Science.gov

Sample records for as-doped buried amorphous

  1. Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface

    SciTech Connect

    Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

    2010-04-30

    The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

  2. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  3. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO 4 · 2H 2O) and their application to arsenic behavior in buried mine tailings

    NASA Astrophysics Data System (ADS)

    Langmuir, Donald; Mahoney, John; Rowson, John

    2006-06-01

    Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 10 4.04 (FeH 2AsO 42+), 10 9.86 (FeHAsO 4+), and 10 18.9 (FeAsO 4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are -23.0 ± 0.3 and -25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from -22.80 to -24.67, while that of FO (as Fe(OH) 3) increased from -39.49 to -33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are -25.74 ± 0.88 and -37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of

  4. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  5. Electromagnetic modeling of buried objects

    SciTech Connect

    Lee, C.F.

    1994-12-31

    In this paper, radar cross section (RCS) models of buried dipoles, surface steel pipe, and buried steel pipes are discussed. In all these models, the ground is assumed to be a uniform half space. The calculated results for the buried dipoles and the surface steel pipe compare favorably with those measured in the 1993 Yuma ground penetration radar (GPR) experiment. For the buried dipoles, a first-order RCS model is developed. In this model, a solution for an infinitely long conducting cylinder, together with a mirror image approximation (which accounts for the coupling between the dipole and the ground-air interface) is used to calculate the dipole RCS. This RCS model of the buried dipoles explains the observed loss of dipole RCS. For the surface steel pipe, a geometrical optics model, which includes the multipath interaction, is developed. This model explains the observed multipath gain/loss. For the buried steel pipes, a zero order physical optics model is developed. Also discussed is desert radar clutter statistics as a function of depression angle. Preliminary analysis, based on samples of Yuma desert surface profiles, indicates that simple rough-surface models cannot explain the observed average backscatter from desert clutter.

  6. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  7. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  8. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  9. The Buried Town of Beaver.

    ERIC Educational Resources Information Center

    Jostad, Karen

    Local history as source material for environmental education is uniquely portrayed in this resource kit. Utilizing a Winona County Historical Society publication, "The Beaver Story" and accompanied by a teacher's guide, "The Buried Town of Beaver," and other teaching aids, a case study of the area can be developed. Based on the reminiscences of…

  10. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  11. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  12. Electromagnetic scattering from buried objects

    SciTech Connect

    Brock, B.C.; Sorensen, K.W.

    1994-10-01

    Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations.

  13. Blast wave from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-08-01

    While much airblast data are available for height-of-burst (HOB) effects, systematic airblast data for depth-of-burst (DOB) effects are more limited. It is logical to ask whether the spherical 0.5-g Nitropenta charges that, proved to be successful for HOB tests at EMI are also suitable for experiments with buried charges in the laboratory scale; preliminary studies indicated in the alternative. Of special interest is the airblast environment generated by detonations just above or below the around surface. This paper presents a brief summary of the test results.

  14. Nonlinear vibrations of buried landmines.

    PubMed

    Donskoy, Dimitri; Reznik, Alexander; Zagrai, Andrei; Ekimov, Alexander

    2005-02-01

    The seismo-acoustic method is one of the most promising emerging techniques for the detection of landmines. Numerous field tests have demonstrated that buried landmines manifest themselves at the surface through linear and nonlinear responses to acoustic/seismic excitation. The present paper describes modeling of the nonlinear response in the framework of the mass-spring model of the soil-mine system. The perturbation method used in the model allows for the derivation of an analytical solution describing both quadratic and cubic acoustic interactions at the soil-mine interface. This solution has been compared with actual field measurements to obtain nonlinear parameters of the buried mines. These parameters have been analyzed with respect to mine types and burial depths. It was found that the cubic nonlinearity could be a significant contributor to the nonlinear response. This effect has led to the development of a new intermodulation detection algorithm based on dual-frequency excitation. Both quadratic and intermodulation nonlinear algorithms were evaluated at the U.S. Army outdoor testing facilities. The algorithms appear to complement each other in improving the overall detection performance. PMID:15759689

  15. Chemical detection of buried landmines

    SciTech Connect

    Phelan, J.M.; Webb, S.W.

    1998-03-01

    Of all the buried landmine identification technologies currently available, sensing the chemical signature from the explosive components found in landmines is the only technique that can classify non-explosive objects from the real threat. In the last two decades, advances in chemical detection methods has brought chemical sensing technology to the foreground as an emerging technological solution. In addition, advances have been made in the understanding of the fundamental transport processes that allow the chemical signature to migrate from the buried source to the ground surface. A systematic evaluation of the transport of the chemical signature from inside the mine into the soil environment, and through the soil to the ground surface is being explored to determine the constraints on the use of chemical sensing technology. This effort reports on the results of simulation modeling using a one-dimensional screening model to evaluate the impacts on the transport of the chemical signature by variation of some of the principal soil transport parameters.

  16. Buried Waste Integrated Demonstration Plan

    SciTech Connect

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  17. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  18. Mining metrics for buried treasure

    NASA Astrophysics Data System (ADS)

    Konkowski, D. A.; Helliwell, T. M.

    2006-06-01

    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath may be a wealth of further structure. This was beautifully described in a paper by Malcolm MacCallum in 1998. Here I will illustrate the effect with two flat metrics — one describing ordinary Minkowski spacetime and the other describing a threeparameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.

  19. Amorphous Computing

    NASA Astrophysics Data System (ADS)

    Sussman, Gerald

    2002-03-01

    agents constructed by engineered cells, but we have few ideas for programming them effectively: How can one engineer prespecified, coherent behavior from the cooperation of immense numbers of unreliable parts that are interconnected in unknown, irregular, and time-varying ways? This is the challenge of Amorphous Computing.

  20. 7 CFR 1755.505 - Buried services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Buried services. 1755.505 Section 1755.505 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.505 Buried services. (a)...

  1. 7 CFR 1755.505 - Buried services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Buried services. 1755.505 Section 1755.505 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.505 Buried services. (a)...

  2. Probing the Buried Magnetic Interfaces.

    PubMed

    Liu, Wenqing; Zhou, Qionghua; Chen, Qian; Niu, Daxin; Zhou, Yan; Xu, Yongbing; Zhang, Rong; Wang, Jinlan; van der Laan, Gerrit

    2016-03-01

    Understanding magnetism in ferromagnetic metal/semiconductor (FM/SC) heterostructures is important to the development of the new-generation spin field-effect transistor. Here, we report an element-specific X-ray magnetic circular dichroism study of the interfacial magnetic moments for two FM/SC model systems, namely, Co/GaAs and Ni/GaAs, which was enabled using a specially designed FM1/FM2/SC superstructure. We observed a robust room temperature magnetization of the interfacial Co, while that of the interfacial Ni was strongly diminished down to 5 K because of hybridization of the Ni d(eg) and GaAs sp(3) states. The validity of the selected method was confirmed by first-principles calculations, showing only small deviations (<0.02 and <0.07 μB/atom for Co/GaAs and Ni/GaAs, respectively) compared to the real FM/SC interfaces. Our work proved that the electronic structure and magnetic ground state of the interfacial FM2 is not altered when the topmost FM2 is replaced by FM1 and that this model is applicable generally for probing the buried magnetic interfaces in the advanced spintronic materials.. PMID:26887429

  3. Mapping Buried Hydrogen-Bonding Networks.

    PubMed

    Thomas, John C; Goronzy, Dominic P; Dragomiretskiy, Konstantin; Zosso, Dominique; Gilles, Jérôme; Osher, Stanley J; Bertozzi, Andrea L; Weiss, Paul S

    2016-05-24

    We map buried hydrogen-bonding networks within self-assembled monolayers of 3-mercapto-N-nonylpropionamide on Au{111}. The contributing interactions include the buried S-Au bonds at the substrate surface and the buried plane of linear networks of hydrogen bonds. Both are simultaneously mapped with submolecular resolution, in addition to the exposed interface, to determine the orientations of molecular segments and directional bonding. Two-dimensional mode-decomposition techniques are used to elucidate the directionality of these networks. We find that amide-based hydrogen bonds cross molecular domain boundaries and areas of local disorder. PMID:27096290

  4. Implementation of the buried waste integrated demonstration

    SciTech Connect

    Kostelnik, K.M.; Merrill, S.K.

    1992-09-01

    The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

  5. Implementation of the buried waste integrated demonstration

    SciTech Connect

    Kostelnik, K.M.; Merrill, S.K.

    1992-01-01

    The Department of Energy (DOE), Office of Technology Development (OTD) has initiated the Buried Waste Integrated Demonstration (BWID) to resolve technological deficiencies associated with the remediation of radioactive and hazardous buried waste. The BWID mission is to identify, demonstrate, and transfer innovative technologies for the remediation of DOE buried waste. To accomplish the mission, BWID is using a systems approach which supports the development of a suite of advanced and innovative technologies for the effective and efficient remediation of buried waste. This systems approach includes technologies for theentire remediation cycle. Specifically, BWID sponsors technology development in the following technology categories: site and waste characterization, retrieval, preprocessing, ex situ treatment, packaging, transportation, storage, disposal, and post-disposal monitoring.

  6. Is simulated amorphous'' silica really amorphous

    SciTech Connect

    Binggeli, N. , PHB Ecublens, 1015 Lausanne ); Chelikowsky, J.R. )

    1994-07-10

    We have carried out extensive molecular dynamics simulations for the pressure induced amorphization of quartz by means of a classical force-field model. In agreement with earlier simulations, we find that a phase transition occurs within the experimental pressure range of the amorphization. However, in contrast to the interpretation of previous simulations, we demonstrate that the new phase is [ital not] amorphous, since the correlation functions for the equilibrated structure can be shown to be consistent with those of a crystalline phase. In addition, two transformations to ordered structures are found to occur sequentially during the simulations. The first transformation is likely to be related to the recently discovered transition of quartz to an intermediate crystalline phase before its amorphization. The second transformation, instead, yields a compact, octahedrally coordinated Si sublattice. The latter may be an artifact of the pair-potential simulation. [copyright] 1994 American Institute of Physics

  7. TNX Burying Ground: Environmental information document

    SciTech Connect

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    The TNX Burying Ground, located within the TNX Area of the Savannah River Plant (SRP), was originally built to dispose of debris from an experimental evaporator explosion at TNX in 1953. This evaporator contained approximately 590 kg of uranyl nitrate. From 1980 to 1984, much of the waste material buried at TNX was excavated and sent to the SRP Radioactive Waste Burial Grounds for reburial. An estimated 27 kg of uranyl nitrate remains buried at TNX. The TNX Burying Ground consists of three sites known to contain waste and one site suspected of containing waste material. All four sites are located within the TNX security fenceline. Groundwater at the TNX Burying Ground was not evaluated because there are no groundwater monitoring wells installed in the immediate vicinity of this waste site. The closure options considered for the TNX Burying Ground are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

  8. Buried Waste Integrated Demonstration. Technology summary

    SciTech Connect

    Not Available

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities.

  9. Arsenic complexes optical signatures in As-doped HgCdTe

    SciTech Connect

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G.

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  10. Improved charge collection of the buried p-i-n a-Si:H radiation detectors

    SciTech Connect

    Fujieda, I.; Cho, G.; Conti, M.; Drewery, J.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Street, R.A.; Xerox Palo Alto Research Center, CA )

    1989-09-01

    Charge collection in hydrogenated amorphous silicon (a-Si:H) radiation detectors is improved for high LET particle detection by adding thin intrinsic layers to the usual p-i-n structure. This buried p-i-n structure enables us to apply higher bias and the electric field is enhanced. When irradiated by 5.8 MeV {alpha} particles, the 5.7 {mu}m thick buried p-i-n detector with bias 300V gives a signal size of 60,000 electrons, compared to about 20,000 electrons with the simple p-i-n detectors. The improved charge collection in the new structure is discussed. The capability of tailoring the field profile by doping a-Si:H opens a way to some interesting device structures. 17 refs., 7 figs.

  11. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  12. Frost heave induced mechanics of buried pipelines

    SciTech Connect

    Selvadurai, A.P.S.; Shinde, S.B.

    1993-12-01

    This paper examines the problem of the flexural interaction between a long-distance buried pipeline embedded in a soil medium that experiences differential frost heave. The modeling takes into consideration the interaction at a transition zone between a frozen region and a frost-susceptible region that experiences a time-dependent growth of a frost bulb around the buried pipeline. The heave that accompanies the development of a frost bulb induces the soil-pipeline interaction process. The analysis focuses on the development of a computational scheme that addresses the three-dimensional nature of the soil-pipeline interaction problem, the creep susceptibility of the frozen region, and a prescribed time- and stress-dependent heave in an evolving frost bulb zone. The numerical results presented in the paper illustrate the influence of the heave process and the creep behavior of the frozen soil on the displacements and stresses in the buried pipeline.

  13. Prioritization for rehabilitation of buried lifelines

    SciTech Connect

    Wang, L.R.L.; Ishibashi, I.; Li, H.

    1995-12-31

    Seismic rehabilitation or retrofit is a cost-effective way to prevent pipeline damage caused by future earthquakes. In general, it is very difficult, if not impossible, to rehabilitate all buried pipelines at the same time because of limited funds and time available. The purpose of this study is to establish a priority strategy for rehabilitation of buried pipelines considering several important factors such as pipeline damage probability, rehabilitation cost, rehabilitation rate (e.g. km/day), pipeline importance and total funds available.

  14. Buried Waste Integrated Demonstration test objectives

    SciTech Connect

    Morrison, J.L.; Heard, R.E.

    1993-05-01

    The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the US Department of Energy complex. To accomplish this mission of identifying technology solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY) 1991. This document provides the test objectives against which the demonstrations will be tested during FY-93.

  15. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  16. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  17. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  18. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  19. Limited Panniculectomy for Adult Buried Penis Repair.

