing vibrations of Py molecules adsorbed at the AgNPs surface. The value of intensity ratios (I12/I11) and (I21/I22) is increased with dilution and attains a maximum value at X=0.5M and upon further dilution (0.25 and 0.125 M) it drops gradually. The theoretically calculated Raman spectra were found to be in good agreement with experimentally observed Raman spectra. Both, experimental and theoretical investigations have confirmed that the Py interacts with AgNPs via the end-on geometry. PMID:26184474
The Effect of Convolvulus arvensis Dried Extract as a Potential Antioxidant in Food Models
Mohd Azman, Nurul Aini; Gallego, Maria Gabriela; Juliá, Luis; Fajari, Lluis; Almajano, MaríaPilar
2015-01-01
In this study, the antioxidant activity of the Convolvulus arvensis Linn (CA) ethanol extract has been evaluated by different ways. The antioxidant activity of the extract assessed by 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) was 1.62 mmol Trolox equivalents (TE)/g DW, 1.71 mmol TE/g DW and 2.11 mmol TE/g DW, respectively. CA ethanol extract exhibited scavenging activity against the methoxy radical initiated by the Fenton reaction and measured by Electron Paramagnetic Resonance (EPR). The antioxidant effects of lyophilised CA measured in beef patties containing 0.1% and 0.3% (w/w) CA stored in modified atmosphere packaging (MAP) (80% O2 and 20% CO2) was determined. A preliminary study of gelatine based film containing CA showed a strong antioxidant effect in preventing the degradation of lipid in muscle food. Thus, the present results indicate that CA extract can be used as a natural food antioxidant. PMID:26785344
Air pollution induced alterations in assimilate partitioning in Anagallis arvensis L
Khan, F.A.; Iqbal, M.; Ahmad, Z.; Saquib, M.; Ghouse, A.K.M. )
1989-04-01
The Thermal Power Plant Complex of Kasimpur (Aligarh, UP, India) emits enormous amounts of oxides of sulfur, nitrogen, and carbon as well as particulate matters on consuming 3192 MT of coal/day. These effluents induce significant alterations in carbon allocation in Anagallis arvensis populations. Monthly samples of 10 plants each were collected on random basis at seedling to mature stage from 0.5, 2, 6, 12 and 20 km leeward from the power plant. In oven dried samples, assimilate partitioning was noted to be more severely altered by the air pollutants in the seedling stage. In 2 and 3 months old populations, photosynthate allocation to root and shoot was not altered noticeably. Considerable changes in carbon allocation were noted in 4 mo old mature stage. The carbon allocation to fruit was 3 fold and to seed was about 4 fold greater in the population thriving 20 km away from the source than in those growing in the vicinity of the source. Assimilate partitioning was linearly related to the distance from power plant and the productivity of the populations.
Ribeiro Filho, Mateus Rosas; Siqueira, José Oswaldo; Vangronsveld, Jaco; Soares, Cláudio Roberto Fonsêca Sousa; Curi, Nilton
2011-01-01
The ameliorating effects of different inorganic materials were investigated on a soil originating from a zinc smelter dumping site contaminated by toxic metals. Wild mustard (Sinapis arvensis L.) was used as a test plant. The soil was amended with different doses of mining sludge, Perferric Red Latosol (LVj), steel shots, cyclonic ash, silifertil, and superphosphate. The most effective amendments improved plant growth with 45% and reduced metal uptake by over 70% in comparison to untreated soil. Reductions in availability as estimated by BaCl2-extractable metals reached up to 90% for Zn and 65% for Cd as compared to unamended soil. These reductions were associated with lower shoot and root metal contents. Shoot Zn content was reduced from 1,369 microg g(-1) in plants grown on untreated soil to 377 microg g(-1) when grown on cyclonic ash amended soil while Cd decreased from 267 to 44 microg g(-1) in steel shots amended soil. Superphosphate addition had no ameliorating effect. On the contrary, it increased BaCl2-extractable amounts of Zn. Considering all parameters we determined, steel shots, cyclonic ash and silifertil are the most promising for remediating metal contaminated soil in the tropics. Further studies evaluating impacts, cost-effectiveness and durability of effects will be conducted. PMID:21598779
Participation of Photosynthesis in Floral Induction of the Long Day Plant Anagallis arvensis L. 1
Quedado, Rosario M.; Friend, Douglas J.
1978-01-01
The saturating photon flux density (400 to 700 nanometers) for induction of flowering of the long day plant Anagallis arvensis L. was 1,900 micromoles per square meter per second (6,000 foot-candles) when an 8-hour daylength was extended to 24 hours by a single period of supplementary irradiation. The saturating photon flux density for photosynthetic CO2 uptake during the same single supplementary light period was lower, at about 1,000 to 650 micromoles per square meter per second (3,000 to 2,000 foot-candles). The per cent flowering and mean number of floral buds per plant were significantly reduced when the light extension treatment was given in CO2-free air, and glucose (10 kilograms per cubic meter in water) relieved this effect. Glucose solution also significantly increased flowering of plants given supplementary light treatment in atmospheric air under a photon flux density of 80 micromoles per square meter per second. Increasing the CO2 concentration to 1.27 grams per cubic meter of CO2 in air during the supplementary light period did not increase flowering. It is concluded that high photon flux densities promote flowering of Anagallis through both increased photosynthesis and the photomorphogenic action of high irradiance. PMID:16660610
NASA Astrophysics Data System (ADS)
Almansa, Julio; Salvat-Pujol, Francesc; Díaz-Londoño, Gloria; Carnicer, Artur; Lallena, Antonio M.; Salvat, Francesc
2016-02-01
The Fortran subroutine package PENGEOM provides a complete set of tools to handle quadric geometries in Monte Carlo simulations of radiation transport. The material structure where radiation propagates is assumed to consist of homogeneous bodies limited by quadric surfaces. The PENGEOM subroutines (a subset of the PENELOPE code) track particles through the material structure, independently of the details of the physics models adopted to describe the interactions. Although these subroutines are designed for detailed simulations of photon and electron transport, where all individual interactions are simulated sequentially, they can also be used in mixed (class II) schemes for simulating the transport of high-energy charged particles, where the effect of soft interactions is described by the random-hinge method. The definition of the geometry and the details of the tracking algorithm are tailored to optimize simulation speed. The use of fuzzy quadric surfaces minimizes the impact of round-off errors. The provided software includes a Java graphical user interface for editing and debugging the geometry definition file and for visualizing the material structure. Images of the structure are generated by using the tracking subroutines and, hence, they describe the geometry actually passed to the simulation code.
Topuz, Muhamet; Nemli, Yildiz; Fatima, Tahira; Mattoo, Autar K.
2015-01-01
Biotypes of the broad-leaved wild mustard (Sinapis arvensis L.) found in wheat fields of Aegean and Marmara region of Turkey were characterized and shown to have developed resistance to sulfonylurea (chlorsulfuron), an inhibitor of acetolactate synthase (ALS). DNA sequence analysis of the ALS genes from two such resistant (“R”) biotypes, KNF-R1 and KNF-R2, revealed point mutations, CCT (Pro 197) to TCT (Ser 197) in KNF-R1 and CCT (Pro 197) to ACT (Thr 197) in KNF-R2; these substitutions are consistent with the presence of chlorsulfuron-insensitive ALS enzyme activity in the “R” S. arvensis biotypes. An additional phenotype of chlorsulfuron resistance in the Turkish S. arvensis “R” biotypes was revealed in the form of an altered seed dormancy behavior over 4–48 months of dry storage (after-ripening) compared to the susceptible (“S”) biotypes. Seeds of the “S” biotypes dry stored for 4 months had a higher initial germination, which sharply decreased with storage time, while the seeds of the “R” biotypes had lower germination after 4-months storage, rising sharply and peaking thereafter by 24 months' of dry storage. The “R” biotype seeds continued to maintain a higher germination percentage even after 48 months of after-ripening. The seed weight of “R” and “S” biotypes after-ripened for 4 months was similar but those after-ripened for 48 months differed, “R” seeds were significantly heavier than those of the “S” seeds. Differential seed germinability between “S” and “R” biotypes was found not a case of differential viability, temperature regimen or non-response to pro-germination hormone GA3. These studies are of relevance to ecological fitness of herbicide-resistant biotypes in terms of seed viability and germination. PMID:26258120
Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan
2012-01-01
Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e
Topuz, Muhamet; Nemli, Yildiz; Fatima, Tahira; Mattoo, Autar K
2015-01-01
Biotypes of the broad-leaved wild mustard (Sinapis arvensis L.) found in wheat fields of Aegean and Marmara region of Turkey were characterized and shown to have developed resistance to sulfonylurea (chlorsulfuron), an inhibitor of acetolactate synthase (ALS). DNA sequence analysis of the ALS genes from two such resistant ("R") biotypes, KNF-R1 and KNF-R2, revealed point mutations, CCT (Pro 197) to TCT (Ser 197) in KNF-R1 and CCT (Pro 197) to ACT (Thr 197) in KNF-R2; these substitutions are consistent with the presence of chlorsulfuron-insensitive ALS enzyme activity in the "R" S. arvensis biotypes. An additional phenotype of chlorsulfuron resistance in the Turkish S. arvensis "R" biotypes was revealed in the form of an altered seed dormancy behavior over 4-48 months of dry storage (after-ripening) compared to the susceptible ("S") biotypes. Seeds of the "S" biotypes dry stored for 4 months had a higher initial germination, which sharply decreased with storage time, while the seeds of the "R" biotypes had lower germination after 4-months storage, rising sharply and peaking thereafter by 24 months' of dry storage. The "R" biotype seeds continued to maintain a higher germination percentage even after 48 months of after-ripening. The seed weight of "R" and "S" biotypes after-ripened for 4 months was similar but those after-ripened for 48 months differed, "R" seeds were significantly heavier than those of the "S" seeds. Differential seed germinability between "S" and "R" biotypes was found not a case of differential viability, temperature regimen or non-response to pro-germination hormone GA3. These studies are of relevance to ecological fitness of herbicide-resistant biotypes in terms of seed viability and germination. PMID:26258120
NASA Astrophysics Data System (ADS)
Topuz, Muhamet; Nemli, Yildiz; Fatima, Tahira; Mattoo, Autar
2015-07-01
Biotypes of the broad-leaved wild mustard (Sinapis arvensis L.) found in wheat fields of Aegean and Marmara region of Turkey were characterized and shown to have developed resistance to sulfonylurea (chlorsulfuron), an inhibitor of acetolactate synthase (ALS). DNA sequence analysis of the ALS genes from two such resistant (‘R’) biotypes, KNF-R1 and KNF-R2, revealed point mutations, CCT (Pro 197) to TCT (Ser 197) in KNF-R1 and CCT (Pro 197) to ACT (Thr 197) in KNF-R2; these substitutions are consistent with the presence of chlorsulfuron-insensitive ALS enzyme activity in the ‘R’ S. arvensis biotypes. An additional phenotype of chlorsulfuron resistance in the Turkish S. arvensis ‘R’ biotypes was revealed in the form of an altered seed dormancy behavior over 4 to 48 months of dry storage (after-ripening) compared to the susceptible (‘S’) biotypes. Seeds of the ‘S’ biotypes dry stored for 4 months had a higher initial germination, which sharply decreased with storage time, while the seeds of the ‘R’ biotypes had lower germination after 4-months storage, rising sharply and peaking thereafter by 24 months’ of dry storage. The ‘R’ biotype seeds continued to maintain a higher germination percentage even after 48 months of after-ripening. The seed weight of ‘R’ and ‘S’ biotypes after-ripened for 4 months was similar but those after-ripened for 48 months differed, ‘R’ seeds were significantly heavier than those of the ‘S’ seeds. Differential seed germinability between ‘S’ and ‘R’ biotypes was found not a case of differential viability, temperature regimen or non-response to pro-germination hormone GA3. These studies are of relevance to ecological fitness of herbicide-resistant biotypes in terms of seed viability and germination.
Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan
2012-01-01
Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via
Londonkar, Ramesh L; Poddar, Pramod V
2009-01-01
AIM: To examine the antiulcerogenic effects of various extracts of Mentha arvensis Linn on acid, ethanol and pylorus ligated ulcer models in rats and mice. METHODS: Various crude extracts of petroleum ether, chloroform, or aqueous at a dose of 2 g/kg po did not produce any signs or symptoms of toxicity in treated animals. In the pyloric ligation model oral administration of different extracts such as petroleum ether, chloroform and aqueous at 375 mg/kg po, standard drug ranitidine 60 mg/kg po and control group 1% Tween 80, 5 mL/kg po to separate groups of Wister rats of either sex (n = 6) was performed. Total acidity, ulcer number, scoring, incidence, area, and ulcer index were assessed. RESULTS: There was a decrease in gastric secretion and ulcer index among the treated groups i.e. petroleum ether (53.4%), chloroform (59.2%), aqueous (67.0%) and in standard drug (68.7%) when compared to the negative control. In the 0.6 mol/L HCl induced ulcer model in rats (n = 6) there was a reduction in ulcerative score in animals receiving petroleum ether (50.5%), chloroform (57.4%), aqueous (67.5%) and standard. drug (71.2%) when compared to the negative control. In the case of the 90% ethanol-induced ulceration model (n = 6) in mice, there was a decrease in ulcer score in test groups of petroleum ether (53.11%), chloroform (62.9%), aqueous (65.4%) and standard drug ranitidine (69.7%) when compared to the negative control. It was found that pre-treatment with various extracts of Mentha arvensis Linn in three rat/mice ulcer models ie ibuprofen plus pyloric ligation, 0.6 mol/L HCl and 90% ethanol produced significant action against acid secretion (49.3 ± 0.49 vs 12.0 ± 0.57, P < 0.001). Pre-treatment with various extracts of Mentha arvensis Linn showed highly -significant activity against gastric ulcers (37.1 ± 0.87 vs 12.0 ± 0.57, P < 0.001). CONCLUSION: Various extracts of Mentha arvensis Linn. 375 mg/kg body weight clearly shows a protective effect against acid secretion
Varma, J; Dubey, N K
2001-09-01
The essential oils of Caesulia axillaris and Mentha arvensis have been tested for their fumigant activity in the management of biodeterioration of stored wheat samples by Aspergillus flavus and the insect pests, Sitophilus oryzae and Tribolium castaneum, at 1300 and 600 ppm, respectively. The findings indicate the efficacy of the oils as potent fumigants for management of the biodeterioration of stored wheat samples. The oils also controlled the blue mould rot of oranges caused by Penicillium italicum and enhanced the market life of the oranges for a considerable period, showing their efficacy as postharvest fungicides of higher plant origin. PMID:11529443
Cheung, Kyle W; Razeq, Fakhria M; Sauder, Connie A; James, Tracey; Martin, Sara L
2015-05-01
With transgenic crop development it is important to evaluate the potential for transgenes to escape into populations of wild, weedy relatives. Ethiopian mustard (Brassica carinata, BBCC) is easily transformed and is being investigated for uses from biodiesel fuels to biopharmaceuticals. However, little work has been done evaluating its ability to cross with relatives such as wild mustard (Sinapsis arvensis, SrSr), an abundant, cosmopolitan weedy relative. Here we conducted bidirectional crosses with Ethiopian mustard as a maternal parent in 997 crosses and paternal parent in 1,109 crosses. Hybrids were confirmed using flow cytometry and species-specific ITS molecular markers and indicate a high hybridization rate of 6.43 % between Ethiopian mustard (♀) and wild mustard (♂) and a lower, but not insignificant, hybridization rate of 0.01 % in the reverse direction. The majority of the hybrids were homoploid (BCSr) with less than 1 % of pollen production of their parents and low seed production (0.26 seeds/pollination) in crosses and backcrosses indicating a potential for advanced generation hybrids. The accession used had a significant effect on hybrid seed production with different accessions of Ethopian mustard varying in their production of hybrid offspring from 2.69 to 16.34 % and one accession of wild mustard siring almost twice as many hybrid offspring per flower as the other. One pentaploid (BBCCSr) and one hexaploid (BBCCSrSr) hybrid were produced and had higher pollen viability, though no and low seed production, respectively. As wild mustard is self-incompatible and the outcrossing rate of Ethiopian mustard has been estimated as 30 % potential for hybrid production in the wild appears to be high, though the hybridization rate found here represents a worst case scenario as it does not incorporate pre-pollination barriers. Hybridization in the wild needs to be directly evaluated as does the propensity of Ethiopian mustard to volunteer. PMID:25698113
Do the effects of crops on skylark (Alauda arvensis) differ between the field and landscape scales?
Barbottin, Aude; Jiguet, Frédéric; Martin, Philippe
2015-01-01
The promotion of biodiversity in agricultural areas involves actions at the landscape scale, and the management of cropping patterns is considered an important means of achieving this goal. However, most of the available knowledge about the impact of crops on biodiversity has been obtained at the field scale, and is generally grouped together under the umbrella term “crop suitability.” Can field-scale knowledge be used to predict the impact on populations across landscapes? We studied the impact of maize and rapeseed on the abundance of skylark (Alauda arvensis). Field-scale studies in Western Europe have reported diverse impacts on habitat selection and demography. We assessed the consistency between field-scale knowledge and landscape-scale observations, using high-resolution databases describing crops and other habitats for the 4 km2 grid scales analyzed in the French Breeding Bird Survey. We used generalized linear models to estimate the impact of each studied crop at the landscape scale. We stratified the squares according to the local and geographical contexts, to ensure that the conclusions drawn were valid in a wide range of contexts. Our results were not consistent with field knowledge for rapeseed, and were consistent for maize only in grassland contexts. However, the effect sizes were much smaller than those of structural landscape features. These results suggest that upscaling from the field scale to the landscape scale leads to an integration of new agronomic and ecological processes, making the objects studied more complex than simple “crop ∗ species” pairs. We conclude that the carrying capacity of agricultural landscapes cannot be deduced from the suitability of their components. PMID:26213656
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
This teaching unit is designed to help students in grades 4-8 explore the concepts of geometry in the context of space navigation. The units in this series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit consists of a storyline presenting…
NASA Astrophysics Data System (ADS)
Jing, Weixuan; Qi, Han; Shi, Jiafan; Jiang, Zhuangde; Zhou, Fan; Cheng, Yanyan; Gao, Kun
2015-11-01
This paper identifies and investigates the influencing factors and their effects on the surface morphologies of ZnO nanorod-based hierarchical structures. With ZnO nanorods hydrothermally synthesized on a piece of planar glass, an optical fiber core, and a SiO2 microsphere, three kinds of ZnO nanorod-based hierarchical structures were fabricated. It is found that not only the synthesizing parameters but also the geometries of the micro-scale substrates affect significantly the nucleation densities of seed layers and the Zn2+ diffusion zones of growth solution upon the substrate surfaces. These two factors further give rise to varied diameters and orientation of the ZnO nanorods as well as different sizes of the pits among the bundles of ZnO nanorods, which eventually result in different surface morphologies of corresponding hierarchical structures. With Zn2+ concentration of the growth solution increasing, side-by-side coalescence among neighboring ZnO nanorods first appears on the optical fiber core. The different curvature radii of the optical fiber core at front and side view lead to the anisotropic surface morphology of the related hierarchical structure. Although their curvature radii are the same, the different geometries of the optical fiber core at side view and the planar glass account for varied surface morphologies of the corresponding hierarchical structures.
Doubková, Pavla; Sudová, Radka
2014-04-01
Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants. PMID:24136374
Manikandan, R; Sahi, S V; Venkatachalam, P
2015-01-01
The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134
Manikandan, R.; Sahi, S. V.; Venkatachalam, P.
2015-01-01
The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134
Ripka, Géza
2014-01-01
A new species of eriophyoid mite, Aculus castriferrei n. sp., associated with Agrimonia eupatoria (Rosaceae) is described and illustrated from Hungary. Morphological differences distinguishing this vagrant species from other rosaceous inhabiting congeners are discussed. Aceria malherbae Nuzzaci is a new record for the eriophyoid fauna of Hungary after it was found causing severe damage symptoms to Convolvulus arvensis L. (Convolvulaceae). PMID:25543737
NASA Astrophysics Data System (ADS)
Jaboyedoff, Michel; Daicz, Sergio; Derron, Marc-Henri; Penna, Ivanna; Rudaz, Benjamin
2013-04-01
Even though computers capability permits now to go to 3D representation, few recent methods are available for the construction of the landslides failure surfaces or profiles without the need of geophysical or boreholes data. In this study we will review the morphometric approaches, displacements observations, and interpolation techniques that are generally used for the determination of landslide volumes and failure surfaces. In a last step we describe a new methodology coming from signal processing methods. The first group of methods provides cross-sections displaying profiles of potential failure surfaces. These methods are based on simple rules, empiric or not, using morphometric features. The simplest one is to assume a profile tangent at the top scarp or laterally of the failure surface and at its intersection with the topography, and then to extrapolate by hand from those points the failure surface or to use splines. In the case of rotational landslides, when the block rotated and the scarp displacement is measurable, it is possible to deduce the radius of the circle defining the failure surface. A second group of methods uses observed displacements and geometry changes at the surface: (1) The thickness of a translational landslide can be obtained from surface displacement and material deficit at the crown, similarly to balanced cross-sections used in structural geology; (2) Circular failure surface can be obtained by using the displacement vector of surface features and a simple geometrical construction assuming that the displacements are perpendicular to the radius of the circle of failure. In the case of rock slope instabilities, based on spacing and orientation distributions of two discontinuity sets, it is possible to estimate the probability that a stepped surface daylights the bottom of a slope. Volume of landslide deposits can be roughly estimated by using half-ellipsoid, or a simple landslide surface multiplied by an average thickness. Various
NASA Astrophysics Data System (ADS)
Lee, Wei Li; Low, Hong Yee
2016-03-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets.
Lee, Wei Li; Low, Hong Yee
2016-01-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290
Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J
2011-01-01
This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection into a continuous flow surface sampling probe/electrospray emitter for mass spectrometry based chemical imaging. The flow probe/emitter device was placed in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collected was immediately aspirated into the probe and on to the electrospray emitter, ionized and detected with the mass spectrometer. Freehand drawn ink lines and letters and an inked fingerprint on microscope slides were analyzed. The circular laser ablation area was about 210 m in diameter and under the conditions used in these experiments the spatial resolution, as determined by the size of the surface features distinguished in the chemical images, was about 100 m.
Solomon-Sathish, Emmanuel; Venkatalakshmi-Aparna, Potluri; Balagopal, Sunderasan
2016-01-01
Background The purpose of this study was to relate the fracture resistance of endodontically treated teeth in relation to post geometry. Material and Methods Forty single rooted mandibular premolars were instrumented by step - back technique and obturated by lateral condensation. Forty teeth were randomly divided into four groups: Reforpost glass fiber X-ray®, RelyX®, Exacto conical® and Parapost Fiber Lux®. The post spaces were prepared using respective drills and luted. The core build up was done and metal crowns were luted. Fracture resistance was determined in universal testing machine. The statistical analysis was done using one way ANOVA and post hoc Tukey Kramer test. Results The teeth restored with Reforpost showed highest fracture resistance followed by Parapost and Exacto conical. The teeth restored with RelyX showed least fracture resistance. The teeth restored with Parapost had less unfavourable fracture followed by exacto conical. Conclusions Parallel design had less number of catastrophic failure and had better fracture resistance. Key words:Fracture resistance, glass fiber post, post geometry, stress. PMID:26855705
Lee, Robert J.; Smithson, Hannah E.
