Sample records for as-doped buried amorphous

  1. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    PubMed

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  2. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  3. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  4. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliviero, E.; David, M. L.; Beaufort, M. F.

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less

  5. Tellurium n-type doping of highly mismatched amorphous GaN 1-xAs x alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; ...

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less

  6. Tin-Doped Inorganic Amorphous Films for Use as Transparent Monolithic Phosphors.

    PubMed

    Masai, Hirokazu; Miyata, Hiroki; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Kanemitsu, Yoshihiko

    2015-06-10

    Although inorganic crystalline phosphors can exhibit high quantum efficiency, their use in phosphor films has been limited by a reliance on organic binders that have poor durability when exposed to high-power and/or high excitation energy light sources. To address this problem, Sn(2+)-doped transparent phosphate films measuring several micrometers in thickness have been successfully prepared through heat treatment and a subsequent single dip-coating process. The resulting monolithic inorganic amorphous film exhibited an internal quantum efficiency of over 60% and can potentially utilize transmitted light. Analysis of the film's emissivity revealed that its color can be tuned by changing the amount of Mn and Sn added to influence the energy transfer from Sn(2+) to Mn(2+). It is therefore concluded that amorphous films containing such emission centers can provide a novel and viable alternative to conventional amorphous films containing crystalline phosphors in light-emitting devices.

  7. Tin-Doped Inorganic Amorphous Films for Use as Transparent Monolithic Phosphors

    PubMed Central

    Masai, Hirokazu; Miyata, Hiroki; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Kanemitsu, Yoshihiko

    2015-01-01

    Although inorganic crystalline phosphors can exhibit high quantum efficiency, their use in phosphor films has been limited by a reliance on organic binders that have poor durability when exposed to high-power and/or high excitation energy light sources. To address this problem, Sn2+ -doped transparent phosphate films measuring several micrometers in thickness have been successfully prepared through heat treatment and a subsequent single dip-coating process. The resulting monolithic inorganic amorphous film exhibited an internal quantum efficiency of over 60% and can potentially utilize transmitted light. Analysis of the film’s emissivity revealed that its color can be tuned by changing the amount of Mn and Sn added to influence the energy transfer from Sn2+ to Mn2+. It is therefore concluded that amorphous films containing such emission centers can provide a novel and viable alternative to conventional amorphous films containing crystalline phosphors in light-emitting devices. PMID:26061744

  8. A delta-doped amorphous silicon thin-film transistor with high mobility and stability

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul

    2012-12-01

    Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.

  9. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  10. Synthesis and characterization of P-doped amorphous and nanocrystalline Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jialing; Ganguly, Shreyashi; Sen, Sabyasachi

    Intentional impurity doping lies at the heart of the silicon technology. The dopants provide electrons or holes as necessary carriers of the electron current and can significantly modify the electric, optical and magnetic properties of the semiconductors. P-doped amorphous Si (a-Si) was prepared by a solid state and solution metathesis reaction of a P-doped Zintl phase precursor, NaSi 0.99P 0.01, with an excess of NH 4X (X = Br, I). After the salt byproduct was removed from the solid state reaction, the a-Si material was annealed at 600 °C under vacuum for 2 h, resulting in P-doped nanocrystalline Si (nc-Si)more » material embedded in a-Si matrix. The product from the solution reaction also shows a combination of nc-Si embedded in a-Si; however, it was fully converted to nc-Si after annealing under argon at 650 °C for 30 min. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) show the amorphous nature of the P-doped Si material before the annealing and the nanocrystallinity after the annealing. Fourier Transform Infrared (FTIR) spectroscopy shows that the P-doped Si material surface is partially capped by H and O or with solvent. Finally, electron microprobe wavelength dispersive spectroscopy (WDS) as well as energy dispersive spectroscopy (EDS) confirm the presence of P in the Si material. 29Si and 31P solid state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy data provide the evidence of P doping into the Si structure with the P concentration of approximately 0.07 at.%.« less

  11. Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-11-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.

  12. Photoelectric characteristics of an inverse U-shape buried doping design for crosstalk suppression in pinned photodiodes

    NASA Astrophysics Data System (ADS)

    Chen, Cao; Bing, Zhang; Xin, Li; Longsheng, Wu; Junfeng, Wang

    2014-11-01

    A design of an inverse U-shape buried doping in a pinned photodiode (PPD) of CMOS image sensors is proposed for electrical crosstalk suppression between adjacent pixels. The architecture achieves no extra fill factor consumption, and proper built-in electric fields can be established according to the doping gradient created by the injections of the extremely low P-type doping buried regions in the epitaxial layer, causing the excess electrons to easily drift back to the photosensitive area rarely with a diffusion probability; the overall junction capacitance and photosensitive area extensions for a full well capacity (FWC) and internal quantum efficiency (IQE) improving are achieved by the injection of a buried N-type doping. By considering the image lag issue, the process parameters of all the injections have been precisely optimized. Optical simulation results based on the finite difference time domain method show that compared to the conventional PPD, the electrical crosstalk rate of the proposed architecture can be decreased by 60%-80% at an incident wavelength beyond 450 nm, IQE can be clearly improved at an incident wavelength between 400 and 600 nm, and the FWC can be enhanced by 107.5%. Furthermore, the image lag performance is sustained to a perfect low level. The present study provides important guidance on the design of ultra high resolution image sensors.

  13. Synthesis of Antimony Doped Amorphous Carbon Films

    NASA Astrophysics Data System (ADS)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  14. N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries.

    PubMed

    Xie, Wenhe; Li, Suyuan; Wang, Suiyan; Xue, Song; Liu, Zhengjiao; Jiang, Xinyu; He, Deyan

    2014-11-26

    N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers were prepared via a facile approach. The core composite nanofibers were first made by electrospinning technology, then the shells were conformally coated using the chemical bath deposition and subsequent carbonization with polydopamine as a carbon source. When applied as a binder-free self-supported anode for lithium ion batteries, the coaxial nanofibers displayed an enhanced electrochemical storage capacity and excellent rate performance. The morphology of the interwoven nanofibers was maintained even after the rate cycle test. The superior electrochemical performance originates in the structural stability of the N-doped amorphous carbon shells formed by carbonizing polydopamine.

  15. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  16. Effect of Doping on the Properties of Hydrogenated Amorphous Silicon Irradiated with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Denisova, K. N.; Il'in, A. S.; Martyshov, M. N.; Vorontsov, A. S.

    2018-04-01

    A comparative analysis of the effect of femtosecond laser irradiation on the structure and conductivity of undoped and boron-doped hydrogenated amorphous silicon ( a-Si: H) is performed. It is demonstrated that the process of nanocrystal formation in the amorphous matrix under femtosecond laser irradiation is initiated at lower laser energy densities in undoped a-Si: H samples. The differences in conductivity between undoped and doped a-Si: H samples vanish almost completely after irradiation with an energy density of 150-160 mJ/cm2.

  17. Hydrogenated nanostructure boron doped amorphous carbon films by DC bias

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Dayana, K.; Saurdi, I.; Malek, M. F.; Rusop, M.

    2018-03-01

    Hydrogenated nanostructure-boron doped amorphous carbon thin film carbon was deposited at different negative bias using custom-made deposition bias assisted-CVD. Solid of boron and palm oil were used as dopant and carbon source, respectively. The hydrogenated nanostructure amorphous films were characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, while the photo-response studies of thin film is done by I-V measurement under light measurement. The results showed the carbon film were in nanostructure with hydrogen and boron might be incorporated in the film. The Raman spectra observed the increase of upward shift of D and G peaks as negative bias increased which related to the structural change as boron incorporated in carbon network. These structural changes were further correlated with photo-response study and the results obtained are discussed and compared.

  18. Raman spectra boron doped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    Boron doped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The structural boron doped amorphous carbon films were discussed by Raman analysis through the evolution of D and G bands. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. These structural changes were further correlated with optical gap and the results obtained are discussed and compared. The estimated optical band gap is found to be 1.9 to 2.05 eV and conductivity is to be in the range of 10-5 Scm-1 to 10-4 Scm-1. The decrease of optical band gap is associated to conductivity increased which change the characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG.

  19. Lag and light-transfer characteristics of amorphous selenium photoconductive film with tellurium-doped layer

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2016-07-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.

  20. Oxygen deficiency and Sn doping of amorphous Ga{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; Unold, T.; Berry, J.

    2016-01-11

    The potential of effectively n-type doping Ga{sub 2}O{sub 3} considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaO{sub x} is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaO{sub x} thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence onmore » the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaO{sub x} layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaO{sub x} as an electron transport layer in Cu(In,Ga)Se{sub 2} and in Cu{sub 2}O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.« less

  1. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  2. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  3. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  4. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    PubMed

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  5. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  6. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  7. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    NASA Astrophysics Data System (ADS)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  8. The preparation of in situ doped hydrogenated amorphous silicon by homogeneous chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meyerson, B. S.; Scott, B. A.; Wolford, D. J.

    1983-03-01

    Raman scattering, infrared absorption, conductivity measurements, electron microprobe, and secondary ion mass spectrometry (SIMS) were used to characterize boron and phosphorus doped hydrogenated amorphous silicon (a-Si:H) films prepared by Homogeneous Chemical Vapor Deposition (HOMOCVD). HOMOCVD is a thermal process which relies upon the gas phase pyrolysis of a source (silane containing up to 1.0% diborane or phosphine) to generate activated species for deposition upon a cooled substrate. Doped films prepared at 275 °C by this process were found to contain ˜12-at. % hydrogen as determined by infrared absorption. We examined dopant incorporation from the gas phase, obtaining values for a distribution coefficient CD (film dopant content/gas phase dopant concentration, atomic basis) of 0.33≤CD ≤0.63 for boron, while 0.4≤CD ≤10.75 in the limits 3.3×10-5≤PH3/SiH4≤0.004. We interpret the data as indicative of the formation of an unstable phosphorus/silicon intermediate in the gas phase, leading to the observed enhancements in CD at high gas phase phosphine content. HOMOCVD films doped at least as efficiently as their prepared counterparts, but tended to achieve higher conductivities [σ≥0.1 (Ω cm)-1 for 4.0% incorporated phosphorus] in the limit of heavy doping. Raman spectra showed no evidence of crystallinity in the doped films. Film properties (conductivity, activation energy of of conduction) have not saturated at the doping levels investigated here, making the attainment of higher ``active'' dopant levels a possibility. We attribute the observation that HOMOCVD appears more amenable to high ``active'' dopant levels than plasma techniques to the low (˜0.1 eV) thermal energy at which HOMOCVD proceeds, versus ˜10-100 eV for plasma techniques. Low substrate temperature (75 °C) doped films were prepared with initial results showing these films to dope as readily as those prepared at high temperature (T˜275 °C).

  9. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  10. Method and apparatus for increasing resistance of bipolar buried layer integrated circuit devices to single-event upsets

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A. (Inventor)

    1991-01-01

    Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.

  11. Effect of solid-phase amorphization on the spectral characteristics of europium-doped gadolinium molybdate

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.

    2010-05-01

    A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.

  12. Amorphous sub-nanometre Tb-doped SiO(x)N(y)/SiO2 superlattices for optoelectronics.

    PubMed

    Ramírez, Joan Manel; Wojcik, Jacek; Berencén, Yonder; Ruiz-Caridad, Alícia; Estradé, Sònia; Peiró, Francesca; Mascher, Peter; Garrido, Blas

    2015-02-27

    Amorphous sub-nanometre Tb-doped SiOxNy/SiO2 superlattices were fabricated by means of alternating deposition of 0.7 nm thick Tb-doped SiOxNy layers and of 0.9 nm thick SiO2 barrier layers in an electron-cyclotron-resonance plasma enhanced chemical vapour deposition system with in situ Tb-doping capability. High resolution transmission electron microscopy images showed a well-preserved superlattice morphology after annealing at a high temperature of 1000 °C. In addition, transparent indium tin oxide (ITO) electrodes were deposited by electron beam evaporation using a shadow mask approach to allow for the optoelectronic characterization of superlattices. Tb(3+) luminescent spectral features were obtained using three different excitation sources: UV laser excitation (photoluminescence (PL)), under a bias voltage (electroluminescence (EL)) and under a highly energetic electron beam (cathodoluminescence (CL)). All techniques displayed Tb(3+) inner transitions belonging to (5)D4 levels except for the CL spectrum, in which (5)D3 transition levels were also observed. Two competing mechanisms were proposed to explain the spectral differences observed between PL (or EL) and CL excitation: the population rate of the (5)D3 state and the non-radiative relaxation rate of the (5)D3-(5)D4 transition due to a resonant OH-mode. Moreover, the large number of interfaces (trapping sites) that electrons have to get through was identified as the main reason for observing a bulk-limited charge transport mechanism governed by Poole-Frenkel conduction in the J-V characteristic. Finally, a linear EL-J dependence was measured, with independent spectral shape and an EL onset voltage as low as 6.7 V. These amorphous sub-nanometre superlattices are meant to provide low-cost solutions in different areas including sensing, photovoltaics or photonics.

  13. Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.

    2018-01-01

    This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.

  14. High temperature superconductivity in distinct phases of amorphous B-doped Q-carbon

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh; Sachan, Ritesh

    2018-04-01

    Distinct phases of B-doped Q-carbon are formed when B-doped and undoped diamond tetrahedra are packed randomly after nanosecond laser melting and quenching of carbon. By changing the ratio of doped to undoped tetrahedra, distinct phases of B-doped Q-carbon with concentration varying from 5.0% to 50.0% can be created. We have synthesized three distinct phases of amorphous B-doped Q-carbon, which exhibit high-temperature superconductivity following the Bardeen-Cooper-Schrieffer mechanism. The first phase (QB1) has a B-concentration ˜17 at. % (Tc = 37 K), the second phase (QB2) has a B-concentration ˜27 at. % (Tc = 55 K), and the third phase (QB3) has a B-concentration ˜45 at. % (Tc expected over 100 K). From geometrical modeling, we derive that QB1 consists of randomly packed tetrahedra, where one out of every three tetrahedra contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 16.6 at. %. QB2 consists of randomly packed tetrahedra, where one out of every two tetrahedra contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 25 at. %. QB3 consists of randomly packed tetrahedra, where every tetrahedron contains a B atom in the center which is sp3 bonded to four carbon atoms with a concentration of 50 at. %. We present detailed high-resolution TEM results on structural characterization, and EELS and Raman spectroscopy results on the bonding characteristics of B and C atoms. From these studies, we conclude that the high electronic density of states near the Fermi energy level coupled with moderate electron-phonon coupling result in high-temperature superconductivity in B-doped Q-carbon.

  15. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  16. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    PubMed

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  17. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  18. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Shang, Xiao; Yan, Kai-Li; Lu, Shan-Shan; Dong, Bin; Gao, Wen-Kun; Chi, Jing-Qi; Liu, Zi-Zhang; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Developing cost-effective electrocatalysts with both high activity and stability remains challenging for oxygen evolution reaction (OER) in water electrolysis. Herein, based on V-doped nickel sulfide nanowire on nickel foam (NiVS/NF), we further conduct controllable electrodeposition of Fe hydroxides film on NiVS/NF (eFe/NiVS/NF) to further improve OER performance and stability. For comparison, ultrafast chemical deposition of Fe hydroxides on NiVS/NF (uFe/NiVS/NF) is also utilized. V-doping of NiVS/NF may introduce more active sites for OER, and nanowire structure can expose abundant active sites and facilitate mass transport. Both of the two depositions generate amorphous Fe hydroxides film covering on the surface of nanowires and lead to enhanced OER activities. Furthermore, electrodeposition strategy realizes uniform Fe hydroxides film on eFe/NiVS/NF confirmed by superior OER activity of eFe/NiVS/NF than uFe/NiVS/NF with relatively enhanced stability. The OER activity of eFe/NiVS/NF depends on various electrodepositon time, and the optimal time (15 s) is obtained with maximum OER activity. Therefore, the controllable electrodeposition of Fe may provide an efficient and simple strategy to enhance the OER properties of electrocatalysts.

  19. Unified interatomic potential and energy barrier distributions for amorphous oxides.

    PubMed

    Trinastic, J P; Hamdan, R; Wu, Y; Zhang, L; Cheng, Hai-Ping

    2013-10-21

    Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics potentials have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body potentials modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the potential accurately produces energy barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these potentials will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.

  20. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source.

    PubMed

    Dave, Utsav D; Uvin, Sarah; Kuyken, Bart; Selvaraja, Shankar; Leo, Francois; Roelkens, Gunther

    2013-12-30

    A 1,000 nm wide supercontinuum, spanning from 1470 nm in the telecom band to 2470 nm in the mid-infrared is demonstrated in a 800 nm x 220 nm 1 cm long hydrogenated amorphous silicon strip waveguide. The pump source was a picosecond Thulium doped fiber laser centered at 1950 nm. The real part of the nonlinear parameter of this waveguide at 1950 nm is measured to be 100 ± 10 W -1m-1, while the imaginary part of the nonlinear parameter is measured to be 1.2 ± 0.2 W-1m-1. The supercontinuum is stable over a period of at least several hours, as the hydrogenated amorphous silicon waveguides do not degrade when exposed to the high power picosecond pulse train.

  1. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  2. Modeling and Simulation of Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Pandey, Anup

    The general and practical inversion of diffraction data - producing a computer model correctly representing the material explored - is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this dissertation, we introduce a robust method, Force-Enhanced Atomic Refinement (FEAR), which jointly exploits the power of ab initio atomistic simulation along with the information carried by diffraction data. As a preliminary trial, the method has been implemented using empirical potentials for amorphous silicon (a-Si) and silica ( SiO2). The models obtained are comparable to the ones prepared by the conventional approaches as well as the experiments. Using ab initio interactions, the method is applied to two very different systems: amorphous silicon (a-Si) and two compositions of a solid electrolyte memory material silver-doped GeSe3. It is shown that the method works well for both the materials. Besides that, the technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. It offers a means to add a priori information in first principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information. Moreover, the method has also been used to create a computer model of a-Si, using highly precise X-ray diffraction data. The model predicts properties that are close to the continuous random network models but with no a priori assumptions. In addition, using the ab initio molecular dynamics simulations (AIMD) we explored the doping and transport in hydrogenated amorphous silicon a-Si:H with the most popular impurities: boron and phosphorous. We investigated doping for these impurities and the role of H in the doping process. We revealed the network motion and H hopping induced by

  3. Picosecond Electronic Relaxations In Amorphous Semiconductors

    NASA Astrophysics Data System (ADS)

    Tauc, Jan

    1983-11-01

    Using the pump and probe technique the relaxation processes of photogenerated carriers in amorphous tetrahedral semiconductors and chalcogenide glasses in the time domain from 0.5 Ps to 1.4 ns have been studied. The results obtained on the following phenomena are reviewed: hot carrier thermalization in amorphous silicon; trapping of carriers in undoped a-Si:H; trapping of carriers in deep traps produced by doping; geminate recombination in As2S3-xSex glasses.

  4. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    NASA Astrophysics Data System (ADS)

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan

    2016-07-01

    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  5. InP electroluminescence as a tool to directly monitor carrier leakage in InGaAsP/InP buried heterostructure lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, M.B.; Brody, E.; Sowell, B.

    1987-12-15

    Direct measurements of homojunction and heterojunction carrier leakage currents in InGaAsP/InP buried heterostructure lasers have been made by monitoring the electroluminescence (EL) at 0.96 ..mu..m in the InP confinement layers. These EL measurements show directly, for the first time, a correlation between homojunction leakage currents and the sublinearity in the 1.3-..mu..m light output-current characteristic. The observed decrease in the 0.96-..mu..m intensity with increasing p-dopant concentration is a direct confirmation that heterojunction leakage is reduced when the doping level in the p-InP confinement layer is increased.

  6. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  7. The enhancement in electrical analysis of the nitrogen doped amorphous carbon thin films (a-C:N) prepared by aerosol-assisted CVD

    NASA Astrophysics Data System (ADS)

    Fadzilah, A. N.; Dayana, K.; Rusop, M.

    2018-05-01

    This paper reports on the deposition of Nitrogen doped amorphous carbon (a-C:N) by Aerosol-assisted Chemical Vapor Deposition (AACVD) using natural source of camphor oil as the precursor material. 5 samples were deposited at 5 different deposition times from 15 min to 90 min, with 15 min interval for each sample. The highest slope of linear graph was noted at the sample with 45 min deposition time, showing the lowest electrical resistance of the sample. From I-V characteristic, the sample deposited at 45 min has the highest electrical conductivity due to high sp2 carbon bonding ratio. Nanostructured behavior of N doped a-C:N was also investigated by FESEM micrograph resulting with the particle size less than 100nm.

  8. A transparent ultraviolet triggered amorphous selenium p-n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ichitaro; Soga, Kenichi; Overend, Mauro

    2011-04-11

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  9. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  10. Novel passivation dielectrics-The boron- or phosphorus-doped hydrogenated amorphous silicon carbide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.Y.; Fang, Y.K.; Huang, C.F.

    1985-02-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared and studied in a radiofrequency glowdischarge system, using a gas mixture of SiH/sub 4/ and one of the following carbon sources: methane (CH/sub 4/), benzene (C/sub 6/H/sub 6/), toluene (C/sub 7/H/sub 8/), sigma-xylene (C/sub 8/H/sub 10/), trichloroethane (C/sub 2/H/sub 3/Cl/sub 3/), trichloroethylene (C/sub 2/HCl/sub 3/), or carbon tetrachloride (CCl/sub 4/). The effect of doping phosphorus and boron into those a-SiC:H films on chemical etching rate, electrica dc resistivity, breakdown strength, and optical refractive index have been systematically investigated. Their chemical etching properties were examined by immersing in 49% HF, buffered HF,more » 180/sup 0/C H/sub 3/PO/sub 4/ solutions, or in CF/sub 4/ + O/sub 2/ plasma. It was found that the boron-doped a-SiC:H film possesses five times slower etching rate than the undoped one, while phosphorus-doped a-SiC:H film shows about three times slower. Among those a-SiC:H films, the one obtained from a mixture of SiH/sub 4/ and benzene shows the best etch-resistant property, while the ones obtained from a mixture of SiH/sub 4/ and chlorine containing carbon sources (e.g., trichloroethylene, trichloroethane, or carbon tetrachloride) shows that they are poor in etching resistance (i.e., the etching rate is higher). By measuring dc resistivity, dielectric breakdown strength, and effective refractive index, it was found that boron- or phosphorus-doped a-SiC:H films exhibit much higher dielectric strength and resistivity, but lower etching rate, presumably because of higher density.« less

  11. Enhancement of photovoltaic effects and photoconductivity observed in Co-doped amorphous carbon/silicon heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Y. C.; Gao, J., E-mail: jugao@hku.hk

    2016-08-22

    Co-doped amorphous carbon (Co-C)/silicon heterostructures were fabricated by growing Co-C films on n-type Si substrates using pulsed laser deposition. A photovoltaic effect (PVE) has been observed at room temperature. Open-circuit voltage V{sub oc} = 320 mV and short-circuit current density J{sub sc }= 5.62 mA/cm{sup 2} were measured under illumination of 532-nm light with the power of 100 mW/cm{sup 2}. In contrast, undoped amorphous carbon/Si heterostructures revealed no significant PVE. Based on the PVE and photoconductivity (PC) investigated at different temperatures, it was found that the energy conversion efficiency increased with increasing the temperature and reached the maximum at room temperature, while the photoconductivity showed amore » reverse temperature dependence. The observed competition between PVE and PC was correlated with the way to distribute absorbed photons. The possible mechanism, explaining the enhanced PVE and PC in the Co-C/Si heterostructures, might be attributed to light absorption enhanced by localized surface plasmons in Co nanoparticles embedded in the carbon matrix.« less

  12. Design of high breakdown voltage GaN vertical HFETs with p-GaN buried buffer layers for power switching applications

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Liu, Dong; Zhao, Ziqi; Bai, Zhiyuan; Li, Liang; Mo, Jianghui; Yu, Qi

    2015-07-01

    To achieve a high breakdown voltage, a GaN vertical heterostructure field effect transistor with p-GaN buried layers (PBL-VHFET) is proposed in this paper. The breakdown voltage of this GaN-based PBL-VHFET could be improved significantly by the optimizing thickness of p-GaN buried layers and doping concentration in PBL. When the GaN buffer layer thickness is 15 μm, the thickness, length and p-doping concentration of PBL are 0.3 μm, 2.7 μm, and 3 × 1017 cm-3, respectively. Simulation results show that the breakdown voltage and on-resistance of the device with two p-GaN buried layers are 3022 V and 3.13 mΩ cm2, respectively. The average breakdown electric field would reach as high as 201.5 V/μm. Compared with the typical GaN vertical heterostructure FETs without PBL, both of breakdown voltage and average breakdown electric field of device are increased more than 50%.

  13. Charge transport in electrically doped amorphous organic semiconductors.

    PubMed

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reduction of channel resistance in amorphous oxide thin-film transistors with buried layer

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Kim, Bosul; Lee, Sang Yeol

    2012-04-01

    A silicon-indium-zinc-oxide (SIZO) thin film transistor (TFT) with low channel-resistance (RCH) indium-zinc-oxide (In2O3:ZnO = 9:1) buried layer annealed at low temperature of 200°C exhibited high field-effect mobility (μFE) over 55.8 cm2/V·s which is 5 times higher than that of the conventional TFTs due to small threshold voltage (Vth) change of 1.8 V under bias-temperature stress (BTS) condition for 420 minutes. The low-RCH buried-layer allows more strong current-path formed in channel layer well within relatively high-RCH channel-layer since it is less affected by the channel bulk and/or back interface trap with high carrier concentration.

  15. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene.

    PubMed

    Michałowski, Paweł Piotr; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-27

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp 2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 14 atoms cm -2 ) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  16. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    NASA Astrophysics Data System (ADS)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  17. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.

    PubMed

    Yang, Lifei; Yu, Xuegong; Hu, Weidan; Wu, Xiaolei; Zhao, Yan; Yang, Deren

    2015-02-25

    Graphene-silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells.

  18. Transport properties of Sb doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Usha, Philipose

    2011-10-01

    n-type Si nanowires were synthesized at ambient pressure using SiCl4 as Si source and Sb source as the dopant. Sb doping of 3-4 wt % was achieved through a post growth diffusion technique. The nanowires were found to have an amorphous oxide shell that developed post-growth; the thickness of the shell is estimated to be about 3-4 nm. The composition of the amorphous shell covering the crystalline Si core was determined by Raman spectroscopy, with evidence that the shell was an amorphous oxide layer. Optical characterization of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell covering the Si nanowire core. Etching of the oxide shell was found to decrease the intensity of this green emission. A single undoped Si nanowire contacted in an FET type configuration was found to be p-type with channel mobility of 20 cm^2V-1S-1. Sb doped Si nanowires exhibited n-type behavior, compensating for the holes in the undoped nanowire. The doped nanowires had carrier mobility and concentration of 160 cm^2V-1S-1 and 9.6 x 10^18cm-3 respectively.

  19. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Krishna

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. Tomore » address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10B) and enriched lithium ( 6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.« less

  20. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less

  1. Conductive tracks of 30-MeV C60 clusters in doped and undoped tetrahedral amorphous carbon

    NASA Astrophysics Data System (ADS)

    Krauser, J.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.

    2013-07-01

    In insulating tetrahedral amorphous carbon (ta-C), the irradiation with 30-MeV C60 cluster ions leads to the formation of well conducting tracks. While electrical currents through individual tracks produced with monoatomic projectiles (e.g. Au or U) often exhibit rather large track to track fluctuations, C60 clusters are shown to generate highly conducting tracks with very narrow current distributions. Additionally, all recorded current-voltage curves show linear characteristics. These findings are attributed to the large specific energy loss dE/dx of the 30-MeV C60 clusters. We also investigated C60 tracks in ta-C films which were slightly doped with B, N or Fe during film growth. Doping apparently increases the ion track conductivity. However, at the same time the insulating characteristics of the pristine ta-C film can be reduced. The present C60 results are compared with data from earlier experiments with monoatomic heavy ion beams. The investigations were performed by means of atomic force microscopy including temperature dependent conductivity measurements of single ion tracks.

  2. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  3. UV Irradiation Effects in Pure and Tin-Doped Amorphous AsSe Films

    DTIC Science & Technology

    2001-06-01

    during irradiation did not exceed 40 ’C. 304 M. Popescu, M. lovu, W. Hloyer, 0. Shpotyuk , F. Sava, A. L6rinczi 3. Results Pure and tin-doped AsSe filns...9000 ,- ,, ---, ,, - ,, - 9000 .... ... .-.. .. r111h) (222) Illuminated 8000 8000 - 7000 7000 lie (220) 6000 6000 5000 O 5000 4000 - 4000 3000 .L...Popescu, M. lovu, W. Hoyer, 0. Shpotyuk , F. Sava, A. L6rinczi the effective thickness of the layers and, possibly, the correlation length. The photo

  4. Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor

    PubMed Central

    de Cesare, Giampiero; Nascetti, Augusto; Caputo, Domenico

    2015-01-01

    In this work, we propose a multi-parametric sensor able to measure both temperature and radiation intensity, suitable to increase the level of integration and miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation and temperature sensor independently. We found a maximum value of responsivity equal to 350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated the effects of the temperature variation on light intensity measurement and of the light intensity variation on the accuracy of the temperature measurement. We found that the temperature variation induces an error lower than 0.55 pW/K in the light intensity measurement at 550 nm when the diode is biased in short circuit condition, while an error below 1 K/µW results in the temperature measurement when a forward bias current higher than 25 µA/cm2 is applied. PMID:26016913

  5. Investigation of veritcal graded channel doping in nanoscale fully-depleted SOI-MOSFET

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2016-10-01

    For achieving reliable transistor, we investigate an amended channel doping (ACD) engineering which improves the electrical and thermal performances of fully-depleted silicon-on-insulator (SOI) MOSFET. We have called the proposed structure with the amended channel doping engineering as ACD-SOI structure and compared it with a conventional fully-depleted SOI MOSFET (C-SOI) with uniform doping distribution using 2-D ATLAS simulator. The amended channel doping is a vertical graded doping that is distributed from the surface of structure with high doping density to the bottom of channel, near the buried oxide, with low doping density. Short channel effects (SCEs) and leakage current suppress due to high barrier height near the source region and electric field modification in the ACD-SOI in comparison with the C-SOI structure. Furthermore, by lower electric field and electron temperature near the drain region that is the place of hot carrier generation, we except the improvement of reliability and gate induced drain lowering (GIDL) in the proposed structure. Undesirable Self heating effect (SHE) that become a critical challenge for SOI MOSFETs is alleviated in the ACD-SOI structure because of utilizing low doping density near the buried oxide. Thus, refer to accessible results, the ACD-SOI structure with graded distribution in vertical direction is a reliable device especially in low power and high temperature applications.

  6. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-07

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  7. Design of a 1200-V ultra-thin partial SOI LDMOS with n-type buried layer

    NASA Astrophysics Data System (ADS)

    Qiao, Ming; Wang, Yuru; Li, Yanfei; Zhang, Bo; Li, Zhaoji

    2014-11-01

    A novel 1200-V ultra-thin partial silicon-on-insulator (PSOI) lateral double-diffusion metal oxide semiconductor (LDMOS) with n-type buried (n-buried) layer (NBL PSOI LDMOS) is proposed in this paper. The new PSOI LDMOS features an n-buried layer underneath the n-type drift (n-drift) region close to the source side, providing a large conduction region for majority carriers and a silicon window to improve self-heating effect (SHE). A combination of uniform and linear variable doping (ULVD) profile is utilized in the n-drift region, which alleviates the inherent tradeoff between specific on-resistance (Ron,sp) and breakdown voltage (BV). With the n-drift region length of 80 μm, the NBL PSOI LDMOS obtains a high BV of 1243 V which is improved by around 105 V in comparison to the conventional SOI LDMOS with linear variable doping (LVD) profile for the n-drift region (LVD SOI LDMOS). Besides, the 1200-V NBL PSOI LDMOS has a lower maximum temperature (Tmax) of 333 K at a power (P) of 1 mW/μm which is reduced by around 61 K. Meanwhile, Ron,sp and Tmax of the NBL PSOI LDMOS are lower than those of the conventional LVD SOI LDMOS for a wide range of BV.

  8. Effect of annealing on doping of graphene with molybdenum oxide

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryousuke; Watanabe, Sho; Nishida, Hiroki; Aoyama, Yuki; Oya, Tomoya; Nomoto, Takahiro; Tsuboi, Nozomu

    2018-04-01

    We investigated the effect of post-annealing on the doping of graphene with MoO3 in this study. The as-deposited molybdenum oxide thin film prepared using our method was not completely oxidized; in addition, it was in an amorphous state, due to which its doping effect was not significant. As the post-deposition annealing temperature was increased, the oxidation and crystallization of the molybdenum oxide progressed and the doping effect increased accordingly. After annealing at 350 °C, the holes were the most doped and the sheet resistance was the lowest. The doped graphene film obtained in this study shows higher doping effect and stability compared to other dopants.

  9. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Ho-young; LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811; Lee, Bok-young

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTsmore » with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.« less

  10. Amorphous nickel incorporated tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Ren, Jinhua; Lin, Dong; Han, Yanbing; Qu, Mingyue; Pi, Shubin; Fu, Ruofan; Zhang, Qun

    2017-09-01

    Nickel as a dopant has been proposed to suppress excess carrier concentration in n-type tin oxide based thin film transistors (TFTs). The influences of Ni content on nickel doped tin oxide (TNO) thin films and their corresponding TFTs were investigated with experimental results showing that the TNO thin films are amorphous. Through the comparison of the transfer characteristic curves of the TNO TFTs with different Ni contents, it was observed that Ni doping is useful to improve the performance of SnO2-based TFTs by suppressing the off-state current and shifting the threshold voltage to 0 V. The amorphous TNO TFT with 3.3 at.% Ni content shows optimum performance, with field effect mobility of 8.4 cm2 V-1 s-1, saturation mobility of 6.8 cm2 V-1 s-1, subthreshold swing value of 0.8 V/decade, and an on-off current ratio of 2.1  ×  107. Nevertheless, the bias stress stability of SnO2-based TFTs deteriorate.

  11. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    NASA Astrophysics Data System (ADS)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  12. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    NASA Astrophysics Data System (ADS)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  13. Amorphous oxides as electron transport layers in Cu(In,Ga)Se 2 superstrate devices: Amorphous oxides in Cu(In,Ga)Se 2 superstrate devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.

    Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less

  14. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  15. Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Ong, J. G. D.; Guo, Y.; Bazaka, K.; Levchenko, I.; Xu, S.

    2017-10-01

    Highly controllable electronic properties (carrier mobility and conductivity) were obtained in the sophisticatedly devised, structure-controlled, boron-doped microcrystalline silicon structure. Variation of plasma parameters enabled fabrication of films with the structure ranging from a highly crystalline (89.8%) to semi-amorphous (45.4%) phase. Application of the innovative process based on custom-designed, optimized, remote inductively coupled plasma implied all advantages of the plasma-driven technique and simultaneously avoided plasma-intrinsic disadvantages associated with ion bombardment and overheating. The high degree of SiH4, H2 and B2H6 precursor dissociation ensured very high boron incorporation into the structure, thus causing intense carrier scattering. Moreover, the microcrystalline-to-amorphous phase transition triggered by the heavy incorporation of the boron dopant with increasing B2H6 flow was revealed, thus demonstrating a very high level of the structural control intrinsic to the process. Control over the electronic properties through variation of impurity incorporation enabled tailoring the carrier concentrations over two orders of magnitude (1018-1020 cm-3). These results could contribute to boosting the properties of solar cells by paving the way to a cheap and efficient industry-oriented technique, guaranteeing a new application niche for this new generation of nanomaterials.