    PubMed

    Figler, Bradley D; Chery, Lisly; Friedrich, Jeffrey B; Wessells, Hunter; Voelzke, Bryan B

    2015-11-01

    Patients with buried or hidden penis may be unable to carry out normal hygiene, void with a directable urine stream, or be sexually active as a result of the condition. Although these patients are nearly always obese, weight loss often does not reverse the problem, as the mons pannus may remain after weight loss. Furthermore, associated penile skin changes such as lichen sclerosus or stenosis of the penile shaft skin are often irreversible. Treatment includes removal of the diseased shaft skin surrounding the penis, in combination with a limited panniculectomy. The authors present their technique for this procedure in a typical patient with buried penis that prevented him from voiding effectively. PMID:26182174

  20. In situ vitrification on buried waste

    SciTech Connect

    Bates, S.O.

    1992-01-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA.

  1. In situ vitrification on buried waste

    SciTech Connect

    Bates, S.O.

    1992-08-01

    In situ vitrification (ISV) is being evaluated as a remedial treatment technology for buried mixed and transuranic (TRU) wastes at the Subsurface Disposal Area (SDA) at Idaho National Engineering Laboratory (INEL) and can be related to buried wastes at other Department of Energy (DOE) sites. There are numerous locations around the DOE Complex where wastes were buried in the ground or stored for future burial. The Buried Waste Program (BWP) is conducting a comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the Department of Energy - Field Office Idaho (DOE-ID). As part of the RI/FS, an ISV scoping study on the treatability of the SDA mixed low-level and mixed TRU waste is being performed for applicability to remediation of the waste at the Radioactive Waste Management Complex (RWMC). The ISV project being conducted at the INEL by EG&G Idaho, Inc. consists of a treatability investigation to collect data to satisfy nine CERCLA criteria with regards to the SDA. This treatability investigation involves a series of experiments and related efforts to study the feasibility of ISV for remediation of mixed and TRU waste disposed of at the SDA.

  2. Detection of buried mines with seismic sonar

    NASA Astrophysics Data System (ADS)

    Muir, Thomas G.; Baker, Steven R.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Hall, Patrick W.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of the target strengths of buried test targets as well as targets of interest, and has also examined detection and confirmatory classification of these, all using arrays of seismic sources and receivers as well as signal processing techniques to enhance target recognition. The target strengths of two test targets (one a steel gas bottle, the other an aluminum powder keg), buried in a sand beach, were examined as a function of internal mass load, to evaluate theory developed for seismic sonar target strength [J. Acoust. Soc. Am. 103, 2344-2353 (1998)]. The detection of buried naval and military targets of interest was achieved with an array of 7 shaker sources and 5, three-axis seismometers, at a range of 5 m. Vector polarization filtering was the main signal processing technique for detection. It capitalizes on the fact that the vertical and horizontal components in Rayleigh wave echoes are 90 deg out of phase, enabling complex variable processing to obtain the imaginary component of the signal power versus time, which is unique to Rayleigh waves. Gabor matrix processing of this signal component was the main technique used to determine whether the target was man-made or just a natural target in the environment. [Work sponsored by ONR.

  3. Seismic response of buried submarine pipelines

    SciTech Connect

    Datta, T.K.; Mashaly, E.A.

    1988-12-01

    Submarine pipelines are many a time buried into a jet-blasted channel in the seabed. Seismic response of such buried pipelines are investigated in this paper. The earthquake is considered as a partially correlated stationary random proceeds characterized by a power spectral density function (PSDF). The cross-spectral density function between two random inputs along the length of the pipe is defined with the help of the local earthquake PSDF, which is the same for all points, and a frequency-dependent, exponentially decaying function (with distance). A lumped-mass model with 2-D beam elements is used to write the equation of motion. Soil resistance to dynamic excitation along the pipe length is obtained in an approximate manner with the help of frequency-independent impedance functions derived from half-space analysis and Mindlin's static stresses within the soil due to point loads. The responses are obtained by a spectral analysis for horizontal ground motions in two principal directions, which are assumed to coincide with pipe axis and the perpendicular to it. Using the proposed method of analysis, a parametric study is conducted. The results of the study help in understanding the behavior of buried submarine pipelines under seismic forces and its differences from that of the buried pipelines on land.

  4. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a... other associated material used in constructing a physical path for the transmission of... single or paired conductor cable, wire and other associated material used in constructing a physical...

  5. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  6. Subcritical scattering from buried elastic shells.

    PubMed

    Lucifredi, Irena; Schmidt, Henrik

    2006-12-01

    Buried objects have been largely undetectable by traditional high-frequency sonars due to their insignificant bottom penetration. Further, even a high grazing angle sonar approach is vastly limited by the coverage rate dictated by the finite water depth, making the detection and classification of buried objects using low frequency, subcritical sonar an interesting alternative. On the other hand, such a concept would require classification clues different from the traditional high-resolution imaging and shadows to maintain low false alarm rates. A potential alternative, even for buried targets, is classification based on the acoustic signatures of man-made elastic targets. However, the elastic responses of buried and proud targets are significantly different. The objective of this work is to identify, analyze, and explain some of the effects of the sediment and the proximity of the seabed interface on the scattering of sound from completely and partially buried elastic shells. The analysis was performed using focused array processing of data from the GOATS98 experiment carried out jointly by MIT and SACLANTCEN, and a new hybrid modeling capability combining a virtual source-or wave-field superposition-approach with an exact spectral integral representation of the Green's functions for a stratified ocean waveguide, incorporating all multiple scattering between the object and the seabed. Among the principal results is the demonstration of the significant role of structural circumferential waves in converting incident, evanescent waves into backscattered body waves, emanating to the receivers at supercritical grazing angles, in effect making the target appear closer to the sonar than predicted by traditional ray theory. PMID:17225387

  7. Sensor feature fusion for detecting buried objects

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.; Hernandez, J.E.; Buhl, M.R.; Schaich, P.C.; Kane, R.J.; Barth, M.J.; DelGrande, N.K.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.

  8. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  9. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  10. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record...

  11. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record...

  12. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record...

  13. 47 CFR 32.6423 - Buried cable expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Buried cable expense. 32.6423 Section 32.6423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6423 Buried cable expense. (a) This account shall include expenses associated with buried cable. (b) Subsidiary record...

  14. Buried pipelines in large fault movements

    SciTech Connect

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  15. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology`s threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  16. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  17. Process for buried metallization in diamond film

    NASA Astrophysics Data System (ADS)

    Lake, Max L.; Ting, Jyh-Ming; Lagounov, Alex; Tang, Chi

    1996-03-01

    The objective of this research was to investigate methods of combining chemical vapor deposition diamond growth techniques with state-of-the-art physical vapor deposition or ion beam enhanced deposition to produce buried metallization of polycrystalline diamond films. The mechanical and electrical integrity of both the insulating and conducting elements following metallization and diamond overgrowth was shown. Both methods were shown to have bonding strength sufficient to withstand tape lift-off, which is regarded to be a good indication of strength needed for die attachment and wire bonding. Diamond overgrowth was also shown, thus enabling buried metallized layers to be created. Electrical resistivity property measurements on metallized layers and between metallization separated by diamond films were shown to be sufficient to allow the use of diamond as an insulating inter-layer material for multi-layer circuit boards.

  18. Buried caldera of mauna kea volcano, hawaii.

    PubMed

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age. PMID:17842285

  19. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  20. DOE complex buried waste characterization assessment

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  1. Laser neutralization of surface and buried munitions

    NASA Astrophysics Data System (ADS)

    Habersat, James D.; Schilling, Bradley W.; Alexander, Joe; Lehecka, Thomas

    2012-06-01

    In recent years NVESD has been investigating laser-based neutralization of buried mines and minelike targets. This paper covers the most recent efforts in this area. A field-test was conducted to demonstrate the state-of-the-art capability for standoff laser neutralization of surface and buried mines. The neutralization laser is a Ytterbium fiber laser with a nominal power output of 10 kW and a beam quality of M2 ~ 1.8 at maximum power. Test trials were conducted at a standoff range of 50 meters with a 20° angle of attack. The laser was focused to a submillimeter spot using a Cassegrain telescope with a 12.5 inch diameter primary mirror. The targets were 105 mm artillery rounds with a composition B explosive fill. Three types of overburden were studied: sand, soil, and gravel. Laser neutralization capability was demonstrated under these conditions for live rounds buried under 7 cm of dry sand, 4 cm of soil, and 2 cm of gravel.

  2. Bearingless Segment Motor with Buried Magnets

    NASA Astrophysics Data System (ADS)

    Gruber, Wolfgang; Amrhein, Wolfgang; Stallinger, Thomas; Grabner, Herbert

    Bearingless motors combine contactless levitation and rotation in a preferably compact system design, because bearing as well as motor windings are located on the same lamination stack. The bearingless slice motor features comparatively low complexity for a fully magnetically levitated drive system, because it allows the passive stabilization of three degrees of freedom by reluctance forces. By the use of a proper control scheme and the superposition of different current components, bearing forces and motor torque can be generated simultaneously by applying concentrated windings. This leads to a further simplification of the mechanical configuration. The bearingless segment motor features such concentrated coils on separated stator elements, which reduce the stator iron and therefore weight and cost, especially for constructions with large diameter. However, so far all bearingless slice motors are designed with surface mounted permanent magnets on the rotor, neglecting the advantages of buried permanent magnets. In this paper a novel bearingless segment motor featuring a rotor with buried permanent magnets is investigated. The motor specific mathematical model of force and torque generation is presented, a proper control scheme is introduced and the optimization of the prototype motor is outlined. Motor specific considerations concerning the angular sensors are given. Finally, the performance of the bearingless segment motor with buried permanent magnets is shown by the comparison of simulation results with measurement data of the manufactured prototype.

  3. Multiple instance learning for buried hazard detection

    NASA Astrophysics Data System (ADS)

    Rice, Joseph; Pinar, Anthony; Havens, Timothy C.; Webb, Adam; Schulz, Timothy J.

    2016-05-01

    Buried explosives hazards are one of the many deadly threats facing our Soldiers, thus the U.S. Army is interested in the detection and neutralization of these hazards. One method of buried target detection uses forward-looking ground-penetrating radar (FLGPR), and it has grown in popularity due to its ability to detect buried targets at a standoff distance. FLGPR approaches often use machine learning techniques to improve the accuracy of detection. We investigate an approach to explosive hazard detection that exploits multi-instance features to discriminate between hazardous and non-hazardous returns in FLGPR data. One challenge this problem presents is a high number of clutter and non-target objects relative to the number of targets present. Our approach learns a bag of words model of the multi-instance signatures of potential targets and confuser objects in order to classify alarms as either targets or false alarms. We demonstrate our method on test data collected at a U.S. Army test site.

  4. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  5. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  6. Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge

    SciTech Connect

    Hickey, D. P.; Bryan, Z. L.; Jones, K. S.; Elliman, R. G.; Haller, E. E.

    2007-03-26

    Ge implanted with 1 MeV Si{sup +} at a dose of 1x10{sup 15} cm{sup -2} creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects-end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar (311) defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550 deg. C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.

  7. Buried Alive: Microbes from Ancient Halite.

    PubMed

    Jaakkola, Salla T; Ravantti, Janne J; Oksanen, Hanna M; Bamford, Dennis H

    2016-02-01

    Halite is one of the most extreme environments to support life. From the drought of the Atacama Desert to salt deposits up to Permian in age and 2000 meters in burial depth, live microbes have been found. Because halite is geologically stable and impermeable to ground water, the microbes allegedly have a syndepositional origin, making them the oldest organisms known to live on Earth. Recently, our understanding of the microbial diversity inside halite has broadened, and the first genome sequences of ancient halite-buried microbes are now available. The secrets behind prolonged survival in salt are also starting to be revealed. PMID:26796472

  8. Fabrication of Buried Nanochannels From Nanowire Patterns

    NASA Technical Reports Server (NTRS)

    Choi, Daniel; Yang, Eui-Hyeok

    2007-01-01

    A method of fabricating channels having widths of tens of nanometers in silicon substrates and burying the channels under overlying layers of dielectric materials has been demonstrated. With further refinement, the method might be useful for fabricating nanochannels for manipulation and analysis of large biomolecules at single-molecule resolution. Unlike in prior methods, burying the channels does not involve bonding of flat wafers to the silicon substrates to cover exposed channels in the substrates. Instead, the formation and burying of the channels are accomplished in a more sophisticated process that is less vulnerable to defects in the substrates and less likely to result in clogging of, or leakage from, the channels. In this method, the first step is to establish the channel pattern by forming an array of sacrificial metal nanowires on an SiO2-on-Si substrate. In particular, the wire pattern is made by use of focused-ion-beam (FIB) lithography and a subsequent metallization/lift-off process. The pattern of metal nanowires is then transferred onto the SiO2 layer by reactive-ion etching, which yields sacrificial SiO2 nanowires covered by metal. After removal of the metal covering the SiO2 nanowires, what remains are SiO2 nanowires on an Si substrate. Plasma-enhanced chemical vapor deposition (PECVD) is used to form a layer of a dielectric material over the Si substrate and over the SiO2 wires on the surface of the substrate. FIB milling is then performed to form trenches at both ends of each SiO2 wire. The trenches serve as openings for the entry of chemicals that etch SiO2 much faster than they etch Si. Provided that the nanowires are not so long that the diffusion of the etching chemicals is blocked, the sacrificial SiO2 nanowires become etched out from between the dielectric material and the Si substrate, leaving buried channels. At the time of reporting the information for this article, channels 3 m long, 20 nm deep, and 80 nm wide (see figure) had been

  9. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  10. Disorder-induced amorphization

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.; Li, Mo

    1997-03-01

    Many crystalline materials undergo a crystalline-to-amorphous (c-a) phase transition when subjected to energetic particle irradiation at low temperatures. By focusing on the mean-square static atomic displacement as a generic measure of chemical and topological disorder, we are led quite naturally to a generalized version of the Lindemann melting criterion as a conceptual framework for a unified thermodynamic approach to solid-state amorphizing transformations. In its simplest form, the generalized Lindemann criterion assumes that the sum of the static and dynamic mean-square atomic displacements is constant along the polymorphous melting curve so that c-a transformations can be understood simply as melting of a critically-disordered crystal at temperatures below the glass transition temperature where the supercooled liquid can persist indefinitely in a configurationally-frozen state. Evidence in support of the generalized Lindemann melting criterion for amorphization is provided by a large variety of experimental observations and by molecular dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds.

