Science.gov

Sample records for ascites tumor growth

  1. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    SciTech Connect

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  2. Chronic Dietary Administration of the Glycolytic Inhibitor 2-Deoxy-D-Glucose (2-DG) Inhibits the Growth of Implanted Ehrlich’s Ascites Tumor in Mice

    PubMed Central

    Singh, Saurabh; Pandey, Sanjay; Bhatt, Anant Narayan; Chaudhary, Richa; Bhuria, Vikas; Kalra, Namita; Soni, Ravi; Roy, Bal Gangadhar; Saluja, Daman; Dwarakanath, Bilikere S.

    2015-01-01

    Background Dietary energy restriction (DER) has been well established as a potent anticancer strategy. Non-adoption of restricted diet for an extended period has limited its practical implementation in humans with a compelling need to develop agents that mimic effects similar to DER, without reduction in actual dietary intake. Glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has recently been shown to possess potential as an energy restriction mimetic agent (ERMA). In the present study we evaluated the effect of dietary 2-DG administration on a mouse tumor model, with a focus on several potential mechanisms that may account for the inhibition of tumorigenesis. Methodology/Principal Findings Swiss albino strain ‘A’ mice were administered with 0.2% and 0.4% w/v 2-DG in drinking water for 3 months prior to tumor implantation (Ehrlich’s ascites carcinoma; EAC) and continued till the termination of the study with no adverse effects on general physiology and animal growth. Dietary 2-DG significantly reduced the tumor incidence, delayed the onset, and compromised the tumor growth along with enhanced survival. We observed reduced blood glucose and serum insulin levels along with decreased proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine positive (BrdU+) tumor cells in 2-DG fed mice. Also, reduced levels of certain key players of metabolic pathways such as phosphatidylinositol 3-kinase (PI3K), phosphorylated-Akt and hypoxia inducible factor-1 alpha (HIF-1α) were also noted in tumors of 2-DG fed mice. Further, decrease in CD4+/CD8+ ratio and T-regulatory cells observed in 2-DG fed mice suggested enhanced antitumor immunity and T cell effector function. Conclusion/Significance These results strongly suggest that dietary 2-DG administration in mice, at doses easily achievable in humans, suitably modulates several pleotrophic factors mimicking DER and inhibits tumorigenesis, emphasizing the use of ERMAs as a promising cancer preventive strategy. PMID:26135741

  3. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    SciTech Connect

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan; Su, Hanwen; Xiang, Meixian

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.

  4. Ascitic and solid Ehrlich tumor inhibition by Chenopodium ambrosioides L. treatment.

    PubMed

    Nascimento, Flvia R F; Cruz, Gustavo V B; Pereira, Paulo Vitor S; Maciel, Mrcia C G; Silva, Lucilene A; Azevedo, Ana Paula S; Barroqueiro, Elizabeth S B; Guerra, Rosane N M

    2006-04-25

    The leaves of Chenopodium ambrosioides L. [Chenopodiaceae] ('mastruz') have been indicated for the treatment of several diseases, among which the cancer. There are no results focusing the effect of C. ambrosioides treatment on tumor development in vivo. The aim of this study was to investigate the effect of treatment with C. ambrosioides on Ehrlich tumor development. Swiss mice were treated by intraperitoneal route (i.p.) with hydroalcoholic extract from leaves of C. ambrosioides (5 mg/kg) or with PBS (control group) 48 h before or 48 h later the Ehrlich tumor implantation. The tumor cells were implanted on the left footpad (solid tumor) or in the peritoneal cavity (ascitic tumor). To determine the solid tumor growth, footpad was measured each 2 days until the fourteenth day, when the feet were weighed. Ascitic tumor development was evaluated after 8 days of tumor implantation by quantification of the ascitic fluid volume and tumor cell number. The i.p. administration of C. ambrosioides extract before or after the tumor implantation significantly inhibited the solid and ascitic Ehrlich tumor forms. This inhibition was observed in ascitic tumor cell number, in the ascitic volume, in the tumor-bearing foot size and foot weight when compared to control mice. The treatments also increased the survival of tumor-bearing mice. In conclusion, C. ambrosioides has a potent anti-tumoral effect which was evident with a small dose and even when the treatment was given two days after the tumor implantation. This effect is probably related with anti-oxidant properties of C. ambrosioides. PMID:16307762

  5. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells.

    PubMed Central

    Mills, G B; May, C; Hill, M; Campbell, S; Shaw, P; Marks, A

    1990-01-01

    Human ovarian cancer, the leading cause of death from gynecologic malignancy, tends to remain localized to the peritoneal cavity until late in the disease. In established disease, ascitic fluid accumulates in the peritoneal cavity. We have previously demonstrated that this ascitic fluid is a potent source of in vitro mitogenic activity including at least one unique growth factor. We now report that the human ovarian adenocarcinoma line, HEY, can be induced to grow intraperitoneally in immunodeficient nude mice in the presence (23/28 mice), but not absence (0/21 mice) of ascitic fluid from ovarian cancer patients. Ascitic fluid from patients with benign disease did not have similar effects on intraperitoneal growth of HEY cells (1/15 mice). Once tumors were established by injections of exogenous ascitic fluid, they could progress in the absence of additional injections of ascitic fluid. The mice eventually developed ascitic fluid which contained potent growth factor activity, suggesting that the tumors eventually produced autologous growth factors. This nude mouse model provides a system to study the action of ovarian cancer growth factors on tumor growth in vivo and to evaluate preclinically, therapeutic approaches designed to counteract the activity of these growth factors. PMID:2394835

  6. Ascites produced in rats without tubercle bacilli or tumor cells.

    PubMed

    Levine, S; Saltzman, A

    1999-01-01

    Intraperitoneal injection of rats with two doses of pertussis vaccine produces a small amount of ascitic fluid. Much larger amounts of fluid are produced when two spaced injections of the vaccine are preceded by a small amount of liquid petrolatum. A similar result is obtained by a single injection of pertussis vaccine emulsified in liquid petrolatum and Arlacel A. Ascites produced without tubercle bacilli or tumor cells may increase the use of rats for antibody production. PMID:10574628

  7. Ursolic acid inhibits tumor angiogenesis and induces apoptosis through mitochondrial-dependent pathway in Ehrlich ascites carcinoma tumor.

    PubMed

    Saraswati, Sarita; Agrawal, S S; Alhaider, Abdulqader A

    2013-11-25

    Ursolic acid (UA) is a pentacyclic triterpene naturally occurring in many plant foods. In the present study, we investigated anti-cancer activity of UA in vivo in Ehrlich ascites carcinoma (EAC) tumor. 15 × 10(6) EAC cells were implanted intraperitoneally (i.p., ascitic tumor) and subcutaneous (s.c., solid tumor) in Swiss albino mice. Mice with established tumors received UA i.p. at 25, 50 and 100mg/kg bw for 14 d in ascitic and 100mg/kg bw in solid tumor for 30 d. On day 15, blood samples were collected for hematological assessment of hemoglobin (Hb%), RBCs, WBCs and PCV. Tumor volume, cell viability, angiogenic, anti-angiogenic, anti-inflammatory factors and antioxidant parameters were determined. Immunohistochemistry analysis for VEGF, iNOS, CD31, caspase-3 and Bax were also performed. UA significantly inhibited tumor growth, cell viability, in both ascites and solid tumor model in vivo (p<0.001). The anti-angiogenic effects were accompanied with decreased VEGF, iNOS, TNF-α and increased IL-12 levels. UA at 100mg/kg bw dose significantly increased SOD and CAT activity (p<0.01). GSH and TBARS were increased as compared to control group (p<0.001). Furthermore, UA increased total RBCs, WBCs as well as Hb% significantly (p<0.05) compared to cyclophosphamide (CP). Histopathological examination of tumor cells in the treated group demonstrated signs of apoptosis with chromatin condensation and cell shrinkage. Decreased peritoneal angiogenesis showed the anti-angiogenic potential. UA downregulated VEGF & iNOS expression whereas bax and caspase-3 expressions were upregulated suggesting drug induced tumor cell apoptosis through activating the pro-apoptotic bcl-2 family and caspase-3 and downregulation of VEGF. The present study sheds light on the potent antitumor property of the UA and can be extended further to develop therapeutic protocols for treatment of cancer. PMID:24051192

  8. Gracilaria edulis extract induces apoptosis and inhibits tumor in Ehrlich Ascites tumor cells in vivo

    PubMed Central

    2013-01-01

    Background Marine environment is inestimable for their chemical and biological diversity and therefore is an extraordinary resource for the discovery of new anticancer drugs. Recent development in elucidation of the mechanism and therapeutic action of natural products helped to evaluate for their potential activity. Methods We evaluated Gracilaria edulis J. Ag (Brown algae), for its antitumor potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Cytotoxicity evaluation of Ethanol Extract of Gracilaria edulis (EEGE) using EAT cells showed significant activity. In vitro studies indicated that EEGE cytotoxicity to EAT cells is mediated through its ability to produce reactive oxygen species (ROS) and therefore decreasing intracellular glutathione (GSH) levels may be attributed to oxidative stress. Results Apoptotic parameters including Annexin-V positive cells, increased levels of DNA fragmentation and increased caspase-2, caspase-3 and caspase-9 activities indicated the mechanism might be by inducing apoptosis. Intraperitoneally administration of EEGE to EAT-bearing mice helped to increase the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. Extensive hematology, biochemistry and histopathological analysis of liver and kidney indicated that daily doses of EEGE up to 300 mg/kg for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity. Conclusion Comprehensive antitumor analysis in animal model and in Ehrlich Ascites Tumor cells was done including biochemical, and pathological evaluations indicate antitumor activity of the extract and non toxic in vivo. It was evident that the mechanism explains the apoptotic activity of the algae extract. PMID:24274337

  9. Etiology of Ascites and Pleural Effusion Associated with Ovarian Tumors: Literature Review and Case Reports of Three Ovarian Tumors Presenting with Massive Ascites, but without Peritoneal Dissemination

    PubMed Central

    Miyoshi, Ai; Miyatake, Takashi; Hara, Takeya; Tanaka, Asuka; Komura, Naoko; Komiya, Shinnosuke; Kanao, Serika; Takeda, Masumi; Mimura, Mayuko; Nagamatsu, Masaaki; Yokoi, Takeshi

    2015-01-01

    Borderline ovarian tumors are benign but relatively large tumors that are often initially mistaken as ovarian cancers. We report three cases of stage I borderline ovarian tumors having massive ascites that we (preoperatively) suspected of being advanced ovarian cancer. The three patients (35, 47, and 73 years old) reported feeling fullness of the abdomen before consulting their gynecologist. By CT scan, they were diagnosed with a pelvic tumor accompanied by massive ascites, the diameters of which were 11, 20, and 11 cm, respectively. Postsurgical pathology showed all were stage I borderline ovarian tumors without dissemination; two were mucinous and one was serous. The amount of ascites was 6,300, 2,600, and 3,600 mL, respectively, and was serous in all. Cytodiagnosis of the ascites found that one was positive for tumor cells and two were negative. After resection of the mass, the ascites disappeared in all three cases. No pleural effusion was present at any time. The literature is reviewed concerning ascites and pleural effusions linked to ovarian tumors, and a supposition is forwarded of why pleural effusion presents sporadically in these cases. PMID:26858849

  10. [DYNAMICS OF NITROGEN OXIDE METABOLITES IN THE PLASMA AND ASCITES DURING ZAJDEL HEPATOMA GROWTH IN VIVO].