  16. Ultra-low specific on-resistance 700V LDMOS with a buried super junction layer

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Shi; Li, Zhi-you; Li, Ke; Qiao, Ming

    2018-01-01

    An ultra-low specific on-resistance 700 V lateral double-diffused MOSFET (LDMOS) with a buried super junction (BSJ) layer is proposed. [1-9] Buried P-pillars in the LDMOS can be depleted by neighboring N-pillars, overlying and underlying N-drift regions simultaneously, thus allowing a higher doping concentration. Consequently, the doping concentration of either the N-drift regions or N-pillars, or both, may also be increased therewith to compensate the surplus charges in the P-pillars. Compared with conventional surface super junction (SSJ) LDMOS, in which the super junction layer is implemented at the upper surface of the drift region, and P-pillars can only be depleted by the adjacent N-pillars and the N-drift regions beneath, the proposed novel LDMOS structure may have a lower specific on-resistance (Ron,sp) while maintain the same breakdown voltage (BV). Simulation results indicate that the Ron,sp of the novel structure is only 80.5 mΩ cm2 with a high BV of 750 V, which is reduced by 17% in comparison with the Ron,sp of a conventional SSJ LDMOS.

  17. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  18. Exceptional cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Dadi; Chang, Yongwei; Li, Ya; Ding, Rui; Li, Jiurong; Chen, Xiao; Wang, Gang; Guo, Qinglei

    2018-01-01

    The cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si structures after thermal annealing was investigated. The crack formation position is found to closely correlate with the thickness of the buried Si0.70Ge0.30 layer. For H-implanted Si containing a buried 3-nm-thick B-doped Si0.70Ge0.30 layer, localized continuous cracking occurs at the interfaces on both sides of the Si0.70Ge0.30 interlayer. Once the thickness of the buried Si0.70Ge0.30 layer increases to 15 and 70 nm, however, a continuous sharp crack is individually observed along the interface between the Si substrate and the B-doped Si0.70Ge0.30 interlayer. We attribute this exceptional cracking behavior to the existence of shear stress on both sides of the buried Si0.70Ge0.30 layer and the subsequent trapping of hydrogen, which leads to a crack in a well-controlled manner. This work may pave the way for high-quality Si or SiGe membrane transfer in a feasible manner, thus expediting its potential applications to ultrathin silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) production.

  19. Towards high frequency heterojunction transistors: Electrical characterization of N-doped amorphous silicon-graphene diodes

    NASA Astrophysics Data System (ADS)

    Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.

    2017-06-01

    N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.

  20. Structural and physical properties of transparent conducting, amorphous Zn-doped SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2014-01-01

    The structural and physical properties of conducting amorphous Zn-doped SnO2 (a-ZTO) films, prepared by pulsed laser deposition, were investigated as functions of oxygen deposition pressure (pO2), composition, and thermal annealing. X-ray scattering and X-ray absorption spectroscopy measurements reveal that at higher pO2, the a-ZTO films are highly transparent and have a structural framework similar to that found in crystalline (c-), rutile SnO2 in which the Sn4+ ion is octahedrally coordinated by 6 O2- ions. The Sn4+ ion in these films however has a coordination number (CN) smaller by 2%-3% than that in c-SnO2, indicating the presence of oxygen vacancies, which are the likely source of charge carriers. At lower pO2, the a-ZTO films show a brownish tint and contain some 4-fold coordinated Sn2+ ions. Under no circumstances is the CN around the Zn2+ ion larger than 4, and the Zn-O bond is shorter than the Sn-O bond by 0.07 Å. The addition of Zn has no impact on the electroneutrality but improves significantly the thermal stability of the films. Structural changes due to pO2, composition, and thermal annealing account well for the changes in the physical properties of a-ZTO films.

  1. Nitrogen doping, optical characterization, and electron emission study of diamond

    NASA Astrophysics Data System (ADS)

    Park, Minseo

    Nitrogen-doped chemical vapor deposited (CVD) diamond films were synthesized with N2 (nitrogen) and C3H6N6 (melamine) as doping sources. More effective substitutional nitrogen doping was achieved with C3H6N6 than with N 2. Since a melamine molecule has an existing cyclic C-N bonded ring, it is expected that the incorporation of nitrogen on substitution diamond lattice should be facilitated. The diamond film doped with N2 contained a significant amount of non-diamond carbon phases. The samples were analyzed by scanning electron microscopy, Raman scattering, photoluminescence spectroscopy, and field emission measurements. The sample produced using N 2 exhibited a lower field emission turn-on field than the sample produced using C3H6N6. It is believed that the presence of the graphitic phases (or amorphous sp2 carbon) at the grain boundaries of the diamond and/or the nanocrystallinity (or microcrystallinity) of the diamond play a significant role in lowering the turn-on field of the film produced using N2. The nature of the nitrogen-related 1190 cm-1 Raman peak was investigated. Nitrogen is incorporated predominantly to the crystalline or amorphous sp2 phases when nitrogen is added to the growing diamond. Field emission characteristics from metallic field emitter coated with type Ia and Ib diamond powders were also investigated. No significant difference in electron emission characteristics were found in these samples. Voltage-dependent field emission energy distribution (V-FEED) measurement was performed to analyze the energy distribution of the emitted electrons. It is believed that substitutional nitrogen doping plays only a minor role in changing field emission characteristics in diamond. Discontinuous diamond films were deposited on silicon using a microwave plasma chemical vapor deposition (MPCVD) system. The diamond deposits were sharpened by argon ion beam etching. Raman spectroscopy was carried out to study the structural change of the diamond after ion beam

  2. Highly conducting and wide band gap phosphorous doped nc-Si–QD/a-SiC films as n-type window layers for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-05-23

    Nano-crystalline silicon quantum dots (Si-QDs) embedded in the phosphorous doped amorphous silicon carbide (a-SiC) matrix has been successfully prepared at a low temperature (300 °C) by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD) system from (SiH{sub 4} + CH{sub 4})-plasma with PH{sub 3} as the doping gas. The effect of PH{sub 3} flow rate on structural, optical and electrical properties of the films has been studied. Phosphorous doped nc-Si–QD/a-SiC films with high optical band gap (>1.9 eV) and superior conductivity (~10{sup −2} S cm{sup −1}) are obtained, which could be appropriately used as n-type window layers for nc-Si solarmore » cells in n-i-p configuration.« less

  3. Ion beam irradiation of lanthanum and thorium-doped yttrium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Zhang, F. X.; Peters, M. T.; Wang, L. M.; Ewing, R. C.

    2007-05-01

    Y2Ti2O7 pyrochlores doped with La have been sintered at 1373 K for 12 h with the designed compositions of the (LaxY1-x)2Ti2O7 system (x = 0, 0.08, 0.5, and 1), and the phase compositions were analyzed by X-ray diffraction. Limited amounts of La were incorporated into yttrium titanate pyrochlore structure for La-doped samples; while, the end member composition of La2Ti2O7 formed a layered perovskite structure. Ion beam-induced amorphization occurred for all compositions in the (LaxY1-x)2Ti2O7 binary under 1 MeV Kr2+ irradiation at room temperature, and the critical amorphization dose decreased with increasing amounts of La3+. The critical amorphization temperatures for Y2Ti2O7, (La0.162Y0.838)2Ti2O7 and La2Ti2O7 were determined to be ∼780, 890 and 920 K, respectively. Th4+ and Fe3+-doped yttrium titanate pyrochlores were synthesized at 1373 K by sintering Y2Ti2O7 with (ThO2 + Fe2O3). Pyrochlore structures and the chemical compositions were primarily identified by the X-ray diffraction and energy dispersive X-ray (EDX) measurements. The lattice parameter and the critical amorphization dose (1 MeV Kr2+ at room temperature) increase for yttrium titanate pyrochlores with the addition of Th. The increasing 'resistance' to amorphization with less La and greater Th and Fe contents for (Y1-xLax)2Ti2O7 and Y2Ti2O7-Fe2O3-ThO2 systems, respectively, are consistent with the changes in the average ionic radius ratio at the A-sites and B-sites. These results suggest that the addition of lanthanides and actinides (e.g., Th, U, or Pu) will affect the structural stability, as well as the radiation response behavior of the pyrochlore structure-type.

  4. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recoverymore » in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.« less

  5. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  6. Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor

    NASA Technical Reports Server (NTRS)

    Bar-Chaim, N.; Harder, CH.; Margalit, S.; Yariv, A.; Katz, J.; Ury, I.

    1982-01-01

    A GaAlAs buried-heterostructure laser has been monolithically integrated with a bipolar phototransistor. The heterojunction transistor was formed by the regrowth of the burying layers of the laser. Typical threshold current values for the lasers were 30 mA. Common-emitter current gains for the phototransistor of 100-400 and light responsitivity of 75 A/W (for wavelengths of 0.82 micron) at collector current levels of 15 mA were obtained.

  7. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  8. Refractive-index change caused by electrons in amorphous AsS and AsSe thin films doped with different metals by photodiffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Olli; Nordman, Nina; Pashkevich, Valfrid

    2001-08-01

    The refractive-index change caused by electrons was measured in amorphous AsS and AsSe thin films. Films were coated with different metals. Diffraction gratings were written by electron-beam lithography. The interactions of electrons in films with and without the photodiffusion of overcoated metal were compared. Incoming electrons caused metal atom and ion diffusion in both investigated cases. The metal diffusion was dependent on the metal and it was found to influence the refractive index. In some cases lateral diffusion of the metal was noticed. The conditions for applications were verified. {copyright} 2001 Optical Society of America

  9. Emission of blue light from hydrogenated amorphous silicon carbide

    NASA Astrophysics Data System (ADS)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  10. Mössbauer and magnetic studies of surfactant mediated Ca-Mg doped ferrihydrite nanoparticles.

    PubMed

    Layek, Samar; Mohapatra, M; Anand, S; Verma, H C

    2013-03-01

    Ultrafine (2-5 nm) particles of amorphous Ca-Mg co-doped ferrihydrite have been synthesized by surfactant mediated co-precipitation method. The evolution of the amorphous ferrihydrite by Ca-Mg co-doping is quite different from our earlier investigations on individual doping of Ca and Mg. Amorphous phase of ferrihydrite for the present study has been confirmed by X-ray diffraction (XRD) and Mössbauer spectroscopy at room temperature and low temperatures (40 K and 20 K). Hematite nanoparticles with crystallite size about 8, 38 and 70 nm were obtained after annealing the as-prepared samples at 400, 600 and 800 degrees C respectively in air atmosphere. Superparamagnetism has been found in 8 nm sized hematite nanoparticles which has been confirmed from the magnetic hysteresis loop with zero remanent magnetization and coercive field and also from the superparamagnetic doublet of its room temperature Mössbauer spectrum. The magnetic properties of the 38 and 70 nm sized particles have been studied by room temperature magnetic hysteresis loop measurements and Mössbauer spectroscopy. The coercive field in these hematite nanoparticles increases with increasing particle size. Small amount of spinel MgFe2O4 phase has been detected in the 800 degrees C annealed sample.

  11. Platelet adhesion on phosphorus-incorporated tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Zhu, Jiaqi; Liu, Meng; Dai, Zhifei; Han, Xiao; Han, Jiecai

    2008-11-01

    The haemocompatibility of phosphorus-incorporated tetrahedral amorphous carbon (ta-C:P) films, synthesized by filtered cathodic vacuum arc technique with PH 3 as the dopant source, was assessed by in vitro platelet adhesion tests. Results based on scanning electron microscopy and contact angle measurements reveal that phosphorus incorporation improves the wettability and blood compatibility of ta-C film. Our studies may provide a novel approach for the design and synthesis of doped ta-C films to repel platelet adhesion and reduce thrombosis risk.

  12. Photoconductivity in nanostructured sulfur-doped V2O5 thin films

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Yazdi, Sh. Tabatabai

    2016-03-01

    In this paper, S-doped vanadium oxide thin films with doping levels up to 40 at.% are prepared via spray pyrolysis method on glass substrates, and the effect of S-doping on the structural and photoconductivity related properties of β-V2O5 thin films is studied. The results show that most of the films have been grown in the tetragonal β-V2O5 phase structure with the preferred orientation along [200]. With increasing the doping level, the samples tend to be amorphous. The structure of the samples reveals to be nanobelt-shaped whose width decreases from nearly 100 nm to 40 nm with S concentration. The photoconductivity measurements show that by increasing the S-doping level, the photosensitivity increases, which is due to the prolonged electron’s lifetime as a result of enhanced defect states acting as trap levels.

  13. Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes.

    PubMed

    Sohail, Manzar; De Marco, Roland; Jarolímová, Zdeňka; Pawlak, Marcin; Bakker, Eric; He, Ning; Latonen, Rose-Marie; Lindfors, Tom; Bobacka, Johan

    2015-09-29

    The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath

  14. Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin

    2012-10-01

    Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.

  15. Measurement and modeling of short and medium range order in amorphous Ta 2O 5 thin films

    DOE PAGES

    Shyam, Badri; Stone, Kevin H.; Bassiri, Riccardo; ...

    2016-08-26

    Here, amorphous films and coatings are rapidly growing in importance. Yet, there is a dearth of high-quality structural data on sub-micron films. Not understanding how these materials assemble at atomic scale limits fundamental insights needed to improve their performance. Here, we use grazing-incidence x-ray total scattering measurements to examine the atomic structure of the top 50–100 nm of Ta 2O 5 films; mirror coatings that show high promise to significantly improve the sensitivity of the next generation of gravitational-wave detectors. Our measurements show noticeable changes well into medium range, not only between crystalline and amorphous, but also between as-deposited, annealedmore » and doped amorphous films. It is a further challenge to quickly translate the structural information into insights into mechanisms of packing and disorder. Here, we illustrate a modeling approach that allows translation of observed structural features to a physically intuitive packing of a primary structural unit based on a kinked Ta-O-Ta backbone. Our modeling illustrates how Ta-O-Ta units link to form longer 1D chains and even 2D ribbons, and how doping and annealing influences formation of 2D order. We also find that all the amorphousTa 2O 5 films studied in here are not just poorly crystalline but appear to lack true 3D order.« less

  16. Improved degradation and bioactivity of amorphous aerosol derived tricalcium phosphate nanoparticles in poly(lactide-co-glycolide)

    NASA Astrophysics Data System (ADS)

    Loher, Stefan; Reboul, Valentine; Brunner, Tobias J.; Simonet, Marc; Dora, Claudio; Neuenschwander, Peter; Stark, Wendelin J.

    2006-04-01

    The industrially used flame synthesis of silica polymer fillers was extended to amorphous tricalcium phosphate (a-TCP) nanoparticles and resulted in a similar morphology as the traditionally used polymer fillers. Doping of poly(lactide-co-glycolide) (PLGA) with such highly agglomerated a-TCP was investigated for mechanical properties, increased in vitro biodegradation and the formation of a hydroxyapatite layer on the surface of the nanocomposite. PLGA films with particle loadings ranging from 0 to 30 wt% were prepared by solvent casting. Degradation in simulated body fluid (SBF) at 37 °C under sterile conditions for up to 42 days was followed by Raman spectroscopy, scanning electron microscopy (SEM), thermal analysis and tensile tests. The presence of nanoparticles in the PLGA matrix slightly increased the Young's modulus up to 30% compared to pure polymer reference materials. The nanoparticle doped films showed a significantly increased loss of polymer mass during degradation. Scanning electron microscopy images of doped films showed that the SBF degraded the PLGA by corrosion as facilitated by the incorporation of nanoparticulate calcium phosphate. Raman spectroscopy revealed that the deposition of about 10 nm sized hydroxyapatite crystallites on the surface of doped PLGA films was strongly increased by the addition of tricalcium phosphate fillers. The combination of increased hydroxyapatite formation and enhanced polymer degradation may suggest the use of such amorphous, aerosol derived a-TCP fillers for applications in non-load-bearing implant sites.

  17. EVALUATION OF BURIED CONDUITS AS PERSONNEL SHELTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, G.H.; LeDoux, J.C.; Mitchell, R.A.

    1960-07-14

    Supersedes ITR-1421. Twelve large-diameter buried conduit sections of various shapes were tested in the 60- to l49-psi overpressure region of Burst Priscilla to make an empirical determination of the degree of personnel protection afforded by commercially available steel and concrete conduits at depths of burial of 5, 7.5, and 10 feet below grade. Essentially, it was desired to assure that Repartment of Defense Class I, 100psi and comparable radiations, and Class II, 50-psi and comparable radiations, protection is afforded by use of such conduits of various configurations. Measurements were made of free-field overpressure at the ground surface above the structure;more » pressure inside the structures; acceleration of each structure; deflection of each structure; dust inside each structure; fragmentary missiles inside the concrete structures; and gamma and neutron radiation dose inside each structure. All buried conduit sections tested provided adequate Class I protection for the conditions under which the conduits were tested. Standard 8-foot concrete sewer pipe withstood 126-psi overpressure without significant damage, minor tension cracks observed; standard 10-gage corrugated-steel 8-foot circular conduit sections withstood 126- psi overpressure without significant damage; and standard 10-gage corrugated- steel cattle-pass conduits withstood 149-psi overpressure without significant damage. Durations of positive pressure were from 206 to 333 milliseconds. (auth)« less

  18. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccard, Mathieu; Holman, Zachary C.

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  19. 1.3-μm InGaAsP planar buried heterostructure laser diodes with AlInAs electron stopper layer

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Lung; Yen, Chih-Ta; Chou, Cheng-Yi; Chang, S. J.; Wu, Meng-Chyi

    2012-06-01

    This study reports on the realization of 1.3-μm InGaAsP buried-heterostructure (BH) laser diodes (LDs) via an Fe-doped semi-insulating InP layer and an AlInAs electron stopper layer (ESL). Experimentally, the as-cleaved BH LD with an AlInAs ESL exhibited improved characteristics in terms of threshold current, slope efficiency, and maximum light output power at 90 °C as compared to those of the normal BH LD without an AlInAs ESL. In addition, high internal quantum efficiency or reduced threshold current density was observed, indicating increased modal gain in BH LDs fabricated with an AlInAs epilayer on top of the active region. It was also found that the temperature sensitivity of the BH LDs with an AlInAs ESL is more stable than that of the normal BH LDs. These results could be attributed to the suppression of thermal carrier leakage out of strain-compensated multiple-quantum-well by a large conduction-band offset of the AlInAs/InGaAsP heterojunction. Otherwise, without consideration of damping factor or coupling loss, the 3-dB bandwidth of the proposed BH LDs reaches a high value of 15.3 GHz. Finally, this TO-can packaged BH LD shows an eye-opening feature with the extinction ratio of 7.49 dB while operating at 10 Gbit/s at 50 mA.

  20. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  1. Amorphous Rover

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    A proposed mobile robot, denoted the amorphous rover, would vary its own size and shape in order to traverse terrain by means of rolling and/or slithering action. The amorphous rover was conceived as a robust, lightweight alternative to the wheeled rover-class robotic vehicle heretofore used in exploration of Mars. Unlike a wheeled rover, the amorphous rover would not have a predefined front, back, top, bottom, or sides. Hence, maneuvering of the amorphous rover would be more robust: the amorphous rover would not be vulnerable to overturning, could move backward or sideways as well as forward, and could even narrow itself to squeeze through small openings.

  2. Amorphous carbon for photovoltaics

    NASA Astrophysics Data System (ADS)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  3. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Liang; Wu, Er-Xing

    2007-03-01

    The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si:H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous.

  4. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccard, Mathieu; Holman, Zachary C.

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  5. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGES

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  6. Buried penis after newborn circumcision.

    PubMed

    Eroğlu, Egemen; Bastian, Okan W; Ozkan, Hilda C; Yorukalp, Ozlem E; Goksel, Ayla K

    2009-04-01

    Buried penis may develop after circumcision, mostly during infancy, presumably due to peripubic fat. A surgical approach may be recommended for psychological benefits to patients and parents, and because it is believed that this condition will not improve on its own with time. The aim of this study was to assess the natural history of buried penis after newborn circumcision. During a routine visit to the pediatrician infants with buried penis were assessed by a single pediatric surgeon between January 2004 and June 2007. In December 2007 all of these children were reexamined by the same pediatric surgeon and the natural growth of the genitalia was analyzed. A total of 88 infants were enrolled in the study. When they were first examined they were 3 to 6 months old (mean 3.3). In December 2007, after reexamination, patients were divided into groups based on age, including those younger than 1 year (14 patients), 1 to 3 years (59) and older than 3 years (15). The aspect of the genitalia was evaluated by the same pediatric surgeon for each patient. Buried penis was noted in 14 of 14 patients younger than 1 year (100%), 19 of 59 patients 1 to 3 years old (32.2%) and 1 of 15 patients older than 3 years (6.7%). Buried penis after newborn circumcision is not permanent. As infants get older, and after beginning to walk, the appearance usually turns out to be normal. This resolution may be due to growth and/or maturation alone. Based on our results, we do not recommend surgery for buried penis in children younger than 3 years.

  7. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  8. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  9. Transport properties of Sb-doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Philipose, U.

    2012-08-01

    We present a safe and cost-effective approach for synthesis of n-type Sb-doped Si nanowires. The nanowires were synthesized at ambient pressure using SiCl4 as Si source and pure Sb as the dopant source. Structural and compositional characterization using electron microscopy and X-ray spectroscopy show crystalline nanowires with lengths of 30-40 μm and diameters of 40-100 nm. A 3-4 nm thick amorphous oxide shell covers the surface of the nanowire, post-growth. The composition of this shell was confirmed by Raman spectroscopy. Growth of Si nanowires, followed by low temperature annealing in Sb vapor, was shown to be an effective technique for synthesizing Sb-doped Si nanowires. The doping concentration of Sb was found to be dependent on temperature, with Sb re-evaporating from the Si nanowire at higher doping temperatures. Field effect transistors (FETs) were fabricated to investigate the electrical transport properties of these nanowires. The as-grown Si nanowires were found to be p-type with a channel mobility of 40 cm2 V-1 s-1. After doping with Sb, these nanowires exhibited n-type behavior. The channel mobility and carrier concentration of the Sb-doped Si nanowires were estimated to be 288 cm2 V-1 s-1 and 5.3×1018 cm-3 respectively.

  10. Hormones as doping in sports.

    PubMed

    Duntas, Leonidas H; Popovic, Vera

    2013-04-01

    Though we may still sing today, as did Pindar in his eighth Olympian Victory Ode, "… of no contest greater than Olympia, Mother of Games, gold-wreathed Olympia…", we must sadly admit that today, besides blatant over-commercialization, there is no more ominous threat to the Olympic games than doping. Drug-use methods are steadily becoming more sophisticated and ever harder to detect, increasingly demanding the use of complex analytical procedures of biotechnology and molecular medicine. Special emphasis is thus given to anabolic androgenic steroids, recombinant growth hormone and erythropoietin as well as to gene doping, the newly developed mode of hormones abuse which, for its detection, necessitates high-tech methodology but also multidisciplinary individual measures incorporating educational and psychological methods. In this Olympic year, the present review offers an update on the current technologically advanced endocrine methods of doping while outlining the latest procedures applied-including both the successes and pitfalls of proteomics and metabolomics-to detect doping while contributing to combating this scourge.

  11. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-08-17

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

  12. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  13. Optical and electrical responses of magnetron-sputtered amorphous Nb-doped TiO2 thin films annealed at low temperature

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Tien, Nguyen Thi; Thanh, Pham Van; Hieu, Nguyen Minh; Doanh, Sai Cong; Thuat, Nguyen Tran; Tuyen, Nguyen Viet; Luong, Nguyen Hoang; Hoang, Ngoc Lam Huong

    2018-03-01

    Nb-doped TiO2 (TNO) thin films were prepared by annealing at 300 °C for 30 min after a magnetron-sputter process. A laser-irradiated post-annealing Raman scattering analysis indirectly showed the possible formation of small size anatase TNO clusters within the thin film matrix Although the TNO thin films were not crystallized, oxygen vacancies were created by adding H2 into the sputter gas during the deposition process. This improved the conductivity and carrier concentration of the thin films. As the ratio of H2 in sputter gas is f(H2) = [H2/Ar+H2] = 10%, the carrier concentration of the amorphous TNO thin film reached 1022 (cm-3) with the resistivity being about 10-2 (Ω.cm). Even though a new methodology to decrease the fabrication temperature is not presented; this study demonstrates an efficient approach to shorten the annealing process, which ends prior to the crystallization of the thin films. Besides, in situ H2 addition into the sputter atmosphere is proven to be a good solution to enhance the electrical conductivity of semiconductor thin films like TNOs, despite the fact that they are not well crystallized.

  14. Surface Instabilities From Buried Explosives

    DTIC Science & Technology

    2009-07-21

    interface between soil and air during buried explosions. The purpose of understanding this instability is to determine its effect on local vehicle loading...Except when the target is on the surface, e.g., a tank track, the most important loading mechanism from a buried charge is the impact of soil propelled...rising soil and the air. This unstable 15. SUBJECT TERMS Buried Explosions, Richtmyer-Meshkov Instability, Target Loading, Jetting, 16 SECURITY

  15. Burying by rats in response to aversive and nonaversive stimuli

    PubMed Central

    Poling, Alan; Cleary, James; Monaghan, Michael

    1981-01-01

    Previous investigations have shown that rats bury a variety of conditioned and unconditioned aversive stimuli. Such burying has been considered as a species-typical defensive reaction. In the present studies, rats buried spouts filled with Tabasco sauce, or condensed milk to which a taste aversion was conditioned, but did not bury water-filled spouts or spouts filled with a palatable novel food (apple juice) to which a taste aversion was not conditioned. However, in other experiments rats consistently and repeatedly buried Purina Rat Chow, Purina Rat Chow coated with quinine, and glass marbles. This indicates that a variety of stimuli, not all aversive or novel, evoke burying by rats. Whereas the behavior may reasonably be considered as a species-typical defensive behavior in some situations, the wide range of conditions that occasion burying suggests that the behavior has no single biological function. PMID:16812198

  16. Effect of density of localized states on the ovonic threshold switching characteristics of the amorphous GeSe films

    NASA Astrophysics Data System (ADS)

    Ahn, Hyung-Woo; Seok Jeong, Doo; Cheong, Byung-ki; Lee, Hosuk; Lee, Hosun; Kim, Su-dong; Shin, Sang-Yeol; Kim, Donghwan; Lee, Suyoun

    2013-07-01

    We investigated the effect of nitrogen (N) doping on the threshold voltage of an ovonic threshold switching device using amorphous GeSe. Using the spectroscopic ellipsometry, we found that the addition of N brought about significant changes in electronic structure of GeSe, such as the density of localized states and the band gap energy. Besides, it was observed that the characteristics of OTS devices strongly depended on the doping of N, which could be attributed to those changes in electronic structure suggesting a method to modulate the threshold voltage of the device.

  17. The Effects of Hydrogen on the Potential-Energy Surface of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Joly, Jean-Francois; Mousseau, Normand

    2012-02-01

    Hydrogenated amorphous silicon (a-Si:H) is an important semiconducting material used in many applications from solar cells to transistors. In 2010, Houssem et al. [1], using the open-ended saddle-point search method, ART nouveau, studied the characteristics of the potential energy landscape of a-Si as a function of relaxation. Here, we extend this study and follow the impact of hydrogen doping on the same a-Si models as a function of doping level. Hydrogen atoms are first attached to dangling bonds, then are positioned to relieve strained bonds of fivefold coordinated silicon atoms. Once these sites are saturated, further doping is achieved with a Monte-Carlo bond switching method that preserves coordination and reduces stress [2]. Bonded interactions are described with a modified Stillinger-Weber potential and non-bonded Si-H and H-H interactions with an adapted Slater-Buckingham potential. Large series of ART nouveau searches are initiated on each model, resulting in an extended catalogue of events that characterize the evolution of potential energy surface as a function of H-doping. [4pt] [1] Houssem et al., Phys Rev. Lett., 105, 045503 (2010)[0pt] [2] Mousseau et al., Phys Rev. B, 41, 3702 (1990)

  18. Investigation of thermally evaporated high resistive B-doped amorphous selenium alloy films and metal contact studies

    NASA Astrophysics Data System (ADS)

    Oner, Cihan; Nguyen, Khai V.; Pak, Rahmi O.; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    Amorphous selenium (a-Se) alloy materials with arsenic, chlorine, boron, and lithium doping were synthesized for room temperature nuclear radiation detector applications using an optimized alloy composition for enhanced charge transport properties. A multi-step synthetic process has been implemented to first synthesize Se-As and Se-Cl master alloys from zone-refined Se (~ 7N), and then synthesized the final alloys for thermally evaporated large-area thin-film deposition on oxidized aluminum (Al/Al2O3) and indium tin oxide (ITO) coated glass substrates. Material purity, morphology, and compositional characteristics of the alloy materials and films were examined using glow discharge mass spectroscopy (GDMS), inductively coupled plasma mass spectroscopy (ICP-MS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive analysis by x-rays (EDAX). Current-Voltage (I-V) measurements were carried out to confirm very high resistivity of the alloy thin-films. We have further investigated the junction properties of the alloy films with a wide variety of metals with different work functions (Au, Ni, W, Pd, Cu, Mo, In, and Sn). The aim was to investigate whether the choice of metal can improve the performance of fabricated detectors by minimizing the dark leakage current. For various metal contacts, we have found significant dependencies of metal work functions on current transients by applying voltages from -800 V to +1000 V.

  19. Nonformity of the electron density in amorphous silicon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionova, E.N.; Cheremskoi, P.G.; Fedorenko, A.I.

    1985-12-01

    The authors study the nonuniformity of a-Si:H films obtained by the method of vacuum condensation, with the help of x-ray small-angle scattering (SLS) and transmission electron microscopy. Films of hydrogenated amorphous silicon are greatest interest, because the electronic properties of this material can be controlled by doping. As a result of the compensation of the ruptured bonds, and possibly, effects of melting, the properties of such films are analogous to those of singlecrystalline silicon. XLS enables a quantitative determination of the prameters of the regions of low electron density (RLD) in such objects.

  20. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    NASA Astrophysics Data System (ADS)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  1. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.

    PubMed

    Chang, Sheng-Po; Shan, Deng

    2018-04-01

    This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

  2. Back to basics: A methodological perspective on marble-burying behavior as a screening test for psychiatric illness.

    PubMed

    de Brouwer, Geoffrey; Wolmarans, De Wet

    2018-04-22

    Animal models of human psychiatric illness are valuable frameworks to investigate the etiology and neurobiology underlying the human conditions. Accurate behavioral measures that can be used to characterize animal behavior, thereby contributing to a model's validity, are crucial. One such measure, i.e. the rodent marble-burying test (MBT), is often applied as a measure of anxiety- and compulsive-like behaviors. However, the test is characterized by noteworthy between-laboratory methodological differences and demonstrates positive treatment responses to an array of pharmacotherapies that are often of little translational value. Therefore, using a naturalistic animal model of obsessive-compulsive disorder, i.e. the deer mouse (Peromyscus maniculatus bairdii), the current investigation attempted to illuminate the discrepancies reported in literature by means of a methodological approach to the MBT. Five key aspects of the test that vary between laboratories, viz. observer/scoring, burying substrate, optional avoidance, the use of repeated testing, and determinations of locomotor activity, have been investigated. Following repeated MB tests in four different burying substrates and in two zone configurations, we have demonstrated that 1) observer bias may contribute to the significant differences in findings reported, 2) MB seems to be a natural exploratory response to a novel environment, rather than being triggered by aberrant cognition, 3) burying substrates with a small particle size and higher density deliver the most accurate results with respect to the burying phenotype, and 4) to exclude the influence of normal exploratory behavior on the number of marbles being covered, assessments of marble-burying should be based on pre-occupation with the objects itself. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Detecting Thermal Barrier Coating Delamination Using Visible and Near-Infrared Luminescence from Erbium-Doped Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bencic, T. J.; Martin, R. E.; Singh, J.; Wolfe, D. E.

    2007-01-01

    Nondestructive diagnostic tools are needed to monitor early stages of delamination progression in thermal barrier coatings (TBCs) because the risk of delamination induced coating failure will compromise engine performance and safety. Previous work has demonstrated that for TBCs composed of yttria-stabilized zirconia (YSZ), luminescence from a buried europium-doped sublayer can be utilized to identify the location of TBC delamination from the substantially higher luminescence intensity observed from the delaminated regions of the TBC. Luminescence measurements from buried europium-doped layers depend on sufficient transmittance of the 532 nm excitation and 606 nm emission wavelengths through the attenuating undoped YSZ overlayer to produce easily detected luminescence. In the present work, improved delamination indication is demonstrated using erbium-doped YSZ sublayers. For visible-wavelength luminescence, the erbium-doped sublayer offers the advantage of a very strong excitation peak at 517 nm that can be conveniently excited a 514 nm Ar ion laser. More importantly, the erbium-doped sublayer also produces near-infrared luminescence at 1550 nm that is effectively excited by a 980 nm laser diode. Both the 980 nm excitation and the 1550 nm emission are transmitted through the TBC with much less attenuation than visible wavelengths and therefore show great promise for delamination monitoring through thicker or more highly scattering TBCs. The application of this approach for both electron beam physical vapor deposited (EB-PVD) and plasma-sprayed TBCs is discussed.

  4. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  5. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  6. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Yong, Xue; Tse, John S.

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less

  7. Natural realgar and amorphous AsS oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2003-03-01

    The oxidation rates of natural realgar and amorphous synthetic AsS by dissolved oxygen were evaluated using mixed flow reactors at pH 7.2 to 8.8 and dissolved oxygen contents of 5.9 to 16.5 ppm over a temperature range of 25 to 40°C. The ratios of As/S are stoichiometric for all amorphous AsS oxidation experiments except for two experiments conducted at pH ˜8.8. In these experiments, stoichiometric ratios of As/S were only observed in the early stages of AsS (am) oxidation whereas lower As/S ratios were observed during steady state. For realgar oxidation experiments, the As/S ratio is less than the stoichiometric ratio of realgar, ranging between 0.61 and 0.71. This nonstoichiometric release of As and S to solution indicates that realgar oxidation is more selective for S after the rates of oxidation become constant. All measured oxidation rates at 25°C can be described within experimental uncertainties as follows: Table 1

  8. Chemical modification of the electrical properties of hydrogenated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Meyerson, B.; Smith, F. W.

    1980-05-01

    Semiconducting films of hydrogenated amorphous carbon (a-C:H), prepared via the dc glow discharge decomposition of C 2H 2, have been successfully doped via incorporation of B and P during growth. The doping efficiency achieved was comparable to that achieved in a-Si:H produced in a like manner. For a-C:H films deposited at Td=250 C, ?(RT) increased from 10 -12 to 10 -7 ohm -1 cm -1 when either 1% PH 3 or 10% B 2H 6 were added to the C 2H 2. A shift of the Fermi level E F of about 0.7 eV is inferred from changes in the "activation" energy of conduction.

