Sample records for ascites tumor growth

  1. Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo.

    PubMed

    Kumar, Akhilesh; D'Souza, Saritha S; Tickoo, Sanjay; Salimath, Bharathi P; Singh, H B

    2009-03-01

    The authors investigate the antiangiogenic and proapoptotic effects of mustard essential oil containing allyl isothiocyanate (AITC) and explore its mechanism of action on Ehrlich ascites tumor (EAT) cells. Swiss albino mice transplanted with EAT cells were used to study the effect of AITC. AITC was effective at a concentration of 10 mum as demonstrated by the inhibition of proliferation of EAT cells when compared with the normal HEK293 cells. It significantly reduced ascites secretion and tumor cell proliferation by about 80% and inhibited vascular endothelial growth factor expression in tumor-bearing mice in vivo. It also reduced vessel sprouting and exhibited potent antiangiogenic activity in the chorioallantoic membrane and cornea of the rat. AITC arrested the growth of EAT cells by inducing apoptosis and effectively arrested cell cycle progression at the G1 phase. The results clearly suggest that AITC inhibits tumor growth by both antiangiogenic and proapoptotic mechanisms. PMID:19223371

  2. Reduced growth of Ehrlich ascites tumor cells in creatine depleted mice fed beta-guanidinopropionic acid.

    PubMed

    Ohira, Y; Ishine, S; Inoue, N; Yunoki, K

    1991-09-23

    The effect of implantation of Ehrlich ascites tumor (EAT) cells on creatine distribution was investigated. It was also studied how depletion of creatine by feeding creatine-analogue beta-guanidinopropionic acid (beta-GPA) affects the growth of EAT cells in mice. Enhanced mobilization of creatine from host tissues to EAT cells against a greater concentration gradient was observed. The creatine (but not creatinine) level in blood plasma was lowered to 22% of the normal value by beta-GPA feeding alone and assimilation of 14C-creatine into EAT cells was inhibited. The growth of EAT cells was significantly reduced and the duration of survival of mice after implantation of EAT cells was extended when the creatine concentration was decreased. A decrease in daily food consumption and the degree of muscle atrophy after implantation of EAT cells was less in beta-GPA than control groups. In the creatine-depleted mice, the rate of increase in total EAT cell number and the volume of abdominal ascites were approximately half of the control values, and more dead EAT cells were observed. These results suggest that supplementation of beta-GPA inhibits creatine transfer to EAT cells and reduces the growth of cancer cells. PMID:1911884

  3. Inhibition of Ehrlich Ascites Tumor Cell Growth by Griffon\\/a simplicifolia I Lectin in Vivo1

    Microsoft Academic Search

    Allen E. Eckhardt; Barbara N. Malone; Irwin J. Goldstein

    Griffonia (Bandeiraea) simplicifolia I (GS I) seeds contain a family of a-D-galactopyranosyl-binding ¡solectins which strongly agglutinate Ehrlich ascites tumor cells due to the presence of this determinant sugar on their cell surface gly- coproteins. Administration of GS I lectin (100 jug\\/day or 300 fig on alternate days, i.p.) inhibits the growth of Ehrlich tumor cells in vivo. Mice given injections

  4. IL-2 plasmid therapy of murine ovarian carcinoma inhibits the growth of tumor ascites and alters its cytokine profile.

    PubMed

    Horton, H M; Dorigo, O; Hernandez, P; Anderson, D; Berek, J S; Parker, S E

    1999-12-15

    We have evaluated whether i.p. murine ovarian tumors could be treated with an IL-2 plasmid DNA complexed with the cationic lipid, (+/-)-N-(2-hydroxyethyl)-N,N-dimethyl-2, 3-bis(tetradecyloxy)-1-propanaminium bromide/dioleoylphosphatidylethanolamine (DMRIE/DOPE). Reporter gene studies were initially conducted in which mice bearing i.p. murine ovarian teratocarcinoma (MOT) were injected i.p. with reporter gene plasmid DNA (pDNA):DMRIE/DOPE. Histochemical analyses revealed that transfection occurred primarily in the tumor cells of the ascites, with only a minority of other ascitic cells or surrounding tissues transfected. IL-2 levels in the MOT ascites were determined after i. p. injection of either IL-2 pDNA:DMRIE/DOPE or recombinant IL-2 protein. IL-2 was detected in tumor ascites for up to 10 days after a single i.p. injection of IL-2 pDNA:DMRIE/DOPE, but was undetectable 24 h after a single i.p. injection of IL-2 protein. In an antitumor efficacy study, MOT tumor-bearing mice injected i.p. with IL-2 pDNA:DMRIE/DOPE on days 5, 8, and 11 after tumor cell implant had a significant inhibition of tumor ascites (p = 0.001) as well as a significant increase in survival (p = 0.008). A cytokine profile of the MOT tumor ascites revealed that mice treated with IL-2 pDNA:DMRIE/DOPE had an IL-2-specific increase in the levels of IFN-gamma and GM-CSF. Taken together, these findings indicate that i. p. treatment of ovarian tumors with IL-2 pDNA:DMRIE/DOPE can lead to an increase in local IL-2 levels, a change in the cytokine profile of the tumor ascites, and a significant antitumor effect. PMID:10586027

  5. Ehrlich ascites tumor cells produce a transforming growth factor-? (TGF?)-like activity but lack receptors with TGF?-binding capacity

    Microsoft Academic Search

    Ana Elexpuru; José Martín-Nieto; Amparo Jiménez; Carmen Gómez; Antonio Villalobo

    1997-01-01

    Ehrlich ascites tumor cells incorporate [methyl-3H]thymidine into DNA independently of exogenous growth factors or fetal calf serum. Using an acid\\/ethanol extraction procedure we have obtained from these tumor cells a fraction that induces both the proliferation and the formation of cell foci by Swiss 3T3 mouse fibroblasts in the presence of insulin; inhibits the proliferation of Mv1Lu mink lung epithelial

  6. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    SciTech Connect

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  7. Electrical properties of Ehrlich ascites tumor cells

    Microsoft Academic Search

    E. Gstrein; M. Paulmichl; F. Lang

    1987-01-01

    The cell membrane potential (PD) of Ehrlich ascites tumor cells was measured continuously at 37°C with conventional microelectrodes during rapid alterations of extracellular fluid composition. At extracellular electrolyte composition mimicking the in vivo situation PD is -56.7±0.7 mV and the apparent membrane resistance is 62.2±2.2 MO. Increasing extracellular potassium concentration from 5.4 to 20.0 mmol\\/l depolarizes the cell membrane by

  8. Chronic Dietary Administration of the Glycolytic Inhibitor 2-Deoxy-D-Glucose (2-DG) Inhibits the Growth of Implanted Ehrlich’s Ascites Tumor in Mice

    PubMed Central

    Singh, Saurabh; Pandey, Sanjay; Bhatt, Anant Narayan; Chaudhary, Richa; Bhuria, Vikas; Kalra, Namita; Soni, Ravi; Roy, Bal Gangadhar; Saluja, Daman; Dwarakanath, Bilikere S.

    2015-01-01

    Background Dietary energy restriction (DER) has been well established as a potent anticancer strategy. Non-adoption of restricted diet for an extended period has limited its practical implementation in humans with a compelling need to develop agents that mimic effects similar to DER, without reduction in actual dietary intake. Glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has recently been shown to possess potential as an energy restriction mimetic agent (ERMA). In the present study we evaluated the effect of dietary 2-DG administration on a mouse tumor model, with a focus on several potential mechanisms that may account for the inhibition of tumorigenesis. Methodology/Principal Findings Swiss albino strain ‘A’ mice were administered with 0.2% and 0.4% w/v 2-DG in drinking water for 3 months prior to tumor implantation (Ehrlich’s ascites carcinoma; EAC) and continued till the termination of the study with no adverse effects on general physiology and animal growth. Dietary 2-DG significantly reduced the tumor incidence, delayed the onset, and compromised the tumor growth along with enhanced survival. We observed reduced blood glucose and serum insulin levels along with decreased proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine positive (BrdU+) tumor cells in 2-DG fed mice. Also, reduced levels of certain key players of metabolic pathways such as phosphatidylinositol 3-kinase (PI3K), phosphorylated-Akt and hypoxia inducible factor-1 alpha (HIF-1?) were also noted in tumors of 2-DG fed mice. Further, decrease in CD4+/CD8+ ratio and T-regulatory cells observed in 2-DG fed mice suggested enhanced antitumor immunity and T cell effector function. Conclusion/Significance These results strongly suggest that dietary 2-DG administration in mice, at doses easily achievable in humans, suitably modulates several pleotrophic factors mimicking DER and inhibits tumorigenesis, emphasizing the use of ERMAs as a promising cancer preventive strategy. PMID:26135741

  9. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-?B signaling activation in CD4 + T cells

    SciTech Connect

    Shu, Guangwen; Yang, Tianming [College of Pharmacy, South-Central University for Nationalities, Wuhan (China); Wang, Chaoyuan [College of Life Science, South-Central University for Nationalities, Wuhan (China); Su, Hanwen, E-mail: suhanwen-1@163.com [Renmin Hospital of Wuhan University, Wuhan (China); Xiang, Meixian, E-mail: xiangmeixian99@163.com [College of Pharmacy, South-Central University for Nationalities, Wuhan (China)

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor ?B (NF-?B) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-?B p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-?B-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-?B activity in CD4 + T cells.

  10. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells.

    PubMed Central

    Mills, G B; May, C; Hill, M; Campbell, S; Shaw, P; Marks, A

    1990-01-01

    Human ovarian cancer, the leading cause of death from gynecologic malignancy, tends to remain localized to the peritoneal cavity until late in the disease. In established disease, ascitic fluid accumulates in the peritoneal cavity. We have previously demonstrated that this ascitic fluid is a potent source of in vitro mitogenic activity including at least one unique growth factor. We now report that the human ovarian adenocarcinoma line, HEY, can be induced to grow intraperitoneally in immunodeficient nude mice in the presence (23/28 mice), but not absence (0/21 mice) of ascitic fluid from ovarian cancer patients. Ascitic fluid from patients with benign disease did not have similar effects on intraperitoneal growth of HEY cells (1/15 mice). Once tumors were established by injections of exogenous ascitic fluid, they could progress in the absence of additional injections of ascitic fluid. The mice eventually developed ascitic fluid which contained potent growth factor activity, suggesting that the tumors eventually produced autologous growth factors. This nude mouse model provides a system to study the action of ovarian cancer growth factors on tumor growth in vivo and to evaluate preclinically, therapeutic approaches designed to counteract the activity of these growth factors. PMID:2394835

  11. Ascites

    MedlinePLUS

    ... Philadelphia, PA: Elsevier Saunders; 2011:chap 156. Runyon BA. Ascites and spontaneous bacterial peritonitis. In: Feldman M, ... Philadelphia, PA: Elsevier Saunders; 2010:chap 91. Runyon BA; AASLD Practice Guidelines Committee. Management of adult patients ...

  12. Effect of Methotrexate on the Intracellular Phosphoribosyl Pyrophosphate Level and Glucose Transport of Ehrlich Ascites Tumor Cells in vitro

    Microsoft Academic Search

    K. P. Fung; W. P. Lam; Y. M. Choy; C. Y. Lee

    1996-01-01

    Methotrexate (MTX) suppressed the growth of Ehrlich ascites tumor (EAT) cells in vitro. The intracellular level of phosphoribosyl 5-pyrophosphate (PRPP) of EAT cells increased in a dose-dependent manner in response to MTX treatment. At the same time, the rate of glucose transport was lowered. Hypoxanthine reversed both these effects of MTX and partially rescued EAT cell growth. Under all conditions

  13. Differences in growth of transplantable ascites hepatoma among various lines of Donryu rat.

    PubMed

    Ding, X D; Ishiguro, T; Sato, Z; Satoh, H

    1989-04-01

    A total of 48 Donryu rats from 8 colonies of 5 lines were inoculated intravenously with 10(7) cells of the ascites hepatoma strain AH 66. All the conventional rats of the lines D-1 and D-2 died between 9 and 15 days after inoculation with a good growth of implanted tumor cells. On the other hand, SPF rats of the lines A-1, B-1, C and E survived for 60 days showing complete rejection of the implanted tumor cells. A 50% of conventionalized ex-SPF rats of the lines A-2 and B-2, which had been once established as SPF colonies, and thereafter had been "re-conventionalized", rejected the tumor cells. The present observations indicate that the microbial conditions of the animal, e.g. whether the animal is SPF or not, might play an important role in the growth of the implanted ascites hepatoma. PMID:2744102

  14. Gracilaria edulis extract induces apoptosis and inhibits tumor in Ehrlich Ascites tumor cells in vivo

    PubMed Central

    2013-01-01

    Background Marine environment is inestimable for their chemical and biological diversity and therefore is an extraordinary resource for the discovery of new anticancer drugs. Recent development in elucidation of the mechanism and therapeutic action of natural products helped to evaluate for their potential activity. Methods We evaluated Gracilaria edulis J. Ag (Brown algae), for its antitumor potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Cytotoxicity evaluation of Ethanol Extract of Gracilaria edulis (EEGE) using EAT cells showed significant activity. In vitro studies indicated that EEGE cytotoxicity to EAT cells is mediated through its ability to produce reactive oxygen species (ROS) and therefore decreasing intracellular glutathione (GSH) levels may be attributed to oxidative stress. Results Apoptotic parameters including Annexin-V positive cells, increased levels of DNA fragmentation and increased caspase-2, caspase-3 and caspase-9 activities indicated the mechanism might be by inducing apoptosis. Intraperitoneally administration of EEGE to EAT-bearing mice helped to increase the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. Extensive hematology, biochemistry and histopathological analysis of liver and kidney indicated that daily doses of EEGE up to 300 mg/kg for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity. Conclusion Comprehensive antitumor analysis in animal model and in Ehrlich Ascites Tumor cells was done including biochemical, and pathological evaluations indicate antitumor activity of the extract and non toxic in vivo. It was evident that the mechanism explains the apoptotic activity of the algae extract. PMID:24274337

  15. Effects of dietary fat composition on the Ehrlich ascites tumor fluid lipoproteins

    Microsoft Academic Search

    Satya N. Mathur; Arthur A. Spector

    2010-01-01

    Mice bearing the Ehrlich ascites tumor were fed diets rich in either coconut oil or sunflower oil. From 20 to 40% less lipid was present in the ascites tumor fluid when the mice were fed the sunflower oil diet. This was associ- ated with a reduction in the amount of very low density lipoproteins (VLDL) and high density lipoproteins (HDL),

  16. In Vitro Production of Mouse Mammary Tumor Virus in a Mouse Mammary Tumor Ascites Line

    PubMed Central

    Keydar, Jafa; Gilead, Zvee; Hartman, Jacob R.; Ben-Shaul, Yehuda

    1973-01-01

    An ascites line derived from a spontaneous mouse mammary carcinoma produces, on explantation and cultivation in vitro, large amounts of oncornavirus particles. The biochemical, biophysical, and electron microscopic characteristics of the virions are described. Molecular hybridization and immunological methods identify these virions as mouse mammary tumor virus. Images PMID:4126729

  17. In Vitro Production of Mouse Mammary Tumor Virus in a Mouse Mammary Tumor Ascites Line

    Microsoft Academic Search

    Jafa Keydar; Zvee Gilead; Jacob R. Hartman; Yehuda Ben-Shaul

    1973-01-01

    An ascites line derived from a spontaneous mouse mammary carcinoma produces, on explantation and cultivation in vitro, large amounts of oncornavirus particles. The biochemical, biophysical, and electron microscopic characteristics of the virions are described. Molecular hybridization and immunological methods identify these virions as mouse mammary tumor virus.

  18. Treatment of Walker ascites tumor cells by combination of photodynamic therapy with cyclophosphamide and interleukin-2 entrapped in liposomes

    NASA Astrophysics Data System (ADS)

    Dima, Vasile F.; Ionescu, Mircea D.; Balotescu, Carmen; Dima, V. S.

    2003-12-01

    The purpose of this study was to investigate the beneficial and adverse local effects of PDT associated with chemoimmunotherapy on rats bearing Walker ascites tumor cells. Experiments were performed on five batches of Wistar inbred rats with ascites tumor cells receiving intraperitoneally PDT (Photofrin II and 18 hrs later HeNe laser irradiation); Cyclophosphamide (CY); interleukin-2 (IL-2) or associated therapy (PDT+CY+IL-2). The control batch consisted of untreated rats (HBSS). The following results were noticed: (a) sole administration of PDT, IL-2 or CY reduced tumor growth, gave survival rates between 28.4 and 56.5% and cure rates ranging from 12.4 to 33.3%; (b) combined therapy (PDT+CY+IL-2) decreased tumor growth, increased survival rates (88.5%) and cure rates were 73.1% forty-two days post-transplantation. Summing up, in this study we noticed that PDT associated with chemoimmunotherapy reduced mortality as well as tumor volumes and increased cure rates in rats with ascites tumor cells. This approach points to the need for further evaluation in patients with peritoneal malignancies.

  19. [Cytogenetic characteristics of the growth of mouse ascitic strain L-5178].

    PubMed

    Fomina, M M; Minenkova, E A; Poroshenko, G G; Evseenko, L S

    1975-02-01

    The number of chromosomes in the cells of L-5178 ascites tumor vary from 38 to 46. The modal class consists of two cell lines with 43 and 44 chromosomes. The number of polyploid cells changes in the process of tumor growth from 11% within first 10 days after transplantation to 50% on the 21st-22en days. The tumor cell population manifests a number of metaphases with endoreduplication of chromosomes. The per cent of metaphases with diplochromosomes varies from 0.05% on the 7th day of tumor development to 5.0% on the 15th-17th day. L-5178 tumor cells are characterized by the presence of structurally changed chromosomes: the acrocentric chromosome with the secondary constriction, metacentric, and 2-3 small chromosomes. PMID:1056646

  20. Synergism between propolis and hyperthermal intraperitoneal chemotherapy with cisplatin on ehrlich ascites tumor in mice.

    PubMed

    Oršoli?, Nada; Car, Nikola; Lisi?i?, Duje; Benkovi?, Vesna; Kneževi?, Anica Horvat; Diki?, Domagoj; Petrik, József

    2013-12-01

    We investigated antitumor, genotoxic, chemopreventive, and immunostimulative effects of local chemoimmunotherapy and hyperthermal intraperitoneal chemotherapy (HIPEC) in a mouse-bearing Ehrlich ascites tumor (EAT). Mice were treated with water-soluble derivative of propolis (WSDP) at a dose of 50 mg kg(-1) , 7 and 3 days before implantation of EAT cells, whereas cisplatin (5 or 10 mg kg(-1) ) was injected 3 days after implantation of EAT cells at 37°C and 43°C. The following variables were analyzed: the total number of cells, differential count of the cells present in the peritoneal cavity, functional activity of macrophages, comet assay, and micronucleus assay. The combination of WSDP + CIS 5 mg kg(-1) at 37°C resulted in tumor growth inhibition and increased the survival of mice by additional 115.25%. WSDP with HIPEC increased the survival of mice by additional 160.3% as compared with HIPEC. WSDP reduced cisplatin toxic and genotoxic effect to normal cells without affecting cisplatin cytotoxicity on EAT cells. In addition, WSDP with HIPEC increased the cytotoxic actions of macrophages to tumor cells. Water-soluble derivative of propolis increases macrophage activity and sensitivity of tumor cells to HIPEC and reduces cisplatin toxicity to normal cells. PMID:24136132

  1. [Polymorphism of a tumor cell population and selective processes. II. Change in the correlation of the numbers of 2 subpopulations of Ehrlich-Ich Ph ascites tumor cells in mice under the action of cell-free ascitic fluid and its fractions].

    PubMed

    Fomina, M M; Minenkova, E A; Evseenko, L S; Poroshenko, G G

    1978-12-01

    After repeated injections to mice of cell-free fluid the inhibition of growth of ascitic cell number was noticed already on the 5th day after transplantation of tumor. It was found that the inhibition of growth was due to the death of cells having 45 chromosomes, and containing A + B + 2C- and A + D + 2C-markers. PMID:734778

  2. Virus inoculation in mice bearing Ehrlich ascitic tumors: antigen production and tumor regression.

    PubMed Central

    Mettler, N E; Clarke, D H; Casals, J

    1982-01-01

    Ehrlich ascitic carcinoma, as developed in albino mice, has been used as a source of hemagglutinating and complement-fixing antigens, and it proved to be suitable for one type of antigen, or both, for at least 12 viruses of 16 tested. Hemagglutinins were obtained with members of arbovirus groups A, B, and C; complement-fixing antigens were obtained for at least one member of each antigenic group tested. Ehrlich ascitic tumor was compared with sarcoma 180 as a source of antigens; although sarcoma 180 showed many advantages over Ehrlich tumor, the latter gave, in general, better results for complement-fixing antigens. Oncolytic effect with complete recovery of the mice was observed in some instances. The highest recovery rate resulted with Congo and UNA viruses (40%), and the second highest rate resulted with dengue 2, St. Louis, Hazara, and Uukuniemi viruses (20%). The best survival was observed, in decreasing order, with Congo, St. Louis, dengue 2, Tacaribe, Sindbis, Junin, and Amapari viruses. PMID:7107004

  3. Co-Encapsulation of Doxorubicin With Galactoxyloglucan Nanoparticles for Intracellular Tumor-Targeted Delivery in Murine Ascites and Solid Tumors

    PubMed Central

    Joseph, Manu M.; Aravind, S.R.; George, Suraj K.; Pillai, Raveendran K.; Mini, S.; Sreelekha, T.T.

    2014-01-01

    Doxorubicin (Dox) treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001), isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton’s lymphoma ascites and Ehrlich’s ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications. PMID:25389448

  4. Targeting Vascular Endothelial Growth Factor Blockade: Ascites and pleural effusion formation

    Microsoft Academic Search

    H. M. W. Verheul; K. Hoekman; A. S. Jorna; E. F. Smith; H. M. PINEDOa

    2000-01-01

    Primary Purpose. Formation of ascites and pleural effusion (PE) is a common problem for patients with advanced-stage cancer. These fluid accumulations cause severe symptoms such as abdominal distention, shortness of breath, cachexia, anorexia, and fatigue. Preclinical models have demonstrated that vascular endothelial growth factor (VEGF) plays a pivotal role in the accu- mulation of malignant PE or ascites. This study

  5. Cytologic features of ovarian granulosa cell tumors in pleural and ascitic fluids.

    PubMed

    Omori, Makiko; Kondo, Tetsuo; Yuminamochi, Tsutomu; Nakazawa, Kumiko; Ishii, Yoshio; Fukasawa, Hiroko; Hashi, Akihiko; Hirata, Shuji

    2015-07-01

    Adult granulosa cell tumor (AGCT) is an uncommon neoplasm of the ovary with potential for aggressive behavior and late recurrence. The most important prognostic factor for AGCT is tumor stage. Thus, cytological assessment of pleural or ascitic fluids is crucial for initial staging and subsequent patient management. We report herein two cases of ovarian AGCT presenting with exfoliated tumor cells in pleural and ascitic fluid. The first case involved a 61-year-old woman who presented with stage Ic (a) AGCT. Seven years after initial diagnosis, pleural effusion and pleural dissemination were identified. The second case involved a 50-year-old woman who presented with stage IV AGCT with massive ascites and right pleural effusion. Fluid cytology from both cases showed cohesive or loose clusters of small uniform neoplastic cells with round-to-oval nuclei, coffee-bean-shaped nuclear grooves, small nucleoli, and scant cytoplasm. Call-Exner bodies were also observed in these cytologic specimens. In the differential diagnosis of small monomorphic tumor cells in pleural effusion or ascites, coffee-bean-shaped nuclear grooves and cell clusters forming Call-Exner bodies are diagnostic clues of AGCT. Diagn. Cytopathol. 2015;43:581-584. © 2015 Wiley Periodicals, Inc. PMID:25605680

  6. Anticancer activity of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica against Dalton's ascitic lymphoma induced solid and ascitic tumor model.

    PubMed

    Sakthivel, K M; Kannan, N; Angeline, A; Guruvayoorappan, C

    2012-01-01

    The aim of the present investigation was to evaluate the effect of A. nilotica extract against Dalton's ascitic lymphoma (DAL) induced solid and ascitic tumors in BALB/c mice. Experimental animals received A. nilotica extract (10 mg/kg.bw) intraperitoneally for 10 and 14 consecutive days before induction of solid and ascitic tumors, respectively. Treatment with A. nilotica extract significantly decreased the development of tumor and percentage increase in body weight when compared to DAL induced solid tumor control group, also increasing the life span, restoring the total white blood cell count and hemoglobin content and significantly decreasing the levels of serum aspartate transaminase (SGPT), alanine transaminase (SGOT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and nitric oxide (NO) when compared to DAL induced ascitic tumor controls. The treatment also reduced significantly the cellular glutathione (GSH) and nitric oxide levels in treated animals. Histopathological studies also confirmed protective influence. The outcome of the present work indicates that A. nilotica extract could be used as natural anticancer agent for human health. PMID:23098505

  7. Membrane potential, anion and cation conductances in Ehrlich ascites tumor cell

    Microsoft Academic Search

    Ian Henry Lambert; Else Kay Hoffmann; Finn Jřrgensen

    1989-01-01

    Summary The fluorescence intensity of the dye 1,1'-dipropyloxadicarbocyanine (DiOC3-(5)) has been measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potential (Vm) under different ionic conditions, after treatment with cation ionophores and after hypotonic cell swelling. Calibration is performed with gramicidin in Na+-free K+\\/choline+ media, i.e., standard medium in which NaCl is replaced by

  8. The membrane potential of Ehrlich ascites tumor cells microelectrode measurements and their critical evaluation

    Microsoft Academic Search

    U. V. Lassen; A.-M. T. Nielsen; L. Pape; L. O. Simonsen

    1971-01-01

    Summary Intracellular potentials were measured, using a piezoelectric electromechanical transducer to impale Ehrlich ascites tumor cells with capillary microelectrodes. In sodium Ringer's, the potential immediately after the penetration was ?24±7 mV, and decayed to a stable value of about ?8 mV within a few msec. The peak potentials disappeared in potassium Ringer's and reappeared immediately after resuspension in sodium. Ringer's,

  9. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cell

    Microsoft Academic Search

    Barry Mills; Joseph T. Tupper

    1975-01-01

    Summary The components of Na and K flux across the plasma membrane have been investigated in the Ehrlich ascites tumor cell. At intracellular K levels of approximately 100mm, unidirectional K influx is composed of a ouabain-sensitive component, a ouabain-insensitive, nondiffusional component and a diffusional component. Unidirectional K efflux is composed of an external K-dependent component and a diffusional component. Upon

  10. Leukotriene-D 4 induced cell shrinkage in Ehrlich ascites tumor cells

    Microsoft Academic Search

    Ian Henry Lambert

    1989-01-01

    Summary The nature of the leukotriene-D4 (LTD4) induced cell shrinkage in Ehrlich ascites tumor cells has been investigated. LTD4 treatment of Ehrlich cells induces net loss of cellular KCl and cell shrinkage independent of the initial cell volume. LTD4 also produces water loss and reduction in cell volume when all extracellular and all intracellular Cl has been replaced by NO3.

  11. [Polymorphism of a population of tumor cells and selective processes. I. Ehrlich-IChPh ascitic strain tumor cell subpopulation].

    PubMed

    Fomina, M M; Minenkova, E A; Poroshenko, G G; Evseenko, L S

    1978-05-01

    4 types of marker chromosomes and of their combination in mouse ascite Ehrlich-I. Ch. Ph. tumor cells are described. Two most frequently encountered subpopulations of cells are found in the tumor: one--with A+B+2C and A+D+2D markers, and the other--with A1+A2+2B+D1+C markers. The former population dominated during 8 days, to be gradually substituted with the former subpopulation. Changes in the number of cells with certain chromosome number in the near-diploid and near-tetraploid cell zones were followed within one passage. PMID:694994

  12. The G-banding pattern of chromosomes in Ehrlich Lett?e ascites tumor cells.

    PubMed

    Evans, W L; Welch, D L

    1977-03-01

    The trypsin digestion-Giemsa staining technique was used to produce distinctive banding patterns in chromosomes of Ehrlich Lett?e ascites tumor cells derived from a frozen culture originally begun from the ELD line. The chromosome numbers most frequently encountered in cells were 44 and 45. Four large marker chromosomes were identified in the karyotype. One of these was a large submetacentric chromosome, the banding pattern of which indicated its probable origin was from a pair of telocentric chromosomes. Using banding patterns and lengths, the chromosomes were classified into four groups--marker, paired, unpaired, and minute chromosomes. PMID:861829

  13. Studies on the interaction between the Ehrlich ascites tumor cell and its fluid environment

    SciTech Connect

    Magnani, B.

    1984-01-01

    In this dissertation, the glycolytic nature of the Ehrlich ascites tumor (EAT) cell is disclosed both in vivo and in vitro by experiments challenging it with glucose. It is demonstrated that EAT cells can cause the extracellular pH to drop to values sufficiently acidic so as to inhibit EAT glycolysis. However, the extracellular fluid or the Ascites Supernatant Fluid (ASF) reduced the extent to which the pH dropped during EAT cell glycolysis. A comparison of the activities of the sera from tumor-bearing mice and normal mice revealed that the serumfrom the tumor-bearing mice reduced the pH fall generated by the EAT cell in the same way as did ASF; normal mouse serum had no such effect. The metabolic pathways utilized during glucose catabolism were examined by radio-respirometry and the results demonstrated that the high percentage of the glucose conversion to lactate occurred because of partial blockade of the TCA cycle. The databolism of glutamine, glutamic acid, asparagine, aspartic acid, and alanine was enhanced by ASF as determined by measuring /sup 14/CO/sub 2/ from /sup 14/C-labelled amino acids, with glutamine catabolism enhanced about three-fold. Fractionation experiments revealed that ASF contained a factor(s) responsible for this enhancement that had a molecular weight greater than 300,000 daltons and was heat-labile.

  14. Endostar inhibits ascites formation and prolongs survival in mouse models of malignant ascites

    PubMed Central

    WEI, HONGMEI; QIN, SHUKUI; YIN, XIAOJIN; CHEN, YALI; HUA, HAIQING; WANG, LIN; YANG, NINGRONG; CHEN, YINGXIA; LIU, XIUFENG

    2015-01-01

    Endostar, a modified recombinant human endostatin, inhibits the growth of a variety of tumors by suppressing neovascularization. Vascular endothelial growth factor (VEGF) has an important role in malignant ascites formation. In order to determine whether Endostar can suppress the formation of ascites and prolong survival times, mouse models of malignant ascites were established using S180 and H22 tumor cells. The experimental mice were randomly divided into four groups: The three treatment groups received different doses of Endostar (4, 8 and 16 mg/kg), and the control group received 0.9% w/v NaCl. The volume of ascites, and the tumor cell, red blood cell (RBC), VEGF protein and mRNA content of the ascites was measured alongside the peritoneal permeability and the mouse survival time. In vitro analysis of cultured Endostar-treated S180 and H22 cells was also performed in order to examine cellular proliferation and the level of VEGF secreted protein and mRNA. The results revealed that Endostar suppressed the ascites volume, decreased the level of tumor cells, RBCs and VEGF in the ascites fluid, and lowered the permeability of the peritoneum. The tumor cells collected from the ascites in the Endostar-treated mice demonstrated a decrease in the expression of VEGF mRNA. The survival rates of the 8 and 16 mg/kg Endostar-treated mice were longer than those of the controls. The in vitro experiments revealed a significant inhibition of VEGF protein secretion and VEGF mRNA by Endostar, but no effect on cellular proliferation. In conclusion, Endostar lowers ascites production by downregulating VEGF expression, and may therefore be effective for the treatment of malignant ascites.

  15. Action of Tumor-inhibitory Gum Tragacanth on Potassium Permeability of Ascites Tumor Cells and Partial Characterization of the Cytotoxic Componentl

    Microsoft Academic Search

    E. M. F. Roe; Honor Smyth; Eleanor Flahavan

    1972-01-01

    SUMMARY Electrolyte balance was examined in ascites tumor cells treated with the surface-combining mitotic inhibitor gum tragacanth. Potassium and sodium levels remained normal during treatment with physiological doses of the agent, thus precluding imbalance of these ions as an explanation of the tumor-inhibitory effect. Incorporation of amino acids into protein also remained unaffected. Washing and centrifugation of treated cells resulted

  16. Intracellular compartmentation of Na + , K + and Cl ? in the Ehrlich ascites tumor cell: Correlation with the membrane potential

    Microsoft Academic Search

    Thomas C. Smith; Ramona Adams

    1977-01-01

    Summary The intracellular distribution of Na+, K+, Cl- and water has been studied in the Ehrlich ascites tumor cell. Comparison of the ion and water contents of whole cells with those of cells exposed to La3+ and mechanical stress indicated that La3+ treatment results in selective damage to the cell membrane and permits evaluation of cytoplasmic and nuclear ion concentrations.

  17. Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice.

    PubMed

    Ta?kin, Elif Ilkay; Akgün-Dar, Kadriye; Kapucu, Ay?egül; Osanç, Esma; Do?ruman, Hüsniye; Eraltan, Hakan; Ulukaya, Engin

    2009-12-01

    Morinda citrifolia L. (Noni) is a herbal remedy with promising anti-cancer properties. However, its effects on various cancers are to be investigated to make a firm conclusion before implementing it into the clinical practice. Therefore, we investigated the cytotoxic potential of noni on Ehrlich ascites tumor grown in female Balb-c mice and also combined it with a potent anti-cancer agent, doxorubicin. One group received noni only (n = 8), another one doxorubicin (n = 8), and the other one noni + doxorubicin (n = 8) for 14 days after the inoculation of cells. The control group (n = 7) received 0.9% NaCl only. We found that short and long diameters of the tumor tissues were about 40-50% smaller, compared to those in control group. This anti-growth effect resulted from the induction of apoptosis, which was confirmed by the positive results from the Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) analysis and the active caspase-3 cells in tissues. Apoptosis also confirmed by caspase-cleaved cytokeratin 18 elevation in serum of the treated groups. Further, the proliferation was decreased, which was immunohistochemically shown by the PCNA staining. We conclude that noni may be useful in the treatment of breast cancer either on its own or in combination with doxorubicin. Further studies are warranted to assess the dosage and safety of using noni fruit juice in conjuction with anti-cancer drugs against breast cancer. PMID:19908222

  18. IMMUNOHISTOCHEMICAL STUDIES ON THE INTERACTION BETWEEN EHRLICH ASCITES TUMOR CELLS AND NEWCASTLE DISEASE VIRUS

    PubMed Central

    Prince, Alfred M.; Ginsberg, Harold S.

    1957-01-01

    Newcastle disease virus infection of Ehrlich ascites tumor cells resulted, after a period of time, in the appearance of intracellular viral antigen which could be demonstrated by the fluorescent antibody technique. This antigen appeared in the cytoplasm of infected cells only after inoculation of cell-virus mixtures into the peritoneal cavities of mice. The latent period prior to the appearance of antigen depended inversely on the number of viral particles adsorbed onto the cells prior to inoculation. The final intensity of staining appeared not to be proportionate to the number of viral particles adsorbed to each cell. The appearance of this antigen was not correlated with a rise of titer of infectious, hemagglutinating, or complement-fixing virus. Viral antigen was demonstrated on the surface of tumor cells after adsorption of NDV onto these cells at 0°C. At appropriate virus:cell ratios, antigen was noted to disappear from the surface at 37°C. in vitro, and in vivo, in the absence of demonstrable elution of virus. The appearance of intracellular viral antigen could not be detected in vitro when tumor cell-NDV mixtures were incubated at 37°C., even when an average of 1550 "infectious particles" had adsorbed to each cell. PMID:13406177

  19. Rapid Growth Problems: Ascites and Skeletal Deformities in Broilers

    Microsoft Academic Search

    R. J. JULIAN

    Over the last 40 yr, genetic selection for rapid growth and improved feed efficiency has been very effective in meat-type poultry. Combined with changes in the feed that have increased both the nutritional and physical density to encourage a high nutrient intake, growth rate has more than doubled. The effect of genetic selection for high muscle to bone ratio and

  20. Mechanics in Tumor Growth 1 Mechanics in Tumor Growth

    E-print Network

    Preziosi, Luigi

    Mechanics in Tumor Growth 1 1 Mechanics in Tumor Growth L. Graziano Polytechnic of Turin Department Torino, Italy Abstract. This chapter focuses on the mechanical aspects of tumor growth. After describing some of the main feature of tumor growth and in particular the phenomena involving stress

  1. Interactions between 7-Hydroxymethotrexate and Methotrexate at the Cellular Level in the Ehrlich Ascites Tumor in Vitro1

    Microsoft Academic Search

    Gerard Fabre; Larry H. Matherly; Isabelle Fabre; Jean-Paul Cano; I. David Goldman

    Studies were undertaken to characterize the cellular pharma cology of 7-hydroxymethotrexate (7-OH-MTX) in Ehrlich ascites tumor cells, compare it to that of methotrexate (MIX), and define the interactions between the parent compound and its catabolite. Transport of 7-OH-MTX is mediated by the MTX-tetrahydrofolate cofactor carrier, with a Kmof 9 UMin comparison to the MTX Km of 5 UM.Both compounds mutually

  2. Characterization of Tumor Cell Resistance to 4'-Deoxy-4'-iododoxorubicin Developed in Ehrlich Ascites Cells in Vivo1

    Microsoft Academic Search

    Ellen Friche; Mary K. Danks; William T. Beck

    1992-01-01

    Reduced drug accumulation is the most common functional change accompanying development of P-glycoprotein-associated multidrug re sistance. One of our laboratories showed earlier that the anthracycline analogue 4'-deoxy-4'-iododoxorubicin (DIDOX) was accumulated to identical levels in Ehrlich ascites tumor (EHR2) and daunorubicin (DNR)-resistant EHR2\\/DNR cells (E. Friche, P. B. Jensen, T. Sk- ovsgaard, and N. I. Nissen, J. Cell. Pharmacol., \\/: 57-65,1990).

  3. [Polymorphism of a tumor cell population and selective processes. III. A change in the correlation of tumor cell subpopulations of the ascitic strain of Ehrlich-I.Ch.Ph. under the influence of glucose and sodium succinate].

    PubMed

    Fomina, M M; Minenkova, E A; Lankin, V Z; Poroshenko, G G; Evseenko, L S

    1979-08-01

    A study was made of the action of glucose or sodium succinate on subpopulations of the Ehrlich-I.Ch.Ph. ascite strain characterised by markers "A1" and "A", resp. After i.p. injection of glucose the amount of "A1"-cell reached 50 and almost 100% on the 5th and 7th day of tumor growth. After the transplantation of "A1"-cells into intact animals, a homogenous cytogenetic feature of subpopulation persisted during 2 passages only. Kinetics studies of a subvariance of the Ehrlich-I.Ch.Ph. tumor containing "A1"-cells show that the tumor growth rate and grade of malignancy slightly differ from those seen in the controls. PMID:291223

  4. Kinetic analysis of a split cell population following reinoculation of an Ehrlich ascites tumor.

    PubMed

    Bronk, B V; Lala, P K

    1982-01-01

    When Ehrlich ascites cells from old tumors are inoculated into fresh hosts, their cell cycle parameters show several unusual features when studied by means of four independent techniques. These experiments measure: Labeling Index (LI); Mitotic Index (MI); Percent Labeled Mitosis (PLM); Percent of population mitotic and initially G0, (Mu/P). The minimum modifications of the standard cell-cycle model that allow simultaneous simulation of the four sets of data were then determined. These modifications are: (1) sudden shortening of transit time for the S state immediately following reinoculation; (2) a more gradual change in the transit time for M; (3) an orderly reentry of G0 cells into the beginning of the cycle; (4) a shorter first cycle for the reentering G0 cells along with a smaller coefficient of variation for the first cycle of the G0 cells. These changes allow a simultaneous simulation of the four experiments with a single parameter set. This was not achievable without the modifications. Hence, resolution of a cell population into two components allows one to account for additional kinetic features. PMID:6181878

  5. Ascitic fluid cytology of a malignant mixed Müllerian tumor of the peritoneum: a report of two cases with special reference to p53 status.

    PubMed

    Kato, Noriko; Motoyama, Teiichi

    2009-04-01

    Malignant mixed müllerian tumors (MMMTs) rarely originate in the female peritoneum. Peritoneal MMMT, as well as its uterine or ovarian counterpart, is characterized by biphasic histologic components, including carcinoma of the müllerian type and sarcoma. In ascitic fluid cytology of MMMT, however, the biphasic pattern is less evident than in tissue sections, and heterogeneity of cell differentiation makes the cytologic diagnosis difficult, especially in distinguishing tumor cells from reactive mesothelial cells. Here, we report ascitic fluid cytology for two peritoneal MMMT cases. Immunocytochemistry for p53 was helpful in identifying malignant cells; tumor cells in ascitic fluid smears, as well as carcinomatous cells and sarcomatous cells in tissue sections, showed distinct nuclear immunostaining for p53, whereas mesothelial cells did not. Subsequent molecular genetic analysis confirmed frameshift mutations in both cases. To the best of our knowledge, this is the first report showing p53 overexpression and its genetic background in MMMT of the peritoneum. PMID:19217035

  6. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  7. Stochastic models for tumoral growth

    NASA Astrophysics Data System (ADS)

    Escudero, Carlos

    2006-02-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.

  8. Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells

    Microsoft Academic Search

    Ian Henry Lambert; Else Kay Hoffmann; Poul Christensen

    1987-01-01

    Summary PGE2 and LTC4 syntheses in Ehrlich ascites cells were measured by radioimmunoassay. Hypotonic swelling results in stimulation of the leukotriene synthesis and a concomitant reduction in the prostaglandin synthesis. If the cells have access to sufficient arachidonic acid there is a parallel increase in the synthesis of both leukotrienes and prostaglandins following hypotonic exposure. PGE2 significantly inhibits regulatory volume

  9. Na + , Cl ? cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase)

    Microsoft Academic Search

    Else K. Hoffmann; Carsten Sjřholm; Lars Ole Simonsen

    1983-01-01

    Summary Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. 1. The volume recovery was inhibited when NO3- was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5mm external K+). 2. The

  10. Antitumor activity of methanolic extract of Cassia fistula L. seed against Ehrlich Ascites Carcinoma

    Microsoft Academic Search

    M Gupta; U. K Mazumder; N Rath; D. K Mukhopadhyay

    2000-01-01

    Effects of methanolic extract (ME) of Cassia fistula seed on the growth of Ehrlich ascites carcinoma (EAC) and on the life span of tumor bearing mice were studied. ME treatment showed an increase of life span, and a decrease in the tumor volume and viable tumor cell count in the EAC tumor hosts. Cytological studies have revealed a reduction in

  11. Massive Ascites as the Only Sign of Ovarian Juvenile Granulosa Cell Tumor in an Adolescent: A Case Report and a Review of the Literature

    PubMed Central

    Ashnagar, Azin; Alavi, Samin; Nilipour, Yalda; Azma, Roxana; Falahati, Farahnaz

    2013-01-01

    Ovarian neoplasms are relatively rare in childhood and adolescence; only 5% to 8% of the cases are of sex cord stromal origin. Granulosa cell tumors are a group of estrogen producing sex cord stromal tumors of the ovary. They occur in 95% of the cases in adults, and only about 5% of the cases, which differ in histologic characteristics, are of juvenile type. A 13-year-old girl is reported who presented with massive abdominal distention and ascites. An abdominopelvic computed tomography scan showed a predominantly cystic mass lesion with septations arising from the left ovary. All tumor markers were normal, but serum inhibin level was increased. The patient underwent mass resection with salpingoophorectomy. Histopathology was compatible with the juvenile granulosa cell tumor. Interestingly, menarche was started in the patient soon after the surgery. To the best of our knowledge, massive ascites as the only clinical manifestation in the juvenile granulosa cell tumor has not reported as yet. PMID:23424695

  12. Massive ascites as the only sign of ovarian juvenile granulosa cell tumor in an adolescent: a case report and a review of the literature.

    PubMed

    Ashnagar, Azin; Alavi, Samin; Nilipour, Yalda; Azma, Roxana; Falahati, Farahnaz

    2013-01-01

    Ovarian neoplasms are relatively rare in childhood and adolescence; only 5% to 8% of the cases are of sex cord stromal origin. Granulosa cell tumors are a group of estrogen producing sex cord stromal tumors of the ovary. They occur in 95% of the cases in adults, and only about 5% of the cases, which differ in histologic characteristics, are of juvenile type. A 13-year-old girl is reported who presented with massive abdominal distention and ascites. An abdominopelvic computed tomography scan showed a predominantly cystic mass lesion with septations arising from the left ovary. All tumor markers were normal, but serum inhibin level was increased. The patient underwent mass resection with salpingoophorectomy. Histopathology was compatible with the juvenile granulosa cell tumor. Interestingly, menarche was started in the patient soon after the surgery. To the best of our knowledge, massive ascites as the only clinical manifestation in the juvenile granulosa cell tumor has not reported as yet. PMID:23424695

  13. Characteristics of the accumulation of methotrexate polyglutamate derivatives in Ehrlich ascites tumor cells and isolated rat hepatocytes

    SciTech Connect

    Fry, D.W.; Gewirtz, D.A.; Yalowich, J.C.; Goldman, I.D.

    1983-01-01

    The intracellular synthesis and retention of polygammaglutamyl derivatives of methotrexate and their interactions with H/sub 2/ folate reductase was evaluated. Methotrexate polyglutamates were detected within 15 minutes in hepatocytes exposed to 1 microM methotrexate, and continued to accumulate for at least 60 minutes producing a large transmembrane gradient. These derivatives appeared to be preferentially retained within the cell. In studies with the Ehrlich ascites tumor accumulation of methotrexate polyglutamates was increased over 5-fold by the addition of 5 mM L-glutamine or L-glutamate and exhibited a positive correlation with the extracellular concentration of methotrexate. When Ehrlich ascites tumor cells were exposed to 10 microM methotrexate and 5 mM L-glutamine intracellular polyglutamates were detected within 10 minutes and their levels increased linearly over 4 hours. As these derivatives accumulated, there was a decline in intracellular methotrexate due at least in part to a replacement of methotrexate on H/sub 2/ folate reductase by polyglutamates and subsequent efflux of the previously bound methotrexate from the cell. When polyglutamate derivatives were in excess of the H/sub 2/ folate reductase binding capacity and extracellular methotrexate removed, methotrexate rapidly exited the cell whereas the majority of its metabolites were retained and eventually saturated the major portion of the enzyme. These studies indicate that (1) intracellular methotrexate is rapidly converted to polygammaglutamyl derivatives, (2) these metabolites effectively compete with methotrexate for binding sites on H/sub 2/ folate reductase, (3) these derivatives are retained within the cell more effectively than methotrexate, and (4) vincristine and probenecid may be potentially useful for selectively increasing methotrexate polyglutamates in tumor cells.

  14. A Rare Case of Secondary Bacterial Peritonitis from Clostridium perfringens in an Adult Patient with Noncirrhotic Ascites and a Krukenberg Tumor: Report of a Case.

    PubMed

    Kelley, Scott R; Kerlakian, George M

    2011-01-01

    Secondary bacterial peritonitis, in comparison to spontaneous, presents with a surgically treatable intraabdominal source for infection such as a gastrointestinal perforation or abscess and is nearly always polymicrobial. We present a rare case of secondary bacterial peritonitis from Clostridium perfringens in an adult patient with noncirrhotic ascites and a Krukenberg tumor. PMID:21785606

  15. Modifying the response of Ehrlich ascites tumor cells to nitrogen mustard (HN/sub 2/) by vincristine, Ca and liposomes

    SciTech Connect

    Ritter, C.; Kutman, R.J.

    1986-03-01

    Though vincristine (0.5mg/kg) has no significant carcinostatic effect on Ehrlich ascites tumor cells, it does modify the carcinostatic effect of HN/sub 2/. Cells treated with 25 ..mu..m HN/sub 2/ in vitro, cold washed, then injected into recipient mice (1 x 10/sup 5/ cells/mouse) yielded 62% 60d mouse survival while cells treated with HN/sub 2/ and vincristine yielded approx. 30% survival. Parallel in vitro experiments using /sup 13/N HN/sub 2/ showed that vincristine did not decrease HN/sub 2/ uptake. Pretreating cells with 0.25 mM Ca before addition of drugs reversed the vincristine inhibition of HN/sub 2/ action. The action of extracellular Ca increased microtubule polymerization, decreasing vincristine action as has been reported for other systems. Cells treated with liposomes made of L(..cap alpha..) dipalmitoylphosphatidyl choline, then with HN/sub 2/ then injected into mice yielded 92% mouse survival. Liposome treatment increased HN/sub 2/ uptake only about 18% while increasing cytostatis approx. 30%. The liposome effect was removed, and cytostatis reduced to approx. 30% mouse survival by vincristine. Cells pretreated with Ca + liposomes restored HN/sub 2/ effectiveness to near that seen with liposomes alone. HN/sub 2/ distribution and tumor cell death are modified by (1) the state of microtubule polymerization and (2) by membrane phospholipid composition.

  16. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90. PMID:9187119

  17. Concentrated ascites re-infusion therapy for pseudo-Meigs' syndrome complicated by massive ascites in large pedunculated uterine leiomyoma.

    PubMed

    Yonehara, Yukie; Yanazume, Shintaro; Kamio, Masaki; Togami, Shinichi; Tasaki, Takashi; Douchi, Tsutomu

    2014-07-01

    Pseudo-Meigs' syndrome accompanied by massive ascites in uterine leiomyoma is rare. We encountered a rare case of a 37-year-old, nulliparous woman with a lower abdominal tumor and severe abdominal distention due to massive ascites. Serum cancer antigen 125 and vascular endothelial growth factor levels were elevated to 1007.9?U/mL and 103?pg/mL, respectively. She was tentatively diagnosed with ovarian cancer. Emergency concentrated ascites re-infusion therapy was performed to improve dyspnea, abdominal pain, and her preoperative respiratory condition. Concentrated ascites re-infusion therapy eliminated dyspnea and abdominal discomfort without decreasing serum albumin levels. The patient underwent laparotomy, which revealed a fist-sized pedunculated uterine leiomyoma arising from the right uterine fundus. Myomectomy was performed. Pseudo-Meigs' syndrome mimics advanced ovarian cancer due to massive ascites and markedly elevated serum cancer antigen 125 and vascular endothelial growth factor levels. Concentrated ascites re-infusion therapy was effective in improving the subjective symptoms of pseudo-Meigs' syndrome and the patient's preoperative condition. PMID:25056475

  18. Conditions supporting repair of potentially lethal damage cause a significant reduction of ultraviolet light-induced division delay in synchronized and plateau-phase Ehrlich ascites tumor cells

    SciTech Connect

    Iliakis, G.; Nusse, M.

    1982-09-01

    Repair of potentially lethal damage (PLD) induced by uv light in synchronized and in plateau-phase cultures of Ehrlich ascites tumor cells was studied by measuring cell survival. In particlar the influence of conditions supporting repair of PLD on growth kinetics was investigated. In synchronized G/sub 1/, S, or G/sub 2/ + M cells as well as in plateau-phase cells, uv light induced, almost exclusively, delay in the next S phase. A significant decrease of this delay was observed when the cells were incubated for 24 hr in balanced salt solution. Repair of PLD after uv irradiation was found to occur in plateau-phase cells and in cells in different phases of the cell cycle provided that after irradiation these were kept under conditions inhibiting cell multiplication (incubation in balanced salt solution or in conditioned medium). The repair time constant t/sub 50/ was significantly higher than those found for X irradiation (5-10 hr compared to 2 hr), and repair was not significantly inhibited by either 20 ..mu..g/ml cycloheximide or 2 mM caffeine in 24 hr.

  19. Purification of, and generation of antibodies against an actin-binding cell surface glycoprotein from ascites tumor cell microvilli

    SciTech Connect

    Metcalf, T.N. III; Carraway, C.A.C.; Carraway, K.L.

    1987-05-01

    Isolated microvilli from 13762 ascites tumor cells contain a transmembrane, cell surface glycoprotein (CAG - cytoskeleton associated glycoprotein) which binds to microfilaments. The authors have purified this protein from Triton X-100 extracts of microvilli by two consecutive sucrose density gradient centrifugation steps in the presence of sodium dodecyl sulfate (SDS). Under non-reducing conditions, CAG behaves as a 20 S species, and has a molecular weight of 1-2 x 10/sup 6/. The molecular weight of the reduced, SDS subunit is 80,000. The authors have demonstrated that the purified, non-reduced CAG molecule can bind /sup 125/I actin. Antibodies against CAG were raised in rabbits by injecting CAG which was eluted from preparative SDS gels run under reducing conditions. Interestingly, this antibody also reacts with the heavy chain of soluble rat IgM, another mulitmeric glycoprotein of similar molecular weight. This antibody will be useful for the localization of cross-reactive molecules in other cells and tissues.

  20. Glucose uptake-stimulatory activity of Tinospora cordifolia stem extracts in Ehrlich ascites tumor cell model system.

    PubMed

    Joladarashi, Darukeshwara; Chilkunda, Nandini D; Salimath, Paramahans Veerayya

    2014-01-01

    Diabetes mellitus is a multifunctional disorder with several causes and multiple consequences. Nutraceuticals play a vital role in ameliorating diabetic condition. The stems of the plant, Tinospora cordifolia (T. cordifolia) are often used in Ayurvedic medicine for the management of diabetes. Earlier studies have shown that T. cordifolia to be a potent antidiabetic plant material by virtue of being rich in nutraceuticals. In the present study we were interested to know if, T. cordifolia stem extracts are able to promote glucose uptake through glucose transporters, 1 (GLUT1) and 3 (GLUT3), which are responsible for basal glucose uptake. Hence, Ehrlich ascites tumor (EAT) cells were chosen as a model which harbours both GLUT1 and GLUT3 and glucose uptake was measured using a fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG). Serially, solvent extracted T. cordifolia stems, especially water, ethanol and methanol extracts showed glucose uptake activity. Uptake was stimulated in a dose dependent manner at dosages of 1-100 ?g. Glucose-stimulating activity does not seem to be solely due to polyphenol content since methanol extract, with high amount of polyphenol content (9.5?±?0.1 g?kg(-1)), did not stimulate higher glucose uptake activity when compared to water extract. PMID:24426067

  1. Selective incorporation of various C-22 polyunsaturated fatty acids in Ehrlich ascites tumor cells

    SciTech Connect

    Masuzawa, Y.; Okano, S.; Waku, K.; Sprecher, H.; Lands, W.E.

    1986-11-01

    Three /sup 14/C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-(/sup 14/C)docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-(/sup 14/C)docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-(/sup 14/C)docosahexaenoic acid (22:6(n-3)), were compared with (/sup 3/H)arachidonic acid (20:4(n-6) and (14C)linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids.

  2. Unusual morphology of desmoplastic small round cell tumor from an ascitic fluid in the postchemotherapy setting

    PubMed Central

    González-Arango, Ricardo; Castro-Villabón, Diana; Barrera-Herrera, Luis E.; Palau, Mauricio; Rodríguez-Urrego, Paula A.

    2015-01-01

    Desmoplastic small round cell tumor (DSRCT) is a malignant neoplasm that most often presents in male adolescents as an abdominal mass. Cytological features have been previously described, but only two reports noted post chemotherapy changes on effusions. We report a case of a 15-year-old male with DSRCT status postchemotherapy that presented with ascitis. Unusual morphology was seen: Numerous malignant large and single cells with prominent nucleoli and abundant cytoplasm in a background without the stroma, occasional mitosis, and the abundant apoptosis. Cell block immunocytochemistry was confirmatory. Awareness of the postchemotherapy changes in this tumor will allow us to diagnose recurrence. PMID:25948947

  3. Tumor growth modeling based on cell and tumor lifespans

    E-print Network

    Paris-Sud XI, Université de

    Tumor growth modeling based on cell and tumor lifespans R. Keinj1 , T. Bastogne2,4,6 , P. Vallois3 September 9, 2012 Abstract This paper deals with the lifespan modeling of heterogenous tumors treated by radiotherapy. A bi-scale model describing the cell and tumor lifespans by random variables is proposed. First

  4. The in vivo effect of a Brassica oleracea var. capitata extract on Ehrlich ascites tumors of MUS musculus BALB/C mice.

    PubMed

    Yurtsever, E; Yardimci, K T

    1999-01-01

    An extract of Brassica oleracea var. capitata juice was prepared using petroleum ether, ether, ethanol and an Al2O3 column. The healing and tumor protecting effects of this extract were tested on Ehrlich ascites (EA) solid tumors of Mus musculus BALB/C mice. Complete disappearance of the tumors was observed in 54.5% of the animals in the experimental group (n = 22) which received 20 mg/day of the extract i.p. for 28 days. Regression of the tumors (27%), fixation of tumor size (4%) and an increase in tumor size (18%) were also recorded. Neither tumor size fixation nor regression was recorded in the control group which received physiological serum (0.5 ml/day). The healing effect was found to be related to the starting tumor size. The healed animals in the experimental group were followed for 6-7 months and no tumor recurrence was recorded. The protective effect of this extract on tumor formation was also tested. Experimental animals (n = 35) received 20 mg/day of the extract i.p. for 20 days. Physiological serum was administered to a control group (n = 30). Transplantation of solid tumors was performed on the 20th day and extract administration was discontinued. Transplantation success was recorded 20 days after transplantation. In the experimental group, only three out of 35 mice showed tumor development, whereas in the control group the number was 23 out of 35 mice. It was also observed that the extract prevented the development of liquid EA tumors. This extract was also found to be nontoxic. Brassica oleracea var. capitata had a healing effect as well as a protective effect on EA solid tumors of mice. These results are in agreement with our previous results obtained from a liquid Brassica oleracea var. acephala juice extract. PMID:10707127

  5. Inhibition of tumoral cell respiration and growth by nordihydroguaiaretic acid.

    PubMed

    Pavani, M; Fones, E; Oksenberg, D; Garcia, M; Hernandez, C; Cordano, G; Muńoz, S; Mancilla, J; Guerrero, A; Ferreira, J

    1994-11-16

    The effects of nordihydroguaiaretic acid (NDGA), best known as an inhibitor of lipoxygenase activities, on the culture growth, oxygen consumption, ATP level, viability, and redox state of some electron carriers of intact TA3 and 786A ascites tumor cells have been studied. NDGA inhibited the respiration rate of these two tumor cell lines by preventing electron flow through the respiratory chain. Consequently, ATP levels, cell viability and culture growth rates were decreased. NDGA did not noticeably inhibit electron flow through both cytochrome oxidase and ubiquinone-cytochrome b-c1 complex. Also, the presence of NDGA changed to redox state of NAD(P)+ to a more reduced level, and the redox states of ubiquinone, cytochrome b and cytochromes c + c1 changed to a more oxidized level. These observations suggest that the electron transport in the tumor mitochondria was inhibited by NDGA at the NADH-dehydrogenase-ubiquinone level (energy-conserving site 1). As a consequence, mitochondrial ATP synthesis would be interrupted. This event could be related to the cytotoxic effect of NDGA. PMID:7986205

  6. Assessing ODE models of tumor growth

    NASA Astrophysics Data System (ADS)

    Dobrovolny, Hana; Jaafari, Hana; Ellis, Michael

    2014-03-01

    Mathematical models are often used to study and optimize treatment of cancer. In order to accurately predict the efficacy of a particular treatment, the model must correctly describe tumor growth. Over the years, several differential equation models of tumor growth have been proposed and independently fit to experimental data sets. While all the models provide reasonable fits to tumor growth data, the models have never been confronted with the same experimental data to determine whether any of the models provides a more accurate description of tumor growth. We collected tumor growth data from the literature and fit the various tumor growth models to the data to determine which model best describes tumor growth. Our results indicate that no single model can capture the variety of growth behavior captured in experiments.

  7. Role of malignant ascites on human mesothelial cells and their gene expression profiles

    PubMed Central

    2014-01-01

    Background Malignant ascites is often present at diagnostic in women with advanced ovarian cancer (OC) and its presence is associated with a worse outcome. Human peritoneal mesothelial cells (HPMCs) are key components of malignant ascites. Although the interplay between HPMCs and OC cells is believed to be critical for tumor progression, it has not been well characterized. The purpose of this study was to assess the effect of ascites on HPMCs and clarify the role of HPMCs in OC progression. Methods Human OC ascites and benign peritoneal fluids were assessed for their ability to stimulate HPMC proliferation. Conditioned medium from ascites- and benign fluid-stimulated HPMCs were compared for their ability to attenuate apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL). We conducted a comparative analysis of global expression changes in ascites-stimulated HPMCs using Agilent oligonucleotide microarrays. Results As compared to benign peritoneal fluids, malignant ascites stimulated the proliferation of HPMCs. TRAIL-induced apoptosis was attenuated in OC cells exposed to conditioned medium from ascites-stimulated HPMCs as compared to OC cells exposed to conditioned medium from benign fluid-stimulated HPMCs. A total of 649 genes were differentially expressed in ascites-stimulated HPMCs. Based on a ratio of more than 1.5-fold and a P?ascites-exposed HPMCs. Stimulation of HPMCs with OC ascites resulted in differential expression of genes mainly associated with the regulation of cell growth and proliferation, cell death, cell cycle and cell assembly and organization, compared to benign peritoneal fluids. Top networks up-regulated by OC ascites included Akt and NF-?B survival pathways whereas vascular endothelial growth factor (VEGF) pathway was down-regulated. Conclusions The results of this study not only provide evidence supporting the importance of the interplay between cancer cells and HPMCs but also define the role that the tumor environment plays in these interactions. PMID:24761768

  8. pH i regulation in Ehrlich mouse ascites tumor cells: Role of sodium-dependent and sodium-independent chloride-bicarbonate exchange

    Microsoft Academic Search

    B. Kramhřft; E. K. Hoffmann; L. O. Simonsen

    1994-01-01

    pH\\u000ai\\u000a recovery in acid-loaded Ehrlich ascites tumor cells and pH\\u000ai\\u000a maintenance at steady-state were studied using the fluorescent probe BCECF.Both in nominally HCO\\u000a3\\u000a–\\u000a-free media and at 25 mm HCO\\u000a3\\u000a–\\u000a, the measured pH\\u000ai\\u000a (7.26 and 7.82, respectively) was significantly more alkaline than the pH\\u000ai\\u000a. value calculated assuming the transmembrane HCO

  9. Mammalian protein homologous to VAT-1 of Torpedo californica: isolation from Ehrlich ascites tumor cells, biochemical characterization, and organization of its gene.