2016-01-01
We tested whether surface specularity alone supports operational color constancy – the ability to discriminate changes in illumination or reflectance. Observers viewed short animations of illuminant or reflectance changes in rendered scenes containing a single spherical surface, and were asked to classify the change. Performance improved with increasing specularity, as predicted from regularities in chromatic statistics. Peak performance was impaired by spatial rearrangements of image pixels that disrupted the perception of illuminated surfaces, but was maintained with increased surface complexity. The characteristic chromatic transformations that are available with non-zero specularity are useful for operational color constancy, particularly if accompanied by appropriate perceptual organisation. PMID:26974938
Lee, Robert J; Smithson, Hannah E
2016-03-01
We tested whether surface specularity alone supports operational color constancy-the ability to discriminate changes in illumination or reflectance. Observers viewed short animations of illuminant or reflectance changes in rendered scenes containing a single spherical surface and were asked to classify the change. Performance improved with increasing specularity, as predicted from regularities in chromatic statistics. Peak performance was impaired by spatial rearrangements of image pixels that disrupted the perception of illuminated surfaces but was maintained with increased surface complexity. The characteristic chromatic transformations that are available with nonzero specularity are useful for operational color constancy, particularly if accompanied by appropriate perceptual organization. PMID:26974938
NASA Astrophysics Data System (ADS)
Bircher, Chad; Shao, Yiping
2012-11-01
Depth of Interaction (DOI) information can improve quality of reconstructed images acquired from Positron Emission Tomography (PET), especially in high resolution and compact scanners dedicated for breast, brain, or small animal imaging applications. Additionally, clinical scanners with time of flight capability can also benefit from DOI information. One of the most promising methods of determining DOI in a crystal involves reading the signal from two ends of a scintillation crystal, and calculating the signal ratio between the two detectors. This method is known to deliver a better DOI resolution with rough crystals compared to highly polished crystals. However, what is still not well studied is how much of a tradeoff is involved between spatial, energy, temporal, and DOI resolutions as a function of the crystal surface treatment and geometry with the use of Silicon Photomultipliers (SiPM) as the photo detectors. This study investigates the effects of different crystal surface finishes and geometries on energy, timing and DOI resolutions at different crystal depths. The results show that for LYSO scintillators of 1.5×1.5×20 mm3 and 2×2×20 mm3 with their surfaces finished from 0.5 to 30 μm roughness, almost the same energy and coincidence timing resolutions were maintained, around 15% and 2.4 ns, respectively across different crystal depths, while the DOI resolutions were steadily improved from worse than 5 mm to better than 2 mm. They demonstrate that crystal roughness, with proper surface preparing, does not have a significant effect on the energy and coincidence timing resolutions in the crystals examined, and there does not appear to be a tradeoff between improving DOI resolution and degrading other detector performances. These results will be valuable to guide the selection of crystal surface conditions for developing a DOI measurable PET detector with a full array of LYSO scintillators coupled to SiPM arrays.
Bircher, Chad
2012-01-01
Depth of Interaction (DOI) information can improve quality of reconstructed images acquired from Positron Emission Tomography (PET), especially in high resolution and compact scanners dedicated for breast, brain, or small animal imaging applications. Additionally, clinical scanners with time of flight capability can also benefit from DOI information. One of the most promising methods of determining DOI in a crystal involves reading the signal from two ends of a scintillation crystal, and calculating the signal ratio between the two detectors. This method is known to deliver a better DOI resolution with rough crystals compared to highly polished crystals. However, what is still not well studied is how much of a tradeoff is involved between spatial, energy, temporal, and DOI resolutions as a function of the crystal surface treatment and geometry with the use of Silicon Photomultipliers (SiPM) as the photo detectors. This study investigates the effects of different crystal surface finishes and geometries on energy, timing and DOI resolutions at different crystal depths. The results show that for LYSO scintillators of 1.5×1.5×20 mm3 and 2×2×20 mm3 with their surfaces finished from 0.5 to 30 micron roughness, almost the same energy and coincidence timing resolutions were maintained, around 15% and 2.4 ns respectively across different crystal depths, while the DOI resolutions were steadily improved from worse than 5 mm to better than 2 mm. They demonstrate that crystal roughness, with proper surface preparing, does not have a significant effect on the energy and coincidence timing resolutions in the crystals examined, and there does not appear to be a tradeoff between improving DOI resolution and degrading other detector performances. These results will be valuable to guide the selection of crystal surface conditions for developing a DOI measurable PET detector with a full array of LYSO scintillators coupled to SiPM arrays. PMID:23087497
Larue, D.K.; Martinez, P.A.
1989-01-01
Based on a combination of Walther's Law of Facies and bed-form climb theory, the authors propose a model that explains how erosion surfaces and vertical sequences of clastic strata are preserved where deposition occurs in channelized or locally erosional environments including fluvial and submarine-channel deposits, barred beaches, and transgressive coastlines. the model considers both lateral and vertical migration of a scour surface and its associated depositional products. As in studies of bed-form climb, they recognize subcritical, critical, and supercritical climb of scour surfaces relative to adjacent depositional forms. 12 figures.
Iqbal, M.; Khan, F.A.; Saquib, M.; Ahmad, Z.; Ghouse, A.K.M. )
1989-04-01
Oxides of sulfur, nitrogen and carbon and particulates are the major air pollutants emitted in huge amounts by the Thermal Power Plant Complex of Kasimpur (Aligarh, UP, India) running on 3192 MT of coal/day. These effluents significantly affect reproductive phase of Anagallis arvensis L. Samples of 10 plants each were randomly collected at monthly intervals at seedling to mature stage from 0.5, 2, 6, 12 and 20 km leeward from the power plant complex. Bud formation and flowering were delayed in the population thriving at 0.5 km from the pollution source. As a 2 month old stage, 60% of the population showed a decline in bud formation in the vicinity of the source compared to a heavy bud emergence in the whole population thriving 20 km away from it. Bud formation, flowering fruit set and seed set showed a correlation with multiple growth factors viz productivity, shoot length and distance from the source.
Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter
2012-12-21
With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ∗ excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ∗-excited states which are non-adiabatically coupled among themselves and to a nπ∗-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed. PMID:23267492
NASA Technical Reports Server (NTRS)
1983-01-01
This investigation attempts to observe changes in the flow structure of a nominally zero pressure gradient turbulent boundary layer by altering the surface of a smooth plate with small triangular riblets oriented in the direction of flow and protruding just above the viscous sublayer. Hot-wire measurements show a reduction in the local skin friction over the riblet valleys by about 40% compared to the smooth surface near the end of the plate. Local skin friction increases by about 10% over the riblet peaks. Results showing the effects of the riblets on the mean, root-mean-square and skewness factor distributions of the streamwise velocity are presented. The mean profile displays characteristics similar to those of drag reducing additives; the streamwise turbulence intensity is reduced by approximately 10-15% near the surface by the riblets; the skewness factor distribution is virtually unchanged. A comparison of results from an application of the VITA 'burst' detection technique to smooth and riblet surface data is also presented although the results are rather inconclusive. Flow visualization of 'bursting' over both surfaces, while dramatically revealing the structure, reveals little difference resulting from the presence of the riblet.
NASA Astrophysics Data System (ADS)
Vange, Vibekke; Heuch, Ivar; Vandvik, Vigdis
2004-05-01
Germination and seedling establishment are vulnerable stages in the plant life cycle. We investigated how seed mass and family (progeny origin) affect germination and juvenile performance in the grassland herb Knautia arvensis. Seeds were produced by cross-pollination by hand. The fate of 15 individually weighed seeds from each of 15 plants was followed during a 3-month growth chamber experiment. Progeny origin affected germination, both through seed mass and as an independent factor. Two groups of progenies could be distinguished by having rapid or delayed germination. The two groups had similar mean seed masses, but a positive relationship between seed mass and germination rate could be established only among the rapidly germinating progenies. These biologically relevant patterns were revealed because timing of germination was taken into account in the analyses, not only frequencies. Time-to-event data were analysed with failure-time methods, which gave more stable estimates for the relation between germination and seed mass than the commonly applied logistic regression. Progeny origin and seed mass exerted less impact on later characters like juvenile survival, juvenile biomass, and rosette number. These characters were not affected by the timing of germination under the competition-free study conditions. The decrease in the effect of progeny origin from the seed and germination to the juvenile stages suggests that parental effects other than those contributing to the offspring genotype strongly influenced the offspring phenotype at the earliest life stages. Further, the division of progeny germination patterns into two fairly distinct groups indicates that there was a genetic basis for the variation in stratification requirements among parental plants. Field studies are needed to elucidate effects of different timing of germination in the seasonal grasslands that K. arvensis inhabits.
ERIC Educational Resources Information Center
Desseyn, H. O.; And Others
1985-01-01
Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…
Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.
2014-06-15
An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.
NASA Astrophysics Data System (ADS)
Cembranos, J. A. R.; Dobado, A.; Maroto, A. L.
Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space-time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.
NASA Astrophysics Data System (ADS)
Oswald, Patrick; Poy, Guilhem
2015-12-01
Shape measurements after the coalescence of isotropic droplets embedded in a thin sample of a homeotropic nematic phase provides a tool to measure the nematic-isotropic surface tension. In addition, this experiment allows us to check the scaling laws recently given by Brun et al. [P.-T. Brun, M. Nagel, and F. Gallaire, Phys. Rev. E 88, 043009 (2013), 10.1103/PhysRevE.88.043009] to explain the relaxation of ellipsoidal droplets in a Hele-Shaw cell.
Boularas, A. Baudoin, F.; Villeneuve-Faure, C.; Clain, S.; Teyssedre, G.
2014-08-28
Electric Force-Distance Curves (EFDC) is one of the ways whereby electrical charges trapped at the surface of dielectric materials can be probed. To reach a quantitative analysis of stored charge quantities, measurements using an Atomic Force Microscope (AFM) must go with an appropriate simulation of electrostatic forces at play in the method. This is the objective of this work, where simulation results for the electrostatic force between an AFM sensor and the dielectric surface are presented for different bias voltages on the tip. The aim is to analyse force-distance curves modification induced by electrostatic charges. The sensor is composed by a cantilever supporting a pyramidal tip terminated by a spherical apex. The contribution to force from cantilever is neglected here. A model of force curve has been developed using the Finite Volume Method. The scheme is based on the Polynomial Reconstruction Operator—PRO-scheme. First results of the computation of electrostatic force for different tip–sample distances (from 0 to 600 nm) and for different DC voltages applied to the tip (6 to 20 V) are shown and compared with experimental data in order to validate our approach.
Lee, Haemi; Kim, Gyeong-Hwan; Lee, Jung-Hoon; Kim, Nam Hoon; Nam, Jwa-Min; Suh, Yung Doug
2015-07-01
Here, we quantitatively monitored and analyzed the spectral redistributions of the coupled plasmonic modes of trimeric Au nanostructures with two ∼1 nm interparticle gaps and single-dye-labeled DNA in each gap as a function of varying trimer symmetries. Our precise Mie scattering measurement with the laser-scanning-assisted dark-field microscopy allows for individual visualization of the orientations of the radiation fields of the coupled plasmon modes of the trimers and analyzing the magnitude and direction of the surface-enhanced Raman scattering (SERS) signals from the individual plasmonic trimers. We found that the geometric transition from acute-angled trimer to linear trimer induces the red shift of the longitudinally polarized mode and the blue shift of the axially polarized mode. The finite element method (FEM) calculation results show the distinct "on" and "off" of the plasmonic modes at the two gaps of the trimer. Importantly, the single-molecule-level systematic correlation studies among the near-field, far-field, and surface-enhanced Raman scattering reveal that the SERS signals from the trimers are determined by the largely excited coupled plasmon between the two competing plasmon modes, longitudinal and axial modes. Further, the FEM calculation revealed that even 0.5 nm or smaller discrepancy in the sizes of two gaps of the linear trimer led to >10-fold difference in the SERS signal. Granted that two gap sizes are not likely to be completely the same in actual experiments, one of two gaps plays a more significant role in generating the SERS signal. Overall, this work provides the knowledge and handles for the understanding and systematic control of the magnitude and polarization direction of the both plasmonic response and SERS signal from trimeric nanostructures and sets up the platform for the optical properties and the applications of plasmonically coupled trimers and higher multimeric nanostructures. PMID:26075353
Mao, Shufang; Han, Yonghua; Wu, Xiaoming; An, Tingting; Tang, Jiali; Shen, Junjun; Li, Zongyun
2012-06-01
To further understand the relationships between the SS genome of Sinapis arvensis and the AA, BB genomes in Brassica, genomic DNA of Sinapis arvensis was hybridized to the metaphase chromosomes of Brassica nigra (BB genome), and the metaphase chromosomes and interphase nucleus of Brassica rapa (AA genome) by comparative genomic in situ hybridization (cGISH). As a result, every chromosome of B. nigra had signals along the whole chromosomal length. However, only half of the condensed heterochromatic areas in the interphase nucleus and the chromosomes showed rich signals in Brassica rapa. Interphase nucleus and the metaphase chromosomes of S. arvensis were simultaneously hybridized with digoxigenin-labeled genomic DNA of B. nigra and biotin-labeled genomic DNA of B. rapa. Signals of genomic DNA of B. nigra hybridized throughout the length of all chromosomes and all the condensed heterochromatic areas in the interphase nucleus, except chromosome 4, of which signals were weak in centromeric regions. Signals of the genomic DNA of B. rapa patterned the most areas of ten chromosomes and ten condensed heterochromatic areas, others had less signals. The results showed that the SS genome had homology with AA and BB genomes, but the homology between SS genome and AA genome was clearly lower than that between the SS genome and BB genome. PMID:22804340
NASA Astrophysics Data System (ADS)
Landis, Emily K.; Karnick, Pushpak
2006-02-01
This study uses new three-dimensional imaging techniques to compare the articular curvature of the proximal tibial articular surface of hominoids. It has been hypothesized that the curvature of the anteroposterior contour of the lateral condyle in particular can be used to differentiate humans and apes and reflect locomotor function. This study draws from a large comparative sample of extant hominoids to obtain quantitative curvature data. Three-dimensional models of the proximal tibiae of 26 human, 15 chimpanzee, 15 gorilla, 17 orangutan, 16 gibbon and four Australopithecus fossil casts (AL 129-1b, AL 288-1aq, AL 333x-26, KNM-KP 29285A) were acquired with a Cyberware Model 15 laser digitizer. Curvature analysis was accomplished using a software program developed at Arizona State University's Partnership for Research In Stereo Modeling (PRISM) lab, which enables the user to extract curvature profiles and compute the difference between analogous curves from different specimens. Results indicate that the curvature of chimpanzee, gorilla and orangutan tibiae is significantly different from the curvature of human tibiae, thus supporting the hypothesized dichotomy between humans and great apes. The non-significant difference between gibbons and all other taxa indicates that gibbons have an intermediate pattern of articular curvature. All four Australopithecus tibia were aligned with the great apes.
NASA Astrophysics Data System (ADS)
Awe, Thomas J.
ratio of line intensities results in an estimated peak plasma temperature of 15+/-1 eV for 1.00-mm-diameter rods. Third, EUV photon flux consistent with multi-eV temperature is recorded by Al or Si/Zr filtered photodiodes sensitive to photon energies from 16 to 73 eV, or 60 to 100 eV, respectively. Fourth, magnetohydrodynamic (MHD) instabilities form. Instability development depends on the conductivity of the low density expanding surface material. High resistivity vapor interacts weakly with magnetic field; therefore, flute instabilities are attributed to surface plasma. For those rods which do not reach B threshold = 2.2 MG, no evidence of surface plasma is obtained. For 2.00-mm-diameter rods, which reach peak surface field of only 1.7 MG, surface temperatures remain cool (peak TBB = 0.7 eV), no EUV emission can be measured, and even while carrying 1.0 MA of current, and after significant radial expansion, no surface instability is observed. The experiment offers the first detailed study of plasma formation by pulsed magnetic field on a thick metallic surface carrying a skin current. The magnetic field threshold for plasma formation, surface brightness temperature, radial expansion velocity, instability growth, and ionization state have been measured. The effects of hardware design, load geometry, Al alloy, and surface smoothness have been carefully examined, creating a dataset that can be used for the design of practical systems. The experiment has achieved thermal, uniform, and symmetric plasma formation, providing a meaningful comparison for MHD simulations.
NASA Astrophysics Data System (ADS)
Wang, W.; Zender, C. S.; van As, D.; Smeets, P. C. J. P.; van den Broeke, M. R.
2015-11-01
studies. This tilt-corrected shortwave radiation dataset derived using the Retrospective, Iterative, Geometry-Based (RIGB) method provide more accurate observations and validations for surface energy budgets studies on the Greenland Ice Sheet, including albedo variations, surface melt simulations and cloud radiative forcing estimates.
NASA Astrophysics Data System (ADS)
Wang, Wenshan; Zender, Charles S.; van As, Dirk; Smeets, Paul C. J. P.; van den Broeke, Michiel R.
2016-03-01
cycles and inter-annual variabilities of albedo agree better with previous studies. This tilt-corrected shortwave radiation data set derived using the Retrospective, Iterative, Geometry-Based (RIGB) method provide more accurate observations and validations for surface energy budgets studies on the Greenland Ice Sheet, including albedo variations, surface melt simulations and cloud radiative forcing estimates.
Shum, D.K.; Bryson, J.W.; Merkle, J.G.
1993-09-01
This study presents preliminary estimates on whether an shallow, axially oriented, inner-surface finite-length flaw in a PWR-RPV would tend to elongate in the axial direction and/or deepen into the wall of the vessel during a postulated PTS transient. Analysis results obtained based on the assumptions of (1) linear-elastic material response, and (2) cladding with same toughness as the base metal, indicate that a nearly semicircular flaw would likely propagate in the axial direction followed by propagation into the wall of the vessel. Note that these results correspond to initiation within the lower-shelf fracture toughness temperature range, and that their general validity within the lower-transition temperature range remains to be determined. The sensitivity of the numerical results aid conclusions to the following analysis assumptions are evaluated: (1) reference flaw geometry along the entire crack front and especially within the cladding region; (2) linear-elastic vs elastic-plastic description of material response; and (3) base-material-only vs bimaterial cladding-base vessel-model assumption. The sensitivity evaluation indicates that the analysis results are very sensitive to the above assumptions.
Waychunas, G.A.; Fuller, C.C.; Davis, J.A.
2002-01-01
"Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further
Langridge, R.M.; Stenner, H.D.; Fumal, T.E.; Christofferson, S.A.; Rockwell, T.K.; Hartleb, R.D.; Bachhuber, J.; Barka, A.A.
2002-01-01
The Mw 7.4 17 August 1999 İzmit earthquake ruptured five major fault segments of the dextral North Anatolian Fault Zone. The 26-km-long, N86°W-trending Sakarya fault segment (SFS) extends from the Sapanca releasing step-over in the west to near the town of Akyazi in the east. The SFS emerges from Lake Sapanca as two distinct fault traces that rejoin to traverse the Adapazari Plain to Akyazi. Offsets were measured across 88 cultural and natural features that cross the fault, such as roads, cornfield rows, rows of trees, walls, rails, field margins, ditches, vehicle ruts, a dike, and ground cracks. The maximum displacement observed for the İzmit earthquake (∼5.1 m) was encountered on this segment. Dextral displacement for the SFS rises from less than 1 m at Lake Sapanca to greater than 5 m near Arifiye, only 3 km away. Average slip decreases uniformly to the east from Arifiye until the fault steps left from Sagir to Kazanci to the N75°W, 6-km-long Akyazi strand, where slip drops to less than 1 m. The Akyazi strand passes eastward into the Akyazi Bend, which consists of a high-angle bend (18°-29°) between the Sakarya and Karadere fault segments, a 6-km gap in surface rupture, and high aftershock energy release. Complex structural geometries exist between the İzmit, Düzce, and 1967 Mudurnu fault segments that have arrested surface ruptures on timescales ranging from 30 sec to 88 days to 32 yr. The largest of these step-overs may have acted as a rupture segmentation boundary in previous earthquake cycles.
NASA Astrophysics Data System (ADS)
McLin, Kristie S.
Alta Stock does not define a regular isogradic surface, unlike isograds in the inner aureole. Examination of mineral and fluid stabilities in the H2O-CO 2-NaCl system shows that several fluid evolution scenarios, including fluid immiscibility, may produce the observed talc heterogeneity.
NASA Technical Reports Server (NTRS)
Taranik, J. V.; Slemmons, D. B.; Bell, E. J.; Borengasser, M.; Lugaski, T. P.; Vreeland, H.; Vreeland, P.; Kleiner, E.; Peterson, F. F.; Kleiforth, H.
1984-01-01
The measurement capability provided by the Shuttle Imaging Radar (SIR-B) was used to determine: (1) the relationships between radar illumination geometry and depth of penetration in different climatic and physiographic environments in Nevada; and, (2) the relationships between radar illumination geometry and detection and analysis of structural features in different climatic and physiographic environments in Nevada.
Doubková, Pavla; Kohout, Petr; Sudová, Radka
2013-10-01
Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant's ability to adapt to nutrient deficiency/excess. PMID:23568184
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Cunningham, S.D.; Kapulnik, Y.; Phillips, D.A.
1986-11-01
H/sub 2/ evolved by alfalfa root nodules during the process of N/sub 2/ fixation may be an important factor influencing the distribution of soil bacteria. To test this hypothesis under field conditions, over 700 bacterial isolates were obtained from fallow soil or from the 3-mm layer of soil surrounding alfalfa (Medicago sativa L.) root nodules, alfalfa roots, or bindweed (Convolvulus arvensis L.) roots. Bacteria were isolated under either aerobic or microaerophilic conditions and were tested for their capacity to metabolize H/sub 2/. Isolates showing net H/sub 2/ uptake and /sup 3/H/sub 2/ incorporation activity under laboratory conditions were assigned a Hup/sup +/ phenotype, whereas organisms with significant H/sub 2/ output capacity were designated as a Hout/sup +/ phenotype. Under aerobic isolation conditions two Hup/sup +/ isolates were obtained, whereas under microaerophilic conditions five Hup/sup +/ and two Hout/sup +/ isolates were found. The nine isolates differed on the basis of 24 standard bacteriological characteristics or fatty acid composition. Five of the nine organisms were isolated from soil around root nodules, whereas the other four were found distributed among the other three soil environments. On the basis of the microaerophilic isolations, 4.8% of the total procaryotic isolates from soil around root nodules were capable of oxidizing H/sub 2/, and 1.2% could produce H/sub 2/. Two of the Hup/sup +/ isolates were identified as Rhizobium meliloti by root nodulation tests, but the fact that none of the isolates reduced C/sub 2/H/sub 2/ under the assay conditions suggested that the H/sub 2/ metabolism traits were associated with various hydrogenase systems rather than with nitrogenase activity.
Hanzl, Martin; Kolář, Filip; Nováková, Dora; Suda, Jan
2014-06-11
• Premise of the study: Contact zones between polyploids and their diploid progenitors may provide important insights into the mechanisms of sympatric speciation and local adaptation. However, most published studies investigated secondary contact zones where the effects of genome duplication can be confounded by previous independent evolution of currently sympatric cytotypes. We compared genetically close diploid and autotetraploid serpentine cytotypes of Knautia arvensis (Caprifoliaceae) in a primary contact zone and evaluated the role of adaptive and nonadaptive processes for cytotype coexistence.• Methods: DNA flow cytometry was used to determine ploidy distribution at various spatial scales (from across the entire contact zone to microgeographic). Habitat preferences of diploids and polyploids were assessed by comparing vegetation composition of nearby ploidy-uniform sites and by recording plant species immediately surrounding both cytotypes in mixed-ploidy plots.• Key results: Tetraploids considerably outnumbered their diploid progenitors in the contact zone. Both cytotypes were segregated at all investigated spatial scales. This pattern was not driven by ecological shifts, because both diploids and tetraploids inhabited sites with nearly identical vegetation cover. Certain interploidy niche differentiation was indicated only at the smallest spatial scale; ecologically nonadaptive processes were most likely responsible for this difference.• Conclusions: We conclude that a shift in ecological preferences (i.e., the adaptive scenario) is not necessary for the establishment and evolutionary success of autopolyploid derivatives in primary contact zones. Spatial segregation that would support ploidy coexistence can also be achieved by ecologically nonadaptive processes, including the founder effect, limited dispersal ability, intense clonal growth, and triploid block. PMID:24920762
Muenchausen, R.E.; Nguyen, D.C.; Keller, R.A.; Nogar, N.S.
1986-01-01
Doubly resonantly enhanced sum frequency generation from rhodamine 6G monolayers adsorbed on glass substates is compared with resonantly enhanced second harmonic generation using a collinear excitation geometry. Second harmonic and sum frequency generation with a non-collinear excitation geometry is also reported where spatial filtering of the non-collinear output is shown to increase the scattered light rejection by more than 4 orders of magnitude.