  9. Pharmaceutical Amorphous Nanoparticles.

    PubMed

    Jog, Rajan; Burgess, Diane J

    2017-01-01

    There has been a tremendous revolution in the field of nanotechnology, resulting in the advent of novel drug delivery systems known as nanomedicines for diagnosis and therapy. One of the applications is nanoparticulate drug delivery systems which are used to improve the solubility and oral bioavailability of poorly soluble compounds. This is particularly important because most of the molecules emerging from the drug discovery pipeline in recent years have problems associated with solubility and bioavailability. There has been considerable focus on nanocrystalline materials; however, amorphous nanoparticles have the advantage of synergistic mechanisms of enhancing dissolution rates (due to their nanosize range and amorphous nature) as well as increasing supersaturation levels (due to their amorphous nature). An example of this technology is Nanomorph TM , developed by Soliqus/Abbott, wherein the nanosize drug particles are precipitated in an amorphous form in order to enhance the dissolution rate. This along with other simple and easily scalable manufacturing techniques for amorphous nanoparticles is described. In addition, the mechanisms of formation of amorphous nanoparticles and several physicochemical properties associated with amorphous nanoparticles are critically reviewed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Compact Buried Ducts in a Hot-Humid Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, Dave

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely onmore » encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.« less

  11. Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Siah, S. C.; Brandt, R. E.; Lim, K.; Schelhas, L. T.; Jaramillo, R.; Heinemann, M. D.; Chua, D.; Wright, J.; Perkins, J. D.; Segre, C. U.; Gordon, R. G.; Toney, M. F.; Buonassisi, T.

    2015-12-01

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga2O3:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga2O3:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga2O3:Sn are present as Sn4+, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.

  12. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.

    PubMed

    Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-29

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1  Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  13. Origin of subgap states in amorphous In-Ga-Zn-O

    NASA Astrophysics Data System (ADS)

    Körner, Wolfgang; Urban, Daniel F.; Elsässer, Christian

    2013-10-01

    We present a density functional theory analysis of stoichiometric and nonstoichiometric, crystalline and amorphous In-Ga-Zn-O (c-IGZO, a-IGZO), which connects the recently experimentally discovered electronic subgap states to structural features of a-IGZO. In particular, we show that undercoordinated oxygen atoms create electronic defect levels in the lower half of the band gap up to about 1.5 eV above the valence band edge. As a second class of fundamental defects that appear in a-IGZO, we identify mainly pairs of metal atoms which are not separated by oxygen atoms in between. These defects cause electronic defect levels in the upper part of the band gap. Furthermore, we show that hydrogen doping can suppress the deep levels due to undercoordinated oxygen atoms while those of metal defects just undergo a shift within the band gap. Altogether our results provide an explanation for the experimentally observed effect that hydrogen doping increases the transparency and improves the conductivity of a-IGZO.

  14. Structural and electrical properties of trimethylboron-doped silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, K.-K.; Pan Ling; Bogart, Timothy E.

    2004-10-11

    Trimethylboron (TMB) was investigated as a p-type dopant source for the vapor-liquid-solid growth of boron-doped silicon nanowires (SiNWs). The boron concentration in the nanowires was measured using secondary ion mass spectrometry and results were compared for boron-doping using TMB and diborane (B{sub 2}H{sub 6}) sources. Boron concentrations ranging from 1x10{sup 18} to 4x10{sup 19} cm{sup -3} were obtained by varying the inlet dopant/SiH{sub 4} gas ratio. TEM characterization revealed that the B{sub 2}H{sub 6}-doped SiNWs consisted of a crystalline core with a thick amorphous Si coating, while the TMB-doped SiNWs were predominantly single crystal even at high boron concentrations. Themore » difference in structural properties was attributed to the higher thermal stability and reduced reactivity of TMB compared to B{sub 2}H{sub 6}. Four-point resistivity and gate-dependent conductance measurements were used to confirm p-type conductivity in the TMB-doped nanowires and to investigate the effect of dopant concentration on nanowire resistivity.« less

  15. Viking Lander's Buried Footpad #3

    NASA Technical Reports Server (NTRS)

    1976-01-01

    One of Viking l's three feet, which should be visible in this view, lies buried beneath a cover of loose Martian soil. This picture, taken Sunday (August 1), is the first to show the buried footpad #3. If not buried, the edge of the foot would be seen extending across the picture about midway between top and bottom. The foot sank about five inches, and fine-grained soil slumped into the depression and over the foot. The cracked nature of the surface near the slump area and the small, steep cliff at left indicates that the material is weakly cohesive. The surface material here is very similar mechanically to lunar soil.

  16. Buried object remote detection technology for law enforcement

    NASA Astrophysics Data System (ADS)

    del Grande, Nancy K.; Clark, Gregory A.; Durbin, Philip F.; Fields, David J.; Hernandez, Jose E.; Sherwood, Robert J.

    1991-08-01

    A precise airborne temperature-sensing technology to detect buried objects for use by law enforcement is developed. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. The methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. The method creates color-coded images based on surface temperature variations of 0.2 degree(s)C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1 degree(s)C or 2 degree(s)C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, it is possible to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectral, spatial, thermal, temporal, emissivity and diffusivity signatures. The authors have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less than 60 m deep. The technology could be adapted for drug interdiction and pollution control. For the former, buried tunnels, underground structures built beneath typical surface structures, roof-tops disguised by jungle canopies, and covered containers used for contraband would be located. For the latter, buried waste containers, sludge migration pathways from faulty containers, and the juxtaposition of groundwater channels, if present, nearby, would be depicted. The precise airborne temperature-sensing technology has a promising potential

  17. Buried Oxide Densification for Low Power, Low Voltage CMOS Applications

    NASA Technical Reports Server (NTRS)

    Allen, L. P.; Anc, M. J.; Dolan, B.; Jiao, J.; Guss, B.; Seraphin, S.; Liu, S. T.; Jenkins, W.

    1998-01-01

    Special technology and circuit architecture are of growing interest for implementation of circuits which operate at low supply voltages and consume low power levels without sacrificing performance[1]. Use of thin buried oxide SOI substrates is a primary approach to simultaneously achieve these goals. A significant aspect regarding SIMOX SOI for low voltage, low power applications is the reliability and performance of the thin buried oxide. In addition, when subjected to high total dose irradiation, the silicon islands within the BOX layer of SIMOX can store charges and significantly effect the back channel threshold voltages of devices. Thus, elimination of the islands within the buried oxide (BOX) layer is preferred in order to prevent leakage through these conductive islands and charge build-up within the buried oxide layer. A differential (2-step) ramp rate as applied to full and 100 nm BOX SIMOX was previously reported to play a significant role in the stoichiometry and island formation within the buried layer[2]. This paper focus is on the properties of a thin (120nm) buried oxide as a function of the anneal ramp rate and the temperature of anneal. In this research, we have found an improvement in the buried oxide stoichiometry with the use of a slower, singular ramp rate for specified thin buried oxides, with slower ramp rates and higher temperatures of anneal suggested for reducing the presence of Si islands within the BOX layer.

  18. Doping assessment in GaAs nanowires.

    PubMed

    Goktas, N Isik; Fiordaliso, E M; LaPierre, R R

    2018-06-08

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p-n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  19. Doping assessment in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Isik Goktas, N.; Fiordaliso, E. M.; LaPierre, R. R.

    2018-06-01

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p–n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  20. Devitrification of amorphous celecoxib.

    PubMed

    Gupta, Piyush; Bansal, Arvind K

    2005-09-30

    The purpose of this research was to analyze the devitrification of amorphous celecoxib (CEL) in the presence of different stressors (temperature, pressure, and/or humidity) encountered during processing of solid dosage forms. Amorphous CEL was prepared in situ in the analytical instruments, as well as in laboratory, by quench-cooling of melt process, and analyzed by dynamic mechanical thermal analysis, differential scanning calorimetry, microscopy, and Fourier-transform infrared spectroscopy. Amorphous CEL prepared in situ in the analytical instruments was resistant to crystallization under the influence of temperature and/or pressure, because of its protection from the external environment during preparation. These samples exhibited structural relaxation during annealing at 25 degrees C/0% relative humidity (RH) for 16 hours. Generation of amorphous CEL in the laboratory resulted in partially crystalline samples, because of exposure to environmental temperature and humidity, resulting in incomplete vitrification. Subjection to thermal stress favored crystallization of amorphous CEL into metastable polymorphic forms, which were not obtained by solvent recrystallization approach. Temperature and humidity were identified as the major factors promoting devitrification of amorphous CEL, leading to loss of solubility advantage. Exposure to International Conference on Harmonization-specified accelerated stability storage conditions (40 degrees C/75% RH) resulted in complete devitrification of amorphous CEL within 15 days. The phase-transformation process of amorphous CEL along the temperature scale was examined visually, as well as spectrally. This propensity for devitrification of amorphous CEL seemed to depend on the strength of differential molecular interactions between the amorphous and crystalline form.

  1. Raman studied of undoped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    The undoped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The effect of different substrate deposition temperatures on structural and electrical properties of undoped doped amorphous carbon film was discussed. The structural of undoped amorphous carbon films were correlated with Raman analysis through the evolution of D and G bands, Fourier spectra, and conductivity measurement. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. The spectral evolution observed at different substrate deposition temperatures show progressive formation of crystallites. It was predicted that small number of hydrogen is terminated with carbon at surface of thin film as shown by FTIR spectra since palm oil has high number of hydrogen (C67H127O8). These structural changes were further correlated with conductivity and the results obtained are discussed and compared. The conductivity is found in the range of 10-8 Scm-1. The increase of conductivity is correlated by the change of structural properties as correlated with characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG and FTIR result.

  2. Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films

    NASA Technical Reports Server (NTRS)

    Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.

    2001-01-01

    We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.

  3. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  4. Detection of buried mines with seismic sonar

    NASA Astrophysics Data System (ADS)

    Muir, Thomas G.; Baker, Steven R.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Hall, Patrick W.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of the target strengths of buried test targets as well as targets of interest, and has also examined detection and confirmatory classification of these, all using arrays of seismic sources and receivers as well as signal processing techniques to enhance target recognition. The target strengths of two test targets (one a steel gas bottle, the other an aluminum powder keg), buried in a sand beach, were examined as a function of internal mass load, to evaluate theory developed for seismic sonar target strength [J. Acoust. Soc. Am. 103, 2344-2353 (1998)]. The detection of buried naval and military targets of interest was achieved with an array of 7 shaker sources and 5, three-axis seismometers, at a range of 5 m. Vector polarization filtering was the main signal processing technique for detection. It capitalizes on the fact that the vertical and horizontal components in Rayleigh wave echoes are 90 deg out of phase, enabling complex variable processing to obtain the imaginary component of the signal power versus time, which is unique to Rayleigh waves. Gabor matrix processing of this signal component was the main technique used to determine whether the target was man-made or just a natural target in the environment. [Work sponsored by ONR.

  5. Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Kocourek, Tomáš; Jurek, Karel; Remsa, Jan; Mikšovský, Jan; Weiserová, Marie; Strnad, Jakub; Luxbacher, Thomas

    2010-12-01

    Thin hydroxyapatite (HA), silver-doped HA and silver layers were prepared using a pulsed laser deposition method. Doped layers were ablated from silver/HA targets. Amorphous and crystalline films of silver concentrations of 0.06 at.%, 1.2 at.%, 4.4 at.%, 8.3 at.% and 13.7 at.% were synthesized. Topology was studied using scanning electron microscopy and atomic force microscopy. Contact angle and zeta potential measurements were conducted to determine the wettability, surface free energy and electric surface properties. In vivo measurement (using Escherichia coli cells) of antibacterial properties of the HA, silver-doped HA and silver layers was carried out. The best antibacterial results were achieved for silver-doped HA layers of silver concentration higher than 1.2 at.%.

  6. Amorphization strategy affects the stability and supersaturation profile of amorphous drug nanoparticles.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn

    2014-05-05

    Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.

  7. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    DOE PAGES

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; ...

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devicesmore » with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.« less

  8. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  9. InGaAsP/InP buried-heterostructure lasers /lambda = 1.5 microns/ with chemically etched mirrors

    NASA Astrophysics Data System (ADS)

    Adachi, S.; Kawaguchi, H.; Takahei, K.; Noguchi, Y.

    1981-09-01

    The monolithic fabrication of buried heterostructure InGaAsP/InP lasers operating at a wavelength of 1.5 microns with chemically etched mirrors is reported. The buried heterostructure lasers were prepared from InGaAsP/InP DH wafers reverse-mesa etched with a Br2:CH3OH solution, with the reverse-mesa walls buried by subsequent LPE growth. To fabricate the etched mirror laser, Au-Zn metal was evaporated onto the epitaxial-layer side of the wafer and an Au-Zn contact was defined by photolithography; photolithographic techniques were used to define a SiO2 mask directly over the Au-Zn contact for etched mirror definition using either 0.3 vol % Br2:CH3OH or HCl:CH3COOH:H2O2 1:2:1 solutions. A threshold current of 50 mA is obtained from lasers thus produced, which is nearly the same as that of conventionally fabricated cleaved-mirror lasers. The procedure presented thus allows low threshold-current devices to be obtained with a much greater flexibility in design and fabrication than previously attained.

  10. Photoluminescence Studies of P-type Modulation Doped GaAs/AlGaAs Quantum Wells in the High Doping Regime

    NASA Astrophysics Data System (ADS)

    Wongmanerod, S.; Holtz, P. O.; Reginski, K.; Bugaiski, M.; Monemar, B.

    The influence of high Be-acceptor doping on the modulation-doped GaAs/Al0.3Ga0.7As quantum wells structures has been optically studied by using the low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques.The modulation doped samples were grown by the molecular-beam epitaxy technique with a varying Be acceptor concentration ranging from 1×1018 to 8×1018cm-3. Several novels physical effects were observed. The main effect is a significant shift of the main emission towards lower energies as the doping concentrations increase. There are two contradictory mechanisms, which determine the peak energy of the main emission; the shrinkage of the effective bandgap due to many body effects and the reduction of the exciton binding energy due to the carrier screening effect. We conclude that the first one is the dominating effect. At a sufficiently high doping concentration (roughly 2×1018cm-3), the lineshape of the main PL emission is modified, and a new feature, the so called Fermi-edge singularity (FES), appears on the high energy side of the PL emission and exhibits a blue-shift as a function of doping concentration. This feature has been found to be very sensitive to a temperature change, already in the range of 4.4-50K. In addition, PLE spectra with a suitable detection energy show that the absorption edge is blue-shifted with respect to the PL main emission. The resulting Stoke shift is due to phase-space-filling of the carriers, in agreement with the FES interpretation. Finally, we have found from the PLE spectra that the exciton quenching is initiated in the same doping regime. Compared to the exciton quenching in other p-type structures, the critical acceptor concentration required to quench the excitons is significantly lower than in the case of 2D structures with acceptor doping within the well, but larger than in the case of 3D bulk.

  11. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces.

    PubMed

    Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z

    2018-02-01

    Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

  12. Doping induced c-axis oriented growth of transparent ZnO thin film

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2018-04-01

    c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.

  13. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata

    PubMed Central

    Han, C. J.

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460

  14. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    NASA Astrophysics Data System (ADS)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  15. Buried object remote detection technology for law enforcement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Grande, N.K.; Clark, G.A.; Durbin, P.F.

    1991-03-01

    We have developed a precise airborne temperature-sensing technology to detect buried objects for use by law enforcement. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. Our patented methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. Our method creates color-coded images based on surface temperature variations of 0.2 {degrees}C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1{degrees}C or 2{degrees}C; this maskmore » hinders interpretation of apparent (blackbody) temperatures. Once removed, were are able to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectra, spatial, thermal, temporal, emissivity and diffusivity signatures. We have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less 60 m deep. Our technology could be adapted for drug interdiction and pollution control. 16 refs., 14 figs.« less

  16. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Macro- and microscopic properties of strontium doped indium oxide

    NASA Astrophysics Data System (ADS)

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.

    2014-07-01

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In2O3:(SrO)x were investigated for materials with different doping levels at different temperatures (T = 20-300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn2O4. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100-200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10-13 cm2/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  18. Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide-Polymer Blend Charge Transport.

    PubMed

    Huang, Wei; Guo, Peijun; Zeng, Li; Li, Ran; Wang, Binghao; Wang, Gang; Zhang, Xinan; Chang, Robert P H; Yu, Junsheng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2018-04-25

    Charge transport and film microstructure evolution are investigated in a series of polyethylenimine (PEI)-doped (0.0-6.0 wt%) amorphous metal oxide (MO) semiconductor thin film blends. Here, PEI doping generality is broadened from binary In 2 O 3 to ternary (e.g., In+Zn in IZO, In+Ga in IGO) and quaternary (e.g., In+Zn+Ga in IGZO) systems, demonstrating the universality of this approach for polymer electron doping of MO matrices. Systematic comparison of the effects of various metal ions on the electronic transport and film microstructure of these blends are investigated by combined thin-film transistor (TFT) response, AFM, XPS, XRD, X-ray reflectivity, and cross-sectional TEM. Morphological analysis reveals that layered MO film microstructures predominate in PEI-In 2 O 3 , but become less distinct in IGO and are not detectable in IZO and IGZO. TFT charge transport measurements indicate a general coincidence of a peak in carrier mobility (μ peak ) and overall TFT performance at optimal PEI doping concentrations. Optimal PEI loadings that yield μ peak values depend not only on the MO elemental composition but also, equally important, on the metal atomic ratios. By investigating the relationship between the MO energy levels and PEI doping by UPS, it is concluded that the efficiency of PEI electron-donation is highly dependent on the metal oxide matrix work function in cases where film morphology is optimal, as in the IGO compositions. The results of this investigation demonstrate the broad generality and efficacy of PEI electron doping applied to electronically functional metal oxide systems and that the resulting film microstructure, morphology, and energy level modifications are all vital to understanding charge transport in these amorphous oxide blends.

  19. Heavily Sn-doped GaAs with abrupt doping profiles grown by migration-enhanced epitaxy at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanapranee, Tosaporn; Horikoshi, Yoshiji

    The characteristics of heavily Sn-doped GaAs samples grown at 300 deg. C by a migration-enhanced epitaxy (MEE) technique are investigated in comparison with those of the samples grown by a conventional molecular-beam epitaxy (MBE) at 580 deg. C. While no discernible difference is observed in the low doping regime, the difference in doping characteristics between the MBE- and MEE-grown samples becomes apparent when the doping concentration exceeds 1x10{sup 19} cm{sup -3}. Sn atoms as high as 4x10{sup 21} cm{sup -3} can be incorporated into MEE-grown GaAs films, unlike the MBE-grown samples that have a maximum doping level limited around 1x10{supmore » 19} cm{sup -3}. Due to an effective suppression of Sn segregation in the MEE growth case, high quality GaAs films with abrupt high-concentration Sn-doping profiles are achieved with the doping concentrations of up to 2x10{sup 21} cm{sup -3}. It has been shown that even though a high concentration of Sn atoms is incorporated into the GaAs film, the electron concentration saturates at 6x10{sup 19} cm{sup -3} and then gradually decreases with Sn concentration. The uniform doping limitation, as well as the electron concentration saturation, is discussed by means of Hall-effect measurement, x-ray diffraction, and Raman scattering spectroscopy.« less

  20. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    PubMed

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  1. Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.

    PubMed

    Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu

    2015-09-01

    Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping.

  2. Buried Seed Banks as Indicators of Seed Output along an Altitudinal Gradient.

    ERIC Educational Resources Information Center

    Thompson, K.

    1985-01-01

    Study of buried seed banks (viable seeds deposited in the soil near parent plants) provides a relatively easy way of determining cumulative effects on seed production and species' altitudinal limits. Sites, methods, validity, interpretation, problems of collection on a mountain, and germination techniques are discussed. (Author/DH)

  3. Amorphous-amorphous transition in a porous coordination polymer.

    PubMed

    Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki

    2017-07-04

    The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.

  4. System and method for removal of buried objects

    DOEpatents

    Alexander, Robert G [Richland, WA; Crass, Dennis [Kennewick, WA; Grams, William [Kennewick, WA; Phillips, Steven J [Sunnyside, WA; Riess, Mark [Kennewick, WA

    2008-06-03

    The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.

  5. Toughening Fe-based Amorphous Coatings by Reinforcement of Amorphous Carbon.

    PubMed

    Wang, Wei; Zhang, Cheng; Zhang, Zhi-Wei; Li, Yi-Cheng; Yasir, Muhammad; Wang, Hai-Tao; Liu, Lin

    2017-06-22

    Toughening of Fe-based amorphous coatings meanwhile maintaining a good corrosion resistance remains challenging. This work reports a novel approach to improve the toughness of a FeCrMoCBY amorphous coating through in-situ formation of amorphous carbon reinforcement without reducing the corrosion resistance. The Fe-based composite coating was prepared by high velocity oxy-fuel (HVOF) thermal spraying using a pre-mixed Fe-based amorphous/nylon-11 polymer feedstock powders. The nylon-11 powders were in-situ carbonized to amorphous carbon phase during thermal spraying process, which homogeneously distributed in the amorphous matrix leading to significant enhancement of toughness of the coating. The mechanical properties, including hardness, impact resistance, bending and fatigue strength, were extensively studied by using a series of mechanical testing techniques. The results revealed that the composite coating reinforced by amorphous carbon phase exhibited enhanced impact resistance and nearly twice-higher fatigue strength than that of the monolithic amorphous coating. The enhancement of impact toughness and fatigue properties is owed to the dumping effect of the soft amorphous carbon phase, which alleviated stress concentration and decreased crack propagation driving force.

  6. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katamune, Yūki, E-mail: yuki-katamune@kyudai.jp; Takeichi, Satoshi; Ohmagari, Shinya

    2015-11-15

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10{sup −3} Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp{sup 3} C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bondsmore » at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling.« less

  7. High efficiency photovoltaic device

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  8. P-type field effect transistor based on Na-doped BaSnO3

    NASA Astrophysics Data System (ADS)

    Jang, Yeaju; Hong, Sungyun; Park, Jisung; Char, Kookrin

    We fabricated field effect transistors (FET) based on the p-type Na-doped BaSnO3 (BNSO) channel layer. The properties of epitaxial BNSO channel layer were controlled by the doping rate. In order to modulate the p-type FET, we used amorphous HfOx and epitaxial BaHfO3 (BHO) gate oxides, both of which have high dielectric constants. HfOx was deposited by atomic-layer-deposition and BHO was epitaxially grown by pulsed laser deposition. The pulsed laser deposited SrRuO3 (SRO) was used as the source and the drain contacts. Indium-tin oxide and La-doped BaSnO3 were used as the gate electrodes on top of the HfOx and the BHO gate oxides, respectively. We will analyze and present the performances of the BNSO field effect transistor such as the IDS-VDS, the IDS-VGS, the Ion/Ioff ratio, and the field effect mobility. Samsung Science and Technology Foundation.

  9. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  10. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  11. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  12. Buried Object Detection

    DTIC Science & Technology

    1988-01-22

    Final Report 19 January 1987 Army Research OfficeM Contract No. DAAL03..87-K-0052 National Center for Physical Acoustics D T ! C " Naioal P. 0. Box 847...black . umberJ FIELO I GROUP I SU9GROU-p Acoustic , Seismic, Acoustic seismic coupling, porefluid, pulse echo, propagation, soils, sound speed...seismic transfer function. /’An acoustic scheme for buried object detection is thought to involve a sound source above the ground and a microphone as a

  13. Dopant activation in Sn-doped Ga{sub 2}O{sub 3} investigated by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siah, S. C., E-mail: sincheng@alum.mit.edu; Brandt, R. E.; Jaramillo, R.

    2015-12-21

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga{sub 2}O{sub 3}:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga{sub 2}O{sub 3}:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga{sub 2}O{sub 3}:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga{sub 2}O{sub 3}:Sn are present as Sn{sup 4+}, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga{sub 2}O{sub 3}:Sn are present in either +2 or +4more » charge states depending on growth conditions. These observations suggest the importance of growing Ga{sub 2}O{sub 3}:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.« less

  14. Nanocrystals in compression: unexpected structural phase transition and amorphization due to surface impurities.

    PubMed

    Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin

    2016-06-09

    We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.

  15. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahua; Chen, Da; Huang, Shihua

    2017-12-01

    The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  16. Concealed epispadias associated with a buried penis.

    PubMed

    Sol Melgar, Ricardo; Gorduza, Daniela; Demède, Delphine; Mouriquand, Pierre

    2016-12-01

    The aim was to describe the clinical presentation and the surgical management of penile epispadias associated with a buried penis in five children. This is a 5-year retrospective review of patients presenting with a buried penis, a congenital defect of the penile skin shaft associated with an unretractable foreskin for whom a penile epispadias was found at the time of surgery. All had undergone surgery combining a Cantwell-Ransley procedure and refashioning of the penile skin following the authors' technique. Three children had a glanular epispadias and two had a midshaft epispadias. Four had a satisfactory outcome, and one required a complementary urethroplasty for glanular dehiscence. Buried penis and epispadias are usually isolated congenital anomalies, although they can be associated. It is therefore recommended to warn parents about the possibility of underlying penile anomaly in children with buried penises and unretractable foreskin. Careful palpation of the dorsum of the glans through the foreskin looking for a dorsal cleft could indicate an associated epispadiac urethra. Surgical correction of both anomalies can be done at the same time. Parents of boys with buried penises should be warned that underlying penile anomaly may exist. Copyright © 2016 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  17. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta

    2011-09-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  18. Method of controllong the deposition of hydrogenated amorphous silicon and apparatus therefor

    DOEpatents

    Hanak, Joseph J.

    1985-06-25

    An improved method and apparatus for the controlled deposition of a layer of hydrogenated amorphous silicon on a substrate. Means is provided for the illumination of the coated surface of the substrate and measurement of the resulting photovoltage at the outermost layer of the coating. Means is further provided for admixing amounts of p type and n type dopants to the reactant gas in response to the measured photovoltage to achieve a desired level and type of doping of the deposited layer.

  19. Er 3+-Yb 3+ co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Liu, K.; Mu, S. K.; Tan, C. Z.; Zhang, D.; Pun, E. Y. B.; Zhang, D. M.

    2006-12-01

    Er 3+-Yb 3+ co-doped waveguide amplifiers fabricated using thermal two-step ion-exchange are demonstrated. K +-Na + ion-exchange process was first carried out in pure KNO 3 molten bath, and then field-assisted annealing (FAA) was used to make the buried waveguides. The effective buried depth is estimated to be ˜3.4 μm for the buried FAA waveguides. With the use of cut-back method, the fiber-to-guide coupling loss of ˜4.38 dB, the waveguide loss of ˜2.27 dB/cm, and Er 3+ absorption loss ˜5.7 dB were measured for a ˜1.24-cm-long waveguide. Peak relative gain of ˜7.0 dB is obtained for a ˜1.24-cm-long waveguide. The potential for the fabrication of compact optical amplifiers operating in the range of 1520-1580 nm is also demonstrated.

  20. Inhibition and quenching effect on positronium formation in metal salt doped polymer blend

    NASA Astrophysics Data System (ADS)

    Praveena, S. D.; Ravindrachary, V.; Ismayil, Bhajantri, R. F.; Harisha, A.; Guruswamy, B.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    Sodium Bromide (NaBr) doped PVA/PVP (50:50) polymer blend composites were prepared using solution casting technique. Pure PVA/PVP blend and PVA/PVP:NaBr composites were studied using XRD and Positron Annihilation Lifetime Spectroscopy (PALS). XRD study shows increase in amorphous nature of the blend due to the NaBr dopant and PALS studies reveal that the o-Ps lifetime (τ3) and intensity (I3) decreases with increase in NaBr doping level. This shows chemical quenching and inhibition process of positronium (Ps) formation in the composite. Here the electron acceptor (Br-) acts as a strong chemical quencher for positronium formation and same is understood based on the spur model.

  1. Sensor feature fusion for detecting buried objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less

  2. Distinct microbial communities associated with buried soils in the Siberian tundra

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-01-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes. PMID:24335828

  3. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.

    2014-06-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

  4. Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolution

    PubMed Central

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Eom, KwangSup; Lee, Doh C.; Joh, Han-Ik; Fuller, Thomas F.

    2017-01-01

    Amorphous molybdenum sulfide (MoSx) is covalently anchored to reduced graphene oxide (r-GO) via a simple one-pot reaction, thereby inducing the reduction of GO and simultaneous doping of heteroatoms on the GO. The oxygen atoms form a bridged between MoSx and GO and play a crucial role in the fine dispersion of the MoSx particles, control of planar MoSx growth, and increase of exposed active sulfur sites. This bridging leads to highly efficient (−157 mV overpotential and 41 mV/decade Tafel slope) and stable (95% versus initial activity after 1000 cycles) electrocatalyst for hydrogen evolution. PMID:28106126

  5. Disorder-induced amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, N.Q.; Okamoto, P.R.; Li, Mo

    1997-03-01

    Many crystalline materials undergo a crystalline-to-amorphous (c-a) phase transition when subjected to energetic particle irradiation at low temperatures. By focusing on the mean-square static atomic displacement as a generic measure of chemical and topological disorder, we are led quite naturally to a generalized version of the Lindemann melting criterion as a conceptual framework for a unified thermodynamic approach to solid-state amorphizing transformations. In its simplest form, the generalized Lindemann criterion assumes that the sum of the static and dynamic mean-square atomic displacements is constant along the polymorphous melting curve so that c-a transformations can be understood simply as melting ofmore » a critically-disordered crystal at temperatures below the glass transition temperature where the supercooled liquid can persist indefinitely in a configurationally-frozen state. Evidence in support of the generalized Lindemann melting criterion for amorphization is provided by a large variety of experimental observations and by molecular dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds.« less

  6. High quality, giant crystalline-Ge stripes on insulating substrate by rapid-thermal-annealing of Sn-doped amorphous-Ge in solid-liquid coexisting region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Ryo; JSPS Research Fellow, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083; Kai, Yuki

    Formation of large-grain (≥30 μm) Ge crystals on insulating substrates is strongly desired to achieve high-speed thin-film transistors. For this purpose, we propose the methods of Sn-doping into amorphous-Ge combined with rapid-thermal-annealing (RTA) in the solid-liquid coexisting temperature region for the Ge-Sn alloy system. The densities of micro-crystal-nuclei formed in this temperature region become low by tuning the RTA temperature close to the liquidus curve, which enhances the lateral growth of GeSn. Thanks to the very small segregation coefficient of Sn, almost all Sn atoms segregate toward edges of the stripes during growth. Agglomeration of GeSn degrades the surface morphologies;more » however, it is significantly improved by lowering the initial Sn concentration. As a result, pure Ge with large crystal grains (∼40 μm) with smooth surface are obtained by optimizing the initial Sn concentration as low as 3 ∼ 5%. Lateral growth lengths are further increased through decreasing the number of nuclei in stripes by narrowing stripe width. In this way, high-crystallinity giant Ge crystals (∼200 μm) are obtained for the stripe width of 3 μm. This “Si-seed free” technique for formation of large-grain pure Ge crystals is very useful to realize high-performance thin-film devices on insulator.« less

  7. Flexible amorphous oxide thin-film transistors on polyimide substrate for AMOLED

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Li, Min; Xu, Miao; Zou, Jianhua; Gao, Zhuo; Pang, Jiawei; Guo, Ying; Zhou, Lei; Wang, Chunfu; Fu, Dong; Peng, Junbiao; Wang, Lei; Cao, Yong

    2014-10-01

    We report a flexible amorphous Lanthanide doped In-Zn-O (IZO) thin-film transistor (TFT) backplane on polyimide (PI) substrate. In order to de-bond the PI film from the glass carrier easily after the flexible AMOLED process, a special inorganic film is deposited on the glass before the PI film is coated. The TFT exhibited a field-effect mobility of 6.97 cm2V-1 s-1, a subthreshold swing of 0.248 V dec-1, and an Ion/Ioff ratio of 5.19×107, which is sufficient to drive the OLEDs.

  8. Structural simplicity as a restraint on the structure of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Cliffe, Matthew J.; Bartók, Albert P.; Kerber, Rachel N.; Grey, Clare P.; Csányi, Gábor; Goodwin, Andrew L.

    2017-06-01

    Understanding the structural origins of the properties of amorphous materials remains one of the most important challenges in structural science. In this study, we demonstrate that local "structural simplicity", embodied by the degree to which atomic environments within a material are similar to each other, is a powerful concept for rationalizing the structure of amorphous silicon (a -Si) a canonical amorphous material. We show, by restraining a reverse Monte Carlo refinement against pair distribution function (PDF) data to be simpler, that the simplest model consistent with the PDF is a continuous random network (CRN). A further effect of producing a simple model of a -Si is the generation of a (pseudo)gap in the electronic density of states, suggesting that structural homogeneity drives electronic homogeneity. That this method produces models of a -Si that approach the state-of-the-art without the need for chemically specific restraints (beyond the assumption of homogeneity) suggests that simplicity-based refinement approaches may allow experiment-driven structural modeling techniques to be developed for the wide variety of amorphous semiconductors with strong local order.

  9. Tunability of morphological properties of Nd-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Rehan, Imran; Sultana, Sabiha; Khan, Nauman; Qamar, Zahid; Rehan, Kamran

    2016-11-01

    In this work, an endeavor is made toward structural assessment and morphological variation of titanium dioxide (TiO2) thin films when doped with neodymium (Nd). The electron beam deposition technique was employed to fabricate Nd-based TiO2 thin films on n-Type Si substrates. Nd concentration was varied from 0.0 to 2.0 atomic percent (at.%) under identical growth environments. The films were deposited in an oxygen-deficient environment to cause the growth of rutile phases. Energy dispersive x-ray spectroscopy confirmed the presence and variation of Nd dopant in TiO2. X-ray diffraction analysis showed the transformation of amorphous structures of the as-grown samples to anatase polycrystalline after annealing at 500 °C, while atomic force microscopy exposed linearity in grain density in as-grown samples with doping until 1 at.%. Raman spectrums of as-grown and annealed samples revealed the growth of the anatase phase in the annealed samples. Based on these results it can be proposed that Nd doping has pronounced effects on the structural characteristics of TiO2 thin films.

  10. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    PubMed

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  11. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  12. Local structure analysis of diluted magnetic semiconductor Co and Al co-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyodo, K.; Morimoto, S.; Yamazaki, T.

    2016-02-01

    In this study, Co and Al ions co-doped ZnO nanoparticles (Zn(Al, Co)O NPs) were prepared by our original chemical preparation method. The obtained samples prepared by this method, were encapsulated in amorphous SiO{sub 2}. X-ray diffraction (XRD) results showed Zn(Al, Co)O NPs had a single-phase nature with hexagonal wurtzite structure. These particle sizes could be controlled to be approximately 30 nm. We investigate the effect that the increase in the carrier has on the magnetization by doping Al to Co-doped ZnO NPs. The local structures were qualitatively analyzed using X-ray absorption fine structure (XAFS) measurements.

  13. Improved retention of phosphorus donors in germanium using a non-amorphizing fluorine co-implantation technique

    NASA Astrophysics Data System (ADS)

    Monmeyran, Corentin; Crowe, Iain F.; Gwilliam, Russell M.; Heidelberger, Christopher; Napolitani, Enrico; Pastor, David; Gandhi, Hemi H.; Mazur, Eric; Michel, Jürgen; Agarwal, Anuradha M.; Kimerling, Lionel C.