  11. Amorphous silicon photovoltaic devices

    SciTech Connect

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  12. Substrate discrimination in burying beetles, Nicrophorus orbicollis (Coleoptera: Silphidae)

    USGS Publications Warehouse

    Muths, Erin Louise

    1991-01-01

    Burying beetles Nicrophorus orbicollis (Coleoptera: Silphidae) secure and bury small vertebrate carcasses as a food resource for their offspring and themselves. Burial may take place at the point of carcass discovery or at some distance from that site. Burying beetles were tested to determine if they discriminate between different substrates when burying a carcass. Three substrates were presented simultaneously. Substrate one contained soil from typical beetle habitat; substrates two and three contained 2:1 and 5:1 ratios, respectively, of soil and a senescent prairie grass (Panicum virgatum), which added a bulk structural component to the soil. Beetles generally moved and buried the carcass within 24 hours. Results for both paired and individual trials suggest that burying beetles discriminate between substrates, preferring substrates with added bulk over those without.

  13. Virtual environmental applications for buried waste characterization technology evaluation report

    SciTech Connect

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  14. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  15. Computer vision for locating buried objects

    SciTech Connect

    Clark, G.A.; Hernandez, J.E.; DelGrande, N.K.; Sherwood, R.J.; Lu, Shin-Yee; Schaich, P.C.; Durbin, P.F.

    1991-11-01

    Given two registered images of the earth, measured with aerial dual-band infrared (IR) sensors, we use advanced computer vision/automatic target recognition techniques to estimate the positions of buried land mines. The images are very difficult to interpret, because of large amounts of clutter. Conventional techniques use single-band imagery and simple correlations. They rely heavily on the judgment of the human doing the interpretation, and give unsatisfactory results with difficult data sets of the type we analyzed. Our automatic algorithms are able to eliminate most of the clutter and give greatly improved indications of regions in the image that could be interpreted as mines. The novelty of our approach lies in the following aspects: (1) a patented data fusion technique using two IR images and physical principles based on Planck`s law, (2) a new region-based texture segmentation algorithm using Gabor Transform features and a clustering/thresholding algorithm based on a neural network (Self-Organizing Feature Map), (3) Prior knowledge of measured feasible temperatures and emissivities, and (4) results with real data using buried surrogate mines.

  16. Computer vision for locating buried objects

    SciTech Connect

    Clark, G.A.; Hernandez, J.E.; DelGrande, N.K.; Sherwood, R.J.; Lu, Shin-Yee; Schaich, P.C.; Durbin, P.F.

    1991-11-01

    Given two registered images of the earth, measured with aerial dual-band infrared (IR) sensors, we use advanced computer vision/automatic target recognition techniques to estimate the positions of buried land mines. The images are very difficult to interpret, because of large amounts of clutter. Conventional techniques use single-band imagery and simple correlations. They rely heavily on the judgment of the human doing the interpretation, and give unsatisfactory results with difficult data sets of the type we analyzed. Our automatic algorithms are able to eliminate most of the clutter and give greatly improved indications of regions in the image that could be interpreted as mines. The novelty of our approach lies in the following aspects: (1) a patented data fusion technique using two IR images and physical principles based on Planck's law, (2) a new region-based texture segmentation algorithm using Gabor Transform features and a clustering/thresholding algorithm based on a neural network (Self-Organizing Feature Map), (3) Prior knowledge of measured feasible temperatures and emissivities, and (4) results with real data using buried surrogate mines.

  17. Healing from incest: resurrecting the buried self.

    PubMed

    Godbey, J K; Hutchinson, S A

    1996-10-01

    Writers on the incest experience estimate conservatively that 10% to 30% of all girls and 30% of all boys have had at least one childhood experience of incest. Incest is emotionally devastating to a child as it involves betrayal, and the irretrievable loss of trust in the adults in the child's life. Little is written about the healing processes of incest survivors. The purpose of this study was to generate a substantive grounded theory that provides an explanatory schema for understanding the healing process of adult female incest survivors. The sample consisted of 10 adult women who had a history of incest and who volunteered to participate in in-depth interviews. Data were analyzed using grounded theory techniques. Data analysis revealed that these women had buried an integral part of the self because of the trauma of incest; The healing process required resurrecting the buried self through a series of seven phases. The model generated from this research provides a heuristic for nurse therapists that assists in assessing and counseling incest survivors. PMID:8897713

  18. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  19. System and method for removal of buried objects

    SciTech Connect

    Alexander, Robert G.; Crass, Dennis; Grams, William; Phillips, Steven J.; Riess, Mark

    2008-06-03

    The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.

  20. Multi channel FM reflection profiler for buried pipeline surveying

    SciTech Connect

    Schock, S.G.; LeBlanc, L.R.

    1996-12-31

    A towed multi-channel FM acoustic reflection profiler has been developed for locating and generating images of buried objects. One significant application of this sonar is buried pipeline surveying. The multi-channel reflection profiler uses 16 line arrays mounted in a towed vehicle to determine the position and burial depth of an 18 inch steel pipe filled with concrete buried under 1.5 meters of sand. This sonar will allow a survey vessel to continuously track a buried pipeline providing a continuous record of pipe burial depth and position.

  1. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  2. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  3. Strain field of a buried oxide aperture

    NASA Astrophysics Data System (ADS)

    Kießling, F.; Niermann, T.; Lehmann, M.; Schulze, J.-H.; Strittmatter, A.; Schliwa, A.; Pohl, U. W.

    2015-02-01

    The strain field of an AlOx current aperture, fabricated by selective oxidation of an AlAs/GaAs layer buried in a circular GaAs mesa, is studied. Components of the strain tensor for a thin cross-section lamella cut out of such a structure are evaluated from dark-field electron holography, proving the validity of simulations based on linear elasticity. Simulation of the entire structure is utilized to prepare mesa surfaces with tailored strain fields for controlling the nucleation site of InGaAs quantum dots. The experimental proof of strain simulations allows estimating the magnitude of piezoelectricity, yielding for the studied mesa structures a piezoelectric potential up to 50 mV.

  4. Landslide Buries Valley of the Geysers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Geysers are a rare natural phenomena found only in a few places, such as New Zealand, Iceland, the United States (Yellowstone National Park), and on Russia's far eastern Kamchatka Peninsula. On June 3, 2007, one of these rare geyser fields was severely damaged when a landslide rolled through Russia's Valley of the Geysers. The landslide--a mix of mud, melting snow, trees, and boulders--tore a scar on the land and buried a number of geysers, thermal pools, and waterfalls in the valley. It also blocked the Geyser River, causing a new thermal lake to pool upstream. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this infrared-enhanced image on June 11, 2007, a week after the slide. The image shows the valley, the landslide, and the new thermal lake. Even in mid-June, just days from the start of summer, the landscape is generally covered in snow, though the geologically heated valley is relatively snow free. The tree-covered hills are red (the color of vegetation in this false-color treatment), providing a strong contrast to the aquamarine water and the gray-brown slide. According to the Russian News and Information Agency (RIA) [English language], the slide left a path roughly a kilometer and a half (one mile) long and 200 meters (600 feet) wide. Within hours of the landslide, the water in the new lake inundated a number of additional geysers. The geysers directly buried under the landslide now lie under as much as 60 meters (180 feet) of material, according to RIA reports. It is unlikely that the geysers will be able to force a new opening through this thick layer, adds RIA. Among those directly buried is Pervenets (Firstborn), the first geyser found in the valley, in 1941. Other geysers, such as the Bolshoi (Greater) and Maly (Lesser) Geysers, were silenced when buried by water building up behind the new natural dam. According to Vladimir and Andrei Leonov of the Russian Federation Institute of

  5. Backyard bolides: finding a buried impact crater.

    NASA Astrophysics Data System (ADS)

    Poag, C. W.

    1998-10-01

    The author reports the scientific activities that led to his discovery of a huge submerged impact crater in Chesapeake Bay, some 140 km east of Atlantic City, New Jersey. This crater, buried under 350 m of sediment is 80 km wide and almost 1 km deep. Microfossil evidence shows that the crater is approximately 35 million years old. The author futher identified 14 small secondary craters with diamters of 0.4 to 0.5 km diameter within 60 km of the primary crater. These were caused by the impact of huge blocks of material ejected by the primary impact event. In addition, the author identified an intermediate-size primary crater (19 km diameter) in Toms Canyon, some 300 km from the Chesapeake crater and, again from microfossil evidence, identical in age.

  6. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  7. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  8. Buried bumper syndrome: a rare complication of percutaneous endoscopic gastrostomy.

    PubMed

    Kurek, Krzysztof; Baniukiewicz, Andrzej; Świdnicka-Siergiejko, Agnieszka

    2015-09-01

    Feeding via percutaneous endoscopic gastrostomy (PEG) is the preferred form of alimentation when oral feeding is impossible. Although it is a relatively safe method, some complications may occur. One uncommon PEG complication is buried bumper syndrome. In this paper we report a case of buried bumper syndrome, successfully managed with PEG tube repositioning. PMID:26649105

  9. Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Bing; Wang, Cong; Yoon, Soon Fatt; Michel, Jurgen; Fitzgerald, Eugene A.; Tan, Chuan Seng

    2016-02-01

    High quality germanium (Ge) epitaxial film is grown directly on silicon (001) substrate with 6° off-cut using a heavily arsenic (As) doped Ge seed layer. The growth steps consists of (i) growth of a heavily As-doped Ge seed layer at low temperature (LT, at 400 °C), (ii) Ge growth with As gradually reduced to zero at high temperature (HT, at 650 °C), (iii) pure Ge growth at HT. This is followed by thermal cyclic annealing in hydrogen at temperature ranging from 600 to 850 °C. Analytical characterization have shown that the Ge epitaxial film with a thickness of ˜1.5 µm experiences thermally induced tensile strain of 0.20% with a treading dislocation density (TDD) of mid 106/cm2 which is one order of magnitude lower than the control group without As doping and surface roughness of 0.37 nm. The reduction in TDD is due to the enhancement in velocity of dislocations in an As-doped Ge film.

  10. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  11. Buried antenna analysis at VHF. Part 1: The buried horizontal electric dipole

    NASA Astrophysics Data System (ADS)

    Burks, J. W.

    1984-01-01

    A method was developed to find the far field radiation pattern of a buried horizontal electric dipole (HED) at 37.5 MHz. The imaginary part of the index of refraction was shown to be negligible for dry soil at this frequency so standard antenna theory and ray optic theory was used. The effect of the ground-air interface was modeled using the transmission coefficient and Snell's law for a dielectric interface. Because the current distribution for the buried HED depends on antenna construction, results are shown for the far field pattern in the air for different current distributions on the HED. The literature on this problem was reviewed; most used the Sommerfeld or moment methods to make the same calculations. The results of one of the reports using the Sommerfeld method could be compared and were found to be similar. An extensive bibliography is included. The analysis was then applied to a buried antenna array. The current distribution was known and was used to calculate the far field pattern. It was concluded that the far field pattern is highly dependent on the current distribution. This part is classified.

  12. Dual-band infrared capabilities for imaging buried object sites

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  13. Nanomoulding with amorphous metals.

    PubMed

    Kumar, Golden; Tang, Hong X; Schroers, Jan

    2009-02-12

    Nanoimprinting promises low-cost fabrication of micro- and nano-devices by embossing features from a hard mould onto thermoplastic materials, typically polymers with low glass transition temperature. The success and proliferation of such methods critically rely on the manufacturing of robust and durable master moulds. Silicon-based moulds are brittle and have limited longevity. Metal moulds are stronger than semiconductors, but patterning of metals on the nanometre scale is limited by their finite grain size. Amorphous metals (metallic glasses) exhibit superior mechanical properties and are intrinsically free from grain size limitations. Here we demonstrate direct nanopatterning of metallic glasses by hot embossing, generating feature sizes as small as 13 nm. After subsequently crystallizing the as-formed metallic glass mould, we show that another amorphous sample of the same alloy can be formed on the crystallized mould. In addition, metallic glass replicas can also be used as moulds for polymers or other metallic glasses with lower softening temperatures. Using this 'spawning' process, we can massively replicate patterned surfaces through direct moulding without using conventional lithography. We anticipate that our findings will catalyse the development of micro- and nanoscale metallic glass applications that capitalize on the outstanding mechanical properties, microstructural homogeneity and isotropy, and ease of thermoplastic forming exhibited by these materials. PMID:19212407

  14. Xenon Isotope Releases from Buried Transuranic Waste

    NASA Astrophysics Data System (ADS)

    Dresel, P. E.; Waichler, S. R.; Kennedy, B. M.; Hayes, J. C.; McIntyre, J. I.; Giles, J. R.; Sondrup, A. J.

    2004-12-01

    Xenon is an inert rare gas produced as a fission product in nuclear reactors and through spontaneous fission of some transuranic isotopes. Thus, xenon will be released from buried transuranic waste. Two complementary methods are used to measure xenon isotopes: radiometric analysis for short-lived radioxenon isotopes and mass spectrometry for detection of stable xenon isotopes. Initial measurements near disposal facilities at the U.S. Department of Energy's Hanford Site show radioxenon and stable xenon isotopic signatures that are indicative of transuranic waste. Radioxenon analysis has greater sensitivity due to the lower background concentrations and indicates spontaneous fission due to the short half life of the isotopes. Stable isotope ratios may be used to distinguish irradiated fuel sources from pure spontaneous fission sources and are not as dependent on rapid release from the waste form. The release rate is dependent on the type of waste and container integrity and is the greatest unknown in application of this technique. Numerical multi-phase transport modeling of burial grounds at the Idaho National Engineering and Environmental Laboratory indicates that, under generalized conditions, the radioxenon isotopes will diffuse away from the waste and be found in the soil cap and adjacent to the burial ground at levels many orders of magnitude above the detection limit.