Skandrani, I; Limem, I; Neffati, A; Boubaker, J; Ben Sghaier, M; Bhouri, W; Bouhlel, I; Kilani, S; Ghedira, K; Chekir-Ghedira, L
2010-02-01
The present study was undertaken to provide a set of data on the safety of an aqueous extract (AQE) from Moricandia arvensis. For this reason, Escherichia coli tested strains PQ35 and PQ37 were used to detect induction of DNA lesions by AQE. The SOS Chromotest showed that AQE induced a marginally genotoxic effect, as expressed by the induction factor (IF) value only with E. coli PQ37 tested strain (IF=1.77 at a dose of 250 microg/assay). The measurement of the anti-genotoxic activity of the AQE was also studied by inhibition of beta-galactosidase induction. A significant anti-genotoxic effect was observed with different tested doses of AQE, which suggests that M. arvensis extract has the potential to protect DNA from the action of nitrofurantoïn (NF) and free radicals generated by hydrogen peroxide (H2O2). In addition to anti-genotoxic activity, AQE showed a free-radical-scavenging capacity towards ABTS+* and DPPH*. Total phenolic content was also evaluated following Folin-Ciocalteu method and results indicated high correlation between total phenol content and anti-genotoxic and antioxidant activities for AQE, but the highest correlation was showed with its capacity to stabilize ABTS+* (R2=0.9944). PMID:19951736
Nađpal, Jelena D; Lesjak, Marija M; Šibul, Filip S; Anačkov, Goran T; Četojević-Simin, Dragana D; Mimica-Dukić, Neda M; Beara, Ivana N
2016-02-01
The aim of this study was to compare phenolic profile, vitamin C content, antioxidant, anti-inflammatory and cytotoxic activity of rose hips and the preserves (purée and jam) of two Rosa species: renowned Rosa canina L. and unexplored Rosa arvensis Huds. The liquid chromatography-tandem mass spectrometry analysis of 45 phenolics resulted in quantification of 14 compounds, with quercitrin, gallic and protocatechuic acids as the most dominant. High antioxidant potential of R. canina and a moderate activity of R. arvensis extracts were determined through several assays. Purée of both species and methanol extract of air-dried R. canina hips showed some anti-inflammatory (cyclooxygenase-1 and 12-lipooxygense inhibition potency) activity. Purée of R. canina exerted cytotoxic activity only against the HeLa cell line among several others (HeLa, MCF7, HT-29 and MRC-5). The presented results support traditional use of rose hips and their fruit preserves as food with health and nutritional benefits. PMID:26304428
NASA Technical Reports Server (NTRS)
Suciu, E. O.
1975-01-01
The problem of steady incompressible flow for lifting surfaces is considered. An integral equation is solved relating the values of the potential discontinuity on the lifting surface and its wake to the values of the normal derivative of the potential which are known from the boundary conditions. The lifting surface and the wake are divided into small quadrilateral surface elements. The values of the potential discontinuity and the normal derivative of the potential are assumed to be constant within each lifting surface element and equal to their values at the centroids of the lifting surface elements. This yields a set of linear algebraic equations. An iteration procedure is used to obtain the wake geometry: the velocities at the corner points of the wake elements are calculated and the wake streamlines are aligned to be parallel to the velocity vector. The procedure is repeated until convergence is attained.
ERIC Educational Resources Information Center
Cukier, Mimi; Asdourian, Tony; Thakker, Anand
2012-01-01
Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…
ERIC Educational Resources Information Center
Kuntz, Gilles
The first section of this paper on World Wide Web applications related to dynamic geometry addresses dynamic geometry and teaching, including the relationship between dynamic geometry and direct manipulation, key features of dynamic geometry environments, the importance of direct engagement of the learner using construction software for…
Hexatic undulations in curved geometries.
Lenz, Peter; Nelson, David R
2003-03-01
We discuss the influence of two-dimensional hexatic order on capillary waves and undulation modes in spherical and cylindrical geometries. In planar geometries, extended bond-orientational order has only a minor effect on the fluctuations of liquid surfaces or lipid bilayers. However, in curved geometries, the long-wavelength spectrum of these ripples is altered. We calculate this frequency shift and discuss applications to spherical vesicles, liquid metal droplets, bubbles and cylindrical jets coated with surface-active molecules, and to multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability of charged droplets and bubbles, and for the Plateau-Rayleigh instability of liquid jets. PMID:12689068
Learning Geometry through Dynamic Geometry Software
ERIC Educational Resources Information Center
Forsythe, Sue
2007-01-01
In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…
SABRINA: an interactive solid geometry modeling program for Monte Carlo
West, J.T.
1985-01-01
SABRINA is a fully interactive three-dimensional geometry modeling program for MCNP. In SABRINA, a user interactively constructs either body geometry, or surface geometry models, and interactively debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces the effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo Analysis.
Geometry Dependence of Stellarator Turbulence
H.E. Mynick, P. Xanthopoulos and A.H. Boozer
2009-08-10
Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.
Kolář, Filip; Štech, Milan; Trávníček, Pavel; Rauchová, Jana; Urfus, Tomáš; Vít, Petr; Kubešová, Magdalena; Suda, Jan
2009-01-01
Background and Aims Detailed knowledge of variations in ploidy levels and their geographic distributions is one of the key tasks faced in polyploid research in natural systems. Flow cytometry has greatly facilitated the field of cytogeography by allowing characterization of ploidy levels at both the regional and population scale, and at multiple stages of the life cycle. In the present study, flow cytometry was employed to investigate the patterns and dynamics of ploidy variation in the taxonomically challenging complex Knautia arvensis (Dipsacaceae) and some of its allies (K. dipsacifolia, K. slovaca) in Central Europe. Methods DNA ploidy levels were estimated by DAPI flow cytometry in 5205 adult plants, 228 seedlings and 400 seeds collected from 292 Knautia populations in seven European countries. The flow cytometric data were supplemented with conventional chromosome counts. A subset of 79 accessions was subjected to estimation of the absolute genome size using propidium iodide flow cytometry. Key Results and Conclusions Five different ploidy levels (from 2x to 6x) were found, with triploids of K. arvensis being recorded for the first time. The species also exhibited variation in the monoploid genome size, corresponding to the types of habitats occupied (grassland diploid populations had larger genome sizes than relict and subalpine diploid populations). Disregarding relict populations, the distribution of 2x and 4x cytotypes was largely parapatric, with a diffuse secondary contact zone running along the north-west margin of the Pannonian basin. Spatial segregation of the cytotypes was also observed on regional and microgeographic scales. The newly detected sympatric growth of diploids and tetraploids in isolated relict habitats most likely represents the primary zone of cytotype contact. Ploidy level was found to be a major determinant of the strength of inter-cytotype reproductive barriers. While mixed 2x + 4x populations virtually lacked the intermediate
Combinatorial Geometry Printer Plotting.
Energy Science and Technology Software Center (ESTSC)
1987-01-05
Picture generates plots of two-dimensional slices through the three-dimensional geometry described by the combinatorial geometry (CG) package used in such codes as MORSE and QAD-CG. These plots are printed on a standard line printer.
NASA Astrophysics Data System (ADS)
Taylor, Marika
2006-03-01
Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.
ERIC Educational Resources Information Center
McDonald, Nathaniel J.
2001-01-01
Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…
The Geometry of the Universe: Part 2
ERIC Educational Resources Information Center
Francis, Stephanie
2009-01-01
Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…
NASA Astrophysics Data System (ADS)
Ritz, E.; Pollard, D. D.
2011-12-01
Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.
NASA Astrophysics Data System (ADS)
Moya, José
In a landslide investigation, the location of the failure surface is a difficult task when measures of subsurface displacement are lacking, as it occurs in old landslides or in recent but quick ones. The subsurface geological data and ground surface displacement data may not be enough to formulate a unique interpretation of the failure surface. However, an accurate determination of the failure surface is possible when balanced cross section techniques are applied to preliminary interpretations. The former is proved by means of the example of Aznalcóllar dam failure (Seville, Spain).
Narrow Vertical Caves: Mapping Volcanic Fissure Geometries
NASA Astrophysics Data System (ADS)
Parcheta, C.; Nash, J.; Parness, A.; Mitchell, K. L.; Pavlov, C. A.
2015-10-01
Volcanic conduits are difficult to quantify, but their geometry fundamentally influences how eruptions occur. We robotically map old fissure conduits - elongated narrow cracks in the ground that transported magma to the surface during an eruption.
Planetary Image Geometry Library
NASA Technical Reports Server (NTRS)
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
NASA Astrophysics Data System (ADS)
Zheng, H. L.; Yang, S. S.; Zhao, J.; Zhang, Z. C.
2014-03-01
The sliver nanoparticles (AgNPs) with diameters of 30˜50 nm were self-assembled onto the surfaces of reduced graphene oxide (rGO) sheets simply by mixing AgNO3 aqueous solution and GO dispersion via a synchronous reduction process. Structure and morphology of the rGO-AgNPs hybrids were well characterized. More significantly, the surface-enhanced Raman scattering (SERS) spectrum of 2-mercaptobenzimidazole (MBI) adsorbed on the solid rGO-AgNPs surface shown that the rGO-AgNPs system gives a very strong SERS intensity at in-plane vibrational modes in comparison to the out-of-plane vibrational modes. This large enhancement effect is most likely a result of charge-transfer (CT) mechanism. Based on the surface selection rules and the information provided by the highly enhanced in-plane vibrational modes, it can be found that MBI molecule was adsorbed on AgNPs surface as a thiol form via the sulphur and nitrogen atoms with a slightly tilted geometric conformation.
NASA Astrophysics Data System (ADS)
Boutron, Olivier; Margoum, Christelle; Chovelon, Jean-Marc; Guillemain, CéLine; Gouy, VéRonique
2011-08-01
Pesticides, which have been extensively used in agriculture, have become a major environmental issue, especially regarding surface and groundwater contamination. Of particular importance are vegetated farm drainage ditches, which can play an important role in the mitigation of pesticide contamination by adsorption onto ditch bed substrates. This role is, however, poorly understood, especially regarding the influence of hydrodynamic parameters, which make it difficult to promote best management practice of these systems. We have assessed the influence of three of these parameters (speed of the surface water flow, submergence, and geometrical characteristics of the bed forms) on the transfer and adsorption of selected pesticides (isoproturon, diuron, tebuconazole, and azoxystrobin) into the bed substrate by performing experiments with a tilted experimental flume, using hemp fibers as a standard of natural organic substrates that are found at the bottom of agricultural ditches. Results show the transfer of pesticides from surface water flow into bed substrate is favored, both regarding the amounts transferred into the bed substrate and the kinetics of the transfer, when the surface water speed and the submergence increase and when the bed forms are made of rectangular shapes. Extrapolation of flume data over a distance of several hundred meters suggests that an interesting possibility for improving the mitigation of pesticides in ditches would be to increase the submergence and to favor bed forms that tend to enhance perturbations and subsequent infiltration of the surface water flow.
NASA Astrophysics Data System (ADS)
Aminfar, H.; Mohammadpourfard, M.; Khajeh, K.
2016-01-01
Effect of geometry on the atherosclerosis is a significant issue, so the 3D s-shape and 2D axisymmetric stenosis tube as a blood vessel have been analyzed in this work. This paper has focused on the most important parameters in the LSC uptake, inlet Re number and infiltration velocity in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. It is observed that, application of magnetic field leads to production of a vortex in the flow, high strain rate, increment of WSS, and also reduction in LSC. For solving the mass transport equation, Lumen-wall model has been used. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 vol% Fe3O4) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.
Manukyan, Liana; Milinkovitch, Michel C.
2015-01-01
While recent imaging techniques provide insights into biological processes from the molecular to the cellular scale, phenotypes at larger scales remain poorly amenable to quantitative analyses. For example, investigations of the biophysical mechanisms generating skin morphological complexity and diversity would greatly benefit from 3D geometry and colour-texture reconstructions. Here, we report on R2OBBIE-3D, an integrated system that combines a robotic arm, a high-resolution digital colour camera, an illumination basket of high-intensity light-emitting diodes and state-of-the-art 3D-reconstruction approaches. We demonstrate that R2OBBIE generates accurate 3D models of biological objects between 1 and 100 cm, makes multiview photometric stereo scanning possible in practical processing times, and enables the capture of colour-texture and geometric resolutions better than 15 μm without the use of magnifying lenses. R2OBBIE has the potential to greatly improve quantitative analyses of phenotypes in addition to providing multiple new applications in, e.g., biomedical science. PMID:26039509
Martins, António F; Bessant, Michel; Manukyan, Liana; Milinkovitch, Michel C
2015-01-01
While recent imaging techniques provide insights into biological processes from the molecular to the cellular scale, phenotypes at larger scales remain poorly amenable to quantitative analyses. For example, investigations of the biophysical mechanisms generating skin morphological complexity and diversity would greatly benefit from 3D geometry and colour-texture reconstructions. Here, we report on R(2)OBBIE-3D, an integrated system that combines a robotic arm, a high-resolution digital colour camera, an illumination basket of high-intensity light-emitting diodes and state-of-the-art 3D-reconstruction approaches. We demonstrate that R(2)OBBIE generates accurate 3D models of biological objects between 1 and 100 cm, makes multiview photometric stereo scanning possible in practical processing times, and enables the capture of colour-texture and geometric resolutions better than 15 μm without the use of magnifying lenses. R(2)OBBIE has the potential to greatly improve quantitative analyses of phenotypes in addition to providing multiple new applications in, e.g., biomedical science. PMID:26039509
NASA Astrophysics Data System (ADS)
Zhou, Hu; Zhou, Wang; Zhang, Meixiao; Zhou, Lihua; Ma, Yulong; Wang, Guangyi; Wu, Yong; Li, Bowen; Chen, Ximeng
2016-06-01
We propose a simple theoretical approach to consider negative-ion conversion of neutral atoms grazing on alkali-metal-halide crystal surfaces over the complete velocity range. The conversion process is viewed as a series of successive binary collisions between the projectile and the negatively charged sites on the surface along their trajectories due to localization of valence-band electrons at the anionic sites of the crystal. Conversion from F0 to F- via grazing scattering in LiF(100) and KI(100) is demonstrated with this model, which incorporates the key factors of image interaction and Mott-Littleton polarization interaction for electron capture. It also incorporates the decrease in the electron affinity due to Coulomb barrier tunneling of large-velocity negative ions to the vacuum level near surface anion sites. The pronounced differences in the efficiency of F- formation at LiF(100) and KI(100) surfaces are well explained by the proposed model. The relative efficiency and related saturation of the negative-ion formation for LiF and KI crystals compare well with experimental results.
ERIC Educational Resources Information Center
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
Geometry of multihadron production
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
ERIC Educational Resources Information Center
Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem
2009-01-01
Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…
Euclidean Geometry via Programming.
ERIC Educational Resources Information Center
Filimonov, Rossen; Kreith, Kurt
1992-01-01
Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability and compares it to…
ERIC Educational Resources Information Center
Lyublinskaya, Irina; Funsch, Dan
2012-01-01
Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…
NASA Astrophysics Data System (ADS)
Kulikov, G. M.; Mamontov, A. A.; Plotnikova, S. V.; Mamontov, S. A.
2015-11-01
A hybrid-mixed ANS four-node shell element by using the sampling surfaces (SaS) technique is developed. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the displacements of these surfaces as basic shell variables. Such choice of unknowns with the consequent use of Lagrange polynomials of degree In - 1 in the thickness direction for each layer permits the presentation of the layered shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that allows one to minimize uniformly the error due to the Lagrange interpolation. To implement the efficient analytical integration throughout the element, the enhanced ANS method is employed. The proposed hybrid-mixed four-node shell element is based on the Hu-Washizu variational equation and exhibits a superior performance in the case of coarse meshes. It could be useful for the 3D stress analysis of thick and thin doubly-curved shells since the SaS formulation gives the possibility to obtain numerical solutions with a prescribed accuracy, which asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.
NASA Astrophysics Data System (ADS)
Wicks, G. R.; Soukup, B.; Repasky, K. S.; Carlsten, J.; Barr, J. L.; Dobeck, L.
2010-12-01
Geologic carbon sequestration is a means to mitigate the increasing atmospheric concentration of carbon dioxide (CO2) by capturing the CO2 at a source such as a power generation facility and storing the captured CO2 in geologic formations. Many technologic advances will need to occur for successful carbon sequestration including near surface monitoring tools and techniques to ensure site integrity and public safety. Researchers at Montana State University (MSU) are developing a scalable fiber sensor array in a call/return configuration for monitoring near sub-surface CO2 concentrations. The low cost fiber sensor array being developed at MSU for sub-surface CO2 detection for monitoring carbon sequestration sites will utilize a series of fiber probes connected to a two detectors and a 1 x N fiber switch that can direct the light to one of N fiber probes. The fiber sensor array will utilize a single tunable distributed feedback (DFB) diode laser with a center wavelength of 2.004 μm to access CO2 absorption features. The output from the DFB laser is incident on an inline fiber splitter that directs part of the light to a reference detector while the remaining light is directed to a fiber probe where the laser light interacts with the CO2. The light from the fiber probe is directed back through the switch and is incident on a transmission detector. The transmission as a function of wavelength is measured and a CO2 concentration is calculated. The fiber sensor array can easily be reconfigured by simply moving the fiber probes. Low cost is achieved by using inexpensive passive components in the fiber probes while limiting the number of the more expensive components including the DFB laser, the two detectors, and the single fiber switch. The fiber sensor was tested over a thirty day period at the Zero Emission Research Technology (ZERT) facility that was developed for testing surface and near surface carbon sequestration monitoring instrumentation using a controlled
Watanabe, Kenichi; Kyomoto, Masayuki; Saiga, Kenichi; Taketomi, Shuji; Inui, Hiroshi; Kadono, Yuho; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko; Moro, Toru
2015-01-01
The wear and creep deformation resistances of polymeric orthopedic bearing materials are both important for extending their longevity. In this study, we evaluated the wear and creep deformation resistances, including backside damage, of different polyethylene (PE) materials, namely, conventional PE, cross-linked PE (CLPE), and poly(2-methacryloyloxyethyl phosphorylcholine)- (PMPC-) grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness) of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances. PMID:26583106
Geometry creation for MCNP by Sabrina and XSM
Van Riper, K.A.
1994-02-01
The Monte Carlo N-Particle transport code MCNP is based on a surface description of 3-dimensional geometry. Cells are defined in terms of boolean operations on signed quadratic surfaces. MCNP geometry is entered as a card image file containing coefficients of the surface equations and a list of surfaces and operators describing cells. Several programs are available to assist in creation of the geometry specification, among them Sabrina and the new ``Smart Editor`` code XSM. We briefly describe geometry creation in Sabrina and then discuss XSM in detail. XSM is under development; our discussion is based on the state of XSM as of January 1, 1994.
Kiran, Usha; Patra, D D
2003-02-01
Pot experiments were conducted to evaluate the relative performance of medicinal and aromatic plant materials and dicyandiamide (DCD) as nitrification inhibitors to regulate transformation of N from urea. Their effect on the efficiencies of use of N by Japanese mint (Mentha arvensis cv. Hy 77) was tested. Urea was coated with these materials viz., Mentha spicata, Artemisia annua or DCD at the rate of 5% (w/w) of fertilizer urea using an appropriate coating technique. Nimin (tetranortriterpenoids, an ethanol extract of neem (Azadirachta indica Juss) coating was done at the rate of 1% w/w of urea. Fertilizer nitrogen was applied at 100 and 200 mg kg(-1) soil. These natural coating materials significantly increased the herb and essential oil yields of the crop at both rates of fertilizer nitrogen compared to urea alone and were found to be as effective as DCD in retarding NO3- formation in soil. Herb yield increased by 6-81% when compared to uncoated urea. The increase in essential oil yield ranged between 3% and 68% due to coating. The effectiveness of the nitrification-inhibitor--coated urea, however, varied with the soils used and the rate of fertilizer nitrogen applied. The results suggest that the natural products could be potential nitrification inhibitors for increasing fertilizer N use efficiency. PMID:12688470
Viji, Pankyamma; Binsi, Puthanpurakkal Kizhakkathil; Visnuvinayagam, Sivam; Bindu, Jaganath; Ravishankar, Chandragiri Nagarajarao; Srinivasa Gopal, Teralandur Krishnaswamy
2015-10-01
Efficacy of mint (Mentha arvensis) leaf and citrus (Citrus aurantium) peel extracts in retarding the quality changes in Indian mackerel during chilled storage was investigated. Mint leaf extract showed higher quantity of phenolics and superior in-vitro antioxidant activities than citrus peel extract. Gutted mackerel were given a dip treatment in mint extract (0.5 %, w/v) and citrus extract (1 % w/v), packed in LDPE pouches and stored at 0-2 °C. The biochemical quality indices viz. total volatile base nitrogen (TVB-N), trimethylamine nitrogen (TMA-N), free fattyacids (FFA) were significantly (p < 0.05) lower in mint extract (ME) treated fishes compared to citrus extract (CE) treated and control fishes (C) without any treatment. Plant extract treatment significantly inhibited lipid oxidation in mackerel as indicated by peroxide value (PV) and thiobarbituric acid reactive substances (TBARS). Aerobic plate count (APC) was markedly higher in C group followed by CE group throughout the storage period. As per sensory evaluation, shelf life of Indian mackerel was determined to be 11-13 days for C group, 13-15 days for CE group and 16-17 days for ME group, during storage at 0-2 °C. PMID:26396373
Rahman, Mahmudur; Khatun, Amina; Nesa, Mst Luthfun; Hossain, Hemayet; Jahan, Ismet Ara
2015-01-01
Cnicus arvensis is used by many ethnic groups for inflammation, pain, and other ailments. In this study, reducing sugar, carbohydrate, alkaloid, steroid, tannin, flavonoid, and saponin groups were identified using standard chromogenic method. In high-performance liquid chromatography, vanillic acid and epicatechin were identified in the extract. Antinociceptive test by acetic acid induced writhing inhibition resulted 43.17 and 95.08% inhibition for 100 and 200 mg/kg body weight, comparing with standard diclofenac Na with 74.86% inhibition for 25 mg/kg body weight. In formalin induced paw licking test for antinociceptive activity, the extract inhibited 69.87 and 75.55% licking for 150 and 300 mg/kg body weight comparing with the inhibition (68.56%) of diclofenac Na for 10 mg/kg body weight at first phase. At late phase, the extract showed 73.12 and 87.46% licking comparing with licking inhibition (71.69%) by diclofenac Na at the same dose. In open field test for CNS depressant activity, the extract showed depression of locomotor activity for 150 and 300 mg/kg body weight comparing with diazepam for 10 mg/kg body weight. All results were statistically significant (P < 0.01). The identified polyphenols are reputed for antinociceptive and CNS depressant activity. The present findings support the use of this plant in pain. PMID:25648520
Vimolmangkang, Sornkanok; Sitthithaworn, Worapan; Vannavanich, Danai; Keattikunpairoj, Sunisa; Chittasupho, Chuda
2010-01-01
The purpose of this study was to determine the differences between spearmint (Mentha spicata L.) and Japanese mint (M. arvensis L. var. piperascens Malinv.) cultivated in either soil or nutrient solution using the deep flow technique (DFT). The differences were measured in terms of harvest period (full bloom period) and quantity and chemical components of volatile oils. The spearmint and Japanese mint were cultivated in four different nutrient formulas: plant standard nutrient, plant standard nutrient with an amino acid mixture, plant standard nutrient with a sulphur compound, and a combination of plant standard nutrient with an amino acid mixture and a sulphur compound. We observed that cultivation of spearmint and Japanese mint in nutrient solution using DFT is an effective method to provide high production of volatile oil, since it results in an earlier harvest period and higher quantity of volatile oil. We determined that for spearmint an amino acid mixture is an appropriate nutrient supplement to enhance production of volatile oil with optimum carvone content. Finally, we observed high menthol content in Japanese mint grown in all four nutrient formulas; however, supplementation with a combination of sulphur fertilisation and amino acid mixture yields the highest quantity of volatile oil. PMID:19763744
Nesa, Mst. Luthfun; Jahan, Ismet Ara
2015-01-01
Cnicus arvensis is used by many ethnic groups for inflammation, pain, and other ailments. In this study, reducing sugar, carbohydrate, alkaloid, steroid, tannin, flavonoid, and saponin groups were identified using standard chromogenic method. In high-performance liquid chromatography, vanillic acid and epicatechin were identified in the extract. Antinociceptive test by acetic acid induced writhing inhibition resulted 43.17 and 95.08% inhibition for 100 and 200 mg/kg body weight, comparing with standard diclofenac Na with 74.86% inhibition for 25 mg/kg body weight. In formalin induced paw licking test for antinociceptive activity, the extract inhibited 69.87 and 75.55% licking for 150 and 300 mg/kg body weight comparing with the inhibition (68.56%) of diclofenac Na for 10 mg/kg body weight at first phase. At late phase, the extract showed 73.12 and 87.46% licking comparing with licking inhibition (71.69%) by diclofenac Na at the same dose. In open field test for CNS depressant activity, the extract showed depression of locomotor activity for 150 and 300 mg/kg body weight comparing with diazepam for 10 mg/kg body weight. All results were statistically significant (P < 0.01). The identified polyphenols are reputed for antinociceptive and CNS depressant activity. The present findings support the use of this plant in pain. PMID:25648520
Applications of Differential Geometry to Cartography
ERIC Educational Resources Information Center
Benitez, Julio; Thome, Nestor
2004-01-01
This work introduces an application of differential geometry to cartography. The mathematical aspects of some geographical projections of Earth surface are revealed together with some of its more important properties. An important problem since the discovery of the 'spherical' form of the Earth is how to compose a reliable map of the surface of…
Geometry of Thin Nematic Elastomer Sheets
NASA Astrophysics Data System (ADS)
Aharoni, Hillel; Sharon, Eran; Kupferman, Raz
A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this talk we describe the intrinsic geometry of such a sheet, and derive an expression for the metric induced by general smooth nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit analytical recipe for constructing any surface of revolution using this method. We demonstrate how the design of an arbitrary 2D geometry is accessible using approximate numerical methods.