    2018-04-01

    Co-doping with fluorine is a potentially promising method for defect passivation to increase the donor electrical activation in highly doped n-type germanium. However, regular high dose donor-fluorine co-implants, followed by conventional thermal treatment of the germanium, typically result in a dramatic loss of the fluorine, as a result of the extremely large diffusivity at elevated temperatures, partly mediated by the solid phase epitaxial regrowth. To circumvent this problem, we propose and experimentally demonstrate two non-amorphizing co-implantation methods; one involving consecutive, low dose fluorine implants, intertwined with rapid thermal annealing and the second, involving heating of the target wafer during implantation. Our study confirms that the fluorine solubility in germanium is defect-mediated and we reveal the extent to which both of these strategies can be effective in retaining large fractions of both the implanted fluorine and, critically, phosphorus donors.

  14. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  15. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  16. Graphene as a transparent electrode for amorphous silicon-based solar cells

    NASA Astrophysics Data System (ADS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  17. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    NASA Astrophysics Data System (ADS)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  18. Improved Vemurafenib Dissolution and Pharmacokinetics as an Amorphous Solid Dispersion Produced by KinetiSol® Processing.

    PubMed

    Ellenberger, Daniel J; Miller, Dave A; Kucera, Sandra U; Williams, Robert O

    2018-03-14

    Vemurafenib is a poorly soluble, low permeability drug that has a demonstrated need for a solubility-enhanced formulation. However, conventional approaches for amorphous solid dispersion production are challenging due to the physiochemical properties of the compound. A suitable and novel method for creating an amorphous solid dispersion, known as solvent-controlled coprecipitation, was developed to make a material known as microprecipitated bulk powder (MBP). However, this approach has limitations in its processing and formulation space. In this study, it was hypothesized that vemurafenib can be processed by KinetiSol into the same amorphous formulation as MBP. The KinetiSol process utilizes high shear to rapidly process amorphous solid dispersions containing vemurafenib. Analysis of the material demonstrated that KinetiSol produced amorphous, single-phase material with acceptable chemical purity and stability. Values obtained were congruent to analysis conducted on the comparator material. However, the materials differed in particle morphology as the KinetiSol material was dense, smooth, and uniform while the MBP comparator was porous in structure and exhibited high surface area. The particles produced by KinetiSol had improved in-vitro dissolution and pharmacokinetic performance for vemurafenib compared to MBP due to slower drug nucleation and recrystallization which resulted in superior supersaturation maintenance during drug release. In the in-vivo rat pharmacokinetic study, both amorphous solid dispersions produced by KinetiSol exhibited mean AUC values at least two-fold that of MBP when dosed as a suspension. It was concluded that the KinetiSol process produced superior dosage forms containing vemurafenib with the potential for substantial reduction in patient pill burden.

  19. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process

    NASA Astrophysics Data System (ADS)

    Jo, Yeong Ju; Zhang, Teng Fei; Son, Myoung Jun; Kim, Kwang Ho

    2018-03-01

    Low electrical conductivity and poor adhesion to metallic substrates are the main drawbacks of diamond-like carbon (DLC) films when used in electrode applications. In this study, Ti-doped DLC films with various Ti contents were synthesized on metal Ti substrates by a hybrid PVD/PECVD process, where PECVD was used for deposition of DLC films and PVD was used for Ti doping. The effects of the Ti doping ratio on the microstructure, adhesion strength, and electrical and electrochemical properties of the DLC films were systematically investigated. An increase in the Ti content led to increased surface roughness and a higher sp2/sp3 ratio of the Ti-DLC films. Ti atoms existed as amorphous-phase Ti carbide when the Ti doping ratio was less than 2.8 at.%, while the nanocrystalline TiC phase was formed in DLC films when the Ti doping ratio was exceeded 4.0 at.%. The adhesion strength, electrical resistivity, electrochemical activity and reversibility of the DLC films were greatly improved by Ti doping. The influence of Ti doping ratio on the electrical and electrochemical properties of the DLC films were also investigated and the best performance was obtained at a Ti content of 2.8 at.%.

  20. Affinity-based biosensors as promising tools for gene doping detection.

    PubMed

    Minunni, Maria; Scarano, Simona; Mascini, Marco

    2008-05-01

    Innovative bioanalytical approaches can be foreseen as interesting means for solving relevant emerging problems in anti-doping control. Sport authorities fear that the newer form of doping, so-called gene doping, based on a misuse of gene therapy, will be undetectable and thus much less preventable. The World Anti-Doping Agency has already asked scientists to assist in finding ways to prevent and detect this newest kind of doping. In this Opinion article we discuss the main aspects of gene doping, from the putative target analytes to suitable sampling strategies. Moreover, we discuss the potential application of affinity sensing in this field, which so far has been successfully applied to a variety of analytical problems, from clinical diagnostics to food and environmental analysis.

  1. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  2. Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode

    PubMed Central

    Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken

    2013-01-01

    Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932

  3. Health Psychological Constructs as Predictors of Doping Susceptibility in Adolescent Athletes

    PubMed Central

    Blank, Cornelia; Schobersberger, Wolfgang; Leichtfried, Veronika; Duschek, Stefan

    2016-01-01

    Background Doping is a highly relevant problem in sport, even in adolescent athletes. Knowledge of the psychological factors that influence doping susceptibility in young elite athletes remains sparse. Objectives This study investigated the predictive potential of different health-psychological constructs and well-being on doping susceptibility. The main hypotheses to be tested were positive associations of fear of failure, external locus of control, and ego-oriented goal orientation as well as negative associations of confidence of success, task orientation, internal locus of control, and performance motivation with doping susceptibility. Low levels of well-being are furthermore expected to be associated with doping susceptibility. Methods Within this cross-sectional study, 1,265 Austrian junior athletes aged between 14 and 19 years responded to a paper-pencil questionnaire. Results Performance motivation was a negative, while depressive mood, self-esteem, fear of failure and ego-oriented goal orientation were positive predictors of doping susceptibility. In addition, participants who were offered performance enhancing substances in the past were particularly susceptible to doping. Conclusions The study corroborates the predictive value of classical psychological constructs in doping research, initially analyzed in view of adult athletes, also for adolescents’ doping susceptibility. PMID:28144408

  4. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  5. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    PubMed

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  6. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  7. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee [Lakewood, CO; Tracy, C Edwin [Golden, CO; Liu, Ping [Denver, CO

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  8. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  9. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  10. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    PubMed

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  11. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  12. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  13. Enhanced stability of Bi-doped Ge2Sb2Te5 amorphous films

    NASA Astrophysics Data System (ADS)

    Dyussembayev, S.; Prikhodko, O.; Tsendin, K.; Timoshenkov, S.; Korobova, N.

    2014-09-01

    Although, several reviews have appeared on various physical properties and applications of chalcogenide glasses, there is no thorough study of local atomic structure and its modification for eutectic Ge-Sb-Te alloys doped with Bi. Ge2Sb2Te5 pure and Bi-doped films were deposited by ion-plasma sputtering method of synthesized GTS material on Si (100) and glass substrates coated with a conductive Al layer which was used as a bottom electrode. Current-voltage characteristics of different points of the same samples have been measured. Random distribution of inclusions within the sample made it possible to investigate the dependence of switching and memory effects on the phase composition at a constant value of other parameters. Measurements in the current controlled mode clearly showed that the memory state formation voltage does not depend on current in a wide range. Results indicate that the development of imaging technologies phase memory cells need to pay special attention to the conditions of Ge-Sb-Te film preparation. To increase the number of cycles "write - erase" should be additional prolonged annealing of the synthesized films.

  14. Nanosized thin SnO₂ layers doped with Te and TeO₂ as room temperature humidity sensors.

    PubMed

    Georgieva, Biliana; Podolesheva, Irena; Spasov, Georgy; Pirov, Jordan

    2014-05-21

    In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques-SEM, EDS in SEM, TEM, SAED, AES and electrical measurements-are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio R(Sn/Te) and the evaporation conditions. It is shown that as-deposited layers with R(Sn/Te) ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature-very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers' surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties.

  15. The study of buried drift aquifers in Minnesota by seismic geophysical methods

    USGS Publications Warehouse

    Woodward, D. G.

    1984-01-01

    Buried-drift aquifers are stratified sand and (or) gravel aquifers in glacial deposits that cannot be seen or inferred at the land surface. During the Pleistocene Epoch, four continental glaciations advanced and retreated across Minnesota, blanketing the bedrock surface with drift as much as 700 feet thick (fig. 1). Most of the drift consists of till, an unsorted, un-stratified mixture of clay silt, sand, and gravel that usually is not considered to be an aquifer. Permeable, stratified sand and gravel, deposited as outwash, alluvium, and (or) ice-contact deposits usually during an earlier glacial episode and subsequently covered (buried) with till, form the buried-drift aquifers.

  16. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.

    PubMed

    Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R

    2015-03-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  17. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.

    2015-03-15

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less

  18. Effects of Psilocybe argentipes on marble-burying behavior in mice.

    PubMed

    Matsushima, Yoshihiro; Shirota, Osamu; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Eguchi, Fumio

    2009-08-01

    Psilocybe argentipes is a hallucinogenic mushroom. The present study examined the effects of P. argentipes on marble-burying behavior, which is considered an animal model of obsessive-compulsive disorder. P. argentipes significantly inhibited marble-burying behavior without affecting locomotor activity as compared with the same dose of authentic psilocybin. These findings suggest that P. argentipes would be efficient in clinical obsessive-compulsive disorder therapy.

  19. An investigation of hydrogenized amorphous Si structures with Doppler broadening positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Petkov, M. P.; Marek, T.; Asoka-Kumar, P.; Lynn, K. G.; Crandall, R. S.; Mahan, A. H.

    1998-07-01

    In this letter, we examine the feasibility of applying positron annihilation spectroscopy to the study of hydrogenized amorphous silicon (a-Si:H)-based structures produced by chemical vapor deposition techniques. The positron probe, sensitive to open volume formations, is used to characterize neutral and negatively charged silicon dangling bonds, typical for undoped and n-doped a-Si:H, respectively. Using depth profiling along the growth direction a difference was observed in the electronic environment of these defects, which enables their identification in a p-i-n device.

  20. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve; González, Gema; Tovar, Leidy M.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity,more » respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.« less

  1. Theory of amorphous ices.

    PubMed

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  2. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  3. Buried Object Detection Method Using Optimum Frequency Range in Extremely Shallow Underground

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Abe, Touma

    2011-07-01

    We propose a new detection method for buried objects using the optimum frequency response range of the corresponding vibration velocity. Flat speakers and a scanning laser Doppler vibrometer (SLDV) are used for noncontact acoustic imaging in the extremely shallow underground. The exploration depth depends on the sound pressure, but it is usually less than 10 cm. Styrofoam, wood (silver fir), and acrylic boards of the same size, different size styrofoam boards, a hollow toy duck, a hollow plastic container, a plastic container filled with sand, a hollow steel can and an unglazed pot are used as buried objects which are buried in sand to about 2 cm depth. The imaging procedure of buried objects using the optimum frequency range is given below. First, the standardized difference from the average vibration velocity is calculated for all scan points. Next, using this result, underground images are made using a constant frequency width to search for the frequency response range of the buried object. After choosing an approximate frequency response range, the difference between the average vibration velocity for all points and that for several points that showed a clear response is calculated for the final confirmation of the optimum frequency range. Using this optimum frequency range, we can obtain the clearest image of the buried object. From the experimental results, we confirmed the effectiveness of our proposed method. In particular, a clear image of the buried object was obtained when the SLDV image was unclear.

  4. Hall and Seebeck measurements estimate the thickness of a (buried) carrier system: Identifying interface electrons in In-doped SnO{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadogianni, Alexandra; Bierwagen, Oliver; White, Mark E.

    2015-12-21

    We propose a simple method based on the combination of Hall and Seebeck measurements to estimate the thickness of a carrier system within a semiconductor film. As an example, this method can distinguish “bulk” carriers, with homogeneous depth distribution, from “sheet” carriers, that are accumulated within a thin layer. The thickness of the carrier system is calculated as the ratio of the integral sheet carrier concentration, extracted from Hall measurements, to the volume carrier concentration, derived from the measured Seebeck coefficient of the same sample. For rutile SnO{sub 2}, the necessary relation of Seebeck coefficient to volume electron concentration inmore » the range of 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3} has been experimentally obtained from a set of single crystalline thin films doped with varying Sb-doping concentrations and unintentionally doped bulk samples, and is given as a “calibration curve.” Using this calibration curve, our method demonstrates the presence of interface electrons in homogeneously deep-acceptor (In) doped SnO{sub 2} films on sapphire substrates.« less

  5. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  6. Remote p-type Doping in GaSb/InAs Core-shell Nanowires

    PubMed Central

    Ning, Feng; Tang, Li-Ming; Zhang, Yong; Chen, Ke-Qiu

    2015-01-01

    By performing first-principles calculation, we investigated the electronic properties of remotely p-type doping GaSb nanowire by a Zn-doped InAs shell. The results show that for bare zinc-blende (ZB) [111] GaSb/InAs core-shell nanowire the Zn p-type doped InAs shell donates free holes to the non-doped GaSb core nanowire without activation energy, significantly increasing the hole density and mobility of nanowire. For Zn doping in bare ZB [110] GaSb/InAs core-shell nanowire the hole states are compensated by surface states. We also studied the behaviors of remote p-type doing in two-dimensional (2D) GaSb/InAs heterogeneous slabs, and confirmed that the orientation of nanowire side facet is a key factor for achieving high efficient remote p-type doping. PMID:26028535

  7. Opto-electronic properties of P-doped nc-Si-QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2016-07-01

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.

  8. Opto-electronic properties of P-doped nc-Si–QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-07-14

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si–QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si–C bonds in the amorphous matrix and the embedded high densitymore » tiny nc-Si–QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si–QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si–QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si–QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si–QD/a-SiC:H films grown at ∼300 °C, demonstrating wide optical gap ∼1.86–1.96 eV and corresponding high electrical conductivity ∼4.5 × 10{sup −1}–1.4 × 10{sup −2} S cm{sup −1}, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.« less

  9. Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires.

    PubMed

    Li, Zhen; Xu, Enzhi; Losovyj, Yaroslav; Li, Nan; Chen, Aiping; Swartzentruber, Brian; Sinitsyn, Nikolai; Yoo, Jinkyoung; Jia, Quanxi; Zhang, Shixiong

    2017-09-14

    The recent discovery of excellent thermoelectric properties and topological surface states in SnTe-based compounds has attracted extensive attention in various research areas. Indium doped SnTe is of particular interest because, depending on the doping level, it can either generate resonant states in the bulk valence band leading to enhanced thermoelectric properties, or induce superconductivity that coexists with topological states. Here we report on the vapor deposition of In-doped SnTe nanowires and the study of their surface oxidation and thermoelectric properties. The nanowire growth is assisted by Au catalysts, and their morphologies vary as a function of substrate position and temperature. Transmission electron microscopy characterization reveals the formation of an amorphous surface in single crystalline nanowires. X-ray photoelectron spectroscopy studies suggest that the nanowire surface is composed of In 2 O 3 , SnO 2 , Te and TeO 2 which can be readily removed by argon ion sputtering. Exposure of the cleaned nanowires to atmosphere leads to rapid oxidation of the surface within only one minute. Characterization of electrical conductivity σ, thermopower S, and thermal conductivity κ was performed on the same In-doped nanowire which shows suppressed σ and κ but enhanced S yielding an improved thermoelectric figure of merit ZT compared to the undoped SnTe.

  10. Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's

    NASA Technical Reports Server (NTRS)

    Wang, Yang

    1994-01-01

    We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.

  11. Road detection and buried object detection in elevated EO/IR imagery

    NASA Astrophysics Data System (ADS)

    Kennedy, Levi; Kolba, Mark P.; Walters, Joshua R.

    2012-06-01

    To assist the warfighter in visually identifying potentially dangerous roadside objects, the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has developed an elevated video sensor system testbed for data collection. This system provides color and mid-wave infrared (MWIR) imagery. Signal Innovations Group (SIG) has developed an automated processing capability that detects the road within the sensor field of view and identifies potentially threatening buried objects within the detected road. The road detection algorithm leverages system metadata to project the collected imagery onto a flat ground plane, allowing for more accurate detection of the road as well as the direct specification of realistic physical constraints in the shape of the detected road. Once the road has been detected in an image frame, a buried object detection algorithm is applied to search for threatening objects within the detected road space. The buried object detection algorithm leverages textural and pixel intensity-based features to detect potential anomalies and then classifies them as threatening or non-threatening objects. Both the road detection and the buried object detection algorithms have been developed to facilitate their implementation in real-time in the NVESD system.

  12. Electrically tunable infrared metamaterial devices

    DOEpatents

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  13. The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice.

    PubMed

    Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard

    2006-03-01

    When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.

  14. Magnetic phase separation and unusual scenario of its temperature evolution in porous carbon-based nanomaterials doped with Au and Co

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. A.; Lashkul, A. V.; Matveev, V. V.; Molkanov, P. L.; Kurbakov, A. I.; Kiselev, I. A.; Lisunov, K. G.; Galimov, D.; Lähderanta, E.

    2018-01-01

    Two porous glassy carbon-based samples doped with Au and Co were investigated. The magnetization study as well as measurements of the nonlinear longitudinal response to a weak ac field (NLR) and electron magnetic resonance give evidences for a presence of magnetic nanoparticles (MNPs) embedded in paramagnetic/ferromagnetic matrix respectively, both samples being in magnetically phase-separated state at temperatures above 300 K. Matrix, forming by paramagnetic centers located in matrix outside the MNPs, reveals exchange interactions providing its ferromagnetic (FM) ordering below TC ≈ 210 K in Au-doped sample and well above 350 K in Co-doped one. For the former, NLR data suggest a percolation character of the matrix long-range FM order, which is mainly caused by a porous amorphous sample structure. Temperature dependence of the magnetization in the Au-doped sample evidences presence of antiferromagnetic (AF) interactions of MNPs with surrounding matrix centers. At magnetic ordering below TC these interactions promote origination of "domains" involving matrix fragment and surrounding MNPs with near opposite orientation of their moments that decreases the magnetostatic energy. On further cooling, the domains exhibit AF ordering below Tcr ∼ 140 K < TC, resulting in formation of a peculiar "ferrimagnet". The porous amorphous structure leads to absence of translational and other symmetry features through the samples that allows canted ordering of magnetic moments in domains and in whole sample providing "canted ferrimagnetism". At low temperatures Ttr ∼ 3 K, "order-oder" transition, evidencing the non-Heisenberg character of this magnetic material, occurs from ordering like "canted ferrimagnet" to FM alignment, which is stimulated by external magnetic field. The data for Co-doped sample imply the similar evolution of magnetic state but at higher temperatures above 350 K. This state exhibits more homogeneous arrangement of the FM nanoparticles and the FM matrix

  15. Performance of buried pipe installation : technical summary.

    DOT National Transportation Integrated Search

    2010-05-01

    The goal of this research project was to determine the effects of geometric and mechanical parameters characterizing the soil-structure interaction developed in a buried pipe installation. Parameters such as pipe ring stiff ness, bedding thickness, t...

  16. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yi, Jianan; Qing, Yan; Wu, ChuTian; Zeng, Yinxiang; Wu, Yiqiang; Lu, Xihong; Tong, Yexiang

    2017-05-01

    Engineering porous heteroatom-doped carbon nanomaterials with remarkable capacitive performance is highly attractive. Herein, a simple and smart method has been developed to synthesize phosphorus (P) doped carbon with hierarchical porous structure derived from lignocellulose. Hierarchically porous P doped carbon is readily obtained by the pyrolysis of lignocellulose immersed in ZnCl2/NaH2PO4 aqueous solution, and exhibits excellent capacitive properties. The as-obtained P doped porous carbon delivers a significant capacitance of 133 F g-1 (146 mF cm-2) at a high current density of 10 A g-1 with outstanding rate performance. Furthermore, the P doped carbon electrode yields a long-term cycling durability with more than 97.9% capacitance retention after 10000 cycles as well. A symmetric supercapacitor with a maximum energy density of 4.7 Wh kg-1 is also demonstrated based on these P doped carbon electrodes.

  17. Photochromic amorphous molecular materials and their applications

    NASA Astrophysics Data System (ADS)

    Shirota, Yasuhiko; Utsumi, Hisayuki; Ujike, Toshiki; Yoshikawa, Satoru; Moriwaki, Kazuyuki; Nagahama, Daisuke; Nakano, Hideyuki

    2003-01-01

    Two novel classes of photochromic amorphous molecular materials based on azobenzene and dithienylethene were designed and synthesized. They were found to readily form amorphous glasses with well-defined glass-transition temperatures when the melt samples were cooled on standing in air and to exhibit photochromism in their amorphous films as well as in solution. Photochromic properties of these materials are discussed in relation to their molecular structures. Surface relief grating was formed on the amorphous films of azobenzene-based photochromic amorphous molecular materials by irradiation with two coherent Ar + laser beams. Dual image was formed at the same location of the films of dithienylethene-based photochromic amorphous molecular materials by irradiation with two linearly polarized light beams perpendicular to each other.

  18. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

  19. Ultrafast carrier dynamics in LT-GaAs doped with Si delta layers

    NASA Astrophysics Data System (ADS)

    Khusyainov, D. I.; Dekeyser, C.; Buryakov, A. M.; Mishina, E. D.; Galiev, G. B.; Klimov, E. A.; Pushkarev, S. S.; Klochkov, A. N.

    2017-10-01

    We characterized the ultrafast properties of LT-GaAs doped with silicon δ-layers and introduced delta-doping (δ-doping) as efficient method for enhancing the properties of GaAs-based structures which can be useful for terahertz (THz) antenna, ultrafast switches and other high frequency applications. Low temperature grown GaAs (LT-GaAs) became one of the most promising materials for ultrafast optical and THz devices due to its short carrier lifetime and high carrier mobility. Low temperature growth leads to a large number of point defects and an excess of arsenic. Annealing of LT-GaAs creates high resistivity through the formation of As-clusters, which appear due to the excess of arsenic. High resistivity is very important for THz antennas so that voltage can be applied without the risk of breakdown. With δ-Si doping, control of As-clusters is possible, since after annealing, clusters align in the plane where the δ-doping occurs. In this paper, we compare the properties of LT-GaAs-based planar structures with and without δ-Si doping and subsequent annealing. We used pump-probe transient reflectivity as a probe for ultrafast carrier dynamics in LT-GaAs. The results of the experiment were interpreted using the Ortiz model and show that the δ-Si doping increases deep donor and acceptor concentrations and decreases the photoinduced carrier lifetime as compared with LT-GaAs with same growth and annealing temperatures, but without doping.

  20. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  1. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  2. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  3. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  4. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  5. Method for measuring the drift mobility in doped semiconductors

    DOEpatents

    Crandall, Richard S.

    1982-01-01

    A method for measuring the drift mobility of majority carriers in semiconductors consists of measuring the current transient in a Schottky-barrier device following the termination of a forward bias pulse. An example is given using an amorphous silicon hydrogenated material doped with 0.2% phosphorous. The method is particularly useful with material in which the dielectric relaxation time is shorter than the carrier transit time. It is particularly useful in material useful in solar cells.

  6. Buried topography of Utopia, Mars - Persistence of a giant impact depression

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1989-01-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48 deg N, 240 deg W. This implies the existence of a circular depression about 3300 km in diameter buried beneath Utopia Planitia that is interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars.

  7. Solution-processed gadolinium doped indium-oxide thin-film transistors with oxide passivation

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hun; Kim, Taehun; Lee, Jihun; Avis, Christophe; Jang, Jin

    2017-03-01

    We studied the effect of Gd doping on the structural properties of solution processed, crystalline In2O3 for thin-film transistor (TFT) application. With increasing Gd in In2O3 up to 20%, the material structure changes into amorphous phase, and the oxygen vacancy concentration decreases from 15.4 to 8.4%, and M-OH bonds from 33.5 to 23.7%. The field-effect mobility for the Gd doped In2O3 TFTs decreases and threshold voltage shifts to the positive voltage with increasing Gd concentration. In addition, the stability of the solution processed TFTs can also be improved by increasing Gd concentration. As a result, the optimum Gd concentration is found to be ˜5% in In2O3 and the 5% Gd doped In2O3 TFTs with the Y2O3 passivation layer exhibit the linear mobility of 9.74 cm2/V s, the threshold voltage of -0.27 V, the subthreshold swing of 79 mV/dec., and excellent bias stability.

  8. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement.

    PubMed

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka; Strachan, Clare; Rades, Thomas

    2013-11-01

    Poor aqueous solubility of an active pharmaceutical ingredient (API) is one of the most pressing problems in pharmaceutical research and development because up to 90% of new API candidates under development are poorly water soluble. These drugs usually have a low and variable oral bioavailability, and therefore an unsatisfactory therapeutic effect. One of the most promising approaches to increase dissolution rate and solubility of these drugs is the conversion of a crystalline form of the drug into its respective amorphous form, usually by incorporation into hydrophilic polymers, forming glass solutions. However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co-amorphous formulations indicated by the appearance of an amorphous halo in the XRPD diffractograms and a single glass transition temperature (Tg) in the DSC measurements. In addition, the Tgs of the co-amorphous mixtures were significantly increased over those of the individual drugs. The drugs remained chemically stable during the milling process and the co-amorphous formulations were generally physically stable over at least 6 months at 40 °C under dry conditions. The

  9. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  10. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH: Reactive ion etching and dielectric recovery

    NASA Astrophysics Data System (ADS)

    Myers, John N.; Zhang, Xiaoxian; Huang, Huai; Shobha, Hosadurga; Grill, Alfred; Chen, Zhan

    2017-05-01

    Molecular structures at the surface and buried interface of an amorphous ultralow-k pSiCOH dielectric film were quantitatively characterized before and after reactive ion etching (RIE) and subsequent dielectric repair using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy. SFG results indicated that RIE treatment of the pSiCOH film resulted in a depletion of ˜66% of the surface methyl groups and changed the orientation of surface methyl groups from ˜47° to ˜40°. After a dielectric recovery process that followed the RIE treatment, the surface molecular structure was dominated by methyl groups with an orientation of ˜55° and the methyl surface coverage at the repaired surface was 271% relative to the pristine surface. Auger depth profiling indicated that the RIE treatment altered the top ˜25 nm of the film and that the dielectric recovery treatment repaired the top ˜9 nm of the film. Both SFG and Auger profiling results indicated that the buried SiCNH/pSiCOH interface was not affected by the RIE or the dielectric recovery process. Beyond characterizing low-k materials, the developed methodology is general and can be used to distinguish and characterize different molecular structures and elemental compositions at the surface, in the bulk, and at the buried interface of many different polymer or organic thin films.

  11. Overwintering biology and tests of trap and relocate as a conservation measure for burying beetles.

    DOT National Transportation Integrated Search

    2015-01-01

    Burying beetles are carrion beetles and utilize dead animal carcasses for feeding : and reproductive efforts. They assist with decomposition, prevent the spread of disease, : and reduce the number of pest species. The largest species of carrion beetl...

  12. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premalatha, M.; Materials Research Center, Coimbatore-641 045; Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasingmore » temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.« less

  13. Magnetic moment evolution and spin freezing in doped BaFe2As2

    DOE PAGES

    Pelliciari, Jonathan; Huang, Yaobo; Ishii, Kenji; ...

    2017-08-14

    Fe-K β X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μ bare in electron- and hole-doped BaFe 2As 2. At low temperature, μ bare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μ bare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe 2As 2, as well as the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.

  14. Properties of amorphous GaN from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Cai, B.; Drabold, D. A.

    2011-08-01

    Amorphous GaN (a-GaN) models are obtained from first-principles simulations. We compare four a-GaN models generated by “melt-and-quench” and the computer alchemy method. We find that most atoms tend to be fourfold, and a chemically ordered continuous random network is the ideal structure for a-GaN albeit with some coordination defects. Where the electronic structure is concerned, the gap is predicted to be less than 1.0 eV, underestimated as usual by a density functional calculation. We observe a highly localized valence tail and a remarkably delocalized exponential conduction tail in all models generated. Based upon these results, we speculate on potential differences in n- and p-type doping. The structural origin of tail and defect states is discussed. The vibrational density of states and dielectric function are computed and seem consistent with experiment.

  15. Impact of carrier doping on electrical properties of laser-induced liquid-phase-crystallized silicon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Umishio, Hiroshi; Matsui, Takuya; Sai, Hitoshi; Sakurai, Takeaki; Matsubara, Koji

    2018-02-01

    Large-grain-size (>1 mm) liquid-phase-crystallized silicon (LPC-Si) films with a wide range of carrier doping levels (1016-1018 cm-3 either of the n- or p-type) were prepared by irradiating amorphous silicon with a line-shaped 804 nm laser, and characterized for solar cell applications. The LPC-Si films show high electron and hole mobilities with maximum values of ˜800 and ˜200 cm2 V-1 s-1, respectively, at a doping level of ˜(2-4) × 1016 cm-3, while their carrier lifetime monotonically increases with decreasing carrier doping level. A grain-boundary charge-trapping model provides good fits to the measured mobility-carrier density relations, indicating that the potential barrier at the grain boundaries limits the carrier transport in the lowly doped films. The open-circuit voltage and short-circuit current density of test LPC-Si solar cells depend strongly on the doping level, peaking at (2-5) × 1016 cm-3. These results indicate that the solar cell performance is governed by the minority carrier diffusion length for the highly doped films, while it is limited by majority carrier transport as well as by device design for the lowly doped films.

  16. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  17. Effect of substrate temperature on implantation doping of Co in CdS nanocrystalline thin films.

    PubMed

    Chandramohan, S; Kanjilal, A; Sarangi, S N; Majumder, S; Sathyamoorthy, R; Hong, C-H; Som, T

    2010-07-01

    We demonstrate doping of nanocrystalline CdS thin films with Co ions by ion implantation at an elevated temperature of 573 K. The modifications caused in structural and optical properties of these films are investigated. Co-doping does not lead to amorphization or formation of any secondary phase precipitate for dopant concentrations in the range of 0.34-10.8 at.% used in the present study. However, we observe a systematic reduction in the d-spacing with increasing cobalt concentration. Optical band gap of CdS does not show any obvious change upon Co-doping. In addition, implantation gives rise to grain growth and increase in the surface roughness. The results are discussed in the light of ion-matter interaction in the keV regime.

  18. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  19. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  20. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  1. Solid-state diffusion in amorphous zirconolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Dove, M. T.; Trachenko, K.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also findmore » that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.« less

  2. Synthesis and characterization of Sn-doped hematite as visible light photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zhiqin; School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua 617000; Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn

    2016-05-15

    Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematitemore » with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.« less

  3. Doping-Induced Interband Gain in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K. I.; Ning, C. Z.

    2005-01-01

    A paper describes a computational study of effects of doping in a quantum well (QW) comprising a 10-nm-thick layer of InAs sandwiched between two 21-nm-thick AlSb layers. Heretofore, InAs/AlSb QWs have not been useful as interband gain devices because they have type-II energy-band-edge alignment, which causes spatial separation of electrons and holes, thereby leading to weak interband dipole matrix elements. In the doping schemes studied, an interior sublayer of each AlSb layer was doped at various total areal densities up to 5 X 10(exp 12) / square cm. It was found that (1) proper doping converts the InAs layer from a barrier to a well for holes, thereby converting the heterostructure from type II to type I; (2) the resultant dipole matrix elements and interband gains are comparable to those of typical type-I heterostructures; and (3) dipole moments and optical gain increase with the doping level. Optical gains in the transverse magnetic mode can be almost ten times those of other semiconductor material systems in devices used to generate medium-wavelength infrared (MWIR) radiation. Hence, doped InAs/AlSb QWs could be the basis of an alternative material system for devices to generate MWIR radiation.

  4. Negative differential conductance in doped-silicon nanoscale devices with superconducting electrodes

    NASA Astrophysics Data System (ADS)

    Shapovalov, A.; Shaternik, V.; Suvorov, O.; Zhitlukhina, E.; Belogolovskii, M.

    2018-02-01

    We present a proof-of-concept nanoelectronics device with a negative differential conductance, an attractive from the applied viewpoint functionality. The device, characterized by the decreasing current with increasing voltage in a certain voltage region above a threshold bias of about several hundred millivolts, consists of two superconducting electrodes with an amorphous 10-nm-thick silicon interlayer doped by tungsten nano-inclusions. We show that small changes in the W content radically modify the shape of the trilayer current-voltage dependence and identify sudden conductance switching at a threshold voltage as an effect of Andreev fluctuators. The latter entities are two-level systems at the superconductor-doped silicon interface where a Cooper pair tunnels from a superconductor and occupies a pair of localized electronic states. We argue that in contrast to previously proposed devices, our samples permit very large-scale integration and are practically feasible.

  5. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration.

    PubMed

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-04

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  6. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    PubMed Central

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-01-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035

  7. Autonomous robotic platforms for locating radio sources buried under rubble

    NASA Astrophysics Data System (ADS)

    Tasu, A. S.; Anchidin, L.; Tamas, R.; Paun, M.; Danisor, A.; Petrescu, T.

    2016-12-01

    This paper deals with the use of autonomous robotic platforms able to locate radio signal sources such as mobile phones, buried under collapsed buildings as a result of earthquakes, natural disasters, terrorism, war, etc. This technique relies on averaging position data resulting from a propagation model implemented on the platform and the data acquired by robotic platforms at the disaster site. That allows us to calculate the approximate position of radio sources buried under the rubble. Based on measurements, a radio map of the disaster site is made, very useful for locating victims and for guiding specific rubble lifting machinery, by assuming that there is a victim next to a mobile device detected by the robotic platform; by knowing the approximate position, the lifting machinery does not risk to further hurt the victims. Moreover, by knowing the positions of the victims, the reaction time is decreased, and the chances of survival for the victims buried under the rubble, are obviously increased.

  8. Effects of germanium and nitrogen incorporation on crystallization of N-doped Ge2+xSb2Te5 (x = 0,1) thin films for phase-change memory

    NASA Astrophysics Data System (ADS)

    Cheng, Limin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Peng, Cheng; Yao, Dongning; Liu, Bo; Xu, Ling

    2013-01-01

    The phase-change behavior and microstructure changes of N-doped Ge3Sb2Te5 [N-GST(3/2/5)] and Ge2Sb2Te5 [GST(2/2/5)] films during the phase transition from an amorphous to a crystalline phase were studied using in situ temperature-dependent sheet resistance measurements, X-ray diffraction, and transmission electron microscopy. The optical band gaps of N-GST(3/2/5) films are higher than that of GST(2/2/5) film in both the amorphous and face-centered-cubic (fcc) phases. Ge nitride formation by X-ray photoelectron spectroscopy analysis increased the optical band gap and suppressed crystalline grain growth, resulting in an increase in the crystallization temperature and resistance in the fcc phase. As a result, the Ge- and N-doped GST(2/2/5) composite films can be considered as a promising material for phase-change memory application because of improved thermal stability and reduced power consumption.

  9. Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Umapathy, H.; Mohanty, P.

    2010-01-01

    The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.

  10. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  11. Methods of amorphization and investigation of the amorphous state.