    PubMed

    Hayess, K; Kraft, R; Sachsinger, J; Janke, J; Beckmann, G; Rohde, K; Jandrig, B; Benndorf, R

    1998-06-01

    Recently, interest has focused on the human gene encoding the putative protein homologous to VAT-1, the major protein of the synaptic vesicles of the electric organ of the Pacific electric ray Torpedo californica, after it has been localized on chromosome locus 17q21 in a region encompassing the breast cancer gene BRCA1. Chromosomal instability in this region is implicated in inherited predisposition for breast and ovarian cancer. Here we describe isolation and biochemical characterization of a mammalian 48 kDa protein homologous to the VAT-1 protein of Torpedo californica. This VAT-1 homolog was isolated from a murine breast cancer cell line (Ehrlich ascites tumor) and identified by sequencing of cleavage peptides. The isolated VAT-1 homolog protein displays an ATPase activity and exists in two isoforms with isoelectric points of 5.7 and 5.8. cDNA was prepared from Ehrlich ascites tumor cells, and the murine VAT-1 homolog sequence was amplified by polymerase chain reaction and partially sequenced. The known part of the murine and the human translated sequences share 97% identity. By Northern blots, the size of the VAT-1 homolog mRNA in both murine and human (T47D) breast cancer cells was determined to be 2.8 kb. Based on the presented data, a modified gene structure of the human VAT-1 homolog with an extended exon 1 is proposed. VAT-1 and the mammalian VAT-1 homolog form a subgroup within the protein superfamily of medium-chain dehydrogenases/reductases. PMID:9581869

  10. Inhibition of Vascularization in Tumor Growth

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Sansone, B. Capogrosso

    2002-11-01

    The transition to a vascular phase is a prerequisite for fast tumor growth. During the avascular phase, the neoplasm feeds only from the (relatively few) existing nearby blood vessels. During angiogenesis, the number of capillaries surrounding and infiltrating the tumor increases dramatically. A model which includes physical and biological mechanisms of the interactions between the tumor and vascular growth describes the avascular-vascular transition. Numerical results agree with clinical observations and predict the influence of therapies aiming to inhibit the transition.

  11. Strange Attractor in Immunology of Tumor Growth

    E-print Network

    Margarita Voitikova

    1997-08-21

    The time delayed cytotoxic T-lymphocyte response on the tumor growth has been developed on the basis of discrete approximation (2-dimensional map). The growth kinetic has been described by logistic law with growth rate being the bifurcation parameter. Increase in the growth rate results in instability of the tumor state and causes period-doubling bifurcations in the immune+tumor system. For larger values of tumor growth rate a strange attractor has been observed. The model proposed is able to describe the metastable-state production when time series data of the immune state and the number of tumor cells are irregular and unpredictable. This metastatic disease may be caused not by exterior (medical) factors, but interior density dependent ones.

  12. Influence of Dendritic Cells on Tumor Growth

    NASA Astrophysics Data System (ADS)

    Knight, Stella C.; Hunt, Ruth; Dore, Caroline; Medawar, Peter B.

    1985-07-01

    Dendritic cells (DC) exposed to antigen are potent initiators of immune responses, and the numbers of DC and the dose of antigen control the level of response. The influence of these variables was tested on the growth of mouse sarcoma cells in vivo. When normal syngeneic DC (100,000) were given to mice with palpable tumors, tumor regression or delay in tumor growth was obtained. DC exposed to increasing doses of tumor extract in vitro before administration had progressively less effect. DC exposed to antigen delayed tumor growth significantly only when given on the same day as 500 tumor cells. The studies suggested that low doses of antigen on DC elicit immune responses and that high doses block them. The numbers of antigen-presenting cells and the dose of antigen modulate the degree of immunity to mouse sarcoma in vivo.

  13. Effects of Dietary L-carnitine Supplementation on Growth Performance, Organ Weight, Biochemical Parameters and Ascites Susceptibility in Broilers Reared Under Low-temperature Environment

    PubMed Central

    Wang, Y. W.; Ning, D.; Peng, Y. Z.; Guo, Y. M.

    2013-01-01

    The objective of this study was to investigate the effects of L-carnitine on growth performance, organ weight, biochemical parameters of blood, heart and liver, and ascites susceptibility of broilers at different ages reared under a low-temperature environment. A total of 420 1-d-old male Ross 308 broilers were randomly assigned to two dietary treatments with fifteen replicates of fourteen broilers each. Treatment diets consisted of L-carnitine supplementation at levels of 0 and 100 mg/kg. At 11-d of age, low temperature stress was used to increase ascites susceptibility. Blood, heart and liver samples were collected at different ages for analysis of boichemical parameters. The results showed that, there was no significant difference in growth performance with L-carnitine supplementation, but the mortality due to ascites was significantly decreased. Dietary L-carnitine supplementation significantly reduced heart index (HI) and ascites heart index (AHI) on d 21, lung index (LUI) on d 35 and liver index (LI) on d 42. The broilers fed diets containing L-carnitine had significantly lower red blood cell counts (RBC), hemoglobin (HGB) concentration and hematocrit (HCT) on d 42. Dietary L-carnitine supplementation significantly reduced malondialdehyde (MDA) content of heart tissue on d 21 and 35, and significantly increased total superoxide dismutase (T-SOD) and Glutathione peroxidase (GSH-Px) activity of the heart on d 21 and 42. L-carnitine supplementation significantly reduced serum triglyceride (TG) content on d 28 and 35 and serum glucose (GLU) on d 35 and 42, and significantly increased serum total protein (TP) and globulin (GLO) content on d 42. L-carnitine supplementation significantly enhanced liver succinodehydrogenase (SDH), malic dehydrogenase (MDH) and Na+-K+-ATPase activity on d 28, and tended to reduce the lactic acid (LD) level of liver on d 35 (p = 0.06). L-carnitine supplementation significantly reduced serum uric acid (UA) content on d 28, 35 and 42. Based on the current results, it can be concluded that dietary L-carnitine supplementation reduced organ index, red blood cell counts and hematocrit, enhanced antioxidative capacity of the heart, enhanced liver enzymes activity involved in tricarboxylic acid cycle, and reduced serum glucose and triglyceride. Therefore, it is suggested that L-carnitine can potentially reduce susceptibility and mortality due to ascites. PMID:25049781

  14. Simulating tumor growth in confined heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Gevertz, Jana L.; Gillies, George T.; Torquato, Salvatore

    2008-09-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics.

  15. Growth of intraperitoneally transplanted ascites hepatoma, AH39 cells, in the area of gelatin sponge inoculation into the abdominal wall of Donryu rats.

    PubMed

    Ogiu, T; Nakamura, K

    1979-04-01

    A piece of gelatin sponge was inoculated submesothelialy in the abdominal wall of female Donryu rats, and 1, 2, 4, 7, 14, or 21 days later, 1 x 10(5) cells of ascites hepatoma AH39 were intraperitoneally transplanted. Tumor cells were detected in the area of gelatin sponge inoculation in each group 2 to 5 days after the transplantation. Generally, the number of rats in which tumor cells were detected was larger in those transplanted with tumor cells within a short period after the gelatin sponge inoculation. Changes in the area of gelatin sponge inoculation and nontreated area in the rats which received intraperitoneal transplantation of the tumor cells on the 1st day after gelatin sponge inoculation were studied. Tumor cells were detected in the area of gelatin sponge inoculation as early as 2 days after the tumor transplantation, whereas they were detected on the 14th day in nontreated areas. Tumor detection was preceded by inflammatory reaction in both cases. PMID:157308

  16. [Polymorphism of a tumor ce-l population and selection processes. IV. The effect of dibunol and nitrosourea on the variability of Ehrlich-I. Ch. Ph. ascitic strain tumor cells].

    PubMed

    Minenkova, E A; Fomina, M M; Poroshenko, G G; Evseenko, L S

    1979-09-01

    A study was made of the effect of dibunol and methyl-N-nitrosourea (MNU) on two tumor cell subpopulations of the Ehrlich-I. Ch. Ph. ascites strain, one of which is characterized with A + B + 2C and A + D + 2C--markers and the other one--with A1 + A2 + 2B + D + C markers. Dibunol that belongs to the class of inhibitors of free-radical processes was shown to bring about changes in cell subpopulations, the mode of changes depending on the dose and regime of treatment. The effect of MNU on the population resulted predominantly in the accumulation of cells with various chromosome aberrations. At early stages of tumor progression, aberrations were more pronounced in cells with marker chromosome "A" than in the cells with 44 chromosomes and markers A1 + A2 + 2B + D + C. PMID:292258

  17. Mathematical Modeling of Tumor Growth Kinetics

    Microsoft Academic Search

    Ž. Bajzer; S. Vuk-Pavlovi?; M. Huzak

    \\u000a The overall goal of this survey is to develop and present a coherent and integrated interpretation of mathematical models\\u000a which describe tumor growth. Rigorous description and quantitative understanding of tumor growth kinetics have been a focus\\u000a of mathematical modelers for more than five decades. Consequently, many models have been proposed, ranging from conceptually\\u000a and mathematically simple empirical models to complex

  18. Does tumor growth follow a "universal law" ? Caterina Guiot*,

    E-print Network

    Grether, Gregory

    1 Does tumor growth follow a "universal law" ? Caterina Guiot*, , Piero Giorgio Degiorgis , , Pier recently proposed. Here we investigate the extension of this model to the growth of solid malignant tumors, relating properly rescaled tumor masses and tumor growth times. The results support the notion that tumor

  19. Nod1-dependent control of tumor growth

    PubMed Central

    da Silva Correia, Jean; Miranda, Yvonne; Austin-Brown, Nikki; Hsu, Jenny; Mathison, John; Xiang, Rong; Zhou, Huamin; Li, Qinxi; Han, Jiahuai; Ulevitch, Richard J.

    2006-01-01

    Nod1, a cytosolic protein that senses meso-diaminopimelic acid-containing ligands derived from peptidoglycan, plays a role in host responses to invasive bacteria. Here we describe a function for Nod1, whereby it controls tumor formation. Cell lines derived from the human breast cancer epithelial cell line MCF-7 were used in a severe combined immune deficiency (SCID) mouse xenograft model to characterize a pathway linking Nod1 to the growth of estrogen-sensitive tumors. In MCF-7 cells, the absence of Nod1 correlates with tumor growth, an increased sensitivity to estrogen-induced cell proliferation, and a failure to undergo Nod1-dependent apoptosis. Conversely, overexpression of Nod1 in MCF-7 cells results in inhibition of estrogen-dependent tumor growth and reduction of estrogen-induced proliferative responses in vitro. PMID:16446438

  20. Lipid dependence of nuclear glucose-6-phosphatase during tumor growth and changes in its nature after irradiation of tumor bearers

    SciTech Connect

    Pal'mina, N.P.; Mal'tseva, E.L.; Burlakova, E.B.

    1982-01-01

    Since nuclear glucose-6-phosphatase has both general and distinguishing features in comparison with the microsomal enzyme, its activity was studied at different periods of tumor growth and these data compare with the composition and antioxidant activity of the nuclear lipids (AOA). The enzyme activity was determined by the Swanson method, consisting of a measurement of the amount of inorganic phosphate liberated as a result of enzymatic hydrolysis of glucose-6-phosphate in 15 min after addition of a suspension of nuclei to it. The antioxidant activity of the lipids (AOA) was determined on a methyl-oleate oxidation model, the composition of phospholipids by the method of two-dimensional thin-layer chromatography, and the amount of protein by the Lowry method. Ehrlich's ascites carcinoma was transplanted on the seventh day of its development, dose of inoculum 10/sup 6/ cells. Tumor cells were irradiated with 650 roentgens on the fifth day after transplantation. The data obtained are evidence that in the nuclei of liver cells of the tumor bearer the phosphohydrolase activity of glucose-6-phosphatase is regulated by the change in the content of phosphatidylethanolamine and level of development of oxidation reactions in lipids, while in the nuclei of tumor cells this system of regulation is impaired, and despite its presence in the membrane, the enzyme does not function. (JMT)

  1. Blood porphyrin luminescence and tumor growth correlation

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Bellini, Maria Helena; Mansano, Ronaldo Domingues; Schor, Nestor; Vieira, Nilson Dias, Jr.

    2007-02-01

    Fluorescence technique appears very important for the diagnosis of cancer. Fluorescence detection has advantages over other light-based investigation methods: high sensitivity, high speed, and safety. Renal cell carcinoma (RCC) accounts for approximately 3% of new cancer incidence and mortality in the United States. Unfortunately many RCC masses remain asymptomatic and nonpalpable until they are advanced. Diagnosis and localization of early carcinoma play an important role in the prevention and curative treatment of RCC. Certain drugs or chemicals such as porphyrin derivatives accumulate substantially more in tumors than normal tissues. The autofluorescence of blood porphyrin of healthy and tumor induced male SCID mice was analyzed using fluorescence and excitation spectroscopy. A significant contrast between normal and tumor blood could be established. Blood porphyrin fluorophore showed enhanced fluorescence band (around 630 nm) in function of the tumor growth. This indicates that either the autofluorescence intensity of the blood fluorescence may provide a good parameter for the "first approximation" characterization of the tumor stage.

  2. Resolution of Malignant Ascites and Stabilization of Metastases in a Patient With Small Bowel Neuroendocrine Tumor With 177Lu-DOTATATE Following Progression After 17 131I-MIBG Treatments and Chemotherapy.

    PubMed

    Makis, William; McCann, Karey; Buteau, Francois A; McEwan, Alexander J B

    2015-07-01

    A 39-year-old man diagnosed with a small bowel neuroendocrine tumor metastatic to the liver, lymph nodes, and bones achieved stable disease with I-MIBG therapy totalling 17 treatments over 9 years (cumulative dose of 1.9 Ci). His disease progressed after the 17th I-MIBG treatment, and he went on to fail chemotherapy, developing severe ascites requiring up to 8 L of weekly paracentesis. He was referred for Lu-[DOTA,Tyr]octreotate (DOTATATE) therapy, and after 4 induction cycles, his ascites resolved completely, and his metastatic disease stabilized. Lu-DOTATATE may be useful in patients with an extensive history of radioisotope therapy with I-MIBG. PMID:25546192

  3. [Non-cirrhotic ascites: pathophysiology, diagnosis and etiology].

    PubMed

    Carrier, P; Jacques, J; Debette-Gratien, M; Legros, R; Sarabi, M; Vidal, E; Sautereau, D; Bezanahary, H; Ly, K H; Loustaud-Ratti, V

    2014-06-01

    Ascites, in 20% of cases, is not linked to liver cirrhosis. The pathophysiology is most often different. The understanding of these pathophysiological mechanisms can lead to etiologic diagnosis. The diagnostic approach is mainly based on the biological study of ascites, especially protein concentration and albumin gradient between serum and ascites. In Western countries, tumors and heart diseases are the predominant causes, while developing countries are mainly concerned by infectious diseases, among which tuberculosis is the leading cause. Other uncommon causes must be recognized, as ascites may be the presenting feature of the disease. Their knowledge will facilitate the therapeutic approach. PMID:24406314

  4. Evidence that repair and expression of potentially lethal damage cause the variations in cell survival after x irradiation observed through the cell cycle in Ehrlich ascites tumor cells

    SciTech Connect

    Iliakis, G.; Nuesse, M.

    1983-07-01

    The survival of synchronously growing Ehrlich ascites tumor cells (EAT cells) was measured after x irradiation in various stages of the cell cycle. Cells at the beginning of S or in G2 + M phase showed a high level of killing, whereas cells irradiated in G1 or in the middle of S phase were more resistant. These changes resulted from a change in the survival curve shoulder width (D/sub q/) as cells passed through the cell cycle, and the mean lethal dose (D/sub 0/) remained practically unchanged (0.8 +- 0.05 Gy). When synchronization of the cell population was further sharpened using nocodazole, exponential survival curves were obtained at the beginning of S phase and at mitosis with a D/sub 0/ = 0.8 Gy. When cells (in all stages) were incubated in balanced salt solution for 6 h after irradiation, repair of potentially lethal damage (PLD) was observed, resulting in an increase in D/sub q/, while D/sub 0/ remained constant. Treatment of the cells after irradiation with either caffeine or ..beta..-arabinofuranosyladenine (..beta..-araA) or hypertonic medium resulted in an expression of PLD and reduced the D/sub q/ of the survival curve. We measured the rate of the loss of sensitivity of these treatments that we assume reflects the rate of repair of PLD. Results indicate that the shoulder width D/sub q/ of the survival curve in cells irradiated at various stages of the cell cycle results from repair of PLD. It is suggested that the variations observed in cell survival through the cell cycle might reflect variations in the final amount of PLD either repaired or expressed as the cells progress through stages of the cell cycle.

  5. Ascites in poultry

    Microsoft Academic Search

    Richard J. Julian

    1993-01-01

    Research on ascites occurring in meat?type chickens reared at moderate and low altitude has shown that the pathogenesis is similar to that of the high altitude disease. Pulmonary hypertension (PH) caused by increased blood flow or increased resistance to flow in the lung results in right ventricular hypertrophy (RVH), valvular insufficiency, increased venous pressure and ascites. The structure of the

  6. Impairment of T-cell functions with the progressive ascitic growth of a transplantable T-cell lymphoma of spontaneous origin.

    PubMed

    Shanker, A; Singh, S M; Sodhi, A

    2000-03-01

    It has been observed that the progressive ascitic growth of a transplantable T-cell lymphoma of spontaneous origin, designated Dalton's lymphoma (DL), in a murine host induces inhibition of various immune responses and is associated with an involution of thymus accompanied by a massive depletion of the cortical region and alteration in the distribution of thymocytes caused by tumour serum-dependent induction of apoptosis with a decrease of CD4(+)CD8(+), CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes. Here, we report that thymocytes of DL-bearing mice are defective in their proliferative ability and in their response to non-specific mitogenic stimulus in vitro. Also, antigen-specific T-cell proliferative ability representing the fundamental T(H) function declines under DL-bearing conditions and upon treatment with serum of DL-bearing mice. Moreover, a significant inhibition of T-cell cytolytic activity with a decreased ability to produce interferon gamma is shown by the T cells of DL-bearing mice and by the T cells treated with DL-ascitic fluid, DL-conditioned medium or serum of DL-bearing mice. Further, addition of interleukin-2 and anti-interleukin-10 to the cultures of thymocytes treated with serum of DL-bearing mice is found to inhibit the induction of apoptosis in thymocytes, a phenomenon associated with the progression of DL growth. Analysis of the results indicates an immune deviation with the predominance of a T(H2)-type response with the progression of tumour. We further discuss the possible mechanisms that may explain the observed tumour-induced diminution of T-cell immunity. PMID:10683470

  7. MATH100 PROJECT A SIMPLE MODEL FOR TUMOR GROWTH

    E-print Network

    Fasshauer, Greg

    MATH100 PROJECT A SIMPLE MODEL FOR TUMOR GROWTH Introduction. It has been observed experimentally that a tumor grows by dividing its cells, and at early stage the tumor grows at a rate proportional (1) is known as the law of natural growth. Given the initial tumor volume is V0 at the initial time t

  8. INFLUENCE OF GLUTARALDEHYDE AND/OR OSMIUM TETROXIDE ON CELL VOLUME, ION CONTENT, MECHANICAL STABILITY, AND MEMBRANE PERMEABILITY OF EHRLICH ASCITES TUMOR CELLS

    PubMed Central

    Penttila, Antti; Kalimo, Hannu; Trump, Benjamin F.

    1974-01-01

    Effects of fixation with glutaraldehyde (GA), glutaraldehyde-osmium tetroxide (GA-OsO4), and osmium tetroxide (OsO4) on ion and ATP content, cell volume, vital dye staining, and stability to mechanical and thermal stress were studied in Ehrlich ascites tumor cells (EATC). Among variables investigated were fixation time, fixative concentration, temperature, osmolality of the fixative agent and buffer, total osmolality of the fixative solution, osmolality of the postfixation buffer, and time of postfixation treatment in buffer (Sutherland, R. M., et al. 1967. J. Cell Physiol. 69:185.). Rapid loss of potassium, exchangeable magnesium, and ATP, and increase of vital dye uptake and electrical conductivity occurred with all fixatives studied. These changes were virtually immediate with GA-OsO4 or OsO4 but slower with GA (in the latter case they were dependent on fixative temperature and concentration) (Foot, N. C. 1950. In McClung's Handbook of Microscopical Technique. 3rd edition. 564.). Total fixative osmolality had a marked effect on cell volume with OsO4 but little or no effect with GA or GA-OsO4. Osmolality of the buffer had a marked effect on cell volume with OsO4, whereas with GA or GA-OsO4 it was only significant at very hypotonic buffer osmolalities. Concentration of GA had no effect on cell volume. Osmolality of the postfixation buffer had little effect on cell volume, and duration of fixation or postfixation treatment had no effect with all fixatives. Freezing and thawing or centrifugal stress (up to 100,000 g) had little or no effect on cell volume after all fixatives studied. Mechanical stress obtained by sonication showed that OsO4 alone produced poor stabilization and that GA fixation alone produced the greatest stabilization. The results indicate that rapid membrane permeability changes of EATC follow fixative action. The results are consistent with known greater stabilizing effects of GA on model protein systems since cells were also rendered relatively stable to osmotic stress during fixation, an effect not noted with OsO4. After fixation with GA and/or OsO4 cells were stable to osmotic, thermal, or mechanical stress; this is inconsistent with several earlier reports that GA-fixed cells retain their osmotic properties. PMID:4138889

  9. Ascites fluid containing monoclonal antibody (EGFR1) to the epidermal growth factor (EGF) receptor (EGFR) stimulates tyrosine phosphorylation in solubilized placental membranes

    SciTech Connect

    Michiel, D.F.; Hollenberg, M.D.

    1986-03-05

    Ascites fluid containing EGFR1 antibody precipitated EGFR prelabelled by phosphorylating human placental membranes with EGF and (..gamma..-/sup 32/P)ATP. The ascites fluid (at 1:100 dilution) was also found to stimulate phosphorylation of the solubilized placental membranes EGFR and the 35 kDa Ca/sup 2 +/-dependent substrate of the EGFR/kinase from placental membrane. In intact membranes, ascites fluid produced a small but noticeable stimulation of EGFR autophosphorylation. In solubilized membrane preparations, ascites fluid and EGF produced a comparable stimulation of phosphorylation both of the receptor and of pp35. The effect of EGF and ascites fluid appeared to be additive. Since EGFR1 does not inhibit the binding of EGF to the receptor, the data suggest that the antibody stimulates the receptor kinase activity by interacting with a site distinct from the EGF-binding site; the antibody effect is unmasked by receptor solubilization.

  10. Blocking tumor cell eicosanoid synthesis by GPx4 impedes tumor growth and malignancy

    Microsoft Academic Search

    Ingeborg Heirman; Daisy Ginneberge; Regina Brigelius-Flohé; Nico Hendrickx; Patrizia Agostinis; Peter Brouckaert; Pieter Rottiers; Johan Grooten

    2006-01-01

    Using tumor cell-restricted overexpression of glutathione peroxidase 4 (GPx4), we investigated the contribution of tumor cell eicosanoids to solid tumor growth and malignant progression in two tumor models differing in tumorigenic potential. By lowering cellular lipid hydroperoxide levels, GPx4 inhibits cyclooxygenase (COX) and lipoxygenase (LOX) activities. GPx4 overexpression drastically impeded solid tumor growth of weakly tumorigenic L929 fibrosarcoma cells, whereas

  11. Antitumor activity of methanolic extract of Cassia fistula L. seed against Ehrlich ascites carcinoma.

    PubMed

    Gupta, M; Mazumder, U K; Rath, N; Mukhopadhyay, D K

    2000-09-01

    Effects of methanolic extract (ME) of Cassia fistula seed on the growth of Ehrlich ascites carcinoma (EAC) and on the life span of tumor bearing mice were studied. ME treatment showed an increase of life span, and a decrease in the tumor volume and viable tumor cell count in the EAC tumor hosts. Cytological studies have revealed a reduction in the mitotic activity, and the appearance of membrane blebbing and intracytoplasmic vacuoles in the treated tumor cells. Improvement in the hematological parameters following ME treatment, like hemoglobin content, red blood cell count and bone marrow cell count of the tumor bearing mice have also been observed. The results of the present study suggest that ME of C. fistula seed has an antitumor activity. PMID:10967466

  12. Diethylstilbestrol inhibits tumor growth and prolactin production in rat pituitary tumors.

    PubMed Central

    Lloyd, R. V.; Landefeld, T. D.; Maslar, I.; Frohman, L. A.

    1985-01-01

    Treatment of rats bearing transplantable MtT/W15 tumors with 10 mg of diethylstilbestrol (DES) for 3 weeks led to inhibition of tumor growth. The inhibition of tumor growth was reversible after removal of the DES. Histologic examination revealed decreased mitotic activity; however, DES did not produce cell necrosis. Concomitantly, the anterior pituitary glands of animals treated with DES became hyperplastic, with an increased number of prolactin (PRL)-producing cells. DES resulted in a decreased number of PRL cells in the tumor and decreased serum PRL/tumor weight, compared with that of control rats. There was also an increase in the number of growth hormone (GH) tumor cells and an increased serum GH/tumor weight. 17 beta-Estradiol had an effect similar to that of DES, while progesterone did not inhibit tumor growth or cause pituitary cell hyperplasia. Ovariectomy resulted in a decrease in the tumor growth rate, compared with that of control animals, suggesting that the MtT/W 15 tumors are relatively dependent on estrogens for optimal growth. These results indicate that DES inhibition of MtT/W 15 tumor growth is an excellent model for study of the mechanism of the inhibition of tumor growth and the modification of GH and PRL expression by the tumor cells. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:3976841

  13. Potential new way to suppress tumor growth

    Cancer.gov

    Researchers at the University of California, San Diego School of Medicine (home of the Moores Comprehensive Cancer Center), with colleagues at the University of Rochester Medical Center, have identified a new mechanism that appears to suppress tumor growth, opening the possibility of developing a new class of anti-cancer drugs. Writing in this week’s online Early Edition of the Proceedings of the National Academy of Sciences (PNAS), the team reports that a particular form of a signaling protein called STAT5A stabilizes the formation of heterochromatin (a form of chromosomal DNA), which in turn suppresses the ability of cancer cells to issue instructions to multiply and grow.

  14. Novel synthetic bisbenzimidazole that targets angiogenesis in Ehrlich ascites carcinoma bearing mice.

    PubMed

    Roopashree, Rangaswamy; Mohan, Chakrabhavi Dhananjaya; Swaroop, Toreshettahally Ramesh; Jagadish, Swamy; Raghava, Byregowda; Balaji, Kyathegowdanadoddi Srinivas; Jayarama, Shankar; Basappa; Rangappa, Kanchugarakoppal Subbegowda

    2015-06-15

    Cancer is a leading cause of death in developed countries and second cause in developing countries. Herein we are reporting the synthesis of novel bisbenzimidazole derivatives and their anticancer properties. Among the newly synthesized bisbenzimidazoles, 3-(4-flurophenylsulfonyl)-1,7-dimethyl-2-propyl-1H,3H-2,5-bibenzo[d]imidazole (FDPB) presented as a potent antiproliferative agent against HeLa, HCT116 and A549 cells with selectivity over normal Vero cells (IC50 >50?M). Additionally, we evaluated the efficacy of lead compound against Ehrlich ascites tumor (EAT) bearing mice for its antitumor and antiangiogenic properties. Our lead compound significantly reduced the cell viability, body weight, ascites volume and downregulated the formation of neovasculature and production of Vascular Endothelial Growth Factor (VEGF). PMID:25920563

  15. HSPA12B: a novel facilitator of lung tumor growth.

    PubMed

    Ma, He; Lu, Ting; Zhang, Xiaojin; Li, Chuanfu; Xiong, Jingwei; Huang, Lei; Liu, Ping; Li, Yuehua; Liu, Li; Ding, Zhengnian

    2015-04-30

    Lung tumor progression is regulated by proangiogenic factors. Heat shock protein A12B (HSPA12B) is a recently identified regulator of expression of proangiogenic factors. However, whether HSPA12B plays a role in lung tumor growth is unknown. To address this question, transgenic mice overexpressing HSPA12B (Tg) and wild-type littermates (WT) were implanted with Lewis lung cancer cells to induce lung tumorigenesis. Tg mice showed significantly higher number and bigger size of tumors than WT mice. Tg tumors exhibited increased angiogenesis and proliferation while reduced apoptosis compared with WT tumors. Interestingly, a significantly enhanced upregulation of Cox-2 was detected in Tg tumors than in WT tumors. Also, Tg tumors demonstrated upregulation of VEGF and angiopoietin-1, downregulation of AKAP12, and increased eNOS phosphorylation compared with WT tumors. Celecoxib, a selective Cox-2 inhibitor, suppressed the HSPA12B-induced increase in lung tumor burden. Moreover, celecoxib decreased angiogenesis and proliferation whereas increased apoptosis in Tg tumors. Additionally, celecoxib reduced angiopoietin-1 expression and eNOS phosphorylation but increased AKAP12 levels in Tg tumors. Our results indicate that HSPA12B stimulates lung tumor growth via a Cox-2-dependent mechanism. The present study identified HSPA12B as a novel facilitator of lung tumor growth and a potential therapeutic target for the treatment of lung cancer. PMID:25909170

  16. Rare cancers yield potential source of tumor growth

    Cancer.gov

    Researchers at the National Institutes of Health have discovered a genetic mutation that appears to increase production of red blood cells in tumors. The discovery, based on analysis of tissue from rare endocrine tumors, may help clarify how some tumors generate a new blood supply to sustain their growth, the researchers explained.

  17. Analysis of a Mathematical Model Describing Necrotic Tumor Growth

    E-print Network

    Matioc, Anca-Voichita

    regimes of vascularisation is studied. The tumor consists of a necrotic core of death cells region. The initial tumor domain is given by 0 and x is the position vector in R2. For a precise deAnalysis of a Mathematical Model Describing Necrotic Tumor Growth Joachim Escher, Anca

  18. ANALYSIS OF A MATHEMATICAL MODEL FOR THE GROWTH OF TUMORS

    E-print Network

    ANALYSIS OF A MATHEMATICAL MODEL FOR THE GROWTH OF TUMORS AVNER FRIEDMAN AND FERNANDO REITICH. In this paper we study a model of tumor which grows or shrinks due to proliferationof cells which depends on nutrient concentration modelled by a diusion equation. The tumor is assumed to be spherically symmetric

  19. ANALYSIS OF A MATHEMATICAL MODEL FOR THE GROWTH OF TUMORS

    E-print Network

    ANALYSIS OF A MATHEMATICAL MODEL FOR THE GROWTH OF TUMORS AVNER FRIEDMAN \\Lambda AND FERNANDO 55455. Abstract. In this paper we study a model of tumor which grows or shrinks due to proliferation of cells which depends on nutrient concentration modelled by a diffusion equation. The tumor is assumed

  20. The laparoscopic evaluation of ascites.

    PubMed

    Inadomi, J M; Kapur, S; Kinkhabwala, M; Cello, J P

    2001-01-01

    Laparoscopy is an invaluable technique for the evaluation of ascites in subgroups of patients with ascites. Indications for laparoscopic examination include determination of the causes of ascites when routine tests fail to disclose the source, evaluation for the presence of multiple causes of ascites formation, or histopathologic verification of malignancy within the peritoneal cavity. Several reported series have illustrated the efficacy of laparoscopy for the diagnosis of peritoneal carcinomatosis, tuberculous peritonitis, or unsuspected cirrhosis, securing its role in the management of selected patients with ascites. PMID:11175976

  1. P-selectin-mediated platelet adhesion promotes tumor growth

    PubMed Central

    Yang, Yang; Li, Bin; Guo, Simei; Li, Jialin; Ye, Jie; Li, Jiangchao; Zhang, Qianqian; Lan, Tian; He, Xiaodong; Cao, Liu; Zhou, Jia; Geng, Jianguo; Wang, Lijing

    2015-01-01

    Blood platelets foster carcinogenesis. We found that platelets are accumulated in human tumors. P-selectin deficiency and soluble P-selectin abolish platelet deposition within tumors, decreasing secretion of vascular endothelial growth factor and angiogenesis, thereby suppressing tumor growth. Binding of the P-selectin cytoplasmic tail to talin1 triggers the talin1 N-terminal head to interact with the ?3 cytoplasmic tail. This activates ?IIb?3 and recruits platelets into tumors. Platelet infiltration into solid tumors occurs through a P-selectin-dependent mechanism. PMID:25762641

  2. Antitumor effect of nuclear factor-?B decoy transfer by mannose-modified bubble lipoplex into macrophages in mouse malignant ascites.

    PubMed

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-08-01

    Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-?B (NF-?B) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-?B decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-?B decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-?B decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-?B decoy into TAMs effectively. When the NF-?B decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-?, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-?B decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-?B decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment. PMID:24850474

  3. Osteoblastogenesis and tumor growth in myeloma

    PubMed Central

    YACCOBY, SHMUEL

    2010-01-01

    Myeloma is associated with suppression of osteoblastogenesis, consequentially resulting in increased osteoclast activity and induction of typical osteolytic bone disease. The molecular mechanisms by which myeloma cells suppress osteoblastogenesis and the consequences of increased osteoblast activity on myeloma cell growth have been partially delineated only recently. Reduced osteoblastogenesis is a consequence of abnormal properties and impaired osteogenic potential of osteoprogenitor cells from myeloma patients and is also the result of production of multiple osteoblastogenesis inhibitors by myeloma cells and by microenvironmental cells within the myelomatous bone. Nevertheless, novel osteoblast-activating agents (e.g. proteasome inhibitor bortezomib) are capable of inducing bone formation in myeloma animal models and clinically. These agents induce increased osteoblast activity, often coupled with a concomitant reduction in osteoclastogenesis, that is strongly associated with reduced myeloma tumor burden. In vitro, osteoblasts, in contrast to osteoclasts, attenuate the growth of myeloma cells from a large subset of patients; potential molecular mechanisms are discussed. These studies suggest that myeloma cells suppress osteoblastogenesis to their advantage and that increased osteoblast activity is a promising approach to treat myeloma bone disease and simultaneously control myeloma development and progression. PMID:20038269

  4. Somatostatin analog Sandostatin and inhibition of tumor growth in patients with metastatic endocrine gastroenteropancreatic tumors

    Microsoft Academic Search

    Rudolf Arnold; Christian Neuhaus; Ralph Benning; Wolf B. Schwerk; Michael E. Trautmann; Klaus Joseph; Christian Bruns

    1993-01-01

    A prospective study was performed to determine the efficacy of octreotide (Sandostatin®; SMS 201–995) 200 µg tid in controlling tumor growth. The study included 21 patients with metastasized endocrine GEP tumors: 6 gastrinomas, 8 carcinoid syndromes, 7 nonfunctioning tumors. Treatment was performed for 3 to 59 months (median 15 months). Evaluation of the response to octreotide was facilitated in 12

  5. Dll4 activation of Notch signaling reduces tumor vascularity and inhibits tumor growth

    PubMed Central

    Williams, Cassin Kimmel; la Luz Sierra, Maria de; Bernardo, Marcelino; McCormick, Peter J.; Maric, Dragan; Regino, Celeste; Choyke, Peter; Tosato, Giovanna

    2008-01-01

    Gene targeting experiments have shown that Delta-like 4 (Dll4) is a vascular-specific Notch ligand critical to normal vascular development. Recent studies have demonstrated that inhibition of Dll4/Notch signaling in tumor-bearing mice resulted in excessive, yet nonproductive tumor neovascularization and unexpectedly reduced tumor growth. Because nonfunctional blood vessels have the potential to normalize, we explored the alternative approach of stimulating Notch signaling in the tumor vasculature to inhibit tumor growth. Here we show that retrovirus-induced over-expression of Dll4 in tumor cells activates Notch signaling in cocultured endothelial cells and limits vascular endothelial growth factor (VEGF)–induced endothelial cell growth. Tumors produced in mice by injection of human and murine tumor cells transduced with Dll4 were significantly smaller, less vascularized and more hypoxic than controls, and displayed evidence of Notch activation. In addition, tumor blood perfusion was reduced as documented by vascular imaging. These results demonstrate that Notch activation in the tumor microenvironment reduces tumor neovascularization and blood perfusion, and suggest that Dll4-induced Notch activation may represent an effective therapeutic approach for the treatment of solid tumors. PMID:18577711

  6. Vascular Endothelial Growth Factor C–Induced Lymphangiogenesis DecreasesTumor Interstitial Fluid Pressure and Tumor Growth1

    PubMed Central

    Hofmann, Matthias; Pflanzer, Ralph; Zoller, Nadja Nicole; Bernd, August; Kaufmann, Roland; Thaci, Diamant; Bereiter-Hahn, Jurgen; Hirohata, Satoshi; Kippenberger, Stefan

    2013-01-01

    Characteristically, most solid tumors exhibit an increased tumor interstitial fluid pressure (TIFP) that directly contributes to the lowered uptake of macromolecular therapeutics into the tumor interstitium. Abnormalities in the tumor-associated lymph vessels are a central brick in the development and prolonged sustaining of an increased TIFP. In the current study, vascular endothelial growth factor C (VEGF-C) was used to enhance tumor-associated lymphangiogenesis as a new mechanism to actively reduce the TIFP by increased lymphatic drainage of the tumor tissue. Human A431 epidermoid vulva carcinoma cells were inoculated in NMRI nu/nu mice to generate a xenograft mouse model. Seven days after tumor cell injection, VEGF-C was peritumorally injected to induce lymphangiogenesis. Tumor growth and TIFP was lowered significantly over time in VEGF-C-treated tumors in comparison to control or VEGF-A-treated animals. These data demonstrate for the first time that actively induced lymphangiogenesis can lower the TIFP in a xenograft tumor model and apparently reduce tumor growth. This model represents a novel approach to modulate biomechanical properties of the tumor interstitium enabling a lowering of TIFP in vivo. PMID:23908682

  7. Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images.

    PubMed

    Mi, Hongmei; Petitjean, Caroline; Vera, Pierre; Ruan, Su

    2015-07-01

    Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods. PMID:25988489

  8. IRP2 regulates breast tumor growth

    PubMed Central

    Wang, Wei; Deng, Zhiyong; Hatcher, Heather; Miller, Lance D.; Di, Xiumin; Tesfay, Lia; Sui, Guangchao; D'Agostino, Ralph B.; Torti, Frank M.; Torti, Suzy V.

    2014-01-01

    Experimental and epidemiological evidence suggest that dysregulation of proteins involved in iron metabolism plays a critical role in cancer. The mechanisms by which cancer cells alter homeostatic iron regulation are just beginning to be understood. Here we demonstrate that iron regulatory protein 2 (IRP2) plays a key role in iron accumulation in breast cancer. Although both IRP1 and IRP2 are over-expressed in breast cancer, the overexpression of IRP2, but not IRP1, is associated with decreased ferritin H and increased transferrin receptor 1 (TfR1). Knock-down of IRP2 in triple negative MDA-MB-231 human breast cancer cells increases ferritin H expression and decreases TfR1 expression, resulting in a decrease in the labile iron pool. Further, IRP2 knockdown reduces growth of MDA-MB-231 cells in the mouse mammary fat pad. Gene expression microarray profiles of breast cancer patients demonstrate that increased IRP2 expression is associated with high grade cancer. Increased IRP2 expression is observed in luminal A, luminal B and basal breast cancer subtypes, but not in breast tumors of the ERBB2 molecular subtype. These results suggest that dysregulation of IRP2 is an early nodal point underlying altered iron metabolism in breast cancer and may contribute to poor outcome of some breast cancer patients. PMID:24285726

  9. Refractory congenital chylous ascites.

    PubMed

    Melo-Filho, Antônio Aldo; Souza, Ivana Jesus Nogueira; Leite, Christiane Araújo Chaves; Leite, Robério Dias; Colares, Joăo Henrique Freitas; Correia, Júlio Marcus Sousa

    2010-11-01

    Refractory congenital chylous ascites (CCA) is an uncommon clinical condition. Few cases have been described and no gold standard treatment has been defined so far. This report describes a case of refractory CCA in a newborn child which was treated by surgery. Preoperative lower-limb lymphoscintigraphy associated with intraoperative patent blue testing and fibrin glue application were useful in order to provide a successful outcome. PMID:20821276

  10. Antiproliferative and antioxidant activity of Aegle marmelos (Linn.) leaves in Dalton's Lymphoma Ascites transplanted mice

    PubMed Central

    Chockalingam, Vijaya; Kadali, SDV Suryakiran; Gnanasambantham, Pratheesh

    2012-01-01

    Objective: The present investigation was performed to evaluate the antiproliferative and antioxidant activity of Aegle marmelos leaves in Dalton's Lymphoma Ascites (DLA)-bearing mice. Materials and Methods: The DLA cells maintained in vivo in Swiss albino mice were used for developing ascitic tumor in mice by intraperitoneal transplantation. The standardized 50% ethanolic extract of A. marmelos leaves (AMEE) was administered intraperitoneally in dose levels 200 and 400 mg/kg, after 24 hours of tumor inoculation in mice for two weeks. Results: The AMEE treatment significantly prevented (P<0.001) the increase in body weight due to tumor cell growth and increased the mean survival time of the tumor-bearing mice as compared to the untreated DLA control mice. The treatment of DLA-bearing mice brought down the Alanine Aminotransferase (ALAT), Aspartate Aminotransferase (ASAT), and alkaline phosphatase to normal levels. The extract decreased the levels of hepatic lipid peroxidation and increased the levels of hepatic antioxidants Glutathione, Superoxide Dismutase (SOD), and catalase. All the changes observed with AMEE treatment were dose dependent. Conclusion: The hydroalcoholic extract of A. marmelos exhibits strong antitumor and antioxidant activities in DLA-bearing mice. PMID:22529480

  11. VEGF-integrin interplay controls tumor growth and vascularization

    NASA Astrophysics Data System (ADS)

    de, Sarmishtha; Razorenova, Olga; McCabe, Noel Patrick; O'Toole, Timothy; Qin, Jun; Byzova, Tatiana V.

    2005-05-01

    Cross-talk between the major angiogenic growth factor, VEGF, and integrin cell adhesion receptors has emerged recently as a critical factor in the regulation of angiogenesis and tumor development. However, the molecular mechanisms and consequences of this intercommunication remain unclear. Here, we define a mechanism whereby integrin v3, through activation, clustering, and signaling by means of p66 Shc (Src homology 2 domain containing), regulates the production of VEGF in tumor cells expressing this integrin. Tumors with "activatable" but not "inactive" 3 integrin secrete high levels of VEGF, which in turn promotes extensive neovascularization and augments tumor growth in vivo. This stimulation of VEGF expression depends upon the ability of v3 integrin to cluster and promote phosphorylation of p66 Shc. These observations identify a link between 3 integrins and VEGF in tumor growth and angiogenesis and, therefore, may influence anti-integrin as well as anti-VEGF therapeutic strategies. activation | angiogenesis | Src homology 2 domain containing

  12. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma.

    PubMed

    Zhu, Li Ming; Shi, Dong Mei; Dai, Qiang; Cheng, Xiao Jiao; Yao, Wei Yan; Sun, Ping Hu; Ding, Yanfei; Qiao, Min Min; Wu, Yun Lin; Jiang, Shi Hu; Tu, Shui Ping

    2014-07-30

    X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment. PMID:24980821

  13. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma

    PubMed Central

    Zhu, Li Ming; Shi, Dong Mei; Dai, Qiang; Cheng, Xiao Jiao; Yao, Wei Yan; Sun, Ping Hu; Ding, Yan Fei; Qiao, Min Min; Wu, Yun Lin; Jiang, Shi Hu; Tu, Shui Ping

    2014-01-01

    X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment. PMID:24980821

  14. Tumor growth inhibition through targeting liposomally bound curcumin to tumor vasculature.

    PubMed

    Mondal, Goutam; Barui, Sugata; Saha, Soumen; Chaudhuri, Arabinda

    2013-12-28

    Increasing number of Phase I/II clinical studies have demonstrated clinical potential of curcumin for treatment of various types of human cancers. Despite significant anti-tumor efficacies and bio-safety profiles of curcumin, poor systemic bioavailability is retarding its clinical success. Efforts are now being directed toward developing stable formulations of curcumin using various drug delivery systems. To this end, herein we report on the development of a new tumor vasculature targeting liposomal formulation of curcumin containing a lipopeptide with RGDK-head group and two stearyl tails, di-oleyolphosphatidylcholine (DOPC) and cholesterol. We show that essentially water insoluble curcumin can be solubilized in fairly high concentrations (~500 ?g/mL) in such formulation. Findings in the Annexin V/Propidium iodide (PI) binding based flow cytometric assays showed significant apoptosis inducing properties of the present curcumin formulation in both endothelial (HUVEC) and tumor (B16F10) cells. Using syngeneic mouse tumor model, we show that growth of solid melanoma tumor can be inhibited by targeting such liposomal formulation of curcumin to tumor vasculature. Results in immunohistochemical staining of the tumor cryosections are consistent with tumor growth inhibition being mediated by apoptosis of tumor endothelial cells. Findings in both in vitro and in vivo mechanistic studies are consistent with the supposition that the presently described liposomal formulation of curcumin inhibits tumor growth by blocking VEGF-induced STAT3 phosphorylation in tumor endothelium. To the best of our knowledge, this is the first report on inhibiting tumor growth through targeting liposomal formulation of curcumin to tumor vasculatures. PMID:24036260

  15. Tumor-induced osteomalacia due to a recurrent mesenchymal tumor overexpressing several growth factor receptors

    PubMed Central

    Gerothanasi, Nikolina; Frydas, Athanasios; Triantafyllou, Evangelia; Poulios, Chris; Hytiroglou, Prodromos; Apostolou, Panagiotis; Papasotiriou, Ioannis; Tournis, Symeon; Kesisoglou, Isaak; Yovos, John G

    2015-01-01

    Summary Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused primarily by benign mesenchymal tumors. These tumors typically follow a benign clinical course and local recurrence occurs in <5% of cases. We investigated a 49-year-old man with a recurrent mesenchymal phosphaturic tumor showing no signs of malignancy. The patient suffered from chronic muscle weakness, myalgia and cramps. His medical record included the diagnosis of oncogenic osteomalacia, for which he was submitted to tumor resection in the left leg three times before. Laboratory examination showed hypophosphatemia, hyperphosphaturia and an elevated serum FGF23 level. A radical surgical approach (amputation) was advised, however, complete biochemical and clinical remission was not reached. Molecular analysis of the tumor cells demonstrated overexpression of growth factor receptors implicated in tumor angiogenesis and metastatic potential (platelet derived growth factor type A (PDGFRA), PDGFRB and vascular endothelial growth factor receptor) together with increased expression of FGF23, x-linked-phosphate-regulating endopeptidase and KLOTHO. TIO is usually associated with benign phosphauturic tumors and, when identified, resection of the tumor leads to complete remission in the majority of cases. The underlying pathophysiology of recurrences in these tumors is not known. This is the first report showing increased expression of growth factor receptors in a locally aggressive but histopathologically benign phosphaturic mesenchymal tumor. Learning points TIO is usually associated with benign soft tissue or bone neoplasms of mesenchymal origin.These tumors typically follow a benign clinical course and even in the rare malignant cases local recurrence occurs in <5%.Successful identification and removal of the tumor leads to full recovery in the majority of cases.

  16. Phase transition in tumor growth: I avascular development

    NASA Astrophysics Data System (ADS)

    Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.

    2013-12-01

    We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.

  17. Bioavailable copper modulates oxidative phosphorylation and growth of tumors

    PubMed Central

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-01-01

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment. PMID:24218578

  18. Patient Specific Tumor Growth Prediction Using Multimodal Images

    PubMed Central

    Liu, Yixun; Sadowski, Samira M.; Weisbrod, Allison B.; Kebebew, Electron; Summers, Ronald M.; Yao, Jianhua

    2014-01-01

    Personalized tumor growth model is valuable in tumor staging and therapy planning. In this paper, we present a patient specific tumor growth model based on longitudinal multimodal imaging data including dual-phase CT and FDG-PET. The proposed Reaction-Advection-Diffusion model is capable of integrating cancerous cell proliferation, infiltration, metabolic rate and extracellular matrix biomechanical response. To bridge the model with multimodal imaging data, we introduce intracellular volume fraction (ICVF) measured from dual-phase CT and Standardized Uptake Value (SUV) measured from FDG-PET into the model. The patient specific model parameters are estimated by fitting the model to the observation, which leads to an inverse problem formalized as a coupled Partial Differential Equations (PDE)-constrained optimization problem. The optimality system is derived and solved by the Finite Difference Method. The model was evaluated by comparing the predicted tumors with the observed tumors in terms of average surface distance (ASD), root mean square difference (RMSD) of the ICVF map, average ICVF difference (AICVFD) of tumor surface and tumor relative volume difference (RVD) on six patients with pathologically confirmed pancreatic neuroendocrine tumors. The ASD between the predicted tumor and the reference tumor was 2.4±0.5 mm, the RMSD was 4.3±0.4%, the AICVFD was 2.6±0.6%, and the RVD was 7.7±1.3%. PMID:24607911

  19. Growth of human urologic tumors on extracellular matrix.

    PubMed

    Bulbul, M A; Pavelic, K; Slocum, H K; Frankfurt, O S; Rustum, Y M; Huben, R P; Bernacki, R J

    1986-08-01

    Surgical specimens of fifty urologic tumors, 19 renal, 19 bladder, nine prostate and three testicular, were disaggregated into a cell suspension by a two step mechanical and enzymatic method. Viability, cytology and flow cytometry (FCM) for DNA ploidy were subsequently determined. Growth of urological tumors on extracellular matrix (ECM) was carried out as follows: 2.5 to 5 X 10(5) cells were placed in plastic T25 flasks in RPMI 1640 + 10 per cent fetal bovine serum (FBS). 1.0 to 5 X 10(4) cells were plated in wells coated with ECM derived from bovine corneal endothelial cells with RPMI 1640 + 10 per cent FBS. Cultures were incubated for seven to 10 days at 37 degrees C. Only one (renal) out of 28 tumors grew on plastic. Forty out of 50 tumors (80 per cent) established primary cultures on ECM as determined by cell counting, protein determination, and/or [3H]thymidine incorporation. Previous experience with 106 urologic tumors grown on double layer agar demonstrated an overall success rate of 48 per cent. On ECM renal tumors showed 95 per cent growth success, prostate 89 per cent, bladder 63 per cent and testicular 67 per cent. Unlike viability by trypan blue exclusion, tumor DNA ploidy and percentage of malignant cells plated on ECM had no effect on growth success. The malignant nature of the cultured cells was confirmed by cytology. Twelve high grade and metastatic tumors caused degradation of the ECM. DNA ploidy was similar in four and different in six tumors before and after culture. Five tumors underwent in vitro drug testing on ECM with significant growth inhibition observed in three cases. The extracellular matrix seems to be a promising model for growing urologic tumors with excellent potential for drug testing in vitro. PMID:3735526

  20. Dual Role of ?6?4 Integrin in Epidermal Tumor Growth: Tumor-suppressive Versus Tumor-promoting Function

    PubMed Central

    Raymond, Karine; Kreft, Maaike; Song, Ji-Ying; Janssen, Hans

    2007-01-01

    An increased expression of the integrin ?6?4 is correlated with a poor prognosis in patients with squamous cell carcinomas. However, little is known about the role of ?6?4 in the early stages of tumor development. We have isolated cells from mouse skin (mouse tumor-initiating cells [mTICs]) that are deficient in both p53 and Smad4 and carry conditional alleles of the ?4 gene (Itgb4). The mTICs display many features of multipotent epidermal stem cells and produce well-differentiated tumors after subcutaneous injection into nude mice. Deletion of Itgb4 led to enhanced tumor growth, indicating that ?6?4 mediates a tumor-suppressive effect. Reconstitution experiments with ?4-chimeras showed that this effect is not dependent on ligation of ?6?4 to laminin-5, but on the recruitment by this integrin of the cytoskeletal linker protein plectin to the plasma membrane. Depletion of plectin, like that of ?4, led to increased tumor growth. In contrast, when mTICs had been further transformed with oncogenic Ras, ?6?4 stimulated tumor growth, as previously observed in human squamous neoplasms. Expression of different effector-loop mutants of RasV12 suggests that this effect depends on a strong activation of the Erk pathway. Together, these data show that depending on the mutations involved, ?6?4 can either mediate an adhesion-independent tumor-suppressive effect or act as a tumor promotor. PMID:17699601

  1. DLL4 Blockade Inhibits Tumor Growth and Reduces Tumor-Initiating Cell Frequency

    Microsoft Academic Search

    Timothy Hoey; Wan-Ching Yen; Fumiko Axelrod; Jesspreet Basi; Lucas Donigian; Scott Dylla; Maureen Fitch-Bruhns; Sasha Lazetic; In-Kyung Park; Aaron Sato; Sanjeev Satyal; Xinhao Wang; Michael F. Clarke; John Lewicki; Austin Gurney

    2009-01-01

    SUMMARY Previous studies have shown that blocking DLL4 signaling reduced tumor growth by disrupting productive angiogenesis. We developed selective anti-human and anti-mouse DLL4 antibodies to dissect the mechanisms involved by analyzing the contributions of selectively targeting DLL4 in the tumor or in the host vasculature and stroma in xeno- graft models derived from primary human tumors. We found that each

  2. COX2\\/VEGF-Dependent Facilitation of Tumor-Associated Angiogenesis and Tumor Growth in vivo

    Microsoft Academic Search

    Satoko Yoshida; Hideki Amano; Izumi Hayashi; Hidero Kitasato; Mariko Kamata; Madoka Inukai; Hirokuni Yoshimura; Masataka Majima

    2003-01-01

    Nonsteroidal anti-inflammatory drugs are known to suppress the occurrence and progression of malignancies such as colorectal cancers. However, the precise mechanism of these actions remains unknown. We have evaluated the role of an inducible cyclo-oxygenase (COX-2) in tumor-associated angiogenesis and tumor growth, and identified the downstream molecules involved using a ddy mouse model of sponge angiogenesis, which mimics tumor angiogenesis

  3. Bee venom inhibits growth of human cervical tumors in mice.

    PubMed

    Lee, Hye Lim; Park, Sang Ho; Kim, Tae Myoung; Jung, Yu Yeon; Park, Mi Hee; Oh, Sang Hyun; Yun, Hye Seok; Jun, Hyung Ok; Yoo, Hwan Soo; Han, Sang-Bae; Lee, Ung Soo; Yoon, Joo Hee; Song, Min Jong; Hong, Jin Tae

    2015-03-30

    We studied whether bee venom (BV) inhibits cervical tumor growth through enhancement of death receptor (DR) expressions and inactivation of nuclear factor kappa B (NF-?B) in mice. In vivo study showed that BV (1 mg/kg) inhibited tumor growth. Similar inhibitory effects of BV on cancer growth in primary human cervical cancer cells were also found. BV (1-5 ?g/ml) also inhibited the growth of cancer cells, Ca Ski and C33Aby the induction of apoptotic cell death in a dose dependent manner. Agreed with cancer cell growth inhibition, expression of death receptors; FAS, DR3 and DR6, and DR downstream pro-apoptotic proteins including caspase-3 and Bax was concomitantly increased, but the NF-?B activity and the expression of Bcl-2 were inhibited by treatment with BV in tumor mice, human cancer cell and human tumor samples as well as cultured cancer cells. In addition, deletion of FAS, DR3 and DR6 by small interfering RNA significantly reversed BV-induced cell growth inhibitory effects as well as NF-?B inactivation. These results suggest that BV inhibits cervical tumor growth through enhancement of FAS, DR3 and DR6 expression via inhibition of NF-?B pathway. PMID:25730901

  4. Bee venom inhibits growth of human cervical tumors in mice

    PubMed Central

    Kim, Tae Myoung; Jung, Yu Yeon; Park, Mi Hee; Oh, Sang Hyun; Yun, Hye Seok; Jun, Hyung Ok; Yoo, Hwan Soo; Han, Sang-Bae; Lee, Ung Soo; Yoon, Joo Hee; Song, Min Jong; Hong, Jin Tae

    2015-01-01

    We studied whether bee venom (BV) inhibits cervical tumor growth through enhancement of death receptor (DR) expressions and inactivation of nuclear factor kappa B (NF-?B) in mice. In vivo study showed that BV (1 mg/kg) inhibited tumor growth. Similar inhibitory effects of BV on cancer growth in primary human cervical cancer cells were also found. BV (1–5 ?g/ml) also inhibited the growth of cancer cells, Ca Ski and C33Aby the induction of apoptotic cell death in a dose dependent manner. Agreed with cancer cell growth inhibition, expression of death receptors; FAS, DR3 and DR6, and DR downstream pro-apoptotic proteins including caspase-3 and Bax was concomitantly increased, but the NF-?B activity and the expression of Bcl-2 were inhibited by treatment with BV in tumor mice, human cancer cell and human tumor samples as well as cultured cancer cells. In addition, deletion of FAS, DR3 and DR6 by small interfering RNA significantly reversed BV-induced cell growth inhibitory effects as well as NF-?B inactivation. These results suggest that BV inhibits cervical tumor growth through enhancement of FAS, DR3 and DR6 expression via inhibition of NF-?B pathway. PMID:25730901

  5. A Big Bang model of human colorectal tumor growth.

    PubMed

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications. PMID:25665006

  6. Plasma membrane heterogeneity in ascites tumor cells. Isolation of a light and a heavy membrane fraction of the glycogen-free Ehrlich-Lettré substrain.

    PubMed

    Haeffner, E W; Kolbe, K; Schroeter, D; Paweletz, N

    1980-12-01

    In this work we report on the isolation of two plasma membrane fractions of a glycogen-free substrain of Ehrlich-Lettré ascites cells, a light fraction sedimenting in a sucrose gradient at 1.10 g/ml, and a heavy fraction sedimenting at nuclei by a combination of short-term swelling and mild Dounce homogenization. A 12 000 X g postnuclear pellet (PII) containing major portions of the plasma membrane marker enymes, 5'-nucleotidase, ouabain-sensitive (Na+ + K+)-ATPase and the alkaline phosphatase, was prepared by differential centrifugation. The two plasma membrane fractions were obtained by centrifugation on a discontinuous sucrose gradient, from which they were further purified on a linear sucrose gradient applying sedimentation velocity conditions only. Enrichment factors for the three marker enzymes were between 5- and 14-fold for the light fraction and between 3- and 7-fold for the heavy fraction with an overall yield of 1--4% and 0.5--1.7%, respectively, of cellular protein. Contamination of both fractions with nuclear material was minor. Mitochondrial contamination was about 8% for the light material and somewhat higher for the heavy material. In the light fraction, co-sedimentation of lysosomal and Golgi marker enzymes was detected. The presence of membrane structures of these organelles could not be confirmed definitely by electron microscopy. Differences in sialic acid content and phospholipid composition within the two fractions, especially in the relative proportion of lecithin to sphingomyelin, suggests differences in membrane fluidity. The light material showed mostly unit membrane vesicles in thin-section and freeze-etch electron microscopy, whereas the heavy fraction mainly consisted of sheet-like membrane fragments. PMID:6255997

  7. A multiphase model for three-dimensional tumor growth

    NASA Astrophysics Data System (ADS)

    Sciumč, G.; Shelton, S.; Gray, W. G.; Miller, C. T.; Hussain, F.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A.

    2013-01-01

    Several mathematical formulations have analyzed the time-dependent behavior of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the thermodynamically constrained averaging theory. A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TCs), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HCs); and an interstitial fluid for the transport of nutrients. The equations are solved by a finite element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTSs) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behavior: initially, the rapidly growing TCs tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 ?m, surrounded by a shell of viable TCs whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case—mostly due to the relative adhesion of the TCs and HCs to the ECM, and the less favorable transport of nutrients. In particular, for HCs adhering less avidly to the ECM, the healthy tissue is progressively displaced as the malignant mass grows, whereas TC infiltration is predicted for the opposite condition. Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells grow around microvessels in a three-dimensional geometry. It is shown that TCs tend to migrate among adjacent vessels seeking new oxygen and nutrients. This model can predict and optimize the efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion on TC proliferation.

  8. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo.