ERIC Educational Resources Information Center
Emenaker, Charles E.
1999-01-01
Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)
ERIC Educational Resources Information Center
Chern, Shiing-Shen
1990-01-01
Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)
Noncommutative Geometry and Physics
NASA Astrophysics Data System (ADS)
Connes, Alain
2006-11-01
In this very short essay we shall describe a "spectral" point of view on geometry which allows to start taking into account the lessons from both renormalization and of general relativity. We shall first do that for renormalization and explain in rough outline the content of our recent collaborations with Dirk Kreimer and Matilde Marcolli leading to the universal Galois symmetry of renormalizable quantum field theories provided by the renormalization group in its cosmic Galois group incarnation. As far as general relativity is concerned, since the functional integral cannot be treated in the traditional perturbative manner, it relies heavily as a "sum over geometries" on the chosen paradigm of geometric space. This will give us the occasion to discuss, in the light of noncommutative geometry, the issue of "observables" in gravity and our joint work with Ali Chamseddine on the spectral action, with a first attempt to write down a functional integral on the space of noncommutative geometries.
Proof in Transformation Geometry
ERIC Educational Resources Information Center
Bell, A. W.
1971-01-01
The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)
On the geometry of a smooth model of a fibre product of families of K3 surfaces
Nikol'skaya, O V
2014-02-28
The Hodge conjecture on algebraic cycles is proved for a smooth projective model X of a fibre product X{sub 1}×{sub C}X{sub 2} of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) X{sub k}→C (k=1,2) over a smooth projective curve C under the assumption that, for generic geometric fibres X{sub 1s} and X{sub 2s}, the ring End{sub Hg(X{sub 1{sub s)}}}NS{sub Q}(X{sub 1s}){sup ⊥} is an imaginary quadratic field, rankNS(X{sub 1s})≠18, and End{sub Hg(X{sub 2{sub s)}}}NS{sub Q}(X{sub 2s}){sup ⊥} is a totally real field or else rankNS(X{sub 1s})
Energy Science and Technology Software Center (ESTSC)
2005-01-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less
NASA Astrophysics Data System (ADS)
Osborne, I.; Brownson, E.; Eulisse, G.; Jones, C. D.; Lange, D. J.; Sexton-Kennedy, E.
2014-06-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
NASA Astrophysics Data System (ADS)
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
tt * geometry in 3 and 4 dimensions
NASA Astrophysics Data System (ADS)
Cecotti, Sergio; Gaiotto, Davide; Vafa, Cumrun
2014-05-01
We consider the vacuum geometry of supersymmetric theories with 4 supercharges, on a flat toroidal geometry. The 2 dimensional vacuum geometry is known to be captured by the tt * geometry. In the case of 3 dimensions, the parameter space is ( T 2 × ) N and the vacuum geometry turns out to be a solution to a generalization of monopole equations in 3 N dimensions where the relevant topological ring is that of line operators. We compute the generalization of the 2d cigar amplitudes, which lead to S 2 × S 1 or S 3 partition functions which are distinct from the supersymmetric partition functions on these spaces, but reduce to them in a certain limit. We show the sense in which these amplitudes generalize the structure of 3d Chern-Simons theories and 2d RCFT's. In the case of 4 dimensions the parameter space is of the form X M,N = ( T 3 × ) M × T 3 N , and the vacuum geometry is a solution to a mixture of generalized monopole equations and generalized instanton equations (known as hyper-holomorphic connections). In this case the topological rings are associated to surface operators. We discuss the physical meaning of the generalized Nahm transforms which act on all of these geometries.
Detection of edges using local geometry
NASA Technical Reports Server (NTRS)
Gualtieri, J. A.; Manohar, M.
1989-01-01
Researchers described a new representation, the local geometry, for early visual processing which is motivated by results from biological vision. This representation is richer than is often used in image processing. It extracts more of the local structure available at each pixel in the image by using receptive fields that can be continuously rotated and that go to third order spatial variation. Early visual processing algorithms such as edge detectors and ridge detectors can be written in terms of various local geometries and are computationally tractable. For example, Canny's edge detector has been implemented in terms of a local geometry of order two, and a ridge detector in terms of a local geometry of order three. The edge detector in local geometry was applied to synthetic and real images and it was shown using simple interpolation schemes that sufficient information is available to locate edges with sub-pixel accuracy (to a resolution increase of at least a factor of five). This is reasonable even for noisy images because the local geometry fits a smooth surface - the Taylor series - to the discrete image data. Only local processing was used in the implementation so it can readily be implemented on parallel mesh machines such as the MPP. Researchers expect that other early visual algorithms, such as region growing, inflection point detection, and segmentation can also be implemented in terms of the local geometry and will provide sufficiently rich and robust representations for subsequent visual processing.
Topping, Christopher J.; Odderskær, Peter; Kahlert, Johnny
2013-01-01
Agent-based simulation models provide a viable approach for developing applied models of species and systems for predictive management. However, there has been some reluctance to use these models for policy applications due to complexity and the need for improved testing and communication of the models. We present the development and testing of a comprehensive model for Skylark (Alauda arvensis) in Danish agricultural landscapes. The model is part of the ALMaSS system, which considers not only individual skylarks, but also the detailed dynamic environment from which they obtain the information necessary to simulate their behaviour. Population responses emerge from individuals interacting with each other and the environment. Model development and testing was carried out using pattern-oriented modelling. The testing procedure was based on the model's ability to represent detailed real world patterns of distribution and density, reproductive performance and seasonal changes in territory numbers. Data to support this was collected over a 13-year period and comprised detailed field observations of breeding birds and intensive surveys. The model was able to recreate the real world data patterns accurately; it was also able to simultaneously fit a number of other secondary system properties which were not formally a part of the testing procedure. The correspondence of model output to real world data and sensitivity analysis are presented and discussed, and the model's description is provided in ODdox format (a formal description inter-linked to the program code). Detailed and stringent tests for model performance were carried out, and standardised model description and open access to the source code were provided to open development of the skylark model to others. Over and above documenting the utility of the model, this open process is essential to engender the user trust and ensure continued development of these comprehensive systems for applied purposes. PMID:23762430
Bose, Subir K; Yadav, Ritesh Kumar; Mishra, Smrati; Sangwan, Rajender S; Singh, A K; Mishra, B; Srivastava, A K; Sangwan, Neelam S
2013-05-01
Extensive research is going on throughout the world to find out new molecules from natural sources to be used as plant growth promoter. Mentha arvensis L. is the main source of menthol rich essential oil used commercially in various food, pharmaceutical and other preparations. Experiments were conducted on field grown plants for understanding the effect of calliterpenone (CA), a stereo-isomer of abbeokutone, in comparison to gibberellic acid (GA3) on growth attributes, trichomes, essential oil biosynthesis and expression of some oil biosynthetic pathway genes. The exogenous application of CA (1 μM, 10 μM and 100 μM) was found to be better in improving plant biomass and stolon yield, leaf area, branching and leaf stem ratio than with counterpart GA3 at the same concentrations. CA treated plants showed higher glandular trichome number, density and diameter and also correlated with enhanced oil biogenetic capacity as revealed by feeding labeled (14)C-sucrose for 72 h to excised shoots. Semi-quantitative PCR analysis of key pathway genes revealed differential up regulation under CA treatments. Transcript level of menthol dehydrogenase/menthone reductase was found highly up regulated in CA treated plants with increased content of menthone and menthol in oil. These findings demonstrate that CA positively regulated the yields by enhanced branching and higher density of trichomes resulting into higher accumulation of essential oil. The results suggest CA as a novel plant derived diterpenoid with growth promoting action and opens up new possibilities for improving the crop yields and essential oil biosynthesis in qualitative and quantitative manner. PMID:23514759
Congruent gridding for developable geometries using NURBS
Fritts, M.; Weems, K.
1996-12-31
This paper discusses recent progress in developing an interactive system built upon NURBS geometry modeling to ensure congruence of surface grids and surface geometries for structured and unstructured gridders. The code system is being developed as part of a collaborative effort among Nausea/Carderock Division, NASA/Lewis, Boeing Computer Services, and SAIC/Ship Technology Division, and uses the Navy library of NURBS FORTRAN subroutines, DT-NURBS, to allow incorporation into a wide variety of gridding codes and flow solvers. Although this paper will present examples relevant to the design of ship hulls only, the code system is being developed to support the design and manufacture of complex mechanical systems.
Students Discovering Spherical Geometry Using Dynamic Geometry Software
ERIC Educational Resources Information Center
Guven, Bulent; Karatas, Ilhan
2009-01-01
Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…
Spinors in Physics and Geometry
NASA Astrophysics Data System (ADS)
Trautman, A.; Furlan, G.
1988-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Killing Spinors According to O. Hijazi and Applications * Self-Duality Conditions Satisfied by the Spin Connections on Spheres * Maslov Index and Half - Forms * Spin - 3/2 Fields on Black Hole Spacetimes * Indecomposable Conformal Spinors and Operator Product Expansions in a Massless QED Model * Nonlinear Spinor Representations * Nonlinear Wave Equations for Intrinsic Spinor Coordinates * Twistors - "Spinors" of SU(2,2), Their Generalizations and Achievements * Spinors, Reflections and Clifford Algebras: A Review * overline {SL}(n, R) Spinors for Particles, Gravity and Superstrings * Spinors on Compact Riemann Surfaces * Simple Spinors as Urfelder * Applications of Cartan Spinors to Differential Geometry in Higher Dimensions * Killing Spinors on Spheres and Projective Spaces * Spinor Structures on Homogeneous Riemannian Spaces * Classical Strings and Minimal Surfaces * Representing Spinors with Differential Forms * Inequalities for Spinors Norms in Clifford Algebras * The Importance of Spin * The Theory of World Spinors * Final List of Participants
ERIC Educational Resources Information Center
Martin, John
2010-01-01
The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.
ERIC Educational Resources Information Center
Case, Christine L.
1991-01-01
Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
ERIC Educational Resources Information Center
Hartz, Viggo
1981-01-01
Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)
Hsü, K J; Hsü, A J
1990-01-01
Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
ERIC Educational Resources Information Center
KLIER, KATHERINE M.
PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…
Geometry of spinor regularization
NASA Technical Reports Server (NTRS)
Hestenes, D.; Lounesto, P.
1983-01-01
The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.
ERIC Educational Resources Information Center
Cooper, Brett D.; Barger, Rita
2009-01-01
The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…
NASA Astrophysics Data System (ADS)
Prástaro, Agostino
2008-02-01
Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.
NASA Astrophysics Data System (ADS)
Yousefi, Zakieh; Eshtiagh-Hosseini, Hossein; Salimi, Alireza; Janiak, Agnieszka
2015-03-01
Two chromium (III) complexes with pyridine-2,6-dicarboxylate ligand have been synthesized with various cations yielding new compounds: (2a4mpy)2[Cr(pydc)2]2 · 9H2O (I) and (bphda)[Cr(pydc)2]2 · DMF · 4H2O (II) where pydc = pyridine-2,6-dicarbocylate anion, 2a4mpy = 2-amino-4-methylpyrimidinium cation and bphda = 1,1‧-bisphenyl-4,4‧-diaminium cation. These compounds have been characterized by IR spectroscopy, CHN microanalysis and X-ray structural studies along with a detailed analysis of Hirshfeld surface and 2D fingerprint plot as an assisting tool for decoding of the intermolecular interactions. In both complex fragments, Cr(III) atoms are surrounded by four oxygen atoms and two nitrogen atoms from two pydc ligands, forming a distorted octahedral environment. Crystal packing in both compounds is mostly governed by strong Osbnd H⋯O and Nsbnd H⋯O classical hydrogen bond interactions and assisted by the interactions involving π-electrons, namely π⋯π off-face stacking, carbonyl⋯π or lone pair⋯π. All these interactions lead to rather complex three-dimensional structures. In this regard, the fingerprint plots enabled to explore the role of intermolecular interactions types on the distorted geometry of titled complexes and analogous structures retrieved from Cambridge Structural Database (CSD).
An introduction to Minkowski geometries
NASA Astrophysics Data System (ADS)
Farnsworth, David L.
2016-07-01
The fundamental ideas of Minkowski geometries are presented. Learning about Minkowski geometries can sharpen our students' understanding of concepts such as distance measurement. Many of its ideas are important and accessible to undergraduate students. Following a brief overview, distance and orthogonality in Minkowski geometries are thoroughly discussed and many illustrative examples and applications are supplied. Suggestions for further study of these geometries are given. Indeed, Minkowski geometries are an excellent source of topics for undergraduate research and independent study.
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Setting the Stage with Geometry" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards that is designed to help students in grades 6-8 build and reinforce basic geometry skills for measuring 2D and 3D shapes. Developed by The Actuarial Foundation, this program seeks to provide skill-building math…
Geometry and the Design of Product Packaging
ERIC Educational Resources Information Center
Cherico, Cindy M.
2011-01-01
The most common question the author's students ask is, "When will I ever use this in real life?" To address this question in her geometry classes, the author sought to create a project that would incorporate a real-world business situation with their lesson series on the surface area and volume of three-dimensional objects--specifically, prisms,…
Children's Use of Geometry for Reorientation
ERIC Educational Resources Information Center
Lee, Sang Ah; Spelke, Elizabeth S.
2008-01-01
Research on navigation has shown that humans and laboratory animals recover their sense of orientation primarily by detecting geometric properties of large-scale surface layouts (e.g. room shape), but the reasons for the primacy of layout geometry have not been clarified. In four experiments, we tested whether 4-year-old children reorient by the…
Transport Code for Regular Triangular Geometry
Energy Science and Technology Software Center (ESTSC)
1993-06-09
DIAMANT2 solves the two-dimensional static multigroup neutron transport equation in planar regular triangular geometry. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective or input specified boundary flux conditions are solved. Anisotropy is allowed for the scattering source. Volume and surface sources are allowed for inhomogeneous problems.
Convex geometry analysis method of hyperspectral data
NASA Astrophysics Data System (ADS)
Gong, Yanjun; Wang, XiChang; Qi, Hongxing; Yu, BingXi
2003-06-01
We present matrix expression of convex geometry analysis method of hyperspectral data by linear mixing model and establish a mathematic model of endmembers. A 30-band remote sensing image is applied to testify the model. The results of analysis reveal that the method can analyze mixed pixel questions. The targets that are smaller than earth surface pixel can be identified by applying the method.
NASA Astrophysics Data System (ADS)
Souriau, Jean-Marie
1983-01-01
Differential geometry, the contemporary heir of the infinitesimal calculus of the 17th century, appears today as the most appropriate language for the description of physical reality. This holds at every level: The concept of “connexion,” for instance, is used in the construction of models of the universe as well as in the description of the interior of the proton. Nothing is apparently more contrary to the wisdom of physicists; all the same, “it works.” The pages that follow show the conceptual role played by this geometry in some examples—without entering into technical details. In order to achieve this, we shall often have to abandon the complete mathematical rigor and even full definitions; however, we shall be able to give a precise description of the connection of ideas thanks to some elements of group theory.
NASA Astrophysics Data System (ADS)
Smania, Daniel
2007-07-01
We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and ``complex bounds'', two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 -dimensional unstable manifold.
Failures of information geometry
NASA Astrophysics Data System (ADS)
Skilling, John
2015-01-01
Information H is a unique relationship between probabilities, based on the property of independence which is central to scientific methodology. Information Geometry makes the tempting but fallacious assumption that a local metric (conventionally based on information) can be used to endow the space of probability distributions with a preferred global Riemannian metric. No such global metric can conform to H, which is "from-to" asymmetric whereas geometrical length is by definition symmetric. Accordingly, any Riemannian metric will contradict the required structure of the very distributions which are supposedly being triangulated. It follows that probabilities do not form a metric space. We give counter-examples in which alternative formulations of information, and the use of information geometry, lead to unacceptable results.
Freezing in confined geometries
NASA Technical Reports Server (NTRS)
Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less
Emergent Complex Network Geometry
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-05-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.
Emergent Complex Network Geometry
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-01-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS_{3}/CFT_{2} correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS_{3} whose kinematic space is two-dimensional de Sitter space.
Automatic Conversion of Conceptual Geometry to CFD Geometry for Aircraft Design
NASA Technical Reports Server (NTRS)
Li, Wu
2007-01-01
Conceptual aircraft design is usually based on simple analysis codes. Its objective is to provide an overall system performance of the developed concept, while preliminary aircraft design uses high-fidelity analysis tools such as computational fluid dynamics (CFD) analysis codes or finite element structural analysis codes. In some applications, such as low-boom supersonic concept development, it is important to be able to explore a variety of drastically different configurations while using CFD analysis to check whether a given configuration can be tailored to have a low-boom ground signature. It poses an extremely challenging problem of integrating CFD analysis in conceptual design. This presentation will discuss a computer code, called iPatch, for automatic conversion of conceptual geometry to CFD geometry. In general, conceptual aircraft geometry is not as well-defined as a CAD geometry model. In particular, a conceptual aircraft geometry model usually does not define the intersection curves for the connecting surfaces. The computer code iPatch eliminates the gap between conceptual geometry and CFD geometry by accomplishing the following three tasks automatically: (1) use bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometry components (such as wing and fuselage) can be intersected to form a watertight CFD geometry, (2) compute the intersection curves of surface patches at any resolution (up to 10-7 accuracy) specified by users, and (3) write the B-spline surface patches and the corresponding boundary points for the watertight CFD geometry in the format that can be directly exported to the meshing tool VGRID in the CFD software TetrUSS. As a result, conceptual designers can get quick feedback on the aerodynamic characteristics of their concepts, which will allow them to understand some subtlety in their concepts and to be able to assess their concepts with a higher degree of
Thermal geometry from CFT at finite temperature
NASA Astrophysics Data System (ADS)
Gan, Wen-Cong; Shu, Fu-Wen; Wu, Meng-He
2016-09-01
We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking-Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.
SABRINA - an interactive geometry modeler for MCNP
West, J.T.; Murphy, J. )
1988-01-01
One of the most difficult tasks when analyzing a complex three-dimensional system with Monte Carlo is geometry model development. SABRINA attempts to make the modeling process more user-friendly and less of an obstacle. It accepts both combinatorial solid bodies and MCNP surfaces and produces MCNP cells. The model development process in SABRINA is highly interactive and gives the user immediate feedback on errors. Users can view their geometry from arbitrary perspectives while the model is under development and interactively find and correct modeling errors. An example of a SABRINA display is shown. It represents a complex three-dimensional shape.
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Graded geometry and Poisson reduction
Cattaneo, A. S.; Zambon, M.
2009-02-02
The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.
Geometry Career Unit: Junior High.
ERIC Educational Resources Information Center
Jensen, Daniel
The guide, the product of an exemplary career education program for junior high school students, was developed to show how geometry can be applied to real-life career-oriented areas and to bring a practical approach to the teaching of geometry. It is designed to show how some of the theorems or postulates in geometry are used in different careers.…
ERIC Educational Resources Information Center
Instructional Objectives Exchange, Los Angeles, CA.
Behavioral objectives, each accompanied by six sample test items, for secondary school geometry are presented. Objectives were determined by surveying the most widely used secondary school geometry textbooks, and cover 14 major categories of geometry, with sections on set theory and introductory trigonometry. Answers are provided. Categories…
Computer-Aided Geometry Modeling
NASA Technical Reports Server (NTRS)
Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)
1984-01-01
Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.
GEMPAK: An arbitrary aircraft geometry generator
NASA Technical Reports Server (NTRS)
Stack, S. H.; Edwards, C. L. W.; Small, W. J.
1977-01-01
A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations.
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar; Zyczkowski, Karol
2006-05-01
Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied. The first book to focus on the geometry of quantum states Stresses the similarities and differences between classical and quantum theory Uses a non-technical style and numerous figures to make the book accessible to non-specialists
Geometry of Fractional Quantum Hall Fluids
NASA Astrophysics Data System (ADS)
Cho, Gil Young
2015-03-01
Fractional quantum Hall (FQH) fluids of two-dimensional electron gases (2DEG) in large magnetic fields are fascinating topological states of matter. As such they are characterized by universal properties such as their fractional quantum Hall conductivity, fractionally charged anyonic excitations and a degeneracy of topological origin on surfaces with the topology of a torus. Quite surprisingly these topological fluids also couple to the geometry on which the 2DEG resides and have universal responses to adiabatic changes in the geometry. These responses are given by a Wen-Zee term (which describes the coupling of the currents to the spin connection of the geometry) and a gravitational Chern-Simons term which reflects the universal energy and momentum transport along the edges of the FQH state. We use a field theory of the FQH states to derive these universal responses. To account for the coupling to the background geometry, we show that the concept of flux attachment needs to be modified and use it to derive the geometric responses from Chern-Simons theories. We show that the resulting composite particles minimally couple to the spin connection of the geometry. Taking account of the framing anomaly of the quantum Chern-Simons theories, we derive a consistent theory of geometric responses from the Chern-Simons effective field theories and from parton constructions, and apply it to both abelian and non-abelian states. This work was supported in part by the NSF Grant DMR-1408713.
Optically defined mechanical geometry
NASA Astrophysics Data System (ADS)
Barasheed, Abeer Z.; Müller, Tina; Sankey, Jack C.
2016-05-01
In the field of optomechanics, radiation forces have provided a particularly high level of control over the frequency and dissipation of mechanical elements. Here we propose a class of optomechanical systems in which light exerts a similarly profound influence over two other fundamental parameters: geometry and mass. By applying an optical trap to one lattice site of an extended phononic crystal, we show it is possible to create a tunable, localized mechanical mode. Owing to light's simultaneous and constructive coupling with the structure's continuum of modes, we estimate that a trap power at the level of a single intracavity photon should be capable of producing a significant effect within a realistic, chip-scale device.
Critique of information geometry
Skilling, John
2014-12-05
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.
NASA Astrophysics Data System (ADS)
Correa, Diego H.; Silva, Guillermo A.
2008-07-01
We discuss how geometrical and topological aspects of certain 1/2-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Correa, Diego H.; Silva, Guillermo A.
2008-07-28
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Critique of information geometry
NASA Astrophysics Data System (ADS)
Skilling, John
2014-12-01
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.
The geometry of the 37-tile microwave antenna support structure
NASA Technical Reports Server (NTRS)
Finley, L. A.
1980-01-01
The geometry of the support structure for a proposed parabolic shaped microwave antenna is examined. The surface of the antenna is comprised of 37 hexagonal shaped tiles, each connected to a truss module. The units are joined together to form a rigidized, faceted, concave parabolic surface. The geometry specifications are described through an explanation of the structural components which make up the antenna, a description of the coordinate system devised to identify the structure, and a presentation of the nondimensional results.
A tool for bistatic SAR geometry determinations
NASA Astrophysics Data System (ADS)
Hawkins, R. K.; Gibson, J. R.; Saper, R.; Hilaire, M.
2003-12-01
The geometry of wide-angle bistatic Synthetic Aperture Radar (SAR) is somewhat more complex than that of conventional Synthetic Aperture Radar because the transmitter and receiver are displaced considerably. Constant bistatic range surfaces form ellipsoids, with the transmitter and receiver located at the two foci. These ellipsoids of constant bistatic range intersect the earth's surface in a series of ellipse-like contours. Constant Doppler lines intersect the range ellipses and allow, under special circumstances, a simple orthogonal basis for processing and analysis. This paper introduces a simple tool, developed in MatLab® and C++, that uses RADARSAT-1 as a satellite illuminator and a tower-based receiver. Actual orbit parameters and data from RADARSAT-1 are used in the simulation of the bistatic geometry and scattering.
Extraction electrode geometry for a calutron
Veach, A.M.; Bell, W.A. Jr.
1975-09-23
This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source. (auth)
Information geometry of Bayesian statistics
NASA Astrophysics Data System (ADS)
Matsuzoe, Hiroshi
2015-01-01
A survey of geometry of Bayesian statistics is given. From the viewpoint of differential geometry, a prior distribution in Bayesian statistics is regarded as a volume element on a statistical model. In this paper, properties of Bayesian estimators are studied by applying equiaffine structures of statistical manifolds. In addition, geometry of anomalous statistics is also studied. Deformed expectations and deformed independeces are important in anomalous statistics. After summarizing geometry of such deformed structues, a generalization of maximum likelihood method is given. A suitable weight on a parameter space is important in Bayesian statistics, whereas a suitable weight on a sample space is important in anomalous statistics.