  15. Common trenching reduces damage to buried utilities

    SciTech Connect

    Alfiere, E.P.

    1982-09-01

    Since 1972 Niagara Mohawk Power Co. has established a utility corridor, installing 503 miles of buried gas mains and electric cables in a common trench. Their guidelines for common trenching included (1) the developer's responsibility for providing a subdivision map showing the location of each sidewalk, lot, and roadway, (2) an easement strip paralleling the front lot (street) line that is to be cleared and graded by the developer before construction is started, (3) an electric planning department to prepare detailed construction drawings, coordinate plans with other utilities, determine the responsibility for trenching and backfilling, and determine that all the necessary easements have been secured, and (4) construction specifications varying the width and depth of the trench with the number and type of utilties occupying the joint trench. Advantages of the common trench program comprise reduced exposure to digups, communication and concern for each utility's facility, water and sewer construction installed before the common trench, and cost sharing that would reduce each facility's construction and restoration costs.

  16. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A. ); Luey, J.K. )

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  17. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy`s Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  18. Simulation of EUV multilayer mirror buried defects

    NASA Astrophysics Data System (ADS)

    Brukman, Matthew J.; Deng, Yunfei; Neureuther, Andrew R.

    2000-07-01

    A new interface has been created to link existing deposition/etching and electromagnetic simulation software, allowing the user to program deposition and etching conditions and then find the reflective properties of the resultant structure. The application studied in this paper is the problem of three-dimensional defects which become buried during fabrication of multilayer mirrors for extreme ultraviolet lithography. The software link reads in surface information in the form of linked triangles, determines all nodes within the triangles, and then creates nodes lying between triangles of different layers to create a 3- dimensional inhomogeneous matrix containing the materials' indices of refraction. This allows etching and depositions to be input into SAMPLE-3D, a multi-surface topology to be generated, and then the electromagnetic properties of the structure to be assessed with TEMPEST. This capability was used to study substrate defects in multilayer mirrors by programming a defect and then sputter-depositing some forty layers on top of the defect. Specifically examined was how the topography depended on sputter conditions and determined the defects' impact on the mirrors' imaging properties. While this research was focused on application to EUV lithography, the general technique may be extended to other optical processes such as alignment and mask defects.

  19. Compressive strain limits for buried pipelines

    SciTech Connect

    Zimmerman, T.J.E.; Stephens, M.J.; DeGeer, D.D.; Chen, Q.

    1995-12-31

    Buried pipelines subjected to large differential ground movements experience deformation-induced stresses and strains that can cause local buckling, or pipe wrinkling. Severe wrinkling is a structural integrity concern, as it can lead to pipeline rupture. To assess this situation, current practice takes a conservative approach that suggests that compressive strains in a pipeline should be limited in order to avoid local buckle initiation. The research project discussed in this paper has developed an alternative approach that recognizes the ability of a pipe to plastically deform and wrinkle without being functionally impaired, provided a rational limit is set on the amount of wrinkling that is allowed to take place. This paper presents and discusses selected results from the four phases of this research work: (1) an assessment of existing data and analytical methods; (2) a large-scale experimental testing program; (3) development of a non-linear finite element model; and (4) development of new design criteria and semi-empirical prediction methods.

  20. Seismic sonar sources for buried mine detection

    NASA Astrophysics Data System (ADS)

    Baker, Steven R.; Muir, Thomas G.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of various means for exciting interface waves (Rayleigh or Scholte) used to reflect from targets. Several seismic sources were examined for sand beach applications, including vibrating shakers, shaker devices configured to preferentially excite interface waves, linear force actuators, and arrays of shaker sources to create directional interface wave beams. Burial of some plate-like or rod-like portion of the vibrating devices was found to ensure good coupling to the beach. The preferential interface excitation device employed two degrees of freedom to mimic the two components of elliptically polarized interface waves, and was successfully demonstrated. However, it was found that at long ranges, the medium itself created two component interface waves from vibrating source radiations operating with one degree of freedom in the vertical plane. Linear force actuators were functional in this mode. An array of seven vertical shakers was utilized to create interface waves at ranges of 5 m, in the form of directional beams, some 8 deg wide at the half-power points, at frequencies around 100 Hz. Application of these devices for target detection is discussed in the companion paper. [Work sponsored by ONR.

  1. Odor analysis of decomposing buried human remains

    SciTech Connect

    Vass, Arpad Alexander; Smith, Rob R; Thompson, Cyril V; Burnett, Michael N; Dulgerian, Nishan; Eckenrode, Brian A

    2008-01-01

    This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the 'odor signatures' unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.

  2. Buried nanoantenna arrays: versatile antireflection coating.

    PubMed

    Kabiri, Ali; Girgis, Emad; Capasso, Federico

    2013-01-01

    Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum. PMID:24266700

  3. Computer vision and sensor fusion for detecting buried objects

    SciTech Connect

    Clark, G.A.; Hernandez, J.E.; Sengupta, S.K.; Sherwood, R.J.; Schaich, P.C.; Buhl, M.R.; Kane, R.J.; DelGrande, N.K.

    1992-10-01

    Given multiple images of the surface of the earth from dual-band infrared sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. Supervised learning pattern classifiers (including neural networks,) are used. We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing information from multiple sensor types. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved problem of detecting buried land mines from an airborne standoff platform.

  4. The problem of burying radioactive wastes containing transplutonium elements (TPE)

    SciTech Connect

    Bryzgalova, R.V.; Krivokhatskii, A.S.; Rogozin, Y.M.; Sinitsyna, G.S.

    1986-09-01

    This paper discusses the problem of burying radioactive wastes containing TPE. The most acceptable and developed method at present is that of disposal into continental, deep-lying, geological formatins. Based on an analysis of estimates of the thermal conditions on burying highly active wastes, including TPE concentrates, data on the filtration and sorption characteristics of rocks, estimates of the diffusion of radionuclide species capable of migrating, and taking into account the retention powers of rocks it is concluded that it is possible to bury such wastes in weakly permeable geological formations possessing shielding characteristics which ensure reliability and safety in burial.

  5. Designable buried waveguides in sapphire by proton implantation

    SciTech Connect

    Laversenne, L.; Hoffmann, P.; Pollnau, M.; Moretti, P.; Mugnier, J.

    2004-11-29

    Buried and stacked planar as well as buried single and parallel channel waveguides are fabricated in sapphire by proton implantation. Good control of the implantation parameters provides excellent confinement of the guided light in each structure. Low propagation losses are obtained in fundamental-mode, buried channel waveguides without postimplantation annealing. Choice of the implantation parameters allows one to design mode shapes with different ellipticity and/or mode asymmetry in each orthogonal direction, thus demonstrating the versatility of the fabrication method. Horizontal and vertical parallelization is demonstrated for the design of one- or two-dimensional waveguide arrays in hard crystalline materials.

  6. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  7. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  8. Identification of buried structures (aerial surveillance and analysis of buried waste) long-range project plan

    SciTech Connect

    Williams, K.L.

    1991-11-01

    This long-range plan presents the plan (i.e., budget, schedule, justification, and plans for technology deployment) for implementation of the Identification of Buried Structures project. Two subcontractors will test and demonstrate their technologies at the Idaho National Engineering Laboratory during October and November 1991, and will analyze their data and submit final reports to EG&G Idaho, Inc., by the end of December 1991. By February 21, 1992, EG&G Idaho will present a final report to the Department of Energy, assessing the subcontractor`s results and recommending further action.

  9. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  10. Mars - Paleostratigraphic restoration of buried surfaces in Tharsis montes

    NASA Technical Reports Server (NTRS)

    Scott, D. H.; Tanaka, K. L.

    1981-01-01

    Volcanism in the Tharsis province of Mars occurred in several different areas and was generally continuous without large time intervals between eruptive episodes. Major lava flow units are numerous and extensive, but relatively thin. In many places, impact craters on buried surfaces project above younger flows that overlie them. A new application of crater dating methods has been developed to aid in the identification of these buried surfaces and to determine their lateral extent. The technique is especially adaptable to the Tharsis region where the stratigraphic succession of major flow units has been established by detailed geologic mapping. Knowledge of the overall stratigraphy allows correlations to be made between known and unknown surfaces by comparing their crater frequencies at diameters large enough to insure their recognition on the buried unit. The method has been applied to aid in the restoration of buried rock units and to construct a series of paleostratigraphic maps showing the sequence of major eruptive events in the Tharsis region.

  11. Carbon limitation patterns in buried and open urban streams

    EPA Science Inventory

    Urban streams alternate between darkened buried segments dominated by heterotrophic processes and lighted open segments dominated by autotrophic processes. We hypothesized that labile carbon leaking from autotrophic cells would reduce heterotrophic carbon limitation in open chan...

  12. Amorphous and Cellular Computing

    NASA Astrophysics Data System (ADS)

    Abelson, Harold; Sussman, Gerald J.; Knight, Thomas F., Jr

    2001-08-01

    The objective of this research is to create the architectural, algorithmic, and technological foundations for exploiting programmable materials. These are materials that incorporate vast numbers of programmable elements that react to each other and to their environment. Such materials can be fabricated economically, provided that the computing elements are amassed in bulk without arranging for precision interconnect and testing. In order to exploit programmable materials we must identify engineering principles for organizing and instructing myriad programmable entities to cooperate to robustly achieve pre-established goals, even though the individual entities are unreliable and interconnected in unknown, irregular, and time-varying ways. Progress in microfabrication and in bioengineering will make it possible to assemble such amorphous systems at almost no cost, provided that (1) the units need not all work correctly; (2) the units are identically programmed; and (3) there is no need to manufacture precise geometrical arrangements of the units or precise interconnections among them.

  13. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  14. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  15. Airblast environments from buried HE charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1993-01-01

    Laboratory experiments were conducted to measure the airblast environment generated by the detonation of buried HE charges. Spherical 0.5-g charges of Nitropenta were used as the HE source. Three ground materials were used: (1) a porous, crushable grout (YTONG, {rho} = 0.4 g/cm{sup 3}); (2) a water-saturated grout ({rho} {approx_equal} 0.7 g/Cm{sup 3}) to investigate the effects of density increase; and (3) a clay-loam material ({rho} {approx_equal} 1.8 g/cm{sup 3}) to simulate some of the previous field tests conducted in clay. Diagnostics consisted of 13 flush-mounted pressure gauges, and single-frame schlieren photography. A special shock isolation system was used to eliminate the acceleration effects on the gauges that were induced by the cratering process. Analysis of the pressure measurements resulted in an experimental definition of the airblast environment as a function of ground range (GR) and depth-of-burst (DOB). Synthesis of these results allowed one to construct airblast DOB curves, similar to the airblast height-of-burst curves that we published previously for Nitropenta charges. Variables analyzed were: peak pressure, arrival time, positive phase duration and impulse. As in field tests, we found that the airblast waveforms changed character with increasing DOB. The crater characteristics (e.a., depth, radius and volume) were also measured. The cube-root-scaled crater volume was in qualitative agreement with data from field tests (e.g., charge weights up to 10{sup 4} lbs.). Since the present scaled results compare well with data from large-scale HE tests, we conclude that the present experimental technique provides a useful tool for parametric investigations of explosion effects in the laboratory.

  16. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. PMID:23942265

  17. Data fusion for the detection of buried land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Schaich, P.C.; Sherwood, R.J.; Buhl, M.R.; Hernandez, J.E.; Kane, R.J.; Barth, M.J.; Fields, D.J.; Carter, M.R.

    1993-10-01

    The authors conducted experiments to demonstrate the enhanced delectability of buried land mines using sensor fusion techniques. Multiple sensors, including imagery, infrared imagery, and ground penetrating radar, have been used to acquire data on a number of buried mines and mine surrogates. The authors present this data along with a discussion of the application of sensor fusion techniques for this particular detection problem. The authors describe the data fusion architecture and discuss some relevant results of these classification methods.

  18. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  19. Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation. There are three possible combinations of BED strategies: (1) buried ducts; (2) encapsulated ducts (with ccSPF); and (3) buried and encapsulated ducts. The best solution for each situation depends on the climate, age of the house, and the configuration of the HVAC system and attic. For new construction projects, the team recommends that ducts be both encapsulated and buried as the minimal planning and costs required for this will yield optimal energy savings. The encapsulated/buried duct strategy, which utilizes ccSPF to address condensation concerns, is an approach that was developed specifically for humid climates.

  20. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B.

    1992-05-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for US products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon US government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United State, and by Germany in the last 2--3 years more than twice that of the US Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W{sub p} for plants with 10 MW/year capacities. 10 refs.

  1. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B. )

    1992-12-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for U.S. products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon U.S. government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United States, and by Germany in the last 2--3 years more than twice that of the U.S. Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W[sub [ital p

  2. Containerless processing of amorphous ceramics

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  3. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. PMID:27460160

  4. Buried object remote detection technology for law enforcement

    NASA Astrophysics Data System (ADS)

    del Grande, Nancy K.; Clark, Gregory A.; Durbin, Philip F.; Fields, David J.; Hernandez, Jose E.; Sherwood, Robert J.