    PubMed

    Potselueva, M M; Naumov, A A; Kupriyanova, E S

    2015-01-01

    The dynamics of extracellular nitrogen oxide metabolites localized in the plasma and ascites during Zajdel ascites hepatoma growth in the abdominal cavity has been investigated. An increase in peroxynitrite concentration was found by the levels of nitrotyrosine (up to 10-11 nM) in blood plasma at the initial stage of tumor cell development. In the course of further tumor development, an oxidative stress developed, which might cause oxidation of protein components including tyrosine. All these processes may cause a decrease in the accessible amount of tyrosine for nitration and lead to a fall in nitrotyrosine level (to 3-6 nM) at the final stages of tumor growth. Nitrotyrosine dynamics in the region of tumor growth is essentially analogous to that in the plasma because proteins during tumor growth cames from the blood plasma of tumor bearer. In studying the dynamics of nitrosylation of sulfur-bearing protein groups, an increase in the concentration of S-nitrosothyols was found to occur in the blood plasma for up to 6 days of the experiment, subsequently their concentration decreased. In the ascites, where protein R-SNO arrives, the mean concentration of nitrosothyols upon tumor growth is lower compared to that of the plasma. In studying the dynamics of final stable nitrogen oxide decay products--nitrites/nitrates, it has been found that during tumor development the concentration of these metabolites in the plasma varies only moderately within some range and sharply increases at the final stage of the experiment. In the area of tumor growth, an analogous trend in the behavior of nitrites/nitriaes has been registered (noted, marked), but with a higher background level, which might be due to both the functioning of immunocompetent cells, microphages in particular, and a decreased rate of utilization of substances from the ascites. Based on the aforesaid, it has been concluded that the nitrosylating stress in the organism of the bearer of a tumor is being developed along with the oxidative stress. PMID:26495710

  11. Treatment of Walker ascites tumor cells by combination of photodynamic therapy with cyclophosphamide and interleukin-2 entrapped in liposomes

    NASA Astrophysics Data System (ADS)

    Dima, Vasile F.; Ionescu, Mircea D.; Balotescu, Carmen; Dima, V. S.

    2003-12-01

    The purpose of this study was to investigate the beneficial and adverse local effects of PDT associated with chemoimmunotherapy on rats bearing Walker ascites tumor cells. Experiments were performed on five batches of Wistar inbred rats with ascites tumor cells receiving intraperitoneally PDT (Photofrin II and 18 hrs later HeNe laser irradiation); Cyclophosphamide (CY); interleukin-2 (IL-2) or associated therapy (PDT+CY+IL-2). The control batch consisted of untreated rats (HBSS). The following results were noticed: (a) sole administration of PDT, IL-2 or CY reduced tumor growth, gave survival rates between 28.4 and 56.5% and cure rates ranging from 12.4 to 33.3%; (b) combined therapy (PDT+CY+IL-2) decreased tumor growth, increased survival rates (88.5%) and cure rates were 73.1% forty-two days post-transplantation. Summing up, in this study we noticed that PDT associated with chemoimmunotherapy reduced mortality as well as tumor volumes and increased cure rates in rats with ascites tumor cells. This approach points to the need for further evaluation in patients with peritoneal malignancies.

  12. Effect of Balanites aegyptiaca on Ehrlich Ascitic carcinoma growth and metastasis in Swiss mice.

    PubMed

    Issa, N M; Mansour, F K; El-Safti, F A; Nooh, H Z; El-Sayed, I H

    2015-09-01

    The role of Balanites aegyptiaca (B. aegyptiaca) on development and growth of Ehrlich Ascitic carcinoma (EAC) and metastasis (liver and spleen) was evaluated. Balanite (400mg/kg; 10mg in 0.1ml/mouse) was given daily over a period of two weeks started 24h before intraperitoneal injection of EAC (2×10(6)/once). The present study deals with the effect of B. aegyptiaca on the growth of transplantable ascetic tumor, life span of EAC-bearing mice, hepatocellular and splenic histology. Antioxidant and biochemical changes as well as p53 genes expression were recorded. B. aegyptiaca extracts inhibited tumor growth and proliferation in ascetic fluid through a significant decrease in tumor volume, total cell volume, and viable cell count and prolonged the life span of mice. Also, it significantly decreased the levels of lipid peroxidation and increased SOD, CAT levels and P53 expression. Also, balanite inhibited either tumor invaded/or affected hepatic and splenic tissue. This result gives a new insight on beneficial effect of B. aegyptiaca in primary and secondary loci of Ehrlich Ascitic tumor through its antioxidant effect. PMID:26095745

  13. Growth rate of ascites-resistant versus ascites-susceptible broilers in commercial and experimental lines.

    PubMed

    Druyan, S; Hadad, Y; Cahaner, A

    2008-05-01

    The high growth rate (GR) of contemporary broilers is driven by high rate of feed intake and metabolism. Because of the consequent high oxygen demand, especially when coupled with exposure to high altitude or low temperatures, some broilers fail to regulate oxygen supply and develop the ascites syndrome (AS), which leads to mortality and economic losses. Because of the association between high GR, oxygen demand, and AS, it has been suggested that AS is induced by high GR. If true, further GR enhancement should be avoided because it will increase the proportion of AS-susceptible individuals in contemporary stocks. An alternative hypothesis claims that AS is associated with high actual GR only because the latter increases oxygen demand and that there are genetically AS-resistant broilers that do not develop AS, even when exhibiting high GR. These hypotheses were tested in trials in the years 2002 and 2006, with broilers differing in potential GR: contemporary fast-growing commercial lines and an experimental line derived from commercial broilers in 1986, and (in 2002 only) divergently selected AS-susceptible and AS-resistant lines. A protocol of high-challenge ascites-inducing conditions (AIC) from d 19 was used to distinguish between AS-susceptible and AS-resistant individuals and to determine their GR up to this age. The difference in AS incidence between the divergent lines (93.9 vs. 9.5%) was not explained by the 5% difference in their GR, thus indicating a lack of genetic correlation. In the broiler lines, AS incidence was 31 and 47% in 2002 and 2006, respectively, and 32% in the 1986 slow-growing line. Most broilers that remained healthy under the high-challenge AIC exhibited the same early GR and BW as those that later developed AS. These results, and the relatively high incidence of AS in the slow-growing line, indicate that there is very little, if any, direct genetic association between AS and genetic differences in potential GR, and suggest that AS-resistant broilers can be selected for higher GR and remain healthy even under AIC. PMID:18420980

  14. Regulation of purine metabolism. Adenylosuccinate synthetase from Novikoff ascites tumor cells.

    PubMed

    Clark, A W; Rudolph, F B

    1976-06-23

    Adenylosuccinate synthetase has been partially purified from Novikoff ascites tumor cells. The properties of the protein are quite different from the enzyme from rat liver in that the Km for asparate is higher and the K1 for the feedback inhibitor AMP is also higher. The antibiotic hadacidin has a preferential inhibitory effect on the tumor enzyme. These results suggest that the Novikoff ascites tumor enzyme is less sensitive to normal feedback controls but may be more sensitive to specific antitumor drugs. PMID:181081

  15. Isolation and Characterization of Tumor Cells from the Ascites of Ovarian Cancer Patients: Molecular Phenotype of Chemoresistant Ovarian Tumors

    PubMed Central

    Latifi, Ardian; Luwor, Rodney B.; Bilandzic, Maree; Nazaretian, Simon; Stenvers, Kaye; Pyman, Jan; Zhu, Hongjian; Thompson, Erik W.; Quinn, Michael A.; Findlay, Jock K.; Ahmed, Nuzhat

    2012-01-01

    Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12–14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions. PMID:23056490

  16. Co-Encapsulation of Doxorubicin With Galactoxyloglucan Nanoparticles for Intracellular Tumor-Targeted Delivery in Murine Ascites and Solid Tumors

    PubMed Central

    Joseph, Manu M.; Aravind, S.R.; George, Suraj K.; Pillai, Raveendran K.; Mini, S.; Sreelekha, T.T.

    2014-01-01

    Doxorubicin (Dox) treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001), isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton’s lymphoma ascites and Ehrlich’s ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications. PMID:25389448

  17. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model

    PubMed Central

    Sriram, Muthu Irulappan; Kanth, Selvaraj Barath Mani; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2010-01-01

    Nanomedicine concerns the use of precision-engineered nanomaterials to develop novel therapeutic and diagnostic modalities for human use. The present study demonstrates the efficacy of biologically synthesized silver nanoparticles (AgNPs) as an antitumor agent using Dalton’s lymphoma ascites (DLA) cell lines in vitro and in vivo. The AgNPs showed dose- dependent cytotoxicity against DLA cells through activation of the caspase 3 enzyme, leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. Acute toxicity, ie, convulsions, hyperactivity and chronic toxicity such as increased body weight and abnormal hematologic parameters did not occur. AgNPs significantly increased the survival time in the tumor mouse model by about 50% in comparison with tumor controls. AgNPs also decreased the volume of ascitic fluid in tumor-bearing mice by 65%, thereby returning body weight to normal. Elevated white blood cell and platelet counts in ascitic fluid from the tumor-bearing mice were brought to near-normal range. Histopathologic analysis of ascitic fluid showed a reduction in DLA cell count in tumor-bearing mice treated with AgNPs. These findings confirm the antitumor properties of AgNPs, and suggest that they may be a cost-effective alternative in the treatment of cancer and angiogenesis-related disorders. PMID:21042421

  18. Cytologic features of ovarian granulosa cell tumors in pleural and ascitic fluids.

    PubMed

    Omori, Makiko; Kondo, Tetsuo; Yuminamochi, Tsutomu; Nakazawa, Kumiko; Ishii, Yoshio; Fukasawa, Hiroko; Hashi, Akihiko; Hirata, Shuji

    2015-07-01

    Adult granulosa cell tumor (AGCT) is an uncommon neoplasm of the ovary with potential for aggressive behavior and late recurrence. The most important prognostic factor for AGCT is tumor stage. Thus, cytological assessment of pleural or ascitic fluids is crucial for initial staging and subsequent patient management. We report herein two cases of ovarian AGCT presenting with exfoliated tumor cells in pleural and ascitic fluid. The first case involved a 61-year-old woman who presented with stage Ic (a) AGCT. Seven years after initial diagnosis, pleural effusion and pleural dissemination were identified. The second case involved a 50-year-old woman who presented with stage IV AGCT with massive ascites and right pleural effusion. Fluid cytology from both cases showed cohesive or loose clusters of small uniform neoplastic cells with round-to-oval nuclei, coffee-bean-shaped nuclear grooves, small nucleoli, and scant cytoplasm. Call-Exner bodies were also observed in these cytologic specimens. In the differential diagnosis of small monomorphic tumor cells in pleural effusion or ascites, coffee-bean-shaped nuclear grooves and cell clusters forming Call-Exner bodies are diagnostic clues of AGCT. PMID:25605680

  19. Identification of tumor-associated antigens on ultraviolet light-induced tumors using antitumor antibodies developed in ascites fluid

    SciTech Connect

    Fortner, G.W.; Takemoto, L.J.; Shehi, L.; Hansen, J.S.