ERIC Educational Resources Information Center
Scanlon, Regina M.
2003-01-01
Describes an engaging project in which students have to design and construct a three-dimensional candy box that would appeal to children. Requires students to make the box out of prisms, pyramids, or cylinders, determine the surface area and volume of the solids, and write a persuasive business letter. (YDS)
GPS: Geometry, Probability, and Statistics
ERIC Educational Resources Information Center
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Achievement in Writing Geometry Proofs.
ERIC Educational Resources Information Center
Senk, Sharon L.
In 1981 a nationwide assessment of achievement in writing geometry proofs was conducted by the Cognitive Development and Achievement in Secondary School Geometry project. Over 1,500 students in 11 schools in 5 states participated. This paper describes the sample, instruments, grading procedures, and selected results. Results include: (1) at the…
Limits of downstream hydraulic geometry
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2004-10-01
Adjustments to flow width, depth, and velocity in response to changes in discharge are commonly characterized by using downstream hydraulic geometry relationships. The spatial limits of these relationships within a drainage basin have not been systematically quantified. Where the erosional resistance of the channel substrate is sufficiently large, hydraulic driving forces presumably will be unable to adjust channel form. Data sets from 10 mountain rivers in the United States, Panama, Nepal, and New Zealand are used in this study to explore the limits of downstream hydraulic geometry relationships. Where the ratio of stream power to sediment size (Ω/D84) exceeds 10,000 kg/s3, downstream hydraulic geometry is well developed; where the ratio falls below 10,000 kg/s3, downstream hydraulic geometry relationships are poorly developed. These limitations on downstream hydraulic geometry have important implications for channel engineering and simulations of landscape change.
Lobachevsky's Geometry and Research of Geometry of the Universe
NASA Astrophysics Data System (ADS)
Brylevskaya, L. I.
2008-10-01
For the first time N. I. Lobachevsky gave a talk on the new geometry in 1826; three years after he had published a work "On the fundamentals of geometry", containing all fundamental theorems and methods of non-Euclidean geometry. A small part of the article was devoted to the study of geometry of the Universe. The interpretation of geometrical concepts in pure empirical way was typical for mathematicians at the beginning of the XIX century; in this connection it was important for scientists to find application of his geometry. Having the purpose to determine experimentally the properties of real physical Space, Lobachevsky decided to calculate the sum of angles in a huge triangle with two vertexes in opposite points of the terrestrial orbit and the third -- on the remote star. Investigating the possibilities of solution of the set task, Lobachevsky faced the difficulties of theoretical, technical and methodological character. More detailed research of different aspects of the problem led Lobachevsky to the comprehension of impossibility to obtain the values required for the goal achievement, and he called his geometry an imaginary geometry.
Generating Composite Overlapping Grids on CAD Geometries
Henshaw, W.D.
2002-02-07
We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.
An elementary discussion of propellant flame geometry
Buckmaster, J.; Jackson, T.L.; Yao, J.
1999-05-01
The authors examine the geometry of diffusion flames generated by the burning of a heterogeneous solid propellant, using a simple model designed to provide qualitative insights. In the fast chemistry limit a strategy is used which has its roots in Burke and Schumann`s 1928 study of diffusion flames, albeit with different boundary conditions. This shows that the stoichiometric level surface (SLS) intersects the propellant surface at a point displaced from the fuel/oxidizer interface, and the variations of this displacement with Peclet number are discussed. The authors show that for model sandwich propellants, or their axisymmetric counterpart, the geometry of the SLS when the core is oxidizer is quite different from the geometry of the SLS when the core is fuel. Also, it is much easier to quench the flame on an oxidizer core, by reducing the Peclet number, than it is to quench the flame on a fuel core. When finite chemistry effects are accounted for, the flame only occupies a portion of the SLS, and there is a leading edge structure in which premixing plays a role. Enhancement of the burning rate due to premixing is identified, but a well-defined tribrachial structure is not observed. The authors show how a sharp reduction in pressure can lead to a detachment of the flame from the SLS, with subsequent quenching as it is swept downstream.
Lensless x-ray imaging in reflection geometry
Roy, S.; Parks, D.H.; Seu, K.A.; Turner, J.J.; Chao, W.; Anderson, E.H.; Cabrini, S.; Kevan, S.D.; Su, R.
2011-02-03
Lensless X-ray imaging techniques such as coherent diffraction imaging and ptychography, and Fourier transform holography can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.
Guiding chemical pulses through geometry: Y junctions.
Qiao, L; Kevrekidis, I G; Punckt, C; Rotermund, H H
2006-03-01
We study computationally and experimentally the propagation of chemical pulses in complex geometries. The reaction of interest, CO oxidation, takes place on single crystal Pt(110) surfaces that are microlithographically patterned; they are also addressable through a focused laser beam, manipulated through galvanometer mirrors, capable of locally altering the crystal temperature and thus affecting pulse propagation. We focus on sudden changes in the domain shape (corners in a Y-junction geometry) that can affect the pulse dynamics; we also show how brief, localized temperature perturbations can be used to control reactive pulse propagation. The computational results are corroborated through experimental studies in which the pulses are visualized using reflection anisotropy microscopy. PMID:16605643
Quantum Consequences of Parameterizing Geometry
NASA Astrophysics Data System (ADS)
Wanas, M. I.
2002-12-01
The marriage between geometrization and quantization is not successful, so far. It is well known that quantization of gravity , using known quantization schemes, is not satisfactory. It may be of interest to look for another approach to this problem. Recently, it is shown that geometries with torsion admit quantum paths. Such geometries should be parameterizied in order to preserve the quantum properties appeared in the paths. The present work explores the consequences of parameterizing such geometry. It is shown that quantum properties, appeared in the path equations, are transferred to other geometric entities.
Distance geometry and geometric algebra
NASA Astrophysics Data System (ADS)
Dress, Andreas W. M.; Havel, Timothy F.
1993-10-01
As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)
Influence of geometry on natural convection in buildings
White, M.D.; Winn, C.B.; Jones, G.F.; Balcomb, J.D.
1985-01-01
Strong free convection airflows occur within passive solar buildings resulting from elevated temperatures of surfaces irradiated by solar energy compared with the cooler surfaces not receiving radiation. The geometry of a building has a large influence on the directions and magnitudes of natural airflows, and thus heat transfer between zones. This investigation has utilized a variety of reduced-scale building configurations to study the effects of geometry on natural convection heat transfer. Similarity between the reduced-scale model and a full-scale passive solar building is achieved by having similar geometries and by replacing air with Freon-12 gas as the model's working fluid. Filling the model with Freon-12 gas results in similarity in Prandtl numbers and Rayleigh numbers based on temperature differences in the range from 10/sup 9/ to 10/sup 11/. Results from four geometries are described with an emphasis placed on the effects of heat loss on zone temperature stratification shifts.
Colloquium: Geometry and optimal packing of twisted columns and filaments
NASA Astrophysics Data System (ADS)
Grason, Gregory M.
2015-04-01
This Colloquium presents recent progress in understanding constraints and consequences of close-packing geometry of filamentous or columnar materials possessing nontrivial textures, focusing, in particular, on the common motifs of twisted and toroidal structures. The mathematical framework is presented that relates spacing between linelike, filamentous elements to their backbone orientations, highlighting the explicit connection between the interfilament metric properties and the geometry of non-Euclidean surfaces. The consequences of the hidden connection between packing in twisted filament bundles and packing on positively curved surfaces, like the Thomson problem, are demonstrated for the defect-riddled ground states of physical models of twisted filament bundles. The connection between the "ideal" geometry of fibrations of curved three-dimensional space, including the Hopf fibration, and the non-Euclidean constraints of filament packing in twisted and toroidal bundles is presented, with a focus on the broader dependence of metric geometry on the simultaneous twisting and folding of multifilament bundles.
Flexible intuitions of Euclidean geometry in an Amazonian indigene group.
Izard, Véronique; Pica, Pierre; Spelke, Elizabeth S; Dehaene, Stanislas
2011-06-14
Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ~180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. PMID:21606377
SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP
West, J.T. III
1986-10-01
SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.
View Factor Calculation for Three-Dimensional Geometries.
Energy Science and Technology Software Center (ESTSC)
1989-06-20
Version 00 MCVIEW calculates the radiation geometric view factor between surfaces for three dimensional geometries with and without interposed third surface obstructions. It was developed to calculate view factors for input data to heat transfer analysis programs such as SCA-03/TRUMP, SCA-01/HEATING-5 and PSR-199/HEATING-6.
High resolution channel geometry from repeat aerial imagery
NASA Astrophysics Data System (ADS)
King, T.; Neilson, B. T.; Jensen, A.; Torres-Rua, A. F.; Winkelaar, M.; Rasmussen, M. T.
2015-12-01
River channel cross sectional geometry is a key attribute for controlling the river energy balances where surface heat fluxes dominate and discharge varies significantly over short time periods throughout the open water season. These dynamics are seen in higher gradient portions of Arctic rivers where surface heat fluxes can dominates river energy balances and low hillslope storage produce rapidly varying hydrographs. Additionally, arctic river geometry can be highly dynamic in the face of thermal erosion of permafrost landscape. While direct in-situ measurements of channel cross sectional geometry are accurate, they are limited in spatial resolution and coverage, and can be access limited in remote areas. Remote sensing can help gather data at high spatial resolutions and large areas, however techniques for extracting channel geometry is often limited to the banks and flood plains adjacent to river, as the water column inhibits sensing of the river bed itself. Green light LiDAR can be used to map bathymetry, however this is expensive, difficult to obtain at large spatial scales, and dependent on water quality. Alternatively, 3D photogrammetry from aerial imagery can be used to analyze the non-wetted portion of the river channel, but extracting full cross sections requires extrapolation into the wetted portion of the river. To bridge these gaps, an approach for using repeat aerial imagery surveys with visual (RGB) and near infrared (NIR) to extract high resolution channel geometry for the Kuparuk River in the Alaskan Arctic was developed. Aerial imagery surveys were conducted under multiple flow conditions and water surface geometry (elevation and width) were extracted through photogrammetry. Channel geometry was extracted by combining water surface widths and elevations from multiple flights. The accuracy of these results were compared against field surveyed cross sections at many locations throughout the study reach and a digital elevation model created under
The Dilemma of Descriptive Geometry
ERIC Educational Resources Information Center
Boleslavski, Moshe
1977-01-01
Proposes that engineering students undergo a preparatory summer school training program in fundamentals of engineering drawing, descriptive geometry, and mathematics prior to being admitted to regular engineering studies. (SL)
Emergent geometry from quantized spacetime
Yang, Hyun Seok; Sivakumar, M.
2010-08-15
We examine the picture of emergent geometry arising from a mass-deformed matrix model. Because of the mass deformation, a vacuum geometry turns out to be a constant curvature spacetime such as d-dimensional sphere and (anti-)de Sitter spaces. We show that the mass-deformed matrix model giving rise to the constant curvature spacetime can be derived from the d-dimensional Snyder algebra. The emergent geometry beautifully confirms all the rationale inferred from the algebraic point of view that the d-dimensional Snyder algebra is equivalent to the Lorentz algebra in (d+1)-dimensional flat spacetime. For example, a vacuum geometry of the mass-deformed matrix model is completely described by a G-invariant metric of coset manifolds G/H defined by the Snyder algebra. We also discuss a nonlinear deformation of the Snyder algebra.
Interaction of morphogens with geometry
NASA Astrophysics Data System (ADS)
Cummings, F. W.
2005-09-01
Morphogen patterns are viewed as being affected by epithelial sheet geometry in early development. As the total area of the (closed) sheet changes, the changing geometry acts back in turn to change the morphogen pattern. A number of constraints are given on the functional form of the Gauss and Mean curvatures, considered as functions of the morphogen concentrations and their derivatives. It is shown that the constraints are sufficient to motivate a convincing dependence of the two curvatures on the morphogen concentrations.
Stokes flow in ellipsoidal geometry
NASA Astrophysics Data System (ADS)
Vafeas, Panayiotis; Dassios, George
2006-09-01
Particle-in-cell models for Stokes flow through a relatively homogeneous swarm of particles are of substantial practical interest, because they provide a relatively simple platform for the analytical or semianalytical solution of heat and mass transport problems. Despite the fact that many practical applications involve relatively small particles (inorganic, organic, biological) with axisymmetric shapes, the general consideration consists of rigid particles of arbitrary shape. The present work is concerned with some interesting aspects of the theoretical analysis of creeping flow in ellipsoidal, hence nonaxisymmetric domains. More specifically, the low Reynolds number flow of a swarm of ellipsoidal particles in an otherwise quiescent Newtonian fluid, that move with constant uniform velocity in an arbitrary direction and rotate with an arbitrary constant angular velocity, is analyzed with an ellipsoid-in-cell model. The solid internal ellipsoid represents a particle of the swarm. The external ellipsoid contains the ellipsoidal particle and the amount of fluid required to match the fluid volume fraction of the swarm. The nonslip flow condition on the surface of the solid ellipsoid is supplemented by the boundary conditions on the external ellipsoidal surface which are similar to those of the sphere-in-cell model of Happel (self-sufficient in mechanical energy). This model requires zero normal velocity component and shear stress. The boundary value problem is solved with the aim of the potential representation theory. In particular, the Papkovich-Neuber complete differential representation of Stokes flow, valid for nonaxisymmetric geometries, is considered here, which provides the velocity and total pressure fields in terms of harmonic ellipsoidal eigenfunctions. The flexibility of the particular representation is demonstrated by imposing some conditions, which made the calculations possible. It turns out that the velocity of first degree, which represents the leading
The Common Geometry Module (CGM).
Tautges, Timothy James
2004-12-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.
Core systems of geometry in animal minds.
Spelke, Elizabeth S; Lee, Sang Ah
2012-10-01
Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across animals, suggesting that they evolved in distant ancestral species. As children master symbolic systems such as maps and language, they come productively to combine representations from the two core systems of geometry in uniquely human ways; these combinations may give rise to abstract geometric intuitions. Studies of the ontogenetic and phylogenetic sources of abstract geometry therefore are illuminating of both human and animal cognition. Research on animals brings simpler model systems and richer empirical methods to bear on the analysis of abstract concepts in human minds. In return, research on humans, relating core cognitive capacities to symbolic abilities, sheds light on the content of representations in animal minds. PMID:22927577
Core systems of geometry in animal minds
Spelke, Elizabeth S.; Lee, Sang Ah
2012-01-01
Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across animals, suggesting that they evolved in distant ancestral species. As children master symbolic systems such as maps and language, they come productively to combine representations from the two core systems of geometry in uniquely human ways; these combinations may give rise to abstract geometric intuitions. Studies of the ontogenetic and phylogenetic sources of abstract geometry therefore are illuminating of both human and animal cognition. Research on animals brings simpler model systems and richer empirical methods to bear on the analysis of abstract concepts in human minds. In return, research on humans, relating core cognitive capacities to symbolic abilities, sheds light on the content of representations in animal minds. PMID:22927577
Danielson, Thomas; Hin, Celine; Savara, Aditya
2016-08-10
Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Hin, Celine; Savara, Aditya
2016-08-01
Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. The equations have been shown to be general for any value of the adsorption equilibrium constant.
Gupta, M L; Prasad, Arun; Ram, Muni; Kumar, Sushil
2002-01-01
The effects of inoculation with vesicular-arbuscular mycorrhizal (VAM) fungus Glomusfasciculatum on the root colonization, growth, essential oil yield and nutrient acquisition of three cultivars of menthol mint (Mentha arvensis); Kalka, Shivalik and Gomti, were studied under field conditions. The VAM inoculation significantly increased the root colonization, plant height, fresh herbage and dry matter yield. oil content and oil yield as compared to non-inoculated cultivars. The effect of VAM inoculation on the root colonization, growth and yield of mint was more pronounced with the cv Shivalik than the cvs Kalka and Gomati, indicating Shivalik as a highly mycorrhizal dependent genotype. VAM inoculation significantly increased the uptake of N, P and K by shoot tissues of mint, but most markedly increased the uptake of P. The VAM-inoculated mint plants depleted the available N, P and K in the rhizosphere soil as compared to non-inoculated control plants, however the extent of nutrient depletion was greater for P than N and K. We conclude that the VAM inoculation could significantly increase the root colonization, growth, essential oil yield and nutrient acquisition of mint for obtaining economic production under field conditions. PMID:11708758
Intelligent Patching of Conceptual Geometry for CFD Analysis
NASA Technical Reports Server (NTRS)
Li, Wu
2010-01-01
The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect
Earthquake cycles in complex geometries
NASA Astrophysics Data System (ADS)
Romanet, Pierre; Bhat, Harsha; Madariaga, Raul
2016-04-01
Our understanding of earthquake cycles, from a modelling perspective, comes mainly from theoretical, and numerical, work on a single straight fault. However, natural fault systems are geometrically complex. Modelling complex fault geometry (bends, kinks and multiple faults) is in itself a challenge as it is computationally intensive. To overcome this difficulty, we appeal to the Fast Multipole Method which was developed in the context of modelling N-body problems. This method is then used to model the quasi-dynamic response of multiple faults, with complex geometries, that are governed by rate and state friction laws. Our preliminary findings tell us that when stress interaction between faults, due to complex geometry, is accounted then even strongly rate-weakening faults (a-b)<0 show a complex spectrum of slow slip and dynamic ruptures.
Quantum geometry and gravitational entropy
Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan
2007-05-29
Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.
Conventionalism and integrable Weyl geometry
NASA Astrophysics Data System (ADS)
Pucheu, M. L.
2015-03-01
Since the appearance of Einstein's general relativity, gravitation has been associated to the space-time curvature. This theory introduced a geometrodynamic language which became a convenient tool to predict matter behaviour. However, the properties of space-time itself cannot be measurable by experiments. Taking Poincaré idea that the geometry of space-time is merely a convention, we show that the general theory of relativity can be completely reformulated in a more general setting, a generalization of Riemannian geometry, namely, the Weyl integrable geometry. The choice of this new mathematical language implies, among other things, that the path of particles and light rays should now correspond to Weylian geodesies. Such modification in the dynamic of bodies brings a new perception of physical phenomena that we will explore.
Individualized Geometry: A Geometry Unit for the Intermediate Grades.
ERIC Educational Resources Information Center
Geissler, Dennis; Larson, Richard
This geometry unit for the intermediate grades is based on the Holt Mathematics Series (levels 3-6), using the concepts of Individually Guided Education (IGE). It is divided into seven levels, one for grade 3 and two each for grades 4-6. Each is designed for both individual and group learning. A vocabulary list is used as a key for activities; a…
Electronic hidden solder joint geometry characterization
NASA Astrophysics Data System (ADS)
Hsieh, Sheng-Jen
2009-05-01
To reduce the size of electronic equipment, multi-layer printed circuit board structures have become popular in recent years. As a result, the inspection of hidden solder joints between layers of boards has become increasingly difficult. Xray machines have been used for ball grid array (BGA) and hidden solder joint inspection; however, the equipment is costly and the inspection process is time consuming. In this paper, we investigate an active thermography approach to probing solder joint geometry. A set of boards having the same number of solder joints and amount of solder paste (0.061 g) was fabricated. Each solder joint had a different geometry. A semi-automated system was built to heat and then transfer each board to a chamber where an infrared camera was used to scan the board as it was cooling down. Two-thirds of the data set was used for model development and one-third was used for model evaluation. Both artificial neural network (ANN) and binary logistic regression models were constructed. Results suggest that solder joints with more surface area cool much faster than those with less surface area. In addition, both modeling approaches are consistent in predicting solder geometry; ANN had 85% accuracy and the regression model had 80%. This approach can potentially be used to test for cold solder joints prior to BGA assembly, since cold solder joints may have air gaps between the joint and the board and air is a poor heat conductor. Therefore, a cold solder joint may have a slower cooling rate than a normal one.
Ionization coefficient approach to modeling breakdown in nonuniform geometries.
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Nicolaysen, Scott D.
2003-11-01
This report summarizes the work on breakdown modeling in nonuniform geometries by the ionization coefficient approach. Included are: (1) fits to primary and secondary ionization coefficients used in the modeling; (2) analytical test cases for sphere-to-sphere, wire-to-wire, corner, coaxial, and rod-to-plane geometries; a compilation of experimental data with source references; comparisons between code results, test case results, and experimental data. A simple criterion is proposed to differentiate between corona and spark. The effect of a dielectric surface on avalanche growth is examined by means of Monte Carlo simulations. The presence of a clean dry surface does not appear to enhance growth.
Geometry of generalized depolarizing channels
Burrell, Christian K.
2009-10-15
A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.
Geometry, topology, and string theory
Varadarajan, Uday
2003-07-10
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Geometry effects on detonation in vapor-deposited hexanitroazobenzene (HNAB)
NASA Astrophysics Data System (ADS)
Tappan, Alexander S.; Wixom, Ryan R.; Knepper, Robert
2015-06-01
Physical vapor deposition is a technique that can be used to produce explosive films with controlled geometry and microstructure. Films of the high explosive hexanitroazobenzene (HNAB) were deposited by vacuum thermal evaporation. HNAB deposits in an amorphous state that crystallizes over time into a polycrystalline material with high density and a consistent porosity distribution. In previous work, we have evaluated detonation critical thickness in HNAB films in an effectively infinite slab geometry with insignificant side losses. In this work, the effect of geometry on detonation failure was investigated by performing experiments on films with different thicknesses, while also changing dimensions such that side losses became significant. Films were characterized with surface profilometry and scanning electron microscopy. The results of these experiments will be discussed in the context of small sample geometry, deposited film microstructure, and density.
Conical Rotating Aperture Geometries In Digital Radiography
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Bednarek, Daniel R.; Wong, Roland
1981-11-01
Applications of conical rotating aperture (RA) geometries to digital radiography are described. Two kinds of conical RA imaging systems are the conical scanning beam and the conical scanning grid assemblies. These assemblies comprise coaxial conical surface(s) the axis of which is collinear with the x-ray focal spot. This geometry allows accurate alignment and continuous focusing of the slits or the grid lines. Image receptors which use solid state photodiode arrays are described for each type of conical RA system: multiple linear arrays for the conical scanning beam assembly and multiple area arrays for the conical scanning grid assembly. The digital rotating-aperture systems combine the wide dynamic range characteristics of solid state detectors with the superior scatter-rejection advantages of scanned beam approaches. The high scanning-beam velocities attainable by the use of rotating apertures should make it possible to obtain digital images for those procedures such as chest radiography which require large fields of view and short exposure times.
TES Limb-Geometry Observations of Aerosols
NASA Technical Reports Server (NTRS)
Smith, Michael D.
2003-01-01
The Thermal Emission Spectrometer (TES) on-board Mars Global Surveyor (MGS) has a pointing mirror that allows observations in the plane of the orbit anywhere from directly nadir to far above either the forward or aft limbs for details about the TES instrument). Nadir-geometry observations are defined as those where the field-of-view contains the surface of Mars (even if the actual observation is at a high emission angle far from true nadir). Limb-geometry observations are defined as those where the line-of-sight of the observations does not intersect the surface. At a number of points along the MGS orbit (typically every 10 deg. or 20 deg. of latitude) a limb sequence is taken, which includes a stack of overlapping TES spectra from just below the limb to more than 120 km above the limb. A typical limb sequence has approx. 20 individual spectra, and the projected size of a TES pixel at the limb is 13 km.
Geometry of aortic heart valves. [prosthetic design
NASA Technical Reports Server (NTRS)
Karara, H. M.
1975-01-01
Photogrammetric measurements of the surface topography of the aortic valves obtained from silicon rubber molds of freshly excised human aortic valves are presented. The data are part of an investigation into the design of a new prosthetic valve which will be a central-flow device, like the real valve and unlike previous central-occluding prostheses. Since the maximum stress on the heart valve is induced when the valve is closed and subject to diastolic back-pressure, it was decided to determine the valve geometry during diastole. That is, the molds were formed by pouring the rubber down the excised aortas, causing the valves to close. The molds were made under different pressures (20-120 torr); photogrammetry served as a vehicle for the assessment of the mold topography through the following outputs: digital models, surface profiles, and contour maps.
Parametric design and gridding through relational geometry
NASA Technical Reports Server (NTRS)
Letcher, John S., Jr.; Shook, D. Michael
1995-01-01
Relational Geometric Synthesis (RGS) is a new logical framework for building up precise definitions of complex geometric models from points, curves, surfaces and solids. RGS achieves unprecedented design flexibility by supporting a rich variety of useful curve and surface entities. During the design process, many qualitative and quantitative relationships between elementary objects may be captured and retained in a data structure equivalent to a directed graph, such that they can be utilized for automatically updating the complete model geometry following changes in the shape or location of an underlying object. Capture of relationships enables many new possibilities for parametric variations and optimization. Examples are given of panelization applications for submarines, sailing yachts, offshore structures, and propellers.