    1991-08-01

    A precise airborne temperature-sensing technology to detect buried objects for use by law enforcement is developed. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. The methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. The method creates color-coded images based on surface temperature variations of 0.2 degree(s)C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1 degree(s)C or 2 degree(s)C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, it is possible to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectral, spatial, thermal, temporal, emissivity and diffusivity signatures. The authors have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less than 60 m deep. The technology could be adapted for drug interdiction and pollution control. For the former, buried tunnels, underground structures built beneath typical surface structures, roof-tops disguised by jungle canopies, and covered containers used for contraband would be located. For the latter, buried waste containers, sludge migration pathways from faulty containers, and the juxtaposition of groundwater channels, if present, nearby, would be depicted. The precise airborne temperature-sensing technology has a promising potential

  5. Fabrication of amorphous diamond films

    DOEpatents

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  6. Raman Spectroscopy of Amorphous Carbon

    SciTech Connect

    Tallant, D.R.; Friedmann, T.A.; Missert, N.A.; Siegal, M.P.; Sullivan, J.P.

    1998-01-01

    Amorphous carbon is an elemental form of carbon with low hydrogen content, which may be deposited in thin films by the impact of high energy carbon atoms or ions. It is structurally distinct from the more well-known elemental forms of carbon, diamond and graphite. It is distinct in physical and chemical properties from the material known as diamond-like carbon, a form which is also amorphous but which has a higher hydrogen content, typically near 40 atomic percent. Amorphous carbon also has distinctive Raman spectra, whose patterns depend, through resonance enhancement effects, not only on deposition conditions but also on the wavelength selected for Raman excitation. This paper provides an overview of the Raman spectroscopy of amorphous carbon and describes how Raman spectral patterns correlate to film deposition conditions, physical properties and molecular level structure.

  7. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  8. Buried object remote detection technology for law enforcement

    SciTech Connect

    Del Grande, N.K.; Clark, G.A.; Durbin, P.F.; Fields, D.J.; Hernandez, J.E.; Sherwood, R.J.

    1991-03-01

    We have developed a precise airborne temperature-sensing technology to detect buried objects for use by law enforcement. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. Our patented methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. Our method creates color-coded images based on surface temperature variations of 0.2 {degrees}C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1{degrees}C or 2{degrees}C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, were are able to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectra, spatial, thermal, temporal, emissivity and diffusivity signatures. We have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less 60 m deep. Our technology could be adapted for drug interdiction and pollution control. 16 refs., 14 figs.

  9. Experimental investigation of buried tritium in plant and animal tissues

    SciTech Connect

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-07-15

    Buried exchangeable tritium appears as part of organically bound tritium (OBT) in the traditional experimental determination of OBT. Since buried tritium quickly exchanges with hydrogen atoms in the body following ingestion, assuming that it is part of OBT rather than part of tritiated water (HTO) could result in a significant overestimate of the ingestion dose. This paper documents an experimental investigation into the existence, amount and significance of buried tritium in plant and fish samples. OBT concentrations in the samples were determined in the traditional way and also following denaturing with five chemical solutions that break down large molecules and expose buried tritium to exchange with free hydrogen atoms. A comparison of the OBT concentrations before and after denaturing, together with the concentration of HTO in the supernatant obtained after denaturing, suggests that buried OBT may exist but makes up less than 5% of the OBT concentration in plants and at most 20% of the OBT concentration in fish. The effects of rinse time and rinse water volumes were investigated to optimize the removal of exchangeable OBT from the samples. (authors)

  10. Amorphous carbon for photovoltaics

    NASA Astrophysics Data System (ADS)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  11. Tabernaemontana divaricata leaves extract exacerbate burying behavior in mice

    PubMed Central

    Chanchal, Raj; Balasubramaniam, Arumugam; Navin, Raj; Nadeem, Sayyed

    2015-01-01

    Objective: Tabernaemontana divaricata (TD) from Apocynaceae family offers the traditional folklore medicinal benefits such as an anti-epileptic, anti-mania, brain tonic, and anti-oxidant. The aim of the present study was to evaluate the effect of ethanolic extract of TD leaves on burying behavior in mice. Materials and Methods: Mice were treated with oral administration (p.o.) of ethanolic extract of TD (100, 200, and 300 mg/kg). Fluoxetine (FLX, a selective serotonin reuptake inhibitor) was used as a reference drug. Obsessive-compulsive behavior was evaluated using marble-burying apparatus. Results: TD at doses of 100, 200, and 300 mg/kg dose-dependently inhibited the obsessive and compulsive behavior. The similar results were obtained from 5, 10, and 20 mg/kg of FLX. TD and FLX did not affect motor activity. Conclusion: The results indicated that TD and FLX produced similar inhibitory effects on marble-burying behavior. PMID:26445709

  12. End effectors and attachments for buried waste excavation equipment

    SciTech Connect

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  13. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  14. Sensor fusion methodology for remote detection of buried land mines

    SciTech Connect

    Del Grande, N.

    1990-04-01

    We are investigation a sensor fusion methodology for remote detection of buried land mines. Our primary approach is sensor intrafusion. Our dual-channel passive IR methodology decouples true (corrected) surface temperature variations of 0.2{degree}C from spatially dependent surface emissivity noise. It produces surface temperature maps showing patterns of conducted heat from buried objects which heat and cool differently from their surroundings. Our methodology exploits Planck's radiation law. It produces separate maps of surface emissivity variations which allow us to reduce false alarms. Our secondary approach is sensor interfusion using other methodologies. For example, an active IR CO{sub 2} laser reflectance channel helps distinguish surface targets unrelated to buried land mines at night when photographic methods are ineffective. Also, the interfusion of ground penetrating radar provides depth information for confirming the site of buried objects. Together with EG G in Las Vegas, we flew a mission at Nellis AFB using the Daedalus dual-channel (5 and 10 micron) IR scanner mounted on a helicopter platform at an elevation of 60 m above the desert sand. We detected surface temperature patterns associated with buried (inert) land mines covered by as much as 10 cm of dry sand. The respective spatial, spectral, thermal, emissivity and temporal signatures associated with buried targets differed from those associated with surface vegetation, rocks and manmade objects. Our results were consistent with predictions based on the annual Temperature Wave Model.They were confirmed by field measurements. The dual-channel sensor fusion methodology is expected to enhance the capabilities of the military and industrial community for standoff mine detection. Other important potential applications are open skies, drug traffic control and environmental restoration at waste burial sites. 11 figs.

  15. Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD

    SciTech Connect

    Ma, Y.; Gao, Q.; Wu, G.G.; Li, W.C.; Gao, F.B.; Yin, J.Z.; Zhang, B.L.; Du, G.T.

    2013-03-15

    Highlight: ► P-type As-doped ZnO thin films was fabricated by MOCVD after post-growth annealing. ► The formation mechanism of p-ZnO with high hole concentration above 10{sup 19} cm{sup −3} was elucidated. ► Besides As{sub Zn}–2V{sub Zn} complex, C impurities also played an important role in realizing p-ZnO. ► The formations of As{sub O} and O-C-O complex were partially contributed to the p-type ZnO: As films. - Abstract: As-doped p-type ZnO thin films were fabricated by metal organic chemical vapor deposition (MOCVD) after in situ annealing in a vacuum. The p-type conduction mechanism was suggested by the analysis of X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy. It was found that most of the As dopants in p-ZnO thin films formed As{sub Zn}–2V{sub Zn} shallow acceptor complex, simultaneously, carbon impurities also played an important role in realizing p-type conductivity in ZnO. Substitutional carbon on oxygen site created passivated defect bands by combining with Ga atoms due to the donor-acceptor pair Coulomb binding, which shifted the valence-band maximum upwards for ZnO and thus increased the hole concentration.

  16. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  17. Buried wire gage for wall shear stress measurements

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1978-01-01

    A buried wire gage for measuring wall shear stress in fluid flow was studied and further developed. Several methods of making this relatively new type of gage were examined to arrive at a successful technique that is well-suited for wind-tunnel testing. A series of measurements was made to demonstrate the adequacy of a two-point calibration procedure for these gages. The buried wire gage is also demonstrated to be ideally suited for quantitative measurement of wall shear stress in wind-tunnel testing.

  18. Nanostructures having crystalline and amorphous phases

    SciTech Connect

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  19. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  20. Generalized melting criterion for amorphization

    SciTech Connect

    Devanathan, R. |; Lam, N.Q.; Okamoto, P.R.; Meshii, M.

    1992-12-01

    We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr{sub 2}, NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Results provide strong support for the generalized melting criterion.

  1. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  2. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance.

    PubMed

    Desta, Derese; Ram, Sanjay K; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R; Jensen, Pia B; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles. PMID:27244247

  3. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Cover over buried pipeline. 195.248 Section 195.248 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION...

  4. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Cover over buried pipeline. 195.248 Section 195.248 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION...

  5. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cover over buried pipeline. 195.248 Section 195.248 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION...

  6. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Cover over buried pipeline. 195.248 Section 195.248 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION...

  7. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE PAGESBeta

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  8. Environmental effects on detection of buried mines and UXO

    NASA Astrophysics Data System (ADS)

    Detsch, Richard M.; Jenkins, Thomas F.; Arcone, Steven A.; Koh, Gary; O'Neill, Kevin

    1998-09-01

    Several studies are under way at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) to define environmental effects on detection and classification of buried mines and unexploded ordnance (UXO). Ground that is very wet, frozen, or snow covered can pose severe constraints on demining operations. The qualitative and quantitative nature of chemical signatures of buried land mines is being documented. Research to date indicates that although 2,4,6- trinitrotoluene constitutes over 99% of military-grade TNT, it is a minor component of the vapor signature at ground level. CRREL operates a year-round test site to determine the effect of weather on radar and IR systems used to detect buried mines. The New England site experiences many of the weather conditions likely to interfere with mine detection around the world. Short-pulse ground penetrating radar (GPR) was used to profile both ordnance and non-ordnance targets at the 40-acre UXO site at Jefferson Proving Ground. Analysis of the data indicates that future systems will have to operate at faster data acquisition rates. Radar modeling is being used to simulate the effects of the environment and identify new techniques for finding and classifying buried ferrous objects.

  9. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form (Iron-Enriched Basalt (IEB) glass/ceramic). The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  10. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  11. Risk and cost tradeoffs for remote retrieval of buried waste

    SciTech Connect

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  12. Detection of concealed and buried chemicals by using multifrequency excitations

    SciTech Connect

    Gao Yaohui; Chen, Meng-Ku; Yang, Chia-En; Chang, Yun-Ching; Yao, Jim; Cheng Jiping; Yin, Stuart; Hui Rongqing; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Luo, Claire

    2010-08-15

    In this paper, we present a new type of concealed and buried chemical detection system by stimulating and enhancing spectroscopic signatures with multifrequency excitations, which includes a low frequency gradient dc electric field, a high frequency microwave field, and higher frequency infrared (IR) radiations. Each excitation frequency plays a unique role. The microwave, which can penetrate into the underground and/or pass through the dielectric covers with low attenuation, could effectively transform its energy into the concealed and buried chemicals and increases its evaporation rate from the sample source. Subsequently, a gradient dc electric field, generated by a Van De Graaff generator, not only serves as a vapor accelerator for efficiently expediting the transportation process of the vapor release from the concealed and buried chemicals but also acts as a vapor concentrator for increasing the chemical concentrations in the detection area, which enables the trace level chemical detection. Finally, the stimulated and enhanced vapors on the surface are detected by the IR spectroscopic fingerprints. Our theoretical and experimental results demonstrate that more than sixfold increase in detection signal can be achieved by using this proposed technology. The proposed technology can also be used for standoff detection of concealed and buried chemicals by adding the remote IR and/or thermal spectroscopic and imaging detection systems.

  13. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  14. Ice formation in amorphous cellulose

    NASA Astrophysics Data System (ADS)

    Czihak, C.; Müller, M.; Schober, H.; Vogl, G.

    2000-03-01

    We investigate the formation of ice in wet amorphous cellulose in the temperature range of 190 K⩽T⩽280 K. Due to voids and pores in the cellulose film, water molecules are able to form crystalline aggregates. Beyond that, water is able to penetrate between cellulose chains where it can adsorb to hydroxyl side groups. From diffraction data we suggest an aggregation of low-density amorphous (lda) ice at cellulose surfaces. The formation of lda ice shows a clear temperature dependence which will be discussed together with recent inelastic neutron scattering results.

  15. Amorphous-silicon cell reliability testing

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  16. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  17. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  18. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  19. TEM-simulation of amorphous carbon films: influence of supercell packaging.

    PubMed

    Schultrich, H; Schultrich, B

    2001-07-01

    Recent developments in thin film technology allow to prepare deliberately amorphous carbon films with structures widely varying between graphite-like (sp2) and diamond-like (sp3) atomic bonds. This leads to amorphous structures with correspondingly varying densities. By periodically changing deposition conditions, nanometer multilayers may be prepared consisting of carbon layers of different density. Simulation of the electron microscopic imaging allows to differentiate between such real structural details (on the nanometer scale) and artefacts induced by the imaging procedure. But it must be assured that the modeled structure reflects the real one with sufficient accuracy. Thorough comparison of different simulation strategies shows that for the adequate simulation of TEM imaging of amorphous materials, the thickness of the layer with independently distributed atoms has to exceed a certain limit. Then, the statistical scattering of the randomly distributed atoms will be averaged. Otherwise, if the model of the transmission electron microscopy sample is constructed as iteration of thin identical supercells, the superposition of scattering waves with constant phase differences results in enhanced local fluctuations burying the multilayer structure. For thicker packages of supercells with independent random distributions, the effect of statistical atomic arrangements is more and more leveled off. Hence, nanometer structures based on regions with different density will be visible more distinctively in the random background. For carbon, this critical thickness amounts to about 4 nm. This is of special importance for the visualization of nanoscaled heterogeneities like multilayers or nanotube-like inclusions in amorphous matrices. PMID:11419873

  20. Amorphous rare earth magnet powders

    SciTech Connect

    Sellers, C.H.; Branagan, D.J.; Hyde, T.A.; Lewis, L.H.; Panchanathan, V.