    PubMed

    Noori, Shokoofe; Hassan, Zuhair M; Mohammadi, Mehdi; Habibi, Zohre; Sohrabi, Nooshin; Bayanolhagh, Saeed

    2010-01-01

    A regulatory or suppressor T cell is functionally defined as a T cell that inhibits an immune response by influencing the activity of another cell type. On the other hand, Th1 cells express IFN-gamma and mediate cellular immunity. Sclareol exhibits growth inhibition and cytotoxic activity against a variety of human cancer cell lines. In the first set of experiments, Sclareol was isolated from the plant Salvia sclarea and our study assessed the immuno-therapeutic effectiveness of Sclareol by direct intra-tumoral injection. Secondly, several immunological parameters such as splenocytes proliferation, intra-tumor CD4+CD25+Foxp3+ Treg cells, IFN-gamma and IL-4 secretion and tumor size were assessed to evaluate the anti-tumoral immune response. By all means, the findings confirmed that the activity of Sclareol could reduce the tumor growth in vivo against breast cancer. PMID:20409537

  9. TNF? antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth.

    PubMed

    Bourouba, Mehdi; Zergoun, Ahmed-Amine; Maffei, Joseph S; Chila, Dalia; Djennaoui, Djamel; Asselah, Fatima; Amir-Tidadini, Zine-Charef; Touil-Boukoffa, Chafia; Zaman, Muhammad H

    2015-07-01

    Tumor necrosis factor (TNF?) is a pro-inflammatory cytokine which mediates via nitric oxide (NO) several carcinogenic processes. Increasing evidences suggest that NO promotes inflammation induced growth of nasopharyngeal carcinoma (NPC). In patients, TNF? synthesis associates with poor survival. To explore the effect of the cytokine on NO production and NOS2 dependent NPC growth, NO2(-) (nitrite) producing cells in patients were analyzed in vitro. We observed that patients' monocytes/macrophages (Mo/Ma) and primary tumor biopsies synthesized significant amounts of NO2(-). Interestingly, tumor explants derived NO2(-) levels were more important in elderly patients in comparison with juveniles. Endogenous TNF? neutralization with an anti-TNF? monoclonal antibody (mAb) successfully inhibited NO2(-) synthesis by blood mononuclear cells and tumor explants. Recombinant TNF? (rTNF?) enhanced NO2(-) synthesis and C666-1 NPC cell proliferation. NOS2 selective inhibition (1400W) and TNF? antagonization with an anti-TNF? mAb potently inhibited rTNF? induced C666-1 proliferation and NO2(-) production. Importantly, primary tumors treated with the anti-TNF? mAb also displayed reduced proliferation index (Ki67). Altogether, our results define monocytes/macrophages and the primary tumor as major sources of circulating NO2(-) in NPC patients and support the idea that antibody dependent inhibition of the TNF?/NOS2 pathway may alter NPC tumor growth. PMID:25912222

  10. RGD-Tachyplesin Inhibits Tumor Growth1

    Microsoft Academic Search

    Yixin Chen; Xueming Xu; Shuigen Hong; Jinguo Chen; Ningfei Liu; Charles B. Underhill; Karen Creswell; Lurong Zhang

    2001-01-01

    Tachyplesin is an antimicrobial peptide present in leukocytes of the horseshoe crab (Tachypleus tridentatus). In this study, a synthetic tachyplesin conjugated to the integrin homing domain RGD was tested for antitumor activity. The in vitro results showed that RGD-tachyplesin inhibited the proliferation of both cultured tumor and endothelial cells and reduced the colony formation of TSU prostate cancer cells. Staining

  11. Hyper or hypothyroidism: its association with the development of ascites syndrome in fast-growing chickens

    Microsoft Academic Search

    Dror Luger; Dmitri Shinder; Shlomo Yahav

    2002-01-01

    The ascites syndrome in broiler chickens is attributed to the progress in genetic selection for rapid growth, coupled with the metabolic burden imposed by exposure to a relatively low-ambient temperature (Ta). The syndrome is mainly characterized by hematocrit elevation, decline in blood oxygen saturation, accumulation of fluid in the abdominal cavity, and finally, death. Ascitic chickens have demonstrated hypothyroidism coupled

  12. Ascites Increases Expression/Function of Multidrug Resistance Proteins in Ovarian Cancer Cells

    PubMed Central

    Huang, Zhiqing; Murphy, Susan K.; Payne, Sturgis; Wang, Fang; Kennedy, Margaret; Cianciolo, George J.; Bryja, Vitezslav; Pizzo, Salvatore V.; Bachelder, Robin E.

    2015-01-01

    Chemotherapy resistance is the major reason for the failure of ovarian cancer treatment. One mechanism behind chemo-resistance involves the upregulation of multidrug resistance (MDR) genes (ABC transporters) that effectively transport (efflux) drugs out of the tumor cells. As a common symptom in stage III/IV ovarian cancer patients, ascites is associated with cancer progression. However, whether ascites drives multidrug resistance in ovarian cancer cells awaits elucidation. Here, we demonstrate that when cultured with ascites derived from ovarian cancer-bearing mice, a murine ovarian cancer cell line became less sensitive to paclitaxel, a first line chemotherapeutic agent for ovarian cancer patients. Moreover, incubation of murine ovarian cancer cells in vitro with ascites drives efflux function in these cells. Functional studies show ascites-driven efflux is suppressible by specific inhibitors of either of two ABC transporters [Multidrug Related Protein (MRP1); Breast Cancer Related Protein (BCRP)]. To demonstrate relevance of our findings to ovarian cancer patients, we studied relative efflux in human ovarian cancer cells obtained from either patient ascites or from primary tumor. Immortalized cell lines developed from human ascites show increased susceptibility to efflux inhibitors (MRP1, BCRP) compared to a cell line derived from a primary ovarian cancer, suggesting an association between ascites and efflux function in human ovarian cancer. Efflux in ascites-derived human ovarian cancer cells is associated with increased expression of ABC transporters compared to that in primary tumor-derived human ovarian cancer cells. Collectively, our findings identify a novel activity for ascites in promoting ovarian cancer multidrug resistance. PMID:26148191

  13. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor.

    PubMed

    Jain, Rakesh K

    2002-12-01

    Solid tumors consist of several components, including normal and stromal cells, extracellular matrix, and vasculature. To grow and metastasize, tumors must stimulate the development of new vasculature through a process known as angiogenesis. Unlike normal blood vessels, tumor blood vessels are chaotic, irregular, and leaky, which leads to uneven delivery of nutrients and therapeutic agents to the tumor. Conventional therapies target neoplastic cells within a tumor; however, tumor vasculature is emerging as an important target for anticancer therapy. Antiangiogenic therapy offers several potential advantages as an approach to cancer treatment, notably physical accessibility and genetic stability of target cells. Vascular endothelial growth factor (VEGF), a central mediator of angiogenesis, has emerged as an important target for antiangiogenic therapy. In preclinical studies, treatment of human tumor xenografts in immunodeficient mice with the anti-VEGF monoclonal antibody A4.6.1 led to reduced tumor vessel permeability and caused vascular regression. The reduced vascular permeability, resulting from inhibition of VEGF, led to increased delivery of oxygen and therapeutic agents to tumors. Anti-VEGF therapy was effectively combined with other treatment modalities, including radiation, antihormonal, antibody, and chemotherapies in multiple preclinical models. Currently, several phase 3 clinical trials in various cancer types are under way to establish the efficacy of antiangiogenic therapy with a recombinant humanized anti-VEGF monoclonal antibody, bevacizumab (Avastin, rhuMAb-VEGF; Genentech, South San Francisco, CA), in combination with chemotherapeutic agents. PMID:12516032

  14. Regulatory B cells preferentially accumulate in tumor-draining lymph nodes and promote tumor growth

    PubMed Central

    Ganti, Sheila N.; Albershardt, Tina C.; Iritani, Brian M.; Ruddell, Alanna

    2015-01-01

    Our previous studies found that B16-F10 melanoma growth in the rear footpad of immunocompetent mice induces marked B cell accumulation within tumor-draining popliteal lymph nodes (TDLN). This B cell accumulation drives TDLN remodeling that precedes and promotes metastasis, indicating a tumor-promoting role for TDLN B cells. Here we show that phenotypic characterization of lymphocytes in mice bearing B16-F10 melanomas identifies preferential accumulation of T2-MZP B cells in the TDLN. Comparison of non-draining LNs and spleens of tumor-bearing mice with LNs and spleens from naďve mice determined that this pattern of B cell accumulation was restricted to the TDLN. B cell-deficient and immunocompetent mice reconstituted with T2-MZP B cells but not with other B cell subsets displayed accelerated tumor growth, demonstrating that T2-MZP B cells possess regulatory activity in tumor-bearing mice. Unlike splenic regulatory B cells, however, these TDLN B cells did not exhibit increased IL-10 production, nor did they promote Treg generation in the TDLN. These findings demonstrate that tumors initially signal via the lymphatic drainage to stimulate the preferential accumulation of T2-MZP regulatory B cells. This local response may be an early and critical step in generating an immunosuppressive environment to permit tumor growth and metastasis. PMID:26193241

  15. Immunosuppressive drugs and their effect on experimental tumor growth

    Microsoft Academic Search

    Itsuo Yokoyama; Shuji Hayashi; Takaaki Kobayashi; Motohiko Yasutomi; Kazuharu Uchida; Hiroshi Takagi

    1995-01-01

    The effect of cyclosporin (CyA), FK 506, and mycophenolate mofetil (MPM) on tumor growth was investigated using syngeneic mouse colon carcinoma 38. Mice were laparotomized and the tumor cells were injected into the portal vein to establish liver metastasis. The animals were grouped as follows: groups A-1, B-1, and C-1 were given CyA [15 mg\\/kg body weight (BW)], FK 506

  16. Ursolic acid-induced changes in tumor growth, O2 consumption, and tumor interstitial fluid pressure.

    PubMed

    Lee, I; Lee, J; Lee, Y H; Leonard, J

    2001-01-01

    The anti-tumor effect of ursolic acid (UA) and UA-induced changes in tumor physiology in tumor-bearing mice were examined. MTT colorimetric assay, clonogenic assay, and growth-delay assay for the determination of tumoricidal effects of UA were evaluated. UA-induced apoptosis was measured by fluorescent microscopy, stained by propidium iodide. Oxygen consumption (QO2) after treatment with UA was measured using a Clark-type electrode chamber. Systemic toxicity in mice was assayed by LD50(30). We also measured UA-induced changes in several tumor physiological parameters. Inhibitory effect of UA on various tumor cell lines was observed using MTT and clonogenic assays in vitro. UA-induced apoptosis significantly increased in a dose-dependent manner. Cellular QO2 values were significantly reduced by UA. In animal studies, UA significantly reduced tumor interstitial fluid pressure (TIFP) to approximately 40% of the control values at 2-3 days post-treatment (P<0.05). An i.p. administration of 100 mg/kg of UA significantly (P<0.01) inhibited tumor growth of FSaII. In conclusion, UA showed anti-tumor effect on various tumor cells in vitro as well as a moderate retardation of growth in two tumor models in vivo. We gained some insight regarding the pathophysiological benefits of UA (i.e., reduction in TIFP) as a cancer therapeutic agent. Consequently, these observations can be used for further study of UA or to facilitate clinical applications of UA for treating cancer patients. PMID:11724362

  17. Pinning of Tumoral Growth by Enhancement of the Immune Response

    NASA Astrophysics Data System (ADS)

    Brú, A.; Albertos, S.; García-Asenjo, J. A.; Brú, I.

    2004-06-01

    Tumor growth is a surface phenomenon of the molecular beam epitaxy universality class in which diffusion at the surface is the determining factor. This Letter reports experiments performed in mice showing that these dynamics can, however, be changed. By stimulating the immune response, we induced strong neutrophilia around the tumor. The neutrophils hindered cell surface diffusion so much that they induced new dynamics compatible with the slower quenched-disorder Edwards-Wilkinson universality class. Important clinical effects were also seen, including remarkably high tumor necrosis (around 80% 90% of the tumor), a general increase in survival time [the death ratio in the control group is 15.76 times higher than in the treated group (equivalent to a Cox's model hazard ratio of 0.85; 95% confidence interval 0.76 0.95, p=0.004)], and even the total elimination of some tumors.

  18. Multiphase modeling of tumor growth and extracellular matrix interaction: Mathematical tools and applications

    E-print Network

    Preziosi, Luigi

    Multiphase modeling of tumor growth and extracellular matrix interaction: Mathematical tools modeling framework tumors are described as a mixture of tumor and host cells within a porous structure of the growing tumor with the host tissue, their influence on tumor growth, and the attachment

  19. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    PubMed Central

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease. PMID:24978438

  20. Preliminary investigation of the inhibitory effects of mechanical stress in tumor growth

    E-print Network

    Miga, Michael I.

    Preliminary investigation of the inhibitory effects of mechanical stress in tumor growth Ishita the growth of the tumor as two separate components- a proliferative component and an invasive component to describe tumor growth, and the affect of mechanical stresses caused by the mass effect of tumor cells

  1. Massive ascites of unknown origin

    PubMed Central

    Yuan, Shi-Min

    2014-01-01

    Massive ascites of unknown origin is an uncommon condition, which represent a diagnostic challenge. Patients with delayed diagnosis and treatment may have a poor prognosis. A 22-year-old female was referred to this hospital due to a 4-year progressive abdominal distension with massive ascites of unknown origin. By thorough investigations, she was eventually diagnosed as chronic calcified constrictive pericarditis. She received pericardiectomy and had an uneventful postoperative course. With a few day paracentesis, ascites did not progress any more. She was doing well at 5-month follow-up and has returned to work. Extracardiac manifestations, such as massive ascites and liver cirrhosis, were rare in patients with constrictive pericarditis. Pericardiectomy can be a radical solution for the treatment of chronic constrictive pericarditis. In order to avoid delayed diagnosis and treatment, physicians have to bear in mind this rare manifestation of chronic calcified constrictive pericarditis. PMID:24600502

  2. Protection of Ehrlich Ascites Tumor Cells against the Antiproliferative Effect of Mechlorethamine (Nitrogen Mustard) by 5-A^A^-Dimethylamiloride1

    Microsoft Academic Search

    Wolfgang Doppier; Johann Hofmann; Karl Maly; Hans H. Grunicke

    V,\\/V-l )inu't hylamiliiride protects Ehrlich uscite* tumor cells against the antiproliferative effect of nitrogen mustard. The drug reduces the frequency of DNA inu-rsl rand cross-links introduced by nitrogen mustard. Cells with a defective choline carrier are not protected against nitrogen mustard by dimethylamiloride. As nitrogen mustard is taken up by the choline carrier, it is concluded that the recently reported

  3. Chronic lupus peritonitis with ascites.

    PubMed Central

    Kaklamanis, P; Vayopoulos, G; Stamatelos, G; Dadinas, G; Tsokos, G C

    1991-01-01

    A 28 year old woman with systemic lupus erythematosus who developed chronic lupus peritonitis and ascites is described. Lupus peritonitis appeared with abdominal fullness, postprandial abdominal discomfort, and painless ascites. Four months later the patient developed vertigo, headaches, visual disturbances, serositis, and glomerulonephritis. Lupus peritonitis and the other disease manifestations responded to treatment with intravenous pulse methylprednisolone (four 1 g/m2 injections at one week intervals), oral azathioprine (200 mg daily), and diuretics. PMID:2015011

  4. Promotion of lung tumor growth by interleukin-17.

    PubMed

    Xu, Beibei; Guenther, James F; Pociask, Derek A; Wang, Yu; Kolls, Jay K; You, Zongbing; Chandrasekar, Bysani; Shan, Bin; Sullivan, Deborah E; Morris, Gilbert F

    2014-09-15

    Recent findings demonstrate that inhaled cigarette smoke, the predominant lung carcinogen, elicits a T helper 17 (Th17) inflammatory phenotype. Interleukin-17A (IL-17), the hallmark cytokine of Th17 inflammation, displays pro- and antitumorigenic properties in a manner that varies according to tumor type and assay system. To investigate the role of IL-17 in lung tumor growth, we used an autochthonous tumor model (K-Ras(LA1) mice) with lung delivery of a recombinant adenovirus that expresses IL-17A. Virus-mediated expression of IL-17A in K-Ras(LA1) mice at 8-10 wk of age doubled lung tumor growth in 3 wk relative to littermates that received a green fluorescent protein-expressing control adenovirus. IL-17 induced matrix metalloproteinase-9 (MMP-9) expression in vivo and in vitro. In accord with this finding, selective and specific inhibitors of MMP-9 repressed the increased motility and invasiveness of IL-17-treated lung tumor cells in culture. Knockdown or mutation of p53 promoted the motility of murine lung tumor cells and abrogated the promigratory role of IL-17. Coexpression of siRNA-resistant wild-type, but not mutant, human p53 rescued both IL-17-mediated migration and MMP-9 mRNA induction in p53 knockdown lung tumor cells. IL-17 increased MMP-9 mRNA stability by reducing interaction with the mRNA destabilizing serine/arginine-rich splicing factor 1 (SRSF1). Taken together, our results indicate that IL-17 stimulates lung tumor growth and regulates MMP-9 mRNA levels in a p53- and SRSF1-dependent manner. PMID:25038189

  5. Fully human VEGFR2 monoclonal antibody BC001 attenuates tumor angiogenesis and inhibits tumor growth.

    PubMed

    Xuan, Zi-Xue; Li, Lin-Na; Zhang, Qi; Xu, Cheng-Wang; Yang, De-Xuan; Yuan, Ye; An, Ying-Hong; Wang, Shan-Shan; Li, Xiao-Wen; Yuan, Shou-Jun

    2014-12-01

    The critical role of VEGFR2 in tumor neovascularization and progression has allowed the design of clinically beneficial therapies based on it. Here we show that BC001, a new fully human anti-VEGFR2 monoclonal antibody, inhibits VEGF-stimulated endothelial cell migration, tube formation, and effectively suppressed the transdifferentiation of cancer stem cells into endothelial cells in vitro. Since BC001 exhibited no activity against the mouse VEGFR2 and mouse based study was required to confirm its efficacy in vivo, BC101, the mouse analogue of BC001, was developed. BC101 significantly attenuated angiogenesis according to Matrigel plug assay and resulted in ~80% growth inhibition of mouse B16F10 homograft tumors relative to vehicle control. Similarly, human analogue BC001 suppressed the growth of human xenograft tumors HCT116 and BGC823. Furthermore, immunohistochemical results showed reduced expression of CD31, VEGFR2 and Ki-67, as well as increased expression of Caspase 3 in BC001-treated tumor, which indicated BC001 was able to significantly decrease microvessel density, suppress proliferation and promote apoptosis. These results demonstrate the fully human VEGFR2 monoclonal antibody BC001 can work as an effective inhibitor of tumor angiogenesis and tumor growth both in vitro and in vivo. PMID:25269419

  6. Molecular Cochaperones: Tumor Growth and Cancer Treatment

    PubMed Central

    Calderwood, Stuart K.

    2013-01-01

    Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state. They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts of mutant proteins that are employed to overcome tumor suppressive regulation. To function at significant rates in cells, HSPs interact with cochaperones, proteins that assist in catalyzing individual steps in molecular chaperoning as well as in posttranslational modification and intracellular localization. We review current knowledge regarding the roles of chaperones such as heat shock protein 90 (Hsp90) and Hsp70 and their cochaperones in cancer. Cochaperones are potential targets for cancer therapy in themselves and can be used to assess the likely prognosis of individual malignancies. Hsp70 cochaperones Bag1, Bag3, and Hop play significant roles in the etiology of some cancers as do Hsp90 cochaperones Aha1, p23, Cdc37, and FKBP1. Others such as the J domain protein family, HspBP1, TTC4, and FKBPL appear to be associated with more benign tumor phenotypes. The key importance of cochaperones for many pathways of protein folding in cancer suggests high promise for the future development of novel pharmaceutical agents. PMID:24278769

  7. Semiautomatic growth analysis of multicellular tumor spheroids.

    PubMed

    Rodday, Bjoern; Hirschhaeuser, Franziska; Walenta, Stefan; Mueller-Klieser, Wolfgang

    2011-10-01

    Multicellular tumor spheroids (MCTS) are routinely employed as three-dimensional in vitro models to study tumor biology. Cultivation of MCTS in spinner flasks provides better growing conditions, especially with regard to the availability of nutrients and oxygen, when compared with microtiter plates. The main endpoint of drug response experiments is spheroid size. It is common practice to analyze spheroid size manually with a microscope and an ocular micrometer. This requires removal of some spheroids from the flask, which entails major limitations such as loss of MCTS and the risk of contamination. With this new approach, the authors present an efficient and highly reproducible method to analyze the size of complete MCTS populations in culture containers with transparent, flat bottoms. MCTS sediments are digitally scanned and spheroid volumes are calculated by computerized image analysis. The equipment includes regular office hardware (personal computer, flatbed scanner) and software (Adobe Photoshop, Microsoft Excel, ImageJ). The accuracy and precision of the method were tested using industrial precision steel beads with known diameter. In summary, in comparison with other methods, this approach provides benefits in terms of semiautomation, noninvasiveness, and low costs. PMID:21908797

  8. Transforming Growth Factor B Subverts the Immune System into Directly Promoting Tumor Growth through Interleukin17

    Microsoft Academic Search

    Jeong-Seok Nam; Masaki Terabe; Mi-Jin Kang; Helen Chae; Nga Voong; Yu-an Yang; Arian Laurence; Aleksandra Michalowska; Mizuko Mamura; Scott Lonning; Jay A. Berzofsky; Lalage M. Wakefield

    2008-01-01

    Overexpression of the immunosuppressive cytokine trans- forming growth factor B (TGF-B) is one strategy that tumors have developed to evade effective immunesurveillance. Using transplantable models of breast and colon cancer, we made the unexpected finding that CD8+ cells in tumor-bearing animals can directly promote tumorigenesis, by a mechanism that is dependent on TGF-B. We showed that CD8+ splenocytes from tumor-bearing

  9. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells.

    PubMed

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2015-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. IL-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a "danger" signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8(+) T cells. In this study, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFN-? production by CD8(+) T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor Ag-specific CD8(+) T cells. Furthermore, both NK and CD8(+) T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells worked synergistically with IL-33 expression for tumor elimination. Our studies established "alarmin" IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. PMID:25429071

  10. Joint fitting reveals hidden interactions in tumor growth.

    PubMed

    Barberis, L; Pasquale, M A; Condat, C A

    2015-01-21

    Tumor growth is often the result of the simultaneous development of two or more cancer cell populations. Crucial to the system evolution are the interactions between these populations. To obtain information about these interactions we apply the recently developed vector universality (VUN) formalism to various instances of competition between tumor populations. The formalism allows us (a) to quantify the growth mechanisms of a HeLa cell colony, describing the phenotype switching responsible for its fast expansion, (b) to reliably reconstruct the evolution of the necrotic and viable fractions in both in vitro and in vivo tumors using data for the time dependences of the total masses alone, and (c) to show how the shedding of cells leading to subspheroid formation is beneficial to both the spheroid and subspheroid populations, suggesting that shedding is a strong positive influence on cancer dissemination. PMID:25451531

  11. CD151-?3?1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling.

    PubMed

    Baldwin, Lauren A; Hoff, John T; Lefringhouse, Jason; Zhang, Michael; Jia, Changhe; Liu, Zeyi; Erfani, Sonia; Jin, Hongyan; Xu, Mei; She, Qing-Bai; van Nagell, John R; Wang, Chi; Chen, Li; Plattner, Rina; Kaetzel, David M; Luo, Jia; Lu, Michael; West, Dava; Liu, Chunming; Ueland, Fred R; Drapkin, Ronny; Zhou, Binhua P; Yang, Xiuwei H

    2014-12-15

    Human ovarian cancer is diagnosed in the late, metastatic stages but the underlying mechanisms remain poorly understood. We report a surprising functional link between CD151-?3?1 integrin complexes and the malignancy of serous-type ovarian cancer. Analyses of clinical specimens indicate that CD151 expression is significantly reduced or diminished in 90% of metastatic lesions, while it remains detectable in 58% of primary tumors. These observations suggest a putative tumor-suppressing role of CD151 in ovarian cancer. Indeed, our analyses show that knocking down CD151 or ?3 integrin enhances tumor cell proliferation, growth and ascites production in nude mice. These changes are accompanied by impaired cell-cell contacts and aberrant expression of E-cadherin, Mucin 5AC and fibronectin, largely reminiscent of an epithelial to mesenchymal transition (EMT)-like change. Importantly, Slug, a master regulator of EMT, is markedly elevated. Knocking down Slug partially restores CD151-?3?1 integrin complex-dependent suppression of cell proliferation. Moreover, disruption of these adhesion protein complexes is accompanied by a concomitant activation of canonical Wnt signaling, including elevated levels of ?-catenin and Axin-2 as well as resistance to the inhibition in ?-catenin-dependent transcriptional complexes. Together, our study demonstrates that CD151-?3?1 integrin complexes regulate ovarian tumor growth by repressing Slug-mediated EMT and Wnt signaling. PMID:25356755

  12. CD151-?3?1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling

    PubMed Central

    Zhang, Michael; Jia, Changhe; Liu, Zeyi; Erfani, Sonia; Jin, Hongyan; Xu, Mei; She, Qing-Bai; van Nagell, John R.; Wang, Chi; Chen, Li; Plattner, Rina; Kaetzel, David M.; Luo, Jia; Lu, Michael; West, Dava; Liu, Chunming; Ueland, Fred R.; Drapkin, Ronny; Zhou, Binhua P.; Yang, Xiuwei H.

    2014-01-01

    Human ovarian cancer is diagnosed in the late, metastatic stages but the underlying mechanisms remain poorly understood. We report a surprising functional link between CD151-?3?1 integrin complexes and the malignancy of serous-type ovarian cancer. Analyses of clinical specimens indicate that CD151 expression is significantly reduced or diminished in 90% of metastatic lesions, while it remains detectable in 58% of primary tumors. These observations suggest a putative tumor-suppressing role of CD151 in ovarian cancer. Indeed, our analyses show that knocking down CD151 or ?3 integrin enhances tumor cell proliferation, growth and ascites production in nude mice. These changes are accompanied by impaired cell-cell contacts and aberrant expression of E-cadherin, Mucin 5AC and fibronectin, largely reminiscent of an epithelial to mesenchymal transition (EMT)-like change. Importantly, Slug, a master regulator of EMT, is markedly elevated. Knocking down Slug partially restores CD151-?3?1 integrin complex-dependent suppression of cell proliferation. Moreover, disruption of these adhesion protein complexes is accompanied by a concomitant activation of canonical Wnt signaling, including elevated levels of ?-catenin and Axin-2 as well as resistance to the inhibition in ?-catenin-dependent transcriptional complexes. Together, our study demonstrates that CD151-?3?1 integrin complexes regulate ovarian tumor growth by repressing Slug-mediated EMT and Wnt signaling. PMID:25356755

  13. Inhibition of Tumor Growth by Dietary Zinc Deficiency1

    Microsoft Academic Search

    James T. McQuitty; William D. DeWys; Liberatore Monaco; William H. Strain; Charles G. Rob; Jean Apgar; Walter J. Pories

    SUMMARY The effect of different levels of zinc intake on tumor growth was studied by implanting Walker 256 carcino- sarcoma into weanling Sprague-Dawley rats maintained on laboratory chow or on a zinc-deficient synthetic diet. Three experimental groups receiving this synthetic diet were given 0, 50, or 500 parts per million, respectively, of zinc ion in the drinking water. The latter

  14. Building Context with Tumor Growth Modeling Projects in Differential Equations

    ERIC Educational Resources Information Center

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  15. Tumor growth instability and the onset of invasion.

    PubMed

    Castro, Mario; Molina-París, Carmen; Deisboeck, Thomas S

    2005-10-01

    Motivated by experimental observations, we develop a mathematical model of chemotactically directed tumor growth. We present an analytical study of the model as well as a numerical one. The mathematical analysis shows that: (i) tumor cell proliferation by itself cannot generate the invasive branching behavior observed experimentally, (ii) heterotype chemotaxis provides an instability mechanism that leads to the onset of tumor invasion, and (iii) homotype chemotaxis does not provide such an instability mechanism but enhances the mean speed of the tumor surface. The numerical results not only support the assumptions needed to perform the mathematical analysis but they also provide evidence of (i), (ii), and (iii). Finally, both the analytical study and the numerical work agree with the experimental phenomena. PMID:16383420

  16. Incorporating spatial dependence into a multicellular tumor spheroid growth model

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Lau, Y. Y.; Jackson, Trachette L.; Uhler, Michael D.; Jordan, David W.; Gilgenbach, Ronald M.

    2005-12-01

    Recent models for organism and tumor growth yield simple scaling laws based on conservation of energy. Here, we extend such a model to include spatial dependence to model necrotic core formation. We adopt the allometric equation for tumor volume with a reaction-diffusion equation for nutrient concentration. In addition, we assume that the total metabolic energy and average cellular metabolic rate depend on nutrient concentration in a Michaelis-Menten-like manner. From experimental results, we relate the necrotic volume to nutrient consumption and estimate both the time and nutrient concentration at necrotic core formation. Based on experimental results, we demand that the necrotic core radius varies linearly with tumor radius after core formation and extend the equations for tumor volume and nutrient concentration to the postnecrotic core regime. In particular, we obtain excellent agreement with experimental data and the final steady-state viable rim thickness.

  17. MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models.

    PubMed

    Leow, Ching Ching; Coffman, Karen; Inigo, Ivan; Breen, Shannon; Czapiga, Meggan; Soukharev, Serguei; Gingles, Neill; Peterson, Norman; Fazenbaker, Christine; Woods, Rob; Jallal, Bahija; Ricketts, Sally-Ann; Lavallee, Theresa; Coats, Steve; Chang, Yong

    2012-05-01

    Angiopoietin 2 (Ang2) is an important regulator of angiogenesis, blood vessel maturation and integrity of the vascular endothelium. The correlation between the dynamic expression of Ang2 in tumors with regions of high angiogenic activity and a poor prognosis in many tumor types makes Ang2 an ideal drug target. We have generated MEDI3617, a human anti-Ang2 monoclonal antibody that neutralizes Ang2 by preventing its binding to the Tie2 receptor in vitro, and inhibits angiogenesis and tumor growth in vivo. Treatment of mice with MEDI3617 resulted in inhibition of angiogenesis in several mouse models including: FGF2-induced angiogenesis in a basement extract plug model, tumor and retinal angiogenesis. In xenograft tumor models, treatment with MEDI3617 resulted in a reduction in tumor angiogenesis and an increase in tumor hypoxia. The administration of MEDI3617 as a single agent to mice bearing human tumor xenografts resulted in tumor growth inhibition against a broad spectrum of tumor types. Combining MEDI3617 with chemotherapy or bevacizumab resulted in a delay in tumor growth and no body weight loss was observed in the combination groups. These results, combined with pharmacodynamic studies, demonstrate that treatment of tumor-bearing mice with MEDI3617 significantly inhibited tumor growth as a single agent by blocking tumor angiogenesis. Together, these data show that MEDI3617 is a robust antiangiogenic agent and support the clinical evaluation and biomarker development of MEDI3617 in cancer patients. PMID:22327175

  18. Hedgehog signaling in myofibroblasts directly promotes prostate tumor cell growth

    PubMed Central

    Domenech, Maribella; Bjerregaard, Robert; Bushman, Wade; Beebe, David J.

    2012-01-01

    Despite strong evidence for the involvement of the stroma in Hedgehog signaling, little is known about the identity of the stromal cells and the signaling mechanisms that mediate the growth promoting effect of Hh signaling. We developed an in vitro co-culture model using microchannel technology to examine the effect of paracrine Hh signaling on proliferation of prostate cancer cells. We show here that activation of Hh signaling in myofibroblasts is sufficient to accelerate tumor cell growth. This effect was independent of any direct effect of Hh ligand on tumor cells or other cellular components of the tumor stroma. Further, the trophic effect of Hh pathway activation in myofibroblasts does not require collaboration of other elements of the stroma or direct physical interaction with the cancer cells. By isolating the tropic effect of Hh pathway activation in prostate stroma, we have taken the first step toward identifying cell-specific mechanisms that mediate the effect of paracrine Hh signaling on tumor growth. PMID:22234342

  19. Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling

    PubMed Central

    Pasula, Satish; Cai, Xiaofeng; Dong, Yunzhou; Messa, Mirko; McManus, John; Chang, Baojun; Liu, Xiaolei; Zhu, Hua; Mansat, Robert Silasi; Yoon, Seon-Joo; Hahn, Scott; Keeling, Jacob; Saunders, Debra; Ko, Genevieve; Knight, John; Newton, Gail; Luscinskas, Francis; Sun, Xiaohong; Towner, Rheal; Lupu, Florea; Xia, Lijun; Cremona, Ottavio; De Camilli, Pietro; Min, Wang; Chen, Hong

    2012-01-01

    Epsins are a family of ubiquitin-binding, endocytic clathrin adaptors. Mice lacking both epsins 1 and 2 (Epn1/2) die at embryonic day 10 and exhibit an abnormal vascular phenotype. To examine the angiogenic role of endothelial epsins, we generated mice with constitutive or inducible deletion of Epn1/2 in vascular endothelium. These mice exhibited no abnormal phenotypes under normal conditions, suggesting that lack of endothelial epsins 1 and 2 did not affect normal blood vessels. In tumors, however, loss of epsins 1 and 2 resulted in disorganized vasculature, significantly increased vascular permeability, and markedly retarded tumor growth. Mechanistically, we show that VEGF promoted binding of epsin to ubiquitinated VEGFR2. Loss of epsins 1 and 2 specifically impaired endocytosis and degradation of VEGFR2, which resulted in excessive VEGF signaling that compromised tumor vascular function by exacerbating nonproductive leaky angiogenesis. This suggests that tumor vasculature requires a balance in VEGF signaling to provide sufficient productive angiogenesis for tumor development and that endothelial epsins 1 and 2 negatively regulate the output of VEGF signaling. Promotion of excessive VEGF signaling within tumors via a block of epsin 1 and 2 function may represent a strategy to prevent normal angiogenesis in cancer patients who are resistant to anti-VEGF therapies. PMID:23187125

  20. Piecewise Constant Suboptimal Controls for a System Describing Tumor Growth under Angiogenic Treatment

    E-print Network

    Ledzewicz, Urszula

    approach that aims at depriving a growing tumor of the blood vessel network it needs for growth. Initially to allow for cell duplication and tumor growth. However, after this state of avascular growth is over, at the size of about 1 - 2 mm in diameter, this no longer is true and most tumor cells enter the dormant stage

  1. Classical Mathematical Models for Description and Forecast of Preclinical Tumor Growth

    E-print Network

    Boyer, Edmond

    ! 1! Classical Mathematical Models for Description and Forecast of Preclinical Tumor Growth2013 #12;! 2! Abstract Tumor growth is a complex process involving a large number of biological formalized with the help of mathematical models. Based on experimental data of in vivo syngeneic tumor growth

  2. Formal asymptotic limit of a diffuse-interface tumor-growth

    E-print Network

    Paris-Sud XI, Université de

    Formal asymptotic limit of a diffuse-interface tumor-growth model Danielle Hilhorst , Johannes-interface tumor-growth model, which has the form of a phase-field system. We discuss the singular limit perturbation, interface mo- tion, matched asymptotic expansion, tumor-growth model. 1 Introduction Diffuse

  3. Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth

    E-print Network

    Paris-Sud XI, Université de

    1 Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth complexity, tumor growth kinetics follow relatively simple macroscopic laws that have been quantified for the purpose of comparing alternative models for their abilities to describe and predict tumor growth

  4. Renal cell carcinoma presenting with malignant ascites

    PubMed Central

    Wathuge, Gayathri W; Gorard, David A

    2015-01-01

    Lesson It is rare for renal cell carcinoma to involve the peritoneum and cause malignant ascites. Furthermore, it is uncommon for malignant ascites to be a presenting feature of this cancer. An unusual case of renal cell carcinoma presenting with malignant ascites is reported, and its response to sunitinib described. PMID:25973217

  5. Association between weight gain, blood parameters, and thyroid hormones and the development of ascites syndrome in broiler chickens.

    PubMed

    Luger, D; Shinder, D; Rzepakovsky, V; Rusal, M; Yahav, S

    2001-07-01

    The present study examined the association between thyroid hormones and the development of ascites on one hand and the ability to predict ascites from growth rate and hematocrit on the other hand. Ascites syndrome was induced in broiler chickens in two trials by exposing the chicks to low ambient temperature (Ta) and by supplying a pellet form of diet. Weight gain, hematocrit, hemoglobin, and plasma thyroxin (T4) and triiodothyronine (T3) concentrations were measured weekly for each bird, and comparisons were made between birds that eventually died from ascites and those that did not. Mortality from ascites amounted to 24.3 and 24.2% in Trials 1 and 2, respectively. Weight gain did not differ between ascitic and healthy chickens up to approximately 2 wk before death but was significantly lower in the ascitic broilers 1 to 2 wk before death. Hematocrit was significantly higher in broilers with ascites with the exception of ascitic broilers that died at the age of 7 wk (Trial 1). In ascitic broilers, T4 and T3 concentrations declined significantly during the week of death. The present findings raise the question of whether the association between low levels of thyroid hormones and the development of ascites is one of the physiological responses in the syndrome cascade, or whether the failure to maintain thyroid hormones concentration is one of the triggers of the syndrome initiation. This question requires further investigation. It can be concluded that a high rate of weight gain is not always a good predictor of ascites development. Hematocrit and thyroid hormones can provide a good indication but only during the last week of life, and not in all cases. None of these parameters, however, can predict the development of ascites at an early age. PMID:11469663

  6. Homeostatic competition drives tumor growth and metastasis nucleation

    PubMed Central

    Basan, Markus; Risler, Thomas; Joanny, Jean-François; Sastre-Garau, Xavier; Prost, Jacques

    2009-01-01

    We propose a mechanism for tumor growth emphasizing the role of homeostatic regulation and tissue stability. We show that competition between surface and bulk effects leads to the existence of a critical size that must be overcome by metastases to reach macroscopic sizes. This property can qualitatively explain the observed size distributions of metastases, while size-independent growth rates cannot account for clinical and experimental data. In addition, it potentially explains the observed preferential growth of metastases on tissue surfaces and membranes such as the pleural and peritoneal layers, suggests a mechanism underlying the seed and soil hypothesis introduced by Stephen Paget in 1889, and yields realistic values for metastatic inefficiency. We propose a number of key experiments to test these concepts. The homeostatic pressure as introduced in this work could constitute a quantitative, experimentally accessible measure for the metastatic potential of early malignant growths. PMID:20119483

  7. Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth

    Microsoft Academic Search

    Michael S O'Reilly; Thomas Boehm; Yuen Shing; Naomi Fukai; George Vasios; Evelyn Flynn; James R Birkhead; Bjorn R Olsen; Judah Folkman

    1997-01-01

    We previously identified the angiogenesis inhibitor angiostatin. Using a similar strategy, we have identified endostatin, an angiogenesis inhibitor produced by hemangioendothelioma. Endostatin is a 20 kDa C-terminal fragment of collagen XVIII. Endostatin specifically inhibits endothelial proliferation and potently inhibits angiogenesis and tumor growth. By a novel method of sustained release, E. coli–derived endostatin was administered as a nonrefolded suspen- sion.

  8. Interfacial properties in a discrete model for tumor growth

    NASA Astrophysics Data System (ADS)

    Moglia, Belén; Guisoni, Nara; Albano, Ezequiel V.

    2013-03-01

    We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent ?=0.32(2) that governs the early time regime, (ii) the roughness exponent ?=0.49(2) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z=?/??1.49(2), which measures the propagation of correlations in the direction parallel to the interface, e.g., ??t1/z, where ? is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.

  9. In-vivo visualization of melanoma tumor microvessels and blood flow velocity changes accompanying tumor growth

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke

    2012-11-01

    We demonstrate that using micro multipoint laser Doppler velocimetry (?-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by ?-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.

  10. Arsenic trioxide inhibits tumor cell growth in malignant rhabdoid tumors in vitro and in vivo by targeting overexpressed Gli1.

    PubMed

    Kerl, Kornelius; Moreno, Natalia; Holsten, Till; Ahlfeld, Julia; Mertins, Julius; Hotfilder, Marc; Kool, Marcel; Bartelheim, Kerstin; Schleicher, Sabine; Handgretinger, Rupert; Schüller, Ulrich; Meisterernst, Michael; Frühwald, Michael C

    2014-08-15

    Rhabdoid tumors are highly aggressive tumors occurring in infants and very young children. Despite multimodal and intensive therapy prognosis remains poor. Molecular analyses have uncovered several deregulated pathways, among them the CDK4/6-Rb-, the WNT- and the Sonic hedgehog (SHH) pathways. The SHH pathway is activated in rhabdoid tumors by GLI1 overexpression. Here, we demonstrate that arsenic trioxide (ATO) inhibits tumor cell growth of malignant rhabdoid tumors in vitro and in a mouse xenograft model by suppressing Gli1. Our data uncover ATO as a promising therapeutic approach to improve prognosis for rhabdoid tumor patients. PMID:24420698

  11. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1?, IL-6, IFN-?, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF.

    PubMed

    Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2013-01-01

    The aim of the present investigation was to evaluate the effect of A ferruginea extract on Dalton's lymphoma ascites (DLA) induced tumours in BALB/c mice. Experimental animals received A ferruginea extract (10 mg/ kg.b.wt) intraperitoneally for 14 consecutive days after DLA tumor challenge. Treatment with extract significantly increased the life span, total white blood cell (WBC) count and haemoglobin (Hb) content and decreased the level of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (?-GT) and nitric oxide (NO) in DLA bearing ascites tumor models. In addition, administration of extract significantly decreased the tumour volume and body weight in a DLA bearing solid tumor model. The levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-?), interleukin-1 beta (IL-1?), interleukin-6 (IL-6) and granulocyte monocyte-colony stimulating factor (GM-CSF), as well as pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) were elevated in solid tumour controls, but significantly reduced by A ferruginea administration. On the other hand, the extract stimulated the production of interleukin-2 (IL-2) and interferon-gamma (IFN-?) in animals with DLA induced solid tumours. Increase in CD4+ T-cell population suggested strong immunostimulant activity for this extract. GC/MS and LC/MS analysis showed quinone, quinoline, imidazolidine, pyrrolidine, cyclopentenone, thiazole, pyrazole, catechin and coumarin derivatives as major compounds present in the A ferruginea methanolic extract. Thus, the outcome of the present study suggests that A ferruginea extract has immunomodulatory and tumor inhibitory activities and has the potential to be developed as a natural anticancer agent. PMID:23886206

  12. Environmental enrichment does not impact on tumor growth in mice.

    PubMed

    Westwood, Jennifer A; Darcy, Phillip K; Kershaw, Michael H

    2013-01-01

    The effect of environmental enrichment (EE) on a variety of physiologic and disease processes has been studied in laboratory mice. During EE, a large group of mice are housed in larger cages than the standard cage and are given toys and equipment, enabling more social contact, and providing a greater surface area per mouse, and a more stimulating environment. Studies have been performed into the effect of EE on neurogenesis, brain injury, cognitive capacity, memory, learning, neuronal pathways, diseases such as Alzheimer's, anxiety, social defeat, emotionality, depression, drug addiction, alopecia, and stereotypies. In the cancer field, three papers have reported effects on mice injected with tumors and housed in enriched environments compared with those housed in standard conditions. One paper reported a significant decrease in tumor growth in mice in EE housing. We attempted to replicate this finding in our animal facility, because the implications of repeating this finding would have profound implications for how we house all our mice in our studies on cancer. We were unable to reproduce the results in the paper in which B16F10 subcutaneous tumors of mice housed in EE conditions were smaller than those of mice housed in standard conditions. The differences in results could have been due to the different growth rate of the B16F10 cultures from the different laboratories, the microbiota of the mice housed in the two animal facilities, variations in noise and handling between the two facilities, food composition, the chemical composition of the cages or the detergents used for cleaning, or a variety of other reasons. EE alone does not appear to consistently result in decreased tumor growth, but other factors would appear to be able to counteract or inhibit the effects of EE on cancer progression. PMID:24555065

  13. HE4 (WFDC2) gene overexpression promotes ovarian tumor growth.

    PubMed

    Moore, Richard G; Hill, Emily K; Horan, Timothy; Yano, Naohiro; Kim, KyuKwang; MacLaughlan, Shannon; Lambert-Messerlian, Geralyn; Tseng, YiTang Don; Padbury, James F; Miller, M Craig; Lange, Thilo S; Singh, Rakesh K

    2014-01-01

    Selective overexpression of Human epididymal secretory protein E4 (HE4) points to a role in ovarian cancer tumorigenesis but little is known about the role the HE4 gene or the gene product plays. Here we show that elevated HE4 serum levels correlate with chemoresistance and decreased survival rates in EOC patients. HE4 overexpression promoted xenograft tumor growth and chemoresistance against cisplatin in an animal model resulting in reduced survival rates. HE4 displayed responses to tumor microenvironment constituents and presented increased expression as well as nuclear translocation upon EGF, VEGF and Insulin treatment and nucleolar localization with Insulin treatment. HE4 interacts with EGFR, IGF1R, and transcription factor HIF1?. Constructs of antisense phosphorothio-oligonucleotides targeting HE4 arrested tumor growth in nude mice. Collectively these findings implicate increased HE4 expression as a molecular factor in ovarian cancer tumorigenesis. Selective targeting directed towards the HE4 protein demonstrates therapeutic benefits for the treatment of ovarian cancer. PMID:24389815

  14. HE4 (WFDC2) gene overexpression promotes ovarian tumor growth

    PubMed Central

    Moore, Richard G.; Hill, Emily K.; Horan, Timothy; Yano, Naohiro; Kim, KyuKwang; MacLaughlan, Shannon; Lambert-Messerlian, Geralyn; Tseng, YiTang Don; Padbury, James F.; Miller, M. Craig; Lange, Thilo S.; Singh, Rakesh K.

    2014-01-01

    Selective overexpression of Human epididymal secretory protein E4 (HE4) points to a role in ovarian cancer tumorigenesis but little is known about the role the HE4 gene or the gene product plays. Here we show that elevated HE4 serum levels correlate with chemoresistance and decreased survival rates in EOC patients. HE4 overexpression promoted xenograft tumor growth and chemoresistance against cisplatin in an animal model resulting in reduced survival rates. HE4 displayed responses to tumor microenvironment constituents and presented increased expression as well as nuclear translocation upon EGF, VEGF and Insulin treatment and nucleolar localization with Insulin treatment. HE4 interacts with EGFR, IGF1R, and transcription factor HIF1?. Constructs of antisense phosphorothio-oligonucleotides targeting HE4 arrested tumor growth in nude mice. Collectively these findings implicate increased HE4 expression as a molecular factor in ovarian cancer tumorigenesis. Selective targeting directed towards the HE4 protein demonstrates therapeutic benefits for the treatment of ovarian cancer. PMID:24389815

  15. Transplanted tumor growth inhibition by functionalized short single-walled carbon nanotubules.

    PubMed

    Kit, O I; Zlatnik, E Yu; Peredreyeva, L V; Chervonobrodov, S P

    2014-01-01

    The effects of short single-walled carbon nanotubules functionalized by COOH- and NH2- containing groups (NT-COOH and NT-NH2), on the dynamics of transplanted Pliss lymphosarcoma growth were studied after tumor cell preincubation with nanotubules and after injection of nanotubules into the developing tumor. Tumor growth was inhibited and the lifespan of rats with tumors was prolonged by 1.7 times after transplantation of tumor preincubated with NT-NH2, while NT-COOH caused no effect of this kind. Intratumor injection of NT-NH2 inhibited tumor growth over 3 weeks and prolonged animal lifespan. PMID:24771378

  16. A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains.

    PubMed

    Poleszczuk, Jan; Enderling, Heiko

    2014-01-01

    Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner. PMID:25346862

  17. Hybrid Cellular Continuum Simulations of Heterogeneity in Tumor Growth

    NASA Astrophysics Data System (ADS)

    Hentschel, H. G. E.; Family, Fereydoon; van Meir, Erwin; Grossniklaus, Hans

    2010-03-01

    We will discuss simulations of pre-angiogenic tumor growth using a class of hybrid cellular-continuum models. A lattice site can be occupied either by a cell of a specific tumor cell population or consist of extracellular matrix. The local concentrations of oxygen is described by continuum reaction-diffusion equations. Dynamic linked lists of cells are evolved in time and contain information on cell type, position, age, concentration of oxygen at cell site. When cells proliferate via mitosis or differentiate, new cells are added to the list, if mutation occurs the cell types are altered, and if the cell dies via apoptosis the cells are removed from the linked list. The motion of individual cells consist of random walks subject to caging and chemotaxis away from regions of low oxygen concentration. We will describe the heterogenous spatial segregation of different cell types in the tumor, the development of necrotic cores as well as micronecrotic regions, and the effects of externally applied drugs on cell populations and overall tumor shape.

  18. The Constitutive Photomorphogenesis 9 Signalosome Directs Vascular Endothelial Growth Factor Production in Tumor Cells1

    Microsoft Academic Search

    Christian Pollmann; Xiaohua Huang; Julian Mall; Dawadschargal Bech-Otschir; Michael Naumann; Wolfgang Dubiel

    2001-01-01

    Angiogenesis is a prerequisite for solid tumor growth and metastasis. Elucidation of the signaling pathways that control tumor angiogenesis constitutes the basis for a rational antiangiogenic tumor therapy. Here we show that the production of vascular endothelial growth factor (VEGF) in HeLa and HL-60 cells is directed by the constitutive photomorphogenesis 9 signalosome (CSN). The CSN is a kinase complex

  19. Asymmetric non-Gaussian effects in a tumor growth model with immunization q

    E-print Network

    Song, Renming

    . For various initial densities of tumor cells, the mean residence time and the escape probability are computedAsymmetric non-Gaussian effects in a tumor growth model with immunization q Mengli Hao a , Jinqiao 2013 Accepted 13 February 2014 Available online 5 March 2014 Keywords: Tumor growth with immunization

  20. Adapting a transforming growth factor -related tumor protection strategy to enhance antitumor immunity

    Microsoft Academic Search

    Catherine M. Bollard; Claudia Rossig; M. Julia Calonge; M. Helen; Hans-Joachim Wagner Huls; Joan Massague; Malcolm K. Brenner; Helen E. Heslop; Cliona M. Rooney

    2002-01-01

    Transforming growth factor (TGF-), a pleiotropic cytokine that regulates cell growth and differentiation, is secreted by many human tumors and markedly inhib- its tumor-specific cellular immunity. Tu- mors can avoid the differentiating and apoptotic effects of TGF- by expressing a nonfunctional TGF- receptor. We have determined whether this immune evasion strategy can be manipulated to shield tumor-specific cytotoxic T lymphocytes

  1. A Chebyshev method for a free boundary problem modeling tumor growth

    E-print Network

    Sommese, Andrew J.

    A Chebyshev method for a free boundary problem modeling tumor growth Wenrui Hao Oliver Kernell Andrew Sommese May 23, 2013 1 Mathematical model Mathematical models of tumor growth, which consider the tumor tissue as a density of proliferating cells, have been developed and studied in many papers; see [1

  2. MULTIPHASE MODELING AND QUALITATIVE ANALYSIS OF THE PROBLEM OF THE GROWTH OF TUMOR CORDS

    E-print Network

    Ceragioli, Francesca

    MULTIPHASE MODELING AND QUALITATIVE ANALYSIS OF THE PROBLEM OF THE GROWTH OF TUMOR CORDS ANDREA TOSIN Abstract. In this paper a macroscopic model of tumor cords growth is developed, relying on the mathematical theory of deformable porous media. Tumor is modeled as a saturated mixture of proliferating cells

  3. ANALYSIS OF A MATHEMATICAL MODEL OF THE EFFECT OF INHIBITORS ON THE GROWTH OF TUMORS

    E-print Network

    ANALYSIS OF A MATHEMATICAL MODEL OF THE EFFECT OF INHIBITORS ON THE GROWTH OF TUMORS SHANGBIN CUI Church St. SE, Minneapolis, MN 55455. Abstract. In this paper we study a model of tumor growth in the presence of inhibitors. The tumor is assumed to be spherically symmetric and its boundary is an unknown

  4. A Generative Approach for Image-Based Modeling of Tumor Growth

    E-print Network

    Paris-Sud XI, Université de

    A Generative Approach for Image-Based Modeling of Tumor Growth Bjoern H. Menze1,2 , Koen Van tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number points. In this work we propose a joint generative model of tumor growth and of image observation

  5. Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth

    E-print Network

    Lowengrub, John

    to tumor growth Paul Macklin, John Lowengrub * Department of Mathematics, 103 MSTB, University to a model for tumor growth and present several 2D simula- tions. Our algorithm is validated by comparison accurate simulations of complex, evolving tumor morphologies that demonstrate the repeated encapsulation

  6. Review of Growth Inhibitory Peptide as a Biotherapeutic agent for tumor growth, adhesion, and metastasis

    Microsoft Academic Search

    M. Muehlemann; K. D. Miller; M. Dauphinee; G. J. Mizejewski

    2005-01-01

    This review surveys the biological activities of an alpha-fetoprotein (AFP) derived peptide termed the Growth Inhibitory Peptide (GIP), which is a synthetic 34 amino acid segment produced from the full length 590 amino acid AFP molecule. The GIP has been shown to be growth-suppressive in both fetal and tumor cells but not in adult terminally-differentiated cells. The mechanism of action

  7. ANALYSIS OF A TWO-PHASE MODEL DESCRIBING THE GROWTH OF SOLID TUMORS

    E-print Network

    Matioc, Anca-Voichita

    ANALYSIS OF A TWO-PHASE MODEL DESCRIBING THE GROWTH OF SOLID TUMORS JOACHIM ESCHER AND ANCA tumors when taking into account the eects of cell-to-cell adhesion and taxis due to nutrient. The tumor is surrounded by healthy tissue which is the source of nutrient for the tumor cells. In a three

  8. Tumor Growth Parameters Estimation and Source Localization From a Unique Time Point: Application to

    E-print Network

    Paris-Sud XI, Université de

    Tumor Growth Parameters Estimation and Source Localization From a Unique Time Point: Application provided interesting ways to better understand the proliferative-invasive aspect of glial cells in tumors of a non-swollen brain tumor, estimate the tumor source location and the diffusivity ratio between white

  9. Genetic separation of tumor growth and hemorrhagic phenotypes in an estrogen-induced tumor.

    PubMed Central

    Wendell, D L; Herman, A; Gorski, J

    1996-01-01

    Chronic administration of estrogen to the Fischer 344 (F344) rat induces growth of large, hemorrhagic pituitary tumors. Ten weeks of diethylstilbestrol (DES) treatment caused female F344 rat pituitaries to grow to an average of 109.2 +/- 6.3 mg (mean +/- SE) versus 11.3 +/- 1.4 mg for untreated rats, and to become highly hemorrhagic. The same DES treatment produced no significant growth (8.9 +/- 0.5 mg for treated females versus 8.7 +/- 1.1 for untreated females) or morphological changes in Brown Norway (BN) rat pituitaries. An F1 hybrid of F344 and BN exhibited significant pituitary growth after 10 weeks of DES treatment with an average mass of 26.3 +/- 0.7 mg compared with 8.6 +/- 0.9 mg for untreated rats. Surprisingly, the F1 hybrid tumors were not hemorrhagic and had hemoglobin content and outward appearance identical to that of BN. Expression of both growth and morphological changes is due to multiple genes. However, while DES-induced pituitary growth exhibited quantitative, additive inheritance, the hemorrhagic phenotype exhibited recessive, epistatic inheritance. Only 5 of the 160 F2 pituitaries exhibited the hemorrhagic phenotype; 36 of the 160 F2 pituitaries were in the F344 range of mass, but 31 of these were not hemorrhagic, indicating that the hemorrhagic phenotype is not merely a consequence of extensive growth. The hemorrhagic F2 pituitaries were all among the most massive, indicating that some of the genes regulate both phenotypes. Images Fig. 1 PMID:8755612

  10. The antitumor effects of tetrodotoxin and/or doxorubicin on Ehrlich ascites carcinoma-bearing female mice.

    PubMed

    El-Dayem, Samiha M Abd; Fouda, Fatma M; Ali, Elham H A; Motelp, Bosy A Abd El

    2013-06-01

    The study aimed to investigate the antitumor effect of tetrodotoxin (TTX) and/or doxorubicin (DOX) on Ehrlich ascites carcinoma (EAC)-bearing mice through the investigated biochemical parameters. TTX and/or DOX with or without N-acetylcystiene were administrated after 10 days into EAC-female mice for a period of 2 weeks in six equal doses. Treatment with TTX or DOX caused a significant decrease in the mean tumor weight and an increase in the cumulative mean survival time when compared with EAC group. All the treatments reduced the elevated liver tumor markers and increased liver antioxidant enzymes under investigation in comparison with EAC. Hepatic cells, suffered severely from degeneration and karriolysis in EAC group, revealed some improvement as appearance of healthy hepatocytes by TTX treatment. The present results suggested that TTX had a more powerful inhibitor effect on EAC growth than DOX and TTX plus DOX treatments reflected by antitumor biochemical and histological studies. PMID:22317827

  11. Macrophage Migration Inhibitory Factor promotes tumor growth and metastasis by inducing Myeloid Derived Suppressor Cells in the tumor microenvironment

    PubMed Central

    Simpson, Kendra D.; Templeton, Dennis J.; Cross, Janet V.

    2012-01-01

    The Macrophage Migration Inhibitory Factor (MIF), an inflammatory cytokine, is overexpressed in many solid tumors and is associated with poor prognosis. We previously identified inhibitors of MIF within a class of natural products with demonstrated anti-cancer activities. We therefore sought to determine how MIF contributes to tumor growth and progression. We show here that, in murine tumors including the 4T1 model of aggressive, spontaneously metastatic breast cancer in immunologically intact mice, tumor-derived MIF promotes tumor growth and pulmonary metastasis through control of inflammatory cells within the tumor. Specifically, MIF increases the prevalence of a highly immune suppressive subpopulation of myeloid derived suppressor cells (MDSCs) within the tumor. In vitro, MIF promotes differentiation of myeloid cells into the same population of MDSCs. Pharmacologic inhibition of MIF reduces MDSC accumulation in the tumor similar to MIF depletion, and blocks the MIF-dependent in vitro differentiation of MDSCs. Our results demonstrate that MIF is a therapeutically targetable mechanism for control of tumor growth and metastasis through regulation of the host immune response, and support the potential utility of MIF inhibitors, either alone or in combination with standard tumor-targeting therapeutic or immunotherapy approaches. PMID:23125418

  12. Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation

    E-print Network

    Unkelbach, Jan; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2013-01-01

    Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain...

  13. Management of ascites with hydrothorax

    SciTech Connect

    LeVeen, H.H.; Piccone, V.A.; Hutto, R.B.

    1984-08-01

    Hydrothorax occurs in 5.3 percent of ascitic patients. Experience with 22 cases forms the basis of this report. Of the 22 cases, 21 were spontaneous and 1 was due to transdiaphragmatic incision. Usually fluid enters the chest through tiny defects in the diaphragm. These defects are often covered by pleuroperitoneum, but the high abdominal pressure raises a bleb on the superior surface of the diaphragm. Rupture produces hydrothorax. The ascites is often relieved with the onset of the hydrothorax. Blockage of the thoracic duct has produced chylous ascites. The thoracoabdominal communication is immediately confirmed by a scan of the chest and abdomen after intraperitoneal injection of technetium-99 colloid. The rate at which the technetium-99 enters the chest is related to the size of the defect in the diaphragm. A significant transfer should occur within 12 hours. Immediate transfer occurs with large defects. The ruptured blister on the diaphragm forms a one-way valve. Intrathoracic injection does not migrate into the peritoneal cavity. The valvular characteristics of the leak force ascitic fluid into the thorax because the differential pressure between the abdominal and pleural cavities is intensified by inspiration. If tension hydrothorax has occurred, urgent thoracocentesis and paracentesis may be required. A chest tube should not be introduced. The main principle of surgery is to supply a low resistance pathway for the return of fluid to the venous system and to eliminate the diaphragmatic defect by obliteration of the pleural space. A LeVeen peritoneovenous shunt is performed after emptying the abdomen of its fluid load. After completion of the shunt operation, the chest is emptied of fluid, and a sclerosing agent (tetracycline or nitrogen mustard) is injected into the pleural cavity. With this regime, the defect closed or was rendered insignificant in 18 of 22 patients.