Electromagnetic properties of material coated surfaces
NASA Technical Reports Server (NTRS)
Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.
1989-01-01
The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.
LOGO Based Instruction in Geometry.
ERIC Educational Resources Information Center
Yusuf, Mian Muhammad
The objective of this pretest-posttest Quasi-Experimental Design study was to determine the effects of LOGO Based Instruction (LBI) compared to instruction by teacher lecture and pencil-and-paper activities on: (1) students' understanding of the concepts of point, ray, line, and line segment; (2) students' attitudes toward learning geometry,…
Exploring Bundling Theory with Geometry
ERIC Educational Resources Information Center
Eckalbar, John C.
2006-01-01
The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…
Computer Environments for Learning Geometry.
ERIC Educational Resources Information Center
Clements, Douglas H.; Battista, Michael T.
1994-01-01
Reviews research describing computer functions of construction-oriented computer environments and evaluates their contributions to students' learning of geometry. Topics discussed include constructing geometric concepts; the use of LOGO in elementary school mathematics; software that focuses on geometric construction; and implications for the…
Dislocation dynamics in confined geometry
NASA Astrophysics Data System (ADS)
Gómez-García, D.; Devincre, B.; Kubin, L.
1999-05-01
A simulation of dislocation dynamics has been used to calculate the critical stress for a threading dislocation moving in a confined geometry. The optimum conditions for conducting simulations in systems of various sizes, down to the nanometer range, are defined. The results are critically compared with the available theoretical and numerical estimates for the problem of dislocation motion in capped layers.
Improving Student Reasoning in Geometry
ERIC Educational Resources Information Center
Wong, Bobson; Bukalov, Larisa
2013-01-01
In their years of teaching geometry, Wong and Bukalov realized that the greatest challenge has been getting students to improve their reasoning. Many students have difficulty writing formal proofs--a task that requires a good deal of reasoning. Wong and Bukalov reasoned that the solution was to divide the lessons into parallel tasks, allowing…
Foucault pendulum through basic geometry
NASA Astrophysics Data System (ADS)
von Bergmann, Jens; von Bergmann, HsingChi
2007-10-01
We provide a thorough explanation of the Foucault pendulum that utilizes its underlying geometry on a level suitable for science students not necessarily familiar with calculus. We also explain how the geometrically understood Foucault pendulum can serve as a prototype for more advanced phenomena in physics known as Berry's phase or geometric phases.
A Microcomputer Descriptive Geometry Tutorial.
ERIC Educational Resources Information Center
Zongyi, Zuo
1990-01-01
A software package which can aid descriptive geometry instruction is described. Included are the features of the software and the software configuration. This software has been honored as the best and most advanced software of its kind in the People's Republic of China. (KR)
Exploring Fractal Geometry with Children.
ERIC Educational Resources Information Center
Vacc, Nancy Nesbitt
1999-01-01
Heightens the awareness of elementary school teachers, teacher educators, and teacher-education researchers of possible applications of fractal geometry with children and, subsequently, initiates discussion about the appropriateness of including this new mathematics in the elementary curriculum. Presents activities for exploring children's…
Logo Activities in Elementary Geometry.
ERIC Educational Resources Information Center
Libeskind, Shlomo; And Others
These activities were designed for use at the University of Montana, where they were tested for four quarters in a mathematics for elementary teachers course on informal geometry. They are for use with Apple II-Plus computers with 64K memory or Apple IIe computers and MIT Logo. (Modifications are necessary if the activities are to be used with…
Towards a Navajo Indian Geometry.
ERIC Educational Resources Information Center
Pinxten, Rik; And Others
This book examines the Navajo system of spatial knowledge and describes a culture-based curriculum for the development of an intuitive geometry based on the child's experience of the physical world. Aspects of the Navajo cosmology relevant to spatial knowledge are discussed: the structure of the world; the dynamic nature of the universe;…
Analogical Reasoning in Geometry Education
ERIC Educational Resources Information Center
Magdas, Ioana
2015-01-01
The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…
Spectral geometry of symplectic spinors
NASA Astrophysics Data System (ADS)
Vassilevich, Dmitri
2015-10-01
Symplectic spinors form an infinite-rank vector bundle. Dirac operators on this bundle were constructed recently by Habermann, K. ["The Dirac operator on symplectic spinors," Ann. Global Anal. Geom. 13, 155-168 (1995)]. Here we study the spectral geometry aspects of these operators. In particular, we define the associated distance function and compute the heat trace asymptotics.
Teaching Geometry According to Euclid.
ERIC Educational Resources Information Center
Hartshorne, Robin
2000-01-01
This essay contains some reflections and questions arising from encounters with the text of Euclid's Elements. The reflections arise out of the teaching of a course in Euclidean and non-Euclidean geometry to undergraduates. It is concluded that teachers of such courses should read Euclid and ask questions, then teach a course on Euclid and later…
Noncommutative geometry inspired entropic inflation
NASA Astrophysics Data System (ADS)
Nozari, Kourosh; Akhshabi, Siamak
2011-06-01
Recently Verlinde proposed that gravity can be described as an emergent phenomena arising from changes in the information associated with the positions of material bodies. By using noncommutative geometry as a way to describe the microscopic microstructure of quantum spacetime, we derive modified Friedmann equation in this setup and study the entropic force modifications to the inflationary dynamics of early universe.
Van Hiele Guidelines for Geometry.
ERIC Educational Resources Information Center
Davey, Geoff; Holliday, Jack
1992-01-01
Describes five skills underpinning the understanding of geometry for primary and lower secondary mathematics students. Skill categories identified include (1) visual; (2) verbal; (3) drawing; (4) logical; and (5) application. Gives examples of skills appropriate for Van Hiele levels 1-3. (MDH)
General Relativity: Geometry Meets Physics
ERIC Educational Resources Information Center
Thomsen, Dietrick E.
1975-01-01
Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…
The basics of information geometry
NASA Astrophysics Data System (ADS)
Caticha, Ariel
2015-01-01
To what extent can we distinguish one probability distribution from another? Are there quantitative measures of distinguishability? The goal of this tutorial is to approach such questions by introducing the notion of the "distance" between two probability distributions and exploring some basic ideas of such an "information geometry".
The Idea of Order at Geometry Class.
ERIC Educational Resources Information Center
Rishel, Thomas
The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…
Teaching Activity-Based Taxicab Geometry
ERIC Educational Resources Information Center
Ada, Tuba
2013-01-01
This study aimed on the process of teaching taxicab geometry, a non-Euclidean geometry that is easy to understand and similar to Euclidean geometry with its axiomatic structure. In this regard, several teaching activities were designed such as measuring taxicab distance, defining a taxicab circle, finding a geometric locus in taxicab geometry, and…
Geometry in Transition: A Model of Emergent Geometry
Delgadillo-Blando, Rodrigo; O'Connor, Denjoe; Ydri, Badis
2008-05-23
We study a three matrix model with global SO(3) symmetry containing at most quartic powers of the matrices. We find an exotic line of discontinuous transitions with a jump in the entropy, characteristic of a 1st order transition, yet with divergent critical fluctuations and a divergent specific heat with critical exponent {alpha}=1/2. The low temperature phase is a geometrical one with gauge fields fluctuating on a round sphere. As the temperature increased the sphere evaporates in a transition to a pure matrix phase with no background geometrical structure. Both the geometry and gauge fields are determined dynamically. It is not difficult to invent higher dimensional models with essentially similar phenomenology. The model presents an appealing picture of a geometrical phase emerging as the system cools and suggests a scenario for the emergence of geometry in the early Universe.
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
Chi, Y; Tian, Z; Jiang, S; Jia, X
2015-06-15
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged
ROLES OF STARTING GEOMETRIES IN QUANTUM MECHANICS STUDIES OF CELLOBIOSE
Technology Transfer Automated Retrieval System (TEKTRAN)
Recently we studied the conformations of cellobiose with HF/6-31G(d) energy minimization by constructing an adiabatic energy surface for the region that contains most of the geometries that are observed in crystals. Single point HF/6-311+G(d) calculations were also carried out. We also looked at two...
Using Origami Boxes to Explore Concepts of Geometry and Calculus
ERIC Educational Resources Information Center
Wares, Arsalan
2011-01-01
The purpose of this classroom note is to provide an example of how a simple origami box can be used to explore important concepts of geometry and calculus. This article describes how an origami box can be folded, then it goes on to describe how its volume and surface area can be calculated. Finally, it describes how the box could be folded to…
ROLES OF STARTING GEOMETRIES IN QUANTUM MECHANICS STUDIES OF CELLOBIOSE
Technology Transfer Automated Retrieval System (TEKTRAN)
Recently we studied the conformations of cellobiose with HF/6-31G(d) energy minimization by constructing an adiabatic energy surface for the region that contains most of the geometries that are observed in crystals. Single point HF/6-311+G(d) calculations were also carried out. We also looked at tw...
Roles of starting geometries in quantum mechanics studies of cellobiose
Technology Transfer Automated Retrieval System (TEKTRAN)
A relaxed HF/6 31G(d) energy surface was constructed for the fraction of phi,psi space that contains most geometries from crystals of molecules similar to cellobiose. Two regions around other minima were examined with unconstrained B3LYP/6 31+G(d) minimizations, as were two sub regions covered by th...
Non-Euclidean geometry of twisted filament bundle packing
Bruss, Isaac R.; Grason, Gregory M.
2012-01-01
Densely packed and twisted assemblies of filaments are crucial structural motifs in macroscopic materials (cables, ropes, and textiles) as well as synthetic and biological nanomaterials (fibrous proteins). We study the unique and nontrivial packing geometry of this universal material design from two perspectives. First, we show that the problem of twisted bundle packing can be mapped exactly onto the problem of disc packing on a curved surface, the geometry of which has a positive, spherical curvature close to the center of rotation and approaches the intrinsically flat geometry of a cylinder far from the bundle center. From this mapping, we find the packing of any twisted bundle is geometrically frustrated, as it makes the sixfold geometry of filament close packing impossible at the core of the fiber. This geometrical equivalence leads to a spectrum of close-packed fiber geometries, whose low symmetry (five-, four-, three-, and twofold) reflect non-Euclidean packing constraints at the bundle core. Second, we explore the ground-state structure of twisted filament assemblies formed under the influence of adhesive interactions by a computational model. Here, we find that the underlying non-Euclidean geometry of twisted fiber packing disrupts the regular lattice packing of filaments above a critical radius, proportional to the helical pitch. Above this critical radius, the ground-state packing includes the presence of between one and six excess fivefold disclinations in the cross-sectional order. PMID:22711799
Optimization and experimental validation of electrostatic adhesive geometry
NASA Astrophysics Data System (ADS)
Ruffatto, D.; Shah, J.; Spenko, M.
This paper introduces a method to optimize the electrode geometry of electrostatic adhesives for robotic gripping, attachment, and manipulation applications. Electrostatic adhesion is achieved by applying a high voltage potential, on the order of kV, to a set of electrodes, which generates an electric field. The electric field polarizes the substrate material and creates an adhesion force. Previous attempts at creating electro-static adhesives have shown them to be effective, but researchers have made no effort to optimize the electrode configuration and geometry. We have shown that by optimizing the geometry of the electrode configuration, the electric field strength, and therefore the adhesion force, is enhanced. To accomplish this, Comsol Multiphysics was utilized to evaluate the average electric field generated by a given electrode geometry. Several electrode patterns were evaluated, including parallel conductors, concentric circles, Hilbert curves (a fractal geometry) and spirals. The arrangement of the electrodes in concentric circles with varying electrode widths proved to be the most effective. The most effective sizing was to use the smallest gap spacing allowable coupled with a variable electrode width. These results were experimentally validated on several different surfaces including drywall, wood, tile, glass, and steel. A new manufacturing process allowing for the fabrication of thin, conformal electro-static adhesive pads was utilized. By combining the optimized electrode geometry with the new fabrication process we are able to demonstrate a marked improvement of up to 500% in shear pressure when compared to previously published values.
Radio-frequency quadrupole vane-tip geometries
Crandall, K.R.; Mills, R.S.; Wangler, T.P.
1983-01-01
Radio-frequency quadrupole (RFQ) linacs are becoming widely accepted in the accelerator community. They have the remarkable capability of simultaneously bunching low-energy ion beams and accelerating them to energies at which conventional accelerators can be used, accomplishing this with high-transmission efficiencies and low-emittance growths. The electric fields, used for radial focusing, bunching, and accelerating, are determined by the geometry of the vane tips. The choice of the best vane-tip geometry depends on considerations such as the peak surface electric field, per cent of higher multipole components, and ease of machining. We review the vane-tip geometry based on the ideal two-term potential function and briefly describe a method for calculating the electric field components in an RFQ cell with arbitrary vane-tip geometry. We describe five basic geometries and use the prototype RFQ design for the Fusion Materials Irradiation Test (FMIT) accelerator as an example to compare the characteristics of the various geometries.
Radio-frequency quadrupole vane-tip geometries
Crandall, K.R.; Mills, R.S.; Wangler, T.P.
1983-08-01
Radio-frequency quadrupole (RFQ) linacs are becoming widely accepted in the accelerator community. They have the remarkable capability of simultaneously bunching low-energy ion beams and accelerating them to energies at which conventional accelerators can be used, accomplishing this with high transmission efficiencies and low-emittance growths. The electric fields, used for radial focusing, bunching, and accelerating, are determined by the geometry of the vane tips. The choice of the best vane-tip geometry depends on considerations such as the peak surface electric field, per cent of higher multipole components, and ease of machining. The authors review the vane-tip geometry based on the ''ideal'' two-term potential function and briefly describe a method for calculating the electric field components in an RFQ cell with arbitrary vane-tip geometry. They describe five basic geometries and use the prototype RFQ design for the Fusion Materials Irradiation Test (FMIT) accelerator as an example to compare the characteristics of the various geometries.
Geometry-invariant resonant cavities
NASA Astrophysics Data System (ADS)
Liberal, I.; Mahmoud, A. M.; Engheta, N.
2016-03-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.
Geometry-invariant resonant cavities
Liberal, I.; Mahmoud, A. M.; Engheta, N.
2016-01-01
Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103
Geometry of area without length
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Inami, Takeo
2016-01-01
To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.
Information geometry of Boltzmann machines.
Amari, S; Kurata, K; Nagaoka, H
1992-01-01
A Boltzmann machine is a network of stochastic neurons. The set of all the Boltzmann machines with a fixed topology forms a geometric manifold of high dimension, where modifiable synaptic weights of connections play the role of a coordinate system to specify networks. A learning trajectory, for example, is a curve in this manifold. It is important to study the geometry of the neural manifold, rather than the behavior of a single network, in order to know the capabilities and limitations of neural networks of a fixed topology. Using the new theory of information geometry, a natural invariant Riemannian metric and a dual pair of affine connections on the Boltzmann neural network manifold are established. The meaning of geometrical structures is elucidated from the stochastic and the statistical point of view. This leads to a natural modification of the Boltzmann machine learning rule. PMID:18276427
Extending dark optical trapping geometries.
Arnold, Aidan S
2012-07-01
New counterpropagating geometries are presented for localizing ultracold atoms in the dark regions created by the interference of Laguerre-Gaussian laser beams. In particular dark helices, an "optical revolver," axial lattices of rings, and axial lattices of ring lattices of rings are considered and a realistic scheme for achieving phase stability is explored. The dark nature of these traps will enable their use as versatile tools for low-decoherence atom interferometry with zero differential light shifts. PMID:22743436
Orbit propagation in Minkowskian geometry
NASA Astrophysics Data System (ADS)
Roa, Javier; Peláez, Jesús
2015-09-01
The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.
Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design
NASA Technical Reports Server (NTRS)
Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian
2012-01-01
We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.
Lefort, Natalie; LeBlanc, Rémi; Giroux, Marie-Andrée; Surette, Marc E
2016-01-01
Enrichment of tissues with ≥20-carbon n-3 PUFA like EPA is associated with positive cardiovascular outcomes. Stearidonic acid (SDA; 18 : 4n-3) and α-linolenic acid (ALA; 18 : 3n-3) are plant-derived dietary n-3 PUFA; however, direct comparisons of their impact on tissue n-3 PUFA content are lacking. Ahiflower(®) oil extracted from Buglossoides arvensis seeds is the richest known non-genetically modified source of dietary SDA. To investigate the safety and efficacy of dietary Ahiflower oil, a parallel-group, randomised, double-blind, comparator-controlled phase I clinical trial was performed. Diets of healthy subjects (n 40) were supplemented for 28 d with 9·1 g/d of Ahiflower (46 % ALA, 20 % SDA) or flax seed oil (59 % ALA). Blood and urine chemistries, blood lipid profiles, hepatic and renal function tests and haematology were measured as safety parameters. The fatty acid composition of fasting plasma, erythrocytes, polymorphonuclear cells and mononuclear cells were measured at baseline and after 14 and 28 d of supplementation. No clinically significant changes in safety parameters were measured in either group. Tissue ALA and EPA content increased in both groups compared with baseline, but EPA accrual in plasma and in all cell types was greater in the Ahiflower group (time × treatment interactions, P ≤ 0·01). Plasma and mononuclear cell eicosatetraenoic acid (20 : 4n-3) and docosapentaenoic acid (22 : 5n-3) content also increased significantly in the Ahiflower group compared with the flax group. In conclusion, the consumption of Ahiflower oil is safe and is more effective for the enrichment of tissues with 20- and 22-carbon n-3 PUFA than flax seed oil. PMID:26793308
Hageneder, Simone; Bauch, Martin; Dostalek, Jakub
2016-08-15
This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout. PMID:27260457
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its
Algebraic geometry realization of quantum Hall soliton
NASA Astrophysics Data System (ADS)
Abounasr, R.; Ait Ben Haddou, M.; El Rhalami, A.; Saidi, E. H.
2005-02-01
Using the Iqbal-Netzike-Vafa dictionary giving the correspondence between the H2 homology of del Pezzo surfaces and p-branes, we develop a way to approach the system of brane bounds in M-theory on S1. We first review the structure of 10-dimensional quantum Hall soliton (QHS) from the view of M-theory on S1. Then, we show how the D0 dissolution in D2-brane is realized in M-theory language and derive the p-brane constraint equations used to define appropriately the QHS. Finally, we build an algebraic geometry realization of the QHS in type IIA superstring and show how to get its type IIB dual. Other aspects are also discussed.
Geometry and mechanics of thin growing bilayers.
Pezzulla, Matteo; Smith, Gabriel P; Nardinocchi, Paola; Holmes, Douglas P
2016-05-11
We investigate how thin sheets of arbitrary shapes morph under the isotropic in-plane expansion of their top surface, which may represent several stimuli such as nonuniform heating, local swelling and differential growth. Inspired by geometry, an analytical model is presented that rationalizes how the shape of the disk influences morphing, from the initial spherical bending to the final isometric limit. We introduce a new measure of slenderness that describes a sheet in terms of both thickness and plate shape. We find that the mean curvature of the isometric state is three fourths the natural curvature, which we verify by numerics and experiments. We finally investigate the emergence of a preferred direction of bending in the isometric state, guided by numerical analyses. The scalability of our model suggests that it is suitable to describe the morphing of sheets spanning several orders of magnitude. PMID:27098344
Geometry and Mechanics of Thin Growing Bilayers
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Smith, Gabriel; Nardinocchi, Paola; Holmes, Douglas
We investigate how thin sheets of arbitrary shapes morph under the isotropic in-plane expansion of their top surface, which may represent several stimuli such as nonuniform heating, local swelling and differential growth. Inspired by geometry, an analytical model is presented that rationalizes how the shape of the disk influences morphing, from the initial spherical bending to the final isometric limit. We introduce a new measure of slenderness that describes a sheet in terms of both thickness and plate shape. We find that the mean curvature of the isometric state is three fourth's the natural curvature, which we verify by numerics and experiments. We finally investigate the emergence of a preferred direction of bending in the isometric state, guided by numerical analyses. The scalability of our model suggests that it is suitable to describe the morphing of sheets spanning several orders of magnitude. NSF Grant CMMI-1300860.
NASA Astrophysics Data System (ADS)
Mettier, Ralph; Pfiffner, O. Adrian
2010-05-01
Surface motion is, apart from the obvious topography, the most easily accessible and best quantifiable characteristic of a typical alpine-style orogen. While it is understood that several different processes, such as i.e. isostatic unloading and thermodynamic effects contribute to the overall motion, it is mostly unclear how large the individual contributions are, and how much of the observed motion is a consequence of ongoing tectonic shortening. A number of methods, such as enhanced GPS measurements, Interferometric Synthetic Aperture Radar (InSAR) and fission track (FT) dating, as well as precise leveling can now provide us with a good description of the vertical motion at present as well as in the fairly recent history of the orogen. This in turn, provides us with reliable, and often much needed, criteria for calibrating conceptual and numerical models of orogenesis and the involved processes. We present a series of finite element models, that attempt to reproduce the observed vertical surface motion on a roughly north-south cross section of the Swiss Alps in the 'ABAQUS' commercial FEM package. Unlike most comparable modeling approaches, we apply a fairly simple formulation of rheology, and focus on a highly complex geometrical representation of the cross section, constructed of individual tectonomorphic units such as the Aar- and Gotthard massifs, the Helvetic and Penninic nappe structures as well as the underlying subduction of the European crust. The models simulate a short timespan, with a fixed rate of shortening prescribed by the boundary conditions and the various interactions between the tectonomorphic units being the dominant adjustable parameters. The resulting motion at the surface of the model, as well as the internal deformation of the individual tectonomorphic units is then examined, interpreted and compared to their real-world counterparts. The models incorporate variations in the chosen physical descriptions of the materials, deforming in
McMechan, G.A.; Soegaard, K.
1998-05-25
An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.
ERIC Educational Resources Information Center
Kutluca, Tamer
2013-01-01
The aim of this study is to investigate the effect of dynamic geometry software GeoGebra on Van Hiele geometry understanding level of students at 11th grade geometry course. The study was conducted with pre and posttest control group quasi-experimental method. The sample of the study was 42 eleventh grade students studying in the spring term of…
Optimizing solar-cell grid geometry
NASA Technical Reports Server (NTRS)
Crossley, A. P.
1969-01-01
Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.
A Whirlwind Tour of Computational Geometry.
ERIC Educational Resources Information Center
Graham, Ron; Yao, Frances
1990-01-01
Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)
The Geometry of Quasar Outflows
NASA Astrophysics Data System (ADS)
Ganguly, Rajib
2012-10-01
Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.
Rotating convection in elliptical geometries
NASA Astrophysics Data System (ADS)
Evonuk, M.
2014-12-01
Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.
Worldsheet geometries of ambitwistor string
NASA Astrophysics Data System (ADS)
Ohmori, Kantaro
2015-06-01
Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.
Ooguri, Hirosi; Yamazaki, Masahito
2009-04-24
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold. PMID:19518695
Engaging All Students with "Impossible Geometry"
ERIC Educational Resources Information Center
Wiest, Lynda R.; Ayebo, Abraham; Dornoo, Michael D.
2010-01-01
Geometry is an area in which Australian students performed particularly poorly on the 2007 Trends in International Mathematics and Science Study (TIMSS). One innovative area of recreational geometry that has rich potential to engage and challenge a wide variety of students is "impossible geometry." An impossible geometric object is a…
Geometry: Career Related Units. Teacher's Edition.
ERIC Educational Resources Information Center
Pierro, Mike; And Others
Using six geometry units as resource units, the document explores 22 math-related careers. The authors intend the document to provide senior high school students with career orientation and exploration experiences while they learn geometry skills. The units are to be considered as a part of a geometry course, not a course by themselves. The six…
Preservice Primary School Teachers' Elementary Geometry Knowledge
ERIC Educational Resources Information Center
Marchis, Iuliana
2012-01-01
Geometrical notions and properties occur in real-world problems, thus Geometry has an important place in school Mathematics curricula. Primary school curricula lays the foundation of Geometry knowledge, pupils learn Geometry notions and properties by exploring their environment. Thus it is very important that primary school teachers have a good…
Teaching Geometry: An Experiential and Artistic Approach.
ERIC Educational Resources Information Center
Ogletree, Earl J.