    1982-06-01

    A method is described which leads to the production of large amounts of ascites containing antitumor antibody in small numbers of mice. The antibody was then used to identify and characterize tumor-associated antigens on an ultraviolet light-induced murine skin fibrosarcoma. The antibody showed specific complement-dependent cytotoxicity to the homologous tumor and to an allogeneic tumor line which displayed a glycoprotein viral determinant with a molecular weight of 70,000 on its surface. Absorption of the immune ascites with other tumor cell lines removed the cytotoxicity in relation to the presence of the glycoprotein. Isolation of the tumor cell surface components binding antibody revealed two components with molecular weights of approximately 70,000 and 60,000. The Mr 70,000 component was identified as viral gp70 by peptide mapping.

  20. Therapeutic effects of bone marrow mesenchymal stem cells expressing interleukin-12 in mice bearing malignant ascites tumor

    PubMed Central

    Wang, Aihong; Zhou, Xiaoyan; Zhao, Jumei; Liu, Tao; Xu, Jianrong

    2015-01-01

    This study is to investigate the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) expressing interleukin (IL)-12 on malignant ascites tumor-bearing mice and the related mechanisms. Malignant ascites tumor mouse model was established by the intraperitoneal inoculation with MethA or H22 tumor cells. Mouse BMSCs were transfected with lentiviral vector containing IL-12, and then transplanted into these mouse models via intraperitoneal injection. The peritoneal permeability in these mice was evaluated and compared. The contents of INF-γ and VEGF in ascites were determined by ELISA. Mouse models receiving IL-12-expressing BMSCs were rechallenged with tumor cells, and the animal survival was observed and analyzed. In both MethA and H22 tumor cell-induced malignant ascites tumor mouse models, there were no significant differences in the peritoneal permeability between the normal saline (NS), BMSC-control, and BMSC-null groups. However, compared with NS control group, the peritoneal permeability was significantly decreased by IL-12-expressing BMSCs. Moreover, ELISA showed that, in both the MethA and H22 tumor cell-induced mouse models, compared with the NS control group, the contents of INF-γ in ascites were significantly elevated, while the contents of VEGF in ascites were significantly decreased, in the BMSC-IL-12 groups. In addition, IL-12-expressing BMSCs significantly elongated the survival of mouse models after rechallenging with tumor cells. IL-12-expressing BMSCs exert protective effects against malignant ascites tumor, and the anti-tumor effects might be associated with the enhanced anti-tumor immunity. Our findings might bring new insights into the treatment of tumors with immunotherapy. PMID:26629085

  1. Effect of a seashell protein Haishengsu on the immunological function of mice with Ehrlich ascites tumor.

    PubMed

    Li, Guang-Yao; Liu, Ji-Zhu; Chen, Shou-Guo; Wang, Chun-Bo; Bin, Zhang; Wang, Le-Xin

    2009-01-01

    This study was designed to investigate the effect of a seashell protein Haishengsu (HSS) on the immuno logical function in mice with Ehrlich ascites tumor. Ehrlich ascites tumor-bearing mice were divided into three HSS groups (25, 50 and 100 mg/kg, i.v., respectively), cyclophosphamide (10 mg i.p.) and control group. The immunological function was assessed by measuring the phagocytizing capacity of the peritoneal macrophages and neutrophils, as well as the number of spleen hemolytic plaque-forming cells. The percentage of blood T-lymphocytes was also evaluated. The number and the percentage of phagocytizing macrophages and neutrophils in the 50 and 100 mg/kg HSS groups were higher than in the control and the cyclophosphamide groups (P < 0.01). The hemolytic plaque-forming cells in the three HSS groups (10.8 +/- 1.2, 16.9 +/- 3.9 and 25.3 +/- 2.9, respectively), was greater than in the control (7.3 +/- 1.4), or the cyclophosphamide group (0.33 +/- 0.4) (all P < 0.01). In all HSS groups, the percentage of blood T3, T4 and T8 was higher than in the cyclophosphamide and the control group (all P < 0.01). We conclude that HSS has significant immune-modulating effect in mice with Ehrlich ascites tumor. PMID:19874239

  2. Chylous Ascites

    PubMed Central

    Talluri, Siva K; Nuthakki, Harish; Tadakamalla, Ashvin; Talluri, Jyothsna; Besur, Siddesh

    2011-01-01

    Context: Chylous ascites is the accumulation of milky chyle in the peritoneal cavity. Chylous ascites has been reported after surgeries like abdominal aortic aneurysm repair, radical gastrectomy, duodenectomy, nephrectomy and Wilm's tumor resection. Our literature search did not reveal any reports of chylous ascites after a gastric ulcer resection. We report about an elderly woman with a rare complication of chylous ascites after an emergent surgery for a perforated gastric ulcer. Case Report: A 70-year-old woman developed sudden respiratory distress on 5th post-operative day after an elective C3-C7 cervical discectomy and fusion. Her past medical history was significant for cervical spondylosis. The Computed Tomography (CT) scan of the chest revealed air under the diaphragm suspicious for hollow viscus perforation. She underwent an emergent surgery for drainage of hematoma in the neck along with an emergent laparotomy to repair a large perforated gastric ulcer distal to the gastro-esophageal junction. The patient had worsening of abdominal distention on 4th post-operative day. The CT scan of abdomen showed fluid collection in the abdomen. The abdominal drain revealed large amount of serous milky fluid at the rate of 1500 ml per day. The fluid analysis showed that the triglyceride level was 170 mg/dl and cholesterol level was 15 mg/dl. The fluid cultures did not grow any organism. She responded to treatment with octreotide and a diet of medium chain triglyceride oil. Conclusion: Any obstruction or damage to the lymphatic channels results in chylous ascites. Lymphomas, metastatic malignancies, and abdominal surgeries commonly cause chylous ascites. Ascitic fluid triglyceride level greater than 110 mg/dl is diagnostic of chylous ascites. Chylous ascites is a rare complication of a peptic ulcer resection which can be managed effectively with octreotide. PMID:22362456

  3. Effects of hyperthermia and calcium channel blocker co-therapy on mice injected with Meth A solid of Meth A ascites tumors

    SciTech Connect

    Prince, R.N.

    1986-01-01

    A study was made to determine the effectiveness of treating tumor-injected mice with verapamil, a calcium antagonist, and hyperthermia. The co-treatment reduced the incidence of tumors in animals injected with Meth A solid cells. It was shown that the decrease in tumors corresponded to increases in natural killer (NK) cell activity measured in a /sup 51/Cr release assay, in the amount of anti-Meth A antibody measured in an immunofluorescence assay, and a decrease in the amount of intra-tumor cyclic AMP measured by radioimmunoassay in co-treated compared to untreated sarcoma-injected animals. A role of the immune system for mediating the prevention of sarcoma growth was indicated by Winn assays. Splenocytes sensitized in vivo against Meth A solid cells for 14 days exhibited an enhanced cytotoxic activity against syngeneic target cells compared to untreated tumor-sensitized splenocytes following heat-drug co-treatment. It was established that the stimulation of cytotoxic T cells against a histocompatibility antigen (H-2/sup d/) present on Meth A sarcoma cells resulted in tumor cell lysis. Animals bearing established Meth A solid sarcomas did not manifest tumor regressions following the administration of co-treatment alone or the adoptive transfer of co-treated tumor-sensitized splenocytes. The growth of Meth A ascites and Meth A ascites-derived solid sarcomas, unlike Meth A solid cell tumors, were not prevented in Winn assays. Additionally, the lifespan of animals injected with Meth A ascites cells was reduced by 50% compared to animals injected with Meth A solid sarcoma cells.

  4. Stress and morphine affect survival of rats challenged with a mammary ascites tumor (MAT 13762B).

    PubMed

    Lewis, J W; Shavit, Y; Terman, G W; Gale, R P; Liebeskind, J C

    We have previously shown that exposure to inescapable footshock stress decreases survival of rats injected with a mammary ascites tumor (MAT 13762B). This increased vulnerability to the tumor challenge was prevented by an opiate antagonist, naltrexone, suggesting mediation by opioid peptides. Supporting this hypothesis, we now report that a high dose of an opiate agonist, morphine, also reduces survival of rats given the same tumor. This effect shows tolerance after 14 daily injections. The adverse effect of stress, however, did not show other signs of opioid involvement: it manifested neither tolerance with repeated stress exposures nor cross-tolerance in morphine-tolerant rats. Our recent findings that stress and morphine reduce natural killer cell cytotoxicity in a similar fashion suggest an immune mechanism that may explain the present results. PMID:6678390

  5. Effect of various doses of chalone-containing alcohol precipitate from Ehrlich's ascites tumor on mitotic activity and DNA synthesis in that tumor

    SciTech Connect

    Matsak, N.Ya.; Romanov, Yu.A.; Antokhin, A.I.

    1987-06-01

    Experiments were carried out on noninbred male albino mice to assess the effects of varying doses of chalone-containing alcohol precipitates on mitotic activity and DNA synthesis in Ehrlich ascites tumor. Histological preparations of the tumor and small intestine were made by standard methods. Hydrolysis of the tumor in HCl was carried out before application of the nuclear photographic emulsion in order to prepare autoradiographs of the tumor. Tritium-labelled thymidine was injected as the radioactive marker.