  14. Dynamic density functional theory of solid tumor growth: Preliminary models

    PubMed Central

    Chauviere, Arnaud; Hatzikirou, Haralambos; Kevrekidis, Ioannis G.; Lowengrub, John S.; Cristini, Vittorio

    2012-01-01

    Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT) extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth. PMID:22489279

  15. Cirrhotic ascites review: Pathophysiology, diagnosis and management

    PubMed Central

    Moore, Christopher M; Van Thiel, David H

    2013-01-01

    Ascites is a pathologic accumulation of peritoneal fluidcommonly observed in decompensated cirrhotic states.Its causes are multi-factorial, but principally involve significant volume and hormonal dysregulation in the setting of portal hypertension. The diagnosis of ascites is considered in cirrhotic patients given a constellation of clinical and laboratory findings, and ultimately confirmed, with insight into etiology, by imaging and paracentesis procedures. Treatment for ascites is multi-modal including dietary sodium restriction, pharmacologic therapies, diagnostic and therapeutic paracentesis, and in certain cases transjugular intra-hepatic portosystemic shunt. Ascites is associated with numerous complications including spontaneous bacterial peritonitis, hepato-hydrothorax and hepatorenal syndrome. Given the complex nature of ascites and associatedcomplications, it is not surprising that it heralds increased morbidity and mortality in cirrhotic patients and increased cost-utilization upon the health-care system. This review will detail the pathophysiology of cirrhotic ascites, common complications derived from it, and pertinent treatment modalities. PMID:23717736

  16. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling

    PubMed Central

    Hakim, Fahed; Wang, Yang; Zhang, Shelley XL; Zheng, Jiamao; Yolcu, Esma S.; Carreras, Alba; Khlayfa, Abdelnaby; Shirwan, Haval; Almendros, Isaac; Gozal, David

    2014-01-01

    Fragmented sleep (SF) is a highly prevalent condition and a hallmark of sleep apnea, a condition that has been associated with increased cancer incidence and mortality. In this study, we examined the hypothesis that SF promotes tumor growth and progression through pro-inflammatory TLR4 signaling. In the design, we compared mice that were exposed to SF one week before engraftment of syngeneic TC1 or LL3 tumor cells and tumor analysis three weeks later. We also compared host contributions through the use of mice genetically deficient in TLR4 or its effector molecules MYD88 or TRIF. We found that SF enhanced tumor size and weight compared to control mice. Increased invasiveness was apparent in SF tumors, which penetrated the tumor capsule into surrounding tissues including adjacent muscle. Tumor-associated macrophages (TAM) were more numerous in SF tumors where they were distributed in a relatively closer proximity to the tumor capsule, compared to control mice. Although tumors were generally smaller in both MYD88?/? and TRIF?/? hosts, the more aggressive features produced by SF persisted. In contrast, these more aggressive features produced by SF were abolished completely in TLR4?/? mice. Our findings offer mechanistic insights into how sleep perturbations can accelerate tumor growth and invasiveness through TAM recruitment and TLR4 signaling pathways. PMID:24448240

  17. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Microsoft Academic Search

    F. L. Leung; J. F. Park; G. E. Dagle

    1993-01-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs

  18. T Model of Growth and its Application in Systems of Tumor-Immune Dynamics

    PubMed Central

    Tabatabai, Mohammad A.; Eby, Wayne M.; Singh, Karan P.; Bae, Sejong

    2015-01-01

    In this paper we introduce a new growth model called T growth model. This model is capable of representing sigmoidal growth as well as biphasic growth. This dual capability is achieved without introducing additional parameters. The T model is useful in modeling cellular proliferation or regression of cancer cells, stem cells, bacterial growth and drug dose-response relationships. We recommend usage of the T growth model for the growth of tumors as part of any system of differential equations. Use of this model within a system will allow more flexibility in representing the natural rate of tumor growth. For illustration, we examine some systems of tumor-immune interaction in which the T growth rate is applied. We also apply the model to a set of tumor growth data. PMID:23906156

  19. Role of Constitutive Behavior and Tumor-Host Mechanical Interactions in the State of Stress and Growth of Solid Tumors

    PubMed Central

    Papageorgis, Panagiotis; Odysseos, Andreani D.; Stylianopoulos, Triantafyllos

    2014-01-01

    Mechanical forces play a crucial role in tumor patho-physiology. Compression of cancer cells inhibits their proliferation rate, induces apoptosis and enhances their invasive and metastatic potential. Additionally, compression of intratumor blood vessels reduces the supply of oxygen, nutrients and drugs, affecting tumor progression and treatment. Despite the great importance of the mechanical microenvironment to the pathology of cancer, there are limited studies for the constitutive modeling and the mechanical properties of tumors and on how these parameters affect tumor growth. Also, the contribution of the host tissue to the growth and state of stress of the tumor remains unclear. To this end, we performed unconfined compression experiments in two tumor types and found that the experimental stress-strain response is better fitted to an exponential constitutive equation compared to the widely used neo-Hookean and Blatz-Ko models. Subsequently, we incorporated the constitutive equations along with the corresponding values of the mechanical properties - calculated by the fit - to a biomechanical model of tumor growth. Interestingly, we found that the evolution of stress and the growth rate of the tumor are independent from the selection of the constitutive equation, but depend strongly on the mechanical interactions with the surrounding host tissue. Particularly, model predictions - in agreement with experimental studies - suggest that the stiffness of solid tumors should exceed a critical value compared with that of the surrounding tissue in order to be able to displace the tissue and grow in size. With the use of the model, we estimated this critical value to be on the order of 1.5. Our results suggest that the direct effect of solid stress on tumor growth involves not only the inhibitory effect of stress on cancer cell proliferation and the induction of apoptosis, but also the resistance of the surrounding tissue to tumor expansion. PMID:25111061

  20. UK survey of broiler ascites and sudden death syndromes in 1993.

    PubMed

    Maxwell, M H; Robertson, G W

    1998-05-01

    1. The mean incidence of deaths from ascites in the UK in 1993 was 1.4% (0.7% in 1991 and 0.9% in 1992) and 0.8% from sudden death syndrome (SDS). In total, the economic loss to the UK Broiler Industry in 1993 as a result of these 2 conditions was 24 Pounds M. 2. Clear geographical differences emerged in the occurrence of ascites, with, not only the lowest incidences being observed in Northern Ireland, but also the peak of the mortality from ascites occurring much later in the rearing cycle than in other regions on the mainland. 3. In all regions the incidence of SDS was lower than that of ascites but the reason for this disparity remains to be established. 4. Some of the variables associated with the road transportation of day-old chicks from the hatchery to the farm appeared to influence the incidence of ascites. These included distance or time travelled, stocking density, internal lorry temperature and the length of time the lorry was heated before transport as well as the time the shed was heated before chick arrival. Temperature was also an important factor during growth (brooding and finishing). 5. Negative pressure-powered ventilation was preferred in most organisations but more ascites was seen with positive pressure ventilation. However, the lowest incidence of ascites occurred with natural ventilation. There was more ascites relative to shed orientation when the wind direction was from the west compared to the east. 6. This survey identifies the extent of the problem of broiler ascites in the UK and also highlights the importance of good management control of day-old chicks, not only following placement, but even before their arrival on the farm. PMID:9649872

  1. Resistance of a VEGF-producing tumor to anti-VEGF antibody: Unimpeded growth of human rhabdoid tumor xenografts

    Microsoft Academic Search

    Samuel Z. Soffer; Eugene Kim; Jianzhong Huang; Kimberly McCrudden; Akiko Yokoi; James T. Moore; Christina Manley; Kathleen O'Toole; William Middlesworth; Charles Stolar; Darrell J. Yamashiro; Jessica J. Kandel

    2002-01-01

    Background\\/Purpose: Rhabdoid tumor of the kidney (RTK) is a lethal malignancy of childhood for which there currently are no effective therapies. Because vascular endothelial growth factor (VEGF) is nearly ubiquitous in human tumors, the authors hypothesized that a xenograft model of RTK would (1) express VEGF and (2) respond to anti-VEGF intervention. Methods: A total of 2 [times ] 106

  2. A Critical Role for GRP78/BiP in the Tumor Microenvironment for Neovascularization During Tumor Growth and Metastasis

    PubMed Central

    Dong, Dezheng; Stapleton, Christopher; Luo, Biquan; Xiong, Shigang; Ye, Wei; Zhang, Yi; Jhaveri, Niyati; Zhu, Genyuan; Ye, Risheng; Liu, Zhi; Bruhn, Kevin W.; Craft, Noah; Groshen, Susan; Hofman, Florence M.; Lee, Amy S.

    2011-01-01

    GRP78/BiP is a multifunctional protein which plays a major role in endoplasmic reticulum (ER) protein processing, protein quality control, maintaining ER homeostasis and controlling cell signaling and viability. Previously, using a transgene-induced mammary tumor model, we demonstrated that Grp78 heterozygosity not only impeded cancer growth through suppression of tumor cell proliferation and promotion of apoptosis, the Grp78+/? mice exhibited dramatic reduction (70%) in the microvessel density (MVD) of the endogenous mammary tumors while having no effect on the MVD of normal organs. This observation suggests that GRP78 may critically regulate the function of the host vasculature within the tumor microenvironment. In this report, we interrogated the role of GRP78 in the tumor microenvironment. In mouse tumor models where wild-type, syngeneic mammary tumor cells were injected into the host, we showed that Grp78+/? mice suppressed tumor growth and angiogenesis during the early but not late phase of tumor growth. Growth of metastatic lesions of wild-type, syngeneic melanoma cells in the Grp78+/? mice was potently suppressed. We created conditional heterozygous knockout of GRP78 in the host endothelial cells and demonstrated severe reduction of tumor angiogenesis and metastatic growth with minimal effect on normal tissue MVD. Furthermore, knockdown of GRP78 expression in immortalized human endothelial cells demonstrated that GRP78 is a critical mediator of angiogenesis by regulating cell proliferation, survival, and migration. Our findings suggest that concomitant use of current chemotherapeutic agents and novel therapies against GRP78 may offer a powerful dual approach to arrest cancer initiation, progression and metastasis. PMID:21467168

  3. The Contributions of HIF-Target Genes to Tumor Growth in RCC

    PubMed Central

    Zhang, Ting; Niu, Xiaohua; Liao, Lili; Cho, Eun-Ah; Yang, Haifeng

    2013-01-01

    Somatic mutations or loss of expression of tumor suppressor VHL happen in the vast majority of clear cell Renal Cell Carcinoma, and it’s causal for kidney cancer development. Without VHL, constitutively active transcription factor HIF is strongly oncogenic and is essential for tumor growth. However, the contribution of individual HIF-responsive genes to tumor growth is not well understood. In this study we examined the contribution of important HIF-responsive genes such as VEGF, CCND1, ANGPTL4, EGLN3, ENO2, GLUT1 and IGFBP3 to tumor growth in a xenograft model using immune-compromised nude mice. We found that the suppression of VEGF or CCND1 impaired tumor growth, suggesting that they are tumor-promoting genes. We further discovered that the lack of ANGPTL4, EGLN3 or ENO2 expression did not change tumor growth. Surprisingly, depletion of GLUT1 or IGFBP3 significantly increased tumor growth, suggesting that they have tumor-inhibitory functions. Depletion of IGFBP3 did not lead to obvious activation of IGFIR. Unexpectedly, the depletion of IGFIR protein led to significant increase of IGFBP3 at both the protein and mRNA levels. Concomitantly, the tumor growth was greatly impaired, suggesting that IGFBP3 might suppress tumor growth in an IGFIR-independent manner. In summary, although the overall transcriptional activity of HIF is strongly tumor-promoting, the expression of each individual HIF-responsive gene could either enhance, reduce or do nothing to the kidney cancer tumor growth. PMID:24260413

  4. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis

    PubMed Central

    Wagner, Marek; Bjerkvig, Rolf; Wiig, Helge; Melero-Martin, Juan M.; Lin, Ruei-Zeng; Klagsbrun, Michael

    2013-01-01

    Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b+ macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to overexpress ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b+ macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages. PMID:22614697

  5. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1.

    PubMed

    Yamada, Takayuki; Sato, Koichi; Komachi, Mayumi; Malchinkhuu, Enkhzol; Tobo, Masayuki; Kimura, Takao; Kuwabara, Atsushi; Yanagita, Yasuhiro; Ikeya, Toshiro; Tanahashi, Yoshifumi; Ogawa, Tetsushi; Ohwada, Susumu; Morishita, Yasuo; Ohta, Hideo; Im, Doon-Soon; Tamoto, Koichi; Tomura, Hideaki; Okajima, Fumikazu

    2004-02-20

    Cytokines and growth factors in malignant ascites are thought to modulate a variety of cellular activities of cancer cells and normal host cells. The motility of cancer cells is an especially important activity for invasion and metastasis. Here, we examined the components in ascites, which are responsible for cell motility, from patients and cancer cell-injected mice. Ascites remarkably stimulated the migration of pancreatic cancer cells. This response was inhibited or abolished by pertussis toxin, monoglyceride lipase, an enzyme hydrolyzing lysophosphatidic acid (LPA), and Ki16425 and VPC12249, antagonists for LPA receptors (LPA1 and LPA3), but not by an LPA3-selective antagonist. These agents also inhibited the response to LPA but not to the epidermal growth factor. In malignant ascites, LPA is present at a high level, which can explain the migration activity, and the fractionation study of ascites by lipid extraction and subsequent thin-layer chromatography indicated LPA as an active component. A significant level of LPA1 receptor mRNA is expressed in pancreatic cancer cells with high migration activity to ascites but not in cells with low migration activity. Small interfering RNA against LPA1 receptors specifically inhibited the receptor mRNA expression and abolished the migration response to ascites. These results suggest that LPA is a critical component of ascites for the motility of pancreatic cancer cells and LPA1 receptors may mediate this activity. LPA receptor antagonists including Ki16425 are potential therapeutic drugs against the migration and invasion of cancer cells. PMID:14660630

  6. Quantum dot-based multiplexed imaging in malignant ascites: a new model for malignant ascites classification

    PubMed Central

    Zeng, Wei-Juan; Peng, Chun-Wei; Yuan, Jing-Ping; Cui, Ran; Li, Yan

    2015-01-01

    Purpose The aims of this study are to establish a new method for simultaneously detecting the interactions between cancer cells and immunocytes in malignant ascites (MA) and to propose a new model for MA classification. Methods A quantum dot (QD)-based multiplexed imaging technique was developed for simultaneous in situ imaging of cancer cells, lymphocytes, and macrophages. This method was first validated in gastric cancer tissues, and then was applied to MA samples from 20 patients with peritoneal carcinomatosis from gastrointestinal and gynecological origins. The staining features of MA and the interactions between cancer cells and immunocytes in the ascites were further analyzed and correlated with clinical features. Results The QD-based multiplexed imaging technique was able to simultaneously show gastric cancer cells, infiltrating macrophages, and lymphocytes in tumor tissue, and the technique revealed the distinctive features of the cancer tumor microenvironment. When this multiplexed imaging protocol was applied to MA cytology, different features of the interactions and quantitative relations between cancer cells and immunocytes were observed. On the basis of these features, MA could be classified into immunocyte-dominant type, immunocyte-reactive type, cancer cell-dominant type, and cell deletion type; the four categories were statistically different in terms of the ratio of cancer cells to immunocytes (P<0.001). Moreover, in the MA, the ratio of cancer cells to immunocytes was higher for patients with gynecological and gastric cancers than for those with colorectal cancer. Conclusion The newly developed QD-based multiplexed imaging technique was able to better reveal the interactions between cancer cells and immunocytes. This advancement allows for better MA classification and, thereby, allows for treatment decisions to be more individualized. PMID:25784803

  7. Inhibition of vascular endothelial cell growth factor suppresses the in vivo growth of human prostate tumors

    Microsoft Academic Search

    Alexander Kirschenbaum; Jin-Ping Wang; Meiyue Ren; Jonathan D. Schiff; Stuart A. Aaronson; Michael J. Droller; Napoleone Ferrara; James F. Holland; Alice C. Levine

    1997-01-01

    The LNCaP human prostate cancer cell line is androgenand stromal-dependent for in vivo growth. We co-inoculated LNCaP cells with human fetal fibroblasts, isolated from prostate, bone (male), and lung (male and female) derived from 18- to 22-week-old human fetal tissue, into non-castrate male nude mice. Co-inoculation of LNCaP with fetal prostatic fibroblasts resulted in high tumor take rates (27 of

  8. Ehrlich tumor inhibition using doxorubicin containing liposomes.

    PubMed

    Elbialy, Nihal Saad; Mady, Mohsen Mahmoud

    2015-04-01

    Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, DOX in solution or DOX encapsulated within liposomes prepared from DMPC/CHOL/DPPG/PEG-PE (100:100:60:4) in molar ratio. Cytotoxicity assay showed that the IC50 of liposomes containing DOX was greater than that DOX only. Tumor growth inhibition curves in terms of mean tumor size (cm(3)) were presented. All the DOX formulations were effective in preventing tumor growth compared to saline. Treatment with DOX loaded liposomes displayed a pronounced inhibition in tumor growth than treatment with DOX only. Histopathological examination of the entire tumor sections for the various groups revealed marked differences in cellular features accompanied by varying degrees in necrosis percentage ranging from 12% for saline treated mice to 70% for DOX loaded liposome treated mice. The proposed liposomal formulation can efficiently deliver the drug into the tumor cells by endocytosis (or passive diffusion) and lead to a high concentration of DOX in the tumor cells. The study showed that the formulation of liposomal doxorubicin improved the therapeutic index of DOX and had increased anti-tumor activity against Ehrlich tumor models. PMID:25972739

  9. Targeting Gli transcription activation by small molecule suppresses tumor growth.

    PubMed

    Bosco-Clément, G; Zhang, F; Chen, Z; Zhou, H-M; Li, H; Mikami, I; Hirata, T; Yagui-Beltran, A; Lui, N; Do, H T; Cheng, T; Tseng, H-H; Choi, H; Fang, L-T; Kim, I-J; Yue, D; Wang, C; Zheng, Q; Fujii, N; Mann, M; Jablons, D M; He, B

    2014-04-17

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anticancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study, we identified an interaction between Gli proteins and a transcription coactivator TBP-associated factor 9 (TAF9), and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and downregulate Gli/TAF9-dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, an important control point of multiple oncogenic pathways, may be an effective anticancer strategy. PMID:23686308

  10. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Genevičve; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  11. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    SciTech Connect

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  12. Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma

    PubMed Central

    Faggi, Fiorella; Mitola, Stefania; Sorci, Guglielmo; Riuzzi, Francesca; Donato, Rosario; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Vescovi, Raffaella; Rossi, Stefania; Calza, Stefano; Colombi, Marina; Penna, Fabio; Costelli, Paola; Perini, Ilaria; Sampaolesi, Maurilio; Monti, Eugenio; Fanzani, Alessandro

    2014-01-01

    Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS. PMID:24427291

  13. M-HIFU Inhibits Tumor Growth, Suppresses STAT3 Activity and Enhances Tumor Specific Immunity in a Transplant Tumor Model of Prostate Cancer

    PubMed Central

    Huang, Xiaoyi; Yuan, Fang; Liang, Meihua; Lo, Hui-Wen; Shinohara, Mari L.; Robertson, Cary; Zhong, Pei

    2012-01-01

    Objective In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. Methods RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5?6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. Results No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. Conclusion Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers. PMID:22911830

  14. Scheduling of Angiogenic Inhibitors for Gompertzian and Logistic Tumor Growth Models

    E-print Network

    Ledzewicz, Urszula

    for a cancer therapy which would primarily target healthy cells and cancerous ones only indirectly. Tumor anti endostatin target those cells preventing the tumor from developing its 1 #12;own blood vessel system and thus follow this path initiated by Hahnfeldt et al. in [18] where a model for tumor growth under the action

  15. A Synthesis of Optimal Controls for a Model of Tumor Growth under Angiogenic Inhibitors1

    E-print Network

    Ledzewicz, Urszula

    A Synthesis of Optimal Controls for a Model of Tumor Growth under Angiogenic Inhibitors1 Urszula for the scheduling of angio- genic inhibitors to control a vascularized tumor is considered as an optimal control for the newly forming blood vessels of the tumor. Angiogenic inhibitors like endostatin target those cells

  16. Impact of Stroma on the Growth, Microcirculation, and Metabolism of Experimental Prostate Tumors

    PubMed Central

    Zechmann, Christian M; Woenne, Eva C; Brix, Gunnar; Radzwill, Nicole; Ilg, Martin; Bachert, Peter; Peschke, Peter; Kirsch, Stefan; Kauczor, Hans-Ulrich; Delorme, Stefan; Semmler, Wolfhard; Kiessling, Fabian

    2007-01-01

    Abstract In prostate cancers (PCa), the formation of malignant stroma may substantially influence tumor phenotype and aggressiveness. Thus, the impact of the orthotopic and subcutaneous implantations of hormone-sensitive (H), hormone-insensitive (HI), and anaplastic (AT1) Dunning PCa in rats on growth, microcirculation, and metabolism was investigated. For this purpose, dynamic contrast-enhanced magnetic resonance imaging and 1H magnetic resonance spectroscopy ([1H]MRS) were applied in combination with histology. Consistent observations revealed that orthotopic H tumors grew significantly slower compared to subcutaneous ones, whereas the growth of HI and AT1 tumors was comparable at both locations. Histologic analysis indicated that glandular differentiation and a close interaction of tumor cells and smooth muscle cells (SMC) were associated with slow tumor growth. Furthermore, there was a significantly lower SMC density in subcutaneous H tumors than in orthotopic H tumors. Perfusion was observed to be significantly lower in orthotopic H tumors than in subcutaneous H tumors. Regional blood volume and permeability-surface area product showed no significant differences between tumor models and their implantation sites. Differences in growth between subcutaneous and orthotopic H tumors can be attributed to tumor-stroma interaction and perfusion. Here, SMC, may stabilize glandular structures and contribute to the maintenance of differentiated phenotype. PMID:17325744

  17. Inhibition of Cysteine Cathepsin Protease Activity Enhances Chemotherapy Regimens by Decreasing Tumor Growth and

    E-print Network

    Bogyo, Matthew

    Tumor Growth and Invasiveness in a Mouse Model of Multistage Cancer Katherine M. Bell-McGuinn, 1 Alfred. Inhibition of the cysteine cathepsin family using a pan-cathepsin inhibitor, JPM-OEt, led to tumor regression at a defined end point and tumor burden was assessed followed by a detailed analysis of cell proliferation

  18. Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method

    E-print Network

    Sethian, James A.

    Simulating complex tumor dynamics from avascular to vascular growth using a general level Science Foundation Abstract A comprehensive continuum model of solid tumor evolution and development represents both the avascular and the vascular phase of tumor evolution, and is able to simulate when

  19. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.

    PubMed

    Gacche, Rajesh N; Meshram, Rohan J

    2013-11-01

    Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials. PMID:24139944

  20. Anti-neoplastic activities of sepia officinalis ink and coelatura aegyptiaca extracts against Ehrlich ascites carcinoma in Swiss albino mice

    PubMed Central

    Soliman, Amel M; Fahmy, Sohair R; El-Abied, Salma A

    2015-01-01

    Objectives: With the development of sophisticated instruments for the isolation and elucidation of natural products structures from marine and freshwater organisms, major advances have been made in the discovery of aquatic derived therapeutics. Present investigations were carried out to evaluate cuttlefish (Sepia officinalis) ink extract (IE) and freshwater clam (Coelatura aegyptiaca) extract (CE) for their anticancer and antioxidant activities as compared to 5-flurouracil (5-Fu), in Ehrlich ascites carcinoma (EAC). Methods: Sixty female Swiss albino mice were divided into five groups (n = 12). All groups except group I received EAC cells (5 × 106 cells/mouse i.p.) and this was taken as the 0th day. Group I served as saline control (5 ml/kg 0.9% NaCl w/v p.o). Group II served as EAC control. Rats of groups III, IV and V received IE, CE (200 mg/kg body weight i.p.), and reference drug (5-Fu, 20 mg/kg body weight i.p.), respectively. Results: The reduction in tumor volume, packed cell volume, tumor cell counts and increase in median survival time and percentage increase in life span in treated animals were observed. There was a significant increase in RBC count; Hb content in treated animals and reduction in total WBC count. There was a significant decrease in AST, ALT, ALP and liver MDA levels and increase in GSH, SOD and NO levels were observed in all treated animals. Conclusion: Both IE and CE were effective in inhibiting the tumor growth in ascitic tumor models. The biochemical, antioxidants and histopathological studies were also supported their antitumor properties.

  1. Evaluating the role of substance P in the growth of brain tumors.

    PubMed

    Harford-Wright, E; Lewis, K M; Vink, R; Ghabriel, M N

    2014-03-01

    Recent research has investigated the expression and secretion of neuropeptides by tumors, and the potential of these peptides to facilitate tumor growth and spread. In particular, substance P (SP) and its receptor NK1 have been implicated in tumor cell growth and evasion of apoptosis, although few studies have examined this relationship in vivo. The present study used both in vitro and in vivo models to characterize the role of SP in tumor pathogenesis. Immunohistochemical assessment of human primary and secondary brain tumor tissue demonstrated a marked increase in SP and its NK1 receptor in all tumor types investigated. Of the metastatic tumors, melanoma demonstrated particularly elevated SP and NK1 receptor staining. Subsequently, A-375 human melanoma cell line was examined in vitro and found to express both SP and the NK1 receptor. Treatment with the NK1 receptor antagonist Emend IV resulted in decreased cell viability and an increase in cell death in this cell line in vitro. An animal model of brain tumors using the same cell line was employed to assess the effect of Emend IV on tumor growth in vivo. Administration of Emend IV was found to decrease tumor volume and decrease cellular proliferation indicating that SP may play a role in tumor pathogenesis within the brain. We conclude that SP may provide a novel therapeutic target in the treatment of certain types of brain tumors, with further research required to determine whether the role of SP in cancer is tumor-type dependent. PMID:24374326

  2. Radiographically determined growth kinetics of primary lung tumors in the dog

    SciTech Connect

    Perry, R.E. (Michigan State Univ., East Lansing, MI (USA). Coll. of Veterinary Medicine Pacific Northwest Lab., Richland, WA (USA)); Weller, R.E.; Buschbom, R.L.; Dagle, G.E.; Park, J.F. (Pacific Northwest Lab., Richland, WA (USA))

    1989-10-01

    Tumor growth rate patterns especially tumor doubling time (TDT), have been extensively evaluated in man. Studies involving the determination of TDT in humans are limited, however, by the number of cases, time consistent radiographic tumor measurements, and inability to perform experimental procedures. In animals similar constraints do not exist. Lifespan animal models lend themselves well to tumor growth pattern analysis. Experimental studies have been designed to evaluate both the biological effects and growth patterns of induced and spontaneous tumors. The purpose of this study was to calculate the tumor volume doubling times (TCDT) for radiation-induced and spontaneous primary pulmonary neoplasms in dogs to see if differences existed due to etiology, sex or histologic cell type, and to determine if the time of tumor onset could be extrapolated from the TVDT. 3 refs.

  3. Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles on Tumor Growth

    PubMed Central

    Bruno, Stefania; Collino, Federica; Iavello, Alessandra; Camussi, Giovanni

    2014-01-01

    Extracellular vesicles (EVs) are membrane vesicles, which are secreted by a variety of cells that have a relevant role in intercellular communication. EVs derived from various cell types exert different effects on target cells. Mesenchymal stromal cells (MSCs) are stem cells that are ubiquitously present in different tissues of the human body, and MSC-derived EVs take part in a wide range of biological processes. Of particular relevance is the effect of MSCs on tumor growth and progression. MSCs have opposing effects on tumor growth, being able either to favor angiogenesis and tumor initiation, or to inhibit progression of established tumors, according to the conditions. Different studies have reported that EVs from MSCs may exert either an anti- or a pro-tumor growth effect depending on tumor type and stage of development. In this review, we will discuss the data presented in the literature on EV-mediated interactions between MSCs and tumors. PMID:25157253

  4. On the Probability of Random Genetic Mutations for Various Types of Tumor Growth

    PubMed Central

    2013-01-01

    In this work, we consider the problem of estimating the probability for a specific random genetic mutation to be present in a tumor of a given size. Previous mathematical models have been based on stochastic methods where the tumor was assumed to be homogeneous and, on average, growing exponentially. In contrast, we are able to obtain analytical results for cases where the exponential growth of cancer has been replaced by other, arguably more realistic types of growth of a heterogeneous tumor cell population. Our main result is that the probability that a given random mutation will be present by the time a tumor reaches a certain size, is independent of the type of curve assumed for the average growth of the tumor, at least for a general class of growth curves. The same is true for the related estimate of the expected number of mutants present in a tumor of a given size, if mutants are indeed present. PMID:22311065

  5. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis

    PubMed Central

    Zhang, Guodong; Panigrahy, Dipak; Hwang, Sung Hee; Yang, Jun; Mahakian, Lisa M.; Wettersten, Hiromi I.; Liu, Jun-Yan; Wang, Yanru; Ingham, Elizabeth S.; Tam, Sarah; Kieran, Mark W.; Weiss, Robert H.; Ferrara, Katherine W.; Hammock, Bruce D.

    2014-01-01

    Prostaglandins derived from the cyclooxygenase (COX) pathway and epoxyeicosatrienoic acids (EETs) from the cytochrome P450/soluble epoxide hydrolase (sEH) pathway are important eicosanoids that regulate angiogenesis and tumorigenesis. COX-2 inhibitors, which block the formation of prostaglandins, suppress tumor growth, whereas sEH inhibitors, which increase endogenous EETs, stimulate primary tumor growth and metastasis. However, the functional interactions of these two pathways in cancer are unknown. Using pharmacological inhibitors as probes, we show here that dual inhibition of COX-2 and sEH synergistically inhibits primary tumor growth and metastasis by suppressing tumor angiogenesis. COX-2/sEH dual pharmacological inhibitors also potently suppress primary tumor growth and metastasis by inhibiting tumor angiogenesis via selective inhibition of endothelial cell proliferation. These results demonstrate a critical interaction of these two lipid metabolism pathways on tumorigenesis and suggest dual inhibition of COX-2 and sEH as a potential therapeutic strategy for cancer therapy. PMID:25024195

  6. Tumor Volume and Growth Kinetics in Hypothalamic-Chiasmatic Pediatric Low Grade Gliomas

    Microsoft Academic Search

    Jorge A. Lazareff; Rafal Suwinski; Roberto De Rosa; Charles E. Olmstead

    1999-01-01

    Pediatric low grade gliomas evidence a tendency towards quiescent growth, thus complicating the clinical management of nonresected tumors whose clinical behavior may be difficult to predict. We decided to explore the hypothesis of possible correlation in pediatric low grade glioma between tumor volume and growth rate. We identified 6 children with hypothalamic chiasmatic lesions. Five of these patients were treated

  7. Stochastic resonance induced by Lévy noise in a tumor growth model with periodic treatment

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Hao, Mengli; Gu, Xudong; Yang, Guidong

    2014-05-01

    In this paper, the stochastic resonance phenomenon in a tumor growth model under subthreshold periodic therapy and Lévy noise excitation is investigated. The possible reoccurrence of tumor due to stochastic resonance is discussed. The signal-to-noise ratio (SNR) is calculated numerically to measure the stochastic resonance. It is found that smaller stability index is better for avoiding tumor reappearance. Besides, the effect of the skewness parameter on the tumor regrowth is related to the stability index. Furthermore, increasing the intensity of periodic treatment does not always facilitate tumor therapy. These results are beneficial to the optimization of periodic tumor therapy.

  8. Chronic supplementation with shark liver oil for reducing tumor growth and cachexia in walker 256 tumor-bearing rats.

    PubMed

    Iagher, Fabíola; de Brito Belo, Sérgio Ricardo; Naliwaiko, Katya; Franzói, Andressa Machado; de Brito, Gleisson Alisson Pereira; Yamazaki, Ricardo Key; Muritiba, Ana Lúcia; Muehlmann, Luis Alexandre; Steffani, Jovani Antonio; Fernandes, Luiz Cláudio

    2011-11-01

    We investigated the effect of chronic supplementation with shark liver oil (SLO), an antitumor supplement source of n-3 fatty acids and 1-O-alkylglycerols, alone and combined with coconut fat (CF), a source of saturated fatty acids, on Walker 256 tumor growth and cachexia. Male rats were supplemented daily and orally with SLO and/or CF (1 g per kg body weight) for 7 wk. After 7 wk, 50% of animals were subcutaneously inoculated with 3 × 10(7) Walker 256 tumor cells. After 14 days, the rats were killed, the tumors were removed for lipid peroxidation measurement, and blood was collected for glycemia, triacylglycerolemia, and lacticidemia evaluation. Liver samples were obtained for glycogen measurement. Unlike CF, supplementation with SLO promoted gain in body weight, reduction of tumor weight, and maintained glycemia, triacylglycerolemia, lacticidemia, and liver glycogen content to values similar to non-tumor-bearing rats. Combined supplementation of SLO with CF also showed a reversion of cachexia with gain in body mass, reduction of lacticidemia, maintaining the liver glycogen store, and reduction in tumor weight. SLO, alone or combined with CF, promoted increase of tumor lipid peroxidation. In conclusion, SLO supplemented chronically, alone or associated with CF, was able to reduce tumor growth and cachexia. PMID:21981555

  9. Effect of Protein Intake on Tumor Growth and Cell Cycle Kinetics

    Microsoft Academic Search

    Michael H. Torosian

    1995-01-01

    Previous research has documented significant acceleration of tumor growth in animals receiving shorttern parenteral nutrition. This study was performed to determine the effect of long-term enteral protein intake on tumor cell cycle kinetics in the tumor-bearing host. Fifty Lewis\\/Wistar rats with subcutaneous mammary tumor implants (AC-33) were randomized to receive a standard protein diet (22.0% protein; 4.20 kcal\\/g) or protein-depleted

  10. /sup 99m/Tc-methylene diphosphonate accumulation in ascitic fluid due to neoplasm

    SciTech Connect

    Gordon, L.; Schabel, S.I.; Holland, R.D.; Cooper, J.F.

    1981-06-01

    /sup 99m/Tc-methylene diphosphonate (MDP) was found to accumulate in the abdomen in 7 patients with ascites due to a primary tumor of the ovary, testis, stomach, or urethra, leukemia, or lymphoma. This finding should strongly suggest malignancy.

  11. The non glycanated endocan polypeptide slows tumor growth by inducing stromal inflammatory reaction

    PubMed Central

    Depontieu, Florence; Scherpereel, Arnaud; Awad, Ali; Tsicopoulos, Anne; Leboeuf, Christophe; Janin, Anne; Duez, Catherine; Grigoriu, Bogdan; Lassalle, Philippe

    2015-01-01

    Endocan expression is increasingly studied in various human cancers. Experimental evidence showed that human endocan, through its glycan chain, is implicated in various processes of tumor growth. We functionally characterize mouse endocan which is also a chondroitin sulfate proteoglycan but much less glycanated than human endocan. Distant domains from the O-glycanation site, located within exons 1 and 2 determine the glycanation pattern of endocan. In opposite to the human homologue, overexpression of mouse endocan in HT-29 cells delayed the tumor appearance and reduced the tumor growth rate. This tumor growth inhibition is supported by non glycanated form of mouse endocan. Non glycanated human endocan overexpressed in HT-29, A549 or K1000 cells also exhibited an anti-tumor effect. Moreover, systemic delivery of non glycanated human endocan also results in HT-29 tumor growth delay. In vitro, endocan polypeptide did not affect HT-29 cell proliferation, nor cell viability. In tumor tissue sections, a stromal inflammatory reaction was observed only in tumors overexpressing endocan polypeptide, and depletion of CD122+ cells was able to delete partially the anti-tumor effect of endocan polypeptide. These results reveal a novel pathway for endocan in the control of tumor growth, which involves inflammatory cells of the innate immunity. PMID:25575808

  12. The role of proteoglycans in the reactive stroma on tumor growth and progression.

    PubMed

    Coulson-Thomas, Yvette May; Gesteira, Tarsis Ferreira; Norton, Andrew Lawrence; Kao, Winston W-Y; Nader, Helena Bonciani; Coulson-Thomas, Vivien Jane

    2015-01-01

    The stroma surrounding tumors can either restrict or promote tumor growth and progression, and both the cellular and non-cellular components of the stroma play an active role. The cellular components in the surrounding stroma include tumor-associated fibroblasts, host tissue cells and immune cells. The non-cellular components, which form the extracellular matrix (ECM) scaffold, include proteoglycans, collagen, proteinases, growth factors and cytokines. For tumorigenesis to occur it is necessary for tumor cells to modify the surrounding stroma. Tumor cells have mechanisms for achieving this, such as co-opting fibroblasts and modifying the ECM they produce, degrading the surrounding ECM and/or synthesizing a favorable ECM to support invasion. Proteoglycans are an important component of the ECM and play an active role in tumor growth and progression. The expression and glycosylation patterns of proteoglycans are altered in the stroma surrounding tumors and these molecules may support or restrict tumor growth and progression depending on the type and stage of tumor. In the present review we discuss the difference between the tumor promoting and restricting stromal reactions surrounding tumors and the role proteoglycans play. PMID:24931397

  13. Sunitinib inhibits tumor vascularity and growth but does not affect Akt and ERK phosphorylation in xenograft tumors.

    PubMed

    Voce, Pasquale; D'Agostino, Maria; Moretti, Sonia; Sponziello, Marialuisa; Rhoden, Kerry; Calcinaro, Filippo; Tamburrano, Giulia; Tallini, Giovanni; Puxeddu, Efisio; Filetti, Sebastiano; Russo, Diego; Durante, Cosimo

    2011-11-01

    Sunitinib is a multikinase inhibitor approved for use in some human solid malignancies, including renal clear cell and gastrointestinal stromal cancer, and under investigation for many other neoplasias. In many preclinical cancer models sunitinib has shown anti-angiogenic and antitumor effects, acting mainly by inhibiting the activity of pro-angiogenic growth factor receptors. However, a percentage of tumors develop resistance to this treatment. The aim of this study was to identify novel potential molecular targets for the non- responsive tumors. The effects of sunitinib were investigated in xenograft tumors obtained by injecting HEK293 cells into NOD-SCID mice, focusing on the activity of growth-regulating pathways involved in tumorigenesis. During 11 days of oral administration of sunitinib (40 mg/kg/day), the growth of tumors was monitored by measuring the mass volume by a caliper. At the end of the treatment, tumor specimens were histologically examined for microvessel density (MVD) and presence of necrosis, and the phosphorylation of ERK and Akt was analyzed in protein extracts by Western blotting. Moreover, the mRNA levels of VEGF and its receptor genes were measured by quantitative RT-PCR. Treatment with sunitinib elicited a clear reduction of the tumor growth, associated with a reduction of MVD, correlated with an increased number of necrotic cells. In contrast, the levels of phosphorylated Akt and ERK proteins were similar in treated and non-treated animals. The VEGF and VEGFR-1 and 2 transcripts were not affected by sunitinib treatment. In conclusion, these findings confirm the anti-angiogenic action as the major effect of sunitinib against tumor growth. In contrast, other important growth regulatory pathways involved in malignant trans-formation, such as the ERK-MAPK and Akt/mTOR pathways are not affected by such a treatment, suggesting the use of specific inhibitors of these pathways as valid candidates for combinatorial therapies in sunitinib-resistant malignancies. PMID:21850379

  14. Question 2.7: Logistic growth of a tumor. Zobl et al. [1] have studied the growth functions of tumors by inducing novel sarcomas in the kidneys of rats with Polyoma virus. These tumors

    E-print Network

    Utrecht, Universiteit

    exponentially and then approach a steady state volume. This growth function can therefore potentially linearly with the population size, i.e., (1 - N/K) gives a linear decline of the growth rate, which becomesQuestion 2.7: Logistic growth of a tumor. Zobl et al. [1] have studied the growth functions

  15. Astatine-211-tellurium radiocolloid cures experimental malignant ascites

    SciTech Connect

    Bloomer, W.D. (Harvard Medical School, Boston, MA); McLaughlin, W.H.; Neirinckx, R.D.; Adelstein, S.J.; Gordon, P.R.; Ruth, T.J.; Wolf, A.P.

    1981-04-17

    An investigation of the efficacy of astatine-211-tellurium colloid for the treatment of experimental malignant ascites in mice reveals that this ..cap alpha..-emitting radiocolloid can be curative without causing undue toxicity to normal tissue. By comparison, negatron-emitting phosphorus-32 as colloidal chromic phosphate had no antineoplastic activity. The most compelling explanation for this striking difference is the dense ionization and short range of action associated with ..cap alpha..-emission. These results have important implications for the development and use of ..cap alpha..-emitters as radiocolloid therapy for the treatment of human tumors.

  16. Histologic variability in solitary fibrous tumors reflects angiogenic and growth factor signaling pathway alterations.

    PubMed

    Demicco, Elizabeth G; Wani, Khalida; Fox, Patricia S; Bassett, Roland L; Young, Eric D; Lev, Dina; Aldape, Kenneth D; Lazar, Alexander J; Wang, Wei-Lien

    2015-07-01

    This study aimed to evaluate expression of receptor tyrosine kinases, their ligands, and mutational status in solitary fibrous tumors, with correlation to histopathologic variants, tumor stage, and aggressive behavior. Immunohistochemical staining for PDGF?; PDGF?; PDGFR-?; PDGFR-?; IGF1R; EGFR; VEGF; IGF2; c-Met; c-kit; c-erbB2; PTEN; and phosphorylated (p)AKT, pS6, and p4EBP1 was analyzed in 114 cases of solitary fibrous tumor using tissue microarray. Mutational analysis was performed using Sequenom MassARRAY-based platform. Multiple growth factors were overexpressed in most tumors, and increased numbers of overexpressed factors correlated with activation of the AKT pathway as measured by increased expression of p4EBP1(P = .0005). Compared to hypocellular tumors, localized hypercellular tumors were associated with high vascular endothelial growth factor (32% versus 8%; P = .008) and PDGF? (41% versus 13%; P = .008). Metastatic tumors more frequently overexpressed PDGFR-? compared to localized tumors (75% versus 31%; P < .001). None of the factors examined had prognostic significance in primary tumors. Single-nucleotide polymorphisms involving MET were identified in 4 patients; these do not appear to drive tumor behavior and were not reflected in c-Met expression levels. Simultaneous overexpression of multiple growth factors is common in solitary fibrous tumors; variability in expression may contribute to tumor phenotype and aggressive behavior. PMID:25976141

  17. Management of adult patients with ascites caused by cirrhosis

    Microsoft Academic Search

    Bruce A. Runyon

    1998-01-01

    Ascites is the most common of the major complications of cirrhosis. The development of ascites is an important landmark in the natural history of cirrhosis and has been proposed as an indication for liver transplantation. The initial evaluation of a patient with ascites should include a history, physical evaluation, and abdominal paracentesis with ascitic fluid analysis. Treatment should consist of

  18. Celecoxib inhibits growth of tumors in a syngeneic rat liver metastases model for colorectal cancer

    PubMed Central

    de Heer, Pieter; Sandel, Maro H.; Guertens, Gunther; de Boeck, Gert; Koudijs, Margaretha M.; Nagelkerke, J. Fred; Junggeburt, Jan M. C.; de Bruijn, Ernst A.; van de Velde, Cornelis J. H.

    2008-01-01

    Introduction Nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of colorectal cancer in cyclooxygenase-2 (COX-2) overexpressing colorectal cancers. The present study was designed to evaluate the inhibitory effects of the COX-2 inhibitor celecoxib on the growth of colorectal cancer liver metastases in a syngeneic rat model, CC531. Materials and methods The effects of celecoxib on cell viability in vitro were evaluated by treatment of CC531 tumor cell cultures with celecoxib. In vivo, Wag/Rij rats were inoculated with CC531 tumor cells at two sites in the liver and treated with celecoxib starting one week before, or directly after tumor inoculation. Control rats were inoculated without treatment. Three weeks after tumor inoculation rats were sacrificed. Tumor size, immune cell infiltration, caspase-3 activity, PGE2 and celecoxib levels were determined. Results CC531 tumors did not show COX-2 expression. Tumor growth was significantly inhibited by celecoxib treatment in a dose dependent manner. Immune cell infiltration was decreased after celecoxib treatment, indicating that the immune system was not involved in preventing tumor growth. Tumor caspase-3 levels were only significantly increased if treatment was started before tumor inoculation. Celecoxib serum concentration starting at 0.84 ?g/ml significantly inhibited the outgrowth of CC531 liver tumors. In contrast, in vitro concentrations of celecoxib of at least 12 ?g/ml were needed to affect tumor cell viability. Conclusion These results suggest that the inhibitory effects of celecoxib on tumor growth are not by direct cytotoxicity, but by creating an unfavorable environment for tumor growth. PMID:18247029

  19. Struma ovarii with elevated ca-125 levels and ascites mimicking advanced ca ovary.

    PubMed

    Sinha, Navin Kumar

    2014-03-01

    Struma ovarii is uncommon tumor of ovary which can mimic as advanced carcinoma of ovary. Thyroid tissue is relatively frequent constituent of mature ovarian teratoma. Case of struma ovarii masquerading as cancer of ovary in a female aged 63 yrs showing complex large unilateral multilocular adnexal mass with elevated CA 125 (more than 1721 IU/L) and massive ascites mislead treating surgeons for long time. Clinicians were virtually clueless about preoperative diagnosis. Combination of ascites has been seen in one third cases but association with raised CA 125 is rare(only 8-10 cases so far). This case developed hypothyroidism one week after surgery. PMID:24783110

  20. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice

    PubMed Central

    Esteva-Font, Cristina; Jin, Byung-Ju; Verkman, A. S.

    2014-01-01

    Aquaporin 1 (AQP1) is a plasma membrane water-transporting protein expressed strongly in tumor microvascular endothelia. We previously reported impaired angiogenesis in implanted tumors in AQP1-deficient mice and reduced migration of AQP1-deficient endothelial cells in vitro. Here, we investigated the consequences of AQP1 deficiency in mice that spontaneously develop well-differentiated, luminal-type breast adenomas with lung metastases [mouse mammary tumor virus-driven polyoma virus middle T oncogene (MMTV-PyVT)]. AQP1+/+ MMTV-PyVT mice developed large breast tumors with total tumor mass 3.5 ± 0.5 g and volume 265 ± 36 mm3 (se, 11 mice) at age 98 d. Tumor mass (1.6±0.2 g) and volume (131±15 mm3, 12 mice) were greatly reduced in AQP1?/? MMTV-PyVT mice (P<0.005). CD31 immunofluorescence showed abnormal microvascular anatomy in tumors of AQP1?/? MMTV-PyVT mice, with reduced vessel density. HIF-1? expression was increased in tumors in AQP1?/? MMTV-PyVT mice. The number of lung metastases (5±1/mouse) was much lower than in AQP1+/+ MMTV-PyVT mice (31±8/mouse, P<0.005). These results implicate AQP1 as an important determinant of tumor angiogenesis and, hence, as a potential drug target for adjuvant therapy of solid tumors.—Esteva-Font, C., Jin, B.-J., Verkman, A. S. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. PMID:24334548

  1. Inhibitory effect of recombinant endostatin on angiogenesis and tumor growth of hepatoma.

    PubMed

    Li, Peiyuan; Feng, Zuohua; Zhang, Guimei; Zhang, Hui; Xue, Shengli; Huang, Bo; Lin, Jusheng

    2003-01-01

    To study the influence of recombinant endostatin on angiogenesis and tumor growth of mice H22 hepatoma, tumor models were constructed by injecting H22 hepatoma cells into the leg muscle of mice. Recombinant endostatin was produced by gene engineering in E. coli. The recombinant protein was injected subcutaneously to treat transplanted hepatoma faraway. The weight of tumors was measured, and the changes of necrosis of tumor cells and vessel density were observed by immunohistochemistry. The results suggested that the growth of hepatoma models transplanted in the muscle of legs was suppressed by recombinant endostatin. The density of vascularity was decreased, but the necrosis of tumor cells increased. The inhibitory effect of recombinant endostatin on angiogenesis and tumor growth of hepatoma was not affected after chemotherapy. PMID:14526417

  2. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA.

    PubMed

    Celiker, M Y; Wang, M; Atsidaftos, E; Liu, X; Liu, Y E; Jiang, Y; Valderrama, E; Goldberg, I D; Shi, Y E

    2001-07-19

    Extracellular matrix (ECM) degrading matrix metalloproteinases (MMPs) lead to ECM turnover, a key event in cancer growth and progression. The tissue inhibitors of matrix metalloproteinases (TIMPs) limit the activity of MMPs, which suggests their use for cancer gene therapy. Here we report that systemic administration of naked TIMP-4 DNA significantly inhibited Wilms' tumor growth in nude mice. TIMP-4, whose expression was lost in Wilms' tumor, inhibited the growth of G401 Wilms' tumor cells at a concentration lower than those required for MMP inhibition. This inhibition was associated with internalization of exogenous recombinant TIMP-4. Electroporation-mediated intramuscular injection of TIMP-4 expression plasmid resulted in sustained plasma TIMP-4 levels and significant tumor suppression. Our data demonstrate a tumor suppressive effect of TIMP-4 against Wilms' tumor and the potential utility of intramuscular delivery of TIMP gene for treatment of kidney derived cancers. PMID:11466614

  3. VEGF-Targeted RNA Interference Suppresses Angiogenesis and Tumor Growth of Retinoblastoma

    Microsoft Academic Search

    R. B. Jia; P. Zhang; Y. X. Zhou; X. Song; H. Y. Liu; L. Z. Wang; M. Luo; J. Lu; S. F. Ge; X. Q. Fan

    2007-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important angiogenic growth factors for tumor angiogenesis which has been verified to be involved in neovascularization of retinoblastoma. Here, we sought to explore whether RNA interference (RNAi) targeting VEGF could inhibit retinoblastoma angiogenesis and tumor growth. Stable transfection of the two human retinoblastoma cell lines SO-RB50 and HXO-RB44 with VEGF-targeted

  4. Adnectin CT-322 inhibits tumor growth and affects microvascular architecture and function in Colo205 tumor xenografts.

    PubMed

    Ackermann, Maximilian; Carvajal, Irvith M; Morse, Brent A; Moreta, Miguel; O'Neil, Steven; Kossodo, Sylvie; Peterson, Jeffrey D; Delventhal, Vera; Marsh, H Nicholas; Furfine, Eric S; Konerding, Moritz A

    2011-01-01

    Antiangiogenesis has become a promising pillar in modern cancer therapy. This study investigates the antiangiogenic effects of the PEGylated Adnectin™, CT-322, in a murine Colo-205 xenograft tumor model. CT-322 specifically binds to and blocks vascular endothelial growth factor receptor (VEGFR-2). Adnectins are a novel class of targeted biologics engineered from the 10th domain of human fibronectin. CT-322 treated tumors exhibited a significant reduction in tumor growth of 69%, a 2.8 times lower tumor surface area and fewer necrotic areas. Control tumors showed a 2.36-fold higher microvessel density (MVD) and a 2.42 times higher vessel volume in corrosion casts. The vascular architecture in CT-322-treated tumors was characterized by a strong normalization of vasculature. This was quantified in corrosion casts of CT-322 treated tumors in which the intervascular distance (a reciprocal parameter indicative of vessel density) and the distance between two consecutive branchings were assessed, with these distances being 2.21 times and 2.37 times greater than in controls, respectively. Fluorescence molecular tomography (FMT) equally affirmed the inhibitory effects of CT-322 on tumor vasculature as indicated by a 60% reduction of the vascular probe, AngioSense, accumulating in tumor tissue, as a measurement of vascular permeability. Moreover, AngioSense accumulation was reduced as early as 24 h after starting treatment. The sum of these effects on tumor vasculature illustrates the anti-angiogenic mechanism underlying the antitumor activity of CT-322 and provides support for further evaluation of this Adnectin in combinatorial strategies with standard of care therapies. PMID:21109927

  5. Pharmacological inhibition of p38 MAPK reduces tumor growth in patient-derived xenografts from colon tumors

    PubMed Central

    Papaioannou, Marilena; Lopez-Casas, Pedro Pablo; Llonch, Elisabet; Hidalgo, Manuel; Gorgoulis, Vassilis G.; Nebreda, Angel R.

    2015-01-01

    Colorectal cancer is a major health problem and the second cause of cancer related death in western countries. Signaling pathways that control tissue homeostasis are often deregulated during tumorigenesis and contribute to tumor development. Studies in mouse models have shown that the p38 MAPK pathway regulates homeostasis in colon epithelial cells but also plays an important role in colon tumor maintenance. In this study, we have investigated the role of p38 MAPK signaling in patient-derived xenografts (PDXs) from three different human colon tumors representing clinical heterogeneity and that recapitulate the human tumor conditions both at histological and molecular levels. We have found that PH797804, a chemical inhibitor of p38 MAPK, reduces tumor growth of the three PDXs, which correlates with impaired colon tumor cell proliferation and survival. The inhibition of p38 MAPK in PDXs results in downregulation of the IL-6/STAT3 signaling pathway, which is a key regulator of colon tumorigenesis. Our results show the importance of p38 MAPK in human colon tumor growth using a preclinical model, and support that inhibition of p38 MAPK signaling may have therapeutic interest for colon cancer treatment. PMID:25890501

  6. Infertility and chylous ascites? A case report

    PubMed Central

    Frey, C.; Poncelet, C.

    2011-01-01

    Introduction Chylous ascites is defined by an accumulation of chylous fluid in the peritoneal cavity and it clinically appears as a milky fluid in which laboratory examination reveals triglycerides, cholesterol, and sometimes chylomicrons and lymphocytes. Presentation of case We report the first case of primary chylous ascites observed during laparoscopy for unexplained secondary infertility. Discussion Chylous ascites has never been linked to fertility but bathes all internal reproductive organs surfaces and is considered a communication mean between ovaries. Conclusion Despite a lack of evidence, the question of peritoneal fluid role remains in infertility. PMID:22096750

  7. Neutrophils but not eosinophils are involved in growth suppression of IL-4-secreting tumors.

    PubMed

    Noffz, G; Qin, Z; Kopf, M; Blankenstein, T

    1998-01-01

    Local expression of IL-4 by gene-modified tumor cells increases their immunogenicity by inducing an inflammatory response that is dominated by eosinophils. Eosinophils have been implicated as antitumor effector cells because the application of a granulocyte-depleting Ab inhibited rejection of IL-4 transfected tumors. This Ab did not discriminate between eosinophils and neutrophils and, therefore, this experiment could not exclude neutrophils as primary effector cells, whereas eosinophils were innocent bystander cells in IL-4 transfected tumors. We analyzed tumor growth suppression and granulocyte infiltration in IL-5-deficient (IL-5(-/-)) mice that had a deficiency of eosinophils, using two tumor lines (B16-F10 and MCA205) transfected to secrete IL-4. IL-4-expressing tumors were at least as efficiently rejected in IL-5(-/-) mice as in wild-type mice, despite an almost complete absence of tumor-infiltrating eosinophils. However, neutrophils were present in undiminished amounts and their depletion partially restored tumor growth. Furthermore, the growth of IL-5-secreting tumors was not impaired in either wild-type or IL-5(-/-) mice, even though it induced eosinophilia in both mouse strains. These findings demonstrate that eosinophils can be induced in IL-5(-/-) mice by exogenous IL-5 and argue against a compensatory effect of neutrophils in the absence of eosinophils. We conclude that 1) infiltration of IL-4 transfected tumors by eosinophils is completely IL-5 dependent, 2) eosinophils have no tumoricidal activity, and 3) neutrophils are responsible, at least in part, for tumor suppression. PMID:9551990

  8. COMPUTATIONAL MODELING OF SOLID TUMOR GROWTH: THE AVASCULAR STAGE

    E-print Network

    Boyer, Edmond

    to proliferate without limitation leading to the formation of an initial tumor nodule. To proliferate, cells need, we use a multiscale model using PDEs to describe the evolution of the tumor cell densities. In our cells motion and tumor expansion. According to biology, cells grow against a basal membrane which

  9. Olmesartan Potentiates the Anti-Angiogenic Effect of Sorafenib in Mice Bearing Ehrlich's Ascites Carcinoma: Role of Angiotensin (1–7)

    PubMed Central

    Abd-Alhaseeb, Mohammad M.; Zaitone, Sawsan A.; Abou-El-Ela, Soad H.; Moustafa, Yasser M.

    2014-01-01

    Local renin-angiotensin systems exist in various malignant tumor tissues; this suggests that the main effector peptide, angiotensin II, could act as a key factor in tumor growth. The underlying mechanisms for the anti-angiogenic effect of angiotensin II type 1 receptor blockers need to be further evaluated. The present study was carried out to investigate the anti-angiogenic effect of olmesartan alone or in combination with sorafenib, an angiotensin (1–7) agonist or an angiotensin (1–7) antagonist in Ehrlich's ascites carcinoma-bearing mice. The tumor was induced by intradermal injection of Ehrlich's ascites carcinoma cells into mice. Tumor discs were used to evaluate the microvessel density; the serum levels of vascular endothelial growth factor (VEGF) and serum insulin-like growth factor I (IGF-I); and their intratumoral receptors, VEGF receptor-2 and IGF-I receptor, respectively. All parameters were determined following the treatment course, which lasted for 21 days post-inoculation. Monotherapy with olmesartan and its combination with sorafenib resulted in a significant reduction in microvessel density and serum levels of VEGF and IGF-I, as well as their intratumoral receptors. In addition, the combination of olmesartan (30 mg/kg) with an angiotensin (1–7) agonist reduced the microvessel density, IGF-I serum levels and the levels of its intratumoral receptor. In conclusion, olmesartan reduced the levels of the angiogenesis markers IGF-I and VEGF and down-regulated the intratumoral expression of their receptors in a dose-dependent manner, and these effects were dependent on the angiotensin (1–7) receptor. These results suggest that olmesartan is a promising adjuvant to sorafenib in the treatment of cancer. PMID:24465768

  10. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Pavlides, Stephanos; Chiavarina, Barbara; Bonuccelli, Gloria; Casey, Trimmer; Tsirigos, Aristotelis; Migneco, Gemma; Witkiewicz, Agnieszka; Balliet, Renee; Mercier, Isabelle; Wang, Chengwang; Flomenberg, Neal; Howell, Anthony; Lin, Zhao; Caro, Jaime; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2010-11-01

    The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the "Autophagy Paradox". We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Cell Metabolism" or "Battery-Operated Tumor Growth". In this sense, autophagy in the tumor stroma serves as a "battery" to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients-both effectively "starving" cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the upregulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a "lethal" aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy, and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia. PMID:21051947

  11. Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth.

    PubMed

    Carito, Valentina; Bonuccelli, Gloria; Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Caroleo, Maria Cristina; Cione, Erika; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2012-09-15

    Migration stimulating factor (MSF) is a genetically truncated N-terminal isoform of fibronectin that is highly expressed during mammalian development in fetal fibroblasts, and during tumor formation in human cancer-associated myofibroblasts. However, its potential functional role in regulating tumor metabolism remains unexplored. Here, we generated an immortalized fibroblast cell line that recombinantly overexpresses MSF and studied their properties relative to vector-alone control fibroblasts. Our results indicate that overexpression of MSF is sufficient to confer myofibroblastic differentiation, likely via increased TGF-b signaling. In addition, MSF activates the inflammation-associated transcription factor NF?B, resulting in the onset of autophagy/mitophagy, thereby driving glycolytic metabolism (L-lactate production) in the tumor microenvironment. Consistent with the idea that glycolytic fibroblasts fuel tumor growth (via L-lactate, a high-energy mitochondrial fuel), MSF fibroblasts significantly increased tumor growth, by up to 4-fold. Mechanistic dissection of the MSF signaling pathway indicated that Cdc42 lies downstream of MSF and fibroblast activation. In accordance with this notion, Cdc42 overexpression in immortalized fibroblasts was sufficient to drive myofibroblast differentiation, to provoke a shift towards glycolytic metabolism and to promote tumor growth by up to 2-fold. In conclusion, the MSF/Cdc42/NF?B signaling cascade may be a critical druggable target in preventing "Warburg-like" cancer metabolism in tumor-associated fibroblasts. Thus, MSF functions in the metabolic remodeling of the tumor microenvironment by metabolically reprogramming cancer-associated fibroblasts toward glycolytic metabolism. PMID:22918248

  12. Control of Tumor Growth in Animals by Infusion of an Angiogenesis Inhibitor

    NASA Astrophysics Data System (ADS)

    Langer, Robert; Conn, Howard; Vacanti, Joseph; Haudenschild, Christian; Folkman, Judah

    1980-07-01

    Angiogenesis and tumor growth were inhibited in two different animal models by regional infusion of a partially purified cartilage extract. In rabbits bearing corneal implants of V2 carcinoma and receiving the inhibitor, vascular growth rates were <3% of those in control animals receiving either Ringer's solution or bovine trypsin inhibitor (Trasylol). Subconjunctival B16 melanoma implants in mice receiving the inhibitor weighed <2.5% of implants in mice receiving Ringer's solution, Trasylol, or albumin. Histologic study of major organs and standard blood tests revealed no toxic effects in any of the animals. The inhibitor did not retard the growth of either tumor cell type in tissue culture at concentrations as high as 1 mg/ml. These results suggest that the cartilage factor does not interfere with the growth of the tumor cell population directly but that it prevents tumor growth by inhibiting angiogenesis.

  13. Integrin ?v?6 sustains and promotes tumor invasive growth in colon cancer progression

    PubMed Central

    Yang, Guang-Yun; Guo, Sen; Dong, Cong-Ying; Wang, Xian-Qiang; Hu, Bing-Yang; Liu, Yang-Feng; Chen, Yong-Wei; Niu, Jun; Dong, Jia-Hong

    2015-01-01

    AIM: To detect the mechanism by which colon tumor escapes the growth constraints imposed on normal cells by cell crowding and dense pericellular matrices. METHODS: An immunohistochemical study of integrin ?v?6 and matrix metalloproteinase-9 (MMP-9) was performed on tissue microarrays of 200 spots, including 100 cases of colon tumors. RESULTS: High immunoreactivity for ?v?6 (73.7%; 28/38) and MMP-9 (76.5%; 52/68) was observed in invasive tumor portions. Furthermore, the effects of integrin ?v?6 on tumor invasive growth in nude mice were detected. Tumor invasive growth and high expression of both ?v?6 and MMP-9 were only seen in tumors resulting from WiDr cells expressing ?v?6 in the tumorigenicity assay. Flow cytometry was applied to analyze ?v?6 expression in colon cancer WiDr and SW480 cells. The effects of cell density on ?v?6 expression and MMP-9 secretion were also detected by Biotrak MMP-9 activity assay and gelatin zymography assay. High cell density evidently enhanced ?v?6 expression and promoted MMP-9 secretion compared with low density. CONCLUSION: Integrin ?v?6 sustains and promotes tumor invasive growth in tumor progression via a self-perpetuating mechanism. Integrin ???6-mediated MMP-9 secretion facilitates pericellular matrix degradation at high cell density, which provides the basis of invasive growth.

  14. Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling.

    PubMed

    Pai, Rama; Dunlap, Debra; Qing, Jing; Mohtashemi, Iman; Hotzel, Kathy; French, Dorothy M

    2008-07-01

    Fibroblast growth factors (FGF) play important roles in development, angiogenesis, and cancer. FGF19 uniquely binds to FGF receptor 4 (FGFR4). Our previous study has shown that FGF19 transgenic tumors have an activated Wnt-pathway phenotype. Wnt signaling is implicated in initiating or promoting FGF signaling in various cell types and organs. In this study, we examined whether FGF19 or inhibition of FGF19 affects the beta-catenin signaling pathway using human colon cancer cell lines (HCT116, Colo201). Our results show that FGF19 increases tyrosine phosphorylation of beta-catenin and causes loss of beta-catenin-E-cadherin binding. FGF19 increases p-GSK3beta and active beta-catenin levels and anti-FGF19 antibody (1A6) treatment abrogates this effect of FGF19. Anti-FGF19 antibody treatment increases S33/S37/T41 phosphorylation and ubiquitination of beta-catenin. Ion-trap mass spectrometric analysis confirmed that 1A6 increases phosphorylation of beta-catenin in the NH(2) terminus. Using HCT116-paired beta-catenin knockout cells, we show that FGF19 induces TCF/LEF reporter activity in parental (WT/Delta45) and in WT/--but not in mutant (-/Delta45) cells, and that inhibition of endogenous FGF19 reduces this reporter activity, indicating that wild-type beta-catenin is accessible for modulation. FGFR4 knockdown using inducible short hairpin RNA significantly reduces the colony-forming ability in vitro and tumor growth in vivo. Although cleaved caspase-3 immunoreactivity remains unchanged, the number of ki67-positive nuclei is reduced in FGFR4 knockdown tumor xenograft tissues. Consistent with the reduced beta-catenin activation, Taqman analyses show that FGF19/FGFR4 inhibition reduced beta-catenin target gene (cyclin D1, CD44, c-jun, Cox-2, UPAR) expression. These findings highlight that FGF19/FGFR4 cross-talk with beta-catenin and that pathway intervention reduces tumor growth. PMID:18593907

  15. Protection of mice against tumor growth by immunization with an oncogene-encoded growth factor.

    PubMed Central

    Talarico, D; Ittmann, M; Balsari, A; Delli-Bovi, P; Basch, R S; Basilico, C

    1990-01-01

    The K-fgf/hst oncogene encodes a growth factor of the fibroblast growth factor (FGF) family that is secreted and transforms cells through a mechanism of autocrine cell proliferation. K-fgf-transformed cells are highly tumorigenic in immunocompetent allogeneic and syngeneic animals. BALB/c mice were immunized with a bacterial fusion protein consisting of a portion of the MS2 polymerase and of the human K-FGF precursor lacking only the first 4 amino acids or with a recombinant protein corresponding to the mature, secreted form of K-FGF (176 amino acids). They were then challenged with syngeneic K-fgf- or H-ras-transformed cells. Vaccinated animals exhibited a significant degree of protection against tumor induction, which was specific for K-fgf-transformed cells and correlated with the ability of the immunized mice to produce high titers of anti-K-FGF antibodies. Thus immunization with a single oncogene product can protect animals against tumor cells expressing this oncogene. Images PMID:2190216

  16. Administration of granulocyte colony-stimulating factor with radiotherapy promotes tumor growth by stimulating vascularization in tumor-bearing mice.