The view that geometry should be taught at every grade level is promoted. Primary and elementary school children are thought to rarely have any direct experience with geometry, except on an incidental basis. Children are supposed to be able to learn geometry rather easily, so long as the method and content are adapted to their development and…
Fisher information geometry of the barycenter map
NASA Astrophysics Data System (ADS)
Itoh, Mitsuhiro; Satoh, Hiroyasu
2015-01-01
We report Fisher information geometry of the barycenter map associated with Busemann function Bθ of an Hadamard manifold X and present its application to Riemannian geometry of X from viewpoint of Fisher information geometry. This report is an improvement of [I-Sat'13] together with a fine investigation of the barycenter map.
Geometry in the Early Years: A Commentary
ERIC Educational Resources Information Center
Dindyal, Jaguthsing
2015-01-01
The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…
Use of Geometry for Spatial Reorientation in Children Applies Only to Symmetric Spaces
ERIC Educational Resources Information Center
Lew, Adina R.; Gibbons, Bryony; Murphy, Caroline; Bremner, J. Gavin
2010-01-01
Proponents of the geometric module hypothesis argue that following disorientation, many species reorient by use of macro-environment geometry. It is suggested that attention to the surface layout geometry of natural terrain features may have been selected for over evolutionary time due to the enduring and unambiguous location information it…
Neuronal activity controls transsynaptic geometry.
Glebov, Oleg O; Cox, Susan; Humphreys, Lawrence; Burrone, Juan
2016-01-01
The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792
Quanta of Geometry: Noncommutative Aspects
NASA Astrophysics Data System (ADS)
Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav
2015-03-01
In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M2(H ) and M4(C ) are obtained, which are the exact constituents of the standard model. Using the two maps from M4 to S4 the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes.
Weyl gravity and Cartan geometry
NASA Astrophysics Data System (ADS)
Attard, J.; François, J.; Lazzarini, S.
2016-04-01
We point out that the Cartan geometry known as the second-order conformal structure provides a natural differential geometric framework underlying gauge theories of conformal gravity. We are concerned with two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second one, they constrain the gauge field to be the "normal conformal Cartan connection.''Finally, we provide in a Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the Yang-Mills current of the normal conformal Cartan connection, as proved in [2].
Turbine engine variable geometry device
NASA Technical Reports Server (NTRS)
Rogo, Casimir (Inventor); Lenz, Herman N. (Inventor)
1985-01-01
A variable geometry device for use with the turbine nozzle of a turbine engine of the type having a support housing and a combustion chamber contained within the support housing. A pair of spaced walls in the support housing define an annular and radially extending nozzle passageway. The outer end of the nozzle passageway is open to the combustion chamber while the inner end of the nozzle passageway is open to one or more turbine stages. A plurality of circumferentially spaced nozzle vanes are mounted to one of the spaced walls and protrude across the nozzle passageway. An annular opening is formed around the opposite spaced wall and an annular ring is axially slidably mounted within the opening. A motor is operatively connected to this ring and, upon actuation, axially displaces the ring within the nozzle passageway. In addition, the ring includes a plurality of circumferentially spaced slots which register with the nozzle vanes so that the vane geometry remains the same despite axial displacement of the ring.
Target Detection Using Fractal Geometry
NASA Technical Reports Server (NTRS)
Fuller, J. Joseph
1991-01-01
The concepts and theory of fractal geometry were applied to the problem of segmenting a 256 x 256 pixel image so that manmade objects could be extracted from natural backgrounds. The two most important measurements necessary to extract these manmade objects were fractal dimension and lacunarity. Provision was made to pass the manmade portion to a lookup table for subsequent identification. A computer program was written to construct cloud backgrounds of fractal dimensions which were allowed to vary between 2.2 and 2.8. Images of three model space targets were combined with these backgrounds to provide a data set for testing the validity of the approach. Once the data set was constructed, computer programs were written to extract estimates of the fractal dimension and lacunarity on 4 x 4 pixel subsets of the image. It was shown that for clouds of fractal dimension 2.7 or less, appropriate thresholding on fractal dimension and lacunarity yielded a 64 x 64 edge-detected image with all or most of the cloud background removed. These images were enhanced by an erosion and dilation to provide the final image passed to the lookup table. While the ultimate goal was to pass the final image to a neural network for identification, this work shows the applicability of fractal geometry to the problems of image segmentation, edge detection and separating a target of interest from a natural background.
Neuronal activity controls transsynaptic geometry
Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan
2016-01-01
The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792
Quanta of geometry: noncommutative aspects.
Chamseddine, Ali H; Connes, Alain; Mukhanov, Viatcheslav
2015-03-01
In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M_{2}(H) and M_{4}(C) are obtained, which are the exact constituents of the standard model. Using the two maps from M_{4} to S^{4} the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes. PMID:25793795
Geometry and the quantum: basics
NASA Astrophysics Data System (ADS)
Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav
2014-12-01
Motivated by the construction of spectral manifolds in noncommutative geometry, we introduce a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of scalar fields. This commutation relation appears in two versions, one sided and two sided. It implies the quantization of the volume. In the one-sided case it implies that the manifold decomposes into a disconnected sum of spheres which will represent quanta of geometry. The two sided version in dimension 4 predicts the two algebras M 2(ℍ) and M 4(ℂ) which are the algebraic constituents of the Standard Model of particle physics. This taken together with the non-commutative algebra of functions allows one to reconstruct, using the spectral action, the Lagrangian of gravity coupled with the Standard Model. We show that any connected Riemannian Spin 4-manifold with quantized volume > 4 (in suitable units) appears as an irreducible representation of the two-sided commutation relations in dimension 4 and that these representations give a seductive model of the "particle picture" for a theory of quantum gravity in which both the Einstein geometric standpoint and the Standard Model emerge from Quantum Mechanics. Physical applications of this quantization scheme will follow in a separate publication.
Alternative cosmology from cusp geometries
NASA Astrophysics Data System (ADS)
Rosa, Reinaldo; Herbin Stalder Díaz, Diego
We study an alternative geometrical approach on the problem of classical cosmological singularity. It is based on a generalized function f(x,y)=x(2+y^2=(1-z)z^n) which consists of a cusped projected coupled isosurface. Such a projected geometry is computed and analized into the context of Friedmann singularity-free cosmology where a pre-big bang scenario is considered. Assuming that the mechanism of cusp formation is described by non-linear oscillations of a pre- big bang extended very high energy density field (>3x10^{94} kg/m^3$), we show that the action under the gravitational field follows a tautochrone of revolution, understood here as the primary projected geometry that alternatively replaces the Friedmann singularity in the standard big bang theory. As shown here this new approach allows us to interpret the nature of both matter and dark energy from first geometric principles [1]. [1] Rosa et al. DOI: 10.1063/1.4756991
NASA Astrophysics Data System (ADS)
Cieslinski, Jan L.; Ferapontov, Eugene V.; Kitaev, Alexander V.; Nimmo, Jonathan J. C.
2009-10-01
Geometric ideas are present in many areas of modern theoretical physics and they are usually associated with the presence of nonlinear phenomena. Integrable nonlinear systems play a prime role both in geometry itself and in nonlinear physics. One can mention general relativity, exact solutions of the Einstein equations, string theory, Yang-Mills theory, instantons, solitons in nonlinear optics and hydrodynamics, vortex dynamics, solvable models of statistical physics, deformation quantization, and many others. Soliton theory now forms a beautiful part of mathematics with very strong physical motivations and numerous applications. Interactions between mathematics and physics associated with integrability issues are very fruitful and stimulating. For instance, spectral theories of linear quantum mechanics turned out to be crucial for studying nonlinear integrable systems. The modern theory of integrable nonlinear partial differential and difference equations, or the `theory of solitons', is deeply rooted in the achievements of outstanding geometers of the end of the 19th and the beginning of the 20th century, such as Luigi Bianchi (1856-1928) and Jean Gaston Darboux (1842-1917). Transformations of surfaces and explicit constructions developed by `old' geometers were often rediscovered or reinterpreted in a modern framework. The great progress of recent years in so-called discrete geometry is certainly due to strong integrable motivations. A very remarkable feature of the results of the classical integrable geometry is the quite natural (although nontrivial) possibility of their discretization. This special issue is dedicated to Jean Gaston Darboux and his pioneering role in the development of the geometric ideas of modern soliton theory. The most famous aspects of his work are probably Darboux transformations and triply orthogonal systems of surfaces, whose role in modern mathematical physics cannot be overestimated. Indeed, Darboux transformations play a central
Reconstruction of Human Monte Carlo Geometry from Segmented Images
NASA Astrophysics Data System (ADS)
Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican
2014-06-01
Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified
Descriptive Geometry and Geometric Modeling.
ERIC Educational Resources Information Center
Adams, J. Alan
1988-01-01
Describes experiences for engineering students to develop spatial awareness and reasoning capability. Describes geometric modeling, basic geometric concepts, operations, surface modeling, and conclusions. (YP)
Tuning spin transport properties and molecular magnetoresistance through contact geometry
Ulman, Kanchan; Narasimhan, Shobhana; Delin, Anna
2014-01-28
Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its “closed” and “open” conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%.
Geometry optimization for micro-pressure sensor considering dynamic interference
NASA Astrophysics Data System (ADS)
Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun
2014-09-01
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz1/4. The favorable overall performances enable the sensor more suitable for altimetry.
Geometry optimization for micro-pressure sensor considering dynamic interference
Yu, Zhongliang; Zhao, Yulong Li, Lili; Tian, Bian; Li, Cun
2014-09-15
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz{sup 1/4}. The favorable overall performances enable the sensor more suitable for altimetry.
Geometry optimization for micro-pressure sensor considering dynamic interference.
Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun
2014-09-01
Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz(1/4). The favorable overall performances enable the sensor more suitable for altimetry. PMID:25273764
Gully geometry: what are we measuring?
NASA Astrophysics Data System (ADS)
Casalí, Javier; Giménez, Rafael; Ángel Campo, Miguel
2014-05-01
Gully erosion has attracted the attention of many scientists during the last decades, and gullies are an important source of sediment within catchments. For succeeding in gully erosion research, gullies must be properly characterized. Characterization includes the determination of gully morphology and volume, being the definition of gully width (W) and depth (D) -and consequently related variables such as the well-known W/D ratio- key issues toward to this goal. However, and surprisingly, universally accepted criteria (rules or guidance) to define gully morphology are lacking. This because the protocol every researcher follows to measure the eroded channel geometry is generally taken for granted and most of the time even no explanation is given about it. For example, when analyzing a gully cross section we usually just identify gully depth with gully maximum depth. But, is this the right protocol? What does this length really represent? What is its meaning? All this uncertainties can lead to non-comparable results and then important inconsistencies. So, to define universal rules of procedure would allow gully scientists "speak the same language" and then deliver truly comparable gully geometry and volume. On the other hand, there are other misunderstandings. For example, very frequently we characterize or depict a whole gully only through some of its cross sections. Again, is this correct? The problem is even more complex when considering that gully geometry may (largely) change along the channel. The main aim of this presentation is to highlight some (unnoticed) common flaws when measuring and describing gully geometry, hoping ultimately to open a debate on that subject. For this last purpose, a conceptual approach to define gully cross section width and other derived variables is firstly proposed. It is based on the subtraction of a highly detailed digital elevation model of a landscape surface containing the studied gully (DEM1) from a detailed spatial
Quadric solids and computational geometry
Emery, J.D.
1980-07-25
As part of the CAD-CAM development project, this report discusses the mathematics underlying the program QUADRIC, which does computations on objects modeled as Boolean combinations of quadric half-spaces. Topics considered include projective space, quadric surfaces, polars, affine transformations, the construction of solids, shaded image, the inertia tensor, moments, volume, surface integrals, Monte Carlo integration, and stratified sampling. 1 figure.
Clustering Implies Geometry in Networks
NASA Astrophysics Data System (ADS)
Krioukov, Dmitri
2016-05-01
Network models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensemble of random geometric graphs. Here we identify structural properties of networks that guarantee that random graphs having these properties are geometric. Specifically we show that random graphs in which expected degree and clustering of every node are fixed to some constants are equivalent to random geometric graphs on the real line, if clustering is sufficiently strong. Large numbers of triangles, homogeneously distributed across all nodes as in real networks, are thus a consequence of network geometricity. The methods we use to prove this are quite general and applicable to other network ensembles, geometric or not, and to certain problems in quantum gravity.
Chemical shift driven geometry optimization.
Witter, Raiker; Priess, Wolfram; Sternberg, Ulrich
2002-01-30
A new method for refinement of 3D molecular structures by geometry optimization is presented. Prerequisites are a force field and a very fast procedure for the calculation of chemical shifts in every step of optimization. To the energy, provided by the force field (COSMOS force field), a pseudoenergy, depending on the difference between experimental and calculated chemical shifts, is added. In addition to the energy gradients, pseudoforces are computed. This requires the derivatives of the chemical shifts with respect to the coordinates. The pseudoforces are analytically derived from the integral expressions of the bond polarization theory. Single chemical shift values attributed to corresponding atoms are considered for structural correction. As a first example, this method is applied for proton position refinement of the D-mannitol X-ray structure. A crystal structure refinement with 13C chemical shift pseudoforces is carried out. PMID:11924742
Clustering Implies Geometry in Networks.
Krioukov, Dmitri
2016-05-20
Network models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensemble of random geometric graphs. Here we identify structural properties of networks that guarantee that random graphs having these properties are geometric. Specifically we show that random graphs in which expected degree and clustering of every node are fixed to some constants are equivalent to random geometric graphs on the real line, if clustering is sufficiently strong. Large numbers of triangles, homogeneously distributed across all nodes as in real networks, are thus a consequence of network geometricity. The methods we use to prove this are quite general and applicable to other network ensembles, geometric or not, and to certain problems in quantum gravity. PMID:27258887
Three-dimensional representation of complex muscle architectures and geometries.
Blemker, Silvia S; Delp, Scott L
2005-05-01
Almost all computer models of the musculoskeletal system represent muscle geometry using a series of line segments. This simplification (i) limits the ability of models to accurately represent the paths of muscles with complex geometry and (ii) assumes that moment arms are equivalent for all fibers within a muscle (or muscle compartment). The goal of this work was to develop and evaluate a new method for creating three-dimensional (3D) finite-element models that represent complex muscle geometry and the variation in moment arms across fibers within a muscle. We created 3D models of the psoas, iliacus, gluteus maximus, and gluteus medius muscles from magnetic resonance (MR) images. Peak fiber moment arms varied substantially among fibers within each muscle (e.g., for the psoas the peak fiber hip flexion moment arms varied from 2 to 3 cm, and for the gluteus maximus the peak fiber hip extension moment arms varied from 1 to 7 cm). Moment arms from the literature were generally within the range of fiber moment arms predicted by the 3D models. The models accurately predicted changes in muscle surface geometry over a 55 degrees range of hip flexion, as compared to changes in shape predicted from MR images (average errors between the model and measured surfaces were between 1.7 and 5.2 mm). This new framework for representing muscle will enhance the accuracy of computer models of the musculoskeletal system. PMID:15981866
Powell, Rocky O.; Miller, Sarah J.; Westergard, Britt E.; Mulvihill, Christiane I.; Baldigo, Barry P.; Gallagher, Anne S.; Starr, Richard R.
2004-01-01
Many disturbed streams within New York State are being restored in an effort to provide bank and bed stability and thereby decrease sedimentation and erosion. Efforts to identify and provide accurate indicators for stable-channel characteristics for ungaged streams have been hampered by the lack of regional equations or relations that relate drainage area to bankfull discharge and to channel depth, width, and cross-sectional area (bankfull hydraulic-geometry relations). Regional equations are needed to confirm bankfull hydraulic-geometry, assess stream stability, evaluate restoration needs, and verify restoration design for ungaged streams that lack stage-to-discharge ratings or historic peak-flow records. This report presents guidelines for surveying bankfull channel geometry at USGS stream gages and developing regional hydraulic-geometry relations (equations) for wadeable streams in New York. It summarizes methods to (1) compile and assess existing hydrologic, geometric, photographic, and topographic data, (2) conduct stream-reconnaissance inspections, (3) identify channel-bankfull characteristics, (4) conduct longitudinal and cross-section surveys, (5) measure stream discharge, (6) develop and refine bankfull hydraulic-geometry equations, and (7) analyze and assure data completeness and quality. The techniques primarily address wadeable streams with either active or discontinued surface-water and crest-stage gages. The relations can be applied to ungaged or actively gaged streams that are wadeable, and may be extended to non-wadeable streams (with some limitations) if they have drainage areas comparable to those used to develop the relations.
Changing the Structure Boundary Geometry
Karasev, Viktor; Dzlieva, Elena; Ivanov, Artyom
2008-09-07
Analysis of previously obtained results shows that hexagonal crystal lattice is the dominant type of ordering, in particular, in striated glow discharges. We explore the possibility for changing the dust distribution in horizontal cross sections of relatively highly ordered structures in a glow-discharge. Presuming that boundary geometry can affect dust distribution, we used cylindrical coolers held at 0 deg. C and placed against a striation containing a structure, to change the geometry of its outer boundary. By varying the number of coolers, their positions, and their separations from the tube wall, azimuthally asymmetric thermophoretic forces can be used to form polygonal boundaries and vary the angles between their segments (in a horizontal cross section). The corner in the structure's boundary of 60 deg. stimulates formation of hexagonal cells. The structure between the supported parallel boundaries is also characterized by stable hexagonal ordering. We found that a single linear boundary segment does not give rise to any sizable domain, but generates a lattice extending from the boundary (without edge defects). A square lattice can be formed by setting the angle equal to 90 deg. . However, angles of 45 deg. and 135 deg. turned out easier to form. Square lattice was created by forming a near-135 deg. corner with four coolers. It was noted that no grain ordering is observed in the region adjacent to corners of angles smaller than 30 deg. , which do not promote ordering into cells of any shape. Thus, manipulation of a structure boundary can be used to change dust distribution, create structures free of the ubiquitous edge defects that destroy orientation order, and probably change the crystal lattice type.
Geometry of discrete quantum computing
NASA Astrophysics Data System (ADS)
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
Convection in Slab and Spheroidal Geometries
NASA Technical Reports Server (NTRS)
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
Aeroelastic Deflection of NURBS Geometry
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1998-01-01
The purpose of this paper is to present an algorithm for using NonUniform Rational B-Spline (NURBS) representation in an aeroelastic loop. The algorithm is based on creating a least-squares NURBS surface representing the aeroelastic defection. The resulting NURBS surfaces are used to update either the original Computer- Aided Design (CAD) model, Computational Structural Mechanics (CSM) grid or the Computational Fluid Dynamics (CFD) grid. Results are presented for a generic High-Speed Civil Transport (HSCT).
Fuel Injector Design Optimization for an Annular Scramjet Geometry
NASA Astrophysics Data System (ADS)
Steffen, Christopher J., Jr.
2003-01-01
A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.
Acoustic Radiation from Smart Foam for Various Foam Geometries
NASA Astrophysics Data System (ADS)
Shivakumar, Nishkala
2011-10-01
Smart foam is an emerging active-passive noise control technology with many applications. Smart foam consists of passive foam with an embedded curved piezoelectric (PZT) film. We experimented with three geometries of varying film curvatures and a constant cross-sectional area of 58 cm^2, constructed using melamine foam covered with 28 μm thick polyvinylidene fluoride (piezoelectric) films with Cu-Ni surface electrodes. An AC voltage provided by a signal generator and amplifier drives the smart foam. An omnidirectional microphone mounted at a distance 100mm from the foam surface measured the sound level (dB) and harmonic distortion generated by the smart foam. Experiments were repeated for voltages, 40V-140V, and frequencies, 300Hz-2000Hz. The result show that the sound level generated by the smart foams has a characteristic frequency response common to all geometries and a peak sound level between 900 to 1,100 Hz.
Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.
Fuchs, Franz G; Hjelmervik, Jon M
2016-02-01
A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results. PMID:26731454
Geometry of solar coronal rays
NASA Astrophysics Data System (ADS)
Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.
2016-02-01
Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field
F-theory and N = 1 Quivers from Polyvalent Geometry
NASA Astrophysics Data System (ADS)
Adil, Belhaj; Moulay Brahim, Sedra
2016-04-01
We study four-dimensional quiver gauge models from F-theory compactified on fourfolds with hyper-Kähler structure. Using intersecting complex toric surfaces, we derive a class of N = 1 quivers with charged fundamental matter placed on external nodes. The emphasis is on how local Calabi–Yau equations solve the corresponding physical constraints including the anomaly cancelation condition. Concretely, a linear chain of SU(N) groups with flavor symmetries has been constructed using polyvalent toric geometry.
Riemannian geometry of fluctuation theory: An introduction
NASA Astrophysics Data System (ADS)
Velazquez, Luisberis
2016-05-01
Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory (information geometry), which describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dpξ(x|θ). This theory states a connection among geometry notions and statistical properties: separation distance as a measure of relative probabilities, curvature as a measure about the existence of irreducible statistical correlations, among others. In statistical mechanics, fluctuation geometry arises as the mathematical apparatus of a Riemannian extension of Einstein fluctuation theory, which is also closely related to Ruppeiner geometry of thermodynamics. Moreover, the curvature tensor allows to express some asymptotic formulae that account for the system fluctuating behavior beyond the gaussian approximation, while curvature scalar appears as a second-order correction of Legendre transformation between thermodynamic potentials.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1996-01-01
The purpose of this paper is to discuss the use of Computer-Aided Design (CAD) geometry in a Multi-Disciplinary Design Optimization (MDO) environment. Two techniques are presented to facilitate the use of CAD geometry by different disciplines, such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). One method is to transfer the load from a CFD grid to a CSM grid. The second method is to update the CAD geometry for CSM deflection.
Geometry Software Common to All Experiments
NASA Technical Reports Server (NTRS)
1984-01-01
All imaging, remote sensing, and in situ experiments require information about the geometry and location of observations. An alterntive to collecting geometry data with a supplementary experiment data record is proposed. The new method involves identifying the fundamental information, that is, the geometric state upon which geometry calculations are based, and maintaining or delivering these calculations in separate packages which are easily replaced when improved information is available. Implementation of this method in spacecraft navigation is discussed along with software system requirements.
Photocatalytic Activity of Immobilized Geometries of TiO2
NASA Astrophysics Data System (ADS)
Koohestani, Hassan; Sadrnezhaad, Sayed Khatiboleslam
2015-07-01
Photocatalysts that are used for waste water treatment are often suspended in the waste water during processing and then must be removed from the water after treatment. To reduce the post-degradation expenses and time, separation is facilitated by an immobilization process. The effect of immobilized TiO2 geometries on the photocatalytic behavior of the photocatalyst is investigated in this work. Powder, fiber, film, and network-shaped TiO2 nanocatalysts were produced by using different templates. The cellulose fiber and ceramic templates were used as substrates for fiber and film/network geometry production. The products were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement. The photocatalytic performance was determined by methyl orange degradation and cyanide photo-oxidation under ultraviolet irradiation. From the SEM images, the size range of the TiO2 particles in the film and in the network geometries were 20-60 nm. The nanoparticles had covered the surface of the substrate, uniformly. Removal of the cellulose substrate by heat treatment yielded hollow TiO2 fibers with diameters of 0.5-1 µm and lengths of 30 µm. The efficiencies of both photocatalytic reactions were obtained in the following order: powder > network > film > fiber geometry. The rate constant of the dye degradation reaction using powder catalyst was 0.0118 min-1. For network catalyst, it was 0.0083 min-1. Corresponding results for cyanide disinfection were 0.0055 and 0.0046 min-1. Although powder samples had higher rate constants, network geometry was preferred due to its higher immobility.
Geometry-induced asymmetric diffusion
Shaw, Robert S.; Packard, Norman; Schröter, Matthias; Swinney, Harry L.
2007-01-01
Past work has shown that ions can pass through a membrane more readily in one direction than the other. We demonstrate here in a model and an experiment that for a mixture of small and large particles such asymmetric diffusion can arise solely from an asymmetry in the geometry of the pores of the membrane. Our deterministic simulation considers a two-dimensional gas of elastic disks of two sizes diffusing through a membrane, and our laboratory experiment examines the diffusion of glass beads of two sizes through a metal membrane. In both experiment and simulation, the membrane is permeable only to the smaller particles, and the asymmetric pores lead to an asymmetry in the diffusion rates of these particles. The presence of even a small percentage of large particles can clog a membrane, preventing passage of the small particles in one direction while permitting free flow of the small particles in the other direction. The purely geometric kinetic constraints may play a role in common biological contexts such as membrane ion channels. PMID:17522257
Linguistic geometry for technologies procurement
NASA Astrophysics Data System (ADS)
Stilman, Boris; Yakhnis, Vladimir; Umanskiy, Oleg; Boyd, Ron
2005-05-01
In the modern world of rapidly rising prices of new military hardware, the importance of Simulation Based Acquisition (SBA) is hard to overestimate. With SAB, DOD would be able to test, develop CONOPS for, debug, and evaluate new conceptual military equipment before actually building the expensive hardware. However, only recently powerful tools for real SBA have been developed. Linguistic Geometry (LG) permits full-scale modeling and evaluation of new military technologies, combinations of hardware systems and concepts of their application. Using LG tools, the analysts can create a gaming environment populated with the Blue forces armed with the new conceptual hardware as well as with appropriate existing weapons and equipment. This environment will also contain the intelligent enemy with appropriate weaponry and, if desired, with a conceptual counters to the new Blue weapons. Within such LG gaming environment, the analyst can run various what-ifs with the LG tools providing the simulated combatants with strategies and tactics solving their goals with minimal resources spent.