  6. Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis

    PubMed Central

    Stoeltzing, O; Ahmad, S A; Liu, W; McCarty, M F; Parikh, A A; Fan, F; Reinmuth, N; Bucana, C D; Ellis, L M

    2002-01-01

    Angiopoietin-1 is an important regulator of endothelial cell survival. Angiopoietin-1 also reduces vascular permeability mediated by vascular endothelial growth factor. The effects of angiopoietin-1 on tumour growth and angiogenesis are controversial. We hypothesised that angiopoietin-1 would decrease tumour growth and ascites formation in peritoneal carcinomatosis. Human colon cancer cells (KM12L4) were transfected with vector (pcDNA) alone (control) or vector containing angiopoietin-1 and injected into the peritoneal cavities of mice. After 30 days, the following parameters were measured: number of peritoneal nodules, ascites volume, and diameter of the largest tumour. Effects of angiopoietin-1 on vascular permeability were investigated using an intradermal Miles assay with conditioned media from transfected cells. Seven of the nine mice in the pcDNA group developed ascites (1.3±0.5 ml (mean±s.e.m.)), whereas no ascites was detectable in the angiopoietin-1 group (0 out of 10) (P<0.01). Number of peritoneal metastases (P<0.05), tumour volume, (P<0.05), vessel counts (P<0.01), and tumour cell proliferation (P<0.01) were significantly reduced in angiopoietin-1-expressing tumours. Conditioned medium from angiopoietin-1-transfected cells decreased vascular permeability more than did conditioned medium from control cells (P<0.05). Our results suggest that angiopoietin-1 is an important mediator of angiogenesis and vascular permeability and thus could theoretically serve as an anti-neoplastic agent for patients with carcinomatosis from colorectal cancer. British Journal of Cancer (2002) 87, 1182–1187. doi:10.1038/sj.bjc.6600598 www.bjcancer.com © 2002 Cancer Research UK PMID:12402160

  7. Incomplete free fatty acid oxidation by ascites tumor cells under low oxygen tension.

    PubMed

    Ookhtens, M; Baker, N

    1983-01-01

    We tried to understand why our earlier estimates of fatty acid (FA) oxidation rates under the nearly anaerobic state of the Ehrlich ascites tumor (EAT) in vivo were even greater than those found in vitro under aerobic conditions. Using tracers [1-14C]linoleate, [1-14C]-, and [9,10-3H]palmitate, and NaH14CO3, we estimated essential and nonessential FA oxidation rates to CO2 + H2O by EAT in living mice and in vitro under aerobic and anaerobic conditions. Sequestration of intraperitoneally (ip)-injected 14C-FFA allowed a selective labeling of the tumor versus the host; thus, breath 14CO2 could be used to estimate the maximum rate of FA oxidation in vivo by the tumor. Initially, we measured breath 14CO2 following NaH14CO3 injections and developed a multicompartmental model to simulate the tumor-host HCO-3-CO2 system. This model was integrated with our earlier model for tumor FA turnover. The integrated model was fitted to breath 14CO2 data from mice injected ip with 14C-FFA to compute tumor FA oxidation rates. Both essential and nonessential FA were oxidized to CO2 at similar rates. The maximum rate of total FA oxidation to CO2 was 5-6 nmol FA X min-1 X 7-ml tumor-1, about 5-10 times lower than all previous estimates obtained in vitro and in vivo. To resolve this dilemma we used doubly labeled [1-14C; 9,10-3H]palmitate and found that under aerobic conditions, in vitro, EAT formed 3H2O and 14CO2 at nearly equal rates. These rates were suppressed markedly but unequally at low PO2. Anaerobic suppression of 14CO2 formation greatly exceeded that of 3H2O formation. As a result 3H2O/14CO2 reached a value of congruent to 10 at low PO2. Our data indicate that under the nearly anaerobic conditions of a growing EAT in vivo, the partial beta-oxidation of FA to 2C + H2O takes place at a 5 to 10 times faster rate than the complete oxidation of FA to CO2 + H2O. This finding can account for earlier apparent inconsistencies in the literature, since aerobic studies of 14C-FA oxidation to 14CO2 in vitro and of 3H-FA oxidation to 3H2O under nearly anaerobic conditions would both overestimate greatly the rate of FA oxidation to CO2 by EAT in vivo. PMID:6295191

  8. Addition of Propolis to Irinotecan Therapy Prolongs Survival in Ehrlich Ascites Tumor-Bearing Mice

    PubMed Central

    Lisičić, Duje; Đikić, Domagoj; Blažević, Ana Sofia; Mihaljević, Josipa; Oršolić, Nada; Knežević, Anica Horvat

    2014-01-01

    Abstract We investigated possible synergistic action of anticancer drug Irinotecan (IRI) combined with ethanolic (EEP) and water-soluble (WSDP) derivate of propolis on Swiss albino mice injected with Ehrlich ascites tumor (EAT). For survival analysis mice were administered WSDP and EEP (100 mg/kg) daily for 3 consecutive days, beginning on 3rd day after EAT cell (1×106) injection. IRI was administered at a dose of 50 mg/kg on days 1, 13, and 19. We simultaneously studied peripheral white blood cell count, cell types washed from the peritoneal cavity, functional activity of macrophages from peritoneal cavity, and the level of primary DNA damage in leukocytes, kidney, and liver cells using the alkaline comet assay. Three out of 9 mice per group survived the entire duration of the experiment (90 days) in groups treated with IRI combined with WSDP and EEP. All test components increased survival of mice by 7.53% to 231.54%. Combined treatment with IRI and/or WSDP and EEP significantly decreased percentage of tumor cells in the peritoneal cavity as compared to nontreated EAT-injected mice. All treated animals had significantly higher percentage of neutrophils in the peritoneal cavity in comparison to nontreated EAT-injected mice. We observed significantly higher value of DNA damage in leukocytes of mice treated with IRI and combination of IRI and/or WSDP and EEP as compared to nontreated EAT-injected mice, while the same treatment decreased DNA damage in kidney. Our results showed that addition of propolis to IRI treatment enhanced antitumor activity of IRI and prolongs survival in EAT-bearing mice, which definitely deserve further studies to clarify the possible mechanisms of antitumor actions of combined herb–drug treatments. PMID:24383762

  9. Purification and properties of adenylosuccinate synthetase from Yoshida sarcoma ascites tumor cells.

    PubMed

    Matsuda, Y; Shimura, K; Shiraki, H; Nakagawa, H

    1980-12-01

    Adenylosuccinate synthetase (IMP:L-aspartate ligase (GDP-forming), EC 6.3.4.4) was purified about 750-fold to a homogeneous state from Yoshida sarcoma ascites tumor cells. A yield of 38% purified enzyme was achieved by a procedure including affinity chromatography on hadacidin-Sepharose 4B. Ultracentrifugal analyses showed that the molecular weight of the native enzyme was 102 000 with an s20,w value of 4.5 and that the molecular weight in 6 M guanidine-HCl was 47 000. These values indicate that the native enzyme is composed of two subunits. The isoelectric point was determined to be 5.9 by isoelectric focusing. The optimum pH for activity was 6.8-7.0. The Km values for IMP, aspartate and GTP were calculated to be 4.1, 9.8 and 0.7 . 10(-4) M, respectively. The antibiotic, hadacidin was strongly inhibitory, causing competitive inhibition with respect to aspartate with a Ki value of 2.5 . 10(-6) M. Nucleoside mono- and diphosphate also inhibited the enzyme activity, but their inhibitions were not apparently specific. The purified enzyme showed full activity in the presence of Mg2+, and Mg2+ could be partially replaced by Mn2+, Co2+, Ca2+ or Cu2+. Divalent metal ions, such as Cd2+, Pb2+, Zn2+, Cu2+ and Mn2+, interfered with the activity by antagonizing Mg2+. Hg2+ or PCMB inactivated the enzyme, suggesting that an SH-group may be important for activity. PMID:7213642

  10. Comparison of three lines of broilers differing in ascites susceptibility or growth rate. 2. Egg weight loss, gas pressures, embryonic heat production, and physiological hormone levels.

    PubMed

    De Smit, L; Tona, K; Bruggeman, V; Onagbesan, O; Hassanzadeh, M; Arckens, L; Decuypere, E

    2005-09-01

    Ascites is a metabolic disorder that accounts for over 25% of overall mortality in the broiler industry. This disorder is manifested between wk 5 and 6 posthatch, but there are previous indications that predisposition may be identified during embryonic development. In this current study, we determined embryonic physiological and metabolic parameters that may be associated with ascites predisposition. For this purpose, we used broiler eggs from 3 lines that differed in ascites sensitivity. These included an ascites-sensitive dam line (DAS), an ascites-resistant dam line (DAR), and an ascites-sensitive sire line (SASL). Eggs were incubated for 21 d under standard conditions. The following parameters were measured during incubation: egg weights at setting, egg weight losses at 18 d, embryo body weights and embryo heart weights throughout development, air cell partial gas pressures (pCO2 and pO2) levels at d 18 and at internal pipping (IP); plasma triiodothyronine, thyroxine, and corticosterone levels at d 18, IP, and hatch; heat production from d 17 until hatch, hematocrit values at hatch, and posthatch growth rate to 7 d along with hematocrit values. The data obtained revealed that selection for ascites sensitivity or rapid growth rate had no consistent influence on some of these parameters such that they could be wholly associated with ascites sensitivity for predictive purposes. Whereas differences in embryonic developmental patterns were apparent throughout embryonic development, these differences in physiological and metabolic parameters may be due partly to genetic differences unrelated to ascites sensitivity. PMID:16206567

  11. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  12. Subcutaneous tumor growth complicating the positioning of Denver shunt and intrapleural port-à-cath in mesothelioma patients.

    PubMed

    van Ooijen, B; Eggermont, A M; Wiggers, T

    1992-12-01

    Patients with malignant ascites and malignant pleural fluid from abdominal or pleural mesothelioma underwent the positioning of Denver type peritoneovenous shunt or intrapleural catheter. They developed tumor growth in the subcutaneous tissue surrounding the devices throughout their courses. Neoplastic seeding is a potential complication of the positioning of shunts and catheters in cavities filled with fluid rich in tumor cells. PMID:1478300

  13. Comparison of three lines of broiler breeders differing in ascites susceptibility or growth rate. 1. Relationship between acoustic resonance data and embryonic or hatching parameters.