    PubMed

    Einfal, Tomaž; Planinšek, Odon; Hrovat, Klemen

    2013-09-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid- -state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on the method of preparation and how these differences can be screened by a variety of spectroscopic (X-ray powder diffraction, solid state nuclear magnetic resonance, atomic pairwise distribution, infrared spectroscopy, terahertz spectroscopy) and calorimetry methods.

  12. Optical properties of amorphous Ba0.7Sr0.3TiO3 thin films obtained by metal organic decomposition technique

    NASA Astrophysics Data System (ADS)

    Qiu, Fei; Xu, Zhimou

    2009-08-01

    In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.

  13. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  14. Superior broadband antireflection from buried Mie resonator arrays for high-efficiency photovoltaics

    PubMed Central

    Zhong, Sihua; Zeng, Yang; Huang, Zengguang; Shen, Wenzhong

    2015-01-01

    Establishing reliable and efficient antireflection structures is of crucial importance for realizing high-performance optoelectronic devices such as solar cells. In this study, we provide a design guideline for buried Mie resonator arrays, which is composed of silicon nanostructures atop a silicon substrate and buried by a dielectric film, to attain a superior antireflection effect over a broadband spectral range by gaining entirely new discoveries of their antireflection behaviors. We find that the buried Mie resonator arrays mainly play a role as a transparent antireflection structure and their antireflection effect is insensitive to the nanostructure height when higher than 150 nm, which are of prominent significance for photovoltaic applications in the reduction of photoexcited carrier recombination. We further optimally combine the buried Mie resonator arrays with micron-scale textures to maximize the utilization of photons, and thus have successfully achieved an independently certified efficiency of 18.47% for the nanostructured silicon solar cells on a large-size wafer (156 mm × 156 mm). PMID:25746848

  15. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    NASA Astrophysics Data System (ADS)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  16. Modelling the buried human body environment in upland climes using three contrasting field sites.

    PubMed

    Wilson, Andrew S; Janaway, Robert C; Holland, Andrew D; Dodson, Hilary I; Baran, Eve; Pollard, A Mark; Tobin, Desmond J

    2007-06-14

    Despite an increasing literature on the decomposition of human remains, whether buried or exposed, it is important to recognise the role of specific microenvironments which can either trigger or delay the rate of decomposition. Recent casework in Northern England involving buried and partially buried human remains has demonstrated a need for a more detailed understanding of the effect of contrasting site conditions on cadaver decomposition and on the microenvironment created within the grave itself. Pigs (Sus scrofa) were used as body analogues in three inter-related taphonomy experiments to examine differential decomposition of buried human remains. They were buried at three contrasting field sites (pasture, moorland, and deciduous woodland) within a 15 km radius of the University of Bradford, West Yorkshire, UK. Changes to the buried body and the effect of these changes on hair and associated death-scene textile materials were monitored as was the microenvironment of the grave. At recovery, 6, 12 and 24 months post-burial, the extent of soft tissue decomposition was recorded and samples of fat and soil were collected for gas chromatography mass spectrometry (GCMS) analysis. The results of these studies demonstrated that (1) soil conditions at these three burial sites has a marked effect on the condition of the buried body but even within a single site variation can occur; (2) the process of soft tissue decomposition modifies the localised burial microenvironment in terms of microbiological load, pH, moisture and changes in redox status. These observations have widespread application for the investigation of clandestine burial and time since deposition, and in understanding changes within the burial microenvironment that may impact on biomaterials such as hair and other associated death scene materials.

  17. Displaced humeral lateral condyle fractures in children: should we bury the pins?

    PubMed

    Das De, Soumen; Bae, Donald S; Waters, Peter M

    2012-09-01

    The purpose of this investigation was to determine if leaving Kirschner wires exposed is more cost-effective than burying them subcutaneously after open reduction and internal fixation (ORIF) of humeral lateral condyle fractures. A retrospective cohort study of all lateral condyle fractures treated over a 10-year period at a single institution was performed. Data on surgical technique, fracture healing, and complications were analyzed, as well as treatment costs. A decision analysis model was then constructed to compare the strategies of leaving the pins exposed versus buried. Finally, sensitivity analyses were performed, assessing cost-effectiveness when infection rates and costs of treating deep infections were varied. A total of 235 children with displaced fractures were treated with ORIF using Kirschner wires. Pins were left exposed in 41 cases (17.4%) and buried in 194 cases (82.6%); the age, sex, injury mechanisms, and fracture patterns were similar in both the groups. The median time to removal of implants was shorter with exposed versus buried pins (4 vs. 6 wk, P<0.001), although there was no difference in fracture union or loss of reduction rates. The rate of superficial infection was higher with exposed pins (9.8% vs. 3.1%), but this was not statistically significant (P=0.076). There were no deep infections with exposed pins, whereas the rate of deep infection was 0.5% with buried pins (P=1.00). Buried pins were associated with additional complications, including symptomatic implants (7.2%); pins protruding through the skin (16%); internal pin migration necessitating additional surgery (1%); and skin necrosis (1%). The decision analysis revealed that leaving pins exposed resulted in an average cost savings of $3442 per patient. This strategy remained cost-effective even when infection rates with exposed pins approached 40%. Leaving the pins exposed after ORIF of lateral condyle fractures is safe and more cost-effective than burying the pins subcutaneously

  18. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  19. Strongly enhanced oxygen ion transport through samarium-doped CeO 2 nanopillars in nanocomposite films

    DOE PAGES

    Yang, Sangmo; Lee, Shinbuhm; Jian, Jie; ...

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO 2 embedded in supporting matrices of SrTiO 3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeOmore » 2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO 2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.« less

  20. On Structure and Properties of Amorphous Materials

    PubMed Central

    Stachurski, Zbigniew H.

    2011-01-01

    Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy) materials: (i) metallic; (ii) thin films; (iii) organic and inorganic thermoplastics; and (iv) amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids. PMID:28824158

  1. Performance of buried pipe installation.

    DOT National Transportation Integrated Search

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  2. InGaAsP/InP laser development for single-mode, high-data-rate communications

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Levin, E. R.; Magee, C. W.; Smith, R. T.

    1981-01-01

    Materials studies as well as general and specific device development were carried out in the InGaAsP system. A comparison was made of three standard methods of evaluating substrate quality by means of dislocation studies. A cause of reduced yield of good wafers, the pullover of melt from one bin to the next, has been analyzed. Difficulties with reproducible zinc acceptor doping have been traced to segregation of zinc in the In/Zn alloy used for the doping source. Using EBIC measurments, the pn junction was shown to drift in location depending on factors not always under control. An analysis of contact structures by SIMS showed that the depth to which the sintered Au/Zn contact penetrates into the structure is typically 0.13 microns, or well within the cap layer and out of the p-type cladding and thus not deleterious to laser prformance. The problem of single-mode laser development was investigated and it was shown to be related to the growth habit over four different possible substrate configurations. The fabrication of constricted double heterojunctions, mesa stripe buried heterostructures, and buried heterostructures was discussed, and measurements were presented on the device properties of single-mode buried heterostructure lasers. Results include single spectral line emission at 3 mW and a threshold current of 60 mA.

  3. Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.

    PubMed

    Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom

    2017-10-01

    Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transformation of amorphous TiO 2 to a hydronium oxofluorotitanate and applications as an HF sensor

    DOE PAGES

    Appelhans, Leah N.; Finnegan, Patrick S.; Massey, Lee T.; ...

    2015-12-24

    We examined amorphous titania thin films for use as the active material in a polarimetry based HF sensor. The amorphous titania films were found to be sensitive to vapor phase HF and the reaction product was identified as a hydronium oxofluorotitanate phase, which has previously only been synthesized in aqueous solution. The extent of reaction varied both with vapor phase HF concentration, relative humidity, and the exposure time. HF concentrations as low as 1 ppm could be detected for exposure times of 120 h.

  5. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction.

    PubMed

    Liang, Jingwen; Hassan, Mehboob; Zhu, Dongsheng; Guo, Liping; Bo, Xiangjie

    2017-03-15

    Nitrogen-doped graphene (N/GR) has been considered as active metal-free electrocatalysts for oxygen reduction reaction (ORR). However, the nitrogen (N) doping efficiency is very low and only few N atoms are doped into the framework of GR. To boost the N doping efficiency, in this work, a confined pyrolysis method with high N doping efficiency is used for the preparation of cobalt nanoparticles/nitrogen-doped GR (Co/N/GR). Under the protection of SiO 2 , the inorganic ligand NH 3 in cobalt amine complex ([Co(NH 3 ) 6 ] 3+ ) is trapped in the confined space and then can be effectively doped into the framework of GR without the introduction of any carbon residues. Meanwhile, due to the redox reaction between the cobalt ions and carbon atoms of GR, Co nanoparticles are supported into the framework of N/GR. Due to prevention of GR layer aggregation with SiO 2 , the Co/N/GR with high dispersion provides sufficient surface area and maximum opportunity for the exposure of Co nanoparticles and active sites of N dopant. By combination of enhanced N doping efficiency, Co nanoparticles and high dispersion of GR sheets, the Co/N/GR is remarkably active, cheap and selective noble-metal free catalysts for ORR. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Identification of buried victims in natural disaster with GPR method

    NASA Astrophysics Data System (ADS)

    Dewi, Rianty Kusuma; Kurniawan, Adityo; Taqwantara, Reyhan Fariz; Iskandar, Farras M.; Naufal, Taufiq Ziyan; Widodo

    2017-07-01

    Indonesian is one of the most seismically active regions in the world and has very complicated plate convergence because there is meeting point of several tectonic plates. The complexity of tectonic features causes a lot of natural disasters such as landslides, tsunamis, earth quakes, volcanoes eruption, etc. Sometimes, the disasters occurs in high populated area and causing thousands to millions of victim been buried under the rumble. Unfortunately, the evacuation still uses the conventional method such using rescue dogs whereas the sensitivity of smell is decrease when the victims buried under the level of the ground. The purpose of this study is to detect buried bodies using GPR method, so it can enhance the effectiveness and the efficiency in looking for the disaster victims. GPR method is used because it can investigate things under the ground. A detailed GPR research has been done in Cikutra Graveyard, Bandung, with corpse buried two week until two years before the research. The radar profiles from this research showed amplitude contras anomaly between the new corpse and the old ones. We obtained the amplitude contras at 1.2-1.4 meters under the surface. This method proved to be effective but still need more attention on undulated surface and non-soil areas.

  7. Nanosized Thin SnO2 Layers Doped with Te and TeO2 as Room Temperature Humidity Sensors

    PubMed Central

    Georgieva, Biliana; Podolesheva, Irena; Spasov, Georgy; Pirov, Jordan

    2014-01-01

    In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques—SEM, EDS in SEM, TEM, SAED, AES and electrical measurements—are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio RSn/Te and the evaporation conditions. It is shown that as-deposited layers with RSn/Te ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature—very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers' surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties. PMID:24854359

  8. Amorphous Diamond for MEMS

    NASA Astrophysics Data System (ADS)

    Sullivan, J. P.

    2002-03-01

    Pure carbon films can exhibit surprising complexity in structure and properties. Amorphous diamond (tetrahedrally-coordinated amorphous carbon) is an amorphous quasi-two phase mixture of four-fold and three-fold coordinated carbon which is produced by pulsed excimer laser deposition, an energetic deposition process that leads to film growth by sub-surface carbon implantation and the creation of local metastability in carbon bonding. Modest annealing, < 900K, produces significant irreversible strain relaxation which is thermally activated with activation energies ranging from < 1 eV to > 2 eV. During annealing the material remains amorphous, but there is a detectable increase in medium-range order as measured by fluctuation microscopy. The strain relaxation permits the residual strain in the films to be reduced to < 0.00001, which is a critical requirement for the fabrication of microelectromechanical systems (MEMS). Amorphous diamond MEMS have been fabricated in order to evaluate the mechanical properties of this material under tension and flexure, and this has enabled the determination of elastic modulus (800 GPa), tensile strength (8 GPa), and fracture toughness (8 MPa m^1/2). In addition, amorphous diamond MEMS structures have been fabricated to measure internal dissipation and surface adhesion. The high hardness and strength and hydrophobic nature of the surface makes this material particularly suitable for the fabrication of high wear resistance and low stiction MEMS. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the U.S. Dept. of Energy under contract DE-AC04-94AL85000.

  9. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei; Meng, Yifei; Zhang, Xie

    Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less

  10. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization

    DOE PAGES

    Guo, Wei; Meng, Yifei; Zhang, Xie; ...

    2018-04-11

    Amorphous and nanograined (NG) steels are two categories of strong steels. However, over the past decade, their application has been hindered by their limited plasticity, the addition of expensive alloying elements, and processing challenges associated with producing bulk materials. Here in this work, we report that the surface of a carburized Fe-Mn-Si martensitic steel with extremely low elemental alloying additions can be economically fabricated into an amorphous-nanocrystalline hybrid structure. Atom probe tomography and nanobeam diffraction of a hard turned steel surface together with molecular dynamics (MD) simulations reveal that the original cementite surface structure experiences a size-dependent amorphization and phasemore » transformation during heavy plastic deformation. MD simulations further show that the martensite-cementite interface serves as a nucleation site for cementite amorphization, and that cementite can become disordered if further strained when the cementite particles are relatively small. These graded structures exhibit a surface hardness of ~16.2 GPa, which exceeds the value of ~8.8 GPa for the original nanocrystalline martensitic steel and most nanocrystalline steels reported before. Finally, this practical and cost-efficient approach for producing a hard surface with retained bulk ductility and toughness can provide expanded opportunities for producing an amorphous-crystalline hybrid structure in steels and other alloy systems.« less

  11. Degradation of carbohydrates and lignins in buried woods

    USGS Publications Warehouse

    Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James, Barbour R.; Hatcher, P.G.

    1985-01-01

    Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > ??-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source. ?? 1985.

  12. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE PAGES

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.; ...

    2017-12-27

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  13. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangolini, Filippo; Krick, Brandon A.; Jacobs, Tevis D. B.

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has beenmore » inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.« less

  14. Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2- x Films

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul

    2018-03-01

    The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2- x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I- V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2- x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/ f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.

  15. Field induced polarization and magnetization behaviour of Gd-doped lead magnesium niobate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Adityanarayan, E-mail: apandey@rrcat.gov.in, E-mail: padityanarayan5@gmail.com; Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore – 452013; Gupta, Surya Mohan

    2016-05-23

    Both superparaelectric and superparamagnetic behaviour has been observed in rare earth magnetic ion Gd{sup 3+} doped Lead Magnesium Niobate (Gd-PMN). Field induced polarization and magnetization studies reveal hystresis loss free P-E and M-H loop at 300 K and 5 K, respectively. Temperature dependence of inverse susceptibility plot shows deviation at a temperature “t{sub d}” when fitted with the Curie-Weiss law. This deviation has been attributed to transition from paramagnetic to superparamagnetic behaviour as reported in amorphous Pd-Ni-Fe-P alloys.

  16. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  17. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    PubMed

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  18. Feasibility of fast neutron analysis for the detection of explosives buried in soil

    NASA Astrophysics Data System (ADS)

    Faust, A. A.; McFee, J. E.; Bowman, C. L.; Mosquera, C.; Andrews, H. R.; Kovaltchouk, V. D.; Ing, H.

    2011-12-01

    A commercialized thermal neutron analysis (TNA) sensor has been developed to confirm the presence of buried bulk explosives as part of a multi-sensor anti-tank landmine detection system. Continuing improvements to the TNA system have included the use of an electronic pulsed neutron generator that offers the possibility of applying fast neutron analysis (FNA) methods to improve the system's detection capability. This paper describes an investigation into the use of FNA as a complementary component in such a TNA system. The results of a modeling study using simple geometries and a full model of the TNA sensor head are presented, as well as preliminary results from an experimental associated particle imaging (API) system that supports the modeling study results. The investigation has concluded that the pulsed beam FNA approach would not improve the detection performance of a TNA system for landmine or buried IED detection in a confirmation role, and could not be made into a practical stand-alone detection system for buried anti-tank landmines. Detection of buried landmines and IEDs by FNA remains a possibility, however, through the use of the API technique.

  19. Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties.

    PubMed

    Shi, Wen; Zhao, Tianqi; Xi, Jinyang; Wang, Dong; Shuai, Zhigang

    2015-10-14

    Tuning carrier concentration via chemical doping is the most successful strategy to optimize the thermoelectric figure of merit. Nevertheless, how the dopants affect charge transport is not completely understood. Here we unravel the doping effects by explicitly including the scattering of charge carriers with dopants on thermoelectric properties of poly(3,4-ethylenedioxythiophene), PEDOT, which is a p-type thermoelectric material with the highest figure of merit reported. We corroborate that the PEDOT exhibits a distinct transition from the aromatic to quinoid-like structure of backbone, and a semiconductor-to-metal transition with an increase in the level of doping. We identify a close-to-unity charge transfer from PEDOT to the dopant, and find that the ionized impurity scattering dominates over the acoustic phonon scattering in the doped PEDOT. By incorporating both scattering mechanisms, the doped PEDOT exhibits mobility, Seebeck coefficient and power factors in very good agreement with the experimental data, and the lightly doped PEDOT exhibits thermoelectric properties superior to the heavily doped one. We reveal that the thermoelectric transport is highly anisotropic in ordered crystals, and suggest to utilize large power factors in the direction of polymer backbone and low lattice thermal conductivity in the stacking and lamellar directions, which is viable in chain-oriented amorphous nanofibers.

  20. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  1. Buried Man-made Structure Imaging using 2-D Resistivity Inversion

    NASA Astrophysics Data System (ADS)

    Anderson Bery, Andy; Nordiana, M. M.; El Hidayah Ismail, Noer; Jinmin, M.; Nur Amalina, M. K. A.

    2018-04-01

    This study is carried out with the objective to determine the suitable resistivity inversion method for buried man-made structure (bunker). This study was carried out with two stages. The first stage is suitable array determination using 2-D computerized modeling method. One suitable array is used for the infield resistivity survey to determine the dimension and location of the target. The 2-D resistivity inversion results showed that robust inversion method is suitable to resolve the top and bottom part of the buried bunker as target. In addition, the dimension of the buried bunker is successfully determined with height of 7 m and length of 20 m. The location of this target is located at -10 m until 10 m of the infield resistivity survey line. The 2-D resistivity inversion results obtained in this study showed that the parameters selection is important in order to give the optimum results. These parameters are array type, survey geometry and inversion method used in data processing.

  2. Moderate temperature-dependent surface and volume resistivity and low-frequency dielectric constant measurements of pure and multi-walled carbon nanotube (MWCNT) doped polyvinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael

    2017-08-01

    Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.

  3. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Amorphous-Metal-Film Diffusion Barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1987-01-01

    Incorporation of N into Ni/W films reduces reactivity with Si substrate. Paper describes reactions between Si substrates and deposited amorphous Ni/W or Ni/N/W films. Thermal stability of amorphous Ni/W films as diffusion barriers in Si markedly improved by introduction of N into Ni/W films during deposition.

  5. Tritiated amorphous silicon for micropower applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kherani, N.P.; Kosteski, T.; Zukotynski, S.

    1995-10-01

    The application of tritiated amorphous silicon as an intrinsic energy conversion semiconductor for radioluminescent structures and betavoltaic devices is presented. Theoretical analysis of the betavoltaic application shows an overall efficiency of 18% for tritiated amorphous silicon. This is equivalent to a 330 Ci intrinsic betavoltaic device producing 1 mW of power for 12 years. Photoluminescence studies of hydrogenated amorphous silicon, a-Si:H, show emission in the infra-red with a maximum quantum efficiency of 7.2% at 50 K; this value drops by 3 orders of magnitude at a temperature of 300 K. Similar studies of hydrogenated amorphous carbon show emission in themore » visible with an estimated quantum efficiency of 1% at 300 K. These results suggest that tritiated amorphous carbon may be the more promising candidate for room temperature radioluminescence in the visible. 18 refs., 5 figs.« less

  6. Sexual and Overall Quality of Life Improvements After Surgical Correction of "Buried Penis".

    PubMed

    Hughes, Duncan B; Perez, Edgar; Garcia, Ryan M; Aragón, Oriana R; Erdmann, Detlev

    2016-05-01

    "Buried penis" is an increasing burden in our population with many possible etiologies. Although surgical correction of buried penis can be rewarding and successful for the surgeon, the psychological and functional impact of buried penis on the patient is less understood. The study's aim was to evaluate the sexual satisfaction and overall quality of life before and after buried penis surgery in a single-surgeon's patient population using a validated questionnaire (Changes in Sexual Functioning Questionnaire short-form). Using Likert scales generated from the questionnaire and 1-tailed paired t test analysis, we found that there was significantly improved sexual function after correction of a buried penis. Variables individually showed that there was significant improvement with sexual pleasure, urinating, and with genital hygiene postoperatively. There were no significant differences concerning frequency of pain with orgasms. Surgical correction of buried penis significantly improves the functional, sexual, and psychological aspects of patient's lives.

  7. Dopant behavior in heavily doped polycrystalline Ge1- x Sn x layers prepared with pulsed laser annealing in water

    NASA Astrophysics Data System (ADS)

    Takahashi, Kouta; Kurosawa, Masashi; Ikenoue, Hiroshi; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-04-01

    A low-temperature process for the formation of heavily doped polycrystalline Ge (poly-Ge) layers on insulators is required to realize next-generation electronic devices. In this study, we have systematically investigated pulsed laser annealing (PLA) in flowing water for heavily doped amorphous Ge1- x Sn x layers (x ≈ 0.02) with various dopants such as B, Al, Ga, In, P, As, and Sb on SiO2. It is found that the dopant density after PLA with a high laser energy is reduced when the oxidized dopant has a lower oxygen chemical potential than H2O. As a result, for the p-type doping of B, Al, Ga, and In, we obtained a high Hall hole density of 5 × 1019 cm-3 for PLA with a low energy. Consequently, the Hall hole mobility is limited to as low as 10 cm2 V-1 s-1. In contrast, for As and Sb doping, because the density of substitutional dopants does not decrease even after PLA with a high energy, we achieved a high Hall electron density of 6 × 1019 cm-3 and a high Hall electron mobility simultaneously. These results indicate that preventing the oxidation of dopant atoms by water is an important factor for achieving heavy doping using PLA in water.

  8. Amorphization and nanocrystallization of silcon under shock compression

    DOE PAGES

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; ...

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  9. Atomic friction at exposed and buried graphite step edges: Experiments and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Zhijiang; Martini, Ashlie, E-mail: amartini@ucmerced.edu

    2015-06-08

    The surfaces of layered materials such as graphite exhibit step edges that affect friction. Step edges can be exposed, where the step occurs at the outmost layer, or buried, where the step is underneath another layer of material. Here, we study friction at exposed and buried step edges on graphite using an atomic force microscope (AFM) and complementary molecular dynamics simulations of the AFM tip apex. Exposed and buried steps exhibit distinct friction behavior, and the friction on either step is affected by the direction of sliding, i.e., moving up or down the step, and the bluntness of the tip.more » These trends are analyzing in terms of the trajectory of the AFM tip as it moves over the step, which is a convolution of the topography of the surface and the tip shape.« less

  10. Continuous-flow extraction system for elemental association study: a case of synthetic metal-doped iron hydroxide.

    PubMed

    Hinsin, Duangduean; Pdungsap, Laddawan; Shiowatana, Juwadee

    2002-12-06

    A continuous-flow extraction system originally developed for sequential extraction was applied to study elemental association of a synthetic metal-doped amorphous iron hydroxide phase. The homogeneity and metal association of the precipitates were evaluated by gradual leaching using the system. Leachate was collected in fractions for determination of elemental concentrations. The result obtained as extractograms indicated that the doped metals were adsorbed more on the outermost surface rather than homogeneously distributed in the precipitates. The continuous-flow extraction method was also used for effective removal of surface adsorbed metals to obtain a homogeneous metal-doped synthetic iron hydroxide by a sequential extraction using acetic acid and small volume of hydroxylamine hydrochloride solution. The system not only ensures complete washing, but the extent of metal immobilization in the synthetic iron hydroxide could be determined with high accuracy from the extractograms. The initial metal/iron mole ratio (M/Fe) in solution affected the M/Fe mole ratio in homogeneous doped iron hydroxide phase. The M/Fe mole ratio of metal incorporation was approximately 0.01-0.02 and 0.03-0.06, for initial solution M/Fe mole ratio of 0.025 and 0.100, respectively.

  11. The buried active faults in southeastern China as revealed by the relocated background seismicity and fault plane solutions

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Wang, P.; Liu, F.

    2017-12-01

    The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.

  12. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a... of cleaning manholes and ducts in connection with construction work and the cost of permits and...

  13. Selenium doping NaCl-type superconductor: SnAs1-xSex (x=0-0.13)

    NASA Astrophysics Data System (ADS)

    He, Jianqiao; Zhang, Xian; Lai, Xiaofang; Huang, Fuqiang

    2017-08-01

    Selenium doped NaCl-type superconductor SnAs1-xSex (x=0-0.13) were made through solid state reaction. EDS results show that Se content increases with Se doping until over doped in SnAs0.9Se0.1 and SnAs0.87Se0.13 (around 2.7%). PXRD patterns confirmed the main phase of the six doped samples are SnAs. The cell parameters of doped SnAs were calculated using Rietveld refinements. Their cell parameters increase almost linearly with x until x reaches 13%. Single crystal diffraction measurement results show that there are no interstitial atom in doped SnAs. We conclude that Se atoms are substitutional atoms in SnAs. The superconducting onset temperatures (Tconset, under a magnetic field of 10 Oe) of SnAs increased from 3.8 K to 4.5 K by 10% Se doping. ρ-T curves of 1%, 5% and 10% Se doped samples show that all the three samples are metallic. Upper critical field Hc2(0) of 1%, 5% and 10% Se doped samples are 294 Oe, 649 Oe and 1011 Oe, respectively.

  14. Fabrication of Si-As-Te ternary amorphous semiconductor in the microgravity environment (M-13)

    NASA Technical Reports Server (NTRS)

    Hamakawa, Yoshihiro

    1993-01-01

    Ternary chalcogenide Si-As-Te system is an interesting semiconductor from the aspect of both basic physics and technological applications. Since a Si-As-Te system consists of a IV-III-II hedral bonding network, it has a very large glass forming region with a wide physical constant controllability. For example, its energy gap can be controlled in a range from 0.6 eV to 2.5 eV, which corresponds to the classical semiconductor Ge (0.66 eV), Si (1.10 eV), GaAs (1.43 eV), and GaP (2.25 eV). This fact indicates that it would be a suitable system to investigate the compositional dependence of the atomic and electronic properties in the random network of solids. In spite of these significant advantages in the Si-As-Te amorphous system, a big barrier impending the wide utilization of this material is the huge difficulty encountered in the material preparation which results from large differences in the weight density, melting point, and vapor pressure of individual elements used for the alloying composition. The objective of the FMPT/M13 experiment is to fabricate homogeneous multi-component amorphous semiconductors in the microgravity environment of space, and to make a series of comparative characterizations of the amorphous structures and their basic physical constants on the materials prepared both in space and in normal terrestrial gravity.

  15. Visualization of Buried Marte Vallis Channels

    NASA Image and Video Library

    2013-03-07

    This illustration schematically shows where the Shallow Radar instrument on NASA Mars Reconnaissance Orbiter detected flood channels that had been buried by lava flows in the Elysium Planitia region of Mars.

  16. Amorphous Zn₂GeO₄ Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ran; Feng, Jinkui; Lv, Dongping

    2013-07-30

    Amorphous and crystalline Zn₂GeO₄ nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn₂GeO₄ nanoparticles, compared to that of crystalline Zn₂GeO₄ nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

  17. Amorphous cellulose gel as a fat substitute in fermented sausages.

    PubMed

    Campagnol, Paulo Cezar Bastianello; dos Santos, Bibiana Alves; Wagner, Roger; Terra, Nelcindo Nascimento; Rodrigues Pollonio, Marise Aparecida

    2012-01-01

    Fermented sausages were produced with 25%, 50%, 75% or 100% of their pork back fat content replaced by amorphous cellulose gel. The sausage production was monitored with physical, chemical and microbiological analyses. The final products were submitted to a consumer study, and the volatile compounds of the final products were extracted by solid-phase microextraction and analyzed by GC/MS. The reformulated fermented sausages had significant reductions in fat and cholesterol, and the volatile compounds derived from lipid oxidation were also reduced in the final products. These results suggest that the substitution of up to 50% of the pork back fat content by amorphous cellulose gel can be accomplished without a loss of product quality, enabling the production of fermented sausages with the levels of fat and cholesterol decreased by approximately 45% and 15%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  19. Solid-state amorphization of rebamipide and investigation on solubility and stability of the amorphous form.

    PubMed

    Xiong, Xinnuo; Xu, Kailin; Li, Shanshan; Tang, Peixiao; Xiao, Ying; Li, Hui

    2017-02-01

    Solid-state amorphization of crystalline rebamipide (RBM) was realized by ball milling and spray drying. The amorphous content of samples milled for various time was quantified using X-ray powder diffraction. Crystalline RBM and three amorphous RBM obtained by milling and spray drying were characterized by morphological analysis, X-ray diffraction, thermal analysis and vibrational spectroscopy. The crystal structure of RBM was first determined by single-crystal X-ray diffraction. In addition, the solubility and dissolution rate of the RBM samples were investigated in different media. Results indicated that the solubility and the dissolution rates of spray-dried RBM-PVP in different media were highly improved compared with crystalline RBM. The physical stabilities of the three amorphous RBM were systematically investigated, and the stability orders under different storage temperatures and levels of relative humidity (RH) were both as follows: spray dried RBM < milled RBM < spray dried RBM-PVP. A direct glass-to-crystal transformation was induced under high RH, and the transformation rate rose with increasing RH. However, amorphous RBM could stay stable at RH levels lower than 57.6% (25 °C).

  20. Superconductivity in Sm-doped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Dong-Yun, Chen; Bin-Bin, Ruan; Jia, Yu; Qi, Guo; Xiao-Chuan, Wang; Qing-Ge, Mu; Bo-Jin, Pan; Tong, Liu; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    In this article, the Sm-doping single crystals Ca1 - x Sm x Fe2As2 (x = 0 ˜ 0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset T c varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x > 0.10. The doping dependences of the c-axis length and onset T c were summarized. The high-T c observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution. Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

  1. Quantum confinement of nanocrystals within amorphous matrices

    NASA Astrophysics Data System (ADS)

    Lusk, Mark T.; Collins, Reuben T.; Nourbakhsh, Zahra; Akbarzadeh, Hadi

    2014-02-01

    Nanocrystals encapsulated within an amorphous matrix are computationally analyzed to quantify the degree to which the matrix modifies the nature of their quantum-confinement power—i.e., the relationship between nanocrystal size and the gap between valence- and conduction-band edges. A special geometry allows exactly the same amorphous matrix to be applied to nanocrystals of increasing size to precisely quantify changes in confinement without the noise typically associated with encapsulating structures that are different for each nanocrystal. The results both explain and quantify the degree to which amorphous matrices redshift the character of quantum confinement. The character of this confinement depends on both the type of encapsulating material and the separation distance between the nanocrystals within it. Surprisingly, the analysis also identifies a critical nanocrystal threshold below which quantum confinement is not possible—a feature unique to amorphous encapsulation. Although applied to silicon nanocrystals within an amorphous silicon matrix, the methodology can be used to accurately analyze the confinement softening of other amorphous systems as well.

  2. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  3. Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes.

    PubMed

    Long, R; Lowe, M; Cawley, P

    2003-09-01

    The attenuation of the fundamental non-torsional modes that propagate down buried iron water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within the pipe. The established acoustic technique used to locate leaks in buried iron water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode. Experiments have been conducted on buried water mains at test sites in the UK to verify the attenuation and velocity dispersion predictions.

  4. THz emission of donor and acceptor doped GaAs/AlGaAs quantum well structures with inserted thin AlAs monolayer

    NASA Astrophysics Data System (ADS)

    van Dommelen, Paphavee; Daengngam, Chalongrat; Kalasuwan, Pruet

    2018-04-01

    In this paper, we explore THz range optical intersubband transition energies in a donor doped quantum well of a GaAs/AlGaAs system as a function of the insertion position of an AlAs monolayer in the GaAs quantum well. In simulated models, the optical transition energies between electron subband levels 1 and 2 were higher in the doped structure than in the undoped structure. This may be because the envelope wave function of the second electron subband strongly overlapped the envelope wave function of the first electron subband and influenced the optical intersubband transition between the two levels in the THz range. At different levels of bias voltage at the Schottky barrier on the donor doped structure, the electric field in the growth direction of the structure linearly increased the further away the AlAs monolayer was placed from the reference position. We also simulated the optical transition energies between acceptor energy levels of the acceptor doped structure as a function of the insertion position of the AlAs monolayer. The acceptor doped structure induced THz range emission whereas the undoped structure induced mid-IR emission.

  5. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  6. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  7. Synthesis of quenchable amorphous diamond

    DOE PAGES

    Zeng, Zhidan; Yang, Liuxiang; Zeng, Qiaoshi; ...

    2017-08-22

    Diamond owes its unique mechanical, thermal, optical, electrical, chemical, and biocompatible materials properties to its complete sp 3-carbon network bonding. Crystallinity is another major controlling factor for materials properties. Although other Group-14 elements silicon and germanium have complementary crystalline and amorphous forms consisting of purely sp 3 bonds, purely sp 3-bonded tetrahedral amorphous carbon has not yet been obtained. In this letter, we combine high pressure and in situ laser heating techniques to convert glassy carbon into “quenchable amorphous diamond”, and recover it to ambient conditions. Our X-ray diffraction, high-resolution transmission electron microscopy and electron energy-loss spectroscopy experiments on themore » recovered sample and computer simulations confirm its tetrahedral amorphous structure and complete sp 3 bonding. This transparent quenchable amorphous diamond has, to our knowledge, the highest density among amorphous carbon materials, and shows incompressibility comparable to crystalline diamond.« less

  8. Synthesis of quenchable amorphous diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zhidan; Yang, Liuxiang; Zeng, Qiaoshi

    Diamond owes its unique mechanical, thermal, optical, electrical, chemical, and biocompatible materials properties to its complete sp 3-carbon network bonding. Crystallinity is another major controlling factor for materials properties. Although other Group-14 elements silicon and germanium have complementary crystalline and amorphous forms consisting of purely sp 3 bonds, purely sp 3-bonded tetrahedral amorphous carbon has not yet been obtained. In this letter, we combine high pressure and in situ laser heating techniques to convert glassy carbon into “quenchable amorphous diamond”, and recover it to ambient conditions. Our X-ray diffraction, high-resolution transmission electron microscopy and electron energy-loss spectroscopy experiments on themore » recovered sample and computer simulations confirm its tetrahedral amorphous structure and complete sp 3 bonding. This transparent quenchable amorphous diamond has, to our knowledge, the highest density among amorphous carbon materials, and shows incompressibility comparable to crystalline diamond.« less

  9. Distinguishing Buried Objects in Extremely Shallow Underground by Frequency Response Using Scanning Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Abe, Touma; Sugimoto, Tsuneyoshi

    2010-07-01

    A sound wave vibration using a scanning laser Doppler vibrometer are used as a method of exploring and imaging an extremely shallow underground. Flat speakers are used as a vibration source. We propose a method of distinguishing a buried object using a response range of a frequencies corresponding to a vibration velocities. Buried objects (plastic containers, a hollow steel can, an unglazed pot, and a stone) are distinguished using a response range of frequencies. Standardization and brightness imaging are used as methods of discrimination. As a result, it was found that the buried objects show different response ranges of frequencies. From the experimental results, we confirmed the effectiveness of our proposed method.