Eye movements and information geometry.
Lenz, Reiner
2016-08-01
The human visual system uses eye movements to gather visual information. They act as visual scanning processes and can roughly be divided into two different types: small movements around fixation points and larger movements between fixation points. The processes are often modeled as random walks, and recent models based on heavy tail distributions, also known as Levý flights, have been used in these investigations. In contrast to these approaches we do not model the stochastic processes, but we will show that the step lengths of the movements between fixation points follow generalized Pareto distributions (GPDs). We will use general arguments from the theory of extreme value statistics to motivate the usage of the GPD and show empirically that the GPDs provide good fits for measured eye tracking data. In the framework of information geometry the GPDs with a common threshold form a two-dimensional Riemann manifold with the Fisher information matrix as a metric. We compute the Fisher information matrix for the GPDs and introduce a feature vector describing a GPD by its parameters and different geometrical properties of its Fisher information matrix. In our statistical analysis we use eye tracker measurements in a database with 15 observers viewing 1003 images under free-viewing conditions. We use Matlab functions with their standard parameter settings and show that a naive Bayes classifier using the eigenvalues of the Fisher information matrix provides a high classification rate identifying the 15 observers in the database. PMID:27505658
Cusp geometry in MHD simulations
NASA Astrophysics Data System (ADS)
Siscoe, George; Crooker, Nancy; Siebert, Keith; Maynard, Nelson; Weimer, Daniel; White, Willard
2005-01-01
The MHD simulations described here show that the latitude of the high-altitude cusp decreases as the IMF swings from North to South, that there is a pronounced dawn dusk asymmetry at high-altitude associated with a dawn dusk component of the IMF, and that at the same time there is also a pronounced dawn dusk asymmetry at low-altitude. The simulations generate a feature that represents what has been called the cleft. It appears as a tail (when the IMF has a By component) attached to the cusp, extending either toward the dawn flank or the dusk flank depending on the dawn dusk orientation of the IMF. This one-sided cleft connects the cusp to the magnetospheric sash. We compare cusp geometry predicted by MHD simulations against published observations based on Hawkeye and DMSP data. Regarding the high-altitude predictions, the comparisons are not definitive, mainly because the observations are incomplete or mutually inconsistent. Regarding the low-altitude prediction of a strong dawn dusk asymmetry, the observations are unambiguous and are in good qualitative agreement with the prediction.
The effects of solidification on sill propagation dynamics and geometry
NASA Astrophysics Data System (ADS)
Lola, Chanceaux; Thierry, Menand
2015-04-01
The effects of solidification on sill propagation dynamics and geometry are studied by means of analogue laboratory experiments. Hot fluid vegetable oil (a magma analogue), that solidifies during its propagation, is injected as a sill in a colder layered gelatine solid (an elastic host rock analogue). The injection flux and temperature are maintained constant during an experiment. In order to vary the importance of solidification and quantify its effect on sill propagation, the injection flux and temperature are systematically varied between each experiment. Depending on the importance of solidification effects, two extreme behaviours for sill propagation dynamics and geometry are observed. When solidification effects are small (high injection temperatures and fluxes), the propagation is continuous and the sill has a regular and smooth surface. Inversely, when solidification effects are important (low injection temperatures and fluxes), sill propagation is discontinuous and occurs by steps. After each propagation step, the sill stalls, thickens progressively by storing hot fluid vegetable oil beneath the partially solidified intrusion, without growing neither in length nor in breadth, and after a pause, the propagation initiates again, soon followed by a new episode of momentary arrest. The geometry of these sills displays folds, ropy structures on their surface, and lobes with imprints of the leading fronts that correspond to each step of surface creation. These experiments show that for a given, constant injected volume, as solidification effects increase, the surface of the sills decreases, their thickness increases, and the number of propagation steps increases. In the same way lower solidification effects promote larger sill surfaces, lower thicknesses, and a lower number of propagation steps. These results have various geological and geophysical implications. Regarding the geometry of sills, 3D seismic studies in sedimentary basins reveal sills with lobate
Geometry attained by pressurized membranes
NASA Astrophysics Data System (ADS)
Palisoc, Arthur; Veal, Gordon; Cassapakis, Constantine; Greschik, Gyula; Mikulas, Martin
1998-08-01
An intensive investigation has been carried out to study the surface profiles obtained as a result of the large deformations of pressurized membranes. The study shows that the inflated membrane shapes may have the requisite surface accuracy for use in future large space apertures. Both analytical and experimental work have been carried out. On the analytical side, the classical work of Hencky on flat circular membranes was extended to eliminate the limitations it imposed; namely a lateral non-follower pressure with no pre-stress. The result is a computer program for the solution of the pressurized circular membrane problem. The reliability of the computer program is demonstrated via verification against FAIM, a nonlinear finite element solver developed primarily for the analysis of inflated membrane shapes. The experimental work includes observations made by Veal on the (W-shaped) deviations between the membrane deflected shape and the predicted profile. More recent measurements have been made of the deformations of pressurized flat circular and parabolic membranes using photogrammetric techniques. The surface error quantification analyses include the effect of material properties, geometric properties, loading uncertainties, and boundary conditions. These effects are very easily handled by the special FEM code FAIM which had recently been enhanced to predict the on-orbit dynamics, RF, and solar concentration characteristics of inflatable parabolic antennas/reflectors such as the IAE that flew off the space shuttle Endeavour in May 1996. The results of measurements have been compared with analyses and their ramifications on precision-shape, large-aperture parabolic space reflectors are discussed. Results show that very large space apertures with surface slope error accuracies on the order to space reflectors are discussed. Results show that very large space apertures with surface slope error accuracies on the order of 1 milliradian or less are feasible. Surface
Accretion shock geometries in the magnetic variables
NASA Technical Reports Server (NTRS)
Stockman, H. S.
1988-01-01
The first self consistent shock models for the AM Herculis-type systems successfully identified the dominant physical processes and their signatures. These homogenous shock models predict unpolarized, Rayleigh-Jeans optical spectra with sharp cutoffs and rising polarizations as the shocks become optically thin in the ultraviolet. However, the observed energy distributions are generally flat with intermediate polarizations over a broad optical band. These and other observational evidence support a non-homogenous accretion profile which may extend over a considerable fraction of the stellar surface. Both the fundamental assumptions underlying the canonical 1-D shock model and the extension of this model to inhomogenous accretion shocks were identified, for both radial and linear structures. The observational evidence was also examined for tall shocks and little evidence was found for relative shock heights in excess of h/R(1) greater than or equal to 0.1. For several systems, upper limits to the shock height can be obtained from either x ray or optical data. These lie in the region h/R(1) is approximately 0.01 and are in general agreement with the current physical picture for these systems. The quasi-periodic optical variations observed in several magnetic variables may eventually prove to be a major aid in further understanding their accretion shock geometries.
Effective geometry of a white dwarf
Bini, D.; Cherubini, C.; Filippi, S.
2011-03-15
The ''effective geometry'' formalism is used to study the perturbations of a white dwarf described as a self-gravitating fermion gas with a completely degenerate relativistic equation of state of barotropic type. The quantum nature of the system causes an absence of homological properties, manifested instead by polytropic stars, and requires a parametric study of the solutions both at the numerical and analytical level. We have explicitly derived a compact analytical parametric approximate solution of Pade type, which gives density curves and stellar radii in good accordance with already existing numerical results. After validation of this new type of approximate solutions, we use them to construct the effective acoustic metric governing general perturbations following Chebsch's formalism. Even in this quantum case, the stellar surface exhibits a curvature singularity due to the vanishing of density, as already evidenced in past studies on nonquantum self-gravitating polytropic stars. The equations of the theory are finally numerically integrated in the simpler case of irrotational spherical pulsating perturbations, including the effect of backreaction, in order to have a dynamical picture of the process occurring in the acoustic metric.
Vesicle Geometries Enabled by Dynamically Trapped States.
Su, Jiaye; Yao, Zhenwei; de la Cruz, Monica Olvera
2016-02-23
Understanding and controlling vesicle shapes is a fundamental challenge in biophysics and materials design. In this paper, we design dynamic protocols for enlarging the shape space of both fluid and crystalline vesicles beyond the equilibrium zone. By removing water from within the vesicle at different rates, we numerically produced a series of dynamically trapped stable vesicle shapes for both fluid and crystalline vesicles in a highly controllable fashion. In crystalline vesicles that are continuously dehydrated, simulations show the initial appearance of small flat areas over the surface of the vesicles that ultimately merge to form fewer flat faces. In this way, the vesicles transform from a fullerene-like shape into various faceted polyhedrons. We perform analytical elasticity analysis to show that these salient features are attributable to the crystalline nature of the vesicle. The potential to use dynamic protocols, such as those used in this study, to engineer vesicle shape transformations is helpful for exploiting the richness of vesicle geometries for desired applications. PMID:26795199
3D geometry applied to atmospheric layers
NASA Astrophysics Data System (ADS)
Nadjib Kouahla, Mohamed; Moreels, Guy; Faivre, Michael
Epipolar geometry is an efficient method for generating 3D representations of objects. Here we present an original application of this method to the case of atmospheric layers. Two synchronized simultaneous images of the same scene are taken in two sites at a distance D. The 36*36 fields of view are oriented face to face along the same line of sight, but in opposite directions. The elevation angle of the optical axis above the horizon is 17. The observed objects are airglow emissions or cirrus clouds or aircraft trails. In the case of clouds, the shape of the objects is diffuse. To obtain a superposition of the common observed zone, it is necessary to calculate a normalized cross-correlation coefficient (NCC) to identify pairs of matching points in both images. The perspective effect in the rectangular images is inverted to produce a satellite-type view of the atmospheric layer as could be seen from an overlying satellite. We developed a triangulation algorithm to retrieve the 3D surface of the observed layer. The stereoscopic method was used to retrieve the wavy structure of the OH emissive layer at the altitude of 87 km. The distance between the observing sites was 600 km. Results obtained in Peru from the sites of Cerro Cosmos and Cerro Verde will be presented. We are currently extending the stereoscopic procedure to the study of troposphere cirruses, of natural origin or induced by aircraft engines. In this case, the distance between observation sites is D 60 km.
Aerodynamic characteristics of scissor-wing geometries
NASA Technical Reports Server (NTRS)
Selberg, Bruce P.; Rokhsaz, Kamran; Housh, Clinton S.
1991-01-01
A scissor-wing configuration, consisting of two independently sweeping-wing surfaces, is compared with an equivalent fixed-wing geometry baseline over a wide Mach number range. The scissor-wing configuration is shown to have a higher total lift-to-drag ratio than the baseline in the subsonic region primarily due to the slightly higher aspect ratio of the unswept scissor wing. In the transonic region, the scissor wing is shown to have a higher lift-to-drag ratio than the baseline for values of lift coefficient greater than 0.35. It is also shown that, through the use of wing decalage, the lift of the two independent scissor wings can be equalized. In the supersonic regime, the zero lift wave drag of the scissor-wing at maximum sweep is shown to be 50 and 28 percent less than the zero lift wave drag of the baseline at Mach numbers 1.5 and 3.0, respectively. In addition, a pivot-wing configuration is introduced and compared with the scissor wing. The pivot-wing configuration is shown to have a slightly higher total lift-to-drag ratio than the scissor wing in the supersonic region due to the decreased zero lift wave drag of the pivot-wing configuration.
Binary stellar winds. [flow and magnetic field geometry
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.
Computer aided design and analysis of gear tooth geometry
NASA Technical Reports Server (NTRS)
Chang, S. H.; Huston, R. L.
1987-01-01
A simulation method for gear hobbing and shaping of straight and spiral bevel gears is presented. The method is based upon an enveloping theory for gear tooth profile generation. The procedure is applicable in the computer aided design of standard and nonstandard tooth forms. An inverse procedure for finding a conjugate gear tooth profile is presented for arbitrary cutter geometry. The kinematic relations for the tooth surfaces of straight and spiral bevel gears are proposed. The tooth surface equations for these gears are formulated in a manner suitable for their automated numerical development and solution.
PREFACE: Water in confined geometries
NASA Astrophysics Data System (ADS)
Rovere, Mauro
2004-11-01
The study of water confined in complex systems in solid or gel phases and/or in contact with macromolecules is relevant to many important processes ranging from industrial applications such as catalysis and soil chemistry, to biological processes such as protein folding or ionic transport in membranes. Thermodynamics, phase behaviour and the molecular mobility of water have been observed to change upon confinement depending on the properties of the substrate. In particular, polar substrates perturb the hydrogen bond network of water, inducing large changes in the properties upon freezing. Understanding how the connected random hydrogen bond network of bulk water is modified when water is confined in small cavities inside a substrate material is very important for studies of stability and the enzymatic activity of proteins, oil recovery or heterogeneous catalysis, where water-substrate interactions play a fundamental role. The modifications of the short-range order in the liquid depend on the nature of the water-substrate interaction, hydrophilic or hydrophobic, as well as on its spatial range and on the geometry of the substrate. Despite extensive study, both experimentally and by computer simulation, there remain a number of open problems. In the many experimental studies of confined water, those performed on water in Vycor are of particular interest for computer simulation and theoretical studies since Vycor is a porous silica glass characterized by a quite sharp distribution of pore sizes and a strong capability to absorb water. It can be considered as a good candidate for studying the general behaviour of water in hydrophilic nanopores. But there there have been a number of studies of water confined in more complex substrates, where the interpretation of experiments and computer simulation is more difficult, such as in zeolites or in aerogels or in contact with membranes. Of the many problems to consider we can mention the study of supercooled water. It is
Detonation diffraction through different geometries
NASA Astrophysics Data System (ADS)
Sorin, Rémy; Zitoun, Ratiba; Khasainov, Boris; Desbordes, Daniel
2009-04-01
We performed the study of the diffraction of a self-sustained detonation from a cylindrical tube (of inner diameter d) through different geometric configurations in order to characterise the transmission processes and to quantify the transmission criteria to the reception chamber. For the diffraction from a tube to the open space the transmission criteria is expressed by d c = k c · λ (with λ the detonation cell size and k c depending on the mixture and on the operture configuration, classically 13 for alkane mixtures with oxygen). The studied geometries are: (a) a sharp increase of diameter ( D/ d > 1) with and without a central obstacle in the diffracting section, (b) a conical divergent with a central obstacle in the diffracting section and (c) an inversed intermediate one end closed tube insuring a double reflection before a final diffraction between the initiator tube and the reception chamber. The results for case A show that the reinitiation process depends on the ratio d/ λ. For ratios below k c the re-ignition takes place at the receptor tube wall and at a fixed distance from the step, i.e. closely after the diffracted shock reflection shows a Mach stem configuration. For ratios below a limit ratio k lim (which depends on D/ d) the re-ignition distance increases with the decrease of d/λ. For both case A and B the introduction of a central obstacle (of blockage ratio BR = 0.5) at the exit of the initiator tube decreases the critical transmission ratio k c by 50%. The results in configuration C show that the re-ignition process depends both on d/ λ and the geometric conditions. Optimal configuration is found that provides the transmission through the two successive reflections (from d = 26 mm to D ch = 200 mm) at as small d/ λ as 2.2 whatever the intermediate diameter D is. This configuration provides a significant improvement in the detonation transmission conditions.
Quantum groups: Geometry and applications
Chu, C.S.
1996-05-13
The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
Mohamad, Rapidah; Awang, Normah; Jotani, Mukesh M; Tiekink, Edward R T
2016-08-01
The crystal and mol-ecular structures of two di-phenyl-tin bis-(di-thio-carbamate)s, [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NO2S2)2], (II), are described. In (I), in which the metal atom lies on a twofold rotation axis, the di-thio-carbamate ligand coordinates with approximately equal Sn-S bond lengths and the ipso-C atoms of the Sn-bound phenyl groups occupy cis-positions in the resulting octa-hedral C2S4 donor set. A quite distinct coordination geometry is noted in (II), arising as a result of quite disparate Sn-S bond lengths. Here, the four S-donors define a trapezoidal plane with the ipso-C atoms lying over the weaker of the Sn-S bonds so that the C2S4 donor set defines a skewed trapezoidal bipyramid. The packing of (I) features supra-molecular layers in the ab plane sustained by methyl-ene-C-H⋯π(Sn-ar-yl) inter-actions; these stack along the c-axis direction with no specific inter-actions between them. In (II), supra-molecular chains along the b-axis direction are formed by methyl-ene-C-O(ether) inter-actions; these pack with no directional inter-actions between them. A Hirshfeld surface analysis was conducted on both (I) and (II) and revealed the dominance of H⋯H inter-actions contributing to the respective surfaces, i.e. >60% in each case, and other features consistent with the description of the mol-ecular packing above. PMID:27536397
NASA Astrophysics Data System (ADS)
Maheshwarla, S. V.; Venkatasubramanian, R.; Boehm, Robert F.
1995-08-01
We propose three nontraditional dielectric geometries and present an experimental and theoretical analysis and comparison of time domain reflectometry (TDR) performances for them. The traditional geometry (the probes inserted in material of essentially infinite extent) is compared to three nontraditional geometries where the probes are affixed outside of a core sample, inside of a bore, or flat on the surface of a semi-infinite solid. Our derivation relates the velocity of electromagnetic wave propagation to the complex permittivities and permeabilities of the media and the geometry for the three nontraditional configurations. Experimental results for air, styrofoam, dry sand, wet sand of varying water content, nylon, dry wood, and ferromagnetic steel are obtained for the three proposed configurations and are in fair agreement with the literature within the experimental uncertainties. Through experiments and theoretical analysis, the TDR performance is found to be the same within the experimental uncertainties for the three nontraditional geometries. The proposed geometries yield slightly lower sensitivities compared to the traditional geometry. Advantages and disadvantages of the geometries compared to the traditional geometry are also discussed.
A computer program for analyzing channel geometry
Regan, R.S.; Schaffranek, R.W.
1985-01-01
The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)
Self-Aggregation of Convection in Long Channel Geometry
NASA Astrophysics Data System (ADS)
Wing, A. A.; Cronin, T.
2014-12-01
Cloud cover and relative humidity in the tropics are strongly influenced by organized atmospheric convection, which occurs across a range of spatial and temporal scales. One mode of organization that is found in idealized numerical simulations is "self-aggregation", a spontaneous transition from randomly distributed convection to organized convection despite homogeneous boundary conditions. We explore the influence of domain geometry on the mechanisms and temperature-dependence of self-aggregation of tropical convection. Specifically, the System for Atmospheric Modeling is used to perform 3-d simulations of radiative-convective equilibrium in a non-rotating framework, with interactive radiation and surface fluxes and fixed sea surface temperature. The results of simulations employing a highly elongated 3-d channel domain, in which self-aggregation takes the form of multiple moist and dry bands, are compared to that of a square domain, in which self-aggregation takes the form of a single moist cluster. For both domain types, and across a range of temperatures, we characterize the fundamental physical mechanisms that lead to self-aggregation as well as its growth rate and spatial scale. The variance budget equation for the vertically integrated frozen moist static energy is used to quantify the mechanisms governing self-aggregation and characterize its time scale. We find that diabatic processes dominate the evolution of self-aggregation in the elongated channel simulations. In contrast, in the square domain simulations, similar diabatic processes dominate the initial stages of aggregation but up-gradient advection by the circulation plays a role in the later stages. Self-aggregation occurs across a much wider range of temperatures with elongated channel geometry than with square geometry. As the sea surface temperature is increased in the channel simulations, the aggregated state is characterized by smaller spatial scales and more regularity. An advantage of the
Self-aggregation of convection in long channel geometry
NASA Astrophysics Data System (ADS)
Wing, Allison; Cronin, Timothy
2015-04-01
Self-aggregation is the spontaneous transition in numerical simulations from randomly distributed convection to organized convection despite homogeneous boundary conditions. We explore the influence of domain geometry on the mechanisms and temperature-dependence of self-aggregation of tropical convection. Specifically, the System for Atmospheric Modeling is used to perform 3-d simulations of radiative-convective equilibrium in a non-rotating framework, with interactive radiation and surface fluxes and fixed sea surface temperature. The results of simulations employing a highly elongated 3-d channel domain, in which self-aggregation takes the form of multiple moist and dry bands, are compared to that of a square domain, in which self-aggregation takes the form of a single moist cluster. For both domain types, and across a range of temperatures, we characterize the fundamental physical mechanisms that lead to self-aggregation as well as its growth rate and spatial scale. The variance budget equation for the vertically integrated frozen moist static energy is used to quantify the mechanisms governing self-aggregation and characterize its time scale. We find that diabatic processes dominate the evolution of self-aggregation in the elongated channel simulations. In contrast, in the square domain simulations, similar diabatic processes dominate the initial stages of aggregation but up-gradient advection by the circulation plays a role in the later stages. Self-aggregation occurs across a much wider range of temperatures with elongated channel geometry than with square geometry. As the sea surface temperature is increased in the channel simulations, the aggregated state is characterized by smaller spatial scales and more regularity. An advantage of the channel geometry is that a separation distance between convectively active regions can be defined, which is a prerequisite for developing a spatial scaling theory.
Stop Teaching and Let Students Learn Geometry
ERIC Educational Resources Information Center
Bosse, Michael J.; Adu-Gyamfi, Kwaku
2011-01-01
For many high school students as well as preservice teachers, geometry can be difficult to learn without experiences that allow them to build their own understanding. The authors' approach to geometry instruction--with its integration of content, multiple representations, real-world examples, reading and writing, communication and collaboration as…
Improving African American Achievement in Geometry Honors
ERIC Educational Resources Information Center
Mims, Adrian B.
2010-01-01
This case study evaluated the significance of implementing an enrichment mathematics course during the summer to rising African American ninth graders entitled, "Geometry Honors Preview." In the past, 60 to 70 percent of African American students in this school district had withdrawn from Geometry Honors by the second academic quarter. This study…
Normal faults geometry and morphometry on Mars
NASA Astrophysics Data System (ADS)
Vaz, D. A.; Spagnuolo, M. G.; Silvestro, S.
2014-04-01
In this report, we show how normal faults scarps geometry and degradation history can be accessed using high resolution imagery and topography. We show how the initial geometry of the faults can be inferred from faulted craters and we demonstrate how a comparative morphometric analysis of faults scarps can be used to study erosion rates through time on Mars.
Teaching Geometry to Visually Impaired Students
ERIC Educational Resources Information Center
Pritchard, Christine K.; Lamb, John H.
2012-01-01
NCTM (2000) described geometry as "a means of describing, analyzing, and understanding the world and seeing beauty in its structures" (p. 309). Dossey et al. (2002) captured the essence of this aspect of visualization by stating that geometry fosters in students an ability to "visualize and mentally manipulate geometric objects." (p. 200).…
Teaching Geometry through Problem-Based Learning
ERIC Educational Resources Information Center
Schettino, Carmel
2011-01-01
About seven years ago, the mathematics teachers at the author's secondary school came to the conclusion that they were not satisfied with their rather traditional geometry textbook. The author had already begun using a problem-based approach to teaching geometry in her classes, a transition for her and her students that inspired her to write about…
Quilt Blocks: Writing in the Geometry Classroom
ERIC Educational Resources Information Center
Gibson, Michelle; Thomas, Timothy G.
2005-01-01
The introduction of quilt pattern consisting of many quilt blocks formed by congruent triangles, for writing by the students in the geometry classrooms, is studied. It is found that the students enjoyed this method and writing also helped in understanding the geometric concepts expanding their vocabulary in geometry.
A Multivariate Model of Achievement in Geometry
ERIC Educational Resources Information Center
Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha
2014-01-01
Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…
An approach for management of geometry data
NASA Technical Reports Server (NTRS)
Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.
1980-01-01
The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.
Geometry, Student's Text, Part II, Unit 14.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
Unit 14 in the SMSG secondary school mathematics series is a student text covering the following topics in geometry: areas of polygonal regions, similarity, circles and spheres, characterization of sets, constructions, areas of circles and sectors, volumes of solids, and plane coordinate geometry. Appendices cover Eratosthenes' measurement of the…