    PubMed

    Tona, K; Kemps, B; Bruggeman, V; Bamelis, F; De Smit, L; Onagbesan, O; De Baerdemaeker, J; Decuypere, E

    2005-09-01

    Ascites is a prevalent cardiovascular disease among modern broilers with negative impacts on production and animal welfare. The peak of mortality due to ascites occurs at the end of the growing period, but the etiology of this problem may start during embryonic development. A few recent reports have demonstrated that the signs of ascites susceptibility are manifested during the late stages of incubation. In the current study, we used a nondestructive method based on egg acoustic resonance parameters [resonant frequency (RF) and damping] to establish a relationship between embryo physiological events during early development in broiler eggs and susceptibility to ascites. The hatching eggs of 3 broiler lines differing in ascites susceptibility were used for this study: ascites-resistant dam line (DAR), ascites-sensitive dam line (DAS), and ascites-sensitive sire line (SASL). These lines were selected on the basis of fast growth, high breast meat yield, and ascites induction at low temperatures such that the order of ascites susceptibility in terms of mortality was SASL > DAS > DAR. Eggs were incubated under standard conditions in forced-draft incubators. We measured egg weights at setting, albumen pH, Haugh units (HU) at setting, and embryo weights at d 11 and 18, at internal pipping (IP), and at hatch. The durations of IP, external pipping (EP), and hatching were also determined. At 2 hourly periods during incubation, egg RF and damping were also measured. There were differences in egg weights between DAR and SASL vs. DAS, but albumen HU, albumen pH, and the ratio of yolk weight to egg weight were similar. There were differences in RF, damping, embryonic growth rates, and hatching events. Changes in resonant frequency and damping, which certainly suggest eggshell differences among lines, were not totally related to variations in physiological events during early and late embryonic development. A comparison between DAR and DAS, between DAS and SASL, or DAR and SASL indicates that sensitivity to ascites and selection for rapid growth rate in ascites-sensitive lines have different effects on embryonic parameters. We concluded that the sensitivity of broiler breeders to ascites does not influence egg internal quality, but the occurrence of ascites sensitivity in broilers could not be reliably predicted by early in ovo acoustic resonance parameters and hatching events. PMID:16206566

  14. CHANGES IN THE ELECTRICAL SURFACE CHARGE AND TRANSPLANTATION PROPERTIES OF TA3 ASCITES TUMOR CELLS DURING SHORT-TERM MAINTENANCE IN AN ISOTONIC SALT SOLUTION

    SciTech Connect

    Tenforde, T.S.; Richards, W.R.; Kelly, L.S.

    1980-12-01

    TA3 ascites tumor cells maintained in vitro as a dilute suspension in 0.9% NaCl solution (physiological saline) were found to undergo time-dependent degenerative processes leading to alterations in both membrane characteristics and tumor transplantation properties. A 30% decrease in the negative cellular surface charge density occurred within 2 hr. when TA3 cells were incubated in a 0.9% NaCl solution at 23 °C. A similar reduction in negative surface charge density occurred within 0.5 hr. when the medium was maintained at 37 °C. This time-dependent reduction in surface charge was prevented when cellular metabolism was blocked either by maintaining the medium at 4 °C. or by adding 1 mM cyanide ion to a 23 °C medium. TA3 cells incubated as a dilute suspension in 0.9% NaCl solution at 23 °C also exhibited a large 9 time-dependent reduction in proliferative capacity in isogeneic LAF1/J hosts, as indicated by an increase in the tumor dose for 50% mortality (TD50). Lowering the temperature of the medium to 4 °C was observed to slow the onset of the degenerative processes that lead to a decreased transplantability of TA3 cells. The modification in growth properties of TA3 cells maintained in vitro was found to be attributable in part to an alteration in tumor histocompatibility. This effect was demonstrated by comparing the tumor growth kinetics and TD50 values in normal hosts versus hosts that had been immunosuppressed by whole-body irradiation. Following the in vitro maintenance of TA3 cells, nigrosin dye exclusion tests were performed as a means of assessing cell viability. Evidence obtained in this series of experiments indicated that vital staining is an inadequate criterion for judging either the extent of cell membrane damage or the loss of cellular proliferative capacity.

  15. Characteristics of the accumulation of methotrexate polyglutamate derivatives in Ehrlich ascites tumor cells and isolated rat hepatocytes

    SciTech Connect

    Fry, D.W.; Gewirtz, D.A.; Yalowich, J.C.; Goldman, I.D.

    1983-01-01

    The intracellular synthesis and retention of polygammaglutamyl derivatives of methotrexate and their interactions with H/sub 2/ folate reductase was evaluated. Methotrexate polyglutamates were detected within 15 minutes in hepatocytes exposed to 1 microM methotrexate, and continued to accumulate for at least 60 minutes producing a large transmembrane gradient. These derivatives appeared to be preferentially retained within the cell. In studies with the Ehrlich ascites tumor accumulation of methotrexate polyglutamates was increased over 5-fold by the addition of 5 mM L-glutamine or L-glutamate and exhibited a positive correlation with the extracellular concentration of methotrexate. When Ehrlich ascites tumor cells were exposed to 10 microM methotrexate and 5 mM L-glutamine intracellular polyglutamates were detected within 10 minutes and their levels increased linearly over 4 hours. As these derivatives accumulated, there was a decline in intracellular methotrexate due at least in part to a replacement of methotrexate on H/sub 2/ folate reductase by polyglutamates and subsequent efflux of the previously bound methotrexate from the cell. When polyglutamate derivatives were in excess of the H/sub 2/ folate reductase binding capacity and extracellular methotrexate removed, methotrexate rapidly exited the cell whereas the majority of its metabolites were retained and eventually saturated the major portion of the enzyme. These studies indicate that (1) intracellular methotrexate is rapidly converted to polygammaglutamyl derivatives, (2) these metabolites effectively compete with methotrexate for binding sites on H/sub 2/ folate reductase, (3) these derivatives are retained within the cell more effectively than methotrexate, and (4) vincristine and probenecid may be potentially useful for selectively increasing methotrexate polyglutamates in tumor cells.

  16. The effects of feed restriction and ambient temperature on growth and ascites mortality of broilers reared at high altitude.

    PubMed

    Ozkan, S; Takma, C; Yahav, S; Sögüt, B; Türkmut, L; Erturun, H; Cahaner, A

    2010-05-01

    The development of ascites was investigated in broilers at low versus high altitudes, cold versus normal ambient temperatures (AT), and 3 feeding regimens. One-day-old chicks obtained at sea level were reared at high altitude (highA; 1,720 m; n = 576) with 2 AT treatments, low AT from 3 wk onward at highA (highA/cold) and normal AT from 3 wk onward at highA (highA/norm), or at sea level (normal AT from 3 wk onward at low altitude, lowA/norm; n = 540). Under highA/cold, AT ranged between 16 to 17 degrees C in the fourth week, 17 to 19 degrees C in the fifth week, and 19 to 21 degrees C thereafter. Under highA/norm and lowA/norm, AT was 24 degrees C in the fourth week and ranged between 22 to 24 degrees C thereafter. Broilers in each condition were divided into 3 groups: feed restriction (FR) from 7 to 14 d, FR from 7 to 21 d, and ad libitum (AL). Ascites mortality and related parameters were recorded. Low mortality (0.4%) occurred under lowA/norm conditions. Under highA/norm, mortality was lower in females (8.6%) than in males (13.8%) and was not affected by the feeding regimen. The highA/cold treatment resulted in higher mortality but only in males; it was 44.2% among highA/cold AL-fed males and only about 26% under the FR regimens, suggesting that FR helped some males to better acclimatize to the highA/cold environment and avoid ascites. However, mortality was only 13.3% in AL-fed males at highA/norm and FR did not further reduce the incidence of ascites under these conditions. Thus, avoiding low AT in the poultry house by slight heating was more effective than FR in reducing ascites mortality at highA. Compared with FR from 7 to 14 d, FR from 7 to 21 d did not further reduce mortality and reduced growth. At 47 d, the majority of surviving broilers at highA had high levels of hematocrit and right ventricle:total ventricle weight ratio (>0.29), but they were healthy and reached approximately the same BW as their counterparts at low altitude. This finding may suggest that in broilers reared at highA from day of hatch, the elevation in hematocrit and in right ventricle:total ventricle weight ratio happens gradually and therefore is not necessarily indicative of ascites development. PMID:20371850

  17. Enhanced Antitumor Immunity Contributes to the Radio-Sensitization of Ehrlich Ascites Tumor by the Glycolytic Inhibitor 2-Deoxy-D-Glucose in Mice

    PubMed Central

    Farooque, Abdullah; Singh, Niharika; Adhikari, Jawahar Singh; Afrin, Farhat; Dwarakanath, Bilikere Srinivasa Rao

    2014-01-01

    Two-deoxy-D-glucose (2-DG), an inhibitor of glycolysis differentially enhances the radiation and chemotherapeutic drug induced cell death in cancer cells in vitro, while the local tumor control (tumor regression) following systemic administration of 2-DG and focal irradiation of the tumor results in both complete (cure) and partial response in a fraction of the tumor bearing mice. In the present studies, we investigated the effects of systemically administered 2-DG and focal irradiation of the tumor on the immune system in Ehrlich ascites tumor (EAT) bearing Strain “A” mice. Markers of different immune cells were analyzed by immune-flow cytometry and secretary cytokines by ELISA, besides monitoring tumor growth. Increase in the expression of innate (NK and monocytes) and adaptive CD4+cells, and a decrease in B cells (CD19) have been observed after the combined treatment, suggestive of activation of anti-tumor immune response. Interestingly, immature dendritic cells were found to be down regulated, while their functional markers CD86 and MHC II were up regulated in the remaining dendritic cells following the combination treatment. Similarly, decrease in the CD4+ naïve cells with concomitant increase in activated CD4+ cells corroborated the immune activation. Further, a shift from Th2 and Th17 to Th1 besides a decrease in inflammatory cytokines was also observed in the animals showing complete response (cure; tumor free survival). This shift was also complimented by respective antibody class switching followed by the combined treatment. The immune activation or alteration in the homeostasis favoring antitumor immune response may be due to depletion in T regulatory cells (CD4+CD25+FoxP3+). Altogether, these results suggest that early differential immune activation is responsible for the heterogenous response to the combined treatment. Taken together, these studies for the first time provided insight into the additional mechanisms underlying radio-sensitization by 2-DG in vivo by unraveling its potential as an immune-modulator besides direct effects on the tumor. PMID:25248151

  18. Enhanced anti-tumor activity and reduced toxicity by combination andrographolide and bleomycin in ascitic tumor-bearing mice.