    PubMed

    Kim, Joong Sun; Son, Yeonghoon; Bae, Min Ji; Lee, Minyoung; Lee, Chang Geun; Jo, Wol Soon; Kim, Sung Dae; Yang, Kwangmo

    2015-07-01

    Although granulocyte-colony stimulating factor (G-CSF) is commonly used to support recovery from radiation-induced side-effects, the precise effects of G-CSF on colon cancer under radiotherapy remain poorly understood. In the present study, to investigate the effects of tumor growth following radiotherapy and G-CSF administration in a murine xenograft model of colon cancer, female BALB/c mice were injected with cells of a colon carcinoma cell line (CT26) with irradiation and G-CSF, alone or in combination. Mice received 2 Gy of focal radiation daily for 5 days and intraperitoneal injection of G-CSF (100 µg/kg/day) after irradiation for 7 days. Changes in the levels of myeloperoxidase (MPO), vascular endothelial growth factor (VEGF), matrix metalloproteinase type 9 (MMP-9) and CD31 were assessed in the mouse cancer induced by injection of colon cancer cells. We observed that G-CSF increased the number of circulating neutrophils, but facilitated tumor growth. However, G-CSF treatment did not affect radiation-induced cytotoxicity and cell viability in CT26 cells in vitro. Increased levels of myeloperoxidase, a neutrophil marker and those of vascular endothelial growth factor were observed in tumors with G-CSF supplementation. In addition, we found that increased levels of CD31 and matrix metalloproteinase-9 were correlated with the enhanced tumor growth after G-CSF treatment. Therefore, these data suggest that G-CSF may contribute to tumor growth and decrease the antitumor effect of radiotherapy, possibly by promoting vascularization in cancer lesions. PMID:25976379

  17. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth

    NASA Astrophysics Data System (ADS)

    Lao, Yeqi; Xing, Da; Yang, Sihua; Xiang, Liangzhong

    2008-08-01

    In this study, we monitor the progress of vasculature in early tumor growth using photoacoustic imaging over a 20 day period after subcutaneous inoculation of breast cancer tumor cells in a mouse. With 532 nm laser pulses employed as an irradiation source, the photoacoustic images were obtained through the photoacoustic signals received by a hydrophone in orthogonal mode. The morphological characteristics of vasculature in tumor region are clearly resolved in the photoacoustic images, and the change in structure as well as the increase in density can be identified. Moreover, the average photoacoustic signal strength of vasculature in tumor region, which is highly correlated with the total hemoglobin concentration of blood, is enhanced during early tumor growth. These results indicate the feasibility of detecting early stage tumor and monitoring the progress of anti-angiogenic therapy by photoacoustic imaging.

  18. Tumor growth model for atlas based registration of pathological brain MR images

    NASA Astrophysics Data System (ADS)

    Moualhi, Wafa; Ezzeddine, Zagrouba

    2015-02-01

    The motivation of this work is to register a tumor brain magnetic resonance (MR) image with a normal brain atlas. A normal brain atlas is deformed in order to take account of the presence of a large space occupying tumor. The method use a priori model of tumor growth assuming that the tumor grows in a radial way from a starting point. First, an affine transformation is used in order to bring the patient image and the brain atlas in a global correspondence. Second, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed combining a method derived from optical flow principles and a model for tumor growth (MTG). Results show that an automatic segmentation method of brain structures in the presence of large deformation can be provided.

  19. On a Nonlinear Model for Tumor Growth: Global in Time Weak Solutions

    NASA Astrophysics Data System (ADS)

    Donatelli, Donatella; Trivisa, Konstantina

    2014-07-01

    We investigate the dynamics of a class of tumor growth models known as mixed models. The key characteristic of these type of tumor growth models is that the different populations of cells are continuously present everywhere in the tumor at all times. In this work we focus on the evolution of tumor growth in the presence of proliferating, quiescent and dead cells as well as a nutrient. The system is given by a multi-phase flow model and the tumor is described as a growing continuum ? with boundary ?? both of which evolve in time. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behavior, diffusion and viscosity in the weak formulation.

  20. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems

    PubMed Central

    Wu, Min; Frieboes, Hermann B.; McDougall, Steven R.; Chaplain, Mark A.J.; Cristini, Vittorio; Lowengrub, John

    2013-01-01

    The flow of interstitial fluid and the associated interstitial fluid pressure (IFP) in solid tumors and surrounding host tissues have been identified as critical elements in cancer growth and vascularization. Both experimental and theoretical studies have shown that tumors may present elevated IFP, which can be a formidable physical barrier for delivery of cell nutrients and small molecules into the tumor. Elevated IFP may also exacerbate gradients of biochemical signals such as angiogenic factors released by tumors into the surrounding tissues. These studies have helped to understand both biochemical signaling and treatment prognosis. Building upon previous work, here we develop a vascular tumor growth model by coupling a continuous growth model with a discrete angiogenesis model. We include fluid/oxygen extravasation as well as a continuous lymphatic field, and study the micro-environmental fluid dynamics and their effect on tumor growth by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and lymphatic drainage. We thus elucidate further the non-trivial relationship between the key elements contributing to the effects of interstitial pressure in solid tumors. In particular, we study the effect of IFP on oxygen extravasation and show that small blood/lymphatic vessel resistance and collapse may contribute to lower transcapillary fluid/oxygen flux, thus decreasing the rate of tumor growth. We also investigate the effect of tumor vascular pathologies, including elevated vascular and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic drainage, and the IFP. Our results reveal that elevated interstitial hydraulic conductivity together with poor lymphatic function is the root cause of the development of plateau profiles of the IFP in the tumor, which have been observed in experiments, and contributes to a more uniform distribution of oxygen, solid tumor pressure and a broad-based collapse of the tumor lymphatics. We also find that the rate that IFF is fluxed into the lymphatics and host tissue is largely controlled by an elevated vascular hydraulic conductivity in the tumor. We discuss the implications of these results on microenvironmental transport barriers, and the tumor invasive and metastatic potential. Our results suggest the possibility of developing strategies of targeting tumor cells based on the cues in the interstitial fluid. PMID:23220211

  1. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.

    PubMed

    Wu, Min; Frieboes, Hermann B; McDougall, Steven R; Chaplain, Mark A J; Cristini, Vittorio; Lowengrub, John

    2013-03-01

    The flow of interstitial fluid and the associated interstitial fluid pressure (IFP) in solid tumors and surrounding host tissues have been identified as critical elements in cancer growth and vascularization. Both experimental and theoretical studies have shown that tumors may present elevated IFP, which can be a formidable physical barrier for delivery of cell nutrients and small molecules into the tumor. Elevated IFP may also exacerbate gradients of biochemical signals such as angiogenic factors released by tumors into the surrounding tissues. These studies have helped to understand both biochemical signaling and treatment prognosis. Building upon previous work, here we develop a vascular tumor growth model by coupling a continuous growth model with a discrete angiogenesis model. We include fluid/oxygen extravasation as well as a continuous lymphatic field, and study the micro-environmental fluid dynamics and their effect on tumor growth by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and lymphatic drainage. We thus elucidate further the non-trivial relationship between the key elements contributing to the effects of interstitial pressure in solid tumors. In particular, we study the effect of IFP on oxygen extravasation and show that small blood/lymphatic vessel resistance and collapse may contribute to lower transcapillary fluid/oxygen flux, thus decreasing the rate of tumor growth. We also investigate the effect of tumor vascular pathologies, including elevated vascular and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic drainage, and the IFP. Our results reveal that elevated interstitial hydraulic conductivity together with poor lymphatic function is the root cause of the development of plateau profiles of the IFP in the tumor, which have been observed in experiments, and contributes to a more uniform distribution of oxygen, solid tumor pressure and a broad-based collapse of the tumor lymphatics. We also find that the rate that IFF is fluxed into the lymphatics and host tissue is largely controlled by an elevated vascular hydraulic conductivity in the tumor. We discuss the implications of these results on microenvironmental transport barriers, and the tumor invasive and metastatic potential. Our results suggest the possibility of developing strategies of targeting tumor cells based on the cues in the interstitial fluid. PMID:23220211

  2. Bone Marrow Derived Mesenchymal Stem\\/Stromal Cells and Tumor Growth

    Microsoft Academic Search

    Pravin J. Mishra; Debabrata Banerjee

    \\u000a Carcinoma associated fibroblasts (CAFs) play an important role in the growth of epithelial solid tumors. The origin of these\\u000a tumor or CAFs has not been conclusively established. There is experimental evidence to suggest that part of the tumor or CAFs\\u000a may arise from bone marrow derived mesenchymal stromal\\/stem cells or MSCs. It is well known that bone marrow derived MSCs

  3. Substance-P-Mediated Immunomodulation of Tumor Growth in a Murine Model

    Microsoft Academic Search

    Jill M. Manske; Summer E. Hanson

    2005-01-01

    Background\\/Objective: Substance P (SP) has been reported to have immunoregulatory properties including effects on many of the mediators involved in anti-tumor immunity. In this study, we investigated the effect of SP on tumor development in a murine model of melanoma. In addition, we examined the role of natural killer (NK) and T cells in SP-mediated modulation of tumor growth. Materials

  4. Co-implanting orthotopic tissue creates stroma microenvironment enhancing growth and angiogenesis of multiple tumors.

    PubMed

    Borgstrom, Per; Oh, Phil; Czarny, Malgorzata; Racine, Brian; Schnitzer, Jan E

    2013-01-01

    Tumor models are needed to study cancer. Noninvasive imaging of tumors under native conditions in vivo is critical but challenging. Intravital microscopy (IVM) of subcutaneous tumors provides dynamic, continuous, long-term imaging at high resolution. Although popular, subcutaneous tumor models are often criticized for being ectopic and lacking orthotopic tissue microenvironments critical for proper development. Similar IVM of orthotopic and especially spontaneous tumors is seldom possible. Here, we generate and characterize tumor models in mice for breast, lung, prostate and ovarian cancer by co-engrafting tumor spheroids with orthotopic tissue in dorsal skin window chambers for IVM. We use tumor cells and tissue, both genetically engineered to express distinct fluorescent proteins, in order to distinguish neoplastic cells from engrafted tissue. IVM of this new, two-colored model reveals classic tumor morphology with red tumor cell nests surrounded by green stromal elements. The co-implanted tissue forms the supportive stroma and vasculature of these tumors. Tumor growth and angiogenesis are more robust when tumor cells are co-implanted with orthotopic tissue versus other tissues, or in the skin alone. The orthotopic tissue promotes tumor cell mitosis over apoptosis. With time, tumor cells can adapt to new environments and ultimately even grow better in the non-orthotopic tissue over the original orthotopic tissue. These models offer a significant advance by recreating an orthotopic microenvironment in an ectopic location that is still easy to image by IVM. These "ectopic-orthotopic" models provide an exceptional way to study tumor and stroma cells in cancer, and directly show the critical importance of microenvironment in the development of multiple tumors. PMID:24715954

  5. Co-implanting orthotopic tissue creates stroma microenvironment enhancing growth and angiogenesis of multiple tumors

    PubMed Central

    Schnitzer, Jan E

    2013-01-01

    Tumor models are needed to study cancer. Noninvasive imaging of tumors under native conditions in vivo is critical but challenging. Intravital microscopy (IVM) of subcutaneous tumors provides dynamic, continuous, long-term imaging at high resolution. Although popular, subcutaneous tumor models are often criticized for being ectopic and lacking orthotopic tissue microenvironments critical for proper development. Similar IVM of orthotopic and especially spontaneous tumors is seldom possible. Here, we generate and characterize tumor models in mice for breast, lung, prostate and ovarian cancer by co-engrafting tumor spheroids with orthotopic tissue in dorsal skin window chambers for IVM. We use tumor cells and tissue, both genetically engineered to express distinct fluorescent proteins, in order to distinguish neoplastic cells from engrafted tissue. IVM of this new, two-colored model reveals classic tumor morphology with red tumor cell nests surrounded by green stromal elements. The co-implanted tissue forms the supportive stroma and vasculature of these tumors. Tumor growth and angiogenesis are more robust when tumor cells are co-implanted with orthotopic tissue versus other tissues, or in the skin alone. The orthotopic tissue promotes tumor cell mitosis over apoptosis. With time, tumor cells can adapt to new environments and ultimately even grow better in the non-orthotopic tissue over the original orthotopic tissue. These models offer a significant advance by recreating an orthotopic microenvironment in an ectopic location that is still easy to image by IVM. These “ectopic-orthotopic” models provide an exceptional way to study tumor and stroma cells in cancer, and directly show the critical importance of microenvironment in the development of multiple tumors. PMID:24715954

  6. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors

    E-print Network

    Martin, John D.

    The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress ...

  7. Combination of Clinical Factors Predictive of Growth of Small Choroidal Melanocytic Tumors

    Microsoft Academic Search

    Carol L. Shields; Jacqueline Cater; Jerry A. Shields; Arun D. Singh; Maria Carmen; M. Santos; Cynthia Carvalho

    2000-01-01

    Objective: To better define the effect of individual risk factors and combinations thereof on the growth of small choroidal melanocytic tumors. Design: Retrospective analysis. Setting: Clinical practice of ocular oncology. Patients: The study included 1287 patients with small suspicious choroidal melanocytic tumors, measuring 3 mm or less in thickness, managed with observation. Results: On multivariate analysis, the clinical risk factors

  8. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose

    E-print Network

    Paris-Sud XI, Université de

    Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose to a homogeneous dose - the standard in current clinical practice. We discuss the use of the Fisher for the prescribed dose distribution in the periphery of the tumor. In the context of the exponential cell kill model

  9. Expression of nerve growth factor receptor in paraffin-embedded soft tissue tumors.

    PubMed Central

    Perosio, P. M.; Brooks, J. J.

    1988-01-01

    Identification of growth factors and receptors in mesenchymal tumors may be crucial to understanding of growth regulation in sarcomas. During an immunohistochemical study of the expression of growth factors and receptors in human soft tissue tumors (STT), only 1 antisera capable of working in paraffin-embedded tissue was noted. A detailed study of 141 STT was undertaken to determine the frequency of expression of nerve growth factor receptor (NGF-R), its specificity and sensitivity for neural tumors, and the effect of fixation on detection. In normal mesenchymal tissue, only nerve sheath and perivascular staining was seen. No immunoreactivity was seen in many tumors including rhabdomyosarcoma, angiosarcoma, liposarcoma, Ewing's sarcoma, and alveolar soft part sarcoma. Less than 15% of tumors of smooth muscle, fibrous, or fibrohistiocytic origin showed immunoreactivity, usually focal. In contrast, a high frequency of immunoreactivity was noted in tumors of neural origin (74%). This included granular cell tumors (100%), Schwannoma/neurofibroma (91%), malignant Schwannoma (78%), neuroblastoma/neuroepithelioma (60%), and paraganglioma (57%). A high rate of reactivity was also seen in synovial sarcomas (80%), undifferentiated sarcomas (60%), and hemangiopericytomas (43%), suggesting a potential relationship to the neural phenotype. Among the neural tumors, Bouin's fixation was superior to formalin, suggesting that immunoreactivity for NGF-R is affected by fixation. This antibody may be a useful adjunct marker diagnostically. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 PMID:2456020

  10. A multinomial model of tumor growth treated by radiotherapy

    E-print Network

    Paris-Sud XI, Université de

    of the radioactive treatments on cancer and healthy cells are characterized by two probabilities: (i) the tumor during the radiotherapy k discrete time m number of targets in the cancer cells n0 initial number of cancer cells in the tumor p survival probability of a target after treatment pc survival probability

  11. The Functionalized Human Serine Protease Granzyme B/VEGF121 Targets Tumor Vasculature and Ablates Tumor Growth

    PubMed Central

    Mohamedali, Khalid A.; Cao, Yu; Cheung, Lawrence H.; Hittelman, Walter N.; Rosenblum, Michael G.

    2014-01-01

    The serine protease granzyme B (GrB) induces apoptosis through both caspase-dependent and caspase-independent multiple-cascade mechanisms. Vascular endothelial growth factor 121 (VEGF121) binds to both VEGFR-1 and VEGFR-2 receptors. We engineered a unique GrB/VEGF121 fusion protein and characterized its properties in vitro and in vivo. Endothelial and tumor cells lines demonstrated varying levels of sensitivity to GrB/VEGF121 that correlated closely to total VEGFR-2 expression. GrB/VEGF121 localized efficiently into VEGFR-2 expressing cells while the internalization into VEGFR-1 expressing cells was significantly reduced. Treatment of VEGFR-2+ cells caused mitochondrial depolarization in 48% of cells by 48 h. Exposure to GrB/VEGF121 induced apoptosis in VEGFR-2+, but not in VEGFR-1+, cells and rapid caspase activation was observed that could not be inhibited by treatment with a pan-caspase inhibitor. In vivo, GrB/VEGF121 localized in perivascular tumor areas adjacent to microvessels and in other areas in the tumor less well vascularized, while free GrB did not specifically localize to tumor tissue. Administration (i.v.) of GrB/VEGF121 to mice at doses up to 40 mg/kg showed no toxicity. Treatment of mice bearing established PC-3 tumor xenografts with GrB/VEGF121 showed significant antitumor effect vs. treatment with GrB or saline. Treatment with GrB/VEGF121 at 27 mg/kg resulted in the regression of 4 of 5 tumors in this group. Tumors showed a two-fold lower Ki-67 labeling index compared to controls. Our results demonstrate that targeted delivery of granzyme B to tumor vascular endothelial cells or to tumor cells activates apoptotic cascades and this completely human construct may have significant therapeutic potential. PMID:23858102

  12. Mirk kinase inhibition targets ovarian cancer ascites

    PubMed Central

    Deng, Xiaobing; Hu, Jing; Cunningham, Mary J.; Friedman, Eileen

    2014-01-01

    The Mirk/dyrk1B gene is commonly amplified or upregulated in ovarian cancers, and Mirk is an active kinase in these cancers. Mirk mediates cancer cell survival by decreasing toxic ROS levels through maintaining expression of a series of antioxidant genes, possibly through its transcriptional activator functions. Mirk has the unusual property of being most active in quiescent cancer cells because of marked transcriptional downregulation by Akt/mTOR signaling and by MEK/erk signaling in cycling cells. Metastatic ovarian cancer cells form ascites, non-adherent multicellular aggregates floating within the peritoneal fluid. Most ascites cancer cells are in a reversible quiescent, dormant state, suggesting that Mirk might be expressed in these quiescent cells and thus a therapeutic target. The current studies show that ovarian cancer cell line spheroids that mimic ascites cancer spheroids were largely quiescent in G0/G1, and enriched in Mirk and the quiescence proteins, p130/Rb2 and the CDKI p27. Mirk kinase inhibition in spheroids made from established cell lines and in patient-derived ascites cancer cell spheroids reduced spheroid volume, disrupted spheroid structure to single cells, increased apoptosis, and decreased cell numbers. Earlier studies had shown that the mTOR inhibitor RAD001 increased transcription of the Mirk/dyrk1B gene, so treatments combined RAD001 with the most active Mirk kinase inhibitor. The number of ascites cells from 9 patients was reduced a similar amount by cisplatin, Mirk kinase inhibition or RAD001, but reduced substantially more, about 90%, by concurrent treatment with both the Mirk kinase inhibitor EHT5372 and RAD001. Addition of RAD001 increased the amount of toxic ROS induced by Mirk kinase inhibition. Two ascites samples taken one month apart gave similar drug responses, showing reproducibility of the techniques. Thus Mirk/dyrk1B kinase may be a therapeutic target in ovarian cancer ascites. PMID:25061503

  13. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    PubMed Central

    Lai, Wen-Lin; Harn, Horng-jyh; Hung, Pei-Hsiu; Hsieh, Ming-Chang; Chang, Kai-Fu; Huang, Xiao-Fan; Liao, Kuang-Wen; Lee, Ming-Shih; Tsai, Nu-Man

    2013-01-01

    Glioblastoma multiforme (GBM) is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer. PMID:24319475

  14. Inhibition of Tumor Angiogenesis and Growth by Nanoparticle-Mediated p53 Gene Therapy in Mice

    PubMed Central

    Prabha, Swayam; Sharma, Blanka; Labhasetwar, Vinod

    2012-01-01

    Mutation of the p53 tumor suppressor gene, the most common genetic alteration in human cancers, results in more aggressive disease and increased resistance to conventional therapies. Aggressiveness may be related to the increased angiogenic activity of cancer cells containing mutant p53. To restore wild-type p53 function in cancer cells, we developed polymeric nanoparticles (NPs) for p53 gene delivery. Previous in vitro and in vivo studies demonstrated the ability of these NPs to provide sustained intracellular release of DNA, thus sustained gene transfection and decreased tumor cell proliferation. We investigated in vivo mechanisms involved in NP-mediated p53 tumor inhibition, with focus on angiogenesis. We hypothesize that sustained p53 gene delivery will help decrease tumor angiogenic activity and thus reduce tumor growth and improve animal survival. Xenografts of p53 mutant tumors were treated with a single intratumoral injection of p53NPs. We observed intratumoral p53 gene expression corresponding to tumor growth inhibition, over 5 weeks. Treated tumors showed upregulation of thrombospondin-1, a potent antiangiogenic factor, and a decrease in microvessel density vs. controls (saline, p53 DNA alone, and control NPs). Greater levels of apoptosis were also observed in p53NP-treated tumors. Overall, this led to significantly improved survival in p53NP-treated animals. NP-mediated p53 gene delivery slowed cancer progression and improved survival in an in vivo cancer model. One mechanism by which this is accomplished is disruption of tumor angiogenesis. We conclude that the NP-mediated sustained tumor p53 gene therapy can effectively be used for tumor growth inhibition. PMID:22595792

  15. Early treatment with metformin induces resistance against tumor growth in adult rats.

    PubMed

    Trombini, Amanda B; Franco, Claudinéia Cs; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane As; Fabricio, Gabriel S; de Sant'Anna, Juliane R; Castro-Prado, Marialba Aa; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo Cf

    2015-06-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer. PMID:26024008

  16. Celecoxib prevents tumor growth in an animal model by a COX2 independent mechanism

    Microsoft Academic Search

    Amanda Leite Bastos-Pereira; Daiana Lugarini; Adriana de Oliveira-Christoff; Thiago Vinicius Ávila; Simone Teixeira; Amanda do Rocio Andrade Pires; Sílvia Maria Suter Correia Cadena; Lucélia Donatti; Helena Cristina da Silva de Assis; Alexandra Acco

    2010-01-01

    Purpose  Nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to reduce cell growth in several tumors. Among these possible\\u000a antineoplastic drugs are cyclooxygenase-2 (COX-2)-selective drugs, such as celecoxib, in which antitumoral mechanisms were\\u000a evaluated in rats bearing Walker-256 (W256) tumor.\\u000a \\u000a \\u000a \\u000a Methods  W256 carcinosarcoma cells were inoculated subcutaneously (107 cells\\/rat) in rats submitted to treatment with celecoxib (25 mg kg?1) or vehicle for 14 days. Tumor growth,

  17. Tumor Microenvironments Correspond to Unique Metabolic Signatures that Affect Tumor Growth | Physical Sciences in Oncology

    Cancer.gov

    Using a genetic construct that produces a green glow as a tumor responds to microenvironmental stresses, a team of investigators at Stanford University have shown that the way in which a tumor responds to stress can predict how it will grow in the body. This work, led by Albert Koong, M.D., was published in the journal Cancer Research.

  18. Cyanidin 3Glucoside and Peonidin 3Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis In Vitro and Suppress Tumor Growth In Vivo

    Microsoft Academic Search

    Pei-Ni Chen; Shu-Chen Chu; Hui-Ling Chiou; Chui-Liang Chiang; Shun-Fa Yang; Yih-Shou Hsieh

    2005-01-01

    Dietary polyphenols, including anthocyanins, are suggested to be involved in the protective effects of fruits and vegetables against cancer. However, anticancer effects of peonidin 3-glucoside have not been clearly demonstrated, with only limited studies being available concerning the in- hibitory effect of cyanidin 3-glucoside for tumor cell growth. Therefore, in this study, we have isolated and identified the two bioactive

  19. Regulation of Tumor Growth and Metastasis: The Role of Tumor Microenvironment

    PubMed Central

    Goubran, Hadi A; Kotb, Rami R; Stakiw, Julie; Emara, Mohamed E; Burnouf, Thierry

    2014-01-01

    The presence of abnormal cells with malignant potential or neoplastic characteristics is a relatively common phenomenon. The interaction of these abnormal cells with their microenvironment is essential for tumor development, protection from the body’s immune or defence mechanisms, later progression and the development of life-threatening or metastatic disease. The tumor microenvironment is a collective term that includes the tumor’s surrounding and supportive stroma, the different effectors of the immune system, blood platelets, hormones and other humoral factors. A better understanding of the interplay between the tumor cells and its microenvironment can provide efficient tools for cancer management, as well as better prevention, screening and risk assessment protocols. PMID:24926201

  20. Pu-erh tea inhibits tumor cell growth by down-regulating mutant p53.

    PubMed

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms' metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  1. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    PubMed Central

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  2. A hybrid cellular automaton model of solid tumor growth and bioreductive drug transport.

    PubMed

    Kazmi, Nabila; Hossain, M A; Phillips, Roger M

    2012-01-01

    Bioreductive drugs are a class of hypoxia selective drugs that are designed to eradicate the hypoxic fraction of solid tumors. Their activity depends upon a number of biological and pharmacological factors and we used a mathematical modeling approach to explore the dynamics of tumor growth, infusion, and penetration of the bioreductive drug Tirapazamine (TPZ). An in-silico model is implemented to calculate the tumor mass considering oxygen and glucose as key microenvironmental parameters. The next stage of the model integrated extra cellular matrix (ECM), cell-cell adhesion, and cell movement parameters as growth constraints. The tumor microenvironments strongly influenced tumor morphology and growth rates. Once the growth model was established, a hybrid model was developed to study drug dynamics inside the hypoxic regions of tumors. The model used 10, 50 and 100 \\mu {\\rm M} as TPZ initial concentrations and determined TPZ pharmacokinetic (PK) (transport) and pharmacodynamics (cytotoxicity) properties inside hypoxic regions of solid tumor. The model results showed that diminished drug transport is a reason for TPZ failure and recommend the optimization of the drug transport properties in the emerging TPZ generations. The modeling approach used in this study is novel and can be a step to explore the behavioral dynamics of TPZ. PMID:23221082

  3. AMPK is a negative regulator of the Warburg Effect and suppresses tumor growth in vivo

    PubMed Central

    Faubert, Brandon; Boily, Gino; Izreig, Said; Griss, Takla; Samborska, Bozena; Dong, Zhifeng; Dupuy, Fanny; Chambers, Christopher; Fuerth, Benjamin J.; Viollet, Benoit; Mamer, Orval A.; Avizonis, Daina; DeBerardinis, Ralph J.; Siegel, Peter M.; Jones, Russell G.

    2012-01-01

    Summary AMPK is a metabolic sensor that helps maintain cellular energy homeostasis. Despite evidence linking AMPK with tumor suppressor functions, the role of AMPK in tumorigenesis and tumor metabolism is unknown. Here we show that AMPK negatively regulates aerobic glycolysis (the Warburg effect) in cancer cells, and suppresses tumor growth in vivo. Genetic ablation of the ?1 catalytic subunit of AMPK accelerates Myc-induced lymphomagenesis. Inactivation of AMPK? in both transformed and non-transformed cells promotes a metabolic shift to aerobic glycolysis, increased allocation of glucose carbon into lipids, and biomass accumulation. These metabolic effects require normoxic stabilization of the hypoxia-inducible factor-1? (HIF-1?), as silencing HIF-1? reverses the shift to aerobic glycolysis and the biosynthetic and proliferative advantages conferred by reduced AMPK? signaling. Together our findings suggest that AMPK activity opposes tumor development, and its loss fosters tumor progression in part by regulating cellular metabolic pathways that support cell growth and proliferation. PMID:23274086

  4. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors

    NASA Astrophysics Data System (ADS)

    Rubin, Joshua B.; Kung, Andrew L.; Klein, Robyn S.; Chan, Jennifer A.; Sun, Yanping; Schmidt, Karl; Kieran, Mark W.; Luster, Andrew D.; Segal, Rosalind A.

    2003-11-01

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  5. Placenta Growth Factor Overexpression Inhibits Tumor Growth, Angiogenesis, and Metastasis by Depleting Vascular Endothelial Growth Factor Homodimers in Orthotopic Mouse Models

    Microsoft Academic Search

    Lei Xu; David M. Cochran; Ricky T. Tong; Frank Winkler; Satoshi Kashiwagi; Rakesh K. Jain; Dai Fukumura

    The role of placenta growth factor (PlGF) in pathologic angiogenesis is controversial. The effects of PlGF on growth, angiogenesis, and metastasis from orthotopic tumors are not known. To this end, we stably transfected three human cancer cell lines (A549 lung, HCT116 colon, and U87-MG glioblasto- ma) with human plgf-2 full-length cDNA. Overexpression of PlGF did not affect tumor cell proliferation

  6. Radiological Insertion of Denver Peritoneovenous Shunts for Malignant Refractory Ascites: A Retrospective Multicenter Study (JIVROSG-0809)

    SciTech Connect

    Sugawara, Shunsuke, E-mail: suga_shun@hotmail.com [Ebara Hospital, Department of Radiology (Japan); Sone, Miyuki [Iwate Medical University School of Medicine, Department of Radiology (Japan); Arai, Yasuaki; Sakamoto, Noriaki [National Cancer Center Hospital, Division of Diagnostic Radiology (Japan); Aramaki, Takeshi [Shizuoka Cancer Center, Division of Diagnostic Radiology (Japan); Sato, Yozo; Inaba, Yoshitaka [Aichi Cancer Center Hospital, Department of Interventional and Diagnostic Radiology (Japan); Takeuchi, Yoshito [National Cancer Center Hospital, Division of Diagnostic Radiology (Japan); Ueno, Teruko; Matsueda, Kiyoshi [Cancer Institute Hospital of Japanese Foundation for Cancer Research, Department of Diagnostic Imaging (Japan); Moriguchi, Michihisa; Tsushima, Takahiro [Shizuoka Cancer Center, Division of Diagnostic Radiology (Japan)

    2011-10-15

    Purpose: Peritoneal venous shunts (PVSs) are widely used for palliating symptoms of refractory malignant ascites and are recognized as one of the practical methods. However, reliable clinical data are insufficient because most previous reports have been small studies from single centers. We conducted a retrospective, multicenter study to evaluate the safety and efficacy of radiologically placed PVSs in patients with malignant refractory ascites. Methods: A total of 133 patients with malignant ascites refractory to medical therapies were evaluated for patient characteristics, technical success, efficacy, survival times, adverse events, and changes in laboratory data. Results: PVSs were successfully placed in all patients and were effective (i.e., improvement of ascites symptoms lasting 7 days or more) in 110 (82.7%). The median duration of symptom palliation was 26 days and median survival time was 41 days. The most frequent adverse event was PVS dysfunction, which occurred in 60 (45.1%) patients, among whom function was recovered with an additional minimally invasive procedure in 9. Abnormalities in coagulation (subclinical disseminated intravascular coagulation) occurred in 37 (27.8%) patients, although only 7 (5.3%) developed clinical disseminated intravascular coagulation. Other major adverse events were gastrointestinal bleeding (9.8%), sepsis (3.8%), and acute heart failure (3.0%). PVS was least effective in patients with elevated serum creatinine, bloody ascites, or gynecologic tumor. Conclusions: Radiological PVS is a technically feasible and effective method for palliating the symptoms from refractory malignant ascites, but preoperative evaluation and monitoring the postprocedural complications are mandatory to preclude severe adverse events after PVS.

  7. Pregnancy luteoma followed with massive ascites and elevated CA125 after ovulation induction therapy: a case report and review of literatures

    PubMed Central

    Wang, Ying; Zhou, Feng; Qin, Jia-Le; Qian, Zhi-Da; Huang, Li-Li

    2015-01-01

    Objectives: To report a rare case of ovarian tumor with an unusual presentation; an ovarian pregnancy luteoma with massive ascites and elevated CA125 after ovulation induction therapy. Case presentation: A 26-year-old pregnant woman complained lower abdominal distension. Ultrasound imaging showed a solid tumor in the right adexna and massive ascites. The blood test showed elevated serum level of CA125 and androgens. The patient underwent the right salpingo-oophorectomy, and then the results of blood test were normal and ascites disappeared. Conclusions: pregnancy luteoma followed with massive ascites and increased CA125 after ovulation induction therapy is a very rare case. It is important to provide appropriate medical/surgical intervention without disturbing the pregnancy iatrogenically or causing unnecessary maternal morbidity. PMID:25785161

  8. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo.

    PubMed

    Yang, Lihua; Jackson, Erin; Woerner, B Mark; Perry, Arie; Piwnica-Worms, David; Rubin, Joshua B

    2007-01-15

    The chemokine CXCL12 and its cognate receptor CXCR4 regulate malignant brain tumor growth and are potential chemotherapeutic targets. However, the molecular basis for CXCL12-induced tumor growth remains unclear, and the optimal approach to inhibiting CXCR4 function in cancer is unknown. To develop such a therapeutic approach, we investigated the signaling pathways critical for CXCL12 function in normal and malignant cells. We discovered that CXCL12-dependent tumor growth is dependent upon sustained inhibition of cyclic AMP (cAMP) production, and that the antitumor activity of the specific CXCR4 antagonist AMD 3465 is associated with blocking cAMP suppression. Consistent with these findings, we show that pharmacologic elevation of cAMP with the phosphodiesterase inhibitor Rolipram suppresses tumor cell growth in vitro and, upon oral administration, inhibits intracranial growth in xenograft models of malignant brain tumors with comparable efficacy to AMD 3465. These data indicate that the clinical evaluation of phosphodiesterase inhibitors in the treatment of patients with brain tumors is warranted. PMID:17234775

  9. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance.

    PubMed

    Salem, Ahmed F; Whitaker-Menezes, Diana; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2012-11-15

    Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would "fuel" enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1? and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1? and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1? and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial "power" in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1?, PGC-1?, mitoNEET and POLRMT should all be considered as tumor promoters or "metabolic oncogenes." Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial "poison") prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells. PMID:23070475

  10. Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells

    Microsoft Academic Search

    Chia-Ling Hsieh; Thomas A Gardner; Li Miao; Gary Balian; Leland W K Chung; Leland WK Chung

    2004-01-01

    Stromal–epithelial interaction contributes to local prostate tumor growth, androgen-independent progression and distant metastasis. We have established in vitro coculture and in vivo chimeric tumor models to evaluate the roles of stromal cells isolated from either osteosarcoma or normal bone, a site where prostate cancer cells frequently metastasize, in contributing to the growth and survival of human prostate cancer cells. We

  11. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioma, and may therefore provide a tool to make target delineation more objective and automated.

  12. [Cell-free and concentrated ascites reinfusion therapy(CART)].

    PubMed

    Yoshizawa, Akitaka; Gyouda, Yasuaki; Ishiguro, Toshihiko; Matsuzaki, Keisuke; Yoshizawa, Takayuki

    2012-12-01

    The cell-free and concentrated ascites reinfusion therapy(CART)is a useful palliative maneuver in a patient suffering from ascites. I think that home medical care cooperation is essential to diffuse at home CART. PMID:23268893

  13. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis. PMID:24416386

  14. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer.

    PubMed

    Riabov, Vladimir; Kim, David; Chhina, Surmeet; Alexander, Richard B; Klyushnenkova, Elena N

    2015-07-01

    Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNF?, IL1?) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects. PMID:25893810

  15. The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression.

    PubMed

    Gao, Dingcheng; Mittal, Vivek

    2009-08-01

    Emerging evidence from murine models suggests that tumor-specific endocrine factors systemically stimulate the quiescent bone marrow (BM) compartment, resulting in the expansion, mobilization and recruitment of BM progenitor cells. Discrete subsets of tumor-instigated BM-derived progenitor cells support tumor progression and metastasis by regulating angiogenesis, inflammation and immune suppression. Notably, clinical studies have begun to reveal that increased BM recruitment in tumors is associated with poor prognosis. Thus, the BM-derived tumor microenvironment is an attractive therapeutic target, and drugs targeting the components of the microenvironment are currently in clinical trials. Here, we focus on recent advances and emerging concepts regarding the intriguing role of BM-derived cells in tumor growth, metastasis initiation and progression, and we discuss future directions in the context of novel diagnostic and therapeutic opportunities. PMID:19665928

  16. The effect of partial hepatectomy on tumor growth in rats: in vivo and in vitro studies

    Microsoft Academic Search

    Koert P. De Jong; Harold E. Lont; Amelie M. Bijma; Mark A. M. Brouwers; Elisabeth G. E. De Vries; Marco L. Van Veen; Richard L. Marquet; Maarten J. H. Slooff; Onno T. Terpstra

    1995-01-01

    Residual tumor in the remnant liver after partial hepatectomy (PH) for colorectal liver metastases is a serious clinical problem. This fact is reflected by the high number of recurrences after potentially curative liver resections. Liver regeneration, it appears, might influence the growth of remaining micrometastases in the liver. Using rats, we demonstrated enhancement of growth of a syngeneic colon carcinoma

  17. Receptor tyrosine kinase inhibition suppresses growth of pediatric renal tumor cells in vitro

    Microsoft Academic Search

    Shalizeh Naraghi; Sami Khoshyomn; Joseph A DeMattia; Dennis W Vane

    2000-01-01

    Purpose: Children who undergo standard therapy for renal tumors are at an increased risk for treatment sequelae such as congestive heart failure, abnormal trunk development, and secondary malignancies. Therefore, research on the use of novel chemotherapeutic agents with fewer side effects is justified. Recent experimental evidence suggests that growth factor receptors such as epidermal growth factor receptor (EGFR) and platelet-derived

  18. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA

    Microsoft Academic Search

    M Y Çeliker; M Wang; E Atsidaftos; X Liu; Y E Liu; Y Jiang; E Valderrama; I D Goldberg; Y E Shi

    2001-01-01

    Extracellular matrix (ECM) degrading matrix metalloproteinases (MMPs) lead to ECM turnover, a key event in cancer growth and progression. The tissue inhibitors of matrix metalloproteinases (TIMPs) limit the activity of MMPs, which suggests their use for cancer gene therapy. Here we report that systemic administration of naked TIMP-4 DNA significantly inhibited Wilms' tumor growth in nude mice. TIMP-4, whose expression

  19. Incidental Chylous Ascites at the Time of Cesarean Section

    PubMed Central

    Thompson, Kida A.; Al Khabbaz, Antoun

    2015-01-01

    Chylous ascites has multiple etiologies including malignancies, liver cirrhosis, intraperitoneal infections, and trauma. It is rarely reported in pregnancy. We report a case of chylous ascites noted at the time of cesarean section performed at 35 weeks of gestation on a patient with preeclampsia and suspected placental abruption. The diagnosis and treatment of chylous ascites as well as the pregnancy outcome are presented. A literature review of chylous ascites in pregnancy is discussed as well.

  20. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model.

    PubMed

    Yin, Tao; He, Sisi; Shen, Guobo; Ye, Tinghong; Guo, Fuchun; Wang, Yongsheng

    2015-09-01

    Neuropsychological factors have been shown to influence tumor progression and therapeutic response. The present study investigated the effect of the dopamine receptor antagonist thioridazine on murine breast cancer. The anti?tumor efficacy of thioridazine was assessed using a murine breast cancer model. Cell apoptosis and proliferation were analyzed in vitro using flow cytometry (FCM) and the MTT assay, respectively. Western blot analysis was performed to assess Akt, phosphorylated (p)?Akt, signal transducer and activator of transcription (STAT) 3, p?STAT3 and p?p65 in tumor cells following treatment with thioridazine. The Ki67 index and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)?positive apoptotic cells were assessed in the tumor sections. Thioridazine was found to reduce tumor growth, inhibit tumor cell proliferation and induce apoptosis in a dose? and time?dependent manner in vitro. Thioridazine was also found to markedly inhibit tumor proliferation and induce tumor cell apoptosis in vivo as shown by the lower Ki67 index and increase in TUNEL?positive cells. In addition, thioridazine was observed to inhibit the activation of the canonical nuclear factor ??light?chain?enhancer of activated B cells pathway and exert anti?tumor effects by remodeling the tumor stroma, as well as inhibit angiogenesis in the tumor microenvironment. In conclusion, thioridazine was found to significantly inhibit breast tumor growth and the potential for thioridazine to be used in cancer therapy may be re?evaluated and investigated in clinical settings. PMID:26095429

  1. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis

    PubMed Central

    Lee, Sang Hun; Jeong, Dongjun; Han, Yong-Seok

    2015-01-01

    The shaping of new blood vessels is a significant event in cancer growth and metastasis. Therefore, the molecular system of cancer angiogenesis has garnered considerable interest in cancer research. The vascular endothelial growth factor (VEGF) and VEGF receptor pathway are recognized as the key regulators of the angiogenic process. Activation of the VEGF/VEGF-receptor pathway initiates signaling cascades that promote endothelial cell growth, migration, and differentiation. Recently, VEGF was shown to play a role in the recruitment of bone marrow-derived endothelial progenitor cells to neovascularization sites. The role of VEGF in promoting tumor angiogenesis and the occurrence of human cancers has led to the rational design and development of agents that selectively target this pathway. Moreover, these anti-VEGF/VEGF receptor agents show therapeutic potential by inhibition of angiogenesis and tumor growth in preclinical models. In this review, we summarize the role of the VEGF pathway during tumor angiogenesis.

  2. Bioassay of Eucalyptus extracts for anticancer activity against Ehrlich ascites carcinoma (eac) cells in Swiss albino mice

    PubMed Central

    Islam, Farhadul; Khatun, Hasina; Ghosh, Soby; Ali, MM; Khanam, JA

    2012-01-01

    Objective To evaluate the antineoplastic activity of Eucalyptus extract (EuE) against Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Methods Preliminary examination of four plant extracts (namely Eucalyptus, Costus, Azadirachta, Feronia) has been done by observing the reduction ability of number of EAC cells in previously inoculated Swiss albino mice. Among them as EuE showed maximum capability, the whole study has been conducted with EuE only. Important parameters viz. enhancement of life span, reduction of average tumor weight etc. have been studied. In addition the effects of EuE on hematological parameters in both normal and EAC inoculated mice have been measured. Effect of EuE on normal peritoneal cells has also been studied. Results : EuE reduced tumor burden remarkably. It reduced the tumor growth rate and enhanced the life span of EAC bearing mice noticeably. It reversed back the hematological parameters towards normal, reduced the trasplantability of EAC cells and enhanced the immunomodulatory effects in mice. The host toxic effect of EuE in mice is minimum and mostly reversible with time. All such data have been compared with those obtained by running parallel experiments with bleomycin at dose 0.3 mg/kg (i.p.). Conclusions The Eucalyptus extract may be considered as a potent anticancer agent for advanced researches. PMID:23569937

  3. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation

    Microsoft Academic Search

    Takashi Sasamura; Shigenobu Nakamura; Yuko Iida; Hideki Fujii; Jun Murata; Ikuo Saiki; Hiroshi Nojima; Yasushi Kuraishi

    2002-01-01

    The present study was conducted to clarify whether relief from cancer pain by morphine would suppress tumor growth and metastasis. When given orthotopic inoculation of B16–BL6 melanoma cells into the hind paw, C57BL\\/6 mice showed moderate and marked hyperalgesia on days 7–10 and from day 14 post-inoculation, respectively. The volume of inoculated hind paw was increased exponentially as a function

  4. Neonatal Urinary Ascites: A Report of Three Cases

    PubMed Central

    Gajjar, Priya; Nourse, Peter

    2015-01-01

    Urinary ascites in neonates is not a common condition. Three cases of urinary ascites are presented and each of them has a different aetiology. Neonates with urinary ascites usually present as clinical emergency, requiring resuscitation, ventilator support, and subsequent drainage of urine. The ultimate management depends on the site of extravasation and the underlying cause. PMID:25954559

  5. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models. PMID:24636868

  6. Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy

    PubMed Central

    D’Amico, Gabriela; Korhonen, Emilia A.; Anisimov, Andrey; Zarkada, Georgia; Holopainen, Tanja; Hägerling, René; Kiefer, Friedemann; Eklund, Lauri; Sormunen, Raija; Elamaa, Harri; Brekken, Rolf A.; Adams, Ralf H.; Koh, Gou Young; Saharinen, Pipsa; Alitalo, Kari

    2014-01-01

    The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy. PMID:24430181

  7. Host endothelial S1PR1 regulation of vascular permeability modulates tumor growth

    PubMed Central

    Sarkisyan, Gor; Gay, Laurie J.; Nguyen, Nhan; Felding, Brunhilde H.

    2014-01-01

    Understanding vascular growth and maturation in developing tumors has important implications for tumor progression, spread, and ultimately host survival. Modulating the signaling of endothelial G protein-coupled receptors (GPCRs) in blood and lymphatic vessels can enhance or limit tumor progression. Sphingosine 1-phosphate receptor 1 (S1PR1) is a GPCR for circulating lysophospholipid S1P that is highly expressed in blood and lymphatic vessels. Using the S1PR1- enhanced green fluorescent protein (eGFP) mouse model in combination with intravital imaging and pharmacologic modulation of S1PR1 signaling, we show that boundary conditions of high and low S1PR1 signaling retard tumor progression by enhancing or destabilizing neovasculature integrity, respectively. In contrast, midrange S1PR1 signaling, achieved by receptor antagonist titration, promotes abundant growth of small, organized vessels and thereby enhances tumor progression. Furthermore, in vivo S1PR1 antagonism supports lung colonization by circulating tumor cells. Regulation of endothelial S1PR1 dynamically controls vascular integrity and maturation and thus modulates angiogenesis, tumor growth, and hematogenous metastasis. PMID:24740542

  8. Elevated epidermal growth factor receptor binding in plutonium-induced lung tumors from dogs

    SciTech Connect

    Leung, F.C.; Bohn, L.R.; Dagle, G.E. (Pacific Northwest Lab., Richland, WA (USA))

    1991-04-01

    The objective of this study is to examine and characterize epidermal growth factor receptor (EGF-R) binding in inhaled plutonium-induced canine lung-tumor tissue and to compare it with that in normal canine lung tissue. Crude membrane preparations from normal and lung-tumor tissue from beagle dogs were examined in a radioreceptor assay, using {sup 125}I-labeled epidermal growth factor (EGF) as a ligand. Specific EGF receptor binding was determined in the presence of excess unlabeled EGF. We have examined EGF receptor binding in eight lung-tumor samples obtained from six dogs. Epidermal growth factor receptor binding was significantly greater in lung-tumor samples (31.38%) compared with that in normal lung tissue (3.76%). Scatchard plot analysis from the displacement assay revealed that there was no statistical difference in the binding affinity but significantly higher concentration of EGF-R sites in the lung-tumor tissue (619 fmol/mg) than in normal lung tissue (53 fmol/mg). The increase in EGF-R number in plutonium-induced dog lung tumors does not seem to correlate with increase in the initial lung burden exposure to plutonium. Our results demonstrate that there is a significant increase in EGF-R binding in inhaled plutonium-induced dog lung tumors.

  9. Definition of Prostaglandin E2-EP2 Signals in the Colon Tumor Microenvironment That Amplify Inflammation and Tumor Growth.

    PubMed

    Ma, Xiaojun; Aoki, Tomohiro; Tsuruyama, Tatsuaki; Narumiya, Shuh

    2015-07-15

    Inflammation in the colon contributes significantly to colorectal cancer development. While aspirin reduces the colorectal cancer risk, its action mechanism, especially in inflammation in tumor microenvironment, still remains obscure. Here, we examined this issue by subjecting mice deficient in each prostaglandin (PG) receptor to colitis-associated cancer model. Deficiency of PGE receptor subtype EP2 selectively reduced, and deficiency of EP1 and EP3 enhanced, the tumor formation. EP2 is expressed in infiltrating neutrophils and tumor-associated fibroblasts in stroma, where it regulates expression of inflammation- and growth-related genes in a self-amplification manner. Notably, expression of cytokines such as TNF? and IL6, a chemokine, CXCL1, a PG-producing enzyme, COX-2, and Wnt5A was significantly elevated in tumor lesions of wild-type mice but this elevation was significantly suppressed in EP2-deficient mice. Intriguingly, EP2 stimulation in cultured neutrophils amplified expression of TNF?, IL6, CXCL1, COX-2, and other proinflammatory genes synergistically with TNF?, and EP2 stimulation in cultured fibroblasts induced expression of EP2 itself, COX-2, IL6, and Wnt genes. EP2 expression in infiltrating neutrophils and tumor-associated fibroblasts was also found in clinical specimen of ulcerative colitis-associated colorectal cancer. Bone marrow transfer experiments suggest that EP2 in both cell populations is critical for tumorigenesis. Finally, administration of a selective EP2 antagonist potently suppressed tumorigenesis in this model. Our study has thus revealed that EP2 in neutrophils and tumor-associated fibroblasts promotes colon tumorigenesis by amplifying inflammation and shaping tumor microenvironment, and suggests that EP2 antagonists are promising candidates of aspirin-alternative for chemoprevention of colorectal cancer. Cancer Res; 75(14); 2822-32. ©2015 AACR. PMID:26018088

  10. Dynamic tumor growth patterns in a novel murine model of colorectal cancer.

    PubMed

    Paul Olson, Terrah J; Hadac, Jamie N; Sievers, Chelsie K; Leystra, Alyssa A; Deming, Dustin A; Zahm, Christopher D; Albrecht, Dawn M; Nomura, Alice; Nettekoven, Laura A; Plesh, Lauren K; Clipson, Linda; Sullivan, Ruth; Newton, Michael A; Schelman, William R; Halberg, Richard B

    2014-01-01

    Colorectal cancer often arises from adenomatous colonic polyps. Polyps can grow and progress to cancer, but may also remain static in size, regress, or resolve. Predicting which polyps progress and which remain benign is difficult. We developed a novel long-lived murine model of colorectal cancer with tumors that can be followed by colonoscopy. Our aim was to assess whether these tumors have similar growth patterns and histologic fates to human colorectal polyps to identify features to aid in risk stratification of colonic tumors. Long-lived Apc(Min/+) mice were treated with dextran sodium sulfate to promote colonic tumorigenesis. Tumor growth patterns were characterized by serial colonoscopy with biopsies obtained for immunohistochemistry and gene expression profiling. Tumors grew, remained static, regressed, or resolved over time with different relative frequencies. Newly developed tumors demonstrated higher rates of growth and resolution than more established tumors that tended to remain static in size. Colonic tumors were hyperplastic lesions (3%), adenomas (73%), intramucosal carcinomas (20%), or adenocarcinomas (3%). Interestingly, the level of ?-catenin was higher in adenomas that became intratumoral carcinomas than those that failed to progress. In addition, differentially expressed genes between adenomas and intramucosal carcinomas were identified. This novel murine model of intestinal tumorigenesis develops colonic tumors that can be monitored by serial colonoscopy, mirror growth patterns seen in human colorectal polyps, and progress to colorectal cancer. Further characterization of cellular and molecular features is needed to determine which features can be used to risk-stratify polyps for progression to colorectal cancer and potentially guide prevention strategies. PMID:24196829

  11. Laparoscopic diagnosis of ascites in Lesotho.

    PubMed Central

    Menzies, R I; Fitzgerald, J M; Mulpeter, K

    1985-01-01

    In a prospective study of 98 consecutive patients with undiagnosed ascites examined by laparoscopy a correct immediate diagnosis was made in 76 (78%) and a final diagnosis in 92 (94%) of those who underwent laparoscopy. Visual diagnosis was highly accurate in patients with tuberculous peritonitis but only moderately accurate in those with carcinomatosis and liver disease. When the laparoscopic findings were compared with histological and microbiological results visual diagnosis was found to be the most accurate diagnostic method. Laparoscopy may readily be used in rural hospitals for diagnosing ascites. PMID:3160432

  12. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies

    NASA Astrophysics Data System (ADS)

    Kohandel, M.; Kardar, M.; Milosevic, M.; Sivaloganathan, S.

    2007-07-01

    Tumors cannot grow beyond a certain size (about 1-2 mm in diameter) through simple diffusion of oxygen and other essential nutrients into the tumor. Angiogenesis, the formation of blood vessels from pre-existing vessels, is a crucial and observed step, through which a tumor obtains its own blood supply. Thus, strategies that interfere with the development of this tumor vasculature, known as anti-angiogenic therapy, represent a novel approach to controlling tumor growth. Several pre-clinical studies have suggested that currently available angiogenesis inhibitors are unlikely to yield significant sustained improvements in tumor control on their own, but rather will need to be used in combination with conventional treatments to achieve maximal benefit. Optimal sequencing of anti-angiogenic treatment and radiotherapy or chemotherapy is essential to the success of these combined treatment strategies. Hence, a major challenge to mathematical modeling and computer simulations is to find appropriate dosages, schedules and sequencing of combination therapies to control or eliminate tumor growth. Here, we present a mathematical model that incorporates tumor cells and the vascular network, as well as their interplay. We can then include the effects of two different treatments, conventional cytotoxic therapy and anti-angiogenic therapy. The results are compared with available experimental and clinical data.

  13. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    SciTech Connect

    Hara, H.; Seon, B.K.

    1987-05-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.

  14. Timed daily administration of prolactin and corticosteroid hormone reduces murine tumor growth and enhances immune reactivity.

    PubMed

    Keisari, Y; Cincotta, E; Meier, A H; Cincotta, A H

    1999-05-01

    In the present study, we investigated the time-dependent interactive effects of daily injections of prolactin (PRL) and corticosterone (CORT) on the activation of lymphocyte function and inhibition of tumor growth in vivo in mice. BALB/c mice were injected subcutaneously with EMT-6 fibrosarcoma cells (a murine connective tissue tumor cell derived from mammary gland), and then different groups of animals were treated with PRL (1 microg/g body weight [BW] ip) at Oh, 4h, 8h, 12h, 16h, or 20h after CRT (1 microg/g BW ip) daily for 10 days. Different control groups were vehicle treated or treated with either hormone alone. Mice were kept in constant light 1 week before and during injections and in a 14:10 light-dark cycle thereafter. Tumor progression was monitored for up to 21 days after the cessation of treatment, and thereafter spleen lymphocytes were harvested and tested for mitogen-triggered proliferation. Prolactin administration at 8h or 16-20h after corticosteroid treatment reduced tumor volume by 77% and 49%, respectively, relative to vehicle-treated controls. Other time relations of hormone treatment were ineffectual. Further studies indicated that the immunosuppressant cyclosporin A (CSA) substantially stimulated tumor growth; this effect was completely abrogated by a simultaneous 8h related hormone treatment. How ever, the 8h hormone treatment was ineffective in inhibiting tumor growth in T-cell-deficient nude mice. Spleen lymphocytes from tumor-bearing (TB) mice showed an elevated basal proliferative capacity stimulated by concanavalin A (ConA; a stimulus for T-cell proliferation) and lipopolysaccharide (LPS; a stimulus for B-cell proliferation) compared to non-TB mice. Spleen lymphocytes from TB mice treated with CORT and PRL at 8h intervals exhibited an increased spontaneous (as well as LPS- and ConA- triggered) proliferation (by 104%, 48%, and 70%, respectively) compared with vehicle control TB mice. Fluorescence-activated cell sorting (FACS) analysis of splenocytes from hormone-treated animals indicated a 34-100% increase in the CD4+ (e.g., T helper cell) population. Treatment of animals with either hormone alone did not inhibit tumor growth or stimulate immune function relative to vehicle controls. The daily rhythms of plasma PRL, CORT, and thyroxine were all substantially altered by the presence of tumor in these mice. These results indicate that appropriately timed daily treatment of PRL and CORT can attenuate tumor growth, in part, via activation of antitumor immune mechanisms. Collectively, these data suggest that circadian neuroendocrine activities must be temporally organized appropriately to inhibit tumor growth. PMID:10373101

  15. Drugs which inhibit osteoclast function suppress tumor growth through calcium reduction in bone.

    PubMed

    Li, Xin; Liao, Jinhui; Park, Serk In; Koh, Amy J; Sadler, William D; Pienta, Kenneth J; Rosol, Thomas J; McCauley, Laurie K

    2011-06-01

    Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1(luc)) were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly, and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1(luc) cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5 ?g/mouse, twice/week), (OPG-Fc at 10mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors, vossicles and endogenous bones and serum biochemistry were performed. Antiresorptive administration was associated with decreased serum TRAP5b, reduced osteoclast numbers, and increased tibia and vossicle bone areas. ZA significantly decreased bone marrow calcium concentrations without affecting serum calcium. ZA and OPG-Fc significantly inhibited tumor growth in bone but not in collagen implants. In conclusion, the inhibitory effects of ZA or OPG-Fc on prostate tumor growth in bone are mediated via blocking bone resorption and calcium release from bone. PMID:21419883

  16. Drugs Which Inhibit Osteoclast Function Suppress Tumor Growth through Calcium Reduction in Bone

    PubMed Central

    Li, Xin; Liao, Jinhui; Park, Serk In; Koh, Amy J; Sadler, William D; Pienta, Kenneth J; Rosol, Thomas J; McCauley, Laurie K

    2011-01-01

    Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1luc) prostate cancer cells were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1luc cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5?g/mouse, twice/week), (OPG-Fc at 10mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors, vossicles and endogenous bones and serum biochemistry were performed. Antiresorptive administration was associated with decreased serum TRAP5b and reduced osteoclast numbers, increased tibia and vossicle bone areas. ZA significantly decreased bone marrow calcium concentrations without affecting serum calcium. ZA and OPG-Fc significantly inhibited tumor growth in bone but not in collagen implants. In conclusion, the inhibitory effects of ZA or OPG-Fc on prostate tumor growth in bone are mediated via blocking bone resorption and calcium release from bone. PMID:21419883

  17. Transplantation of human renal cell carcinoma into NMRI nu/nu mice. III. Effect of irradiation on tumor acceptance and tumor growth

    SciTech Connect

    Otto, U.; Huland, H.; Baisch, H.; Kloeppel, G.

    1985-07-01

    Irradiation of human renal cell carcinoma before radical tumor nephrectomy resulted in a significantly lower acceptance rate (1 of 7) in nude mice than for nonirradiated tumors (all of 13). The tumor tissue was transplanted into NMRI nu/nu mice immediately after nephrectomy. In this experimental system the authors demonstrated the reduced vitality of human tumor cells after irradiation. In a second series of experiments, 3 morphologically different human renal cell carcinomas were irradiated at various doses after establishment in nude mice. The irradiated tumor tissue was transplanted to the next passage. The morphology, proliferation rate and growth of these tumors were compared with those of nonirradiated controls. Radiation effect was dose dependent in the responding tumor types. The characteristics correlated with radiosensitivity were high proliferation rate (measured by flow cytometry), low cytologic grading and fast growth rate in the nude mice.