    1996-08-01

    Gas atomization (GA) processing does not generally have a high enough cooling rate to produce the initial amorphous microstructure needed to obtain optimal magnetic properties in RE{sub 2}Fe{sub 14}B alloys. Phase separation and an underquenched microstructure result from detrimental {alpha}-Fe precipitation, and the resulting magnetic domain structure is very coarse. Additionally, there is a dramatic dependence of the magnetic properties on the cooling rate (and therefore the particle size) and the powders can be sensitive to environmental degradation. Alloy compositions designed just for GA (as opposed to melt spinning) are necessary to produce an amorphous structure that can be crystallized to result in a fine structure with magnetic properties which are independent of particle size. The addition of titanium and carbon to the melt has been found to change the solidification process sufficiently to result in an ``overquenched`` state in which most of the powder size fractions have an amorphous component. Crystallization with a brief heat treatment produces a structure which has improved magnetic properties, in part due to the ability to use compositions with higher Fe contents without {alpha}-Fe precipitation. Results from magnetometry, magnetic force microscopy, and x-ray analyses will be used to contrast the microstructure, domain structure, and magnetic properties of this new generation of amorphous powders with their multiphase predecessors.

  1. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  2. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  3. Electromagnetic response of buried cylindrical structures for line current excitation

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Ponti, Cristina

    2013-04-01

    The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[2]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground [3]. Obstacles of general shape can be simulated through the CWA with good results, by using a suitable set of small circular-section cylinders [4]. Recently, we improved the CWA by facing the fundamental problem of losses in the ground [5]: this is of significant importance in remote-sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. While in previous works concerning the CWA a monochromatic or pulsed plane-wave incident field was considered, in the present work a different source of scattering is present: a cylindrical wave radiated by a line source. Such a source is more suitable to model the practical illumination field used in GPR surveys. The electric field radiated by the line current is expressed by means of a first-kind Hankel function of 0-th order. The theoretical solution to the scattering problem is developed for both dielectric and perfectly-conducting cylinders buried in a dielectric half-space. The approach is implemented in a Fortran code; an accurate numerical evaluation of the involved spectral integrals is performed, the highly-oscillating behavior of the homogeneous waves is correctly followed and evanescent contributions are taken into account. The electromagnetic field scattered in both air and ground can be obtained, in near- and far-field regions, for arbitrary radii and permittivity of the buried cylinders, as well as for

  4. New Screw Design for Securing Buried Distractors Usefulness and Ease of Removal.

    PubMed

    Fariña, Rodrigo; Hinojosa, Andrés; Sánchez, Martín; Olate, Sergio

    2015-07-01

    There are 2 types of distraction devices for mandibular distraction: buried and external. The advantage of buried devices is the stability, but the difficulty in removing the screws is the greatest disadvantage. To resolve this problem, an osteosynthesis screw (Fariña Screw) has been designed, which greatly facilitates its removal when buried distractors are used. PMID:26102540

  5. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  6. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  7. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  8. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  9. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  10. Amorphous metal-organic frameworks.

    PubMed

    Bennett, Thomas D; Cheetham, Anthony K

    2014-05-20

    Crystalline metal-organic frameworks (MOFs) are porous frameworks comprising an infinite array of metal nodes connected by organic linkers. The number of novel MOF structures reported per year is now in excess of 6000, despite significant increases in the complexity of both component units and molecular networks. Their regularly repeating structures give rise to chemically variable porous architectures, which have been studied extensively due to their sorption and separation potential. More recently, catalytic applications have been proposed that make use of their chemical tunability, while reports of negative linear compressibility and negative thermal expansion have further expanded interest in the field. Amorphous metal-organic frameworks (aMOFs) retain the basic building blocks and connectivity of their crystalline counterparts, though they lack any long-range periodic order. Aperiodic arrangements of atoms result in their X-ray diffraction patterns being dominated by broad "humps" caused by diffuse scattering and thus they are largely indistinguishable from one another. Amorphous MOFs offer many exciting opportunities for practical application, either as novel functional materials themselves or facilitating other processes, though the domain is largely unexplored (total aMOF reported structures amounting to under 30). Specifically, the use of crystalline MOFs to detect harmful guest species before subsequent stress-induced collapse and guest immobilization is of considerable interest, while functional luminescent and optically active glass-like materials may also be prepared in this manner. The ion transporting capacity of crystalline MOFs might be improved during partial structural collapse, while there are possibilities of preparing superstrong glasses and hybrid liquids during thermal amorphization. The tuning of release times of MOF drug delivery vehicles by partial structural collapse may be possible, and aMOFs are often more mechanically robust than

  11. Field test plan: Buried waste technologies, Fiscal Year 1995

    SciTech Connect

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

  12. Continuum soil modeling in the static analysis of buried structures

    SciTech Connect

    Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.

    1993-10-01

    Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy`s Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement.

  13. Burying flowlines and cables in 186-m water

    SciTech Connect

    Cameron, G.

    1983-07-01

    UDI Group Ltd. and British Petroleum Development Ltd. have developed a 30-ton remote controlled seabed vehicle. The vehicle was built with the expressed purpose of burying the 35 km of flowlines for the remote wellheads on the Magnus field in 186-m of water, in order to increase thermal insulation of pipelines and to produce a greater degree of physical protection against damage from fishing gear, etc. During the 1981 trials, it was decided to carry out further development of the system for simultaneous laying and burial of the control umbilicals required for the remote wellhead controls on Magnus. For this work, it was necessary for each control umbilical to be positioned alongside its respective flowline along the route between the wellhead and the platform. At the platform end of the route, the flowlines and umbilicals are densely concentrated, and accuracy is required in the laying and burying of the umbilicals.

  14. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  15. In situ grouting of buried transuranic waste with polyacrylamide

    SciTech Connect

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs.

  16. Technology Solutions Case Study: Buried and Encapsulated Ducts, Jacksonville, Florida

    SciTech Connect

    2013-11-01

    Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation; specifically for use in humid climates.

  17. Vertical Bipolar Charge Plasma Transistor with Buried Metal Layer

    PubMed Central

    Nadda, Kanika; Kumar, M. Jagadesh

    2015-01-01

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · fT product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities. PMID:25597295

  18. Aeromagnetic Expression of Buried Basaltic Volcanoes Near Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, D. W.; Mankinen, E.A.; Blakely, R.J.; Langenheim, V.E.; Ponce, D.A.

    2002-01-01

    A high-resolution aeromagnetic survey has defined a number of small dipolar anomalies indicating the presence of magnetic bodies buried beneath the surface of Crater Flat and the Amargosa Desert. Results of potential-field modeling indicate that isolated, small-volume, highly magnetic bodies embedded within the alluvial deposits of both areas produce the anomalies. Their physical characteristics and the fact that they tend to be aligned along major structural trends provide strong support for the hypothesis that the anomalies reflect buried basaltic volcanic centers. Other, similar anomalies are identified as possible targets for further investigation. High-resolution gravity and ground-magnetic surveys, perhaps along with drilling sources of selected anomalies and radiometric age determinations, can provide valuable constraints in estimating potential volcanic hazard to the potential nuclear waste repository at Yucca Mountain.

  19. Schedule optimization for IR detection of buried targets

    NASA Astrophysics Data System (ADS)

    Derzko, Zenon; Eylander, John B.; Broach, J. Thomas

    2012-06-01

    Schedule optimization of air platforms for IR sensors is a priority because of 1) the time sensitive nature of the IR detection of buried targets, 2) limited air platform assets, and 3) limited bandwidth for live-feed video. Scheduling optimization for airborne IR sensors depends on transient meteorological predictions, transient soil properties, target type and depth. This work involves using predictions from the Weather Research and Forecasting (WRF) model, a regional weather model, as input to the Countermine Computational Test Bed (CTB), a 3D finite element model that accounts for coupled heat and moisture transfer in soil and targets. The result is a continuous 2-day optimized schedule for airborne IR assets. In this paper, a 2-day optimized schedule for an airborne IR sensor asset is demonstrated for a single geographical location with a buried target. Transient physical surface and subsurface soil temperatures are presented as well as the phase-shifted, transient thermal response of the target.

  20. Common causes of material degradation in buried piping

    SciTech Connect

    Jenkins, C.F.

    1997-01-20

    Buried pipe may fail for innumerable reasons. Causes can be mechanical damage/breakage, chemically initiated corrosion, or a combination. Failures may originate either internally or externally on the pipe. They may be related to flaws in the design, to excessive or unanticipated internal pressure or ground level loading, and/or to poor or uncertain installation practice. Or the pipe may simply ``wear out`` in service. Steel is strong and very forgiving in underground applications, especially with regard to backfill. However, soil support developed through densification or compaction is critical for brittle concrete and vitrified clay tile pipe, and is very important for cast iron and plastic pipe. Chemistry of the soil determines whether or not it will enhance corrosion or other types of degradation. Various causes and mechanisms for deterioration of buried pipe are indicated. Some peculiarities of the different materials of construction are characterized. Repair methods and means to circumvent special problems are described.

  1. FY-94 buried waste integrated demonstration program report

    SciTech Connect

    Not Available

    1994-11-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER/WM) needs and objectives. This document summarizes previous demonstrations and describes the FY-94 BWID technology development and demonstration activities. Sponsored by the DOE Office of Technology Development (OTD), BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process.

  2. Prediction of the TNT signature from buried UXO/landmines

    SciTech Connect

    Webb, S.W.; Phelan, J.M.; Finsterle, S.A.; Pruess, K.

    1998-06-01

    The detection and removal of buried unexploded ordnance (UXO) and landmines is one of the most important problems facing the world today. Numerous detection strategies are being developed, including infrared, electrical conductivity, ground-penetrating radar, and chemical sensors. Chemical sensors rely on the detection of TNT molecules, which are transported from buried UXO/landmines by advection and diffusion in the soil. As part of this effort, numerical models are being developed to predict TNT transport in soils including the effect of precipitation and evaporation. Modifications will be made to TOUGH2 for application to the TNT chemical sensing problem. Understanding the fate and transport of TNT in the soil will affect the design, performance and operation of chemical sensors by indicating preferred sensing strategies.

  3. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  4. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  5. Quantitation of buried contamination by use of solvents

    NASA Technical Reports Server (NTRS)

    Pappas, S. P.; Hsiao, P.; Hill, L. W.

    1973-01-01

    A method for determining the quantity of buried contamination using solvents is presented. A nonsporocidal method with which high spore recoveries are achievable from silicone coatings and potting compounds was developed. An extension of the method to silicon potting compound RTV 60 is reported. It is stated that spores remain viable during chemical curing of silicone potting compounds and more than ninety percent of the spore population is recoverable by amine dissolution and proper plating techniques.

  6. Detection of buried objects using reflected GNSS signals

    NASA Astrophysics Data System (ADS)

    Notarpietro, Riccardo; De Mattia, Salvatore; Campanella, Maurizio; Pei, Yuekun; Savi, Patrizia

    2014-12-01

    The use of reflected Global Navigation Satellite System (GNSS) signals for sensing the Earth has been growing rapidly in recent years. This technique is founded on the basic principle of detecting GNSS signals after they have been reflected off the Earth's surface and using them to determine the properties of the reflecting surface remotely. This is the so-called GNSS reflectometry (GNSS-R) technique. In this paper, a new application regarding the detection of metallic buried objects is analyzed and it is validated through several experimental campaigns. Although the penetration depth of GNSS signals into the ground is not optimal and depends on the soil moisture, GNSS signals can likely interact approximately with the first 10 cm of the ground and therefore can be reflected back by any metallic object buried on the first terrain layer. A very light and low-cost GNSS receiver prototype based on a software-defined radio approach was developed. This receiver can be used as a payload on board small drones or unmanned aerial systems to detect metallic objects (mines or other explosive devices). A signal processing tool based on an open-loop GNSS signal acquisition strategy was developed. The results of two experiments which show the possibility of using GNSS-R signals to detect buried metallic objects and to provide an estimate of their dimensions are discussed.

  7. Buried-euxenic-basin model sets Tarim basin potential

    SciTech Connect

    Hsu, K.J. )

    1994-11-28

    The Tarim basin is the largest of the three large sedimentary basins of Northwest China. The North and Southwest depressions of Tarim are underlain by thick sediments and very thin crust. The maximum sediment thickness is more than 15 km. Of the several oil fields of Tarim, the three major fields were discovered during the last decade, on the north flank of the North depression and on the Central Tarim Uplift. The major targets of Tarim, according to the buried-euxenic-basin model, should be upper Paleozoic and lower Mesozoic reservoirs trapping oil and gas condensates from lower Paleozoic source beds. The paper describes the basin and gives a historical perspective of exploration activities and discoveries. It then explains how this basin can be interpreted by the buried-euxenic-basin model. The buried-euxenic-basin model postulates four stages of geologic evolution: (1) Sinian and early Paleozoic platform sedimentation on relic arcs and deep-marine sedimentation in back-arc basins in Xinjiang; (2) Late Paleozoic foreland-basin sedimentation in north Tarim; (3) Mesozoic and Paleogene continental deposition, subsidence under sedimentary load; and (4) Neogene pull-apart basin, wrench faulting and extension.

  8. Degradation of carbohydrates and lignins in buried woods

    USGS Publications Warehouse

    Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James, Barbour R.; Hatcher, P.G.

    1985-01-01

    Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > ??-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source. ?? 1985.

  9. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    SciTech Connect

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.

  10. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  11. Exoelectron analysis of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Dekhtyar, Yu. D.; Vinyarskaya, Yu. A.

    1994-04-01

    The method based on registration of photothermostimulated exoelectron emission (PTSE) is used in the proposed new field of investigating the structural defects in amorphous silicon (a-Si). This method can be achieved if the sample under investigation is simultaneously heated and illuminated by ultraviolet light. The mechanism of PTSE from a-Si has been studied in the case of a hydrogenized amorphous silicon (a-Si:H) film grown by glow discharge method. The electronic properties and annealing of defects were analyzed in the study. It has been shown from the results that the PTSE from a-Si:H takes place as a prethreshold single-photon external photoeffect. The exoemission spectroscopy of a-Si:H was shown to be capable in the study of thermally and optically stimulated changes in the electronic structure of defects, their annealing, as well as diffusion of atomic particles, such as hydrogen.