    PubMed

    Guo, Huizhen; Zhang, Zhenbiao; Su, Zuqing; Sun, Chaoyue; Zhang, Xie; Zhao, Xiaoning; Lai, Xiaoping; Su, Ziren; Li, Yucui; Zhan, Janis Yaxian

    2016-04-01

    Bleomycin (BLM) is an effective anti-carcinogen. With the main detrimental effects of inducing pulmonary fibrosis on patients, its clinical use is limited. Developing agents that enhance the efficacy and attenuate the side effects of cancer chemotherapy are critical. Andrographolide (Andro), an active diterpenoid labdane component extracted from Andrographis panicula, is generally prescribed for treatment of inflammatory associated diseases. The study showed that BLM combined with Andro was significantly more effective than BLM alone on inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, promoting the capase-3 and capase-8 activity to induce cancer cell apoptosis. The underlying mechanisms may be related to the transcriptional regulation of P53/P21/Cyclin pathways. Moreover, BLM induced pulmonary fibrosis in tumor-bearing mice, but BLM combined with Andro dramatically alleviated the lesion in pulmonary fibrosis by activating the SOD, suppressing MDA and HYP production, in the meanwhile attenuating the IL-1β, TNF- α, IL-6 and TGF-β1 level. These mechanisms were associated with its effect on inhibition of protein expression of TGF-β, α-SMA, p-Smad2/3, enhanced expression of Smad7. Thus, it demonstrated that Andro might be a potential adjuvant therapeutic agent for BLM. PMID:26874212

  19. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90. PMID:9187119

  20. Conditions supporting repair of potentially lethal damage cause a significant reduction of ultraviolet light-induced division delay in synchronized and plateau-phase Ehrlich ascites tumor cells

    SciTech Connect

    Iliakis, G.; Nusse, M.

    1982-09-01

    Repair of potentially lethal damage (PLD) induced by uv light in synchronized and in plateau-phase cultures of Ehrlich ascites tumor cells was studied by measuring cell survival. In particlar the influence of conditions supporting repair of PLD on growth kinetics was investigated. In synchronized G/sub 1/, S, or G/sub 2/ + M cells as well as in plateau-phase cells, uv light induced, almost exclusively, delay in the next S phase. A significant decrease of this delay was observed when the cells were incubated for 24 hr in balanced salt solution. Repair of PLD after uv irradiation was found to occur in plateau-phase cells and in cells in different phases of the cell cycle provided that after irradiation these were kept under conditions inhibiting cell multiplication (incubation in balanced salt solution or in conditioned medium). The repair time constant t/sub 50/ was significantly higher than those found for X irradiation (5-10 hr compared to 2 hr), and repair was not significantly inhibited by either 20 ..mu..g/ml cycloheximide or 2 mM caffeine in 24 hr.

  1. Glucose uptake-stimulatory activity of Tinospora cordifolia stem extracts in Ehrlich ascites tumor cell model system.

    PubMed

    Joladarashi, Darukeshwara; Chilkunda, Nandini D; Salimath, Paramahans Veerayya

    2014-01-01

    Diabetes mellitus is a multifunctional disorder with several causes and multiple consequences. Nutraceuticals play a vital role in ameliorating diabetic condition. The stems of the plant, Tinospora cordifolia (T. cordifolia) are often used in Ayurvedic medicine for the management of diabetes. Earlier studies have shown that T. cordifolia to be a potent antidiabetic plant material by virtue of being rich in nutraceuticals. In the present study we were interested to know if, T. cordifolia stem extracts are able to promote glucose uptake through glucose transporters, 1 (GLUT1) and 3 (GLUT3), which are responsible for basal glucose uptake. Hence, Ehrlich ascites tumor (EAT) cells were chosen as a model which harbours both GLUT1 and GLUT3 and glucose uptake was measured using a fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG). Serially, solvent extracted T. cordifolia stems, especially water, ethanol and methanol extracts showed glucose uptake activity. Uptake was stimulated in a dose dependent manner at dosages of 1-100 μg. Glucose-stimulating activity does not seem to be solely due to polyphenol content since methanol extract, with high amount of polyphenol content (9.5 ± 0.1 g kg(-1)), did not stimulate higher glucose uptake activity when compared to water extract. PMID:24426067

  2. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma

    PubMed Central

    Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick; rtoft, Gitte; Vestergaard, Poul; Magnusson, Nils E.; Conover, Cheryl A.; Tramm, Trine; Hager, Henrik; Hgdall, Claus; Hgdall, Estrid; Oxvig, Claus; Frystyk, Jan

    2015-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P < 0.001). The majority (80%) of PAPP-A was enzymatically active. This is supported by the finding that ascites contained more cleaved than intact IGFBP-4 (P < 0.03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P < 0.05); in 8 of 22 patients by more than two-fold. In contrast, ascites contained similar levels of immunoreactive IGF-I, and lower levels of IGF-II (P < 0.001). Immunohistochemistry demonstrated the presence of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P < 0.05). In conclusion, human ovarian tumors express PAPP-A, IGFBP-4 and IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth. PMID:26336825

  3. The activity against Ehrlich's ascites tumors of doxorubicin contained in self assembled, cell receptor targeted nanoparticle with simultaneous oral delivery of the green tea polyphenol epigallocatechin-3-gallate.

    PubMed

    Ray, Lipika; Kumar, Pradeep; Gupta, Kailash C

    2013-04-01

    Doxorubicin (DOX) is a well-known anticancer drug used for the treatment of a wide variety of cancers. However, undesired toxicity of DOX limits its uses. To address the issue of minimizing toxicity of DOX by making it targeted towards cancer cells, DOX was entrapped in self-assembled 6-O-(3-hexadecyloxy-2-hydroxypropyl)-hyaluronic acid (HDHA) nanoparticles. We hypothesized that by encapsulating the drug in biodegradable nanoparticles, its therapeutic efficacy would improve, if targeted against cancer cells. We synthesized cell receptor targeted, DOX loaded HDHA nanoparticles (NPs) and non-targeted DOX loaded O-hexadecylated dextran (HDD) nanoparticles (NPs) and characterized them for their entrapment efficiency, percent yield, drug load, surface morphology, particle size and in vitro drug release. The anticancer efficacy of DOX loaded HDHA-NPs was evaluated by measuring the changes in tumor volumes, tumor weights, and mean survival rate of Swiss albino mice grafted with Ehrlich's ascites carcinoma (EAC) cells. For this, the animals were given HDHA-DOX-NPs (1.5 mg/kg b.wt.) intravenously and a green tea polyphenol, Epigallocatechin-3-gallate (EGCG) (20 mg/kg b.wt.), orally through gavage. The targeted NP dose with EGCG significantly increased mean survival time of the animals and enhanced the therapeutic efficacy of the drug compared to the non-targeted NPs and free DOX. Further, we showed that these NPs (HDD and HDHA) were more active in the presence of EGCG than DOX alone in inducing apoptosis in EAC cells as evident by an increase in sub-G1 cells (percent), Annexin V positive cells and chromatin condensation along with the reduction in mitochondrial membrane potential (MMP). The study demonstrates that DOX loaded HDHA-NPs along with EGCG significantly inhibit the growth of EAC cells with ∼38-fold dose advantage compared to DOX alone and thus opens a new dimension in cancer chemotherapy. PMID:23357370

  4. Effective recovery of highly purified CD326(+) tumor cells from lavage fluid of patients treated with a novel cell-free and concentrated ascites reinfusion therapy (KM-CART).

    PubMed

    Kimura, Yukino; Harada, Yui; Yasuda, Noriko; Ishidao, Takefumi; Yusa, Seiichi; Matsusaki, Keisuke; Yonemitsu, Yoshikazu

    2015-01-01

    For the production of tumor-specific vaccines, including dendritic cell (DC) vaccines, the tumor cells themselves are an ideal source. Floating tumor cells in the ascites fluid from patients with malignant ascites are a good candidate source, but it is not easy to obtain pure tumor cells from ascites because of various types of cell contamination as well as protein aggregates. We here report an effective method to recover pure tumor cells from malignant ascites. We used lavage fluid from 13 patients with malignant ascites who were treated with modified cell-free and concentrated ascites reinfusion therapy (KM-CART). Cellular components were separated from the lavage fluid by centrifugation, enzymatic digestion and hemolysis. Tumor cells were purified by depleting CD45(+) leukocytes with antibody-conjugated magnetic beads. The tumor cell lysate was extracted by freeze-and-thaw cycles. The mean obtained total cell number was 7.50 × 10(7) cells (range 4.40 × 10(6)-2.48 × 10(8) cells). From this fraction, 6.39 × 10(6) (range 3.23 × 10(5)-2.53 × 10(7)) CD45(-) cells were collected, and the tumor cell purity was over 80 % defined as CD45(-)CD326(+). A sufficient amount of tumor lysate, average  = 2416 μg (range 25-8743 μg), was extracted from CD45(-)CD326(+) tumor cells. We here established an effective method to produce highly purified tumor cells from KM-CART lavage fluid. The clinical feasibility of this simple preparation method for generating tumor lysate should be examined in clinical studies of DC vaccines. PMID:26702369

  5. Relationship between antitumor effect and metabolites of 5-fluorouracil in combination treatment with 5-fluorouracil and guanosine in ascites Sarcoma 180 tumor system

    SciTech Connect

    Iigo, M.; Kuretani, K.; Hoshi, A.

    1983-12-01

    The antitumor activity of (6-14C)5-fluorouracil ((6-14C)FUra) against ascites Sarcoma 180 was significantly enhanced by coadministration of guanosine, and slightly by adenosine, but not by cytidine or uridine. In advanced ascites Sarcoma 180, guanosine also enhanced the action of FUra, but adenosine, uridine, and cytidine did not. The potentiation of antitumor activity by guanosine was reversed by addition of cytidine. The antitumor activity of FUra was significantly potentiated when guanosine was administered either 0 to 15 min before or 5 min after FUra. Changes in metabolites of FUra after potentiation by guanosine were investigated. The potentiation of antitumor activity of FUra by guanosine was considered to be due to an increase in incorporation of FUra into FUra-nucleotides and RNA in the tumor cells.

  6. Refractory Ascites

    PubMed Central

    Siqueira, Fabiolla; Kelly, Traci

    2009-01-01

    Refractory ascites is defined as ascites that does not recede or that recurs shortly after therapeutic paracentesis, despite sodium restriction and diuretic treatment. To date, there is no approved medical therapy specifically for refractory ascites. Management of these patients is based upon procedures such as large-volume paracentesis and transjugular intrahepatic portosystemic shunts (TIPS), which temporarily alleviate symptoms but are not curative. These patients have a poor prognosis and are at risk for a series of complications that are associated with the condition or are secondary to therapy. The most common complications include spontaneous bacterial peritonitis, hepatic hydrothorax, spontaneous bacterial empyema, and umbilical hernia. The predicted survival rate is as low as 50% at 1 year, and prognosis worsens as patients present with comorbidities such as hepatorenal syndrome, renal failure, and hepatocellular carcinoma. The only curative treatment is liver transplantation, though current studies have shown that TIPS also increases survival.