  10. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  11. Ce doped NiO nanoparticles as selective NO2 gas sensor

    NASA Astrophysics Data System (ADS)

    Gawali, Swati R.; Patil, Vithoba L.; Deonikar, Virendrakumar G.; Patil, Santosh S.; Patil, Deepak R.; Patil, Pramod S.; Pant, Jayashree

    2018-03-01

    Metal oxide gas sensors are promising portable gas detection devices because of their advantages such as low cost, easy production and compact size. The performance of such sensors is strongly dependent on material properties such as morphology, structure and doping. In the present study, we report the effect of cerium (Ce) doping on nickel oxide (NiO) nano-structured thin film sensors towards various gases. Bare NiO and Ce doped NiO nanoparticles (Ce:NiO) were synthesized by sol-gel method. To understand the effect of Ce doping in nickel oxide, various molar percentages of Ce with respect to nickel were incorporated. The structure, phase, morphology and band-gap energy of as-synthesized nanoparticles were studied by XRD, SEM, EDAX and UV-vis spectroscopy. Thin film gas sensors of all the samples were prepared and subjected to various gases such as LPG, NH3, CH3COCH3 and NO2. A systematic and comparative study reveals an enhanced gas sensing performance of Ce:NiO sensors towards NO2 gas. The maximum sensitivity for NO2 gas is around 0.719% per ppm at moderate operating temperature of 150 °C for 0.5% Ce:NiO thin film gas sensor. The enhanced gas sensing performance for Ce:NiO is attributed to the distortion of crystal lattice caused by doping of Ce into NiO.

  12. Classification System for Individualized Treatment of Adult Buried Penis Syndrome.

    PubMed

    Tausch, Timothy J; Tachibana, Isamu; Siegel, Jordan A; Hoxworth, Ronald; Scott, Jeremy M; Morey, Allen F

    2016-09-01

    The authors present their experience with reconstructive strategies for men with various manifestations of adult buried penis syndrome, and propose a comprehensive anatomical classification system and treatment algorithm based on pathologic changes in the penile skin and involvement of neighboring abdominal and/or scrotal components. The authors reviewed all patients who underwent reconstruction of adult buried penis syndrome at their referral center between 2007 and 2015. Patients were stratified by location and severity of involved anatomical components. Procedures performed, demographics, comorbidities, and clinical outcomes were reviewed. Fifty-six patients underwent reconstruction of buried penis at the authors' center from 2007 to 2015. All procedures began with a ventral penile release. If the uncovered penile skin was determined to be viable, a phalloplasty was performed by anchoring penoscrotal skin to the proximal shaft, and the ventral shaft skin defect was closed with scrotal flaps. In more complex patients with circumferential nonviable penile skin, the penile skin was completely excised and replaced with a split-thickness skin graft. Complex patients with severe abdominal lipodystrophy required adjacent tissue transfer. For cases of genital lymphedema, the procedure involved complete excision of the lymphedematous tissue, and primary closure with or without a split-thickness skin graft, also often involving the scrotum. The authors' overall success rate was 88 percent (49 of 56), defined as resolution of symptoms without the need for additional procedures. Successful correction of adult buried penis often necessitates an interdisciplinary, multimodal approach. Therapeutic, IV.

  13. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  14. Compact Buried Ducts in a Hot-Humid Climate House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  15. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  16. The Thermal Regime Around Buried Submarine High-Voltage Cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  17. Radiation-Induced Amorphization of Crystalline Ice

    NASA Technical Reports Server (NTRS)

    Fama, M.; Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2009-01-01

    We study radiation-induced amorphization of crystalline ice, ana lyzing the resu lts of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the 'thermal spike' model. We then discuss the common use of the 1.65 micrometer infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared refl ectance absorption spectra measured between 1.4 and 2.2 micrometers for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 10(exp 15) protons per square centimeter, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.

  18. Amorphous ribbon transducers

    NASA Astrophysics Data System (ADS)

    Meydan, T.; Overshott, K. J.

    1984-02-01

    Amorphous ribbon transducers have been investigated which consist of toroidally wound amorphous ribbon with a primary (magnetizing) winding and secondary (search coil) windings. The application of a force to the ribbon gives a linear search coil voltage against applied force characteristic. The positioning of the windings with respect to the applied force has been studied, and it is shown that the effect of the applied force is localized. Domain studies have shown that the applied force produces domain wall motion which can be correlated to the performance. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  19. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    PubMed

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  20. Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material.

    PubMed

    Humam, Nurrul Syafawati Binti; Sato, Yu; Takahashi, Motoki; Kanazawa, Shohei; Tsumori, Nobuhiro; Regreny, Philippe; Gendry, Michel; Saiki, Toshiharu

    2014-06-16

    We present the mechanisms underlying the redshifted and blueshifted photoluminescence (PL) of quantum dots (QDs) upon amorphization of phase change material (PCM). We calculated the stress and energy shift distribution induced by volume expansion using finite element method. Simulation result reveals that redshift is obtained beneath the flat part of amorphous mark, while blueshift is obtained beneath the edge region of amorphous mark. Simulation result is accompanied by two experimental studies; two-dimensional PL intensity mapping of InAs/InP QD sample deposited by a layer of PCM, and an analysis on the relationship between PL intensity ratio and energy shift were performed.

  1. Thin transparent W-doped indium-zinc oxide (WIZO) layer on glass.

    PubMed

    Lee, Young-Jun; Lim, Byung-Wook; Kim, Joo-Hyung; Kim, Tae-Won; Oh, Byeong-Yun; Heo, Gi-Seok; Kim, Kwang-Young

    2012-07-01

    Annealing effect on structural and electrical properties of W-doped IZO (WIZO) films for thin film transistors (TFT) was studied under different process conditions. Thin WIZO films were deposited on glass substrates by RF magnetron co-sputtering technique using indium zinc oxide (10 wt.% ZnO-doped In2O3) and WO3 targets in room temperature. The post annealing temperature was executed from 200 degrees C to 500 degrees C under various O2/Ar ratios. We could not find any big difference from the surface observation of as grown films while it was found that the carrier density and sheet resistance of WIZO films were controlled by O2/Ar ratio and post annealing temperature. Furthermore, the crystallinity of WIZO film was changed as annealing temperature increased, resulting in amorphous structure at the annealing temperature of 200 degrees C, while clear In2O3 peak was observed for the annealed over 300 degrees C. The transmittance of as-grown films over 89% in visible range was obtained. As an active channel layer for TFT, it was found that the variation of resistivity, carrier density and mobility concentration of WIZO film decreased by annealing process.

  2. Performance evaluation of buried pipe installation.

    DOT National Transportation Integrated Search

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  3. Detection and characterization of buried lunar craters with GRAIL data

    NASA Astrophysics Data System (ADS)

    Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.

    2017-06-01

    We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.

  4. Fabrication of Buried Nanochannels From Nanowire Patterns

    NASA Technical Reports Server (NTRS)

    Choi, Daniel; Yang, Eui-Hyeok

    2007-01-01

    A method of fabricating channels having widths of tens of nanometers in silicon substrates and burying the channels under overlying layers of dielectric materials has been demonstrated. With further refinement, the method might be useful for fabricating nanochannels for manipulation and analysis of large biomolecules at single-molecule resolution. Unlike in prior methods, burying the channels does not involve bonding of flat wafers to the silicon substrates to cover exposed channels in the substrates. Instead, the formation and burying of the channels are accomplished in a more sophisticated process that is less vulnerable to defects in the substrates and less likely to result in clogging of, or leakage from, the channels. In this method, the first step is to establish the channel pattern by forming an array of sacrificial metal nanowires on an SiO2-on-Si substrate. In particular, the wire pattern is made by use of focused-ion-beam (FIB) lithography and a subsequent metallization/lift-off process. The pattern of metal nanowires is then transferred onto the SiO2 layer by reactive-ion etching, which yields sacrificial SiO2 nanowires covered by metal. After removal of the metal covering the SiO2 nanowires, what remains are SiO2 nanowires on an Si substrate. Plasma-enhanced chemical vapor deposition (PECVD) is used to form a layer of a dielectric material over the Si substrate and over the SiO2 wires on the surface of the substrate. FIB milling is then performed to form trenches at both ends of each SiO2 wire. The trenches serve as openings for the entry of chemicals that etch SiO2 much faster than they etch Si. Provided that the nanowires are not so long that the diffusion of the etching chemicals is blocked, the sacrificial SiO2 nanowires become etched out from between the dielectric material and the Si substrate, leaving buried channels. At the time of reporting the information for this article, channels 3 m long, 20 nm deep, and 80 nm wide (see figure) had been

  5. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  6. The influence of p-doping on two-state lasing in InAs/InGaAs quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Maximov, M. V.; Shernyakov, Yu M.; Zubov, F. I.; Zhukov, A. E.; Gordeev, N. Yu; Korenev, V. V.; Savelyev, A. V.; Livshits, D. A.

    2013-10-01

    Two-state lasing in devices based on undoped and p-type modulation-doped InAs/InGaAs quantum dots is studied for various cavity lengths and temperatures. Modulation doping of the active region strongly enhances the threshold current of two-state lasing, preserves ground-state lasing up to higher temperatures and increases ground-state output power. The impact of modulation doping is especially strong in short cavities.

  7. Amorphization of Indomethacin by Co-Grinding with Neusilin US2: amorphization kinetics, physical stability and mechanism.

    PubMed

    Bahl, Deepak; Bogner, Robin H

    2006-10-01

    To quantify the effects of the ratio of indomethacin to Neusilin US2 and the processing humidity on the amorphization kinetics, stability and nature of the interaction. A porcelain jar mill with zirconia balls was used to affect conversion of the physical mixtures (48 g) of indomethacin and Neusilin US2 (in the ratios 1:1 to 1:5) to amorphous states at room temperature (25 degrees C) employing either 0% RH or 75% RH. The percent crystallinity in the samples was determined from ATR-FTIR scans chemometrically. The physical stability of these co-ground amorphous powders was evaluated at 40 degrees C/75% RH and 40 degrees C/0% RH. The lower the ratio of indomethacin to Neusilin US2, the faster is the amorphization during co-grinding. Higher humidity facilitates amorphization with a more pronounced effect at the lower ratio of indomethacin to Neusilin US2. There is further amorphization of some of the partially amorphized samples on storage at 40 degrees C/75% RH for 3 months. Hydrogen bonding and surface interaction between metal ions of Neusilin US2 and indomethacin can explain changes in the FTIR spectra. The processing humidity and the ratio of indomethacin to Neusilin US2 are important factors to be considered to affect amorphization during ball milling. Amorphous indomethacin can be stabilized by co-grinding with Neusilin US2.

  8. Fabrication and electrochemistry characteristics of nickel-doped diamond-like carbon film toward applications in non-enzymatic glucose detection

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Wen; Chen, Wei-En; Sun, Yin Tung Albert; Lin, Chii-Ruey

    2018-04-01

    This research work focused on the fabrication of nickel-doped diamond-like carbon (DLC) films and their characteristics including of surface morphology, microstructure, and electrochemical aiming at applications in non-enzymatic glucose detection. Novel nanodiamond target was employed in unbalanced magnetron radio-frequency co-sputtering process to prepared high quality Ni-doped DLC thin film at room temperature. TEM analysis reveals a highly uniform distribution of Ni crystallites in amorphous carbon matrix with fraction ranged from 3 to 11.5 at.% which is considered as active sites for the glucose detection. Our cyclic voltammetry measurements using 0.1 M H2SO4 solution demonstrated that the as-prepared Ni-doped DLC films possess large electrochemical potential window of 2.12 V, and this was also observed to be significantly reduced at high Ni doping level owing to lower sp3 fraction. The non-enzymatic glucose detection investigation indicates that the Ni-doped DLC thin film electrode prepared under 7 W of DC sputtering power on Ni target possesses good detecting performance, high stability, and high sensitivity to glucose concentration up to 10 mM, even with the existence of uric acid and ascorbic acid. The peak current was observed to be proportional to glucose concentration and scanning rate, demonstrating highly reversibility redox process of the film electrode and glucose.

  9. Controlling ferromagnetism of (In,Fe)As semiconductors by electron doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang Vu, Nguyen; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi

    2014-02-21

    Based on experimental results, using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method and Monte Carlo simulation, we study the mechanism of ferromagnetic behavior of (In,Fe)As. We show that with doped Be atoms occupying in interstitial sites, chemical pair interactions between atoms and magnetic exchange interactions between Fe atoms change due to electron concentration. Therefore, by controlling the doping process, magnetic behavior of (In,Fe)As is controlled and ferromagnetism is observed in this semiconductor.

  10. Intralayer doping effects on the high-energy magnetic correlations in NaFeAs

    DOE PAGES

    Pelliciari, Jonathan; Huang, Yaobo; Das, Tanmoy; ...

    2016-04-26

    We used resonant inelastic x-ray scattering (RIXS) and dynamical susceptibility calculations to study the magnetic excitations in NaFe 1$-$xCo xAs ( x=0 , 0.03, and 0.08). Despite a relatively low ordered magnetic moment, collective magnetic modes are observed in parent compounds (x=0) and persist in optimally (x= 0.03) and overdoped (x = 0.08) samples. Their magnetic bandwidths are unaffected by doping within the range investigated. High-energy magnetic excitations in iron pnictides are robust against doping and present irrespectively of the ordered magnetic moment. Nonetheless, Co doping slightly reduces the overall magnetic spectral weight, differently from previous studies on hole-doped BaFemore » 2As 2 , where it was observed constant. Finally, we demonstrate that the doping evolution of magnetic modes is different for the dopants being inside or outside the Fe-As layer.« less

  11. Building America Case Study: Compact Buried Ducts in a Hot-Humid Climate House, Lady's Island, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely onmore » encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences, 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs, and 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.« less

  12. Hydrogen absorption of Pd/ZrO2 composites prepared from Zr65Pd35 and Zr60Pd35Pt5 amorphous alloys

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Katsuragawa, Naoya; Hattori, Masatomo; Yogo, Toshinobu; Yamamura, Shin-ichi

    2018-01-01

    Metal-dispersed composites were derived from amorphous Zr65Pd35 and Zr65Pd30Pt5 alloys and their hydrogen absorption behavior was studied. X-ray diffractograms and scanning electron micrographs indicated that mixtures containing ZrO2, the metallic phase of Pd, and PdO were formed for both amorphous alloys heat-treated in air. In the composites, micron-sized Pd-based metal precipitates were embedded in a ZrO2 matrix after heat treatment at 800 °C in air. The hydrogen temperature-programmed reduction was applied to study the reactivity of hydrogen gas with the oxidized Zr65Pd35 and Zr65Pd30Pt5 materials. Rapid hydrogen absorption and release were observed on the composite derived from the amorphous alloy below 100 °C. The hydrogen pressure-concentration isotherm showed that the absorbed amount of hydrogen in materials depended on the formation of the Pd or Pt-doped Pd phase and its large interface area to the matrix in the nanocomposites. The results indicate the importance of the composite structure for the fabrication of a new type of hydrogen storage material prepared from amorphous alloys.

  13. Diffusion and recrystallization of B implanted in crystalline and pre-amorphized Ge in the presence of F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, William, E-mail: william.hsu@utexas.edu; Kim, Taegon; Chou, Harry

    2016-07-07

    Although the diffusion control and dopant activation of Ge p-type junctions are straightforward when using B{sup +} implantation, the use of the heavier BF{sub 2}{sup +} ions or even BF{sup +} is still favored in terms of shallow junction formation and throughput—because implants can be done at higher energies, which can give higher beam currents and beam stability—and thus the understanding of the effect of F co-doping becomes important. In this work, we have investigated diffusion and end-of-range (EOR) defect formation for B{sup +}, BF{sup +}, and BF{sub 2}{sup +} implants in crystalline and pre-amorphized Ge, employing rapid thermal annealingmore » at 600 °C and 800 °C for 10 s. It is demonstrated that the diffusion of B is strongly influenced by the temperature, the presence of F, and the depth of amorphous/crystalline interface. The B and F diffusion profiles suggest the formation of B–F complexes and enhanced diffusion by interaction with point defects. In addition, the strong chemical effect of F is found only for B in Ge, while such an effect is vanishingly small for samples implanted with F alone, or co-implanted with P and F, as evidenced by the high residual F concentration in the B-doped samples after annealing. After 600 °C annealing for 10 s, interstitial-induced compressive strain was still observed in the EOR region for the sample implanted with BF{sup +}, as measured by X-ray diffraction. Further analysis by cross-sectional transmission electron microscopy showed that the {311} interstitial clusters are the majority type of EOR defects. The impact of these {311} defects on the electrical performance of Ge p{sup +}/n junctions formed by BF{sup +} implantation was evaluated.« less

  14. Threshold irradiation dose for amorphization of silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, L.L.; Zinkle, S.J.

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenonmore » ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.« less

  15. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  16. Gnathostoma infection in Nakhon Nayok and Prachin Buri, Central Thailand.

    PubMed

    Rojekittikhun, Wichit; Chaiyasith, Tossapon; Nuamtanong, Supaporn; Pubampen, Somchit; Maipanich, Wanna; Tungtrongchitr, Rungsunn

    2002-09-01

    Gnathostoma infection in Nakhon Nayok and Prachin Buri Provinces, Central Thailand, was investigated. The prevalence and intensity of infection of swamp eels were determined; dog fecal samples and fresh-water copepods were examined for evidence of infection. The overall prevalence of eel infection was 38.1% (117/307) in Nakhon Nayok and 24.0% (74/308) in Prachin Buri--the former rate being significantly higher than the latter. Most of the positive Nalkhon Nayok eels (53.8%) harbored only 1-9 larvae; only one eel bore more than 50 larvae. In Prachin Buri, 67.6% of the positive eels harbored 1-9 larvae; again, only one eel bore more than 50 larvae. The mean number of 11.0 +/- 10.4 larvae/eel in Nakhon Nayok was not significantly different from that of Prachin Buri (9.3 +/- 11.4). A total of 1,292 gnathostome larvae were recovered from 307 eels in Nakhon Nayok. Of these, 52.3% had accumulated in the liver and 47.7% had spread throughout the muscles. In eels from Prachin Buri, 50.6% and 49.4% of the total of 688 larvae (from 308 eels) were found in the liver and muscles, respectively. The larvae preferred encysting in ventral of muscles rather than dorsal part; they preferred the middle portion to the anterior and posterior portions. The average length of gnathostome larvae recovered from Nakhon Nayok eels was 4.0 +/- 0.5 mm (range 2.5-5.1 mm) and the average body width was 0.40 +/- 0.05 mm (range 0.29-0.51 mm). Those from eels in Prachin Buri were 3.9 +/- 0.5 mm (range 2.2-5.1 mm) and 0.34 +/- 0.05 mm (range 0.20-0.48 mm), respectively. The mean body length and width of the larvae from eels in Nakhon Nayok were significantly greater than those of the larvae from eels in Prachin Buri. In Ban Phrao, Nakhon Nayok, none of the first 44 fecal specimens examined was positive. Of the second (68) and the third (70) specimens, one (1.5%) and two (2.9%) samples were positive. However, six months after the third fecal collection, no eggs were found. In Tha Ngam, Prachin Buri, no

  17. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  18. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  19. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  20. Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.

    2011-08-01

    We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.

  1. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.

    PubMed

    Li, Qi; Shang, Jian Ku

    2009-12-01

    Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.

  2. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent

    NASA Astrophysics Data System (ADS)

    Du, Yongxu; Liu, Libin; Xiang, Yu; Zhang, Qiang

    2018-03-01

    The development of novel energy storage devices with high power density and energy density is highly desired. However, as a promising material, the strong π-π interaction of graphene inhibits its applications. Herein, we provide a new approach that amino-functionalized silica are used as both templates to prevent the restacking of the graphene sheets and doping agents simultaneously. The microstructures, porous properties and chemical composition of the resulted N-doped reduced graphene oxide (RGO) aerogels, characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller measurement, indicate that the amount of SiO2-NH2 has profound effects on the surface area and carbon activity of the graphene sheets. Benefiting from the large specific surface area of 481.8 m2 g-1, low series resistances and high nitrogen doping content (4.4 atom%), the as-fabricated 3D hierarchical porous N-doped RGO aerogel electrode exhibits outstanding electrochemical performance in aqueous and organic electrolyte, such as ultrahigh specific capacitances of 350 F g-1 at a current density of 1 A g-1 and excellent reversibility with a cycling efficiency of 88% after 10000 cycles. In addition, the N-doped RGO aerogels possess high oil-absorbability with long recyclability.

  3. Sensing a buried resonant object by single-channel time reversal.

    PubMed

    Waters, Zachary J; Dzikowicz, Benjamin R; Holt, R Glynn; Roy, Ronald A

    2009-07-01

    Scaled laboratory experiments are conducted to assess the efficacy of iterative, single-channel time reversal for enhancement of monostatic returns from resonant spheres in the free field and buried in a sediment phantom. Experiments are performed in a water tank using a broad-band piston transducer operating between 0.4 and 1.5 MHz and calibrated using free surface reflections. Solid and hollow metallic spheres, 6.35 mm in diameter, are buried in a consolidation of 128-microm-mean- diameter spherical glass beads. The procedure consists of exciting the target object with a broadband pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Results indicate that the spectrum of the returns rapidly converges to the dominant mode in the backscattering response of the target. Signal-to-noise enhancement of the target echo is demonstrated for a target at several burial depths. Images generated by scanning the transducer over the location of multiple buried targets demonstrate the ability of the technique to distinguish between targets of differing type and to yield an enhancement of different modes within the response of a single target as a function of transducer position and processing bandwidth.

  4. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  5. Photonic crystals, amorphous materials, and quasicrystals.

    PubMed

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  6. Nature Drilling Exposes Deeply Buried Minerals

    NASA Image and Video Library

    2011-03-08

    This image from NASA Mars Global Surveyor and Mars Odyssey spacecraft shows the context for orbital observations of exposed rocks that had been buried on Mars. The area is dominated by the Huygens crater, which is about the size of Wisconsin.

  7. History of the incipient Icelandic plume: Observations from ancient buried landscapes

    NASA Astrophysics Data System (ADS)

    Stucky de Quay, Gaia; Roberts, Gareth G.; Watson, Jonathan S.; Jackson, Christopher A.-L.

    2017-04-01

    Ancient buried terrestrial landscapes contain records of vertical motions which can be used to probe histories of geodynamical processes. In the North Atlantic Ocean, sedimentary basins contain excellent evidence that the continental shelf experienced staged subaerial exposure. For example, now buried landscapes were uplifted, rapidly eroded, and drowned close to the Paleocene-Eocene boundary. We use commercial wells and three-dimensional seismic data to reconstruct a 57-55 Ma landscape now buried 1.5 km beneath the seabed in the Bressay area of the northern North Sea. Geochemical analyses of organic matter from core samples intersecting the erosional landscape indicate the presence of angiosperm (flowering plant) debris. Combined with the presence of coarse clastic material, mapped beach ridges, and dendritic drainage patterns, these observations indicate that this landscape was of terrestrial origin. Longitudinal profiles of ancient rivers were extracted and inverted for an uplift rate history. The best-fitting uplift rate history has three phases and total cumulative uplift of 350 m. Biostratigraphic data from surrounding marine stratigraphy indicate that this landscape formed within 1-1.5 Ma. This uplift history is similar to that of a slightly older buried landscape in the Faeroe-Shetland basin 400 km to the west. These records of vertical motion can explained by pulses of anomalously hot asthenosphere spreading out from the incipient Icelandic plume. Using simple isostatic calculations we estimate that the maximum thermal anomaly beneath Bressay was 50˚. Our observations suggest that a thermal anomaly departed the Icelandic plume as early as 58.5 Ma and had highest average temperatures at 55.6 Ma.

  8. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  9. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    NASA Astrophysics Data System (ADS)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  10. The Critical Power Model as a Potential Tool for Anti-doping

    PubMed Central

    Puchowicz, Michael J.; Mizelman, Eliran; Yogev, Assaf; Koehle, Michael S.; Townsend, Nathan E.; Clarke, David C.

    2018-01-01

    Existing doping detection strategies rely on direct and indirect biochemical measurement methods focused on detecting banned substances, their metabolites, or biomarkers related to their use. However, the goal of doping is to improve performance, and yet evidence from performance data is not considered by these strategies. The emergence of portable sensors for measuring exercise intensities and of player tracking technologies may enable the widespread collection of performance data. How these data should be used for doping detection is an open question. Herein, we review the basis by which performance models could be used for doping detection, followed by critically reviewing the potential of the critical power (CP) model as a prototypical performance model that could be used in this regard. Performance models are mathematical representations of performance data specific to the athlete. Some models feature parameters with physiological interpretations, changes to which may provide clues regarding the specific doping method. The CP model is a simple model of the power-duration curve and features two physiologically interpretable parameters, CP and W′. We argue that the CP model could be useful for doping detection mainly based on the predictable sensitivities of its parameters to ergogenic aids and other performance-enhancing interventions. However, our argument is counterbalanced by the existence of important limitations and unresolved questions that need to be addressed before the model is used for doping detection. We conclude by providing a simple worked example showing how it could be used and propose recommendations for its implementation. PMID:29928234

  11. Investigation of amorphous RuMoC alloy films as a seedless diffusion barrier for Cu/ p-SiOC:H ultralow- k dielectric integration

    NASA Astrophysics Data System (ADS)

    Jiao, Guohua; Liu, Bo; Li, Qiran

    2015-08-01

    Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.

  12. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    PubMed Central

    Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742

  13. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating.

    PubMed

    Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-03-01

    Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings. © 2012 American Chemical Society

  14. High pressure polymorphs and amorphization of upconversion host material NaY(WO 4) 2

    DOE PAGES

    Hong, Fang; Yue, Binbin; Cheng, Zhenxiang; ...

    2016-07-29

    The pressure effect on the structural change of upconversion host material NaY(WO 4) 2 was studied in this paper by using in-situ synchrotron X-ray diffraction. A transition from the initial scheelite phase to the M-fergusonite phase occurs near 10 GPa, and another phase transition is found near 27.5 GPa, which could be an isostructural transition without symmetry change. The sample becomes amorphous when the pressure is fully released from high pressure. Finally, this work demonstrates the possibility of synthesizing various polymorph structures for non-linear optical applications with a high pressure, chemical doping, or strained thin-film nanostructure process.

  15. Can amorphization take place in nanoscale interconnects?

    PubMed

    Kumar, S; Joshi, K L; van Duin, A C T; Haque, M A

    2012-03-09

    The trend of miniaturization has highlighted the problems of heat dissipation and electromigration in nanoelectronic device interconnects, but not amorphization. While amorphization is known to be a high pressure and/or temperature phenomenon, we argue that defect density is the key factor, while temperature and pressure are only the means. For nanoscale interconnects carrying modest current density, large vacancy concentrations may be generated without the necessity of high temperature or pressure due to the large fraction of grain boundaries and triple points. To investigate this hypothesis, we performed in situ transmission electron microscope (TEM) experiments on 200 nm thick (80 nm average grain size) aluminum specimens. Electron diffraction patterns indicate partial amorphization at modest current density of about 10(5) A cm(-2), which is too low to trigger electromigration. Since amorphization results in drastic decrease in mechanical ductility as well as electrical and thermal conductivity, further increase in current density to about 7 × 10(5) A cm(-2) resulted in brittle fracture failure. Our molecular dynamics (MD) simulations predict the formation of amorphous regions in response to large mechanical stresses (due to nanoscale grain size) and excess vacancies at the cathode side of the thin films. The findings of this study suggest that amorphization can precede electromigration and thereby play a vital role in the reliability of micro/nanoelectronic devices.

  16. Nonthermal Photocoercivity Effect in Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor

    NASA Astrophysics Data System (ADS)

    Kiessling, T.; Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.

    2011-12-01

    We report a photoinduced change of the coercive field of a low doped Ga1-xMnxAs ferromagnetic semiconductor under very low intensity illumination. This photocoercivity effect (PCE) is local and reversible, which enables the controlled formation of localized magnetization domains. The PCE arises from a light induced lowering of the domain wall pinning energy as confirmed by test experiments on high doped, fully metallic ferromagnetic Ga1-xMnxAs.

  17. Water clusters in amorphous pharmaceuticals.

    PubMed

    Authelin, Jean-Rene; MacKenzie, Alan P; Rasmussen, Don H; Shalaev, Evgenyi Y

    2014-09-01

    Amorphous materials, although lacking the long-range translational and rotational order of crystalline and liquid crystalline materials, possess certain local (short-range) structure. This paper reviews the distribution of one particular component present in all amorphous pharmaceuticals, that is, water. Based on the current understanding of the structure of water, water molecules can exist in either unclustered form or as aggregates (clusters) of different sizes and geometries. Water clusters are reported in a range of amorphous systems including carbohydrates and their aqueous solutions, synthetic polymers, and proteins. Evidence of water clustering is obtained by various methods that include neutron and X-ray scattering, molecular dynamics simulation, water sorption isotherm, concentration dependence of the calorimetric Tg , dielectric relaxation, and nuclear magnetic resonance. A review of the published data suggests that clustering depends on water concentration, with unclustered water molecules existing at low water contents, whereas clusters form at intermediate water contents. The transition from water clusters to unclustered water molecules can be expected to change water dependence of pharmaceutical properties, such as rates of degradation. We conclude that a mechanistic understanding of the impact of water on the stability of amorphous pharmaceuticals would require systematic studies of water distribution and clustering, while such investigations are lacking. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  19. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  20. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.

    1995-06-20

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  1. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, Joel B.; Kaschmitter, James L.; Thompson, Jesse B.; Sigmon, Thomas W.

    1995-01-01

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  2. Buried penis: An unrecognized risk factor in the development of invasive penile cancer.

    PubMed

    Abdulla, Alym; Daya, Dean; Pinthus, Jehonathan; Davies, Timothy

    2012-10-01

    One of the documented benefits of neonatal circumcision is protection against invasive penile cancer. To date there have been a handful of published cases of invasive penile cancer in men circumcised as neonates. We report a case of a 73-year-old man, with a history of neonatal circumcision with no evidence of previous human papillomavirus exposure, who developed a buried penis secondary to obesity. He was diagnosed with Grade 2, pT3N0 squamous cell carcinoma of the penis. This report suggests that buried penis may pose a risk factor for the development of penile cancer despite the protective effects of neonatal circumcision. Thus periodic examination of a buried penis is warranted even in patients with no risk factors for penile cancer. A review of the literature is provided.

  3. Dye-sensitized photoelectrochemical water oxidation through a buried junction.

    PubMed

    Xu, Pengtao; Huang, Tian; Huang, Jianbin; Yan, Yun; Mallouk, Thomas E

    2018-06-18

    Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO 2 grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm -2 was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.

  4. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  5. Excitation and De-Excitation Mechanisms of Er-Doped GaAs and A1GaAs.

    DTIC Science & Technology

    1992-12-01

    AD-A258 814 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs DISSERTATION David W. Elsaesser, Captain, USAF DTICY. ft £ICTE’’ )AN...0 8 1993U -o Wo- .%Approved for public release; Distribution unlimited 93 1 04 022 AFIT/DS/ENP/92-5 EXCITATION AND DE -EXCITATION MECHANISMS OF Er...public release; Distribution unlimited AFIT/DS/ENP/92D-005 EXCITATION AND DE -EXCITATION MECHANISMS OF Er-DOPED GaAs AND A1GaAs 4 toFlor -- David W

  6. Modelling the effect of buried valleys on groundwater flow: case study in Ventspils vicinity, Latvia

    NASA Astrophysics Data System (ADS)

    Delina, Aija; Popovs, Konrads; Bikse, Janis; Retike, Inga; Babre, Alise; Kalvane, Gunta

    2015-04-01

    Buried subglacial valleys are widely distributed in glaciated regions and they can have great influence on groundwater flow and hence on groundwater resources. The aim of this study is to evaluate the effect of the buried valleys on groundwater flow in a confined aquifer (Middle Devonian Eifelian stage Arukila aquifer, D2ar) applying numerical modelling. The study area is located at vicinity of Ventspils Town, near wellfield Ogsils where number of the buried valleys with different depth and filling material are present. Area is located close to the Baltic Sea at Piejūra lowland Rinda plain and regional groundwater flow is towards sea. Territory is covered by thin layer of Quaternary sediments in thicknesses of 10 to 20 meters although Prequaternary sediments are exposed at some places. Buried valleys are characterized as narrow, elongated and deep formations that is be filled with various, mainly Pleistocene glacigene sediments - either till loam of different ages or sand and gravel or interbedding of both above mentioned. The filling material of the valleys influences groundwater flow in the confined aquifers which is intercepted by the valleys. It is supposed that glacial till loam filled valleys serves as a barrier to groundwater flow and as a recharge conduit when filled with sand and gravel deposits. Numerical model was built within MOSYS modelling system (Virbulis et al. 2012) using finite element method in order to investigate buried valley influence on groundwater flow in the study area. Several conceptual models were tested in numerical model depending on buried valley filling material: sand and gravel, till loam or mixture of them. Groundwater flow paths and travel times were studied. Results suggested that valley filled with glacial till is acting as barrier and it causes sharp drop of piezometric head and downward flow. Valley filled with sand and gravel have almost no effect on piezometric head distribution, however it this case buried valleys

  7. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination.

    PubMed

    Ji, Hanxu; Zhou, Feng; Gu, Jiangjiang; Shu, Chen; Xi, Kai; Jia, Xudong

    2016-05-04

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O₂. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors.

  8. Impact of Silicon Doping on Low-Frequency Charge Noise and Conductance Drift in GaAs/AlxGa1 -xAs Nanostructures

    NASA Astrophysics Data System (ADS)

    Fallahi, S.; Nakamura, J. R.; Gardner, G. C.; Yannell, M. M.; Manfra, M. J.

    2018-03-01

    We present measurements of low-frequency charge noise and conductance drift in modulation-doped GaAs /AlxGa1 -xAs heterostructures grown by molecular beam epitaxy in which the silicon doping density is varied from 2.4 ×1018 (critically doped) to 6.0 ×1018 cm-3 (overdoped). Quantum point contacts are used to detect charge fluctuations. A clear reduction of both short-time-scale telegraphic noise and long-time-scale conductance drift with decreased doping density is observed. These measurements indicate that the neutral doping region plays a significant role in charge noise and conductance drift.

  9. Effect of S-doping on structural, optical and electrochemical properties of vanadium oxide thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.

    2013-12-01

    In this research, S-doped vanadium oxide thin films, with doping levels from 0 to 40 at.%, are prepared by spray pyrolysis technique on glass substrates. For electrochemical measurements, the films were deposited on florin-tin oxide coated glass substrates. The effect of S-doping on structural, electrical, optical and electrochemical properties of vanadium oxide thin films was studied. The x-ray diffractometer analysis indicated that most of the samples have cubic β-V2O5 phase structure with preferred orientation along [200]. With increase in the doping levels, the structure of the samples tends to be amorphous. The scanning electron microscopy images show that the structure of the samples is nanobelt-shaped and the width of the nanobelts decreases from nearly 100 to 40 nm with increase in the S concentration. With increase in the S-doping level, the sheet resistance and the optical band gap increase from 940 to 4015 kΩ/square and 2.41 to 2.7 eV, respectively. The cyclic voltammogram results obtained for different samples show that the undoped sample is expanded and the sample prepared at 20 at.% S-doping level has sharper anodic and cathodic peaks.