  18. Inhibition of Prostate Tumor Growth and Bone Remodeling by the Vascular Targeting Agent VEGF121\\/rGel

    Microsoft Academic Search

    Khalid A. Mohamedali; Ann T. Poblenz; Charles R. Sikes; Nora M. Navone; Philip E. Thorpe; Bryant G. Darnay; Michael G. Rosenblum

    2006-01-01

    The pathophysiology of tumor growth following skeletal metastases and the poor response of this type of lesion to therapeutic intervention remains incompletely understood. Vascular endothelial growth factor (VEGF)-A and its receptors play a role in both osteoclastogenesis and tumor growth. Systemic (i.v.) treatment of nude mice bearing intrafemoral prostate (PC-3) tumors with the vascular ablative agent VEGF121\\/recombinant gelonin (rGel) strongly

  19. Characterization of Human Kallikreins 6 and 10 in Ascites Fluid from Ovarian Cancer Patients

    Microsoft Academic Search

    Liu-Ying Luo; Antoninus Soosaipillai; Linda Grass; Eleftherios P. Diamandis

    2006-01-01

    Objectives: Human kallikreins 6 (hK6) and 10 (hK10) are secreted serine proteases. We previously found that hK6 and hK10 are highly overexpressed in epithelial ovarian tumors and demonstrated that serum levels of hK6 and hK10 are valuable biomarkers for ovarian cancer diagnosis and prognosis. Our aim is to purify and characterize these two kallikreins from ascites fluid of ovarian cancer

  20. A Comparison of Imaging Techniques to Monitor Tumor Growth and Cancer Progression in Living Animals

    PubMed Central

    Puaux, Anne-Laure; Ong, Lai Chun; Jin, Yi; Teh, Irvin; Hong, Michelle; Chow, Pierce K. H.; Golay, Xavier; Abastado, Jean-Pierre

    2011-01-01

    Introduction and Purpose. Monitoring solid tumor growth and metastasis in small animals is important for cancer research. Noninvasive techniques make longitudinal studies possible, require fewer animals, and have greater statistical power. Such techniques include FDG positron emission tomography (FDG-PET), magnetic resonance imaging (MRI), and optical imaging, comprising bioluminescence imaging (BLI) and fluorescence imaging (FLI). This study compared the performance and usability of these methods in the context of mouse tumor studies. Methods. B16 tumor-bearing mice (n = 4 for each study) were used to compare practicality, performance for small tumor detection and tumor burden measurement. Using RETAAD mice, which develop spontaneous melanomas, we examined the performance of MRI (n = 6 mice) and FDG-PET (n = 10 mice) for tumor identification. Results. Overall, BLI and FLI were the most practical techniques tested. Both BLI and FDG-PET identified small nonpalpable tumors, whereas MRI and FLI only detected macroscopic, clinically evident tumors. FDG-PET and MRI performed well in the identification of tumors in terms of specificity, sensitivity, and positive predictive value. Conclusion. Each of the four methods has different strengths that must be understood before selecting them for use. PMID:22121481

  1. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia

    Microsoft Academic Search

    E. A. Imel; M. Peacock; P. Pitukcheewanont; H. J. Heller; L. M. Ward; D. Shulman; M. Kassem; P. Rackoff; M. Zimering; A. Dalkin; E. Drobny; G. Colussi; J. L. Shaker; E. H. Hoogendoorn; S. L. Hui; M. J. Econs

    2006-01-01

    CONTEXT: Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tumors that cause TIO and is, at least partly, responsible for the manifestations of TIO. OBJECTIVE: The objective of this study was to determine the sensitivity

  2. Dietary fish oil suppresses tumor growth and metastasis of Lewis lung carcinoma in mice

    Microsoft Academic Search

    Daniel Yam; Alpha Peled; Monica Huszar; Meir Shinitzky

    1997-01-01

    In this study we examined the influence of different polyunsaturated fatty acid (PUFA) diets on the tumor growth and metastatic dissemination of the well-characterized Lewis Lung Carcinoma (3LL) in C57BL6J mice. The tumor-bearing mice were fed ad libitum with three different diets of 5% oil; either soybean oil (SO), which is rich in omega-6 (?-6); perilla oil (PO), which is

  3. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3? activation, while p38? phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors. PMID:24789042

  4. Recombinant canstatin inhibits tumor growth in an orthotopic AT84 oral squamous cell carcinoma model

    Microsoft Academic Search

    Jeon Hwang-BoKi Hyun; Ki Hyun Yoo; Han-Sin Jeong; In Sik Chung

    2010-01-01

    The inhibitory effect of recombinant canstatin on tumor growth was investigated using an orthotopic oral squamous cell carcinoma\\u000a (AT-84 cells) animal (C3H\\/HeN) model. Recombinant canstatin from stably transfected Drosophila S2 cells was purified to homogeneity using a simple one-step Ni NTA affinity fractionation. In our oral cancer model, the\\u000a final volume and weight of tumors in groups treated with purified

  5. Increased epidermal growth factor receptor (EGFR) expression in malignant mammary phyllodes tumors

    Microsoft Academic Search

    Gary M. K. Tse; Philip C. W. Lui; Joaquim S. L. Vong; Kin-Mang Lau; Thomas C. Putti; Rooshdiya Karim; Richard A. Scolyer; C-Soon Lee; Alex M. C. Yu; David C. H. Ng; Agnes K. Y. Tse; Puay-Hoon Tan

    2009-01-01

    Mammary phyllodes tumors are uncommon stromal-epithelial neoplasms, and are divided into benign, borderline malignant and\\u000a frankly malignant groups on the basis of their histological features. Accumulating evidence shows that epidermal growth factor\\u000a receptor (EGFR) is involved in the pathogenesis and progression of many malignancies. This study investigated 453 phyllodes\\u000a tumors (296 benign, 98 borderline, 59 malignant) for EGFR expression using

  6. [Clear Cell Tumor of the Lung Showing Gradual Growth for 6 years].

    PubMed

    Fukui, Takamasa; Wakatsuki, Yusuke; Yutaka, Yojiro; Katakura, Hiromichi; Yamanaka, Akira

    2015-03-01

    Clear cell tumor of the lung( CCTL) is a rare benign tumor that originates from the lung. We report a case of CCTL which had grown for 6 years. The patient was a 25-year-old woman and her chest roentgenogram detected a well-circumscribed coin-like shadow in the left lower lung field. Its size was 30 mm in diameter at consultation, and retrospectively we recognized a nodule of 13 mm in diameter in the same location on the health checkup roentgenogram 6 years before. The growth of the tumor suggested the possibility of malignancy, and the tumor was surgically resected by partial resection of the lung. Post operative course was uneventful. The tumor was clearly separated from pulmonary parenchyma, and was immunohistochemically diagnosed as CCTL. PMID:25743552

  7. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant.

    PubMed

    Haber, D A; Park, S; Maheswaran, S; Englert, C; Re, G G; Hazen-Martin, D J; Sens, D A; Garvin, A J

    1993-12-24

    A human Wilms tumor cell line (RM1) was developed to test the tumor suppressor activity of WT1, a zinc finger transcription factor that is expressed in the developing human kidney and is mutationally inactivated in a subset of Wilms tumors. Transfection of each of four wild-type WT1 isoforms suppressed the growth of RM1 cells. The endogenous WT1 transcript in these cells was devoid of exon 2 sequences, a splicing alteration that was also detected in varying amounts in all Wilms tumors tested but not in normal kidney. Production of this abnormal transcript, which encodes a functionally altered protein, may represent a distinct mechanism for inactivating WT1 in Wilms tumors. PMID:8266105

  8. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread.

    PubMed

    Wong, Ping-Pui; Demircioglu, Fevzi; Ghazaly, Essam; Alrawashdeh, Wasfi; Stratford, Michael R L; Scudamore, Cheryl L; Cereser, Biancastella; Crnogorac-Jurcevic, Tatjana; McDonald, Stuart; Elia, George; Hagemann, Thorsten; Kocher, Hemant M; Hodivala-Dilke, Kairbaan M

    2015-01-12

    Increasing chemotherapy delivery to tumors, while enhancing drug uptake and reducing side effects, is a primary goal of cancer research. In mouse and human cancer models in vivo, we show that coadministration of low-dose Cilengitide and Verapamil increases tumor angiogenesis, leakiness, blood flow, and Gemcitabine delivery. This approach reduces tumor growth, metastasis, and minimizes side effects while extending survival. At a molecular level, this strategy alters Gemcitabine transporter and metabolizing enzyme expression levels, enhancing the potency of Gemcitabine within tumor cells in vivo and in vitro. Thus, the dual action of low-dose Cilengitide, in vessels and tumor cells, improves chemotherapy efficacy. Overall, our data demonstrate that vascular promotion therapy is a means to improve cancer treatment. PMID:25584895

  9. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways.

    PubMed

    Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O M Zack

    2014-12-28

    Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and anti-inflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

  10. Magnolol-induced inhibition of tumor growth in systemic malignancies.

    PubMed

    Kapoor, Shailendra

    2013-12-01

    The commentary illustrates the significant tumor attenuating effects of magnolol and refers to the article on "Screening active anti-breast cancer compounds from Cortex Magnolia officinalis by 2D LC-MS" (X. Hou, et al., J. Sep. Sci. 2013, 36 (4), 706-712). On the basis of the literature, there is definitively need for further studies to fully understand the magnolol reation pathways and to harness the antineoplastic effects. PMID:24115640

  11. Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide

    PubMed Central

    Quann, Kevin; Gonzales, Donna M.; Mercier, Isabelle; Wang, Chenguang; Sotgia, Federica; Pestell, Richard G.; Lisanti, Michael P.; Jasmin, Jean-François

    2013-01-01

    Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTOR signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTOR pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma. PMID:23598719

  12. Avitalized bacteria mediate tumor growth control via activation of innate immunity.

    PubMed

    Klier, Ulrike; Maletzki, Claudia; Göttmann, Nadeshda; Kreikemeyer, Bernd; Linnebacher, Michael

    2011-01-01

    Acute bacterial infections have beneficial effects on tumor patients. To eliminate side effects evoked by viable microbes, we here assessed the immunotherapeutic potential of inactivated bacteria on colorectal carcinomas. Our In vitro results indicate a cell-specific direct cytotoxicity towards tumor cells presented by G1-arrest. Antitumoral activity was boosted in the presence of leukocytes. Long time stimulations revealed massive activation of NK cells even in complete autologous settings. In vivo, repetitive local treatment mediated tumor growth control. Evaluation of residual tumors identified increased infiltrates, with NK cells (CD49b(+), NKG2D(+)) being the main responding cell population. Substantial NK cell-mediated delay of tumor growth was also achieved in T-cell deficient mice xenografted with human colorectal carcinomas. Of note, local as well as systemic therapy mediated tumor growth control. These data highlight the potential of avitalized bacteria to especially activate the immune system's innate arm and they should be considered for future integrated immunotherapy. PMID:21463858

  13. Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide.

    PubMed

    Quann, Kevin; Gonzales, Donna M; Mercier, Isabelle; Wang, Chenguang; Sotgia, Federica; Pestell, Richard G; Lisanti, Michael P; Jasmin, Jean-François

    2013-05-15

    Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTOR signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTOR pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma. PMID:23598719

  14. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms

    PubMed Central

    Herroon, Mackenzie K.; Rajagurubandara, Erandi; Hardaway, Aimalie L.; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-01-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1?, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPAR? pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1? axis as a potential therapeutic target for this presently incurable disease. PMID:24240026

  15. Tumor-induced osteomalacia with normal systemic fibroblast growth factor-23 level.

    PubMed

    Amblee, Ambika; Uy, Juanito; Senseng, Carmencita; Hart, Peter

    2014-04-01

    A 38-year-old man presenting with long bone/rib fractures was diagnosed with tumor-induced osteomalacia (TIO) caused by a giant cell tumor in the right foot with normal systemic fibroblast growth factor-23 (FGF23) levels. Multiple imaging modalities done initially and one year later were unable to localize the tumor. New-onset foot pain discovered a right foot mass with resolution of metabolic abnormalities post-surgery. Sampling from both femoral veins showed an elevated FGF23 value on the right side. This case is unique in that the patient had a normal systemic FGF23 level even with severe clinical manifestations of TIO. PMID:25852869

  16. Model of avascular tumor growth and response to low dose exposure

    NASA Astrophysics Data System (ADS)

    Rodriguez Aguirre, J. M.; Custidiano, E. R.

    2011-12-01

    A single level cellular automata model is described and used to simulate early tumor growth, and the response of the tumor cells under low dose radiation affects. In this model the cell cycle of the population of normal and cancer cells is followed. The invasion mechanism of the tumor is simulated by a local factor that takes into account the microenvironment hardness to cell development, in a picture similar to the AMTIH model. The response of normal and cancer cells to direct effects of radiation is tested for various models and a model of bystander response is implemented.

  17. Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth

    Microsoft Academic Search

    Evangelia I. Zacharaki; Cosmina S. Hogea; Dinggang Shen; George Biros; Christos Davatzikos

    2009-01-01

    Although a variety of diffeomorphic deformable registration methods exist in the literature, application of these methods in the presence of space-occupying lesions is not straightforward. The motivation of this work is spatial normalization of MR images from patients with brain tumors in a common stereotaxic space, aiming to pool data from different patients into a common space in order to

  18. Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice.

    PubMed

    Koodie, Lisa; Yuan, Hongyan; Pumper, Jeffery A; Yu, Haidong; Charboneau, Richard; Ramkrishnan, Sundaram; Roy, Sabita

    2014-04-01

    Tumor cells secrete factors that stimulate the migration of peripheral blood leukocytes and enhance tumor progression by affecting angiogenesis. In these studies, we investigated the effect of morphine, a known immunosuppressant, on leukocyte migration and recruitment to conditioned media derived from long-term cultures of mouse Lewis lung carcinoma cells. Our results indicate that morphine treatment reduced the migration and recruitment of tumor-infiltrating leukocytes into Matrigel plugs and polyvinyl alcohol sponges containing conditioned media derived from long-term cultures of mouse Lewis lung carcinoma cells when compared with placebo. A reciprocal increase in peripheral blood leukocytes was observed at the time of plug or sponge removal in morphine-treated mice. Decreased angiogenesis was observed in conditioned media derived from long-term cultures of mouse Lewis lung carcinoma cells Matrigel plugs taken from morphine-treated wild-type mice when compared with placebo but was abolished in morphine-treated ?-opioid receptor knockout mice. In addition, in vitro studies using trans-well and electric cell substrate impedance sensing system studies reveal for the first time morphine's inhibitory effects on leukocyte migration and their ability to transmigrate across an activated endothelial monolayer. Taken together, these studies indicate that morphine treatment can potentially decrease leukocyte transendothelial migration and reduce angiogenesis associated with tumor growth. The use of morphine for cancer pain management may be beneficial through its effects on angiogenesis. PMID:24495739

  19. Morphine Inhibits Migration of Tumor-Infiltrating Leukocytes and Suppresses Angiogenesis Associated with Tumor Growth in Mice

    PubMed Central

    Koodie, Lisa; Yuan, Hongyan; Pumper, Jeffery A.; Yu, Haidong; Charboneau, Richard; Ramkrishnan, Sundaram; Roy, Sabita

    2015-01-01

    Tumor cells secrete factors that stimulate the migration of peripheral blood leukocytes and enhance tumor progression by affecting angiogenesis. In these studies, we investigated the effect of morphine, a known immunosuppressant, on leukocyte migration and recruitment to conditioned media derived from long-term cultures of mouse Lewis lung carcinoma cells. Our results indicate that morphine treatment reduced the migration and recruitment of tumor-infiltrating leukocytes into Matrigel plugs and polyvinyl alcohol sponges containing conditioned media derived from long-term cultures of mouse Lewis lung carcinoma cells when compared with placebo. A reciprocal increase in peripheral blood leukocytes was observed at the time of plug or sponge removal in morphine-treated mice. Decreased angiogenesis was observed in conditioned media derived from long-term cultures of mouse Lewis lung carcinoma cells Matrigel plugs taken from morphine-treated wild-type mice when compared with placebo but was abolished in morphine-treated ?-opioid receptor knockout mice. In addition, in vitro studies using trans-well and electric cell substrate impedance sensing system studies reveal for the first time morphine's inhibitory effects on leukocyte migration and their ability to transmigrate across an activated endothelial monolayer. Taken together, these studies indicate that morphine treatment can potentially decrease leukocyte transendothelial migration and reduce angiogenesis associated with tumor growth. The use of morphine for cancer pain management may be beneficial through its effects on angiogenesis. PMID:24495739

  20. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma

    PubMed Central

    Van Beijnum, Judy R.; Cerisoli, Francesco; Scaria, Puthupparampil V.; Verheul, Mark; Van Berkel, Maaike P.; Pieters, Ebel H. E.; Van Haastert, Rick J.; Yousefi, Afrouz; Mastrobattista, Enrico; Storm, Gert; Berezikov, Eugene; Cuppen, Edwin; Woodle, Martin; Schaapveld, Roel Q. J.; Prevost, Gregoire P.; Griffioen, Arjan W.; Van Noort, Paula I.; Schiffelers, Raymond M.

    2014-01-01

    Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC viability. We identified miRNA-7 (miR-7) as a potent negative regulator of angiogenesis. Introduction of miR-7 in EC resulted in strongly reduced cell viability, tube formation, sprouting and migration. Application of miR-7 in the chick chorioallantoic membrane assay led to a profound reduction of vascularization, similar to anti-angiogenic drug sunitinib. Local administration of miR-7 in an in vivo murine neuroblastoma tumor model significantly inhibited angiogenesis and tumor growth. Finally, systemic administration of miR-7 using a novel integrin-targeted biodegradable polymeric nanoparticles that targets both EC and tumor cells, strongly reduced angiogenesis and tumor proliferation in mice with human glioblastoma xenografts. Transcriptome analysis of miR-7 transfected EC in combination with in silico target prediction resulted in the identification of OGT as novel target gene of miR-7. Our study provides a comprehensive validation of miR-7 as novel anti-angiogenic therapeutic miRNA that can be systemically delivered to both EC and tumor cells and offers promise for miR-7 as novel anti-tumor therapeutic. PMID:25149532

  1. Three-dimensional multispecies nonlinear tumor growth–I. Model and numerical method

    PubMed Central

    Wise, S.M.; Lowengrub, J.S.; Frieboes, H.B.; Cristini, V.

    2012-01-01

    This is the first paper in a two-part series in which we develop, analyze and simulate a diffuse interface continuum model of multispecies tumor growth and tumor-induced angiogenesis in two and three dimensions. Three dimensional simulations of nonlinear tumor growth and neovascularization using this diffuse interface model were recently presented in Frieboes et al. (2007), but that paper did not describe the details of the model or the numerical algorithm. This is done here. In this diffuse interface approach, sharp interfaces are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. Accordingly, a continuum model of adhesion is introduced. The model is thermodynamically consistent, is related to recently developed mixture models, and thus is capable of providing a detailed description of tumor progression. The model is well-posed and consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. We demonstrate analytically and numerically that when the diffuse interface thickness tends to zero, the system reduces to a classical sharp interface model. Using a new fully adaptive, nonlinear multigrid/finite difference method the system is simulated efficiently. In this first paper, we present simulations of unstable avascular tumor growth in two and three dimensions and demonstrate that our techniques now make large-scale three dimensional simulations of tumors with complex morphologies computationally feasible. In Part II of this study, we will investigate multispecies tumor invasion, tumor-induced angiogenesis and focus on the morphological instabilities that may underlie invasive phenotypes. PMID:18485374

  2. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion

    PubMed Central

    Rabinovich, Shiran; Lazer, Galit; Idelchuck, Yulia; Ilan, Lena; Pikarsky, Eli; Katzav, Shulamit

    2014-01-01

    Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways. PMID:25313137

  3. Control of ocular tumor growth and metastatic spread by soluble and membrane Fas ligand.

    PubMed

    Gregory, Meredith S; Saff, Rebecca R; Marshak-Rothstein, Ann; Ksander, Bruce R

    2007-12-15

    Fas ligand (FasL) can be either membrane bound, or cleaved by metalloproteinases (MMP) to produce a soluble protein. The two different forms of FasL are reported to have opposite functions-membrane-bound FasL (mFasL) is proinflammatory and soluble FasL (sFasL) is antiinflammatory. We previously showed that, within the immune-privileged eye, tumors expressing high levels of mFasL overcame the suppressive ocular environment, triggered an inflammatory response, and were subsequently rejected. By contrast, eye tumors expressing low levels of mFasL grew progressively. To evaluate the effect of sFasL on the tumor growth and metastatic potential of ocular FasL-expressing tumors, we compared tumor cell clones that expressed equal amounts of (low) mFasL in the presence or absence of sFasL. Tumor cells transfected with a modified FasL gene expressed only mFasL (noncleavable), grew progressively within the eye, and induced systemic protective immunity that prevented metastatic spread of tumor cells to the liver. Unexpectedly, tumors transfected with wild-type FasL (wtFasL; cleavable), which could produce both sFasL and mFasL, elicited considerably more inflammation and grew more slowly within the eye. However, the cleavable wtFasL eye tumors failed to trigger protective immunity and gave rise to liver metastases. Interestingly, exposure to the ocular environment was required for the wtFasL tumors to gain metastatic potential. We conclude that the fate of FasL-expressing tumors is determined by a combination of the following: (a) the relative proportion of membrane and sFasL, and (b) the local environment that determines the extent of FasL cleavage. PMID:18089826

  4. Role of ascites adenosine deaminase in differentiating between tuberculous peritonitis and peritoneal carcinomatosis

    PubMed Central

    Kang, Seung Joo; Kim, Ji Won; Baek, Jee Hyun; Kim, Se Hyung; Kim, Byeong Gwan; Lee, Kook Lae; Jeong, Ji Bong; Jung, Yong Jin; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2012-01-01

    AIM: To investigate the usefulness of tumor markers and adenosine deaminase in differentiating between tuberculous peritonitis (TBP) and peritoneal carcinomatosis (PC). METHODS: A retrospective analysis of data was performed on consecutive patients who underwent peritoneoscopic and abdominal computed tomography (CT) evaluations. Among 75 patients at the Seoul National University Hospital from January 2000 to June 2010 who underwent both tests, 27 patients (36.0%) and 25 patients (33.3%) were diagnosed with TBP and PC, respectively. Diagnosis was confirmed by peritoneoscopic biopsy. RESULTS: Serum c-reactive protein (7.88 ± 6.62 mg/dL vs 3.12 ± 2.69 mg/dL, P = 0.01), ascites adenosine deaminase (66.76 ± 32.09 IU/L vs 13.89 ± 8.95 IU/L, P < 0.01), ascites lymphocyte proportion (67.77 ± 23.41% vs 48.36 ± 18.78%, P < 0.01), and serum-ascites albumin gradient (0.72 ± 0.49 g/dL vs 1.05 ± 0.50 g/dL, P = 0.03) were significantly different between the two groups. Among tumor markers, serum and ascites carcinoembryonic antigen, serum carbohydrate antigen 19-9 showed significant difference between two groups. Abdominal CT examinations showed that smooth involvement of the parietal peritoneum was more common in the TBP group (77.8% vs 40.7%) whereas nodular involvement was more common in the PC group (14.8% vs 40.7%, P = 0.04). From receiver operating characteristic (ROC) curves ascites adenosines deaminase (ADA) showed better discriminative capability than tumor markers. An ADA cut-off level of 21 IU/L was found to yield the best results of differential diagnosis; sensitivity, specificity, positive predictive value, and negative predictive value were 92.0%, 85.0%, 88.5% and 89.5%, respectively. CONCLUSION: Besides clinical and radiologic findings, ascitic fluid ADA measurement is helpful in the differential diagnosis of TBP and PC. PMID:22719194

  5. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5 years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  6. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function.

    PubMed

    Norden, Diana M; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J; Wold, Loren E; Reiser, Peter J; Godbout, Jonathan P; McCarthy, Donna O

    2015-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1? mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1? in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. PMID:25102452

  7. Dynamic Quantitative Intravital Imaging of Glioblastoma Progression Reveals a Lack of Correlation between Tumor Growth and Blood Vessel Density

    PubMed Central

    Ricard, Clément; Stanchi, Fabio; Rodriguez, Thieric; Amoureux, Marie-Claude; Rougon, Genevičve; Debarbieux, Franck

    2013-01-01

    The spatiotemporal and longitudinal monitoring of cellular processes occurring in tumors is critical for oncological research. We focused on glioblastoma multiforme (GBM), an untreatable highly vascularized brain tumor whose progression is thought to critically depend on the oxygen and metabolites supplied by blood vessels. We optimized protocols for orthotopic GBM grafting in mice that were able to recapitulate the biophysical constraints normally governing tumor progression and were suitable for intravital multiphoton microscopy. We repeatedly imaged tumor cells and blood vessels during GBM development. We established methods for quantitative correlative analyses of dynamic imaging data over wide fields in order to cover the entire tumor. We searched whether correlations existed between blood vessel density, tumor cell density and proliferation in control tumors. Extensive vascular remodeling and the formation of new vessels accompanied U87 tumor cell growth, but no strong correlation was found between local cell density and the extent of local blood vessel density irrespective of the tumor area or time points. The technique moreover proves useful for comparative analysis of mice subjected either to Bevacizumab anti-angiogenic treatment that targets VEGF or to AMD3100, an antagonist of CXCR4 receptor. Bevacizumab treatment massively reduced tumoral vessel densities but only transiently reduced U87 tumor growth rate. Again, there was no correlation between local blood vessel density and local cell density. Moreover, Bev applied only prior to tumor implantation inhibited tumor growth to the same extent as post-grafting treatment. AMD3100 achieved a potent inhibition of tumor growth without significant reduction in blood vessel density. These results indicate that in the brain, in this model, tumor growth can be sustained without an increase in blood vessel density and suggest that GBM growth is rather governed by stromal properties. PMID:24069154

  8. Critical Role of Shp2 in Tumor Growth Involving Regulation of c-Myc

    PubMed Central

    Ren, Yuan; Chen, Zhengming; Chen, Liwei; Fang, Bin; Win-Piazza, Hla; Haura, Eric; Koomen, John M.; Wu, Jie

    2010-01-01

    Activating mutants of Shp2 protein tyrosine phosphatase, encoded by the PTPN11 gene, are linked to leukemia. In solid tumors, however, PTPN11 mutations occur at low frequencies, while the wild-type Shp2 is activated by protein tyrosine kinases (PTKs) in cancer cells and mediates PTK signaling. Therefore, it is important to address whether the wild-type Shp2 plays a functional role critical for tumor growth. Using shRNAs and a PTP-inactive mutant to inhibit Shp2, we find here that tumor growth of DU145 prostate cancer and H292 lung cancer cells depends on Shp2. Suppression of Shp2 inhibited cell proliferation, decreased c-Myc, and increased p27 expression in cell cultures. In H292 tumor tissues, c-Myc–positive cells coincided with Ki67-positive cells, and smaller tumors from Shp2 knockdown cells had less c-Myc–positive cells and more nuclear p27. Shp2-regulated c-Myc expression was mediated by Src and Erk1/2. Down-regulation of c-Myc reduced cell proliferation, while up-regulation of c-Myc in Shp2 knockdown H292 cells partially rescued the inhibitory effect of Shp2 suppression on cell proliferation. Tyrosine phosphoproteomic analysis of H292 tumor tissues showed that Shp2 could both up-regulate and down-regulate tyrosine phosphorylation on cellular proteins. Among other changes, Shp2 inhibition increased phosphorylation of Src Tyr-530 and Cdk1 Thr-14/Tyr-15 and decreased phosphorylation of Erk1- and Erk2-activating sites in the tumors. Significantly, we found that Shp2 positively regulated Gab1 Tyr-627/Tyr-659 phosphorylation. This finding reveals that Shp2 can autoregulate its own activating signal. Shp2 Tyr-62/Tyr-63 phosphorylation was observed in tumor tissues, indicating that Shp2 is activated in the tumors. PMID:21442024

  9. Overexpression of hypoxia-inducible factor-1? and vascular endothelial growth factor in sacral giant cell tumors and the correlation with tumor microvessel density

    PubMed Central

    FU, SHAOFENG; BAI, RUI; ZHAO, ZHENQUN; ZHANG, ZHIFENG; ZHANG, GANG; WANG, YUXIN; WANG, YONG; JIANG, DIANMING; ZHU, DEZHI

    2014-01-01

    Although classified as benign, giant cell tumors of the bone (GCTB) may be aggressive, recur and even metastasize to the lungs. In addition, the pathogenesis and histogenesis remain unclear; thus, the driving factors behind the strong tumor growth capacity of GCTB require investigation. In the present study, the expression levels of hypoxia-inducible factor (HIF)-1? and vascular endothelial growth factor (VEGF), which are promoted by hypoxic conditions, were determined in 22 sacral GCTB samples using immunohistochemistry and western blot analysis. Furthermore, CD34 expression was analyzed using these methods. The correlation between HIF-1? or VEGF expression and the tumor microvessel density (MVD) was then determined. The results demonstrated that HIF-1?, VEGF and CD34 were overexpressed in the 22 sacral GCTB specimens, and overexpression of HIF-1? and VEGF correlated with the tumor MVD. Thus, the present study has provided novel indicators for the tumor growth capacity of GCTBs. PMID:25289039

  10. Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model

    PubMed Central

    HUNG, MING-SZU; XU, ZHIDONG; CHEN, YU; SMITH, EMMANUEL; MAO, JIAN-HUA; HSIEH, DAVID; LIN, YU-CHING; YANG, CHENG-TA; JABLONS, DAVID M.; YOU, LIANG

    2013-01-01

    Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed that hematein binds to CK2? in durable binding sites. Collectively, our results suggest that hematein is an allosteric inhibitor of protein kinase CK2 and has antitumor activity to lung cancer. PMID:24008396

  11. Targeting of the Receptor Protein Tyrosine Phosphatase B with a Monoclonal Antibody Delays Tumor Growth in a Glioblastoma Model

    Microsoft Academic Search

    Erik D. Foehr; Gustavo Lorente; Jane Kuo; Rosie Ram; Karoly Nikolich; Roman Urfer

    The receptor protein tyrosine phosphatase B (RPTPB )i s a functional biomarker for several solid tumor types. RPTPB expression is largely restricted to the central nervous system and overexpressed primarily in astrocytic tumors. RPTPB is known to facilitate tumor cell adhesion and migration through interactions with extracellular matrix components and the growth factor pleiotrophin. Here, we show that RPTPB is

  12. Prevention of in vivo lung tumor growth by prolonged local delivery of hydroxycamptothecin using poly(ester-carbonate)-collagen composites

    E-print Network

    Prevention of in vivo lung tumor growth by prolonged local delivery of hydroxycamptothecin using February 2010 Available online 22 February 2010 Keywords: Prevention Lung tumors Recurrence Films Local delivery Local tumor recurrence has a major impact on long-term patient survival following the surgical

  13. NKG2D CAR T cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors

    PubMed Central

    Spear, Paul; Barber, Amorette; Rynda-Apple, Agnieszka; Sentman, Charles L.

    2013-01-01

    Tumor heterogeneity presents a substantial barrier to increasing clinical responses mediated by targeted therapies. Broadening the immune response elicited by treatments that target a single antigen is necessary for the elimination of tumor variants that fail to express the targeted antigen. In this study, it is shown that adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) inhibited the growth of target-expressing and –deficient tumor cells within ovarian and lymphoma tumors. Mice bearing the ID8 ovarian or RMA lymphoma tumors were treated with T cells transduced with a NKG2D-based CAR (chNKG2D). NKG2D CAR T cell therapy protected mice from heterogeneous RMA tumors. Moreover, adoptive transfer of chNKG2D T cells mediated tumor protection against highly heterogeneous ovarian tumors in which 50%, 20%, or only 7% of tumor cells expressed significant amounts of NKG2D ligands. CAR T cells did not mediate an in vivo response against tumor cells that did not express sufficient amounts of NKG2D ligands, and the number of ligand-expressing tumor cells correlated with therapeutic efficacy. In addition, tumor-free surviving mice were protected against a tumor re-challenge with NKG2D ligand-negative ovarian tumor cells. These data indicate that NKG2D CAR T cell treatment can be an effective therapy against heterogeneous tumors and induce tumor-specific immunity against ligand-deficient tumor cells. PMID:23628805

  14. Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy.

    PubMed

    Daniel, L; Trouillas, J; Renaud, W; Chevallier, P; Gouvernet, J; Rougon, G; Figarella-Branger, D

    2000-01-01

    Pituitary adenomas are usually benign neuroendocrine tumors. However, some of those that are histopathologically undistinguishable behave aggressively and metastasize. The polysialylated neural cell adhesion molecule (PSA-NCAM), which is highly expressed during the development of the brain and pituitary, is detected in some neuroendocrine tumors and might be relevant as a prognostic marker in pituitary tumors. In the present study, we have searched for PSA-NCAM expression in four lineages of rat pituitary transplantable tumors (SMtTW). Each lineage, maintained by serial tumor grafts under the kidney capsule and skin, differed in its GH/Prl secretion, growth rate, and malignant behavior. PSA-NCAM expression, detected by immunohistochemistry and Western blotting and quantified by ELISA, varied according to the SMtTW lineage. The benign tumors, SMtTW2, with a low growth rate never expressed PSA-NCAM. Another benign lineage, SMtTW3, with a high growth rate expressed a low amount of PSA-NCAM. The highest PSA-NCAM expression was seen in tumors that grew beneath the skin, invaded the kidney, and metastasized (SMtTW4). Tumors of the SMtTW10 lineage, which behaved as either benign or malignant tumors, were heterogeneous in terms of PSA-NCAM expression. In this rat transplantable pituitary tumor model, PSA-NCAM expression correlated in decreasing order with: (a) invasiveness (P < 0.0001), (b) metastases (P = 0.004), (c) ability to grow under the skin (P = 0.006), and (d) growth rate under the kidney capsule (P < 0.01), but not with hormone secretion (r = 0.207). This model, which is very similar to the human pathology, suggests that PSA-NCAM evaluation is of interest in the diagnosis of malignancy and the prognosis of human pituitary tumors. In addition, the SMtTW tumors could be instrumental in evaluating the effects of new therapeutic agents modulating PSA-NCAM expression. PMID:10646857

  15. Effect of Cyclooxygenase and Nitric Oxide Synthase Inhibitors on Tumor Growth in Mouse Tumor Models with and without Cancer Cachexia Related to Prostanoids1

    Microsoft Academic Search

    Christian Cahlin; Johan Gelin; Dick Delbro; Christina Lonnroth; Chiharu Doi; Kent Lundholm

    The potential interaction between cyclooxygenase (Cox) and NO met- abolic pathways in the control of local tumor growth was evaluated. Mice bearing either a sarcoma-derived tumor (C57Bl; MCG 101) or a malig- nant melanoma (C3H\\/HeN; K1735-M2) were used. These models were principally different because they demonstrate, in tumor hosts, conditions with and without cancer cachexia, seemingly related to high and

  16. Some Cancer Mutations Slow Tumor Growth | Physical Sciences in Oncology

    Cancer.gov

    A typical cancer cell has thousands of mutations scattered throughout its genome and hundreds of mutated genes. However, only a handful of those genes, known as drivers, are responsible for cancerous traits such as uncontrolled growth. Cancer biologists have largely ignored these so-called passenger mutations, believing they had little or no impact on cancer progression.

  17. Cancer as a moving target: understanding the composition and rebound growth kinetics of recurrent tumors

    PubMed Central

    Foo, Jasmine; Leder, Kevin; Mumenthaler, Shannon M

    2013-01-01

    We introduce a stochastic branching process model of diversity in recurrent tumors whose growth is driven by drug resistance. Here, an initially declining population can escape certain extinction via the production of mutants whose fitness is drawn at random from a mutational fitness landscape. Using a combination of analytical and computational techniques, we study the rebound growth kinetics and composition of the relapsed tumor. We find that the diversity of relapsed tumors is strongly affected by the shape of the mutational fitness distribution. Interestingly, the model exhibits a qualitative shift in behavior depending on the balance between mutation rate and initial population size. In high mutation settings, recurrence timing is a strong predictor of the diversity of the relapsed tumor, whereas in the low mutation rate regime, recurrence timing is a good predictor of tumor aggressiveness. Analysis reveals that in the high mutation regime, stochasticity in recurrence timing is driven by the random survival of small resistant populations rather than variability in production of resistance from the sensitive population, whereas the opposite is true in the low mutation rate setting. These conclusions contribute to an evolutionary understanding of the suitability of tumor size and time of recurrence as prognostic and predictive factors in cancer. PMID:23396647

  18. Inhibition of tumor growth and metastasis by ATF-Fc, an engineered antibody targeting urokinase receptor.

    PubMed

    Hu, Xian-Wen; Duan, Hai-Feng; Gao, Li-Hua; Pan, Shu-Yuan; Li, Yong-Mei; Xi, Yongyi; Zhao, Su-Rong; Yin, Liang; Li, Jin-Feng; Chen, Hui-Peng; Wu, Chu-Tse

    2008-05-01

    Urokinase (uPA) and its receptor (uPAR) play an important role in tumor growth and metastasis, and overexpression of these molecules is strongly correlated with poor prognosis in a variety of malignant tumors. In this study, ATF-Fc, an antibody-like molecule comprising the amino-terminal fragment of human uPA (ATF) linked to the Fc fragment of human IgG1 via a flexible linker was developed. Its antitumor activities were evaluated in vitro and in vivo. The results showed that ATF-Fc had obvious cytotoxic effect on several types of tumor cells, which is dependent on cellular expression of uPAR and its Fc fragment. Treatment with ATF-Fc caused a significant suppression on tumor growth and metastasis of xenograft human tumors (MCF-7 breast cancer and BGC-823 gastric cancer) in athymic nude mice. Furthermore, we demonstrated that ATF-Fc had an anti-angiogenesis activity both in vitro and in vivo. In conclusion, we provided a novel therapeutic antibody-like molecule in the management of a variety of solid tumors by disrupting the uPA/uPAR interaction. PMID:18245952

  19. Crenolanib, a PDGFR inhibitor, suppresses lung cancer cell proliferation and inhibits tumor growth in vivo

    PubMed Central

    Wang, Ping; Song, Liqiang; Ge, Hui; Jin, Pule; Jiang, Yifang; Hu, Wenxia; Geng, Nan

    2014-01-01

    Platelet-derived growth factor (PDGF) and its receptors (PDGFR), including PDGFR? and PDGFR?, play important roles in tumorigenesis, tumor progression, and the regulation of stromal cell function. Constitutive activation of PDGFR signaling, gene rearrangement, and activating mutations of PDGFR have been identified in various types of human tumors and malignancies. PDGFR? and PDGFR? belong to the family of type III receptor tyrosine kinases and, upon stimulation, activate downstream signaling cascades. Crenolanib is a specific tyrosine kinase inhibitor that targets and inhibits the kinase activity of PDGFR and the FMS-related tyrosine kinase 3. Its clinical efficacy in several human tumors is currently under investigation in Phase II clinical trials. In this study, we examined the potential role of crenolanib in the treatment of non-small-cell lung cancer (NSCLC). Using A549 cells as a model system, we have shown that crenolanib is capable of suppressing proliferation and inducing apoptosis in a dose-dependent manner. Crenolanib-treated cells have reduced migratory activity in response to inducers of chemotaxis. Furthermore, the in vivo antitumor activity of crenolanib was confirmed in an NSCLC xenograft tumor model. Injection of crenolanib significantly inhibited the growth of tumor mass by inducing apoptosis in tumor cells. Our results provide strong evidence supporting the use of crenolanib as a potential therapeutic agent in treating NSCLC. This work sets a foundation for further development of targeted and personalized therapeutics for lung cancer. PMID:25328409

  20. Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated.

    PubMed

    Castellví, Quim; Ginestŕ, Mireia M; Capellŕ, Gabriel; Ivorra, Antoni

    2015-10-01

    Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer therapy. These are low magnitude alternating electric fields at frequencies from 100 to 300kHz which are applied continuously in a non-invasive manner. Electric field delivery may produce an increase in temperature which cannot be neglected. We hypothesized that the reported results obtained by applying TTFields in vivo could be due to heat rather than to electrical forces as previously suggested. Here, an in vivo study is presented in which pancreatic tumors subcutaneously implanted in nude mice were treated for a week either with mild hyperthermia (41°C) or with TTFields (6V/cm, 150kHz) and tumor growth was assessed. Although the TTFields applied singly did not produce any significant effect, the combination with chemotherapy did show a delay in tumor growth in comparison to animals treated only with chemotherapy (median relative reduction=47%). We conclude that concomitant chemotherapy and TTFields delivery show a beneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is non-related with the induced temperature increase. PMID:25955102

  1. Multiphase modeling and qualitative analysis of the growth of tumor cords

    E-print Network

    Andrea Tosin

    2009-06-27

    In this paper a macroscopic model of tumor cord growth is developed, relying on the mathematical theory of deformable porous media. Tumor is modeled as a saturated mixture of proliferating cells, extracellular fluid and extracellular matrix, that occupies a spatial region close to a blood vessel whence cells get the nutrient needed for their vital functions. Growth of tumor cells takes place within a healthy host tissue, which is in turn modeled as a saturated mixture of non-proliferating cells. Interactions between these two regions are accounted for as an essential mechanism for the growth of the tumor mass. By weakening the role of the extracellular matrix, which is regarded as a rigid non-remodeling scaffold, a system of two partial differential equations is derived, describing the evolution of the cell volume ratio coupled to the dynamics of the nutrient, whose higher and lower concentration levels determine proliferation or death of tumor cells, respectively. Numerical simulations of a reference two-dimensional problem are shown and commented, and a qualitative mathematical analysis of some of its key issues is proposed.

  2. Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model.

    PubMed

    Pan, Hung-Chuan; Lai, De-Wei; Lan, Keng-Hsin; Shen, Chin-Chang; Wu, Sheng-Mao; Chiu, Chien-Shan; Wang, Keh-Bin; Sheu, Meei-Ling

    2013-11-01

    Honokiol is known to suppress the growth of cancer cells; however, to date, its antiperitoneal dissemination effects have not been studied in an orthotopic mouse model. In the present study, we evaluated the antiperitoneal dissemination potential of Honokiol in an orthotopic mouse model and assessed associations with tumor growth factor-?1 (TGF?1) and cells stimulated by a carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Our results demonstrate that tumor growth, peritoneal dissemination and peritoneum or organ metastasis of orthotopically implanted MKN45 cells were significantly decreased in Honokiol-treated mice and that endoplasmic reticulum (ER) stress was induced. Honokiol-treated tumors showed increased epithelial signatures such as E-cadherin, cytokeratin-18 and ER stress marker. In contrast, decreased expression of vimentin, Snail and tumor progression locus 2 (Tpl2) was also noted. TGF?1 and MNNG-induced downregulation of E-cadherin and upregulation of Tpl2 were abrogated by Honokiol treatment. The effect of Tpl2 inhibition in cancer cells or endothelial cells was associated with inactivation of CCAAT/enhancer binding protein B, nuclear factor kappa-light-chain-enhancer of activated B cell and activator protein-1 and suppression of vascular endothelial growth factor. Inhibition of Tpl2 in gastric cancer cells by small interfering RNA or pharmacological inhibitor was found to effectively reduce growth ability and vessel density in vivo. Honokiol-induced reversal of epithelial-to-mesenchymal transition (EMT) and ER stress-induced apoptosis via Tp12 may involve the paralleling processes. Taken together, our results suggest that the therapeutic inhibition of Tpl2 by Honokiol thwarts both gastric tumor growth and peritoneal dissemination by inducing ER stress and inhibiting EMT. PMID:23828905

  3. Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy

    Microsoft Academic Search

    Fengshuo Jin; Zhihui Xie; Calvin J Kuo; Leland W K Chung; Chia-Ling Hsieh

    2005-01-01

    Tumor–endothelial interaction contributes to local prostate tumor growth and distant metastasis. In this communication, we designed a novel approach to target both cancer cells and their “crosstalk” with surrounding microvascular endothelium in an experimental hormone refractory human prostate cancer model. We evaluated the in vitro and in vivo synergistic and\\/or additive effects of a combination of conditional oncolytic adenovirus plus

  4. Mast cells protect from skin tumor development and limit tumor growth during cutaneous de novo carcinogenesis in a Kit-dependent mouse model.

    PubMed

    Siebenhaar, Frank; Metz, Martin; Maurer, Marcus

    2014-03-01

    Epidermal tumors belong to the most frequent type of neoplasms, and tumor-associated accumulation of mast cells (MCs) has first been observed more than a century ago. Therefore, MCs have been implicated in tumor development and growth; however, the results regarding the role of MC in cutaneous de novo carcinogenesis are still controversially discussed. Here, we subjected MC-deficient Kit(W) /Kit(W-v) mice to chemical skin carcinogenesis. Tumors were induced using the carcinogen 7,12-dimethylbenz[a]-anthracene and subsequent treatment with the tumor promoter 12-tetradecanoyl-phorbol-13-acetat. The treatment resulted in pronounced inflammatory cell infiltrates that were diminished in MC-deficient animals. Unexpectedly, tumor development and growth was significantly increased in MC-deficient Kit(W) /Kit(W-v) mice. The repair of their MC deficiency by local adoptive transfer of MCs normalized tumor incidence and growth. The recruitment of skin-infiltrating immune cells, particularly of F4/80+ monocytes, Gr-1+ granulocytes, B220+ B cells and CD8+ T lymphocytes, to sites of tumor development was, in part, also controlled by MCs. Recent evidence indicated the importance of local antitumor tissue immunity which prevents tumor development. These findings suggest a critical role for MCs in mediating these host antitumor immune responses in the skin. PMID:24444017

  5. Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression

    Microsoft Academic Search

    Dingcheng Gao; Daniel Nolan; Kevin McDonnell; Linda Vahdat; Robert Benezra; Nasser Altorki; Vivek Mittal

    2009-01-01

    Emerging evidence indicates that bone marrow (BM)-derived endothelial progenitor cells (EPCs) contribute to angiogenesis-mediated growth of certain tumors in mice and human. EPCs regulate the angiogenic switch via paracrine secretion of proangiogenic growth factors and by direct luminal incorporation into sprouting nascent vessels. While the contributions of EPCs to neovessel formation in spontaneous and transplanted tumors and to the metastatic

  6. IFN-beta restricts tumor growth and sensitizes alveolar rhabdomyosarcoma to ionizing radiation.

    PubMed

    Sims, Thomas L; McGee, Mackenzie; Williams, Regan F; Myers, Adrianne L; Tracey, Lorraine; Hamner, J Blair; Ng, Catherine; Wu, Jianrong; Gaber, M Waleed; McCarville, Beth; Nathwani, Amit C; Davidoff, Andrew M

    2010-03-01

    Ionizing radiation is an important component of multimodal therapy for alveolar rhabdomyosarcoma (ARMS). We sought to evaluate the ability of IFN-beta to enhance the activity of ionizing radiation. Rh-30 and Rh-41 ARMS cells were treated with IFN-beta and ionizing radiation to assess synergistic effects in vitro and as orthotopic xenografts in CB17 severe combined immunodeficient mice. In addition to effects on tumor cell proliferation and xenograft growth, changes in the tumor microenvironment including interstitial fluid pressure, perfusion, oxygenation, and cellular histology were assessed. A nonlinear regression model and isobologram analysis indicated that IFN-beta and ionizing radiation affected antitumor synergy in vitro in the Rh-30 cell line; the activity was additive in the Rh-41 cell line. In vivo continuous delivery of IFN-beta affected normalization of the dysfunctional tumor vasculature of both Rh-30 and Rh-41 ARMS xenografts, decreasing tumor interstitial fluid pressure, increasing tumor perfusion (as assessed by contrast-enhanced ultrasonography), and increasing oxygenation. Tumors treated with both IFN-beta and radiation were smaller than control tumors and those treated with radiation or IFN-beta alone. Additionally, treatment with high-dose IFN-beta followed by radiation significantly reduced tumor size compared with radiation treatment followed by IFN-beta. The combination of IFN-beta and ionizing radiation showed synergy against ARMS by sensitizing tumor cells to the cytotoxic effects of ionizing radiation and by altering tumor vasculature, thereby improving oxygenation. Therefore, IFN-beta and ionizing radiation may be an effective combination for treatment of ARMS. PMID:20197402

  7. Inhibitory effect of Capsella bursa-pastoris extract on growth of Ehrlich solid tumor in mice.

    PubMed

    Kuroda, K; Akao, M; Kanisawa, M; Miyaki, K

    1976-06-01

    The treatment of ICR mice with i.p. injections (0.14 g/kg/day) of the extract of Capsella bursa-pastoris herb (Cruciferae) caused 50 to 80% inhibition of the solid growth of Ehrlich tumor cells that had been inoculated into the s.c. tissue of the animals. The tumor lumps in the treated mice showed multifocal necroses and the infiltartion of host fibrous tissue cells. Experiments were also performed to isolate and identify the active component for the antitumor action, and an acidic substance was isolated in crystalline form from the herb extract. This acidic substance was identified as fumaric acid and was effective in inhibiting the growth of Ehrlich solid tumor at a dose of 10 mg/kg/day. The 50% lethal dose (i.p.) of this acid was 266 mg/kg. PMID:1268843

  8. Luteolin and its inhibitory effect on tumor growth in systemic malignancies

    SciTech Connect

    Kapoor, Shailendra, E-mail: shailendrakapoor@yahoo.com [74 crossing place, Mechanicsville, VA (United States)

    2013-04-01

    Lamy et al have provided interesting data in their recent article in your esteemed journal. Luteolin augments apoptosis in a number of systemic malignancies. Luteolin reduces tumor growth in breast carcinomas. Luteolin mediates this effect by up-regulating the expression of Bax and down-regulating the expression of Bcl-xL. EGFR-induced MAPK activation is also attenuated. As a result there is increased G2/ M phase arrest. These effects have been seen both in vivo as well as in vitro. It also reduces ER? expression and causes inhibition of IGF-1 mediated PI3K–Akt pathway. Luteolin also activates p38 resulting in nuclear translocation of the apoptosis-inducing factor. Simultaneously it also activates ERK. As a result there is increased intra-tumoral apoptosis which is caspase dependent as well as caspase independent. - Highlights: ? Luteolin and tumor growth in breast carcinomas. ? Luteolin and pulmonary cancer. ? Luteolin and colon cancer.

  9. A leucine-rich diet modulates the tumor-induced down-regulation of the MAPK/ERK and PI3K/Akt/mTOR signaling pathways and maintains the expression of the ubiquitin-proteasome pathway in the placental tissue of NMRI mice.

    PubMed

    Viana, Laís Rosa; Gomes-Marcondes, Maria Cristina Cintra

    2015-02-01

    Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process. PMID:25395678

  10. A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane.

    PubMed

    Chen, Ying; Wise, Steven M; Shenoy, Vivek B; Lowengrub, John S

    2014-07-01

    In this paper, we extend the 3D multispecies diffuse-interface model of the tumor growth, which was derived in Wise et al. (Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524-543), and incorporate the effect of a stiff membrane to model tumor growth in a confined microenvironment. We then develop accurate and efficient numerical methods to solve the model. When the membrane is endowed with a surface energy, the model is variational, and the numerical scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is demonstrably shown to be energy stable. Namely, in the absence of cell proliferation and death, the discrete energy is a nonincreasing function of time for any time and space steps. When a simplified model of membrane elastic energy is used, the resulting model is derived analogously to the surface energy case. However, the elastic energy model is actually nonvariational because certain coupling terms are neglected. Nevertheless, a very stable numerical scheme is developed following the strategy used in the surface energy case. 2D and 3D simulations are performed that demonstrate the accuracy of the algorithm and illustrate the shape instabilities and nonlinear effects of membrane elastic forces that may resist or enhance growth of the tumor. Compared with the standard Crank-Nicholson method, the time step can be up to 25 times larger using the new approach. PMID:24443369

  11. Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient

    E-print Network

    Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient Beno^it Perthame¶ Min incorporate mechanical laws for tissue compression combined with rules for nutrients availability which can profiles are rather complex, both in one and two dimensions. We study a simple free boundary model formed

  12. The Hippo tumor-suppressor pathway regulates apical-domain size in parallel to tissue growth

    Microsoft Academic Search

    Fisun Hamaratoglu; Kathleen Gajewski; Leticia Sansores-Garcia; Clayton Morrison; Chunyao Tao; Georg Halder

    2009-01-01

    The Hippo tumor-suppressor pathway controls tissue growth in Drosophila and mammals by regulating cell proliferation and apoptosis. The Hippo pathway includes the Fat cadherin, a transmembrane protein, which acts upstream of several other components that form a kinase cascade that culminates in the regulation of gene expression through the transcriptional coactivator Yorkie (Yki). Our previous work in Drosophila indicated that

  13. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis

    E-print Network

    Hammock, Bruce D.

    Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis from omega-6 ARA and epoxydocosapentaenoic acids (EDPs) from omega-3 docosahexaenoic acid (DHA) (14­16). DHA, which is the most abundant omega-3 fatty acid in most tissues (17, 18), can efficiently compete

  14. Realistic Simulation of the 3D Growth of Brain Tumors in MR Images Coupling Diffusion with

    E-print Network

    Ayache, Nicholas

    1 Realistic Simulation of the 3D Growth of Brain Tumors in MR Images Coupling Diffusion Centre Antoine Lacassagne, Nice, France Computational Radiology Laboratory, Brigham and Women's Hospital or the ventricles. These different structures are introduced into the model using an atlas matching technique

  15. VEGFR-1 Expressed by Malignant Melanoma-Initiating Cells Is Required for Tumor Growth

    PubMed Central

    Frank, Natasha Y.; Schatton, Tobias; Kim, Soo; Zhan, Qian; Wilson, Brian J.; Ma, Jie; Saab, Karim R.; Osherov, Veronika; Widlund, Hans R.; Gasser, Martin; Waaga-Gasser, Ana-Maria; Kupper, Thomas S.; Murphy, George F.; Frank, Markus H.

    2011-01-01

    Melanoma growth is driven by malignant melanoma-initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member ABCB5. ABCB5+ melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE1 and are associated with CD31? vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5+ MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5+ tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced the expression of CD144 in ABCB5+ subpopulations that constitutively expressed VEGFR-1 but not in ABCB5? bulk populations that were predominantly VEGFR-1?. In vivo, melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5+ VM morphology and inhibited ABCB5+ VM-associated production of the secreted melanoma mitogen laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by >90%). Our results show that VEGFR-1 function in MMIC regulates VM and associated laminin production and show that this function represents one mechanism through which MMICs promote tumor growth. PMID:21212411

  16. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth.

    PubMed

    Frank, Natasha Y; Schatton, Tobias; Kim, Soo; Zhan, Qian; Wilson, Brian J; Ma, Jie; Saab, Karim R; Osherov, Veronika; Widlund, Hans R; Gasser, Martin; Waaga-Gasser, Ana-Maria; Kupper, Thomas S; Murphy, George F; Frank, Markus H

    2011-02-15

    Melanoma growth is driven by malignant melanoma-initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member ABCB5. ABCB5(+) melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE1 and are associated with CD31(-) vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5(+) MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5(+) tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced the expression of CD144 in ABCB5(+) subpopulations that constitutively expressed VEGFR-1 but not in ABCB5(-) bulk populations that were predominantly VEGFR-1(-). In vivo, melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5(+) VM morphology and inhibited ABCB5(+) VM-associated production of the secreted melanoma mitogen laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by > 90%). Our results show that VEGFR-1 function in MMIC regulates VM and associated laminin production and show that this function represents one mechanism through which MMICs promote tumor growth. PMID:21212411

  17. A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane

    PubMed Central

    Chen, Ying; Wise, Steven M.; Shenoy, Vivek B.; Lowengrub, John S.

    2014-01-01

    Summary In this paper, we extend the 3D multispecies diffuse-interface model of the tumor growth, which was derived in Wise et al. (Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524–543), and incorporate the effect of a stiff membrane to model tumor growth in a confined microenvironment. We then develop accurate and efficient numerical methods to solve the model. When the membrane is endowed with a surface energy, the model is variational, and the numerical scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is demonstrably shown to be energy stable. Namely, in the absence of cell proliferation and death, the discrete energy is a nonincreasing function of time for any time and space steps. When a simplified model of membrane elastic energy is used, the resulting model is derived analogously to the surface energy case. However, the elastic energy model is actually nonvariational because certain coupling terms are neglected. Nevertheless, a very stable numerical scheme is developed following the strategy used in the surface energy case. 2D and 3D simulations are performed that demonstrate the accuracy of the algorithm and illustrate the shape instabilities and nonlinear effects of membrane elastic forces that may resist or enhance growth of the tumor. Compared with the standard Crank–Nicholson method, the time step can be up to 25 times larger using the new approach. PMID:24443369

  18. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    SciTech Connect

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China) [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)] [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)] [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ?1 ?M at 24 h after treatment and ?0.5 ?M at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  19. A multicompartment mathematical model of cancer stem cell-driven tumor growth dynamics.

    PubMed

    Weekes, Suzanne L; Barker, Brian; Bober, Sarah; Cisneros, Karina; Cline, Justina; Thompson, Amanda; Hlatky, Lynn; Hahnfeldt, Philip; Enderling, Heiko

    2014-07-01

    Tumors are appreciated to be an intrinsically heterogeneous population of cells with varying proliferation capacities and tumorigenic potentials. As a central tenet of the so-called cancer stem cell hypothesis, most cancer cells have only a limited lifespan, and thus cannot initiate or reinitiate tumors. Longevity and clonogenicity are properties unique to the subpopulation of cancer stem cells. To understand the implications of the population structure suggested by this hypothesis--a hierarchy consisting of cancer stem cells and progeny non-stem cancer cells which experience a reduction in their remaining proliferation capacity per division--we set out to develop a mathematical model for the development of the aggregate population. We show that overall tumor progression rate during the exponential growth phase is identical to the growth rate of the cancer stem cell compartment. Tumors with identical stem cell proportions, however, can have different growth rates, dependent on the proliferation kinetics of all participating cell populations. Analysis of the model revealed that the proliferation potential of non-stem cancer cells is likely to be small to reproduce biologic observations. Furthermore, a single compartment of non-stem cancer cell population may adequately represent population growth dynamics only when the compartment proliferation rate is scaled with the generational hierarchy depth. PMID:24840956

  20. Extinction Effects of Multiplicative Non-Gaussian Lévy Noise in a Tumor Growth System with Immunization

    NASA Astrophysics Data System (ADS)

    Hao, Meng-Li; Xu, Wei; Li, Dong-Xi; Liu, Di

    2014-05-01

    The extinction phenomenon induced by multiplicative non-Gaussian Lévy noise in a tumor growth model with immune response is discussed. Under the influence of the stochastic immune rate, the model is analyzed in terms of a stochastic differential equation with multiplicative noise. By means of the theory of the infinitesimal generator of Hunt processes, the escape probability, which is used to measure the noise-induced extinction probability of tumor cells, is explicitly expressed as a function of initial tumor cell density, stability index and noise intensity. Based on the numerical calculations, it is found that for different initial densities of tumor cells, noise parameters play opposite roles on the escape probability. The optimally selected values of the multiplicative noise intensity and the stability index are found to maximize the escape probability.

  1. Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis.

    PubMed

    Liu, Lei; Sun, Lu; Wu, Qinjie; Guo, Wenhao; Li, Ling; Chen, YiShan; Li, Yuchen; Gong, Changyang; Qian, Zhiyong; Wei, Yuquan

    2013-02-25

    This work aims to develop curcumin (Cur) loaded biodegradable self-assembled polymeric micelles (Cur-M) to overcome poor water solubility of Cur and to meet the requirement of intravenous administration. Cur-M were prepared by solid dispersion method, which was simple and easy to scale up. Cur-M had a small particle size of 28.2 ± 1.8 nm and polydisperse index (PDI) of 0.136 ± 0.050, and drug loading and encapsulation efficiency of Cur-M were 14.84 ± 0.11% and 98.91 ± 0.70%, respectively. Besides, in vitro release profile showed a significant difference between rapid release of free Cur and much slower and sustained release of Cur-M. Cytotoxicity study showed that the encapsulated Cur remained its potent anti-tumor effect. Furthermore, Cur-M were more effective in inhibiting tumor growth and spontaneous pulmonary metastasis in subcutaneous 4T1 breast tumor model, and prolonged survival of tumor-bearing mice. In addition, immunofluorescent and immunohistochemical studies also showed that tumors of Cur-M-treated mice had more apoptosis cells, fewer microvessels, and fewer proliferation-positive cells. In conclusion, polymeric micelles encapsulating Cur were developed with enhanced anti-tumor and anti-metastasis activity on breast tumor, and Cur-M is excellent water-based formulation of Cur which may serve as a candidate for breast cancer therapy. PMID:23287774

  2. A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo.

    PubMed

    Yagi, Nobuhiro; Manabe, Ichiro; Tottori, Tsuneaki; Ishihara, Atsushi; Ogata, Fusa; Kim, Jong Heon; Nishimura, Satoshi; Fujiu, Katsuhito; Oishi, Yumiko; Itaka, Keiji; Kato, Yasuki; Yamauchi, Masahiro; Nagai, Ryozo

    2009-08-15

    Use of short interfering RNA (siRNA) is a promising new approach thought to have a strong potential to lead to rapid development of gene-oriented therapies. Here, we describe a newly developed, systemically injectable siRNA vehicle, the "wrapsome" (WS), which contains siRNA and a cationic lipofection complex in a core that is fully enveloped by a neutral lipid bilayer and hydrophilic polymers. WS protected siRNA from enzymatic digestion, providing a long half-life in the systemic circulation. Moreover, siRNA/WS leaked from blood vessels within tumors into the tumor tissue, where it accumulated and was subsequently transfected into the tumor cells. Because the transcription factor KLF5 is known to play a role in tumor angiogenesis, we designed KLF5-siRNA to test the antitumor activity of siRNA/WS. KLF5-siRNA/WS exhibited significant antitumor activity, although neither WS containing control scrambled-siRNA nor saline containing KLF5-siRNA affected tumor growth. KLF5-siRNA/WS inhibited Klf5 expression within tumors at both mRNA and protein levels, significantly reducing angiogenesis, and we detected no significant acute or long-term toxicity. Our findings support the idea that siRNA/WS can be used to knock down specific genes within tumors and thereby exert therapeutic effects against cancers. PMID:19654315

  3. Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth

    Microsoft Academic Search

    David Lyden; Koichi Hattori; Sergio Dias; Carla Costa; Pamela Blaikie; Linda Butros; Amy Chadburn; Beate Heissig; Willy Marks; Larry Witte; Yan Wu; Daniel Hicklin; Zhenping Zhu; Neil R. Hackett; Ronald G. Crystal; Malcolm A. S. Moore; Katherine A. Hajjar; Katia Manova; Robert Benezra; Shahin Rafii

    2001-01-01

    The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and

  4. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth.