  7. Characterization of macrophage- and granulocyte-inducing proteins for normal and leukemic myeloid cells produced by the Krebs ascites tumor.

    PubMed

    Lipton, J H; Sachs, L

    1981-04-01

    Medium from serum-free cultures of Krebs ascites tumor cells contains two macrophage and granulocyte inducing (MGI) activities that can act on the myeloid precursors of these hematopoietic cells. One activity, MGI-1, induced the formation of macrophage and granulocyte colonies from normal myeloid precursors. The second activity, MGI-2, induced macrophage and granulocyte differentiation in myeloid leukemic cells that no longer required MGI-1 for colony formation. The medium contained one species of MGI-1 and two species of MGI-2. One species of MGI-2, MGI-2A, copurified through five stages of purification with MGI-1, but separated from the other MGI-2 species, MGI-2B, at an early stage in purification. MGI-1, MGI-2A and MGI-2B were purified 1490, 1140 and 678-fold, respectively. When bands with biological activity gel from non-denaturing polyacrylamide gels were run on SDS-polyacrylamide gel electrophoresis, MGI-1 and MGI-2A activities were associated with similar Mr and each activity showed two bands, one of 23 000 and the other 25 000. MGI-2B activity showed one band with a Mr of 45 000. Secretion did not appear to involve glycosylation, none of the species bound to concanavalin A, soybean agglutinin, or wheat germ agglutinin agarose columns and they did not appear to contain carbohydrates. The assays for MGI-1 and MGI-2 activities were not affected by adding protease inhibitors. But MGI-2 was more readily destroyed by treatment with proteases and was more labile at high temperature and low pH than MGI-1. It is suggested that the level of cellular proteases may play a role in regulating the relative amounts of MGI-1 and MGI-2 that are present in vivo. PMID:7013820

  8. Apparent involvement of opioid peptides in stress-induced enhancement of tumor growth.

    PubMed

    Lewis, J W; Shavit, Y; Terman, G W; Nelson, L R; Gale, R P; Liebeskind, J C

    1983-01-01

    Exposure to stress has been associated with alterations in both immune function and tumor development in man and laboratory animals. In the present study, we investigated the effect of a particular type of inescapable footshock stress, known to cause an opioid mediated form of analgesia, on survival time of female Fischer 344 rats injected with a mammary ascites tumor. Rats subjected to inescapable footshock manifested an enhanced tumor growth indicated by a decreased survival time and decreased percent survival. This tumor enhancing effect of stress was prevented by the opiate antagonist, naltrexone, suggesting a role for endogenous opioid peptides in this process. In the absence of stress, naltrexone did not affect tumor growth. PMID:6686324

  9. Hybrid Models of Tumor Growth

    PubMed Central

    Rejniak, Katarzyna A.; Anderson, Alexander R. A.

    2010-01-01

    Cancer is a complex, multiscale process, in which genetic mutations occurring at a subcellular level manifest themselves as functional changes at the cellular and tissue scale. The multiscale nature of cancer requires mathematical modeling approaches that can handle multiple intra- and extracellular factors acting on different time and space scales. Hybrid models provide a way to integrate both discrete and continuous variables that are used to represent individual cells and concentration or density fields, respectively. Each discrete cell can also be equipped with sub-models that drive cell behavior in response to microenvironmental cues. Moreover, the individual cells can interact with one another to form and act as an integrated tissue. Hybrid models form part of a larger class of individual-based-models that can naturally connect with tumor cell biology and allow for the integration of multiple interacting variables both intrinsically and extrinsically and are therefore perfectly suited to a systems biology approach to tumor growth. PMID:21064037

  10. Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells.

    PubMed

    Allavena, P; Peccatori, F; Maggioni, D; Erroi, A; Sironi, M; Colombo, N; Lissoni, A; Galazka, A; Meiers, W; Mangioni, C

    1990-11-15

    Seven patients with advanced epithelial carcinoma and ascites, relapsing after two or more regimens of standard chemotherapy, have been treated with recombinant gamma-interferon (rIFN-gamma) i.p., via a permanent catheter. rIFN-gamma (Immuneron; Biogen; 0.5 mg = 10(7) IU in 2 liters of saline) was administered 3 times a week, on alternate weeks, for a total of nine courses. No major toxicities were observed: mild fever, malaise, and a flu-like syndrome occurred in all patients. The modulation of immunological parameters was studied. Cytotoxic activity of immunocompetent cells against tumor cell lines was measured both in the peritoneal compartment and in peripheral blood mononuclear cells. A significant increase of cytotoxicity of tumor-associated macrophages was observed in 5 of 7 patients and in 4 of 7 patients with tumor-associated peritoneal lymphocytes. Circulating effector cells were only occasionally stimulated. Tumor-associated macrophages isolated from the ascitic fluid and stimulated with lipopolysaccharide produced higher amounts of interleukin 1 in 5 of 6 patients tested, while interleukin 6 production by unstimulated tumor-associated macrophages was augmented in 2 of 2 patients after rIFN-gamma treatment. Freshly isolated ovarian carcinoma cells from the ascitic fluid has a variable, although usually low, expression of HLA-DR antigens. rIFN-gamma treatment caused a marked increase in HLA-DR expression in all patients tested. Expression of HLA class I antigens was negative in 2 of 5 patients and was strongly increased in 1 of the 2 after treatment. The observation that rIFN-gamma administered i.p. activates in situ effector cells and augments major histocompatibility antigen expression in tumor cells, with minimal toxicity, encourages further efforts to investigate its therapeutic potential in ovarian carcinoma. PMID:2121337

  11. Identity-based High-performance thin Layer Chromatography Fingerprinting Profile and Tumor Inhibitory Potential of Anisochilus carnosus (L.f.) wall Against Ehrlich Ascites Carcinoma

    PubMed Central

    Gupta, Nilesh; Lobo, Richard; Kumar, Nimmy; Bhagat, Jay Kumar; Mathew, Jessy Elizabeth

    2015-01-01

    Context: Anisochilus carnosus (L.f.) wall belonging to the family Lamiaceae is a plant that is widely used in folk medicine for treating eczema, cold, cough, and fever. Objective: In the present study, we explored the anticancer potential of A. carnosus leaves against Ehrlich ascites carcinoma (EAC) and estimated the quantity of luteolin present in various extracts and fractions of A. carnosus by high-performance thin layer chromatography (HPTLC) fingerprinting. Materials and Methods: Various factors such as tumor volume, tumor cell viability, tumor weight, prolongation of lifespan, and hematological parameters were assessed. Result: We observed a significant lowering in tumor volume, tumor weight, and cell viability in EAC-induced mice following intervention with A. carnosus extracts. Also, there was a considerable prolongation of host lifespan and restoration of hematological parameters to almost normal levels with A. carnosus treatment. HPTLC fingerprinting of various extracts and fractions of A. carnosus along with luteolin as the reference standard revealed the occurrence of luteolin in all tested extracts and fractions of A. carnosus with the highest concentration being reported in the ethanol fraction. Conclusion: A. carnosus exhibits potent anti-tumor potential which can most likely be attributed to the occurrence of different phytochemicals such as phytosterols, terpenoids, and flavonoids in the plant. Further studies to isolate compounds from A. carnosus and understand the mechanism of anti-tumor activity would be worthwhile. SUMMARY EAC induced mice that received A. carnosus treatment exhibited significant reduction in tumor volume, tumor weight and tumor cell viability. Their life span was considerably prolonged. We detected luteolin in A. carnosus aqueous and ethanol extract using HPTLC. Hence, anticancer activity of A. carnosus can be partly attributed to the presence of luteolin. PMID:26929584

  12. Haptoglobin and CCR2 receptor expression in ovarian cancer cells that were exposed to ascitic fluid: exploring a new role of haptoglobin in the tumoral microenvironment.

    PubMed

    Garibay-Cerdenares, O L; Hernández-Ramírez, V I; Osorio-Trujillo, J C; Gallardo-Rincón, D; Talamás-Rohana, P

    2015-01-01

    Haptoglobin (Hp) is an acute-phase protein that is produced by the liver to capture the iron that is present in the blood circulation, thus avoiding its accumulation in the blood. Moreover, Hp has been detected in a wide variety of tissues, in which it performs various functions. In addition, this protein is considered a potential biomarker in many diseases, such as cancer, including ovarian carcinoma; however, its participation in the cancerous processes has not yet been determined. The objective of this work was to demonstrate the expression of Hp and its receptor CCR2 in the ovarian cancer cells and its possible involvement in the process of cell migration through changes in the rearrangement of the actin cytoskeleton using western blot and wound-healing assays and confirming by confocal microscopy. Ovarian cancer cells express both Hp and its receptor CCR2 but only after exposure to ascitic fluid, inducing moderated cell migration. However, when the cells are exposed to exogenous Hp, the expression of CCR2 is induced together with drastic changes in the actin cytoskeleton rearrangement. At the same time, Hp induced cell migration in a much more efficient manner than did ascitic fluid. These effects were blocked when the CCR2 synthetic antagonist RS102895 was used to pretreat the cells. These results suggest that Hp-induced changes in the cell morphology, actin cytoskeleton structure, and migration ability of tumor cells, is possibly "preparing" these cells for the potential induction of the metastatic phenotype. PMID:26211665

  13. Solanum tuberosum lectin inhibits Ehrlich ascites carcinoma cells growth by inducing apoptosis and G2/M cell cycle arrest.