  10. Photonic crystals, amorphous materials, and quasicrystals

    PubMed Central

    Edagawa, Keiichi

    2014-01-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. PMID:27877676

  11. A trade-off between solubility enhancement and physical stability upon simultaneous amorphization and nanonization of curcumin in comparison to amorphization alone.

    PubMed

    Wong, Jerome Jie Long; Yu, Hong; Lim, Li Ming; Hadinoto, Kunn

    2018-03-01

    The numerous health benefits of curcumin (CUR) have not been fully realized due to its low aqueous solubility, resulting in poor bioavailability. While amorphization of CUR via amorphous solid dispersion (ASD) represents a well-established CUR solubility enhancement strategy, simultaneous amorphization and nanonization of CUR via amorphous CUR nanoparticles (or nano-CUR in short) have emerged only recently as the plausibly superior alternative to ASD. Herein we examined for the first time the amorphous nano-CUR versus the ASD of CUR in terms of their (1) in vitro solubility enhancement capability and (2) long-term physical stability. The ASD of CUR was prepared by spray drying with hydroxypropylmethylcellulose (HPMC) acting as crystallization inhibitor. The amorphous nano-CUR was investigated in both its (i) aqueous suspension and (ii) dry-powder forms in which the latter was prepared by spray drying with adjuvants (i.e. HPMC, trehalose, and soy lecithin). The results showed that the amorphous nano-CUR (in both its aqueous suspension and dry-powder forms) exhibited superior solubility enhancement to the ASD of CUR attributed to its faster dissolution rates. This was despite the ASD formulation contained a larger amount of HPMC. The superior solubility enhancement, however, came at the expense of low physical stability, where the amorphous nano-CUR showed signs of transformation to crystalline after three-month accelerated storage, which was not observed with the ASD. Thus, despite its inferior solubility enhancement, the conventional ASD of CUR was found to represent the more feasible CUR solubility enhancement strategy. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  13. Buried Craters In Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Seabrook, A. M.; Rothery, D. A.; Wallis, D.; Bridges, J. C.; Wright, I. P.

    We have produced a topographic map of Isidis Planitia, which includes the Beagle 2 landing site, using interpolated Mars Orbiter Laser Altimeter (MOLA) data from the Mars Global Surveyor (MGS) spacecraft currently orbiting Mars. MOLA data have a vertical precision of 37.5 cm, a footprint size of 130 m, an along-track shot spacing of 330 m, and an across-track spacing that is variable and may be several kilometres. This has revealed subtle topographic detail within the relatively smooth basin of Isidis Planitia. Analysis of this map shows apparent wrinkle ridges that could be the volcanic basement to the basin and also several circular depressions with diameters of several to tens of kilometres which we interpreted as buried impact craters, comparable to the so-called stealth craters recognised elsewhere in the northern lowlands of Mars[1]. Stealth craters are considered to be impact craters subjected to erosion and/or burial. Some of these features in Isidis have depressions that are on the order of tens metres lower than their rims and are very smooth, and so are often not visible in MGS Mars Orbiter Camera (MOC) or Viking images of the basin. The Isidis stealth craters are not restricted to the Hesperian Vastitas Borealis formations like those detected elsewhere in the northern lowlands by Kreslavsky and Head [1], but are also found in a younger Amazonian smooth plains unit. It is generally believed that Isidis Planitia has undergone one or more episodes of sedi- ment deposition, and so these buried craters most likely lie on an earlier surface, which could be the postulated volcanic basement to the basin. Analysis of the buried craters may give some understanding of the thickness, frequencies and ages of sedimentation episodes within the basin. This information will be important in developing a context in which information from the Beagle 2 lander can be analysed when it arrives on Mars in December 2003. [1] Kreslavsky M. A. and Head J. W. (2001) LPS XXXII

  14. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.

    PubMed

    Chen, Hung-Ling; Himwas, Chalermchai; Scaccabarozzi, Andrea; Rale, Pierre; Oehler, Fabrice; Lemaître, Aristide; Lombez, Laurent; Guillemoles, Jean-François; Tchernycheva, Maria; Harmand, Jean-Christophe; Cattoni, Andrea; Collin, Stéphane

    2017-11-08

    We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 10 17 to 1 × 10 18  cm -3 . These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

  15. Effect of Si-doping on InAs nanowire transport and morphology

    NASA Astrophysics Data System (ADS)

    Wirths, S.; Weis, K.; Winden, A.; Sladek, K.; Volk, C.; Alagha, S.; Weirich, T. E.; von der Ahe, M.; Hardtdegen, H.; Lüth, H.; Demarina, N.; Grützmacher, D.; Schäpers, Th.

    2011-09-01

    The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature.

  16. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement

    NASA Astrophysics Data System (ADS)

    Bootkul, D.; Saenphinit, N.; Supsermpol, B.; Aramwit, C.; Intarasiri, S.

    2014-08-01

    Currently, stainless steels are widely used in various industrial applications due to their excellence in toughness and corrosion resistance. But their resistance to wear needs to be improved for appropriate use in tribological applications. The Filtered Cathodic Vacuum Arc (FCVA) is a superior technique for forming a high-density film structure of amorphous carbon, especially for a tetrahedral amorphous carbon (ta-C) type, because it can produce a plasma of highly energetic ions that can penetrate into a growing coating, resulting in densification of the film. However, this technique tends to generate high internal stress, due to serious accumulation of energy in the film structure that then leads to film delamination. In general, there are numerous solutions that have been used to reduce the internal stress. DLC with various additive elements such as Ti, Cr or W as strong-carbide-forming (SCF) metals is one of the popular methods to provide attractive combinations of properties of wear resistance and film adhesion as well as reducing the internal stress. The present study was focused on investigation of titanium-doped DLC coating on SS304 steel, mainly for adhesion improvement in optimizing for tribological applications. The synthesized films were formed by the FCVA technique at normal substrate temperature. In the experimental set-up, the films were produced by mixing the titanium and carbon ions generated by dual cathode plasma source operating in synchronous pulsed mode. Their compositions were adjusted by varying the relative duration of the pulse length from each cathode. Titanium doping concentration was varied from pure DLC deposition as the control group to titanium and graphite trigger pulses ratios of 1:16, 1:12, 1:10, 1:8 and 1:4, as the Ti-doped DLC group. The results showed that by increasing titanium trigger pulses ratio from 1:16, 1:12, 1:10 and 1:8, respectively, the film adhesion was increased while the wear rate did not change significantly as

  17. Delta-Doped CCDs as Detector Arrays in Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva

    2007-01-01

    In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a

  18. Structure and Properties of Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  19. Centrifugal and Numerical Modeling of Buried Structures. Volume 2. Dynamic Soil-Structure Interaction.

    DTIC Science & Technology

    1987-07-14

    RD-RISE 368 CENTRIFUGAL AND NUMERICAL MODELING OF BURIED STRUCTURES 1/3 VOLUME 2 DYNAMIC..(U) COLORADO UNIV AT BOULDER DEPT OF CIVIL ENVIRONMENTAL...20332-6448 ELEMENT NO NO. NO ACCESSION NO 61102F 2302 Cl 11 TITLE (Include Security Classification) (U) Centrifugal and Numerical Modeling of Buried ...were buried in a dry sand and tested in the centrifuge to simulate the effects of gravity-induced overburden stresses which played a major role in

  20. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    PubMed Central

    Kasap, Safa; Frey, Joel B.; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S.; Rowlands, John A.

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  1. Amorphous Semiconductors: From Photocatalyst to Computer Memory

    NASA Astrophysics Data System (ADS)

    Sundararajan, Mayur

    encouraging but inconclusive. Then the method was successfully demonstrated on mesoporous TiO2SiO 2 by showing a shift in its optical bandgap. One of the special class of amorphous semiconductors is chalcogenide glasses, which exhibit high ionic conductivity even at room temperature. When metal doped chalcogenide glasses are under an electric field, they become electronically conductive. These properties are exploited in the computer memory storage application of Conductive Bridging Random Access Memory (CBRAM). CBRAM is a non-volatile memory that is a strong contender to replace conventional volatile RAMs such as DRAM, SRAM, etc. This technology has already been commercialized, but the working mechanism is still not clearly understood especially the nature of the conductive bridge filament. In this project, the CBRAM memory cells are fabricated by thermal evaporation method with Agx(GeSe 2)1-x as the solid electrolyte layer, Ag as the active electrode and Au as the inert electrode. By careful use of cyclic voltammetry, the conductive filaments were grown on the surface and the bulk of the solid electrolyte. The comparison between the two filaments revealed major differences leading to contradiction with the existing working mechanism. After compiling all the results, a modified working mechanism is proposed. SAXS is a powerful tool to characterize nanostructure of glasses. The analysis of the SAXS data to get useful information are usually performed by different programs. In this project, Irena and GIFT programs were compared by performing the analysis of the SAXS data of glass and glass ceramics samples. Irena was shown to be not suitable for the analysis of SAXS data that has a significant contribution from interparticle interactions. GIFT was demonstrated to be better suited for such analysis. Additionally, the results obtained by programs for samples with low interparticle interactions were shown to be consistent.

  2. Using Mechanical Energy as a Probe for the Detection and Imaging of Shallow Buried Inclusions in Dry Granular Beds

    NASA Astrophysics Data System (ADS)

    Sen, Surajit; Krishna Mohan, T. R.; Visco, Donald P.; Swaminathan, Saravanan; Sokolow, Adam; Avalos, Edgar; Nakagawa, Masami

    Mechanical energy, such as sound waves and impulses, have been used to detect shallow buried objects for more than half a century. Yet, very little is understood about how mechanical energy propagates into one of the simplest kinds of soil, namely, a granular bed. Here we present an overview of the state of the art in our understanding of mechanical energy propagation in granular beds.

  3. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  4. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

    DOE PAGES

    Li, Zhifei; Bommier, Clement; Chong, Zhi Sen; ...

    2017-05-23

    Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less

  5. Confirmation of Incorporation of Cu and Se Ions in Applied p- and n-Type-Doped Sb2S3 by Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Validžić, Ivana Lj; Popović, Maja; Lojpur, Vesna; Bundaleski, Nenad; Rakočević, Zlatko

    2018-04-01

    The effect of incorporating copper (Cu) and selenium (Se) ions into stibnite (Sb2S3) lattice was investigated using x-ray photoelectron spectroscopy (XPS). The incorporation of Cu and Se ions was verified by comparing the XPS spectra of the undoped (amorphous Sb2S3), doped ( p and n-doped) and pure Se and Cu-acetate powders. The main photoelectron Cu 2p1/2 (951.8 eV) and Cu 2p3/2 (932.1 eV) lines derived from the Cu-doped and Cu-acetate powder samples were clearly observed, whereas in the undoped sample, none of the characteristic lines of Cu were detected. The Se Auger line (138.6 eV), the only line of Se which does not coincide with the lines of Sb and S, was successfully detected in an Se-doped XPS sample and the spectrum of pure Se, while Se in the undoped sample was not found. Further, the XPS measurements revealed the relative amounts of Cu and Se in antimony sulfide, as well as the oxidation state of copper incorporated into the matrix.

  6. Molecular Dynamical Simulation of Thermal Conductivity in Amorphous Structures

    NASA Astrophysics Data System (ADS)

    Deangelis, Freddy; Henry, Asegun

    While current descriptions of thermal transport exists for well-ordered materials such as crystal latices, new methods are needed to describe thermal transport in disordered materials, including amorphous solids. Because such structures lack periodic, long-range order, a group velocity cannot be defined for thermal modes of vibration; thus, the phonon gas model cannot be applied to these structures. Instead, a new framework must be applied to analyze such materials. Using a combination of density functional theory and molecular dynamics, we have analyzed thermal transport in amorphous structures, chiefly amorphous germanium. The analysis allows us to categorize vibrational modes as propagons, diffusons, or locons, and to determine how they contribute to thermal conductivity within amorphous structures. This method is also being extended to other disordered structures such as amorphous polymers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903.

  7. Theoretical investigation of metal magnetic memory testing technique for detection of magnetic flux leakage signals from buried defect

    NASA Astrophysics Data System (ADS)

    Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai

    2018-01-01

    The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.

  8. Spontaneous crystalline-to-amorphous phase transformation of organic or medicinal compounds in the presence of porous media, part 2: amorphization capacity and mechanisms of interaction.

    PubMed

    Qian, Ken K; Suib, Steven L; Bogner, Robin H

    2011-11-01

    Amorphization of crystalline compounds using mesoporous media is a promising technique to improve the solubility and dissolution rate of poorly soluble compounds. The objective of this paper is to determine the capacity of amorphization and understand the mechanisms of phase transformation. Commercial grades of mesoporous silicon dioxide (SiO(2)) samples (5- to 30-nm mean pore diameters) with either constant surface area or constant pore volume were used. The amorphization capacity of naphthalene was not proportional to either the surface area or the pore volume measured using adsorption chambers. Instead, the amorphization capacity correlated with surface curvature, that is, the smaller the pore diameter and the higher the surface curvature, the greater the amorphization capacity. The change in surface chemistry due to a highly curved surface may be responsible for the enhanced amorphization capacity as well. The amorphization of crystalline compounds was facilitated through capillary condensation, with the decrease in pore volume as the direct experimental evidence. The amorphization capacity was also enhanced by the dipole-dipole or dipole-induced dipole interaction, promoted by the hydroxyl groups on the surface of SiO(2). The enthalpy of vapor-solid condensation of crystalline compounds was a useful indicator to predict the rank order of amorphization capacity. Copyright © 2011 Wiley-Liss, Inc.

  9. Only the chemical state of Indium changes in Mn-doped In3Sb1Te2 (Mn: 10 at.%) during multi-level resistance changes

    NASA Astrophysics Data System (ADS)

    Lee, Y. M.; Ahn, D.; Kim, J.-Y.; Kim, Y. S.; Cho, S.; Ahn, M.; Cho, M.-H.; Jung, M. S.; Choi, D. K.; Jung, M.-C.; Qi, Y. B.

    2014-04-01

    We fabricated and characterized the material with Mn (10 at.%: atomic percent) doped In3Sb1Te2 (MIST) using co-sputtering and synchrotron radiation, respectively. The MIST thin film showed phase-changes at 97 and 320°C, with sheet resistances of ~10 kΩsq (amorphous), ~0.2 kΩsq (first phase-change), and ~10 Ωsq (second phase-change). MIST did not exhibit any chemical separation or increased structural instability during either phase-change, as determined with high-resolution x-ray photoelectron spectroscopy. Chemical state changes were only depended for In without concomitant changes of Sb and Te. Apparently, doped Mn atoms can be induced with movement of only In atoms.

  10. Evolution of Spin fluctuations in CaFe2As2 with Co-doping.

    NASA Astrophysics Data System (ADS)

    Sapkota, A.; Das, P.; Böhmer, A. E.; Abernathy, D. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    Spin fluctuations are an essential ingredient for superconductivity in Fe-based supercondcutors. In Co-doped BaFe2As2, the system goes from the antiferromagnetic (AFM) state to the superconducting (SC) state with Co doping, and the spin fluctuations also evolve from well-defined spin waves with spin gap in the AFM regime to gapless overdamped or diffused fluctuations in the SC regime. CaFe2As2 has a stronger magneto-elastic coupling than BaFe2As2 and no co-existence of SC and AFM region as observed in BaFe2As2 with Co doping. Here, we will discuss the evolution of spin fluctuations in CaFe2As2 with Co doping. Work at the Ames Laboratory was supported by US DOE, Basic Energy Sciences, Division of Material Sciences and Engineering, under contract No. DE-AC02-07CH11358. This research used resources of SNS, a DOE office of science user facility operated by ORNL.

  11. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  12. Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon

    NASA Astrophysics Data System (ADS)

    Demchenko, Iraida N.; Lisowski, Wojciech; Syryanyy, Yevgen; Melikhov, Yevgen; Zaytseva, Iryna; Konstantynov, Pavlo; Chernyshova, Maryna; Cieplak, Marta Z.

    2017-03-01

    Si/Nb/Si trilayers formed with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were prepared by magnetron sputtering and studied using XPS depth-profile techniques in order to investigate the change of Hall coefficient sign with thickness. The analysis of high-resolution (HR) XPS spectra revealed that the thicker layer sample has sharp top interface and metallic phase of niobium, thus holes dominate the transport. In contrast, the analysis indicates that the thinner layer sample has a Nb-rich mixed alloy formation at the top interface. The authors suggest that the main effect leading to a change of sign of the Hall coefficient for the thinner layer sample (which is negative contrary to the positive sign for the thicker layer sample) may be related to strong boundary scattering enhanced by the presence of silicon ions in the layer close to the interface/s. The depth-profile reconstruction was performed by SESSA software tool confirming that it can be reliably used for quantitative analysis/interpretation of experimental XPS data.

  13. Peculiarities of Vibration Characteristics of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gets, Kirill V.; Subbotin, Oleg S.; Belosludov, Vladimir R.

    2012-03-01

    Dynamic properties of low (LDA), high (HDA) and very high (VHDA) density amorphous ices were investigated within the approach based on Lattice Dynamics simulations. In this approach, we assume that the short-range molecular order mainly determines the dynamic and thermodynamic properties of amorphous ices. Simulation cell of 512 water molecules with periodical boundary conditions and disordering allows us to study dynamical properties and dispersion curves in the Brillouin zone of pseudo-crystal. Existence of collective phenomena in amorphous ices which is usual for crystals but anomalous for disordered phase was confirmed in our simulations. Molecule amplitudes of delocalized (collective) as well as localized vibrations have been considered.

  14. Characterization of melt-quenched and milled amorphous solids of gatifloxacin.

    PubMed

    Hattori, Yusuke; Suzuki, Ayumi; Otsuka, Makoto

    2016-11-01

    The objectives of this study were to characterize and investigate the differences in amorphous states of gatifloxacin. We prepared two types of gatifloxacin amorphous solids coded as M and MQ using milling and melt-quenching methods, respectively. The amorphous solids were characterized via X-ray diffraction (XRD), nonisothermal differential scanning calorimetry (DSC) and time-resolved near-infrared (NIR) spectroscopy. Both the solids displayed halo XRD patterns, the characteristic of amorphous solids; however, in the non-isothermal DSC profiles, these amorphous solids were distinguished by their crystallization and melting temperatures. The Kissinger-Akahira-Sunose plots of non-isothermal crystallization temperatures at various heating rates indicated a lower activation energy of crystallization for the amorphous solid M than that of MQ. These results support the differentiation between two amorphous states with different physical and chemical properties.

  15. In situ observation of shear-driven amorphization in silicon crystals.

    PubMed

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X

    2016-10-01

    Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

  16. Health hazards due to the inhalation of amorphous silica.

    PubMed

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  17. Amorphous titanium-oxide supercapacitors.

    PubMed

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-21

    The electric capacitance of an amorphous TiO 2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm 2 , accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO 2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  18. Amorphous titanium-oxide supercapacitors

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  19. 75 FR 59933 - Specifications and Drawings for Construction of Direct Buried Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... for Construction of Direct Buried Plant AGENCY: Rural Utilities Service, USDA. ACTION: Final rule..., Specifications and Drawings for Construction of Direct Buried Plant (Form 515a). The revised specifications will include new construction units for Fiber-to-the-Home, remove redundant or outdated requirements, and...

  20. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    NASA Technical Reports Server (NTRS)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  1. Performance of buried pipe installation : tech summary.

    DOT National Transportation Integrated Search

    2010-05-01

    Existing codes and recommendations often require standard/minimum values for the bedding, backfi ll, and fi ll cover geometric and : mechanical properties in the installation of buried pipes under transportation facilities. These recommended values a...

  2. Antibacterial and Tribological Performance of Carbonitride Coatings Doped with W, Ti, Zr, or Cr Deposited on AISI 316L Stainless Steel

    PubMed Central

    Yao, Sun-Hui; Su, Yen-Liang; Lai, Yu-Cheng

    2017-01-01

    Carbonitride (CNx) coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC) coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr) were prepared on biograde AISI 316L stainless steel (SS316L) substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability. PMID:29039782

  3. Functional thiols as repair and doping agents of defective MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Förster, Anja; Gemming, Sibylle; Seifert, Gotthard

    2018-06-01

    Recent experimental and theoretical studies indicate that thiols (R-SH) can be used to repair sulfur vacancy defects in MoS2 monolayers (MLs). This density functional theory study investigates how the thiol repair mechanism process can be used to dope MoS2 MLs. Fluorinated thiols as well as amine-containing ones are used to p- and n-dope the MoS2 ML, respectively. It is shown that functional groups are only physisorbed on the repaired MoS2 surface. This explains the reversible doping with fluorinated thiols.

  4. Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Aarva, Anja; Laurila, Tomi; Caro, Miguel A.

    2017-06-01

    In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation

  5. InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure.

    PubMed

    Nozaki, Kengo; Matsuo, Shinji; Takeda, Koji; Sato, Tomonari; Kuramochi, Eiichi; Notomi, Masaya

    2013-08-12

    Ultrasmall InGaAs photodetectors based on a photonic crystal waveguide with a buried heterostructure (BH) were demonstrated for the first time. A sufficiently high DC responsivity of ~1 A/W was achieved for the 3.4-μm-long detector. The dynamic response revealed a 3-dB bandwidth of 6 GHz and a 10-Gb/s eye pattern. These results were thanks to the strong confinement of both photons and carriers in a small BH and will pave the way for unprecedented nano-photodetectors with a high quantum efficiency and small capacitance. Our device potentially has an ultrasmall junction capacitance of much less than 1 fF and may enable us to eliminate electrical amplifiers for future optical receivers and subsequent ultralow-power optical links on a chip.

  6. X-Ray Amorphous Phases in Terrestrial Analog Volcanic Sediments: Implications for Amorphous Phases in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.

    2017-01-01

    X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.

  7. Boron-doped nanodiamonds as possible agents for local hyperthermia

    NASA Astrophysics Data System (ADS)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2-5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1-5 W cm-2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  8. Landslide Buries Valley of the Geysers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Geysers are a rare natural phenomena found only in a few places, such as New Zealand, Iceland, the United States (Yellowstone National Park), and on Russia's far eastern Kamchatka Peninsula. On June 3, 2007, one of these rare geyser fields was severely damaged when a landslide rolled through Russia's Valley of the Geysers. The landslide--a mix of mud, melting snow, trees, and boulders--tore a scar on the land and buried a number of geysers, thermal pools, and waterfalls in the valley. It also blocked the Geyser River, causing a new thermal lake to pool upstream. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this infrared-enhanced image on June 11, 2007, a week after the slide. The image shows the valley, the landslide, and the new thermal lake. Even in mid-June, just days from the start of summer, the landscape is generally covered in snow, though the geologically heated valley is relatively snow free. The tree-covered hills are red (the color of vegetation in this false-color treatment), providing a strong contrast to the aquamarine water and the gray-brown slide. According to the Russian News and Information Agency (RIA) [English language], the slide left a path roughly a kilometer and a half (one mile) long and 200 meters (600 feet) wide. Within hours of the landslide, the water in the new lake inundated a number of additional geysers. The geysers directly buried under the landslide now lie under as much as 60 meters (180 feet) of material, according to RIA reports. It is unlikely that the geysers will be able to force a new opening through this thick layer, adds RIA. Among those directly buried is Pervenets (Firstborn), the first geyser found in the valley, in 1941. Other geysers, such as the Bolshoi (Greater) and Maly (Lesser) Geysers, were silenced when buried by water building up behind the new natural dam. According to Vladimir and Andrei Leonov of the Russian Federation Institute of

  9. Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Yi; Zhu Yihua; Yang Xiaoling

    Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allowsmore » one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.« less

  10. Buried landmine detection using multivariate normal clustering

    NASA Astrophysics Data System (ADS)

    Duston, Brian M.

    2001-10-01

    A Bayesian classification algorithm is presented for discriminating buried land mines from buried and surface clutter in Ground Penetrating Radar (GPR) signals. This algorithm is based on multivariate normal (MVN) clustering, where feature vectors are used to identify populations (clusters) of mines and clutter objects. The features are extracted from two-dimensional images created from ground penetrating radar scans. MVN clustering is used to determine the number of clusters in the data and to create probability density models for target and clutter populations, producing the MVN clustering classifier (MVNCC). The Bayesian Information Criteria (BIC) is used to evaluate each model to determine the number of clusters in the data. An extension of the MVNCC allows the model to adapt to local clutter distributions by treating each of the MVN cluster components as a Poisson process and adaptively estimating the intensity parameters. The algorithm is developed using data collected by the Mine Hunter/Killer Close-In Detector (MH/K CID) at prepared mine lanes. The Mine Hunter/Killer is a prototype mine detecting and neutralizing vehicle developed for the U.S. Army to clear roads of anti-tank mines.

  11. Progress on determining the vapor signature of a buried land mine

    NASA Astrophysics Data System (ADS)

    George, Vivian; Jenkins, Thomas F.; Leggett, Daniel C.; Cragin, James H.; Phelan, James M.; Oxley, Jimmie C.; Pennington, Judy

    1999-08-01

    The goal of the DARPA 'Dog's Nose' program is to develop a sensor capable of detecting explosives contained in all buried landmines. In support of the DARPA program, the purpose of the Explosives Fate and Transport experiments is to define in detail the accessible trace chemical signature produced by the explosives contained in buried landmines. We intend to determine the partitioning, composition, and quantity of explosive related chemicals which emanate from different kinds of landmines buried in multiple soil types and exposed to various climatic events. We are also developing a computer model that will enable us to predict the composition and quantity of ERC under a much wider range of environmental conditions than we are able to test experimentally.

  12. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs.

    PubMed

    Kissi, Eric Ofosu; Grohganz, Holger; Löbmann, Korbinian; Ruggiero, Michael T; Zeitler, J Axel; Rades, Thomas

    2018-03-15

    Recrystallization of amorphous drugs is currently limiting the simple approach to improve solubility and bioavailability of poorly water-soluble drugs by amorphization of a crystalline form of the drug. In view of this, molecular mobility, α-relaxation and β-relaxation processes with the associated transition temperatures T gα and T gβ , was investigated using dynamic mechanical analysis (DMA). The correlation between the transition temperatures and the onset of recrystallization for nine amorphous drugs, stored under dry conditions at a temperature of 296 K, was determined. From the results obtained, T gα does not correlate with the onset of recrystallization under the experimental storage conditions. However, a clear correlation between T gβ and the onset of recrystallization was observed. It is shown that at storage temperature below T gβ , amorphous nifedipine retains its amorphous form. On the basis of the correlation, an empirical correlation is proposed for predicting the onset of recrystallization for drugs stored at 0% RH and 296 K.

  13. Quantification of Methamphetamine in Mouse Thighbones Buried in Soil.

    PubMed

    Nakao, Ken-Ichiro; Tatara, Yuki; Kibayashi, Kazuhiko

    2017-11-01

    Bone samples are used for analysis of drugs in decomposed or skeletonized bodies. Toxicological analyses of buried bones are important for determining the causes and circumstances of death. In this study, methamphetamine and amphetamine concentrations in heart blood, thigh muscles, and thighbones were analyzed using solid-phase extraction with liquid chromatography-tandem mass spectrometry. Methamphetamine concentrations in heart blood, thigh muscle, and thighbone ranged from 0.041 to 0.873 μg/mL, 0.649 to 2.623 μg/g, and 56.543 to 643.371 μg/g, respectively. Thighbone concentrations were significantly higher than those in heart blood or thigh muscles were. Methamphetamine concentrations in buried thighbone (4.010-45.785 μg/g) were significantly lower than those of unburied thighbones were (56.543-643.371 μg/g). Methamphetamine and amphetamine were detected in thighbones buried for 7-180 days. These findings indicate that the methamphetamine concentrations in bone are higher and decrease after burial in soil. © 2017 American Academy of Forensic Sciences.

  14. [Congenital buried penis in the child: about a case].

    PubMed

    Rami, Mohamed; Bakkaly, Achraf El; Bouljrouf, Jaouad; Lafia, Toualouth; Bouhafs, Mohammed Amine; Belkacem, Rachid

    2017-01-01

    Congenital buried penis in the child is a congenital malformation where the penis appears small in size while all the parts of the organ are normal (the urethra, the erectile tissue and the glans penis). Our study aimed to describe our experience in the surgical treatment of this abnormality. We report the case of a 18-months old infant with bilateral hydrocele initially admitted to the Emergency Department and then referred to our Department. Clinical examination showed buried penis with tight foreskin and a dilation of the preputial reservoir due to urine. Surgical procedure included several steps: Z-shaped incision, pulling back of the foreskin of the penis, release of the adhesions surrounding the corpus cavernosum and ventral penile skin coverage using bladder catheter kept for a week to protect the wound healing. Aesthetic and functional result was satisfactory after 1-year follow-up. Congenital buried penis is a very debated subject in the literature. Our technique was simple and easily reproducible. Voiding difficulties and urinary infection are the main indications of this surgical procedure.

  15. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  16. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Bioelectrochemical denitrification on biocathode buried in simulated aquifer saturated with nitrate-contaminated groundwater.

    PubMed

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-08-01

    Nitrate contamination in aquifers has posed human health under high risk because people still rely on groundwater withdrawn from aquifers as drinking water and running water sources. These days, bioelectrochemical technologies have shown a great number of benefits for nitrate remediation via autotrophic denitrification in groundwater. This study tested the working possibility of a denitrifying biocathode when installed into a simulated aquifer. The reactors were filled with sand and synthetic groundwater at various ratios (10, 50, and 100 %) to clarify the effect of various biocathode states (not-buried, half-buried, and fully buried) on nitrate reduction rate and microbial communities. Decreases in specific nitrate reduction rates were found to be correlated with increases in sand/medium ratios. A specific nitrate reduction rate of 322.6 mg m(-2) day(-1) was obtained when the biocathode was fully buried in an aquifer. Microbial community analysis revealed slight differences in the microbial communities of biocathodes at various sand/medium ratios. Various coccus- and rod-shaped bacteria were found to contribute to bioelectrochemical denitrification including Thiobacillus spp. and Paracoccus spp. This study demonstrated that the denitrifying biocathode could work effectively in a saturated aquifer and confirmed the feasibility of in situ application of microbial electrochemical denitrification technology.

  18. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  19. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  20. Mechanism of solid state amorphization of glucose upon milling.

    PubMed

    Dujardin, N; Willart, J F; Dudognon, E; Danède, F; Descamps, M

    2013-02-07

    Crystalline α-glucose is known to amorphize upon milling at -15 °C while it remains structurally invariant upon milling at room temperature. We have taken advantage of this behavior to compare the microstructural evolutions of the material in both conditions in order to identify the essential microstructural features which drive the amorphization process upon milling. The investigations have been performed by differential scanning calorimetry and by powder X-ray diffraction. The results indicate that two different amorphization mechanisms occur upon milling: an amorphization at the surface of crystallites due to the mechanical shocks and a spontaneous amorphization of the crystallites as they reach a critical size, which is close to 200 Å in the particular case of α-glucose.

  1. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellers, D. G.; Chen, E. Y.; Doty, M. F.

    2016-05-21

    We investigate the effect of doping on the mechanisms of carrier escape from intermediate states in delta-doped InAs/GaAs intermediate band solar cells. The intermediate states arise from InAs quantum dots embedded in a GaAs p-i-n junction cell. We find that doping the sample increases the number of excited-state carriers participating in a cycle of trapping and carrier escape via thermal, optical, and tunneling mechanisms. However, we find that the efficiency of the optically-driven carrier escape mechanism is independent of doping and remains small.

  2. The effect of p-doping on multi-state lasing in InAs/InGaAs quantum dot lasers for different cavity lengths

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu M.; Zhukov, A. E.

    2017-11-01

    The effect of modulation p-doping on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied for different levels of acceptor concentration. It is shown that in case of the short laser cavities, p-doping results in higher output power of the ground-state optical transitions of InAs/InGaAs QDs whereas in longer samples p-doping may result in the decrease of this power component. On the basis of this observation, the optimal design of laser active region and optimal doping level are discussed in details.

  3. Variable-amplitude oscillatory shear response of amorphous materials.

    PubMed

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  4. A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst

    PubMed Central

    Karunagaran, Ramesh; Tung, Tran Thanh; Tran, Diana; Coghlan, Campbell; Doonan, Christian

    2017-01-01

    The synthesis and properties of an oxygen reduction catalyst based on a unique 3-dimensional (3D) nitrogen doped (N-doped) carbon composite are described. The composite material is synthesised via a two-step hydrothermal and pyrolysis method using bio-source low-cost materials of galactose and melamine. Firstly, the use of iron salts and galactose to hydrothermally produceiron oxide (Fe2O3) magnetic nanoparticle clusters embedded carbon spheres. Secondly, magnetic nanoparticles diffused out of the carbon sphere when pyrolysed in the presence of melamine as nitrogen precursor. Interestingly, many of these nanoparticles, as catalyst-grown carbon nanotubes (CNTs), resulted in the formation of N-doped CNTs and N-doped carbon spheres under the decomposition of carbon and a nitrogen environment. The composite material consists of integrated N-doped carbon microspheres and CNTs show high ORR activity through a predominantly four-electron pathway. PMID:28792432

  5. Distribution of ancient carbon in buried soils in an eroding loess landscape

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Mason, J. A.; De Graaff, M. A.; Berhe, A. A.; Marin-Spiotta, E.

    2017-12-01

    Understanding the processes that contribute to the accumulation and loss of carbon in soils and the implications for land management is vital for mitigating climate change. Buried soils or paleosols that represent former surface horizons can store more organic carbon than mineral horizons at equivalent depths due to burial restricting microbial decomposition. The presence of buried soils defies modeled expectations of exponential declines in carbon concentrations with depth, especially in locations where successive depositional events lead to multiple buried soil layers. Buried soils are found in a diversity of depositional environments across latitudes and without accounting for their presence can lead to underestimates of regional carbon reservoirs. Here we present data on the spatial distribution of carbon in a paleosol loess sequence in Nebraska, focusing on one prominent paleosol, the Brady soil. The Brady soil has been identified throughout the Central Great Plains and began developing at the end of the Pleistocene and was subsequently buried by loess in the early Holocene (Mason et al. 2003). Preliminary analyses of the Brady soil at its deepest, 6-m below the surface, reveal large differences in the composition and degree of decomposition of organic matter from the modern soil. We sampled along burial and erosional transects to characterize spatial variability in the depth of Brady soil from the modern landscape surface and to determine how these differences may alter the amount and composition of organic carbon. A more accurate determination of the spatial extent and heterogeneity of buried soil carbon will improve regional estimates of carbon reservoirs. This assessment of its variability across the landscape will inform future planned work on the vulnerability of ancient carbon to disturbance.

  6. Thermal process induced change of conductivity in As-doped ZnO

    NASA Astrophysics Data System (ADS)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  7. Significant role of structural fractures in Ren-Qiu buried-block oil field, eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q.; Xie-Pei, W.