  12. Uranium incorporation into amorphous silica.

    PubMed

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination. PMID:24984107

  13. Nature of the AX center participating persistent photoconductivity effect in As-doped p-ZnO

    NASA Astrophysics Data System (ADS)

    Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Youn, C. J.; Hong, K. J.

    2013-08-01

    The possible nature of metastable capture centers giving rise to persist photoconductivity (PPC) effect in As-doped p-ZnO was investigated using the photoluminescence result. Through the plot of log σph vs. 1/T and temperature-dependent PPC-decay process, the metastable trapping centers were extracted to be 15.1, 178.2, 180.6, and 291.9 meV. The shallow level of 15.1 meV was related to the binding energy of the neutral acceptor bound exciton. Also, the deep levels of 178.2 and 180.6 meV were caused by complex acceptor states of AsZn-2VZn located at 185 meV above the edge of the valence band. Furthermore, the trapping center of 291.9 meV was corresponded to the hole capture barrier of VZn located at 300 meV above the valence band. Therefore, these trapping centers were deeply related to the AX centers originating the native defects due to VZn or defect complexes of the As-implanted dopant in ZnO. Also, these defects, induced by the metastable AX centers, were concluded to be responsible for the PPC effect.

  14. Visual Observations of the Amorphous-Amorphous Transition in H2O Under Pressure.

    PubMed

    Mishima, O; Takemura, K; Aoki, K

    1991-10-18

    The vapor-deposited low-density amorphous phase of H(2)O was directly compressed at 77 kelvin with a diamond-anvil cell, and the boundary between the low-density amorphous phase and the high-density amorphous phase was observed while the sample was warmed under compression. The transition from the low-density amorphous phase to the high-density amorphous phase was distinct and reversible in an apparently narrow pressure range at approximately 130 to approximately 150 kelvin, which provided experimental evidence for polymorphism in amorphous H(2)O. PMID:17742228

  15. Structural Modelling of Two Dimensional Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avishek

    The continuous random network (CRN) model of network glasses is widely accepted as a model for materials such as vitreous silica and amorphous silicon. Although it has been more than eighty years since the proposal of the CRN, there has not been conclusive experimental evidence of the structure of glasses and amorphous materials. This has now changed with the advent of two-dimensional amorphous materials. Now, not only the distribution of rings but the actual atomic ring structure can be imaged in real space, allowing for greater charicterization of these types of networks. This dissertation reports the first work done on the modelling of amorphous graphene and vitreous silica bilayers. Models of amorphous graphene have been created using a Monte Carlo bond-switching method and MD method. Vitreous silica bilayers have been constructed using models of amorphous graphene and the ring statistics of silica bilayers has been studied.

  16. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  17. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  18. Amorphous powders for inhalation drug delivery.

    PubMed

    Chen, Lan; Okuda, Tomoyuki; Lu, Xiang-Yun; Chan, Hak-Kim

    2016-05-01

    For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles. PMID:26780404

  19. A Large Buried Felsic Component in the Ancient Martian Crust?

    NASA Astrophysics Data System (ADS)

    Baratoux, D.; Monnereau, M.; Samuel, H.; Michaut, C.; Wieczorek, M. A.; Garcia, R.

    2014-12-01

    A new range of crustal density values for Mars was calculated from the major element chemistry of Martian meteorites
(3100 - 3700 kg/m3), igneous rocks at Gusev crater (3100 - 3600 kg/m3) and from the surface concentration of Fe, Al, Ca, Si, and K measured by the Gamma-Ray Spectrometer (GRS) (3250 - 3450 kg/m3) (Baratoux et al., 2014). Whereas a dense basaltic crust would be compatible with the moment of inertia factor of Mars, its thickness would exceed 100 km. Such a thick crust is not compatible with the geoid-to-topography ratios in the highlands, and would be unstable and prone to basal flow and/or crustal delamination. An alternative possibility is the existence of a buried light felsic or anorthositic component. A low-density crustal component in the highlands would be consistent with an isostatic compensation associated with a difference in elevation between the two hemispheres of Mars. This alternative is reinforced in the context of the findings of felsic or anorthositic material from visible/NIR spectroscopy (Carter and Poulet, 2013, Wray et al. 2013), and the identification of feldspar-rich rocks at Gale crater (Sautter et al., 2014), whereas felsic lithologies were already identified by Pathfinder. The recently identified outcrops could be either remnants of an ancient anorthositic crust or the result of local igneous differentiation of plutonic bodies. The latter interpretation is currently preferred as early Mars conditions should not be compatible with the formation of a plagioclase floatation crust (Elkins-Tanton et al., 2005). However, in light of the geophysical and petrological constraints discussed above, and given the absence of abundant light material at the surface, we advocate for the existence of a buried anorthositic crustal component that has been largely buried by volcanic material of basaltic composition in the late Noachian or Hesperian eras. Implications regarding the magma ocean scenario for Mars will be discussed.

  20. Reflection Seismic Imaging of Buried Valleys, Onshore Denmark

    NASA Astrophysics Data System (ADS)

    Lykke-Andersen, H.; Jørgensen, F.; Nørmark, E.

    The steadily increasing demands for securing supplies of clean groundwater have in recent years led to the adoption of reflection seismics in the family of geophysical methods used for groundwater research in Denmark. Buried valleys- often some km wide and a few hundred metres deep - have proved to be important sites for deeply seated, well protected groundwater reservoirs. It is a well known fact that the structure of buried valleys is complicated. With their potential for generation of relatively high resolution images of depositional and tectonic structures, reflection seismics have be- come a valuable supplement to the traditional resistivity methods in the study of buried valleys. Reflection seismic is an expensive method compared to other methods in use for groundwater research; therefore, careful selection of profile locations is mandatory. A practice has developed where selection of locations are based on mapping results obtained by resistivity methods. Results obtained by dynamite and vibrator sources are presented. Experience shows that the quality of the two data types is comparable. Vertical resolution better than ca. 10 m can be obtained, but the bandwidth of data is variable. In areas where non-(water) saturated shallow sediments are present; the bandwidth may be strongly reduced. Depth penetration down to at least one km is normally obtained. The seismic data are tied to wells by means of vertical seismic profiles in exploratory wells. Results are presented to illustrate: 1) potentials and limi- tations of the method and 2) a number of valleys with different types of valley-fill and relationships with the substratum. The genesis of the valleys will be briefly discussed.

  1. The thermal regime around buried submarine high voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-05-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70°C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near surface sediments are poorly understood. We present temperature measurements from a 2D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments-coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples, to measure the time-dependent 2D temperature distributions. The observed and corresponding Finite Element Method (FEM) simulations of the steady state heat flow regimes, and normalised radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10°C up to 40 cm from the source of 60°C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between c. 20°C and 36°C above ambient, with >10°C heat increases occurring over a metre from the source of 55°C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (c. 7°C) operating temperatures and reaching temperatures of up to 18°C above ambient at a metre from the source at surface temperatures of only 18°C. These findings are important for the surrounding near surface

  2. Ancient buried submarine trough, northwest Gulf of Mexico

    USGS Publications Warehouse

    Berryhill, H.L., Jr.

    1981-01-01

    A large buried submarine trough crosses the seaward margin of the continental shelf off the southwest coast of Louisiana. Original length was about 90 km, and width at the shelf edge was 16 km. Maximum eroded depth may have been as much as 305 m. Seismic characteristics of the prograded fill indicate cyclically repeated sequences of retrogressive deltaic and partly slumped sediments overlain by well-layered transgressive deposits. Slumping was increasingly prevalent toward the shelf edge. The cyclic sequences indicate that the trough was a passageway for large volumes of sediment onto the continental slope during several stages of lowered sea level. ?? 1981 A.M. Dowden, Inc.

  3. Approximation functions for airblast environments from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-11-01

    In EMI report E 1/93, ``Airblast Environments from Buried HE-Charges,`` fit functions were used for the compact description of blastwave parameters. The coefficients of these functions were approximated by means of second order polynomials versus DOB. In most cases, the agreement with the measured data was satisfactory; to reduce remaining noticeable deviations, an approximation by polygons (i.e., piecewise-linear approximation) was used instead of polynomials. The present report describes the results of the polygon approximation and compares them to previous data. We conclude that the polygon representation leads to a better agreement with the measured data.

  4. Technology status report: In situ vitrification applied to buried wastes

    SciTech Connect

    Thompson, L.E.; Bates, S.O.; Hansen, J.E.

    1992-09-01

    This document is a technical status report on In Situ Vitrification (ISV) as applied to buried waste; the report takes both technical and institutional concerns into perspective. The ISV process involves electrically melting such contaminated solid media as soil, sediment, sludge, and mill tailings. The resultant product is a high-quality glass-and-crystalline waste form that possesses high resistance to corrosion and leaching and is capable of long-term environmental exposure without significant degradation. The process also significantly reduces the volume of the treated solid media due to the removal of pore spaces in the soil.

  5. Polarization lidar measurements of honeybees for locating buried landmines

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.; Seldomridge, Nathan L.; Dunkle, Dustin L.; Nugent, Paul W.; Spangler, Lee H.; Churnside, James H.; Wilson, James W.; Bromenshenk, Jerry J.; Henderson, Colin B.

    2005-08-01

    A polarization-sensitive lidar was used to detect honeybees trained to locate buried landmines by smell. Lidar measurements of bee location agree reasonably well with maps of chemical plume strength and bee density determined by visual and video counts, indicating that the bees are preferentially located near the explosives and that the lidar identifies the locations of higher bee concentration. The co-polarized lidar backscatter signal is more effective than the cross-polarized signal for bee detection. Laboratory measurements show that the depolarization ratio of scattered light is near zero for bee wings and up to approximately thirty percent for bee bodies.

  6. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    SciTech Connect

    Not Available

    1993-09-01

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests.

  7. Defensive burying in rodents: ethology, neurobiology and psychopharmacology.

    PubMed

    De Boer, Sietse F; Koolhaas, Jaap M

    2003-02-28

    Defensive burying refers to the typical rodent behavior of displacing bedding material with vigorous treading-like movements of their forepaws and shoveling movements of their heads directed towards a variety of noxious stimuli that pose a near and immediate threat, such as a wall-mounted electrified shock-prod. Since its introduction 25 years ago by Pinel and Treit [J. Comp. Physiol. Psychol. 92 (1978) 708], defensive (shock-prod) burying has been the focus of a considerable amount of research effort delineating the methodology/ethology, psychopharmacology and neurobiology of this robust and species-specific active avoidance or coping response. The present review gives a summary of this research with special reference to the behavioral (face and construct) and pharmacological (predictive) validity of the shock-prod burying test as an animal model for human anxiety. Emphasis is also placed on some recent modifications of the paradigm that may increase its utility and reliability as to individual differences in expressed emotional coping responses and sensitivity to pharmacological treatments. Overall, the behavioral and physiological responses displayed in the shock-prod paradigm are expressions of normal and functionally adaptive coping patterns and the extremes of either active (i.e., burying) or passive (i.e., freezing) forms of responding in this test cannot simply be regarded as inappropriate, maladaptive or pathological. For this reason, the shock-prod paradigm is not an animal model for anxiety disorder or for any other psychiatric disease, but instead possesses a high degree of face and construct validity for normal and functionally adaptive human fear and anxious apprehension. However, the apparent good pharmacological validation (predictive validity) of this test reinforces the view that normal and pathological anxiety involves, at least partly, common neurobiological substrates. Therefore, this paradigm is not only suitable for screening potential

  8. Elastic Phase Response of Silica Nanoparticles Buried in Soft Matter

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Lynch, Rachel M; Voy, Brynn H; Shekhawat, Gajendra; Dravid, Vinayak; Thundat, Thomas George

    2008-01-01

    Tracking the uptake of nanomaterials by living cells is an important component in assessing both potential toxicity and in designing future materials for use in vivo. We show that the difference in the local elasticity at the site of silica (SiO{sub 2}) nanoparticles confined within a macrophage enables functional ultrasonic interactions. By elastically exciting the cell, a phase perturbation caused by the buried SiO{sub 2} nanoparticles was detected and used to map the subsurface populations of nanoparticles. Localization and mapping of stiff chemically synthesized silica nanoparticles within the cellular structures of a macrophage are important in basic as well as applied studies.

  9. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  10. Explosive fluid transmitted shock method for mining deeply buried coal

    DOEpatents

    Archibald, Paul B.

    1976-06-22

    A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.

  11. Low-Frequency Electromagnetic Backscatter from Buried Tunnels

    SciTech Connect

    Casey, K; Pao, H

    2006-06-21

    This progress report is submitted under a contract between the Special Project Office of DARPA and Lawrence Livermore National Laboratory. The Project Manager at DARPA is Dr. Michael Zatman. Our purpose under this contract is to investigate interactions between electromagnetic waves and a class of buried targets located in multilayered media with rough interfaces. In this report, we investigate three preliminary problems. In each case our specific goal is to understand various aspects of the electromagnetic wave interaction mechanisms with targets in layered media. The first problem, discussed in Section 2, is that of low-frequency electromagnetic backscattering from a tunnel that is cut into a lossy dielectric half-space. In this problem, the interface between the upper (free space) region and the lower (ground) region is smooth. The tunnel is assumed to be a cylindrical free-space region of infinite extent in its axial direction and with a diameter that is small in comparison to the free-space wavelength. Because its diameter is small, the tunnel can be modeled as a buried ''wire'' described by an equivalent impedance per unit length. In Section 3 we extend the analysis to include a statistically rough interface between the air and ground regions. The interface is modeled as a random-phase screen. Such a screen reduces the coherent power in a plane wave that is transmitted through it, scattering some of the total power into an incoherent field. Our analysis of this second problem quantifies the reduction in the coherent power backscattered from the buried tunnel that is caused by the roughness of the air-ground interface. The problem of low-frequency electromagnetic backscattering from two buried tunnels, parallel to each other but at different locations in the ground, is considered in Section 4. In this analysis, we wish to determine the conditions under which the presence of more than one tunnel can be detected via backscattering. Section 5 concludes the report

  12. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments-coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near

  13. Plasma Deposition of Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  14. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  15. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  16. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  17. Ductile crystalline-amorphous nanolaminates.