    PubMed

    Soman, Neelesh R; Baldwin, Steven L; Hu, Grace; Marsh, Jon N; Lanza, Gregory M; Heuser, John E; Arbeit, Jeffrey M; Wickline, Samuel A; Schlesinger, Paul H

    2009-09-01

    The in vivo application of cytolytic peptides for cancer therapeutics is hampered by toxicity, nonspecificity, and degradation. We previously developed a specific strategy to synthesize a nanoscale delivery vehicle for cytolytic peptides by incorporating the nonspecific amphipathic cytolytic peptide melittin into the outer lipid monolayer of a perfluorocarbon nanoparticle. Here, we have demonstrated that the favorable pharmacokinetics of this nanocarrier allows accumulation of melittin in murine tumors in vivo and a dramatic reduction in tumor growth without any apparent signs of toxicity. Furthermore, direct assays demonstrated that molecularly targeted nanocarriers selectively delivered melittin to multiple tumor targets, including endothelial and cancer cells, through a hemifusion mechanism. In cells, this hemifusion and transfer process did not disrupt the surface membrane but did trigger apoptosis and in animals caused regression of precancerous dysplastic lesions. Collectively, these data suggest that the ability to restrain the wide-spectrum lytic potential of a potent cytolytic peptide in a nanovehicle, combined with the flexibility of passive or active molecular targeting, represents an innovative molecular design for chemotherapy with broad-spectrum cytolytic peptides for the treatment of cancer at multiple stages. PMID:19726870

  5. Dietary protein restriction inhibits tumor growth in human xenograft models of prostate and breast cancer

    PubMed Central

    Rastelli, Antonella L.; Miles, Kiersten Marie; Ciamporcero, Eric; Longo, Valter D.; Nguyen, Holly; Vessella, Robert; Pili, Roberto

    2013-01-01

    Purpose: Data from epidemiological and experimental studies suggest that dietary protein intake may play a role in inhibiting prostate and breast cancer by modulating the IGF/AKT/mTOR pathway. In this study we investigated the effects of diets with different protein content or quality on prostate and breast cancer. Experimental Design: To test our hypothesis we assessed the inhibitory effect of protein diet restriction on prostate and breast cancer growth, serum PSA and IGF-1 concentrations, mTOR activity and epigenetic markers, by using human xenograft cancer models. Results: Our results showed a 70% inhibition of tumor growth in the castrate-resistant LuCaP23.1 prostate cancer model and a 56% inhibition in the WHIM16 breast cancer model fed with a 7% protein diet when compared to an isocaloric 21% protein diet. Inhibition of tumor growth correlated, in the LuCaP23.1 model, with decreased serum PSA and IGF-1 levels, down-regulation of mTORC1 activity, decreased cell proliferation as indicated by Ki67 staining, and reduction in epigenetic markers of prostate cancer progression, including the histone methyltransferase EZH2 and the associated histone mark H3K27me3. In addition, we observed that modifications of dietary protein quality, independently of protein quantity, decreased tumor growth. A diet containing 20% plant protein inhibited tumor weight by 37% as compared to a 20% animal dairy protein diet. Conclusions: Our findings suggest that a reduction in dietary protein intake is highly effective in inhibiting tumor growth in human xenograft prostate and breast cancer models, possibly through the inhibition of the IGF/AKT/mTOR pathway and epigenetic modifications. PMID:24353195

  6. Efficacy of local delivery of ardipusilloside I using biodegradable implants against cerebral tumor growth.

    PubMed

    Dang, Huan; Wang, Ji; Cheng, Jiang-Xue; Wang, Peng-Yuan; Wang, Ying; Cheng, Li-Fei; Du, Caigan; Wang, Xiao-Juan

    2015-01-01

    Ardipusilloside I (ADS-I) is a natural compound that can be isolated from the Chinese medicinal herb Ardisiapusilla A.DC, and has been reported to inhibit the growth of glioblastoma cells in cultures. This study was designed to test its efficacy by the delivery using biodegradable implants against glioblastoma in vivo. ADS-I was incorporated into polymer microspheres, which were prepared by a mixture of poly (D, L-lactic acid) and poly (D, L-lactic-co-glycolic acid) polymers and then fabricated into wafers. The anti-glioma activities of ADS-I-loaded wafers were examined by methylthiazol tetrazolium (MTT) assay in cultured rat C6 glioma cells, and by magnetic resonance imaging (MRI) and survival monitoring in C6 glioma-bearing rats. Here, we showed that ADS-I-loaded wafers sustained ADS-I release in vitro for 36 days in Higuchi model of kinetics, and had the same cytotoxic activity as ADS-I in the solution against the growth of C6 glioma cells in cultures. In C6 glioma-bearing rats, ADS-I wafer implants inhibited tumor growth in a dose-dependent matter, and were more effective than the same dosage of ADS-I in the solution. The tumor suppression efficacies of ADS-I wafer implants were positively correlated with an increase in tumor cell apoptosis and prolonged animal survival, and were associated with a decrease in vascular endothelial growth factor, C-reactive protein, tumor necrosis factor-? and interleukin-6, and an increase in interleukin-2 expression. In conclusion, this study demonstrates significant efficacy of local delivery of ADS-I using polymer implants against glioma tumor growth in vivo, suggesting the potential of ADS-I-loaded wafers for glioma treatment. PMID:25628934

  7. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo

    Microsoft Academic Search

    Shokoofe Noori; Zuhair M. Hassan; Mehdi Mohammadi; Zohre Habibi; Nooshin Sohrabi; Saeed Bayanolhagh

    2010-01-01

    A regulatory or suppressor T cell is functionally defined as a T cell that inhibits an immune response by influencing the activity of another cell type. On the other hand, Th1 cells express IFN-? and mediate cellular immunity.Sclareol exhibits growth inhibition and cytotoxic activity against a variety of human cancer cell lines. In the first set of experiments, Sclareol was

  8. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth

    PubMed Central

    Wang, Ning; Li, Qi; Feng, Ning-Han; Cheng, Gong; Guan, Zhao-Long; Wang, Yang; Qin, Chao; Yin, Chang-Jun; Hua, Li-Xin

    2013-01-01

    The purpose of this study was to elucidate the molecular mechanisms of microRNA-205 (miR-205) as a tumor suppressor in prostate cancer (PCa). In the present study, microRNA microarray analysis suggested that the expression of miR-205 was significantly decreased in advanced PCa compared with early PCa. Real-time PCR analysis also indicated that miR-205 expression was significantly decreased in PCa tissues compared with non-cancerous tissues. Moreover, the expression of miR-205 has been demonstrated to be associated with the clinicopathological stage and total/free prostate-specific antigen (PSA) level of PCa. Functional analyses showed that both the overexpression of miR-205 and the knockdown of c-SRC in PCa cell lines could inhibit cell growth, colony formation, migration, invasion and the cell cycle as well as induce cell apoptosis in vitro. Furthermore, over-expressing miR-205 reduced tumorigenicity in vivo. Through a luciferase activity assay and Western blotting, c-SRC was identified as a target of miR-205 in cells. The overexpression of miR-205 suppressed c-SRC and its downstream signaling molecules, including FAK, p-FAK, ERK1/2 and p-ERK1/2, and attenuated cell proliferation, invasion and tumor growth. PMID:23974361

  9. Prostate-Specific Antigen Modulates the Expression of Genes Involved in Prostate Tumor Growth1

    PubMed Central

    Bindukumar, B; Schwartz, Stanley A; Nair, Madhavan P N; Aalinkeel, Ravikumar; Kawinski, Elzbieta; Chadha, Kailash C

    2005-01-01

    Abstract Prostate-specific antigen (PSA) is a serine protease that is widely used as a surrogate marker in the early diagnosis and management of prostate cancer. The physiological relevance of tissue PSA levels and their role in prostate tumor growth and metastasis are not known. Free-PSA (f-PSA) was purified to homogeneity from human seminal plasma by column chromatography, eliminating hk2 and all known PSA complexes and retaining its protease activity. Confluent mono-layers of prostate cancer cell lines, PC-3M and LNCaP, were treated with f-PSA in a series of in vitro experiments to determine the changes in expression of various genes that are known to regulate tumor growth and metastasis. Gene array, quantitative polymerase chain reaction (QPCR), and enzyme-linked immunosorbent assay (ELISA) results show significant changes in the expression of various cancer-related genes in PC-3M and LNCaP cells treated with f-PSA. In a gene array analysis of PC-3M cells treated with 10 µM f-PSA, 136 genes were upregulated and 137 genes were downregulated. In LNCaP cells treated with an identical concentration of f-PSA, a total of 793 genes was regulated. QPCR analysis reveals that the genes for urokinase-type plasminogen activator (uPA), VEGF, and Pim-1 oncogene, known to promote tumor growth, were significantly downregulated, whereas IFN-?, known to be a tumor-suppressor gene, was significantly upregulated in f-PSA-treated PC-3M cells. The effect of f-PSA on VEGF and IFN-? gene expression and on protein release in PC-3M cells was distinctly dose-dependent. In vivo studies showed a significant reduction (P = .03) in tumor load when f-PSA was administered in the tumor vicinity of PC-3M tumor-bearing BALB/c nude mice. Our data support the hypothesis that f-PSA plays a significant role in prostate tumor growth by regulating various proangiogenic and antiangiogenic growth factors. PMID:15799824

  10. The zinc finger transcription factor EGR-1 impedes interleukin-1-inducible tumor growth arrest.

    PubMed Central

    Sells, S F; Muthukumar, S; Sukhatme, V P; Crist, S A; Rangnekar, V M

    1995-01-01

    Interleukin-1 (IL-1) is a growth arrest signal for diverse human tumor cell lines. We report here that the action of this cytokine in melanoma cells is associated with induction of EGR-1, a zinc finger protein that activates gene transcription. Both growth arrest and EGR-1 are induced via the type I receptor of IL-1. To determine the role of EGR-1 in IL-1 action in melanoma cells, we used a chimera expressing the transrepression domain of the Wilm's tumor gene, WT1, and the DNA binding domain of Egr-1. This chimera competitively inhibited EGR-1-dependent transactivation via the GC-rich DNA binding sequence, indicating that it acted as a functional dominant negative mutant of Egr-1. Melanoma cell lines stably transfected with the dominant negative mutant construct were supersensitive to IL-1 and showed accelerated G0/G1 growth arrest compared with the parental cell line. The effect of the dominant negative mutant construct was mimicked by addition of an antisense Egr-1 oligomer to the culture medium of the parental cells: the oligomer inhibited EGR-1 expression and accelerated the growth-inhibitory response to IL-1. These data imply that EGR-1 acts to delay IL-1-mediated tumor growth arrest. PMID:7823937

  11. Inhibition of Receptor Signaling and of Glioblastoma-derived Tumor Growth by a Novel PDGFR? Aptamer

    PubMed Central

    Camorani, Simona; Esposito, Carla L; Rienzo, Anna; Catuogno, Silvia; Iaboni, Margherita; Condorelli, Gerolama; de Franciscis, Vittorio; Cerchia, Laura

    2014-01-01

    Platelet-derived growth factor receptor ? (PDGFR?) is a cell-surface tyrosine kinase receptor implicated in several cellular processes including proliferation, migration, and angiogenesis. It represents a compelling therapeutic target in many human tumors, including glioma. A number of tyrosine kinase inhibitors under development as antitumor agents have been found to inhibit PDGFR?. However, they are not selective as they present multiple tyrosine kinase targets. Here, we report a novel PDGFR?-specific antagonist represented by a nuclease-resistant RNA-aptamer, named Gint4.T. This aptamer is able to specifically bind to the human PDGFR? ectodomain (Kd: 9.6?nmol/l) causing a strong inhibition of ligand-dependent receptor activation and of downstream signaling in cell lines and primary cultures of human glioblastoma cells. Moreover, Gint4.T aptamer drastically inhibits cell migration and proliferation, induces differentiation, and blocks tumor growth in vivo. In addition, Gint4.T aptamer prevents PDGFR? heterodimerization with and resultant transactivation of epidermal growth factor receptor. As a result, the combination of Gint4.T and an epidermal growth factor receptor–targeted aptamer is better at slowing tumor growth than either single aptamer alone. These findings reveal Gint4.T as a PDGFR?-drug candidate with translational potential. PMID:24566984

  12. Desmoplastic Small Round Cell Tumor

    Microsoft Academic Search

    Nilüfer TEL; Enver ?HT?YAR; M. Cem ALGIN

    SUMMARY Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplastic condition that diffusely involves the abdominal or pelvic peritoneum in the second or third decade of life. This tumor is characterized by nests of small undifferentiated cells that show immunohistochemical evidence of epithelial, mesenchymal, and neural differentiation. Patients often present with abdominal pain, an abdominal mass, ascites or

  13. Investigation of HT1080 tumor growth dynamics and ECM invasion in 3D

    NASA Astrophysics Data System (ADS)

    Yogurtcu, Osman; Jimenez Valencia, Angela; Lee, Meng-Horng; Sun, Sean; Wirtz, Denis

    2013-03-01

    Tumors are complex arrangements of tissues made up of several components, including dense masses of cancer cells and re-organized extracellular matrix (ECM). Recent studies have revealed the crucial role that extracellular matrix components have on single cancer cell behavior, but how the interaction of ECM components affects the growth dynamics of an entire tumor is not fully understood. Here, we use human derived fibrosarcoma cell (HT1080) aggregates in combination with live cell imaging, cryo-stat sectioning, immunostaining, and confocal imaging to study changes in cell aggregate size, proliferation, and spatial distribution within 3 dimensional (3D) matrices. We compare our experimental observations with a coupled partial differential equations based mathematical model to predict cell aggregate growth and cell density distribution and determine how cell interactions play a significant role in this dynamic growth. Using this model, we investigate the distinct contributions from cell migration, proliferation, cell-matrix interactions, and matrix remodeling to the aggregate dynamics.

  14. A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth.

    PubMed

    Fontenot, Emily; Rossi, Emma; Mumper, Russell; Snyder, Stephanie; Siamakpour-Reihani, Sharareh; Ma, Ping; Hilliard, Eleanor; Bone, Bradley; Ketelsen, David; Santos, Charlene; Patterson, Cam; Klauber-DeMore, Nancy

    2013-05-01

    Secreted frizzled-related protein 2 (SFRP2) is overexpressed in human angiosarcoma and breast cancer and stimulates angiogenesis via activation of the calcineurin/NFATc3 pathway. There are conflicting reports in the literature as to whether SFRP2 is an antagonist or agonist of ?-catenin. The aims of these studies were to assess the effects of SFRP2 antagonism on tumor growth and Wnt-signaling and to evaluate whether SFRP2 is a viable therapeutic target. The antiangiogenic and antitumor properties of SFRP2 monoclonal antibody (mAb) were assessed using in vitro proliferation, migration, tube formation assays, and in vivo angiosarcoma and triple-negative breast cancer models. Wnt-signaling was assessed in endothelial and tumor cells treated with SFRP2 mAb using Western blotting. Pharmacokinetic and biodistribution data were generated in tumor-bearing and nontumor-bearing mice. SFRP2 mAb was shown to induce antitumor and antiangiogenic effects in vitro and inhibit activation of ?-catenin and nuclear factor of activated T-cells c3 (NFATc3) in endothelial and tumor cells. Treatment of SVR angiosarcoma allografts in nude mice with the SFRP2 mAb decreased tumor volume by 58% compared with control (P = 0.004). Treatment of MDA-MB-231 breast carcinoma xenografts with SFRP2 mAb decreased tumor volume by 52% (P = 0.03) compared with control, whereas bevacizumab did not significantly reduce tumor volume. Pharmacokinetic studies show the antibody is long circulating in the blood and preferentially accumulates in SFRP2-positive tumors. In conclusion, antagonizing SFRP2 inhibits activation of ?-catenin and NFATc3 in endothelial and tumor cells and is a novel therapeutic approach for inhibiting angiosarcoma and triple-negative breast cancer. PMID:23604067

  15. Surgical repair of intractable chylous ascites following laparoscopic anterior resection

    PubMed Central

    Ha, Gi Won; Lee, Min Ro

    2015-01-01

    Chylous ascites is the accumulation of a milk-like peritoneal fluid rich in triglycerides and it is an unusual complication following surgical treatment of colorectal cancer. Conservative management is usually sufficient in patients with chylous ascites after surgery. However, we describe a patient with intractable chylous ascites after laparoscopic anterior resection for sigmoid colon cancer who failed initial conservative treatment. This patient was successfully managed by surgery. PMID:26019476

  16. Tumor-promoting functions of transforming growth factor-? in progression of cancer

    PubMed Central

    2012-01-01

    Transforming growth factor-? (TGF-?) elicits both tumor-suppressive and tumor-promoting functions during cancer progression. Here, we describe the tumor-promoting functions of TGF-? and how these functions play a role in cancer progression. Normal epithelial cells undergo epithelial-mesenchymal transition (EMT) through the action of TGF-?, while treatment with TGF-? and fibroblast growth factor (FGF)-2 results in transdifferentiation into activated fibroblastic cells that are highly migratory, thereby facilitating cancer invasion and metastasis. TGF-? also induces EMT in tumor cells, which can be regulated by oncogenic and anti-oncogenic signals. In addition to EMT promotion, invasion and metastasis of cancer are facilitated by TGF-? through other mechanisms, such as regulation of cell survival, angiogenesis, and vascular integrity, and interaction with the tumor microenvironment. TGF-? also plays a critical role in regulating the cancer-initiating properties of certain types of cells, including glioma-initiating cells. These findings thus may be useful for establishing treatment strategies for advanced cancer by inhibiting TGF-? signaling. PMID:22111550

  17. Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver.

    PubMed

    Bayón, L G; Izquierdo, M A; Sirovich, I; van Rooijen, N; Beelen, R H; Meijer, S

    1996-05-01

    Metastasis to the liver is a common event in clinical oncology. Blood-borne tumor cells (TCs) arriving to the liver sinusoids run into a special vascular bed. The lining of liver sinusoids is shared by Kupffer cells (KCs) and endothelial cells. KCs, liver-fixed macrophages, are responsible for detection and removal of "non-self" particles. To investigate their role in arresting blood-borne TCs and controlling tumor growth, we injected a syngeneic colon carcinoma cell line into a mesenteric vein of two groups of rats; one group was without Kupffer cells and the other normal controls. We removed the liver of these animals at different time intervals and performed immunohistochemical analysis with monoclonal antibodies (MoAbs) against our tumor cell line, three macrophage subpopulations, natural killer cells, and B and T lymphocytes. Additionally, we showed in vitro spontaneous cytotoxicity of KCs against our tumor cell line. Results suggest that KCs play a relevant role in arresting circulating TCs at the liver sinusoid, although it is limited to a small number of malignant cells. They also seem to play a major role in clearing neoplastic cells from the liver parenchyma, in controlling tumor growth in the very early stages of metastatic development, and in modulating the host immune response to cancer cells. PMID:8621157

  18. Blocking IL1? Pathway Following Paclitaxel Chemotherapy Slightly Inhibits Primary Tumor Growth but Promotes Spontaneous Metastasis.

    PubMed

    Voloshin, Tali; Alishekevitz, Dror; Kaneti, Limor; Miller, Valeria; Isakov, Elina; Kaplanov, Irena; Voronov, Elena; Fremder, Ella; Benhar, Moran; Machluf, Marcelle; Apte, Ron N; Shaked, Yuval

    2015-06-01

    Acquired resistance to therapy is a major obstacle in clinical oncology, and little is known about the contributing mechanisms of the host response to therapy. Here, we show that the proinflammatory cytokine IL1? is overexpressed in response to paclitaxel chemotherapy in macrophages, subsequently promoting the invasive properties of malignant cells. In accordance, blocking IL1?, or its receptor, using either genetic or pharmacologic approach, results in slight retardation of primary tumor growth; however, it accelerates metastasis spread. Tumors from mice treated with combined therapy of paclitaxel and the IL1 receptor antagonist anakinra exhibit increased number of M2 macrophages and vessel leakiness when compared with paclitaxel monotherapy-treated mice, indicating a prometastatic role of M2 macrophages in the IL1?-deprived microenvironment. Taken together, these findings demonstrate the dual effects of blocking the IL1 pathway on tumor growth. Accordingly, treatments using "add-on" drugs to conventional therapy should be investigated in appropriate tumor models consisting of primary tumors and their metastases. Mol Cancer Ther; 14(6); 1385-94. ©2015 AACR. PMID:25887886

  19. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis.

    PubMed Central

    Pezzella, F.; Pastorino, U.; Tagliabue, E.; Andreola, S.; Sozzi, G.; Gasparini, G.; Menard, S.; Gatter, K. C.; Harris, A. L.; Fox, S.; Buyse, M.; Pilotti, S.; Pierotti, M.; Rilke, F.

    1997-01-01

    Neoplastic growth is usually dependent on blood supply, and it is commonly accepted that this is provided by the formation of new vessels. However, tumors may be able to grow without neovascularization if they find a suitable vascular bed available. We have investigated the pattern of vascularization in a series of 500 primary stage I non-small-cell lung carcinomas. Immunostaining of endothelial cells has highlighted four distinct patterns of vascularization. Three patterns (which we called basal, papillary, and diffuse) have in common the destruction of normal lung and the production of newly formed vessels and stroma. The fourth pattern, which we called alveolar or putative nonangiogenic, was observed in 16% (80/500) of the cases and is characterized by lack of parenchymal destruction and absence of both tumor associated stroma and new vessels. The only vessels present were the ones in the alveolar septa, and their presence highlighted, through the whole tumor, the lung alveoli filled up by the neoplastic cells. This observation suggests that, if an appropriate vascular bed is available, a tumor can exploit it and grows without inducing neo-angiogenesis. This could have implications for strategies aimed at inhibiting tumor growth by vascular targeting or inhibition of angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9358768

  20. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects.

    PubMed

    Luo, Xiaoji; Chen, Jin; Song, Wen-Xin; Tang, Ni; Luo, Jinyong; Deng, Zhong-Liang; Sharff, Katie A; He, Gary; Bi, Yang; He, Bai-Cheng; Bennett, Erwin; Huang, Jiayi; Kang, Quan; Jiang, Wei; Su, Yuxi; Zhu, Gao-Hui; Yin, Hong; He, Yun; Wang, Yi; Souris, Jeffrey S; Chen, Liang; Zuo, Guo-Wei; Montag, Anthony G; Reid, Russell R; Haydon, Rex C; Luu, Hue H; He, Tong-Chuan

    2008-12-01

    Osteosarcoma (OS) is the most common primary malignancy of bone. Here, we investigated a possible role of defective osteoblast differentiation in OS tumorigenesis. We found that basal levels of the early osteogenic marker alkaline phosphatase (ALP) activity were low in OS lines. Osteogenic regulators Runx2 and OSX, and the late marker osteopontin (OPN) expressed at low levels in most OS lines, indicating that most OS cells fail to undergo terminal differentiation. Furthermore, OS cells were refractory to osteogenic BMP-induced increases in ALP activity. Osteogenic BMPs were shown to upregulate early target genes, but not late osteogenic markers OPN and osteocalcin (OC). Furthermore, osteogenic BMPs failed to induce bone formation from human OS cells, rather effectively promoted OS tumor growth in an orthotopic OS model. Exogenous expression of early target genes enhanced BMP-stimulated OS tumor growth, whereas osteogenic BMP-promoted OS tumor growth was inhibited by exogenous Runx2 expression. These results suggest that alterations in osteoprogenitors may disrupt osteogenic differentiation pathway. Thus, identifying potential differentiation defects in OS tumors would allow us to reconstruct the tumorigenic events in osteoprogenitors and to develop rational differentiation therapies for clinical OS management. PMID:18838962

  1. In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides

    PubMed Central

    Fluiter, Kees; ten Asbroek, Anneloor L. M. A.; de Wissel, Marit B.; Jakobs, Marja E.; Wissenbach, Margit; Olsson, Hĺkan; Olsen, Otto; Oerum, Henrik; Baas, Frank

    2003-01-01

    Locked nucleic acids (LNA) are novel high-affinity DNA analogs that can be used as genotype-specific drugs. The LNA oligonucleotides (LNA PO ODNs) are very stable in vitro and in vivo without the need for a phosphorothiolated backbone. In this study we tested the biological fate and the efficacy in tumor growth inhibition of antisense oligonucleotides directed against the gene of the large subunit of RNA polymerase II (POLR2A) that are completely synthesized as LNA containing diester backbones. These full LNA oligonucleotides strongly reduce POLR2A protein levels. Full LNA PO ODNs appeared to be very stable compounds when injected into the circulation of mice. Full LNA PO ODNs were continuously administered for 14 days to tumor-bearing nude mice. Tumor growth was inhibited sequence specifically at dosages from 1 mg/kg/day. LNA PO ODNs appeared to be non-toxic at dosages <5 mg/kg/day. Biodistribution studies showed the kidneys to have the highest uptake of LNA PO ODNs and urinary secretion as the major route of clearance. This report shows that LNA PO ODNs are potent genotype-specific drugs that can inhibit tumor growth in vivo. PMID:12560491

  2. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis

    PubMed Central

    XIAN, SHU-LIN; CAO, WEI; ZHANG, XIAO-DONG; LU, YUN-FEI

    2015-01-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer. PMID:25621044

  3. Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth

    PubMed Central

    Hitosugi, Taro; Kang, Sumin; Vander Heiden, Matthew G.; Chung, Tae-Wook; Elf, Shannon; Lythgoe, Katherine; Dong, Shaozhong; Lonial, Sagar; Wang, Xu; Chen, Georgia Z.; Xie, Jianxin; Gu, Ting-Lei; Polakiewicz, Roberto D.; Roesel, Johannes L.; Boggon, Titus J.; Khuri, Fadlo R.; Gilliland, D. Gary; Cantley, Lewis C.; Kaufman, Jonathan; Chen, Jing

    2010-01-01

    The Warburg effect describes a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose even in the presence of oxygen. To better understand how tyrosine kinase signaling, which is commonly increased in tumors, regulates the Warburg effect, we performed phosphoproteomic studies. We found that oncogenic forms of fibroblast growth factor receptor type 1 inhibit the pyruvate kinase M2 (PKM2) isoform by direct phosphorylation of PKM2 tyrosine residue 105 (Y105). This inhibits the formation of active, tetrameric PKM2 by disrupting binding of the PKM2 cofactor fructose-1,6-bisphosphate. Furthermore, we found that phosphorylation of PKM2 Y105 is common in human cancers. The presence of a PKM2 mutant in which phenylalanine is substituted for Y105 (Y105F) in cancer cells leads to decreased cell proliferation under hypoxic conditions, increased oxidative phosphorylation with reduced lactate production, and reduced tumor growth in xenografts in nude mice. Our findings suggest that tyrosine phosphorylation regulates PKM2 to provide a metabolic advantage to tumor cells, thereby promoting tumor growth. PMID:19920251

  4. LXR-dependent and -independent effects of oxysterols on immunity and tumor growth.

    PubMed

    Traversari, Catia; Sozzani, Silvano; Steffensen, Knut R; Russo, Vincenzo

    2014-07-01

    Oxysterols are involved in maintaining cellular cholesterol levels. Recently, oxysterols have been demonstrated to modulate the function of immune cells and tumor growth. These effects can be dependent on the activation of the oxysterol-binding liver X receptors (LXRs) or, as recently demonstrated for T and B cells, DCs and neutrophils, can be independent of LXR activation. LXR-dependent oxysterol effects can be ascribed to the activation of LXR?, LXR? or LXR?? isoforms, which induces transcriptional activation or trans-repression of target genes. The prevalent activation of one isoform seems to be cell-, tissue-, or context-specific, as shown in some pathologic processes, i.e., infectious diseases, atherosclerosis, and autoimmunity. Oxysterol-LXR signaling has recently been shown to inhibit antitumor immune responses, as well as to modulate tumor cell growth. Here, we review the mechanisms that link oxysterols to tumor growth, and discuss possible networks at the basis of LXR-dependent and -independent oxysterol effects on immune cells and tumor development. PMID:24777958

  5. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis.

    PubMed

    Chen, Sidi; Sanjana, Neville E; Zheng, Kaijie; Shalem, Ophir; Lee, Kyungheon; Shi, Xi; Scott, David A; Song, Jun; Pan, Jen Q; Weissleder, Ralph; Lee, Hakho; Zhang, Feng; Sharp, Phillip A

    2015-03-12

    Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR/Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single-guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late-stage primary tumors were found to target a small set of genes, suggesting that specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top-scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo. PMID:25748654

  6. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  7. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases.

    PubMed

    Sottnik, Joseph L; Dai, Jinlu; Zhang, Honglai; Campbell, Brittany; Keller, Evan T

    2015-06-01

    Cross-talk between tumor cells and their microenvironment is critical for malignant progression. Cross-talk mediators, including soluble factors and direct cell contact, have been identified, but roles for the interaction of physical forces between tumor cells and the bone microenvironment have not been described. Here, we report preclinical evidence that tumor-generated pressure acts to modify the bone microenvironment to promote the growth of prostate cancer bone metastases. Tumors growing in mouse tibiae increased intraosseous pressure. Application of pressure to osteocytes, the main mechanotransducing cells in bone, induced prostate cancer growth and invasion. Mechanistic investigations revealed that this process was mediated in part by upregulation of CCL5 and matrix metalloproteinases in osteocytes. Our results defined the critical contribution of physical forces to tumor cell growth in the tumor microenvironment, and they identified osteocytes as a critical mediator in the bone metastatic niche. Cancer Res; 75(11); 2151-8. ©2015 AACR. PMID:25855383

  8. Casein kinase 2? regulates glioblastoma brain tumor-initiating cell growth through the ?-catenin pathway.

    PubMed

    Nitta, R T; Gholamin, S; Feroze, A H; Agarwal, M; Cheshier, S H; Mitra, S S; Li, G

    2015-07-01

    Glioblastoma (GBM) is the most common and fatal primary brain tumor in humans, and it is essential that new and better therapies are developed to treat this disease. Previous research suggests that casein kinase 2 (CK2) may be a promising therapeutic target for GBMs. CK2 has enhanced expression or activity in numerous cancers, including GBM, and it has been demonstrated that inhibitors of CK2 regressed tumor growth in GBM xenograft mouse models. Our studies demonstrate that the CK2 subunit, CK2?, is overexpressed in and has an important role in regulating brain tumor-initiating cells (BTIC) in GBM. Initial studies showed that two GBM cell lines (U87-MG and U138) transduced with CK2? had enhanced proliferation and anchorage-independent growth. Inhibition of CK? using siRNA or small-molecule inhibitors (TBBz, CX-4945) reduced cell growth, decreased tumor size, and increased survival rates in GBM xenograft mouse models. We also verified that inhibition of CK2? decreased the activity of a well-known GBM-initiating cell regulator, ?-catenin. Loss of CK2? decreased two ?-catenin-regulated genes that are involved in GBM-initiating cell growth, OCT4 and NANOG. To determine the importance of CK2? in GBM stem cell maintenance, we reduced CK2? activity in primary GBM samples and tumor spheres derived from GBM patients. We discovered that loss of CK2? activity reduced the sphere-forming capacity of BTIC and decreased numerous GBM stem cell markers, including CD133, CD90, CD49f and A2B5. Our study suggests that CK2? is involved in GBM tumorigenesis by maintaining BTIC through the regulation of ?-catenin. PMID:25241897

  9. Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth.

    PubMed

    Munguia, A; Ota, T; Miest, T; Russell, S J

    2008-05-01

    Multiple myeloma (MM) is a disseminated malignancy of antibody secreting plasma cells that localize primarily to the bone marrow. Several studies have illustrated the potential of utilizing oncolytic viruses (measles, vaccinia, Vesicular Stomatitis Virus and coxsackievirus A21) for the treatment of MM, but there are significant barriers that prevent the viruses from reaching sites of myeloma tumor growth after intravenous delivery. The most important barriers are failure to extravasate from tumor blood vessels, mislocalization of the viruses in liver and spleen and neutralization by antiviral antibodies. In this review, we discuss the use of various cell types as carriers to overcome these barriers, emphasizing their relative susceptibilities to virus infection and their variable trafficking properties. Mesenchymal progenitor cells, monocytes and T cells have all shown promise as virus-delivery vehicles capable of accessing sites of myeloma growth. However, a previously unexplored alternative would be to use primary myeloma cells, or even myeloma cell lines, as delivery vehicles. Advantages of this approach are the natural ability of myeloma cells to home to sites of myeloma tumor growth and their compatibility with tumor-specific viruses that cannot propagate in other carrier cell lineages. A potential difficulty associated with the use of myeloma cells for virus delivery is that they must be exposed to supralethal doses of ionizing radiation before they can be safely administered to patients. Preliminary studies are presented in which we demonstrate the feasibility of using irradiated myeloma cells as carriers to deliver oncolytic viruses to sites of myeloma tumor growth in an orthotopic human myeloma model. PMID:18356812

  10. Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth

    PubMed Central

    Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M. L.; Hlatky, Lynn; Hahnfeldt, Philip

    2014-01-01

    Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (?80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (?70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic. PMID:25167199

  11. THE BISPHOSPHONATE ZOLEDRONIC ACID DECREASES TUMOR GROWTH IN BONE IN MICE WITH DEFECTIVE OSTEOCLASTS*

    PubMed Central

    Hirbe, Angela C.; Roelofs, Anke J.; Floyd, Desiree H.; Deng, Hongju; Becker, Stephanie N.; Lanigan, Lisa G.; Apicelli, Anthony J.; Xu, Zhiqiang; Prior, Julie L.; Eagleton, Mark C.; Piwnica-Worms, David; Rogers, Michael J.; Weilbaecher, Katherine

    2009-01-01

    Bisphosphonates (BPs), bone targeted drugs that disrupt osteoclast function, are routinely used to treat complications of bone metastasis. Studies in preclinical models of cancer have shown that BPs reduce skeletal tumor burden and increase survival. Similarly, we observed in the present study that administration of the Nitrogen-containing BP (N-BP), zoledronic acid (ZA) to osteolytic tumor-bearing Tax+ mice beginning at 6 months of age led to resolution of radiographic skeletal lesions. N-BPs inhibit farnesyl diphosphate (FPP) synthase, thereby inhibiting protein prenylation and causing cellular toxicity. We found that ZA decreased Tax+ tumor and B16 melanoma viability and caused the accumulation of unprenylated Rap1a proteins in vitro. However, it is presently unclear whether N-BPs exert anti-tumor effects in bone independent of inhibition of osteoclast (OC) function in vivo. Therefore, we evaluated the impact of treatment with ZA on B16 melanoma bone tumor burden in irradiated mice transplanted with splenic cells from src-/- mice, which have non-functioning OCs. OC-defective mice treated with ZA demonstrated a significant 88% decrease in tumor growth in bone compared to vehicle-treated OC-defective mice. These data support an osteoclast-independent role for N-BP therapy in bone metastasis. PMID:19442620

  12. A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth.

    PubMed

    Farnsworth, Rae H; Karnezis, Tara; Shayan, Ramin; Matsumoto, Masataka; Nowell, Cameron J; Achen, Marc G; Stacker, Steven A

    2011-10-15

    Lymph node metastasis, an early and prognostically important event in the progression of many human cancers, is associated with expression of VEGF-D. Changes to lymph node vasculature that occur during malignant progression may create a metastatic niche capable of attracting and supporting tumor cells. In this study, we sought to characterize molecules expressed in lymph node endothelium that could represent therapeutic or prognostic targets. Differential mRNA expression profiling of endothelial cells from lymph nodes that drained metastatic or nonmetastatic primary tumors revealed genes associated with tumor progression, in particular bone morphogenetic protein-4 (BMP-4). Metastasis driven by VEGF-D was associated with reduced BMP-4 expression in high endothelial venules, where BMP-4 loss could remodel the typical high-walled phenotype to thin-walled vessels. VEGF-D expression was sufficient to suppress proliferation of the more typical BMP-4-expressing high endothelial venules in favor of remodeled vessels, and mechanistic studies indicated that VEGF receptor-2 contributed to high endothelial venule proliferation and remodeling. BMP-4 could regulate high endothelial venule phenotype and cellular function, thereby determining morphology and proliferation responses. Notably, therapeutic administration of BMP-4 suppressed primary tumor growth, acting both at the level of tumor cells and tumor stromal cells. Together, our results show that VEGF-D-driven metastasis induces vascular remodeling in lymph nodes. Furthermore, they implicate BMP-4 as a negative regulator of this process, suggesting its potential utility as a prognostic marker or antitumor agent. PMID:21868759

  13. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)] [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China)] [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)] [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China)] [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China)] [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States)] [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China) [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ? CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ? The pro-angiogenic effects of CYP4Z1 have been studied in vitro and in vivo. ? CYP4Z1 regulates expression and production of VEGF-A and TIMP-2. ? CYP4Z1-induced angiogenesis is associated with PI3K and ERK1/2 activation. ? CYP4Z1 may be an attractive target for anti-cancer therapy.

  14. Intraperitoneal injection of in vitro expanded V?9V?2 T cells together with zoledronate for the treatment of malignant ascites due to gastric cancer

    PubMed Central

    Wada, Ikuo; Matsushita, Hirokazu; Noji, Shuichi; Mori, Kazuhiko; Yamashita, Hiroharu; Nomura, Sachiyo; Shimizu, Nobuyuki; Seto, Yasuyuki; Kakimi, Kazuhiro

    2014-01-01

    Malignant ascites caused by peritoneal dissemination of gastric cancer is chemotherapy-resistant and associated with poor prognosis. We conducted a pilot study to evaluate the safety of weekly intraperitoneal injections of in vitro expanded V?9V?2 T cells together with zoledronate for the treatment of such malignant ascites. Patient peripheral blood mononuclear cells were stimulated with zoledronate (5 ?mol/L) and interleukin-2 (1000 IU/mL). After 14 days culture, V?9V?2 T-cells were harvested and administered intraperitoneally in four weekly infusions. The day before T-cell injection, patients received zoledronate (1 mg) to sensitize their tumor cells to V?9V?2 T-cell recognition. Seven patients were enrolled in this study. The number of V?9V?2 T-cells in each injection ranged from 0.6 to 69.8 × 108 (median 59.0 × 108). There were no severe adverse events related to the therapy. Intraperitoneal injection of V?9V?2 T cells allows them access to the tumor cells in the peritoneal cavity. The number of tumor cells in the ascites was significantly reduced even after the first round of therapy and remained substantially lower over the course of treatment. IFN-? was detected in the ascites on treatment. Computed tomography revealed a significant reduction in volume of ascites in two of seven patients. Thus, injection of these antitumor V?9V?2 T-cells can result in local control of malignant ascites in patients for whom no standard therapy apart from paracentesis is available. Adoptively transferred V?9V?2 T-cells do indeed recognize tumor cells and exert antitumor effector activity in vivo, when they access to the tumor cells. PMID:24515916

  15. Involvement of growth factors and their receptors in radon-induced rat lung tumors

    SciTech Connect

    Leung, F.C.; Dagle, G.E.; Cross, F.T. [Pacific Northwest Lab., Richland, WA (United States)

    1992-12-31

    In this paper we examine the role of growth factors (GF) and their receptors (GFR) in radon-induced rat lung tumors. Inhalation exposure of radon and its daughters induced lung tumors in rats, but the molecule/cellular mechanisms are not known. Recent evidence suggests that GF/GFR play a critical role in the growth and development of lung cancer in humans and animals. We have developed immunocytochemical methods for identifying sites of production and action of GF/GFR at the cellular level; for example, the avidin-biotin horseradish peroxidase technique. In radon-induced rat epidermoid carcinomas, epidermal growth factor (EGF), EGF-receptors (EGF-R), transforming growth factor alpha (TGF-{alpha}), and bombesin were found to be abnormally expressed. These abnormal expressions, mainly associated with epidermoid carcinomas of the lung, were not found in any other lung tumor types. Our data suggest that EGF, EGF-R, TGF-{alpha}, and bombesin are involved in radon oncogenesis in rat lungs, especially in epidermoid carcinomas, possibly through the autocrine/paracrine pathway.

  16. Reduced pathological angiogenesis and tumor growth in mice lacking GPR4, a proton sensing receptor.

    PubMed

    Wyder, Lorenza; Suply, Thomas; Ricoux, Bérangčre; Billy, Eric; Schnell, Christian; Baumgarten, Birgit U; Maira, Sauveur Michel; Koelbing, Claudia; Ferretti, Mireille; Kinzel, Bernd; Müller, Matthias; Seuwen, Klaus; Ludwig, Marie-Gabrielle

    2011-12-01

    The G protein-coupled receptor GPR4 is activated by acidic pH and recent evidence indicates that it is expressed in endothelial cells. In agreement with these reports, we observe a high correlation of GPR4 mRNA expression with endothelial marker genes, and we confirm expression and acidic pH dependent function of GPR4 in primary human vascular endothelial cells. GPR4-deficient mice were generated; these are viable and fertile and show no gross abnormalities. However, these animals show a significantly reduced angiogenic response to VEGF (vascular endothelial growth factor), but not to bFGF (basic fibroblast growth factor), in a growth factor implant model. Accordingly, in two different orthotopic models, tumor growth is strongly reduced in mice lacking GPR4. Histological analysis of tumors indicates reduced tumor cell proliferation as well as altered vessel morphology, length and density. Moreover, GPR4 deficiency results in reduced VEGFR2 (VEGF Receptor 2) levels in endothelial cells, accounting, at least in part, for the observed phenotype. Our data suggest that endothelial cells sense local tissue acidosis via GPR4 and that this signal is required to generate a full angiogenic response to VEGF. PMID:22045552

  17. Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53.

    PubMed

    Komarova, E A; Diatchenko, L; Rokhlin, O W; Hill, J E; Wang, Z J; Krivokrysenko, V I; Feinstein, E; Gudkov, A V

    1998-09-01

    p53 tumor suppressor gene controls cell response to a variety of stresses inducing growth arrest or apoptosis in damaged cells. It largely determines the sensitivity of tumor and normal cells to radiation and chemotherapy, and, therefore, defines both the efficacy and limitations of anti-cancer treatment. To determine molecular mechanisms of p53-dependent stress response in normal tissues we identified and compared the spectra of radiation-responsive genes in cells of different origin and p53 status using a cDNA array hybridization technique. The majority of genes identified were p53-dependent and cell type specific. Several of the new p53 responders encode known secreted growth inhibitory factors. This suggests that p53, in addition to its intrinsic antiproliferation activity, can cause 'bystander effect' by inducing export of growth suppressive stimuli from damaged cells to neighboring cells. Consistently, a p53-dependent accumulation of factors, which causes growth inhibitory effects in a variety of cell lines, was found after gamma irradiation in the media from established and primary cell cultures and in the urine of irradiated mice. Moreover, p53-dependent factors released by normal human fibroblasts potentiated the cytotoxic effect of a chemotherapeutic drug on co-cultivated tumor cells. This suggests a previously unknown role for normal cells in chemo- and radiation therapy of cancer. PMID:9764819

  18. Ku80 cooperates with CBP to promote COX-2 expression and tumor growth

    PubMed Central

    Qin, Yu; Xuan, Yang; Jia, Yunlu; Hu, Wenxian; Yu, Wendan; Dai, Meng; Li, Zhenglin; Yi, Canhui; Zhao, Shilei; Li, Mei; Du, Sha; Cheng, Wei; Xiao, Xiangsheng; Chen, Yiming; Wu, Taihua; Meng, Songshu; Yuan, Yuhui; Liu, Quentin; Huang, Wenlin; Guo, Wei; Wang, Shusen; Deng, Wuguo

    2015-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer. PMID:25797267

  19. Oridonin inhibits tumor growth in glioma by inducing cell cycle arrest and apoptosis.

    PubMed

    Zhang, X-H; Liu, Y-X; Jia, M; Han, J-S; Zhao, M; Ji, S-P; Li, A-M

    2014-01-01

    Glioma is the most common malignant intracranial tumors. Despite newly developed therapies, these treatments mainly target oncogenic signals, and unfortunately, fail to provide enough survival benefit in both human patients and mouse xenograft models, especially the first-generation therapies. Oridonin is purified from the Chinese herb Rabdosia rubescens and considered to exert extensive anti-cancer effects on human tumorigenesis. In this study, we systemically investigated the role of Oridonin in tumor growth and the underlying mechanisms in human glioma. We found that Oridonin inhibited cell proliferations in a dose- and time-dependent manner in both glioma U87 and U251 cells. Moreover, these anti-cancer effects were also confirmed in a mouse model bearing glioma. Furthermore, cell cycle arrest in S phase was observed in Oridonin-mediated growth inhibition by flow cytometry. Cell cycle arrest in S phase led to eventual cell apoptosis, as revealed by Hoechst 33342 staining and annexin V/PI double-staining. The cell apoptosis might be accomplished through a mitochondrial manner. In all, we were the first to our knowledge to report that Oridonin could exert anti-cancer effects on tumor growth in human glioma by inducing cell cycle arrest and eventual cell apoptosis. The identification of Oridonin as a critical mediator of glioma growth may potentiate Oridonin as a novel therapeutic strategies in glioma treatments. PMID:25553351

  20. The Epstein-Barr Virus Encoded BART miRNAs Potentiate Tumor Growth In Vivo

    PubMed Central

    Qiu, Jin; Smith, Pamela; Leahy, Leah; Thorley-Lawson, David A.

    2015-01-01

    The human herpes virus Epstein-Barr virus (EBV) latently infects and drives the proliferation of B lymphocytes in vitro and is associated with several forms of lymphoma and carcinoma in vivo. The virus encodes ~30 miRNAs in the BART region, the function of most of which remains elusive. Here we have used a new mouse xenograft model of EBV driven carcinomagenesis to demonstrate that the BART miRNAs potentiate tumor growth and development in vivo. No effect was seen on invasion or metastasis, and the growth promoting activity was not seen in vitro. In vivo tumor growth was not associated with the expression of specific BART miRNAs but with up regulation of all the BART miRNAs, consistent with previous observations that all the BART miRNAs are highly expressed in all of the EBV associated cancers. Based on these observations, we suggest that deregulated expression of the BART miRNAs potentiates tumor growth and represents a general mechanism behind EBV associated oncogenesis. PMID:25590614

  1. Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing

    PubMed Central

    Coutelle, Oliver; Hornig-Do, Hue-Tran; Witt, Axel; Andree, Maria; Schiffmann, Lars M; Piekarek, Michael; Brinkmann, Kerstin; Seeger, Jens M; Liwschitz, Maxim; Miwa, Satomi; Hallek, Michael; Krönke, Martin; Trifunovic, Aleksandra; Eming, Sabine A; Wiesner, Rudolf J; Hacker, Ulrich T; Kashkar, Hamid

    2014-01-01

    In the normal quiescent vasculature, only 0.01% of endothelial cells (ECs) are proliferating. However, this proportion increases dramatically following the angiogenic switch during tumor growth or wound healing. Recent evidence suggests that this angiogenic switch is accompanied by a metabolic switch. Here, we show that proliferating ECs increasingly depend on mitochondrial oxidative phosphorylation (OxPhos) for their increased energy demand. Under growth conditions, ECs consume three times more oxygen than quiescent ECs and work close to their respiratory limit. The increased utilization of the proton motif force leads to a reduced mitochondrial membrane potential in proliferating ECs and sensitizes to mitochondrial uncoupling. The benzoquinone embelin is a weak mitochondrial uncoupler that prevents neoangiogenesis during tumor growth and wound healing by exhausting the low respiratory reserve of proliferating ECs without adversely affecting quiescent ECs. We demonstrate that this can be exploited therapeutically by attenuating tumor growth in syngenic and xenograft mouse models. This novel metabolic targeting approach might be clinically valuable in controlling pathological neoangiogenesis while sparing normal vasculature and complementing cytostatic drugs in cancer treatment. PMID:24648500

  2. Serial analysis of serum and ascitic fluid levels of soluble adhesion molecules and chemokines in patients with spontaneous bacterial peritonitis

    PubMed Central

    Girón-González, J A; Rodríguez-Ramos, C; Elvira, J; Galán, F; Del Álamo, C F-G; Díaz, F; Martín-Herrera, L

    2001-01-01

    The aim of this work was the evaluation of serum and ascitic fluid levels of chemokines (IL-8, growth-regulated oncogene (Gro-?), and monocyte chemotactic protein-1 (MCP-1)), and of soluble adhesion molecules (P-selectin, E-selectin, l-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1)) in patients with spontaneous bacterial peritonitis (SBP). These compounds were serially analysed in serum and ascitic fluid by ELISA in patients with SBP (n = 20), non-infected cirrhotic controls (n = 12), and healthy controls (n = 15). Infected and non-infected cirrhotic patients showed significantly higher serum levels of adhesion molecules. SBP was associated with significantly higher serum and ascitic fluid levels of IL-8, Gro-? and ICAM-1 and with ascitic fluid concentrations of MCP-1. Significantly elevated serum levels of both ICAM-1 and VCAM-1 were detected in patient non-survivors after SBP. Thus, higher ascitic fluid levels of chemokines could be implicated in the peritoneal infiltrate in patients with SBP. Prognostic significance can be attributed to serum levels of ICAM-1 and VCAM-1 in these patients. PMID:11167998

  3. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice

    PubMed Central

    Bhandarkar, Sulochana S.; Jaconi, Marisa; Fried, Levi E.; Bonner, Michael Y.; Lefkove, Benjamin; Govindarajan, Baskaran; Perry, Betsy N.; Parhar, Ravi; Mackelfresh, Jamie; Sohn, Allie; Stouffs, Michael; Knaus, Ulla; Yancopoulos, George; Reiss, Yvonne; Benest, Andrew V.; Augustin, Hellmut G.; Arbiser, Jack L.

    2009-01-01

    Hemangiomas are the most common type of tumor in infants. As they are endothelial cell–derived neoplasias, their growth can be regulated by the autocrine-acting Tie2 ligand angiopoietin 2 (Ang2). Using an experimental model of human hemangiomas, in which polyoma middle T–transformed brain endothelial (bEnd) cells are grafted subcutaneously into nude mice, we compared hemangioma growth originating from bEnd cells derived from wild-type, Ang2+/–, and Ang2–/– mice. Surprisingly, Ang2-deficient bEnd cells formed endothelial tumors that grew rapidly and were devoid of the typical cavernous architecture of slow-growing Ang2-expressing hemangiomas, while Ang2+/– cells were greatly impaired in their in vivo growth. Gene array analysis identified a strong downregulation of NADPH oxidase 4 (Nox4) in Ang2+/– cells. Correspondingly, lentiviral silencing of Nox4 in an Ang2-sufficient bEnd cell line decreased Ang2 mRNA levels and greatly impaired hemangioma growth in vivo. Using a structure-based approach, we identified fulvenes as what we believe to be a novel class of Nox inhibitors. We therefore produced and began the initial characterization of fulvenes as potential Nox inhibitors, finding that fulvene-5 efficiently inhibited Nox activity in vitro and potently inhibited hemangioma growth in vivo. In conclusion, the present study establishes Nox4 as a critical regulator of hemangioma growth and identifies fulvenes as a potential class of candidate inhibitor to therapeutically interfere with Nox function. PMID:19620773

  4. Tumor Growth Rate (TGR) is an early indicator of anti-tumor drug activity in phase I clinical trials

    PubMed Central

    Ferté, Charles; Fernandez, Marianna; Hollebecque, Antoine; Koscielny, Serge; Levy, Antonin; Massard, Christophe; Balheda, Rastislav; Bot, Brian; Gomez-Roca, Carlos; Dromain, Clarisse; Ammari, Samy; Soria, Jean-Charles

    2013-01-01

    Purpose RECIST evaluation does not take into account the pre-treatment tumor kinetics and may provide incomplete information regarding experimental drug activity. Tumor Growth Rate (TGR) allows for a dynamic and quantitative assessment of the tumor kinetics. How TGR varies along the introduction of experimental therapeutics and is associated with outcome in phase I patients remains unknown. Experimental designs Medical records from all patients (n=253) prospectively treated in 20 phase I trials were analyzed. TGR was computed during the pre-treatment period (REFERENCE) and the EXPERIMENTAL period. Associations between TGR, standard prognostic scores (RMH score) and outcome (PFS, OS) were computed (multivariate analysis). Results We observed a reduction of TGR between the REFERENCE vs. EXPERIMENTAL periods (38% vs. 4.4%, P<.00001). Although most patients were classified as stable disease (65%) or progressive disease (25%) by RECIST at the first evaluation, 82% and 65% of them exhibited a decrease in TGR, respectively. In a multivariate analyses, only the decrease of TGR was associated with PFS (P=.004), whereas the RMH score was the only variable associated with OS (P=.0008). Only the investigated regimens delivered were associated with a decrease of TGR (P<.00001, multivariate analysis). Computing TGR profiles across different clinical trials reveals specific patterns of antitumor activity. Conclusions Exploring TGR in phase I patients is simple and provides clinically relevant information: (i) an early and subtle assessment of signs of antitumor activity; (ii) indpendent association with PFS; and (iii) It reveals drug-specific profiles; suggesting potential utility for guiding the further development of the investigational drugs. PMID:24240109

  5. The phosphoinositide 3-kinase pathway is crucial for the growth of canine mast cell tumors.

    PubMed

    Amagai, Yosuke; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jung, Kyungsook; Matsuda, Hiroshi

    2013-01-01

    Mast cell tumors (MCTs) are the most common tumors in dogs, accounting for 16-21% of cutaneous tumors. Although several small molecule inhibitors, including imatinib mesylate, have been used for the treatment of MCTs, the response rate remains less than 50%. In this study, the effects of different selective signal inhibitors on MCT cell growth were evaluated using 4 different cell lines derived from dogs. We found that the phosphoinositide 3-kinase (PI3K) signaling pathway is crucial for the proliferation of MCT cells in the presence or absence of c-kit gene mutations. Here, we propose a novel therapeutic strategy to target the PI3K pathway for the treatment of canine MCTs. PMID:23328607

  6. Inhibition of NF-?B in cancer cells converts inflammation- induced tumor growth mediated by TNF? to TRAIL-mediated tumor regression

    Microsoft Academic Search

    Jun-Li Luo; Shin Maeda; Li-Chung Hsu; Hideo Yagita; Michael Karin

    2004-01-01

    We used an experimental murine cancer metastasis model in which a colon adenocarcinoma cell line generates lung metastases, whose growth is stimulated in response to injection of bacterial lipopolysaccharide (LPS), to investigate the role of NF-?B in inflammation-induced tumor growth. We found that LPS-induced metastatic growth response in this model depends on both TNF? production by host hematopoietic cells and

  7. Inhibition of Notch Signaling in Combination with Paclitaxel Reduces Platinum-Resistant Ovarian Tumor Growth

    PubMed Central

    Groeneweg, Jolijn W.; DiGloria, Celeste M.; Yuan, Jing; Richardson, William S.; Growdon, Whitfield B.; Sathyanarayanan, Sriram; Foster, Rosemary; Rueda, Bo R.

    2014-01-01

    Introduction: Ovarian cancer (OvCa) is the most lethal gynecologic malignancy in the United States because of chemoresistant recurrent disease. Our objective was to investigate the efficacy of inhibiting the Notch pathway with a ?-secretase inhibitor (GSI) in an OvCa patient-derived xenograft model as a single agent therapy and in combination with standard chemotherapy. Methods: Immunocompromised mice bearing xenografts derived from clinically platinum-sensitive human ovarian serous carcinomas were treated with vehicle, GSI (MRK-003) alone, paclitaxel and carboplatin (P/C) alone, or the combination of GSI and P/C. Mice bearing platinum-resistant xenografts were given GSI with or without paclitaxel. Gene transcript levels of the Notch pathway target Hes1 were analyzed using RT-PCR. Notch1 and Notch3 protein levels were evaluated. The Wilcoxon rank-sum test was used to assess significance between the different treatment groups. Results: Expression of Notch1 and 3 was variable. GSI alone decreased tumor growth in two of three platinum-sensitive ovarian tumors (p?tumors (p?=?0.04). The combination of GSI and paclitaxel was significantly more effective than GSI alone and paclitaxel alone in all platinum-resistant ovarian tumors (all p?tumors. Interestingly, although the response of each tumor to chronic GSI exposure did not correlate with its endogenous level of Notch expression, GSI did negatively affect Notch signaling in an acute setting. Conclusion: Inhibiting the Notch signaling cascade with a GSI reduces primary human xenograft growth in vivo. GSI synergized with conventional cytotoxic chemotherapy only in the platinum-resistant OvCa models with single agent paclitaxel. These findings suggest inhibition of the Notch pathway in concert with taxane therapy may hold promise for treatment of platinum-resistant OvCa. PMID:25072022

  8. Chinese Red Yeast Rice Inhibition of Prostate Tumor Growth in SCID mice

    PubMed Central

    Hong, Mee Young; Henning, Susanne; Moro, Aune; Seeram, Navindra P.; Zhang, Yanjun; Heber, David

    2011-01-01

    Prostate cancer is a slowly developing but very common cancer in males that may be amenable to preventive strategies that are not toxic. Chinese red yeast rice (RYR), a food herb made by fermenting Monascus purpureus Went yeast on white rice, contains a mixture of eight different monacolins that inhibit cholesterogenesis in addition to red pigments with antioxidant properties. Monacolin K is identical to lovastatin (LV), but lovastatin unlike RYR can be used in individuals intolerant to statins due to muscle pain. Both LV and RYR inhibit de novo cholesterogenesis, which is critical to the growth of tumor cells. Long-term use of statin drugs has been associated with a reduced risk of prostate cancer. We have previously shown that RYR inhibited androgen-dependent and AR-overexpressing androgen-independent prostate cancer cell proliferation in vitro. The present study was designed to determine whether RYR and LV inhibit prostate tumor growth in SCID mice. RYR significantly reduced tumor volumes of androgen-dependent and androgen-independent prostate xenograft tumors compared to animals receiving vehicle alone (P<0.05). Inhibition by RYR was greater than that observed with LV at the dose found in RYR demonstrating that other compounds in RYR contributed to the antiproliferative effect. There was a significant correlation of tumor volume to serum cholesterol (P<0.001). RYR decreased gene expression of androgen synthesizing enzymes (HSD3B2, AKR1C3 and SRD5A1) in both type of tumors (P<0.05). Clinical studies of RYR for prostate cancer prevention in the increasing population of men undergoing active surveillance should be considered. PMID:21278313

  9. Chinese red yeast rice inhibition of prostate tumor growth in SCID mice.

    PubMed

    Hong, Mee Young; Henning, Susanne; Moro, Aune; Seeram, Navindra P; Zhang, Yanjun; Heber, David

    2011-04-01

    Prostate cancer is a slowly developing but very common cancer in males that may be amenable to preventive strategies that are not toxic. Chinese red yeast rice (RYR), a food herb made by fermenting Monascus purpureus Went yeast on white rice, contains a mixture of eight different monacolins that inhibit cholesterogenesis in addition to red pigments with antioxidant properties. Monacolin K is identical to lovastatin (LV), but LV unlike RYR can be used in individuals intolerant to statins due to muscle pain. Both LV and RYR inhibit de novo cholesterogenesis, which is critical to the growth of tumor cells. Long-term use of statin drugs has been associated with a reduced risk of prostate cancer. We have previously shown that RYR inhibited androgen-dependent and androgen receptor-overexpressing androgen-independent prostate cancer cell proliferation in vitro. This study was designed to determine whether RYR and LV inhibit prostate tumor growth in SCID mice. RYR significantly reduced tumor volumes of androgen-dependent and androgen-independent prostate xenograft tumors compared with animals receiving vehicle alone (P < 0.05). Inhibition by RYR was greater than that observed with LV at the dose found in RYR, showing that other compounds in RYR contributed to the antiproliferative effect. There was a significant correlation of tumor volume to serum cholesterol (P < 0.001). RYR decreased gene expression of androgen synthesizing enzymes (HSD3B2, AKR1C3, and SRD5A1) in both type of tumors (P < 0.05). Clinical studies of RYR for prostate cancer prevention in the increasing population of men undergoing active surveillance should be considered. PMID:21278313

  10. Inhibition of cyclo-oxygenase 2 reduces tumor metastasis and inflammatory signaling during blockade of vascular endothelial growth factor

    PubMed Central

    2011-01-01

    Vascular endothelial growth factor (VEGF) blockade is an effective therapy for human cancer, yet virtually all neoplasms resume primary tumor growth or metastasize during therapy. Mechanisms of progression have been proposed to include genes that control vascular remodeling and are elicited by hypoperfusion, such as the inducible enzyme cyclooxygenase-2 (COX-2). We have previously shown that COX-2 inhibition by the celecoxib analog SC236 attenuates perivascular stromal cell recruitment and tumor growth. We therefore examined the effect of combined SC236 and VEGF blockade, using the metastasizing orthotopic SKNEP1 model of pediatric cancer. Combined treatment perturbed tumor vessel remodeling and macrophage recruitment, but did not further limit primary tumor growth as compared to VEGF blockade alone. However, combining SC236 and VEGF inhibition significantly reduced the incidence of lung metastasis, suggesting a distinct effect on prometastatic mechanisms. We found that SC236 limited tumor cell viability and migration in vitro, with effects enhanced by hypoxia, but did not change tumor proliferation or matrix metalloproteinase expression in vivo. Gene set expression analysis (GSEA) indicated that the addition of SC236 to VEGF inhibition significantly reduced expression of gene sets linked to macrophage mobilization. Perivascular recruitment of macrophages induced by VEGF blockade was disrupted in tumors treated with combined VEGF- and COX-2-inhibition. Collectively, these findings suggest that during VEGF blockade COX-2 may restrict metastasis by limiting both prometastatic behaviors in individual tumor cells and mobilization of macrophages to the tumor vasculature. PMID:21978392

  11. The novel herbal cocktail MA128 suppresses tumor growth and the metastatic potential of highly malignant tumor cells.