    1983-03-01

    Ren-qui oil field is in a buried block of Sinian (upper Proterozoic) rocks located in the Ji-zhong depression of the western Bohai Bay basin in eastern China. The main reservoir consists of Sinian dolomite rocks. It is a fault block with a large growth fault on the west side which trends north-northeast with throws of up to 1 km (0.6 mi) or more. The source rocks for the oil are Paleogene age and overlie the Sinian dolomite rocks. The structural fractures are the main factor forming the reservoir of the buried-block oil field. Three structural lines, trending northeast, north-northeast, andmore » northwest, form the regional netted fracture system. The north-northeast growth fault controlled the structural development of the buried block. The block was raised and eroded before the Tertiary sediments were deposited. In the Eocene Epoch, the Ji-zhong depression subsided, but the deposition, faulting, and related uplift of the block happened synchronously as the block was gradually submerged. At the same time, several horizontal and vertical karst zones were formed by the karst water along the netted structural fractures. The Eocene oil source rocks lapped onto the block and so the buried block, with many developed karst fractures, was surrounded by a great thickness of source rocks. As the growth fault developed, the height of the block was increased from 400 m (1300 ft) before the Oligocene to 1300 m (4250 ft) after. As the petroleum was generated, it migrated immediately into the karst fractures of the buried block along the growth fault. The karst-fractured block reservoir has an 800-m (2600-ft) high oil-bearing closure and good connections developed between the karst fractures.« less

  8. Effects of antipsychotics and reference monoaminergic ligands on marble burying behavior in mice.

    PubMed

    Bruins Slot, Liesbeth A; Bardin, Laurent; Auclair, Agnès L; Depoortere, Ronan; Newman-Tancredi, Adrian

    2008-03-01

    Antipsychotics constitute efficacious augmenting agents in the treatment of anxiety disorders, including refractory obsessive-compulsive disorder. We examined the effects of 36 compounds, including typical, atypical and novel antipsychotics with dual dopamine D2/5-hydroxytryptamine 1A (D2/5-HT1A) actions on marble burying behavior in mice, a putative preclinical test for anxiety disorders. One hour after drug administration, male NMRI mice were placed individually in cages containing 20 marbles, and the total number of marbles buried after 30 min was counted. The selective serotonin reuptake inhibitors, citalopram (2.5-40 mg/kg), fluoxetine (2.5-10 mg/kg) and the benzodiazepine diazepam (2.5-10 mg/kg), reduced the number of buried marbles. The atypical antipsychotic, clozapine (0.16-10 mg/kg), but not its congener olanzapine, was effective in this test. Haloperidol, a typical antipsychotic, also reduced the number of buried marbles, albeit not in a dose-dependent manner. The atypical risperidone was partially active (0.16-0.63 mg/kg), as was the benzamide derivative, amisulpride, albeit at high (10-40 mg/kg) doses. Among the 'third-generation' antipsychotics possessing combined D2/5-HT1A properties, bifeprunox was active at 0.0025 mg/kg, whereas SLV313 and aripiprazole were active only at the highest doses (2.5 and 10 mg/kg, respectively). SSR181507, F15063 and the antidyskinetic agent, sarizotan, were without any effect. Among a series of receptor subtype-selective ligands, only the 5-HT1A agonist, (+)-8-OH-DPAT (0.63-2.5 mg/kg) and the 5-HT2A/2B/2C antagonist, ritanserin (0.63-2.5 mg/kg) were active. Among novel antipsychotics with dual D2/5-HT1A properties, only bifeprunox was able to potently reduce the number of buried marbles. Inhibition of marble burying behavior may result from the interplay of several receptor systems, including 5-HT2 receptor blockade, dopamine D2 partial agonism and serotonin 5-HT1A agonism.

  9. Revealing the semiconductor–catalyst interface in buried platinum black silicon photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Anderson, Nicholas C.; Neale, Nathan R.

    2016-01-01

    Nanoporous 'black' silicon semiconductors interfaced with buried platinum nanoparticle catalysts have exhibited stable activity for photoelectrochemical hydrogen evolution even after months of exposure to ambient conditions. The mechanism behind this stability has not been explained in detail, but is thought to involve a Pt/Si interface free from SiOx layer that would adversely affect interfacial charge transfer kinetics. In this paper, we resolve the chemical composition and structure of buried Pt/Si interfaces in black silicon photocathodes from a micron to sub-nanometer level using aberration corrected analytical scanning transmission electron microscopy. Through a controlled electrodeposition of copper on samples aged for onemore » month in ambient conditions, we demonstrate that the main active catalytic sites are the buried Pt nanoparticles located below the 400-800 nm thick nanoporous SiOx layer. Though hydrogen production performance degrades over 100 h under photoelectrochemical operating conditions, this burying strategy preserves an atomically clean catalyst/Si interface free of oxide or other phases under air exposure and provides an example of a potential method for stabilizing silicon photoelectrodes from oxidative degradation in photoelectrochemical applications.« less

  10. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.

    PubMed

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-02-08

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.

  11. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination

    PubMed Central

    2018-01-01

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods. PMID:29419759

  12. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouro, J.; Gualdino, A.; Chu, V.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less

  13. A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.

    PubMed

    Fonner, John M; Schmidt, Christine E; Ren, Pengyu

    2010-10-01

    Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials.

  14. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  15. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    NASA Astrophysics Data System (ADS)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  16. Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd-Cu-Ni-P Nanoparticles as a Selective and Versatile Catalyst.

    PubMed

    Zhao, Ming; Ji, Yuan; Wang, Mengyue; Zhong, Ning; Kang, Zinan; Asao, Naoki; Jiang, Wen-Jie; Chen, Qiang

    2017-10-11

    Amorphous materials have been widely researched in heterogeneous catalysis and for next-generation batteries. However, the well-defined production of high-quality (e.g., monodisperse and high surface area) amorphous alloy nanomaterials has rarely been reported. In this work, we investigated the correlations among the composition, morphology, and catalysis of various Pd-M-P nanoparticles (NPs) (M = Cu or Ni), which indicated that less Cu (≤20 atom %) was necessary for the formation of an amorphous morphology. The amorphous Pd-Cu-Ni-P NPs were fabricated with a controllable size and characterized carefully, which show excellent selective catalysis in the semihydrogenation of alkynes, hydrogenation of quinoline, and oxidation of primary alcohols. The uniqueness of the catalytic performance was confirmed by control experiments with monometallic Pd, amorphous Pd-Ni-P NPs, crystalline Pd-Cu-P NPs, and a crystalline counterpart of Pd-Cu-Ni-P catalyst. The catalytic selectivity likely arose from improved Pd-M (M = Cu or Ni) synergistic effects in the amorphous phase and the electron deficiency of Pd. The model reactions proceeded under H 2 or O 2 gas without any additives, bases, or metal oxide supports, and the catalyst could be reused several times. This report is expected to shed light on the design of amorphous alloy nanomaterials as green and inexpensive catalysts for atom-economic and selective reactions.

  17. Mutation choice to eliminate buried free cysteines in protein therapeutics.

    PubMed

    Xia, Xue; Longo, Liam M; Blaber, Michael

    2015-02-01

    Buried free-cysteine (Cys) residues can contribute to an irreversible unfolding pathway that promotes protein aggregation, increases immunogenic potential, and significantly reduces protein functional half-life. Consequently, mutation of buried free-Cys residues can result in significant improvement in the storage, reconstitution, and pharmacokinetic properties of protein-based therapeutics. Mutational design to eliminate buried free-Cys residues typically follows one of two common heuristics: either substitution by Ser (polar and isosteric), or substitution by Ala or Val (hydrophobic); however, a detailed structural and thermodynamic understanding of Cys mutations is lacking. We report a comprehensive structure and stability study of Ala, Ser, Thr, and Val mutations at each of the three buried free-Cys positions (Cys16, Cys83, and Cys117) in fibroblast growth factor-1. Mutation was almost universally destabilizing, indicating a general optimization for the wild-type Cys, including van der Waals and H-bond interactions. Structural response to Cys mutation characteristically involved changes to maintain, or effectively substitute, local H-bond interactions-by either structural collapse to accommodate the smaller oxygen radius of Ser/Thr, or conversely, expansion to enable inclusion of novel H-bonding solvent. Despite the diverse structural effects, the least destabilizing average substitution at each position was Ala, and not isosteric Ser. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Protection of Buried Pipe under Repeated Loading by Geocell Reinforcement

    NASA Astrophysics Data System (ADS)

    Khalaj, Omid; Joz Darabi, N.; Moghaddas Tafreshi, S. N.; Mašek, Bohuslav

    2017-12-01

    With increase in cities’ population and development of urbane life, passing buried pipelines near ground’s surface is inevitable in urban areas, roads, subways and highways. This paper presents the results of three-dimensional full scale model tests on high-density polyethylene (HDPE) pipe with diameter of 250 mm in geocell reinforced soil, subjected to repeated loading to simulate the vehicle loads. The effect of geocell’s pocket size (55*55 mm and 110*110 mm) and embedment depth of buried pipe (1.5 and 2 times pipe diameter) in improving the behaviour of buried pipes was investigated. The geocell’s height of 100 mm was used in all tests. The repeated load of 800 kPa was applied on circular loading plate with diameter of 250 mm. The results show that the pipe displacement, soil surface settlement and transferred pressure on the pipe’s crown has been influenced significantly upon the use of geocells. For example, the vertical diametric strain (VDS) and soil surface settlement (SSS), in a way that using a geocell with pocket size of 110*110 mm reduces by 27% and 43%, respectively, compared with the unreinforced one. Meanwhile, by increasing buried depth of pipe from 1.5D to 2D, the use of geocell of 110*110 mm delivers about 50% reduction in SSS and VDS, compared with the unreinforced soil.

  19. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1-x Rh x )2As2 from London penetration depth measurements.

    PubMed

    Kim, Hyunsoo; Tanatar, M A; Martin, C; Blomberg, E C; Ni, Ni; Bud'ko, S L; Canfield, P C; Prozorov, R

    2018-06-06

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1-x Rh x ) 2 As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth [Formula: see text]. Single crystals with doping levels representative of an underdoped regime x  =  0.039 ([Formula: see text] K), close to optimal doping x  =  0.057 ([Formula: see text] K) and overdoped x  =  0.079 ([Formula: see text] K) and x  =  0.131([Formula: see text] K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, [Formula: see text]. The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2 As 2 and 3d-electron-doped Ba(Fe,Co) 2 As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2 As 2 samples. Our study supports the universal superconducting gap variation with doping and [Formula: see text] pairing at least in iron based superconductors of the BaFe 2 As 2 family.

  20. Aeromagnetic Expression of Buried Basaltic Volcanoes Near Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, Dennis W.; Mankinen, E.A.; Blakely, R.J.; Langenheim, V.E.; Ponce, D.A.

    2002-01-01

    A high-resolution aeromagnetic survey has defined a number of small dipolar anomalies indicating the presence of magnetic bodies buried beneath the surface of Crater Flat and the Amargosa Desert. Results of potential-field modeling indicate that isolated, small-volume, highly magnetic bodies embedded within the alluvial deposits of both areas produce the anomalies. Their physical characteristics and the fact that they tend to be aligned along major structural trends provide strong support for the hypothesis that the anomalies reflect buried basaltic volcanic centers. Other, similar anomalies are identified as possible targets for further investigation. High-resolution gravity and ground-magnetic surveys, perhaps along with drilling sources of selected anomalies and radiometric age determinations, can provide valuable constraints in estimating potential volcanic hazard to the potential nuclear waste repository at Yucca Mountain.

  1. Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity.

    PubMed

    Lavery, Kristopher A; Prabhu, Vivek M; Satija, Sushil; Wu, Wen-Li

    2010-12-01

    Off-specular neutron reflectometry was applied to characterize the form and amplitude of lateral compositional variations at a buried reaction-diffusion front. In this work, off-specular neutron measurements were first calibrated using off-specular x-ray reflectivity and atomic force microscopy via a roughened glass surface, both as a free surface and as a buried interface that was prepared by spin coating thin polymer films upon the glass surface. All three methods provided consistent roughness values despite the difference in their detection mechanism. Our neutron results demonstrated, for the first time, that the compositional heterogeneity at a buried reaction front can be measured; the model system used in this study mimics the deprotection reaction that occurs during the photolithographic process necessary for manufacturing integrated circuits.

  2. Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures

    NASA Astrophysics Data System (ADS)

    Paz, Alejandro Pérez; Lebedeva, Irina V.; Tokatly, Ilya V.; Rubio, Angel

    2014-12-01

    One of the most accepted models that describe the anomalous thermal behavior of amorphous materials at temperatures below 1 K relies on the quantum mechanical tunneling of atoms between two nearly equivalent potential energy wells forming a two-level system (TLS). Indirect evidence for TLSs is widely available. However, the atomistic structure of these TLSs remains an unsolved topic in the physics of amorphous materials. Here, using classical molecular dynamics, we found several hitherto unknown bistable structural motifs that may be key to understanding the anomalous thermal properties of amorphous alumina at low temperatures. We show through free energy profiles that the complex potential energy surface can be reduced to canonical TLSs. The tunnel splitting predicted from instanton theory, the number density, dipole moment, and coupling to external strain of the discovered motifs are consistent with experiments.

  3. A study of buried pipeline response to fault movement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiou, Y.J.; Chi, S.Y.; Chang, H.Y.

    1994-02-01

    This study investigates the buried pipeline response to strike slip fault movement. The large deflection pipe crossing the fault zone is modeled as an elastica, while the remaining portion of small deflection pipe is modeled as a semi-infinite beam on elastic foundation. The finite difference method is applied for the numerical solution and the results agree qualitatively with the earlier works.

  4. Thickness Map of Buried Carbon-Dioxide Deposit

    NASA Image and Video Library

    2011-04-21

    NASA Mars Reconnaissance Orbiter color-codes thickness estimates in a newly found, buried deposit of frozen carbon dioxide, dry ice, near the south pole of Mars contains ~30 times more carbon dioxide than previously estimated to be frozen near the pole.

  5. Acoustic-based Technology to Detect Buried Pipes

    DOT National Transportation Integrated Search

    2011-07-29

    The objective of this project is to build a pre-commercial device, improve its performance to detect multiple buried pipes, and evaluate the pre-commercial device at utility sites. In the past, Gas Technology Institute (GTI) and SoniVerse Inc. (SVI) ...

  6. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  7. Comparison of experimental three-band IR detection of buried objects and multiphysics simulations

    NASA Astrophysics Data System (ADS)

    Rabelo, Renato C.; Tilley, Heather P.; Catterlin, Jeffrey K.; Karunasiri, Gamani; Alves, Fabio D. P.

    2018-04-01

    A buried-object detection system composed of a LWIR, a MWIR and a SWIR camera, along with a set of ground and ambient temperature sensors was constructed and tested. The objects were buried in a 1.2x1x0.3 m3 sandbox and surface temperature (using LWIR and MWIR cameras) and reflection (using SWIR camera) were recoded throughout the day. Two objects (aluminum and Teflon) with volume of about 2.5x10-4 m3 , were placed at varying depths during the measurements. Ground temperature sensors buried at three different depths measured the vertical temperature profile within the sandbox, while the weather station recorded the ambient temperature and solar radiation intensity. Images from the three cameras were simultaneously acquired in five-minute intervals throughout many days. An algorithm to postprocess and combine the images was developed in order to maximize the probability of detection by identifying thermal anomalies (temperature contrast) resulting from the presence of the buried object in an otherwise homogeneous medium. A simplified detection metric based on contrast differences was established to allow the evaluation of the image processing method. Finite element simulations were performed, reproducing the experiment conditions and, when possible, incorporated with data coming from actual measurements. Comparisons between experiment and simulation results were performed and the simulation parameters were adjusted until images generated from both methods are matched, aiming at obtaining insights of the buried material properties. Preliminary results show a great potential for detection of shallowburied objects such as land mines and IEDs and possible identification using finite element generated maps fitting measured surface maps.

  8. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu; Torrents, Anna; Borrajo-Pelaez, Rafael

    2014-11-07

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmissionmore » electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.« less

  9. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    NASA Astrophysics Data System (ADS)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  10. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE PAGES

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.; ...

    2017-12-28

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  11. From amorphous to nanocrystalline: the effect of nanograins in amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.

    Here, we have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fractionmore » increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.« less

  12. Characteristics of amorphous kerogens fractionated from terrigenous sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Suzuki, Noriyuki

    1984-02-01

    A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomic H/C ratio and the lowest atomic N/C ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C 16 and C 18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic H/C ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.

  13. Potassium-doped zinc oxide as photocathode material in dye-sensitized solar cells.

    PubMed

    Bai, Jie; Xu, Xiaobao; Xu, Ling; Cui, Jin; Huang, Dekang; Chen, Wei; Cheng, Yibing; Shen, Yan; Wang, Mingkui

    2013-04-01

    ZnO nanoparticles are doped with K and applied in p-type dye-sensitized solar cells (DSCs). The microstructure and dynamics of hole transportation and recombination are investigated. The morphology of the K-doped ZnO nanoparticles shows a homogeneous distribution with sizes in the range 30-40 nm. When applied in p-type DSCs in combination with C343 as sensitizer, the K-doped ZnO nanoparticles achieve a photovoltaic power conversion efficiency of 0.012 % at full-intensity sunlight. A further study on the device by transient photovoltage/photocurrent decay measurements shows that the K-doped ZnO nanoparticles have an appreciable hole diffusion coefficient (ca. 10(-6) cm(2) s(-1) ). Compared to the widely used p-type NiO nanoparticles, this advantage is crucial for further improving the efficiency of p-type DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Image quality and radiation dose on digital chest imaging: comparison of amorphous silicon and amorphous selenium flat-panel systems.

    PubMed

    Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert

    2006-09-01

    The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.

  15. Rigid Amorphous Fraction in PLA Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Ma, Qian; Simona Cozza, Erika; Pyda, Marek; Mao, Bin; Zhu, Yazhe; Monticelli, Orietta

    2013-03-01

    Electrospun fibers of poly(lactic acid) (PLA) were formed by adopting a high-speed rotating wheel as the counter-electrode. The molecular orientation, crystallization mechanism, and phase structure and transitions of the aligned ES fibers were investigated. Using thermal analysis and wide angle X-ray scattering (WAXS), we evaluated the confinement that exists in as-spun amorphous, and heat-treated semicrystalline, fibers. Differential scanning calorimetry confirmed the existence of a constrained amorphous phase in as-spun aligned fibers, without the presence of crystals or fillers to serve as fixed physical constraints. Using WAXS, for the first time the mesophase fraction, consisting of oriented amorphous PLA chains, was quantitatively characterized in nanofibers. The authors acknowledge support from the National Science Foundation, Polymers Program under grant DMR-0602473. ESC acknowledges a Ph.D. grant supported by Italian Ministry of Education and Scientific Research.

  16. High pressure polymorphs and amorphization of upconversion host material NaY(WO{sub 4}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Fang; Yue, Binbin, E-mail: yuebb@hpstar.ac.cn, E-mail: chenbin@hpstar.ac.cn; The Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720

    2016-07-25

    The pressure effect on the structural change of upconversion host material NaY(WO{sub 4}){sub 2} was studied by using in-situ synchrotron X-ray diffraction. A transition from the initial scheelite phase to the M-fergusonite phase occurs near 10 GPa, and another phase transition is found near 27.5 GPa, which could be an isostructural transition without symmetry change. The sample becomes amorphous when the pressure is fully released from high pressure. This work demonstrates the possibility of synthesizing various polymorph structures for non-linear optical applications with a high pressure, chemical doping, or strained thin-film nanostructure process.

  17. Heavily doped n-type a-IGZO by F plasma treatment and its thermal stability up to 600 °C

    NASA Astrophysics Data System (ADS)

    Um, Jae Gwang; Jang, Jin

    2018-04-01

    We report the electrical properties and thermal stability of heavily doped, amorphous indium-gallium-zinc-oxide (a-IGZO) treated with fluorine (F) plasma. When the F doping concentration in a-IGZO is 17.51 × 1021/cm-3, the a-IGZO exhibits a carrier concentration of 6 × 1019 cm-3, a resistivity of 3 × 10-3 Ω cm, and a Hall mobility of 20 cm2/V s. This indicates that F is a suitable n-type dopant in a-IGZO. The similarity of the ionic radius of F to that of oxygen (O) allows substitutional doping by replacing O with F or the occupation of the oxygen vacancy (VO) site by F and consequent reduction in defect density. The semiconducting property of a-IGZO can change into metallic behavior by F doping. The defect passivation by F incorporation is confirmed by the XPS depth profile, which reveals the significant reduction in the VO concentration due to the formation of In-F bonds. The heavily doped a-IGZO exhibits thermally stable conductivity up to 600 °C annealing and thus can be widely used for the ohmic contact of a-IGZO devices.

  18. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging.

    PubMed

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.

  19. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

    PubMed Central

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis. PMID:26609232

  20. InGaN based micro light emitting diodes featuring a buried GaN tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinverni, M., E-mail: marco.malinverni@epfl.ch; Martin, D.; Grandjean, N.

    GaN tunnel junctions (TJs) are grown by ammonia molecular beam epitaxy. High doping levels are achieved with a net acceptor concentration close to ∼10{sup 20 }cm{sup −3}, thanks to the low growth temperature. This allows for the realization of p-n junctions with ultrathin depletion width enabling efficient interband tunneling. n-p-n structures featuring such a TJ exhibit low leakage current densities, e.g., <5 × 10{sup −5} A cm{sup −2} at reverse bias of 10 V. Under forward bias, the voltage is 3.3 V and 4.8 V for current densities of 20 A cm{sup −2} and 2000 A cm{sup −2}, respectively. The specific series resistance of the whole device ismore » 3.7 × 10{sup −4} Ω cm{sup 2}. Then micro-light emitting diodes (μ-LEDs) featuring buried TJs are fabricated. Excellent current confinement is demonstrated together with homogeneous electrical injection, as seen on electroluminescence mapping. Finally, the I-V characteristics of μ-LEDs with various diameters point out the role of the access resistance at the current aperture edge.« less

  1. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.

  2. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe 1–xRh x) 2As 2 from London penetration depth measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1–xRh x) 2As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth Δλ( T). Single crystals with doping levels representative of an underdoped regime x = 0.039 ( T c = 15.5 K), close to optimal doping x = 0.057 ( T c = 24.4 K) and overdoped x = 0.079 ( T c = 21.5 K) and x = 0.131( T c = 4.9 K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n,more » by fitting the data to the power-law, Δλ = AT n. The exponent n varies non-monotonically with x, increasing to a maximum n = 2.5 for x = 0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x = 0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2As 2 and 3d-electron-doped Ba(Fe,Co) 2As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2As 2 samples. In conclusion, our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe 2As 2 family.« less

  3. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe 1–xRh x) 2As 2 from London penetration depth measurements

    DOE PAGES

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; ...

    2018-05-08

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1–xRh x) 2As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth Δλ( T). Single crystals with doping levels representative of an underdoped regime x = 0.039 ( T c = 15.5 K), close to optimal doping x = 0.057 ( T c = 24.4 K) and overdoped x = 0.079 ( T c = 21.5 K) and x = 0.131( T c = 4.9 K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n,more » by fitting the data to the power-law, Δλ = AT n. The exponent n varies non-monotonically with x, increasing to a maximum n = 2.5 for x = 0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x = 0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2As 2 and 3d-electron-doped Ba(Fe,Co) 2As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2As 2 samples. In conclusion, our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe 2As 2 family.« less

  4. Anisotropic strain relaxation of Si-doped metamorphic InAlAs graded buffers on InP

    NASA Astrophysics Data System (ADS)

    Gu, Yi; Zhang, Yonggang; Chen, Xingyou; Ma, Yingjie; Zheng, Yuanliao; Du, Ben; Zhang, Jian

    2017-09-01

    The effects of Si doping on the strain relaxation of InP-based metamorphic In x Al1-x As graded buffers have been investigated. The highly Si-doped sample shows an increased ridge period along the [1 1 0] direction in the cross-hatch morphology measured by atomic force microscope. X-ray diffraction reciprocal space mapping measurements reveal that the high Si-doping induced incomplete relaxation as well as inhomogeneous residual strain along the [1 -1 0] direction, which was also observed in micro-Raman measurements. The anisotropic strain relaxation is attributed to the Si-doping enhanced anisotropy of misfit dislocations along the orthogonal directions. The α-misfit dislocations along the [1 -1 0] direction are further delayed to generate in highly Si-doped InAlAs buffer, while the β-misfit dislocations along the [1 1 0] direction are not. These results supply useful suggestions on the design and demonstration of semiconductor metamorphic devices.

  5. Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang

    2018-05-01

    In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.

  6. Exposed versus buried intramedullary implants for pediatric forearm fractures: a comparison of complications.

    PubMed

    Kelly, Brian A; Miller, Patricia; Shore, Benjamin J; Waters, Peter M; Bae, Donald S

    2014-12-01

    The purpose of this study was to compare the rate of complications between buried and exposed intramedullary implants after fixation of pediatric forearm fractures. A retrospective comparative cohort study of 339 children treated with intramedullary fixation for displaced forearm fractures between 2004 and 2009 was performed. Implants were left exposed in 128 patients (37.8%) and buried beneath the skin in 208 patients (61.4%); 3 patients had buried and exposed hardware (0.9%). Data on demographics, injury, surgical technique, and complications were analyzed. The buried implant group was older (mean 10.3 vs. 8.5 y; P < 0.001), heavier (mean 38.6 vs. 31.9 kg; P < 0.001), and had fewer open injuries (23% vs. 41%; P < 0.001) than the exposed implant group. The buried group had their implants removed later than the exposed group (median 3.5 vs. 1.2 mo; P < 0.001). There was no difference between time to removal for patients with refracture and those without (median 1.3 vs. 2.0 mo; P = 0.78). A total of 36.2% of exposed implants were successfully removed in the office. Complications were seen in 56 patients (16.5%). There were 16 patients (4.7%) with refracture and 12 patients (3.5%) with infection. The buried and exposed implant groups did not differ significantly with respect to refracture (3.1% vs. 7.0%; P = 0.20), infection (3.5% vs. 2.3%; P = 0.66), or overall complications (14.5% vs. 17.2%; P = 0.87). There was also no difference between groups with respect to loss of reduction, nondelayed or delayed union, loss of motion, hypertrophic granuloma, or tendon rupture. Buried implants were also associated with penetration through the skin (3.9%). Injury to the dominant arm and need for open reduction were significant predictors of complication (OR = 1.01; 95% CI, 1.001-1.012; P = 0.02 and OR = 0.51; 95% CI, 0.264-0.974; P = 0.04, respectively). There were no significant differences seen in number of infections, refractures, or overall complications based on whether

  7. Ion migration in crystalline and amorphous HfOX

    NASA Astrophysics Data System (ADS)

    Schie, Marcel; Müller, Michael P.; Salinga, Martin; Waser, Rainer; De Souza, Roger A.

    2017-03-01

    The migration of ions in HfOx was investigated by means of large-scale, classical molecular-dynamics simulations over the temperature range 1000 ≤T /K ≤2000 . Amorphous HfOx was studied in both stoichiometric and oxygen-deficient forms (i.e., with x = 2 and x = 1.9875); oxygen-deficient cubic and monoclinic phases were also studied. The mean square displacement of oxygen ions was found to evolve linearly as a function of time for the crystalline phases, as expected, but displayed significant negative deviations from linear behavior for the amorphous phases, that is, the behavior was sub-diffusive. That oxygen-ion migration was observed for the stoichiometric amorphous phase argues strongly against applying the traditional model of vacancy-mediated migration in crystals to amorphous HfO2. In addition, cation migration, whilst not observed for the crystalline phases (as no cation defects were present), was observed for both amorphous phases. In order to obtain activation enthalpies of migration, the residence times of the migrating ions were analyzed. The analysis reveals four activation enthalpies for the two amorphous phases: 0.29 eV, 0.46 eV, and 0.66 eV (values very close to those obtained for the monoclinic structure) plus a higher enthalpy of at least 0.85 eV. In comparison, the cubic phase is characterized by a single value of 0.43 eV. Simple kinetic Monte Carlo simulations suggest that the sub-diffusive behavior arises from nanoscale confinement of the migrating ions.

  8. Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Shrisanjaykumar Jayswal, Manishkumar

    Solid electrolytes are a class of materials that conduct electricity by means of motion of ions like Ag+, Na+, Li +, Cu+, H+, F-, O -2 etc. in solid phase. The host materials include crystalline, polycrystalline, glasses, polymers and composites. Ion conducting glasses are one of the most sought after solid electrolytes that are useful in various electrochemical applications like solid state batteries, gas sensors, supercapacitors, electrochromic devices, to name a few. Since the discovery of fast silver ion transport in silver oxyhalide glasses at the end of the 1960s, many glasses showing large ionic conductivity up to 10-4 10-2 S/cm at room temperature have been developed, chiefly silver and copper ion conductors. The silver ion conducting glasses owe their high ionic conductivity mainly to stabilized alpha-AgI. AgI, as we know, undergoes a structural phase transition from wurtzite (beta phase) at room temperature to body centered cubic (alpha phase) structure at temperatures higher than 146 °C. The alpha-AgI possesses approximately six order of higher ionic conductivity than beta-AgI. The high ionic conductivity of alpha-AgI is attributed to its molten sublattice type of structure, which facilitates easy Ag+ ion migration, like a liquid. And hence, several attempts have been made to stabilize it at room temperature in crystalline as well as non-crystalline hosts like oxide and non-oxide glasses. Recently, in order to stabilize AgI in glasses, instead of directly doping it, indirect routes have also been explored. Where, a metal iodide salt along with silver oxide or silver phosphate is taken and an exchange reaction permitted by Hard and Soft, Acid and Base (HSAB) principle occurs between the two and AgI and metal oxide form in the glass forming melt. Work done in the present thesis has been organized in seven chapters as follows: Chapter 1: A review and background information of different solid electrolyte materials and their development is presented. Along

  9. DBAC: A simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts

    PubMed Central

    2011-01-01

    Background A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot. Results We propose a new descriptor called “burial level” for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods. Conclusions Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. PMID:21689480

  10. Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs

    DOE PAGES

    Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...

    2016-06-13

    We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less

  11. Using containerless methods to develop amorphous pharmaceuticals.

    PubMed

    Weber, J K R; Benmore, C J; Suthar, K J; Tamalonis, A J; Alderman, O L G; Sendelbach, S; Kondev, V; Yarger, J; Rey, C A; Byrn, S R

    2017-01-01

    Many pipeline drugs have low solubility in their crystalline state and require compounding in special dosage forms to increase bioavailability for oral administration. The use of amorphous formulations increases solubility and uptake of active pharmaceutical ingredients. These forms are rapidly gaining commercial importance for both pre-clinical and clinical use. Synthesis of amorphous drugs was performed using an acoustic levitation containerless processing method and spray drying. The structure of the products was investigated using in-situ high energy X-ray diffraction. Selected solvents for processing drugs were investigated using acoustic levitation. The stability of amorphous samples was measured using X-ray diffraction. Samples processed using both spray drying and containerless synthesis were compared. We review methods for making amorphous pharmaceuticals and present data on materials made by containerless processing and spray drying. It was shown that containerless processing using acoustic levitation can be used to make phase-pure forms of drugs that are known to be difficult to amorphize. The stability and structure of the materials was investigated in the context of developing and making clinically useful formulations. Amorphous compounds are emerging as an important component of drug development and for the oral delivery of drugs with low solubility. Containerless techniques can be used to efficiently synthesize small quantities of pure amorphous forms that are potentially useful in pre-clinical trials and for use in the optimization of clinical products. Developing new pharmaceutical products is an essential enterprise to improve patient outcomes. The development and application of amorphous pharmaceuticals to increase absorption is rapidly gaining importance and it provides opportunities for breakthrough research on new drugs. There is an urgent need to solve problems associated with making formulations that are both stable and that provide high

  12. Local structure of amorphous Ag5In5Sb60Te30 and In3SbTe2 phase change materials revealed by X-ray photoelectron and Raman spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Sahu, Smriti; Manivannan, Anbarasu; Shaik, Habibuddin; Mohan Rao, G.

    2017-07-01

    Reversible switching between highly resistive (binary "0") amorphous phase and low resistive (binary "1") crystalline phase of chalcogenide-based Phase Change Materials is accredited for the development of next generation high-speed, non-volatile, data storage applications. The doped Sb-Te based materials have shown enhanced electrical/optical properties, compared to Ge-Sb-Te family for high-speed memory devices. We report here the local atomic structure of as-deposited amorphous Ag5In5Sb60Te30 (AIST) and In3SbTe2 (IST) phase change materials using X-ray photoelectron and Raman spectroscopic studies. Although AIST and IST materials show identical crystallization behavior, they differ distinctly in their crystallization temperatures. Our experimental results demonstrate that the local environment of In remains identical in the amorphous phase of both AIST and IST material, irrespective of its atomic fraction. In bonds with Sb (˜44%) and Te (˜56%), thereby forming the primary matrix in IST with a very few Sb-Te bonds. Sb2Te constructs the base matrix for AIST (˜63%) along with few Sb-Sb bonds. Furthermore, an interesting assimilation of the role of small-scale dopants such as Ag and In in AIST, reveals rare bonds between themselves, while showing selective substitution in the vicinity of Sb and Te. This results in increased electronegativity difference, and consequently, the bond strength is recognized as the factor rendering stability in amorphous AIST.

  13. Growth and characteristics of p-type doped GaAs nanowire

    NASA Astrophysics Data System (ADS)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  14. Imaging and controlling plasmonic interference fields at buried interfaces

    NASA Astrophysics Data System (ADS)

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; Lagrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-10-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ~0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

  15. Buried Impact Basins and the Earliest History of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2003-01-01

    The "Quasi-Circular Depressions" (QCDs) seen in MOLA data which have little or no visible appearance in image data have been interpreted as buried impact basins on Mars. These have important implications for the age of the lowland crust, what mechanisms could produce the crustal dichotomy, and the existence of crust older than the oldest observed surface units on Mars. A global survey of large QCDs using high resolution MOLA data now available has provided further details of the earliest history of Mars. The lowlands are of Early Noachian age, slightly younger than the buried highlands and definitely older than the exposed highland surface. A depopulation of large visible basins at diameters 800 to 1300 km suggests some global scale event early in martian history, maybe related to the formation of the lowlands and/or the development of Tharsis. A suggested early disappearance of the global magnetic field can be placed within a temporal sequence of formation of the very largest impact basins.

  16. Imaging and controlling plasmonic interference fields at buried interfaces

    PubMed Central

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; LaGrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-01-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal–dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films. PMID:27725670

  17. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.

    2017-06-01

    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  18. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harde, G. B.; Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602; Muley, G. G., E-mail: gajananggm@yahoo.co.in

    2016-05-06

    Borate glasses of the system xNd{sub 2}O{sub 3}-(1-x) La{sub 2}O{sub 3}-SrCO{sub 3}-10H{sub 3}BO{sub 3} (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition {sup 4}I{sub 9/2} → {sup 4}G{sub 5/2} + {sup 2}G{sub 7/2} has found more prominent than the other transitions. Optical band gap energies of glasses havemore » been determined and found less for Nd doped glass.« less

  19. [Identification of candidate genes and expression profiles, as doping biomarkers].

    PubMed

    Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V

    2007-01-01

    Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.

  20. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.