    PubMed

    Wang, Yinmin; Li, Ju; Hamza, Alex V; Barbee, Troy W

    2007-07-01

    It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper-zirconium glass nanolaminates. These nanocrystalline-amorphous nanolaminates exhibit a high flow stress of 1.09 +/- 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 +/- 1.7%, which is six to eight times higher than that typically observed in conventional crystalline-crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous-crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility. PMID:17592136

  18. Studies of hydrogenated amorphous silicon

    SciTech Connect

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  19. Beam and shell modes of buckling of buried pipes induced by compressive ground failure

    SciTech Connect

    Chiou, Y.J.; Chi, S.Y.

    1995-12-31

    The buckling of buried pipeline induced by compressive ground failure was investigated. Both the beam mode of buckling and local shell mode of buckling, and their interactions were studied. The pipeline response was analyzed numerically. The results agree qualitatively with past researches and possess satisfactory comparisons with actual case histories. The relations of critical buried depth versus ratio of pipe diameter to thickness for buried pipe with different imperfections and various soil foundations were established.

  20. Note: Laser ablation technique for electrically contacting a buried implant layer in single crystal diamond

    SciTech Connect

    Ray, M. P.; Baldwin, J. W.; Butler, J. E.; Pate, B. B.; Feygelson, T. I.

    2011-05-15

    The creation of thin, buried, and electrically conducting layers within an otherwise insulating diamond by annealed ion implantation damage is well known. Establishing facile electrical contact to the shallow buried layer has been an unmet challenge. We demonstrate a new method, based on laser micro-machining (laser ablation), to make reliable electrical contact to a buried implant layer in diamond. Comparison is made to focused ion beam milling.

  1. Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Leng, Chuan; Del Grosso, Chelsey; Smith, Gary D; Wilker, Jonathan J; Chen, Zhan

    2014-05-01

    A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies. PMID:24784085

  2. Helmet-mounted uncooled FPA camera for buried object detection

    NASA Astrophysics Data System (ADS)

    Miller, John L.; Duvoisin, Herbert A., III; Wiltsey, George

    1997-08-01

    Software neural nets hosted on a parallel processor can analyze input from an IR imager to evaluate the likelihood of a buried object. However, it is only recently that low weight, staring LWIR sensors have become available in uncooled formats at sensitivities that provide enough information for useful man-portable helmet mounted applications. The images from the IR are presented to a human user through a see-through display after processing and highlighting by a neural net housed in a fanny-pack. This paper describes the phenomenology of buried object detection in the infrared, the neural net based image processing, the helmet mounted IR sensor and the ergonomics of mounting a sensor to head gear. The maturing and commercialization of uncooled focal plane arrays and high density electronics enables lightweight, low cost, small camera packages that can be integrated with hard hats and military helmets. The head gear described has a noise equivalent delta temperature (NEDT) of less than 50 milliKelvin, consumes less than 10 watts and weighs about 1.5 kilograms.

  3. Buried Impact Basins and the Earliest History of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2003-01-01

    The "Quasi-Circular Depressions" (QCDs) seen in MOLA data which have little or no visible appearance in image data have been interpreted as buried impact basins on Mars. These have important implications for the age of the lowland crust, what mechanisms could produce the crustal dichotomy, and the existence of crust older than the oldest observed surface units on Mars. A global survey of large QCDs using high resolution MOLA data now available has provided further details of the earliest history of Mars. The lowlands are of Early Noachian age, slightly younger than the buried highlands and definitely older than the exposed highland surface. A depopulation of large visible basins at diameters 800 to 1300 km suggests some global scale event early in martian history, maybe related to the formation of the lowlands and/or the development of Tharsis. A suggested early disappearance of the global magnetic field can be placed within a temporal sequence of formation of the very largest impact basins.

  4. Buried structure for increasing fabrication performance of micromaterial by electromigration

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuhiro; Saka, Masumi

    2016-06-01

    The electromigration (EM) technique is a physical synthetic growth method for micro/nanomaterials. EM causes atomic diffusion in a metal line by high-density electron flows. The intentional control of accumulation and relaxation of atoms by EM can lead to the fabrication of a micro/nanomaterial. TiN passivation has been utilized as a component of sample in the EM technique. Although TiN passivation can simplify the cumbersome processes for preparing the sample, the leakage of current naturally occurs because of the conductivity of TiN as a side effect and decreases the performance of micro/nanomaterial fabrication. In the present work, we propose a buried structure, which contributes to significantly decreasing the current for fabricating an Al micromaterial by confining the current flow in the EM technique. The fabrication performance was evaluated based on the threshold current for fabricating an Al micromaterial using the buried structure and the previous structure with the leakage of current.

  5. Centrifuge modeling of buried continuous pipelines subjected to normal faulting

    NASA Astrophysics Data System (ADS)

    Moradi, Majid; Rojhani, Mahdi; Galandarzadeh, Abbas; Takada, Shiro

    2013-03-01

    Seismic ground faulting is the greatest hazard for continuous buried pipelines. Over the years, researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method. The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches. This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting. The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods. The influence of factors such as faulting offset, burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated. Finally, the tensile rupture of a pipeline due to normal faulting is investigated.

  6. Preliminary observations of arthropods associated with buried carrion on Oahu.

    PubMed

    Rysavy, Noel M; Goff, M Lee

    2015-03-01

    Several studies in Hawaii have focused on arthropod succession and decomposition patterns of surface remains, but the current research presents the first study to focus on shallow burials in this context. Three domestic pig carcasses (Sus scrofa L.) were buried at the depths of 20-40 cm in silty clay loam soil on an exposed ridge on the leeward side of the volcanically formed Koolau Mountain Range. One carcass was exhumed after 3 weeks, another after 6 weeks, and the last carcass was exhumed after 9 weeks. An inventory of arthropod taxa present on the carrion and in the surrounding soil and observations pertaining to decomposition were recorded at each exhumation. The longer the carrion was buried, the greater the diversity of arthropod species that were recovered from the remains. Biomass loss was calculated to be 49% at the 3-week interval, 56% at the 6-week interval, and 59% at the 9-week interval. PMID:25413711

  7. Effect of magnetite on GPR for detection of buried landmines

    NASA Astrophysics Data System (ADS)

    van Dam, Remke L.; Borchers, Brian; Hendrickx, Jan M. H.

    2006-05-01

    Ferrimagnetic minerals such as magnetite and maghaemite can affect ground-penetrating radar (GPR) signals. This may lead to false alarms and missed targets when surveying for the detection of buried landmines and unexploded ordnance (UXO). In most field situations ferrimagnetic mineral content is too low to affect GPR wave behavior. However, in soils and sedimentary material with magnetite-rich parent material large concentrations of magnetite can be found. This paper is a first systematic experimental effort to study the effects of large concentrations of magnetite for GPR detection of subsurface targets. We study the effects of (i) different homogeneous mixtures of magnetite and quartz sand and (ii) magnetite concentrated in layers (placer deposits), on the propagation behavior of GPR waves and reflection characteristics of steel and plastic balls. The balls are buried in homogeneous mixtures of magnetite and quartz sand and below a layer of pure magnetite. Important observations include that the simulated placer deposits did have a large effect on the detectability of balls below the placer deposits and that homogeneous mixtures had no significant effect.

  8. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  9. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  10. Full-scale retrieval of simulated buried transuranic waste

    SciTech Connect

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd{sup 3} volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed.

  11. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  12. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P. ); Wicks, G.G. ); Clark, D.E. ); Lodding, A.R. )

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  13. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-12-31

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  14. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  15. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  16. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  17. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  18. Electron beam recrystallization of amorphous semiconductor materials

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  19. Imprinting bulk amorphous alloy at room temperature

    DOE PAGESBeta

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  20. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  1. Structure, thermodynamics, and crystallization of amorphous hafnia

    NASA Astrophysics Data System (ADS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO2. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  2. Solid-state diffusion in amorphous zirconolite

    SciTech Connect

    Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  3. Amorphization of Ti1- x Mn x

    NASA Astrophysics Data System (ADS)

    Chu, B.-L.; Chen, C.-C.; Perng, T.-P.

    1992-08-01

    Three amorphous Ti1- x Mn x alloy powders, with x = 0.4, 0.5, and 0.6, were prepared by mechanical alloying (MA) of the elemental powders in a high-energy ball mill. The amorphous powders were characterized by X-ray diffraction (XRD) and high-resolution transmission elec- tron microscopy (HRTEM). The crystallization temperatures for these alloys detected by dif- ferential scanning calorimetry (DSC) varied from 769 to 830 K. The calculated enthalpies of mixing in these amorphous phases are relatively small compared with those for other Ti-base binary alloys. The criteria for solid-state amorphization reaction are examined. It is suggested that the kinetics of nucleation and growth favors the formation of the amorphous phases and the supply of atoms for nucleation and growth is predominantly through the defective regions induced by MA.

  4. Structure, thermodynamics, and crystallization of amorphous hafnia

    SciTech Connect

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-28

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO{sub 2}. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  5. Lunar Radar Scattering from Near-Surface Buried Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Ustinov, E. A.; Heggy, E.

    2009-12-01

    The Apollo 15, 16, and 17 core tubes show that the uppermost few meters of the lunar regolith are interlaced layers of a fine grained powders and blocky crater ejecta. The layers of crater ejecta have dielectric constants in the range of 7-9 while the fine-grained powders has dielectric constant on the order of 2.7. These differences in dielectric constant, in turn, create radar reflections that are both refracted and reflected back through the space-regolith interface. Note that for a dielectric constant of 2.7 for the lunar regolith, radio waves incident on the lunar surface at the angle of 30-degrees from the normal will propagate in the regolith at an angle of 18-degrees. At the limb, radio waves incident on the lunar surface at an angle near 90-degrees from the normal will propagate in the regolith at an angle of about 37-degrees. These angles are within the range where radar backscatter is in the quasi-specular regime. When these buried crater ejecta layers are modeled using Hagfors’ formulation (Hagfors, 1963), echo powers match the behavior observed for average lunar backscatter at centimeter wavelengths for higher (30° to 90°) angles of incidence. In addition, Hagfors et al. (1965) conducted an experiment where the Moon was illuminated at 23-cm wavelength with circular polarization and the differences were observed in orthogonal linear polarizations. Modeling of these observations and assuming again that the buried crater ejecta scatter in a quasi-specular manner, echo differences in horizontal and vertical linear polarizations are in relatively good agreement with the observations. The data from Chandrayaan Mini-RF radar, which operated at S-Band (13cm) wavelength, and the Lunar Reconnaissance Orbiter (LRO) Mini-RF radar, which is operating at S-Band and X-Band (4-cm) wavelengths, provide an opportunity for a new examination of whether radar backscatter from buried crater ejecta behaves like a quasi-specular scatter. These radars reproduce the

  6. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  7. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  8. Large-Diameter Visible and Buried Impact Basins on Mars: Implications for age of the Highlands and (Buried) Lowlands and Turn-off of the Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.

    2003-01-01

    The global populations of visible and buried impact basins less than 200 km diameter revealed by high resolution gridded MOLA indicate: (a) a small (approx. 10) number of very large basins (D=1300-3000km), most of which have remained visible over martian history; (b) a much larger population of smaller basins (D=200-800 km) with many more buried than visible (on images); (c) a depletion of visible basins at intermediate diameters which may be a signature of some global-scale event (formation of the lowlands? origin of Tharsis?); and (d) a crater retention age for the buried lowlands greater than that of the visible highlands but less than that of the total (visible + buried) highlands. Crustal magnetic anomalies are generally not present in the interiors of the largest basins with two exceptions: these two (which appear to be the oldest) may predate the demise of the global magnetic field.

  9. Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Hu, W. D.; Chen, X. S.; Ye, Z. H.; Chen, Y. G.; Yin, F.; Zhang, B.; Lu, W.

    2012-10-01

    In this paper, experimental results of polarity inversion and coupling of laser beam induced current for As-doped long-wavelength HgCdTe pixel arrays grown on CdZnTe are reported. Models for the p-n junction transformation are proposed and demonstrated using numerical simulations. Simulation results are shown to be in agreement with the experimental results. It is found that the deep traps induced by ion implantation are very sensitive to temperature, resulting in a decrease of the quasi Fermi level in the implantation region in comparison to that in the Hg interstitials diffusion and As-doped regions. The Hg interstitial diffusion, As-doping amphoteric behavior, ion implantation damage traps, and the mixed conduction, are key factors for inducing the polarity reversion, coupling, and junction broadening at different temperatures. The results provide the near room-temperature HgCdTe photovoltaic detector with a reliable reference on the junction reversion and broadening around implanted regions, as well as controlling the n-on-p junction for very long wavelength HgCdTe infrared detector pixels.

  10. Measure Guideline: Buried and/or Encapsulated Ducts

    SciTech Connect

    Shapiro, C.; Zoeller, W.; Mantha, P.

    2013-08-01

    Buried and/or encapsulated ducts (BEDs) are a class of advanced, energy-efficiency strategies intended to address the significant ductwork thermal losses associated with ducts installed in unconditioned attics. BEDs are ducts installed in unconditioned attics that are covered in loose-fill insulation and/or encapsulated in closed cell polyurethane spray foam insulation. This Measure Guideline covers the technical aspects of BEDs as well as the advantages, disadvantages, and risks of BEDs compared to other alternative strategies. This guideline also provides detailed guidance on installation of BEDs strategies in new and existing homes through step-by-step installation procedures. Some of the procedures presented here, however, require specialized equipment or expertise. In addition, some alterations to duct systems may require a specialized license.