    PubMed

    Kim, Aeyung; Im, Minju; Yim, Nam-Hiu; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-08-01

    MA128, a novel herbal medicine, was previously identified and its effectiveness in the treatment of asthma and atopic dermatitis (AD) was demonstrated. In particular, post-inflammatory hyperpigmentation (PIH) in AD mice was improved by treatment with MA128. In addition, MA128 exhibited anti-melanogenic activity by inhibiting tyrosinase activity via the p38 MAPK and protein kinase A signaling pathways in B16F10 cells. In the present study, we examined whether oral administration of MA128 suppressed the in vivo tumor growth of HT1080 cells in athymic nude mice. The results showed that the daily oral administration of 75 and 150 mg/kg MA128 suppressed the tumorigenic growth of HT1080 cells efficiently. Since metastasis is a major cause of cancer-associated mortality and the greatest challenge during cancer treatment, we investigated the effect of non-toxic concentrations of MA128 on the metastatic potential of HT1080 cells. MA128 inhibited anchorage-independent colony formation, migration and invasion. Matrix metalloproteinase-9 (MMP-9) activity under resting and PMA-stimulated conditions was decreased in a dose-dependent manner by MA128 in HT1080 cells. In addition, the daily oral administration of MA128 at doses of 75 and 150 mg/kg efficiently blocked the lung metastasis of B16F10 cells that had been injected into the tail veins of C57BL/6 mice. In particular, none of the mice treated with MA128 exhibited systemic toxicity, such as body weight loss or liver and kidney dysfunction. MA128 also inhibited tumor?induced angiogenesis. Taken together, the results suggest that MA128 is a potential therapeutic agent and a safe herbal medicine for controlling malignant and metastatic cancer. PMID:26035620

  12. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    PubMed Central

    2013-01-01

    Background Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. Methods In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. Results ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. Conclusions The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin-based fusion proteins and their enediyne-energized analogs probably provides a promising modality in cancer therapy. PMID:24128285

  13. Control of solid tumor growth in mice using EGF receptor targeted RNA replicase-based plasmid DNA

    PubMed Central

    Rodriguez, B. Leticia; Li, Xinran; Kiguchi, Kaoru; DiGiovanni, John; Unger, Evan C.; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that treatment of tumor-bearing mice with an RNA replicase-based plasmid that produces double-stranded RNA when transfected into tumor cells significantly inhibited the tumor growth. In the present study, the feasibility of further improving the anti-tumor activity of the RNA replicase-based plasmid by targeting it into tumors cells was evaluated. An epidermal growth factor (EGF)-conjugated, PEGylated cationic liposome was developed to deliver the RNA replicase-based plasmid, pSIN-?, into EGFR-over-expressing human breast cancer cells (MDA-MB-468) in vitro and in vivo. Delivery of the pSIN-? using the EGF receptor-targeted liposome more effectively controlled the growth of MDA-MB-468 tumors (and human epidermoid carcinoma A431 tumors) in mice than using un-targeted liposome. The pSIN-? carried by the EGFR-targeted liposome caused the complete regression of MDA-MB-468 tumors in mice, likely due to the enhancement of its pro-apoptotic, anti-proliferative, and anti-angiogenic activities. Tumor-targeted RNA replicase-based plasmid holds a strong potential in tumor therapy. PMID:22296186

  14. Antitumor Activity of Citrus maxima (Burm.) Merr. Leaves in Ehrlich's Ascites Carcinoma Cell-Treated Mice.

    PubMed

    Kundusen, Sriparna; Gupta, Malaya; Mazumder, Upal K; Haldar, Pallab K; Saha, Prerona; Bala, Asis

    2011-01-01

    Context. The plant Citrus maxima Merr. (Rutaceae), commonly known as shaddock or pomelo is indigenous to tropical parts of Asia. The objective of present study is to evaluate the methanol extract of Citrus maxima leaves for its antitumor activity against Ehrlich's Ascites Carcinoma cell in Swiss albino mice. Experimental design. The antitumor activity of methanol extract of Citrus maxima leaves (MECM) was evaluated against Ehrlich Ascites Carcinoma (EAC) cell line in Swiss albino mice. 2 × 10(6) cells were inoculated in different groups of animals. MECM (200 and 400?mg/kg BW i.p.) was administered for nine consecutive days. On day 10th half the animals of different groups were sacrificed for determination of tumor and haematological parameters and the rest half were kept with sufficient food and water ad libitum for determination of increase in life span. Result and Discussions. Oral administration of the extract at the doses of 200 and 400?mg/kg significantly decreased tumor parameters such as tumor volume, viable tumor cell count and increased body weight, hematological parameters and life span in respect of the EAC control mice. Conclusion. Experimental design exhibits significant antitumor activity of the extract (MECM) in a dose dependant manner. PMID:22084708

  15. Antitumor Activity of Citrus maxima (Burm.) Merr. Leaves in Ehrlich's Ascites Carcinoma Cell-Treated Mice

    PubMed Central

    KunduSen, Sriparna; Gupta, Malaya; Mazumder, Upal K.; Haldar, Pallab K.; Saha, Prerona; Bala, Asis

    2011-01-01

    Context. The plant Citrus maxima Merr. (Rutaceae), commonly known as shaddock or pomelo is indigenous to tropical parts of Asia. The objective of present study is to evaluate the methanol extract of Citrus maxima leaves for its antitumor activity against Ehrlich's Ascites Carcinoma cell in Swiss albino mice. Experimental design. The antitumor activity of methanol extract of Citrus maxima leaves (MECM) was evaluated against Ehrlich Ascites Carcinoma (EAC) cell line in Swiss albino mice. 2 × 106 cells were inoculated in different groups of animals. MECM (200 and 400?mg/kg BW i.p.) was administered for nine consecutive days. On day 10th half the animals of different groups were sacrificed for determination of tumor and haematological parameters and the rest half were kept with sufficient food and water ad libitum for determination of increase in life span. Result and Discussions. Oral administration of the extract at the doses of 200 and 400?mg/kg significantly decreased tumor parameters such as tumor volume, viable tumor cell count and increased body weight, hematological parameters and life span in respect of the EAC control mice. Conclusion. Experimental design exhibits significant antitumor activity of the extract (MECM) in a dose dependant manner. PMID:22084708

  16. Orally Administered Mucolytic Drug l-Carbocisteine Inhibits Angiogenesis and Tumor Growth in Mice.

    PubMed

    Shinya, Tomohiro; Yokota, Tsubasa; Nakayama, Shiori; Oki, Sayuri; Mutoh, Junpei; Takahashi, Satoru; Sato, Keizo

    2015-09-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is essential for the growth and metastasis of tumors. In this study, we found that l-carbocisteine, a widely used expectorant, potently inhibits angiogenesis in vitro and in vivo. An in vivo Matrigel plug assay revealed that l-carbocisteine (2.5 mg/kg i.p. twice daily) significantly inhibited vascular endothelial growth factor (VEGF)-induced angiogenesis. l-Carbocisteine also suppressed VEGF-stimulated proliferation, migration, and formation of capillary-like structures of human umbilical vein endothelial cells (HUVECs). We examined the signaling pathways affected in VEGF-stimulated HUVECs, and found that l-carbocisteine significantly inhibited VEGF-induced phosphorylation of phospholipase C (PLC) ?, protein kinase C (PKC) ?, and extracellular signal-related kinases (ERK) 1/2, which have been shown to be essential for angiogenesis. However, these inhibitory effects of l-carbocisteine were not observed in the HeLa human cervical cancer cell line. An in vivo study of Colon-26 tumor-bearing mice found that tumor volumes were significantly smaller in mice treated with l-carbocisteine (150 mg/kg administered orally twice daily) in comparison with vehicle-treated mice. However, l-carbocisteine had no direct effect on Colon-26 cell proliferation or ERK activation. Collectively, our results suggest that l-carbocisteine inhibits tumor angiogenesis by suppressing PLC?/PKC/ERK signaling. PMID:26126534

  17. Metastasis Suppressor Genes: At the Interface Between the Environment and Tumor Cell Growth

    PubMed Central

    Hurst, Douglas R.; Welch, Danny R.

    2013-01-01

    The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this review, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to–from microenvironments. PMID:21199781

  18. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth.

    PubMed

    Roesch, Alexander; Fukunaga-Kalabis, Mizuho; Schmidt, Elizabeth C; Zabierowski, Susan E; Brafford, Patricia A; Vultur, Adina; Basu, Devraj; Gimotty, Phyllis; Vogt, Thomas; Herlyn, Meenhard

    2010-05-14

    Melanomas are highly heterogeneous tumors, but the biological significance of their different subpopulations is not clear. Using the H3K4 demethylase JARID1B (KDM5B/PLU-1/RBP2-H1) as a biomarker, we have characterized a small subpopulation of slow-cycling melanoma cells that cycle with doubling times of >4 weeks within the rapidly proliferating main population. Isolated JARID1B-positive melanoma cells give rise to a highly proliferative progeny. Knockdown of JARID1B leads to an initial acceleration of tumor growth followed by exhaustion which suggests that the JARID1B-positive subpopulation is essential for continuous tumor growth. Expression of JARID1B is dynamically regulated and does not follow a hierarchical cancer stem cell model because JARID1B-negative cells can become positive and even single melanoma cells irrespective of selection are tumorigenic. These results suggest a new understanding of melanoma heterogeneity with tumor maintenance as a dynamic process mediated by a temporarily distinct subpopulation. PMID:20478252

  19. Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression

    PubMed Central

    Sussan, Thomas E; Pletcher, Mathew T; Murakami, Yoshinori; Reeves, Roger H

    2005-01-01

    Background Introduction of cDNA or genomic clones of the tumor suppressor in lung cancer 1 (TSLC1) gene into the non-small cell lung cancer line, A549, reverses tumorigenic growth properties of these cells. These results and the observation that TSLC1 is down-regulated in a number of tumors suggest that TSLC1 functions as a critical switch mediating repression of tumorigenesis. Results To investigate this mechanism, we compared growth properties of A549 with the TSLC1-containing derivative. We found a G1/S phase transition delay in 12.2. Subtractive hybridization, quantitative PCR, and TranSignal Protein/DNA arrays were used to identify genes whose expression changed when TSLC1 was up-regulated. Members of common G1/S phase regulatory pathways such as TP53, MYC, RB1 and HRAS were not differentially expressed, indicating that TSLC1 may function through an alternative pathway(s). A number of genes involved in cell proliferation and tumorigenesis were differentially expressed, notably genes in the Ras-induced senescence pathway. We examined expression of several of these key genes in human tumors and normal lung tissue, and found similar changes in expression, validating the physiological relevance of the A549 and 12.2 cell lines. Conclusion Gene expression and cell cycle differences provide insights into potential downstream pathways of TSLC1 that mediate the suppression of tumor properties in A549 cells. PMID:16083501

  20. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells12

    PubMed Central

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy. PMID:23814493

  1. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06300g

  2. HIGH INTERSTITIAL FLUID PRESSURE REGULATES TUMOR GROWTH AND DRUG UPTAKE IN HUMAN GLIOBLASTOMA

    PubMed Central

    Persson, Anders I.; Ilkhanizadeh, Shirin; Miroshnikova, Yekaterina A.; Frantz, Aaron; Lakins, John N.; James, C. David; McKnight, Tracy R.; Berger, Mitchel S.; Bergers, Gabriele; Weiss, William A.; Weaver, Valerie M.

    2014-01-01

    BACKGROUND: (blind field). METHODS: We developed methodology to measure IFP in human GBM xenografts and mechanical compression in 3D-cultures. We used a cell counter and calcein-AM-loaded cells to measure cell volume following treatment with temozolomide and/or blockade of NKCC1 activity. Fluorescent MQAE-loaded cells were recorded to measure intracellular chloride levels. To study uptake of chemotherapy following IFP-reduction in GBM xenografts following AF-induction or treatment with bumetanide, we injected doxorubicin and measured fluorescent doxorubicin levels in tissue sections. RESULTS: Elevated compression increased proliferation in GBM cultures and IFP levels rapidly increased during the exponential growth phase in GBM xenografts. In contrast to Avastin that targets the vasculature, SPC diet induced AF expression only in tumor cells. In addition to reducing IFP levels, AF-induction also inhibited proliferation, induced apoptosis, and increased survival in mice xenografted with human GBM cells. SPC diet and intranasal injection of AF increased uptake of doxorubicin in GBM xenografts. In vitro, AF augmented TMZ-induced apoptosis and reduced proliferation at both baseline and increased hydrostatic compression. CONCLUSIONS: In contrast to IFP-reducing therapies targeting the vasculature, treatments that reduced osmotic pressure in GBM cells effectively reduced tumor growth and invasion in vivo. AF and bumetanide increased uptake and cytotoxic response from chemotherapies by inhibiting NKCC1 activity in GBM cells. Our studies suggest that elevated IFP promotes tumor growth, reduces drug uptake, and limits therapy-response in GBM. AF-induction represents an attractive strategy to reduce invasion, inhibit tumor growth, increase drug uptake, and ultimately improve the survival of GBM patients. SECONDARY CATEGORY: Preclinical Experimental Therapeutics.

  3. Escape from Transforming Growth Factor beta Control and Oncogene Cooperation in Skin Tumor Development

    Microsoft Academic Search

    Caterina Missero; Santiago Ramon Y. Cajal; G. Paolo Dotto

    1991-01-01

    Control of tumor development by surrounding normal cells has been suggested by a number of in vitro studies. In vivo, tumorigenicity of ras-transformed primary keratinocytes can be suppressed by addition of normal dermal fibroblasts. Here, we report that dermal fibroblasts produce a diffusible inhibitory factor belonging to the transforming growth factor beta (TGF-beta) family and possibly corresponding to TGF-beta3. This

  4. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions

    PubMed Central

    Dai, Jinlu; Zhang, Honglai; Karatsinides, Andreas; Keller, Jill M.; Kozloff, Kenneth M.; Aftab, Dana T.; Schimmoller, Frauke; Keller, Evan T.

    2013-01-01

    Purpose Cabozantinib, an orally available multi-tyrosine kinase inhibitor with activity against MET and vascular endothelial growth factor receptor 2 (VEGFR2), induces resolution of bone scan lesions in men with castration-resistant prostate cancer bone metastases. The purpose of this study was to determine whether cabozantinib elicited a direct anti-tumor effect, an indirect effect through modulating bone, or both. Experimental Design Using human prostate cancer xenograft studies in mice we determined cabozantinib's impact on tumor growth in soft tissue and bone. In vitro studies with cabozantinib were performed using (1) prostate cancer cell lines to evaluate its impact on cell growth, invasive ability and MET and (2) osteoblast cell lines to evaluate its impact on viability and differentiation and VEGFR2. Results Cabozantinib inhibited progression of multiple prostate cancer cell lines (Ace-1,C4-2B, and LuCaP 35) in bone metastatic and soft tissue murine models of prostate cancer, except for PC-3 prostate cancer cells in which it inhibited only subcutaneous growth. Cabozantinib directly inhibited prostate cancer cell viability and induced apoptosis in vitro and in vivo and inhibited cell invasion in vitro. Cabozantinib had a dose-dependent biphasic effect on osteoblast activity and inhibitory effect on osteoclast production in vitro, that was reflected in vivo. It blocked MET and VEGFR2 phosphorylation in prostate cancer cells and osteoblast-like cells, respectively. Conclusion These data indicate that cabozantinib has direct anti-tumor activity; and that its ability to modulate osteoblast activity may contribute to its anti-tumor efficacy. PMID:24097861

  5. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth

    Microsoft Academic Search

    Christopher M. Cabello; Warner B. Bair; Sarah D. Lamore; Stephanie Ley; Alexandra S. Bause; Sara Azimian; Georg T. Wondrak

    2009-01-01

    Redox dysregulation in cancer cells represents a chemical vulnerability that can be targeted by pro-oxidant redox intervention. Dietary constituents that contain an electrophilic Michael acceptor pharmacophore may therefore display promising chemopreventive and chemotherapeutic anti-cancer activity. Here, we demonstrate that the cinnamon-derived dietary Michael acceptor trans-cinnamic aldehyde (CA) impairs melanoma cell proliferation and tumor growth. Feasibility of therapeutic intervention using high

  6. In vitro ovarian tumor growth and treatment response dynamics visualized with time-lapse OCT imaging

    PubMed Central

    Evans, Conor L.; Rizvi, Imran; Hasan, Tayyaba; de Boer, Johannes F.

    2010-01-01

    In vitro three-dimensional models for metastatic ovarian cancer have been useful for recapitulating the human disease. These spheroidal tumor cultures, however, can grow in excess of 1 mm in diameter, which are difficult to visualize without suitable imaging technology. Optical coherence tomography (OCT) is an ideal live imaging method for non-perturbatively visualizing these complex systems. OCT enabled detailed observations of the model at both nodular and cellular levels, revealing growth dynamics not previously observed. The development of a time-lapse OCT system, capable of automated, multidimensional acquisition, further provided insights into the growth and chemotherapeutic response of ovarian cancer. PMID:19466138

  7. Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells.

    PubMed

    Hsieh, Chia-Ling; Gardner, Thomas A; Miao, Li; Balian, Gary; Chung, Leland W K

    2004-02-01

    Stromal-epithelial interaction contributes to local prostate tumor growth, androgen-independent progression and distant metastasis. We have established in vitro coculture and in vivo chimeric tumor models to evaluate the roles of stromal cells isolated from either osteosarcoma or normal bone, a site where prostate cancer cells frequently metastasize, in contributing to the growth and survival of human prostate cancer cells. We have evaluated extensively the effects of toxic gene therapy using luciferase-tagged chimeric human prostate cancer models both in vitro and in vivo. In the in vitro cocultured cell model, we assessed cancer cell growth and residual cellular proteins after targeting either prostate cancer epithelial cells alone or both prostate cancer and bone stromal cells. In the in vivo animal model, we measured tumor volume and serum prostate-specific antigen (PSA) in mice bearing chimeric prostate tumors comprised of human prostate tumor cells and normal bone stromal cells. Our results demonstrated that: (1) The rate of human prostate cancer cell growth in vitro is accelerated by coculturing with human and rat osteosarcoma or normal mouse bone marrow stromal cell lines. No growth stimulation was noted when cocultured with a human prostate epithelial cell line. (2) Disabling the growth of normal bone stromal cells using transgenic targeting with a bystander gene, herpes simplex virus thymidine kinase (hsv-TK), plus the pro-drug ganciclovir (GCV) or acyclovir markedly depressed the growth of cocultured human prostate cancer cells in vitro and human prostate cancer-mouse normal bone stroma chimeric tumors in vivo. (3) By cotargeting both human prostate cancer and normal mouse bone stromal cells in vitro with an adenoviral construct, Ad-hOC-TK (a replication-defective Ad5 vector with the bystander transgene hsv-TK under the control of a human osteocalcin (hOC) promoter) plus GCV4, we observed greater inhibition of tumor cell growth than by targeting a single cell compartment with Ad-PSA-TK (a vector construct similar to Ad-hOC-TK except that the transgene expression is under regulation by a full-length human PSA promoter). These results, taken together, established a basic principle that cotargeting both tumor and its supporting stroma is more efficacious than targeting a single cell compartment in the treatment of human prostate cancer bone metastasis. This principle can be applied to other clinical conditions of cancer growth where stroma contribute to the overall growth and survival potential of the cancer. PMID:14695756

  8. Glucagon-induced angiogenesis and tumor growth through the HIF-1-VEGF-dependent pathway in hyperglycemic nude mice.

    PubMed

    Wang, Y; Zhu, Y D; Gui, Q; Wang, X D; Zhu, Y X

    2014-01-01

    In this study, we examined the effect glucagon-induced hyperglycemia on tumor growth as well as the role of the hypoxia-inducible factor 1 (HIF-1)-vascular endothelial growth factor (VEGF) pathway in this condition. A high concentration of glucose (HG) was utilized to treat HeLa cells under hypoxic or normoxic conditions, and transcriptional levels of HIF-1, VEGF, and basic fibroblast growth factor (bFGF) were evaluated. Moreover, the ability of an HIF-1 inhibitor to block the effect induced by HG was examined. By contrast, hyperglycemia was induced in nude mice by glucagon released from an osmotic pump, and microvessel density was determined with CD31 staining. Thus, the relationship among hyperglycemia, microvessel density, tumor growth, and the HIF-1 inhibitor were analyzed. We found that HG increased transcription of the VEGF gene, which is downstream of HIF-1. Moreover, HG impaired the function of HIF-1 inhibitors [HIF-1 small interfering RNA (siRNA) and berberine] to affect the VEGF transcription level in tumor cells. By contrast, hyperglycemia increased tumor microvessel density and promoted tumor growth, which was inhibited by the HIF-1 inhibitor. However, hyperglycemia attenuated the effect of the HIF-1 inhibitor. Glucagon-induced hyperglycemia influenced tumor microenvironments through the HIF-1-VEGF-dependent pathway and promoted tumor growth and resistance to HIF-1 inhibition treatments. PMID:25222223

  9. A polysaccharide from Trametes robiniophila inhibits human osteosarcoma xenograft tumor growth in vivo.

    PubMed

    Zhao, Xingkai; Ma, Shuo; Liu, Ning; Liu, Jiakun; Wang, Wenbo

    2015-06-25

    In the present study, we isolated and purified one polysaccharide (TRP) from Trametes robiniophila, which had a backbone of 1,3,6- and 1,4-linked glucpyranosyl moieties, with 1-linked arabinofuranosyl and galactopyranosyl terminal at the O-3 position of 1,3,6-linked glucpyranosyl residues. TRP was further evaluated for its antitumor activity against xenografted U-2 OS osteosarcoma in BALB/c nude mice together with the possible mechanism of action. We found that oral administration of TRP significantly suppressed U-2 OS tumor growth in mice via the induction of apoptosis, as evidenced by the increased number of TUNEL-positive cells in tumor tissues. Moreover, TRP administration increased the levels of the proapoptotic Bax protein and decreased the level of the antiapoptotic Bcl-2 protein, thus resulting in a rise of Bax/Bcl-2 ratio. Furthermore, the protein expression of caspase-9, caspase-3 and cleaved PARP became evident in tumor tissues from mice following TRP treatment, but caspase-8 keep unchanged. Besides, overexpression of metadherin (MTDH) was attenuated in tumor tissues of TRP-fed mice. Taken together, these findings suggest that the TRP-induced apoptosis of tumor tissues is through a mitochondria-mediated intrinsic apoptotic pathway. PMID:25839806

  10. Oridonin Inhibits Tumor Growth and Metastasis through Anti-Angiogenesis by Blocking the Notch Signaling

    PubMed Central

    Li, Jingjie; Deng, Huayun; Song, Yajuan; Zhai, Dong; Peng, Yi; Lu, Xiaoling; Liu, Mingyao; Zhao, Yongxiang; Yi, Zhengfang

    2014-01-01

    While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs) proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases. PMID:25485753

  11. CD24 is an effector of HIF-1 driven primary tumor growth and metastasis

    PubMed Central

    Thomas, Shibu; Harding, Michael; Smith, Steven C.; Overdevest, Jonathan B.; Nitz, Matthew D.; Frierson, Henry F.; Tomlins, Scott A.; Kristiansen, Glen; Theodorescu, Dan

    2012-01-01

    Hypoxia drives malignant progression in part by promoting accumulation of the oncogenic transcription factor HIF-1? in tumor cells. Tumor aggressiveness also relates to elevation of the cancer stem cell-associated membrane protein CD24, which has been causally implicated in tumor formation and metastasis in experimental models. Here we link these two elements by showing that hypoxia induces CD24 expression through a functional hypoxia responsive element (HRE) in the CD24 promoter. HIF-1? overexpression induced CD24 mRNA and protein under normoxic conditions, with this effect traced to a recruitment of endogenous HIF-1? to the CD24 promoter. shRNA mediated-attenuation of HIF-1? or CD24 expression reduced cancer cell survival in vitro and in vivo at the levels of primary and metastatic tumor growth. CD24 overexpression in HIF-1?-depleted cancer cells rescued this decrease while HIF-1? overexpression in CD24-depleted cells did not. Analysis of clinical tumor specimens revealed a correlation between HIF-1? and CD24 levels and an association of their co-expression to decreased patient survival. Our results establish a mechanistic linkage between two critically important molecules in cancer, identifying CD24 as a critical HIF-1? transcriptional target and biological effector, strengthening the rationale to target CD24 for cancer therapy. PMID:22926560

  12. Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth.

    PubMed

    Hawkins-Daarud, Andrea; Prudhomme, Serge; van der Zee, Kristoffer G; Oden, J Tinsley

    2013-12-01

    The idea that one can possibly develop computational models that predict the emergence, growth, or decline of tumors in living tissue is enormously intriguing as such predictions could revolutionize medicine and bring a new paradigm into the treatment and prevention of a class of the deadliest maladies affecting humankind. But at the heart of this subject is the notion of predictability itself, the ambiguity involved in selecting and implementing effective models, and the acquisition of relevant data, all factors that contribute to the difficulty of predicting such complex events as tumor growth with quantifiable uncertainty. In this work, we attempt to lay out a framework, based on Bayesian probability, for systematically addressing the questions of Validation, the process of investigating the accuracy with which a mathematical model is able to reproduce particular physical events, and Uncertainty quantification, developing measures of the degree of confidence with which a computer model predicts particular quantities of interest. For illustrative purposes, we exercise the process using virtual data for models of tumor growth based on diffuse-interface theories of mixtures utilizing virtual data. PMID:23053536

  13. Unilateral pleural effusion without ascites in liver cirrhosis

    SciTech Connect

    Faiyaz, U.; Goyal, P.C.

    1983-09-01

    The source of massive pleural effusion was not apparent in a 58-year-old man who had cirrhosis but no demonstrable ascites. Intraperitoneal injection of technetium Tc 99m sulfur colloid established the presence of peritoneopleural communication. This diagnostic technique can be helpful in evaluating patients with cirrhosis of the liver and pleural effusion with or without ascites.

  14. Flaxseed oil enhances the effectiveness of trastuzumab in reducing the growth of HER2-overexpressing human breast tumors (BT-474).

    PubMed

    Mason, Julie K; Fu, Minghua; Chen, Jianmin; Thompson, Lilian U

    2015-01-01

    Flaxseed oil (FSO) reduces breast tumorigenesis and HER2 expression in animal models of luminal breast cancer. The primary treatment for HER2-overexpressing tumors is trastuzumab (TRAS). We aimed to determine the effect of 4% FSO alone and combined with TRAS on HER2-overexpressing tumor (BT-474) growth and to explore potential mechanisms with a specific focus on HER2, mitogen-activated protein kinase (MAPK) and Akt signaling and fatty acid profile. Athymic mice with established tumors were fed the basal diet (control) or 4% FSO diet, with or without TRAS (1 or 2.5 mg/kg) treatment for 4 weeks. Tumor growth, HER2 signaling biomarkers (mRNA and protein) and fatty acid profile were measured. Tumors treated with FSO alone showed no difference in tumor growth compared to control; however, compared to TRAS2.5 and other groups, FSO+TRAS2.5 caused significantly lower tumor growth and cell proliferation and higher apoptosis and the greatest lowering of signaling biomarker expressions (MAPK2, HER2 mRNA; pHER2 protein). Both TRAS and FSO had main effects of reducing the phosphorylated/total expression of Akt and MAPK protein expression. Dietary FSO altered the tumor fatty acid profile. In conclusion, 4% dietary FSO alone does not affect BT-474 tumor growth but enhances the tumor-reducing effect of TRAS (2.5 mg/kg). FSO×TRAS interactive effect may be modulated by their combined reductions of HER2 signaling through the Akt and MAPK pathways leading to reduced cell proliferation and increased apoptosis. FSO alters tumor fatty acid profile that likely contributes to effects on signaling pathways. This supports FSO as a complementary treatment for HER2+ breast cancer treated with TRAS. PMID:25441844

  15. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo?/? mice

    PubMed Central

    Campbell, Elizabeth J; Vissers, Margreet C M; Bozonet, Stephanie; Dyer, Arron; Robinson, Bridget A; Dachs, Gabi U

    2015-01-01

    Hypoxia-inducible factor-1 (HIF-1) governs cellular adaption to the hypoxic microenvironment and is associated with a proliferative, metastatic, and treatment-resistant tumor phenotype. HIF-1 levels and transcriptional activity are regulated by proline and asparagine hydroxylases, which require ascorbate as cofactor. Ascorbate supplementation reduced HIF-1 activation in vitro, but only limited data are available in relevant animal models. There is no information of the effect of physiological levels of ascorbate on HIF activity and tumor growth, which was measured in this study. C57BL/6 Gulo?/? mice (a model of the human ascorbate dependency condition) were supplemented with 3300 mg/L, 330 mg/L, or 33 mg/L of ascorbate in their drinking water before and during subcutaneous tumor growth of B16-F10 melanoma or Lewis lung carcinoma (LL/2). Ascorbate levels in tumors increased significantly with elevated ascorbate intake and restoration of wild-type ascorbate levels led to a reduction in growth of B16-F10 (log phase P < 0.001) and LL/2 tumors (lag growth P < 0.001, log phase P < 0.05). Levels of HIF-1? protein in tumors decreased as dietary ascorbate supplementation increased for both tumor models (P < 0.001). Similarly, tumor ascorbate was inversely correlated with levels of the HIF-1 target proteins CA-IX, GLUT-1, and VEGF in both B16-F10 and LL/2 tumors (P < 0.05). The extent of necrosis was similar between ascorbate groups but varied between models (30% for B16-F10 and 21% for LL/2), indicating that ascorbate did not affect tumor hypoxia. Our data support the hypothesis that restoration of optimal intracellular ascorbate levels reduces tumor growth via moderation of HIF-1 pathway activity. PMID:25354695

  16. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo(-/-) mice.

    PubMed

    Campbell, Elizabeth J; Vissers, Margreet C M; Bozonet, Stephanie; Dyer, Arron; Robinson, Bridget A; Dachs, Gabi U

    2015-02-01

    Hypoxia-inducible factor-1 (HIF-1) governs cellular adaption to the hypoxic microenvironment and is associated with a proliferative, metastatic, and treatment-resistant tumor phenotype. HIF-1 levels and transcriptional activity are regulated by proline and asparagine hydroxylases, which require ascorbate as cofactor. Ascorbate supplementation reduced HIF-1 activation in vitro, but only limited data are available in relevant animal models. There is no information of the effect of physiological levels of ascorbate on HIF activity and tumor growth, which was measured in this study. C57BL/6 Gulo(-/-) mice (a model of the human ascorbate dependency condition) were supplemented with 3300 mg/L, 330 mg/L, or 33 mg/L of ascorbate in their drinking water before and during subcutaneous tumor growth of B16-F10 melanoma or Lewis lung carcinoma (LL/2). Ascorbate levels in tumors increased significantly with elevated ascorbate intake and restoration of wild-type ascorbate levels led to a reduction in growth of B16-F10 (log phase P < 0.001) and LL/2 tumors (lag growth P < 0.001, log phase P < 0.05). Levels of HIF-1? protein in tumors decreased as dietary ascorbate supplementation increased for both tumor models (P < 0.001). Similarly, tumor ascorbate was inversely correlated with levels of the HIF-1 target proteins CA-IX, GLUT-1, and VEGF in both B16-F10 and LL/2 tumors (P < 0.05). The extent of necrosis was similar between ascorbate groups but varied between models (30% for B16-F10 and 21% for LL/2), indicating that ascorbate did not affect tumor hypoxia. Our data support the hypothesis that restoration of optimal intracellular ascorbate levels reduces tumor growth via moderation of HIF-1 pathway activity. PMID:25354695

  17. Functional Interaction of the Retinoblastoma and Ini1\\/Snf5 Tumor Suppressors in Cell Growth and Pituitary Tumorigenesis

    Microsoft Academic Search

    Cynthia J. Guidi; Rajini Mudhasani; Kathleen Hoover; Irwin Leav; Anthony N. Imbalzano; Stephen N. Jones

    2006-01-01

    The Ini1 subunit of the SWI\\/SNF chromatin remodeling complex suppresses formation of malignant rhabdoid tumors in humans and mice. Transduction of Ini1 into Ini1-deficient tumor-derived cell lines has indicated that Ini1 arrests cell growth,controls chromosomal ploidy,and suppresses tumor- igenesis by regulating components of the retinoblastoma (Rb) signaling pathway. Furthermore,conditional inactivation of Ini1 in mouse fibroblasts alters the expression of various

  18. Expression Pattern and Functional Relevance of Epidermal Growth Factor Receptor and Cyclooxygenase2: Novel Chemotherapeutic Targets in Pancreatic Endocrine Tumors?

    Microsoft Academic Search

    Frank Bergmann; Marco Breinig; Michael Höpfner; Ralf J Rieker; Lars Fischer; Christian Köhler; Irene Esposito; Jörg Kleeff; Esther Herpel; Volker Ehemann; Helmut Friess; Peter Schirmacher; Michael A Kern

    2009-01-01

    OBJECTIVES:Pancreatic endocrine tumors represent morphologically and biologically heterogeneous neoplasms. Well-differentiated endocrine tumors (benign or of uncertain behavior) can be distinguished from well-differentiated and poorly differentiated endocrine carcinomas. Although many well-differentiated endocrine carcinomas show rather low rates of tumor growth, more than two-thirds of pancreatic endocrine carcinomas display distant metastases at the time of diagnosis. As the currently applied therapies beyond

  19. Changes in the Activation and Reconstitution of Lymphocytes Resulting from Total-Body Irradiation Correlate with Slowed Tumor Growth

    Microsoft Academic Search

    Glen M. Miller; Dong W. Kim; Melba L. Andres; Lora M. Green; Daila S. Gridley

    2003-01-01

    Alterations in cytokine secretion, activation marker expression, and immune cell concentrations were investigated at sequential time points following delivery of total-body irradiation (TBI) to C57BL\\/6 mice (n = 64) in the Lewis lung tumor model. Significantly slower tumor growth was observed when a 3-Gy dose of TBI was administered 2 h prior to tumor implantation (p < 0.05). The antitumor

  20. Tumor

    MedlinePLUS

    ... environmental substance. Other risk factors for cancer include: Benzene and other chemicals and toxins Drinking too much ... a tumor is found, a piece of the tissue is removed and examined under a microscope. This ...

  1. Midazolam Induces Cellular Apoptosis in Human Cancer Cells and Inhibits Tumor Growth in Xenograft Mice

    PubMed Central

    Mishra, Siddhartha Kumar; Kang, Ju-Hee; Lee, Chang Woo; Oh, Seung Hyun; Ryu, Jun Sun; Bae, Yun Soo; Kim, Hwan Mook

    2013-01-01

    Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosis-inducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties. PMID:24008365

  2. NIH study finds low-dose nicotine does not promote tumor growth in mouse models of lung cancer:

    Cancer.gov

    Experiments in mice show that low levels of exposure to nicotine, equivalent to those in humans who use nicotine replacement therapy (NRT) to help them quit smoking, did not promote lung tumor growth.

  3. Morphometric and Colorimetrie Analyses of Human Tumor Cell Line Growth and Drug Sensitivity in Soft Agar Culture1

    Microsoft Academic Search

    M. C. Alle; C. M. Pacula-Co; M. L. Hursey; L. R. Rubinstein; M. R. Boy

    1991-01-01

    Previous studies have demonstrated the suitability of image analysis of tetrazolium-stained colonies to assess growth and drug sensitivity of human tumor cells cultivated in soft agar culture. In the present study, the potential utility of colorimetrie analysis to expedite experimental drug evaluations using human tumor cell lines was investigated. The same culture dishes were assessed by image analysis and by

  4. Inhibiting Vimentin or beta 1-integrin Reverts Prostate Tumor Cells in IrECM and Reduces Tumor Growth

    SciTech Connect

    Zhang, Xueping; Fournier, Marcia V.; Ware, Joy L.; Bissell, Mina J.; Zehner, Zendra E.

    2009-07-27

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphological changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional (3D) lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the parental prostate epithelial P69 cell line by selection in nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin or {alpha}6-, {beta}4- and {beta}1-integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via siRNA interference or {beta}1-integrin expression by the addition of the blocking antibody, AIIB2, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by subcutaneous injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in 3D lrECM gels. These studies suggest that the levels of vimentin and {beta}1-integrin play a key role in the homeostasis of the normal acini in prostate and that their dysregulation may lead to tumorigenesis.

  5. Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth.

    PubMed

    Shukla, Sudhanshu; Patric, Irene Rosita Pia; Patil, Vikas; Shwetha, Shivayogi D; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Santosh, Vani; Somasundaram, Kumaravel

    2014-08-01

    Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development. PMID:24923441

  6. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis

    PubMed Central

    Li, Bin; Yang, Yang; Cao, Liu; Ye, Yuxiang; Li, Jiangchao; Ding, Yi; Wang, Huiping; Wang, Jintao; He, Xiaodong; Zhang, Qianqian; Lan, Tian; Kenneth Ka Ho, Lee; Li, Weidong; Song, Xiaoyu; Zhou, Jia; Yang, Xuesong; Wang, Lijing

    2014-01-01

    Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit blood vessel formation and development. Moreover, glipizide was found to suppress tumor angiogenesis, tumor growth and metastasis using xenograft tumor and MMTV-PyMT transgenic mouse models. We further revealed that the anticancer capability of glipizide is not attributed to its antiproliferative effects, which are not significant against various human cancer cell lines. To investigate whether its anticancer efficacy is associated with the glucose level alteration induced by glipizide application, glimepiride, another medium to long-acting sulfonylurea antidiabetic drug in the same class, was employed for the comparison studies in the same fashion. Interestingly, glimepiride has demonstrated no significant impact on the tumor growth and metastasis, indicating that the anticancer effects of glipizide is not ascribed to its antidiabetic properties. Furthermore, glipizide suppresses endothelial cell migration and the formation of tubular structures, thereby inhibiting angiogenesis by up-regulating the expression of natriuretic peptide receptor A. These findings uncover a novel mechanism of glipizide as a potential cancer therapy, and also for the first time, provide direct evidence to support that treatment with glipizide may reduce the cancer risk for diabetic patients. PMID:25294818

  7. Selenized milk casein in the diet of BALB/c nude mice reduces growth of intramammary MCF-7 tumors

    PubMed Central

    2013-01-01

    Background Dietary selenium has the potential to reduce growth of mammary tumors. Increasing the Se content of cows’ milk proteins is a potentially effective means to increase Se intake in humans. We investigate the effects of selenized milk protein on human mammary tumor progression in immunodeficient BALB/c nude mice. Methods Four isonitrogenous diets with selenium levels of 0.16, 0.51, 0.85 and 1.15 ppm were formulated by mixing low- and high-selenium milk casein isolates with a rodent premix. MCF-7 cells were inoculated into the mammary fat pad of female BALB/c nude mice implanted with slow-release 17 ?-estradiol pellets. Mice with palpable tumors were randomly assigned to one of the four diets for 10 weeks, during which time weekly tumor caliper measurements were conducted. Individual growth curves were fit with the Gompertz equation. Apoptotic cells and Bcl-2, Bax, and Cyclin D1 protein levels in tumors were determined. Results There was a linear decrease in mean tumor volume at 70 days with increasing Se intake (P < 0.05), where final tumor volume decreased 35% between 0.16 and 1.15 ppm Se. There was a linear decrease in mean predicted tumor volume at 56, 63 and 70 days, and the number of tumors with a final volume above 500 mm3, with increasing Se intake (P < 0.05). This tumor volume effect was associated with a decrease in the proportion of tumors with a maximum growth rate above 0.03 day-1. The predicted maximum volume of tumors (Vmax) and the number of tumors with a large Vmax, were not affected by Se-casein. Final tumor mass, Bcl-2, Bax, and Cyclin D1 protein levels in tumors were not significantly affected by Se-casein. There was a significantly higher number of apoptotic cells in high-Se tumors as compared to low-Se tumors. Conclusions Taken together, these results suggest that turnover of cells in the tumor, but not its nutrient supply, were affected by dairy Se. We have shown that 1.1 ppm dietary Se from selenized casein can effectively reduce tumor progression in an MCF-7 xenograft breast cancer model. These results show promise for selenized milk protein as an effective supplement during chemotherapy. PMID:24152862

  8. Enhanced Tumor Formation in Cyclin D1 Transforming Growth Factor 1 Double Transgenic Mice with Characterization by Magnetic Resonance Imaging

    Microsoft Academic Search

    Natasha G. Deane; Haakil Lee; Jalal Hamaamen; Anna Ruley; M. Kay Washington; Bonnie LaFleur; Snorri S. Thorgeirsson; Ronald Price; R. Daniel Beauchamp

    2004-01-01

    Transgenic mice that overexpress cyclin D1 protein in the liver develop liver carcinomas with high penetrance. Transforming growth factor (TGF-) serves as either an epithelial cell growth inhibitor or a tumor promoter, depending on the cellular context. We interbred LFABP-cyclin D1 and Alb-TGF-1 transgenic mice to produce cyclin D1\\/TGF-1 double transgenic mice and followed the development of liver tumors over

  9. Humanization of an Anti-Vascular Endothelial Growth Factor Monoclonal Antibody for the Therapy of Solid Tumors and Other Disorders

    Microsoft Academic Search

    Leonard G. Presta; Helen Chen; Shane J. O'Connor; Vanessa Chisholm; Y. Gloria Meng; Lynne Krummen; Marjorie Winkler; Napoleone Ferrara

    1997-01-01

    Vascular endothelial growth factor (VE(ìF) is a major mediator of angiogenesis associated with tumors and other pathological conditions, including proliferative diahetic retinopathy and age-related macular degeneration. The murine anti-human \\\\ I (.1 monoclonal antibody imiiM \\\\l> \\\\ I.di i A.4.6.1 has heen shown to potently suppress angio- genesis and growth in a variety of human tumor cells lines transplanted in

  10. Inhibition of cell growth and intracellular Ca 2+ mobilization in human brain tumor cells by Ca 2+ channel antagonists

    Microsoft Academic Search

    Yong Soo Lee; Mohammed M. Sayeed; Robert D. Wurster

    1994-01-01

    The effects of various Ca2+ channel agonists and antagonists on tumor cell growth were investigated using U-373 MG human astrocytoma and SK-N-MC human\\u000a neuroblastoma cell lines. Classical Ca2+ channel antagonists, verapamil, nifedipine, and diltiazem, and inorganic Ca2+ channel antagonists, Ni2+ and Co2+, inhibited growth of these tumor cells in a dose-dependent manner. Except Ni2+, these Ca2+ channel antagonists did not

  11. WT1 induces expression of insulin-like growth factor 2 in Wilms' tumor cells.

    PubMed

    Nichols, K E; Re, G G; Yan, Y X; Garvin, A J; Haber, D A

    1995-10-15

    The Wilms' tumor suppressor gene WT1 encodes a zinc finger transcription factor, whose expression inhibits the growth of the RM1 Wilms' tumor cell line. Transient transfection of WT1 constructs into 3T3 or 293 cells results in transcriptional repression of a number of cotransfected promoters containing the early growth response gene 1 consensus sequence. We now show that WT1 has properties of a transcriptional activator in RM1 cells, an effect that may be associated with the presence of a mutated p53 gene in these cells. Stable transfection of wild-type WT1 into RM1 cells results in induction of endogenous insulin-like growth factor 2 (IGF2) but not of other previously postulated WT1-target genes. The induction of IGF2 is dramatically enhanced by WT1 mutants encoding an altered transactivation domain. We conclude that IGF2 is a potentially physiological target gene for WT1 and that its induction may contribute to the growth-stimulating effects of WT1 variants. PMID:7553624

  12. Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors.

    PubMed

    Friel, Anne M; Zhang, Ling; Pru, Cindy A; Clark, Nicole C; McCallum, Melissa L; Blok, Leen J; Shioda, Toshi; Peluso, John J; Rueda, Bo R; Pru, James K

    2015-01-28

    Endometrial cancer is the leading gynecologic cancer in women in the United States with 52,630 women predicted to be diagnosed with the disease in 2014. The objective of this study was to determine if progesterone (P4) receptor membrane component 1 (PGRMC1) influenced endometrial cancer cell viability in response to chemotherapy in vitro and in vivo. A lentiviral-based shRNA knockdown approach was used to generate stable PGRMC1-intact and PGRMC1-deplete Ishikawa endometrial cancer cell lines that also lacked expression of the classical progesterone receptor (PGR). Progesterone treatment inhibited mitosis of PGRMC1-intact, but not PGRMC1-deplete cells, suggesting that PGRMC1 mediates the anti-mitotic actions of P4. To test the hypothesis that PGRMC1 attenuates chemotherapy-induced apoptosis, PGRMC1-intact and PGRMC1-deplete cells were treated in vitro with vehicle, P4 (1?µM), doxorubicin (Dox, 2?µg/ml), or P4?+?Dox for 48?h. Doxorubicin treatment of PGRMC1-intact cells resulted in a significant increase in cell death; however, co-treatment with P4 significantly attenuated Dox-induced cell death. This response to P4 was lost in PGRMC1-deplete cells. To extend these observations in vivo, a xenograft model was employed where PGRMC1-intact and PGRMC1-deplete endometrial tumors were generated following subcutaneous and intraperitoneal inoculation of immunocompromised NOD/SCID and nude mice, respectively. Tumors derived from PGRMC1-deplete cells grew slower than tumors from PGRMC1-intact cells. Mice harboring endometrial tumors were then given three treatments of vehicle (1:1 cremophor EL: ethanol?+?0.9% saline) or chemotherapy [Paclitaxel (15?mg/kg, i.p.) followed after an interval of 30 minutes by CARBOplatin (50?mg/kg)] at five day intervals. In response to chemotherapy, tumor volume decreased approximately four-fold more in PGRMC1-deplete tumors when compared with PGRMC1-intact control tumors, suggesting that PGRMC1 promotes tumor cell viability during chemotherapeutic stress. In sum, these in vitro and in vivo findings demonstrate that PGRMC1 plays a prominent role in the growth and chemoresistance of human endometrial tumors. PMID:25304370

  13. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  14. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke [Department of NeurologyUniversity Medical Center, Nijmegen (Netherlands); Department of Neurology, Groene Hart Hospital, Gouda (Netherlands); Bussink, Johan [Department of Radiation Oncology, University Medical Center, Nijmegen (Netherlands)]. E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans [Department ofRadiation Oncology, University Medical Center, Nijmegen (Netherlands); Canisius Wilhelmina Hospital, Nijmegen (Netherlands); Peeters, Wenny [Department ofRadiation Oncology, University Medical Center, Nijmegen (Netherlands); Kogel, Albert J. van der [Department ofRadiation Oncology, University Medical Center, Nijmegen (Netherlands)

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  15. Tight junction protein claudin-1 is differentially expressed in craniopharyngioma subtypes and indicates invasive tumor growth

    PubMed Central

    Stache, Christina; Hölsken, Annett; Fahlbusch, Rudolf; Flitsch, Jörg; Schlaffer, Sven-Martin; Buchfelder, Michael; Buslei, Rolf

    2014-01-01

    Background Claudins are tight junction proteins expressed in epithelial tissues that play important roles in cell polarity and adhesion. Altered distribution of claudin-1(CLDN1) affects cell mobility and tumor invasiveness. Craniopharyngiomas (CPs) represent epithelial tumors of the sellar region, consisting of adamantinomatous (adaCP) and papillary (papCP) variants. Their tendency to infiltrate surrounding brain structures complicates successful surgery. Reliable markers are required to predict tumor behavior and to establish individualized treatment protocols. Methods We describe the distribution pattern of CLDN1 in a large cohort of 66 adaCPs, 21 papCPs, and 24 Rathke`s cleft cyst (RCC) cases using immunohistochemistry. CLDN1 mRNA levels were analyzed with qRT-PCR in 33 CP samples. The impact on the migration potential was studied in primary adaCP cell cultures (n = 11) treated with small interfering RNA (siRNA) for CLDN1. Furthermore, CLDN1 distribution patterns and expression levels were compared between invasive (n = 16) and noninvasive (n = 17) tumor groups. Results PapCPs and RCCs exhibited a distinct homogenous and membranous expression pattern, whereas CLDN1 immunoreactivity appeared weaker and more heterogeneous in adaCPs. In the latter cases, whirl-like cell clusters showed complete absence of CLDN1. mRNA analysis confirmed reduced CLDN1 levels in adaCPs versus papCPs. Interestingly, invasive tumors exhibited significantly lower CLDN1 expression compared with noninvasive counterparts regardless of CP subtype. Accordingly, siRNA treatment for CLDN1 altered tumor cell migration in vitro. Conclusion CLDN1 represents a novel marker in the differential diagnosis of CP variants and RCCs. Low CLDN1 expression levels correlate with an invasive CP growth pattern and may serve as a prognostic marker. PMID:24305709

  16. Inhibitory efficacy of the quantified prunellae spica extract on H22 tumor bearing mice

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-ping; Chen, Tong-sheng

    2013-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistence of the advanced hepatocarcinoma to chemotherapy. In this report, we assessed the antitumor activity of a prunellae spica aqueous extract (PSE) in vitro and in vivo. PSE was quantified by HPLC and UV. MTT assay showed that PSE did not effectively inhibit the growth of H22 cells. The in vivo anti-tumor activity was assessed by using the mice bearing H22 tumor. In vivo studies showed the higher antitumor efficacy of PSE without significant side effect assessed by the reduced tumor weight, and the extended survival time of the mice bearing H22 solid and ascites tumor. Collectively, PSE is a promising Chinese medicinal herb for treating hepatocarcinoma.

  17. Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma

    PubMed Central

    Jiang, Xingming; Ma, Ning; Wang, Dayong; Li, Fuyuan; He, Rongzhang; Li, Dongliang; Zhao, Ruiqi; Zhou, Qingxin; Wang, Yimin; Zhang, Fumin; Wan, Ming; Kang, Pengcheng; Gao, Xu; Cui, Yunfu

    2015-01-01

    The antidiabetic drug metformin exerts antineoplastic effects in many types of malignancies, however the effect of metformin on cholangiocarcinoma (CCA) still remains unclear. In the present study, we investigated that metformin treatment was closely associated with the clinicopathologic characteristics and improved postoperative survival of CCA patients. Metformin inhibited CCA tumor growth by cell cycle arrest in vitro and in vivo. We explored that the expression of six miRNAs (mir124, 182, 27b, let7b, 221 and 181a), which could directly target cell-cycle-regulatory genes, was altered by metformin in vitro and in vivo. These miRNAs were dysregulated in cholangiocarcinoma and promoted the CCA genesis and metformin exactly modulated these carcinogenic miRNAs expression to arrest the cell cycle and inhibit the proliferation. Meanwhile, these miRNAs expression changes correlated with the tumor volume and postoperative survival of CCA patients and could be used to predict the prognosis. Further we confirmed that metformin upregulated Drosha to modulate these miRNAs expression. Our results elucidated that metformin inhibited CCA tumor growth via the regulation of Drosha-mediated multiple carcinogenic miRNAs expression and comprehensive evaluation of these miRNAs expression could be more efficient to predict the prognosis. Moreover, metformin might be a quite promising strategy for CCA prevention and treatment. PMID:25605008

  18. PCTAIRE1 regulates p27 stability, apoptosis and tumor growth in malignant melanoma

    PubMed Central

    Yanagi, Teruki; Reed, John C.; Matsuzawa, Shu-ichi

    2014-01-01

    PCTAIRE1 is a cyclin-dependent kinase family protein that has been implicated in spermatogenesis. Although we recently revealed the function of PCTAIRE1 in tumorigenesis of epithelial carcinoma cells, its tumorigenic function in melanoma remains unclear. Interrogation of the Oncomine database revealed that malignant melanoma showed up-regulation of PCTAIRE1 mRNA compared to normal skin and benign melanocytic nevus tissues. In the melanoma cell lines A2058 and SK-MEL-28, PCTAIRE1 gene knockdown using siRNA or shRNA diminished melanoma cell proliferation as assessed by cellular ATP levels, cell counting and clonogenic assays. Moreover, FACS analyses of annexin V-PI staining and DNA content showed that PCTAIRE1 knockdown caused apoptosis in A2058 cells. In contrast, PCTAIRE1 does not appear to be involved in the proliferation of immortalized human keratinocyte HaCaT cells. Depletion of PCTAIRE1 by siRNA/shRNA led to p27 accumulation in melanoma cells but not HaCaT cells. In tumor xenografts of melanoma A2058 cells, conditional knockdown of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Our findings reveal a crucial role for PCTAIRE1 in regulating p27 protein levels and tumor growth in melanoma cells, suggesting that PCTAIRE1 could provide a target for melanoma treatment. PMID:25593992

  19. Effect of microRNA-203 on tumor growth in human hypopharyngeal squamous cell carcinoma.

    PubMed

    Wang, Ru; Fang, Jugao; Ma, Hongzhi; Feng, Lin; Lian, Meng; Yang, Fan; Wang, Haizhou; Wang, Qi; Chen, Xiaohong

    2015-07-01

    MicroRNAs (MiRNAs) have been recognized to regulate cancer initiation and progression in carcinogenesis as either oncogenes or tumor suppressor genes, but their role in hypopharyngeal cancer development is not clearly defined. To determine whether miRNA-203 can promote tumor growth in human hypopharyngeal squamous cell carcinoma, we conducted experiments on the functional study of miRNA-203 and identification of miRNA-203 regulated target genes in hypopharyngeal cancer cells. We found that cell proliferation and cell colony-forming increased more in the miRNA-203 up-regulated cancer cells than in the negative control cancer cells. Up-regulation of miRNA-203 accelerated cell cycle progression in hypopharyngeal cancer cells. TP63 and B3GNT5 mRNAs were identified and validated as targets of miRNA-203. However, transwell assay and wound scratch assay showed that miRNA-203 did not involve in invasion and metastasis in hypopharyngeal cancer cells. According to the results, we conclude that miRNA-203 can promote tumor growth in human hypopharyngeal squamous cell carcinoma. These results provide the convincing evidence for the first time that up-regulation of miRNA-203 contributes to the malignancy of hypopharyngeal squamous cell carcinoma, possibly through down-regulating TP63 and B3GNT5. PMID:25840888

  20. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression

    SciTech Connect

    Chen, M.-F. [Department of Radiation Oncology, Chang Gung Memorial Hospital, Taipei, Taiwan (China); Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taipei, Taiwan (China); Keng, Peter C. [Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York (United States); Shau Hungyi [Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (United States); Wu, C.-T. [Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taipei, Taiwan (China); Hu, Y.-C. [Division of Surgical Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Liao, S.-K. [Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taipei, Taiwan (China); Chen, W.-C. [Department of Radiation Oncology, Chang Gung Memorial Hospital, Taipei, Taiwan (China)]. E-mail: miaofen@adm.cgmh.org.tw

    2006-02-01

    Purpose: In this study, we examined the role of peroxiredoxin I (Prx I) in lung cancer cell growth in vitro and in vivo and its influence on these tumor cells' sensitivity to radiotherapy. Methods and materials: We established stable transfectants of A549 (p53+) and H1299 (p53-) lung carcinoma cell lines with Prx I antisense to downregulate their Prx I protein. We then examined their in vitro biologic changes and used nude mice xenografts of these cell lines to compare tumor invasion, spontaneous metastatic capacity, and sensitivity to radiotherapy. Results: The Prx I antisense transfectants of both cell lines showed a significant reduction in Prx I protein production. Prx I antisense transfectants grew more slowly than did the wild type. As xenografts in mice, A549 Prx I antisense transfectants showed a threefold delay in the generation of palpable tumors. The incidence of spontaneous metastasis of Prx I antisense transfectants was significantly less than that of the wild-type cells. Furthermore, irradiation of Prx I antisense transfectants caused more than twice the growth delay compared with the wild type. Conclusion: The results of these studies suggest that inactivation of Prx I may be a promising approach to improve the treatment outcome of patients with lung cancer.

  1. Inhibition of Angiogenesis and Vascular Tumor Growth by Interferon-Producing Cells

    PubMed Central

    Albini, Adriana; Marchisone, Chiara; Del Grosso, Federica; Benelli, Roberto; Masiello, Luciana; Tacchetti, Carlo; Bono, Maria; Ferrantini, Maria; Rozera, Carmela; Truini, Mauro; Belardelli, Filippo; Santi, Leonardo; Noonan, Douglas M.

    2000-01-01

    We developed an in vivo gene therapy approach to characterize and optimize the anti-angiogenic activity of class I interferons (IFNs), using packaging cell lines producing an amphotropic LXSN-based retrovirus expressing either IFN-?1 (?1Am12), IFN-? (?Am12) murine cDNAs, or the vector alone (neoAm12). Pretreatment of endothelial-like Eahy926 cells in vitro with conditioned media (CM) from ?1Am12 or ?Am12 cells for 48 hours significantly inhibited their migration and invasion as compared to neoAm12-CM-treated cells. ?Am12-CM also inhibited the formation of capillary-like structures on Matrigel by EAhy926 cells. In vivo, inclusion of the ?Am12 cells strongly inhibited, and ?1Am12 partially inhibited, the angiogenic response in the Matrigel sponge model in both immune-competent and athymic nude mice. Electron microscopy showed a reduction of host cell infiltration in ?1Am12- and ?Am12-containing sponges and reduction of invading tubular clefts of host cells as compared to controls. Finally, inoculation of either ?1Am12 or ?Am12 cells (10%) along with a highly angiogenic Kaposi’s sarcoma cell line (90%) resulted in a powerful reduction of tumor growth in nude mice in vivo, as did infection with the interferon-?-producing retroviruses. These data suggest that a gene therapy approach using class I interferons can effectively inhibit tumor angiogenesis and growth of vascular tumors. PMID:10751362

  2. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity.

    PubMed Central

    Zhang, Y; Weiler-Guettler, H; Chen, J; Wilhelm, O; Deng, Y; Qiu, F; Nakagawa, K; Klevesath, M; Wilhelm, S; Böhrer, H; Nakagawa, M; Graeff, H; Martin, E; Stern, D M; Rosenberg, R D; Ziegler, R; Nawroth, P P

    1998-01-01

    Thrombomodulin (TM), recognized as an essential vessel wall cofactor of the antithrombotic mechanism, is also expressed by a wide range of tumor cells. Tumor cell lines subcloned from four patients with malignant melanoma displayed a negative correlation between TM expression and cell proliferation in vitro and in vivo. Overexpression of wild-type TM decreased cell proliferation in vitro and tumor growth in vivo. TM mutants with altered protein C activation capacity lead to a similar effect. In contrast, transfection of melanoma cells with mutant TM constructs, in which a portion of the cytoplasmic or lectin domain was deleted, abrogated the antiproliferative effect associated with overexpression of wild-type TM. Experiments performed with either peptide agonists/antagonists of the thrombin receptor, with hirudin, or with inhibitors of thrombin-TM interaction did not alter the growth inhibitory effect of TM overexpression. These data suggest that TM exerts an effect on cell proliferation independent of thrombin and the thrombin receptor, possibly related to the binding of novel ligands to determinants in the lectin domain which might trigger signal transduction pathways dependent on the cytoplasmic domain. PMID:9525972

  3. Discrete functions of GSK3? and GSK3? isoforms in prostate tumor growth and micrometastasis

    PubMed Central

    Gao, Fei; Al-Azayzih, Ahmad; Somanath, Payaningal R.

    2015-01-01

    Isoform specific function of glycogen synthase kinase-3 (GSK3) in cancer is not well defined. We report that silencing of GSK3?, but not GSK3? expression inhibited proliferation, survival and colony formation by the PC3, DU145 and LNCaP prostate cancer cells, and the growth of PC3 tumor xenografts in athymic nude mice. Silencing of GSK3?, but not GSK3? resulted in reduced proliferation and enhanced apoptosis in tumor xenografts. ShRNA-mediated knockdown of GSK3? and GSK3? equally inhibited the ability of prostate cancer cells to migrate and invade the endothelial-barrier in vitro, and PC3 cell micrometastasis to lungs in vivo. Mechanistically, whereas silencing GSK3? resulted in increased expression of pro-apoptotic markers cleaved caspase-3 and cleaved caspase-9 in LNCaP, PC3 and DU145 cells, silencing GSK3? resulted in the inhibition of cell scattering, establishment of cell-cell contacts, increased expression and membrane localization of ?-catenin, and reduced expression of epithelial to mesenchymal transition (EMT) markers such as Snail and MMP-9. This indicated the specific role of GSK3? in EMT, acquisition of motility and invasive potential. Overall, our data demonstrated the isoform specific role of GSK3? and GSK3? in prostate cancer cells in vitro, and tumor growth and micrometastasis in vivo, via distinct molecular and cellular mechanisms. PMID:25714023

  4. A recombinant endogenous retrovirus amplified in a mouse neuroblastoma is involved in tumor growth in vivo.

    PubMed

    Pothlichet, Julien; Heidmann, Thierry; Mangeney, Marianne

    2006-08-15

    The theory of immunoediting postulates that tumor cells exhibit a reduced immunogenicity to escape eradication by the host immune system. It has been proposed that endogenous retroviruses--provided that they are active--could play a role in this process, via the immunosuppressive domain carried by their envelope protein. Here, we demonstrate that the Neuro-2a tumor cell line--originating from a spontaneous A/J mouse neuroblastoma--produces an infectious retrovirus that most probably results from a recombination event between 2 mouse endogenous retroviral elements. This Neuro-2a-associated recombinant retrovirus derives from the unique ecotropic provirus located at the Emv-1 locus, but with a gag sequence conferring B-tropism, thus allowing its high-level amplification in Neuro-2a cells. We show that knocking down -by RNA interference- this endogenous retrovirus in Neuro-2a cells has no effect on the transformed phenotype of the cells, but results in delayed tumor growth and prolonged animal survival, following engraftment of the cells into immunocompetent mice. Recombination between endogenous retroviruses, amplification of the resulting element and high-level expression of its immunosuppressive activity are therefore likely steps of an immunoediting process, leading to an invading tumor. PMID:16550601

  5. Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea.

    PubMed

    Wang, Piwen; Vadgama, Jaydutt V; Said, Jonathan W; Magyar, Clara E; Doan, Ngan; Heber, David; Henning, Susanne M

    2014-01-01

    The chemopreventive activity of green tea (GT) is limited by the low bioavailability and extensive methylation of GT polyphenols (GTPs) in vivo. We determined whether a methylation inhibitor quercetin (Q) will enhance the chemoprevention of prostate cancer in vivo. Androgen-sensitive LAPC-4 prostate cancer cells were injected subcutaneously into severe combined immunodeficiency (SCID) mice one week before the intervention. The concentration of GTPs in brewed tea administered as drinking water was 0.07% and Q was supplemented in diet at 0.2% or 0.4%. After 6-weeks of intervention tumor growth was inhibited by 3% (0.2% Q), 15% (0.4% Q), 21% (GT), 28% (GT+0.2% Q) and 45% (GT+0.4% Q) compared to control. The concentration of non-methylated GTPs was significantly increased in tumor tissue with GT+0.4% Q treatment compared to GT alone, and was associated with a decreased protein expression of catechol-O-methyltransferase and multidrug resistance-associated protein (MRP)-1. The combination treatment was also associated with a significant increase in the inhibition of proliferation, androgen receptor and phosphatidylinositol 3-kinase/Akt signaling, and stimulation of apoptosis. The combined effect of GT+0.4% Q on tumor inhibition was further confirmed in another experiment where the intervention started prior to tumor inoculation. These results provide a novel regimen by combining GT and Q to improve chemoprevention in a non-toxic manner and warrant future studies in humans. PMID:24314868

  6. Semaphorin 3A Suppresses Tumor Growth and Metastasis in Mice Melanoma Model

    PubMed Central

    Chakraborty, Goutam; Patil, Tushar V.; Kundu, Gopal C.

    2012-01-01

    Background Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation. Methodology/Principal Findings In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents. Conclusions Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer. PMID:22448259