    PubMed

    Kabir, Syed Rashel; Rahman, Md Musfikur; Amin, Ruhul; Karim, Md Rezaul; Mahmud, Zahid Hayat; Hossain, M Tofazzal

    2016-06-01

    Recently, a lectin was purified from the potato cultivated in Bangladesh locally known as Sheel. In the present study cytotoxicity of the lectin against Ehrlich ascites carcinoma (EAC) cells was studied by MTT assay in vitro in RPMI-1640 medium and 8.0-36.0 % cell growth inhibition was observed at the range of 2.5-160 μg/ml protein concentration when incubated for 24 h. The lectin-induced apoptosis in EAC cells was confirmed by fluorescence and optical microscope. The apoptotic cell death was also confirmed by using caspase inhibitors. Cells growth inhibition caused by the lectin (36 %) was remarkably decreased to 7.6 and 22.3 % respectively in the presence of caspase-3 and -8 inhibitors. RT-PCR was used to evaluate the expression of apoptosis-related genes Bcl-X, p53, and Bax. An intensive expression of Bcl-X gene was observed in untreated control EAC cells with the disappeared of the gene in Sheel-treated EAC cells. At the same time, Bax gene expression appeared only in Sheel-treated EAC cells and the expression level of the p53 gene was increased remarkable after the treatment of EAC cells with the lectin. The lectin showed strong agglutination activity against EAC cells. Flow cytometry was used to study the cell cycle phases of EAC cells and it was observed that the lectin arrested the G2/M phase. In conclusion, Sheel lectin inhibited EAC cells growth by inducing apoptosis. PMID:26733170

  14. Research of ALA combined with HpD-PDT which induced s180 ascitic tumor cells, death or apoptosis on cytology

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yan, Min; Zhang, Hui-Guo; Li, Enling; Luo, Hongyu

    2005-07-01

    To ascertain the adequate dosage of ALA combined with HpD-PDT which induced tumor cell death or apoptosis on cytology. And to study the different effect of ALA-PDT and HPD-PDT used only. Rat ascitic tumor cells(S180) were randomly divided into several groups and incubated with ALA(20μg/ml 、40μg/ml、80μg/ml 、160μg/ml)、HPD(2.5μg/ml、5μg/ml、10μg/ml)and their combination dosages. 630nm light (total output 2W) was delivered to tumor cells at a constant fluence rate: 200mw/cm2 and a constant irradiated time period: 20 minutes. We set 3 groups (no photosensitizers or no irradiation or neither) to be the control groups. We used inversion microscopy to observe the morphological change of tumor cells and flow cytometry technology to detect the death or apoptosis of tumor cells during the experiment. ..

  15. Cancer Progression and Tumor Growth Kinetics

    NASA Astrophysics Data System (ADS)

    Blagoev, Krastan; Kalpathy-Cramer, Jayashree; Wilkerson, Julia; Sprinkhuizen, Sara; Song, Yi-Qiao; Bates, Susan; Rosen, Bruce; Fojo, Tito

    2013-03-01

    We present and analyze tumor growth data from prostate and brain cancer. Scaling the data from different patients shows that early stage prostate tumors show non-exponential growth while advanced prostate and brain tumors enter a stage of exponential growth. The scaling analysis points to the existence of cancer stem cells and/or massive apoptosis in early stage prostate cancer and that late stage cancer growth is not dominated by cancer stem cells. Statistical models of these two growth modes are discussed. Work supported by the National Science Foundation and the National Institutes of Health

  16. Mesenchymal stem cells genetically modified by lentivirus-mediated interleukin-12 inhibit malignant ascites in mice

    PubMed Central

    HAN, JIMING; ZHAO, JUMEI; XU, JIANRONG; WEN, YANJUN

    2014-01-01

    The objective of the present study was to investigate the effects of mesenchymal stem cells (MSCs) genetically modified by lentivirus-mediated mouse interleukin-12 (Lenti-mIL-12) in treating malignant ascites in mice. The in vitro chemotactic effect of Lenti-mIL-12-MSC culture supernatant on dendritic cells was investigated using a chemotaxis chamber. Liver cancer H22 and MethA ascites models were constructed. Mice were divided evenly into four groups: Normal saline, MSC, Null and Lenti-mIL-12-MSC. The survival rate, ascites volume and red blood cell number were measured for these groups. The toxicity and side effects of Lenti-mIL-12-MSCs were investigated using visual and microscopy inspections. The results indicated that mIL-12 had a strong chemotactic effect on dendritic cells. mIL-12 was highly expressed in ascites of Lenti-mIL-12-MSC-treated mice. Lenti-mIL-12-MSCs reduced the volume of ascites and the number of red blood cells in ascites and thus increased the survival rate and prolonged the survival duration of the mice. Furthermore, Lenti-mIL-12-MSCs showed no toxicity and side effects on the mice with malignant ascites. In conclusion, the results demonstrated that Lenti-mIL-12-MSCs inhibited the growth of ascites and promoted the survival of tumor-bearing mice, suggesting that Lenti-mIL-12-MSCs exerts a therapeutic effect on malignant ascites by stimulating the immune responses of the mice. PMID:25187849

  17. Metabolic changes in the liver of mice with Ehrlich ascites carcinoma.

    PubMed

    Inzhevatkin, E V; Savchenko, A A

    2014-10-01

    The dynamics of NADP-dependent dehydrogenase activity and malonic dialdehyde content in the liver were studied in mice with Ehrlich ascites carcinoma. Tumor growth was accompanied by the development of conditions for an increase in the intensity of energy metabolism and amphibolic role of the tricarboxylic acid cycle in LPO activation in liver cells. PMID:25342485

  18. Effects of dietary L-carnitine and coenzyme Q10 at different supplemental ages on growth performance and some immune response in ascites-susceptible broilers.

    PubMed

    Geng, Ailian; Li, Baoming; Guo, Yuming

    2007-02-01

    Effects of dietary L-carnitine and coenzyme Q10 (CoQ10) at different supplemental ages on performance and some immune response were investigated in ascites-susceptible broilers. A 3 x 2 x 2 factorial design was used consisting of L-carnitine supplementation (0, 75, and 100 mg/kg), CoQ10 supplementation (0 and 40 mg/kg) and different supplemental ages (from day 1 on and from day 10 on). A total of 480 one-day-old Arbor Acre male broiler chicks were randomly allocated to 12 groups, every group had five replicates, each with eight birds. The birds were fed a corn-soybean based diet for six weeks. From day 10-21, all the birds were exposed to a low ambient temperature (12-15 degrees C) to increase the susceptibility to ascites. No significant effects were observed on growth performance by L-carnitine, CoQ10 supplementation, and different supplemental ages. Packed cell volume was significantly decreased by L-carnitine supplementation alone, and ascites heart index and ascites mortality were decreased by L-carnitine, CoQ10 supplementation alone, and L-carnitine + CoQ10 supplementation together (p < 0.05). Heart index of broilers was significantly improved by L-carnitine, CoQ10 supplementation alone during 0-3 week. Serum IgG content was improved by L-carnitine supplementation alone (p < 0.05), but lysozyme activity was increased by L-carnitine + CoQ10 supplementation together (p < 0.05). A significant L-carnitine by supplemental age interaction was observed in lysozyme activity. L-carnitine supplementation alone had no effects on the peripheral blood lymphocyte (PBL) proliferation in response to concanavalin A (ConA) and lipopolysaccharide, but supplemental CoQ10 alone and L-carnitine+ CoQ10 together decreased the PBL proliferation in response to ConA (p < 0.05). The present study suggested that L-carnitine + CoQ10 supplementation together had positive effects on some immune response of ascites-susceptible broilers, which might benefit for the reduction of broilers' susceptibility to ascites. PMID:17361948

  19. Inhibition of Vascularization in Tumor Growth

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Sansone, B. Capogrosso

    2002-11-01

    The transition to a vascular phase is a prerequisite for fast tumor growth. During the avascular phase, the neoplasm feeds only from the (relatively few) existing nearby blood vessels. During angiogenesis, the number of capillaries surrounding and infiltrating the tumor increases dramatically. A model which includes physical and biological mechanisms of the interactions between the tumor and vascular growth describes the avascular-vascular transition. Numerical results agree with clinical observations and predict the influence of therapies aiming to inhibit the transition.

  20. Mammalian protein homologous to VAT-1 of Torpedo californica: isolation from Ehrlich ascites tumor cells, biochemical characterization, and organization of its gene.

    PubMed

    Hayess, K; Kraft, R; Sachsinger, J; Janke, J; Beckmann, G; Rohde, K; Jandrig, B; Benndorf, R

    1998-06-01

    Recently, interest has focused on the human gene encoding the putative protein homologous to VAT-1, the major protein of the synaptic vesicles of the electric organ of the Pacific electric ray Torpedo californica, after it has been localized on chromosome locus 17q21 in a region encompassing the breast cancer gene BRCA1. Chromosomal instability in this region is implicated in inherited predisposition for breast and ovarian cancer. Here we describe isolation and biochemical characterization of a mammalian 48 kDa protein homologous to the VAT-1 protein of Torpedo californica. This VAT-1 homolog was isolated from a murine breast cancer cell line (Ehrlich ascites tumor) and identified by sequencing of cleavage peptides. The isolated VAT-1 homolog protein displays an ATPase activity and exists in two isoforms with isoelectric points of 5.7 and 5.8. cDNA was prepared from Ehrlich ascites tumor cells, and the murine VAT-1 homolog sequence was amplified by polymerase chain reaction and partially sequenced. The known part of the murine and the human translated sequences share 97% identity. By Northern blots, the size of the VAT-1 homolog mRNA in both murine and human (T47D) breast cancer cells was determined to be 2.8 kb. Based on the presented data, a modified gene structure of the human VAT-1 homolog with an extended exon 1 is proposed. VAT-1 and the mammalian VAT-1 homolog form a subgroup within the protein superfamily of medium-chain dehydrogenases/reductases. PMID:9581869

  1. Effects of Dietary L-carnitine Supplementation on Growth Performance, Organ Weight, Biochemical Parameters and Ascites Susceptibility in Broilers Reared Under Low-temperature Environment.

    PubMed

    Wang, Y W; Ning, D; Peng, Y Z; Guo, Y M

    2013-02-01

    The objective of this study was to investigate the effects of L-carnitine on growth performance, organ weight, biochemical parameters of blood, heart and liver, and ascites susceptibility of broilers at different ages reared under a low-temperature environment. A total of 420 1-d-old male Ross 308 broilers were randomly assigned to two dietary treatments with fifteen replicates of fourteen broilers each. Treatment diets consisted of L-carnitine supplementation at levels of 0 and 100 mg/kg. At 11-d of age, low temperature stress was used to increase ascites susceptibility. Blood, heart and liver samples were collected at different ages for analysis of boichemical parameters. The results showed that, there was no significant difference in growth performance with L-carnitine supplementation, but the mortality due to ascites was significantly decreased. Dietary L-carnitine supplementation significantly reduced heart index (HI) and ascites heart index (AHI) on d 21, lung index (LUI) on d 35 and liver index (LI) on d 42. The broilers fed diets containing L-carnitine had significantly lower red blood cell counts (RBC), hemoglobin (HGB) concentration and hematocrit (HCT) on d 42. Dietary L-carnitine supplementation significantly reduced malondialdehyde (MDA) content of heart tissue on d 21 and 35, and significantly increased total superoxide dismutase (T-SOD) and Glutathione peroxidase (GSH-Px) activity of the heart on d 21 and 42. L-carnitine supplementation significantly reduced serum triglyceride (TG) content on d 28 and 35 and serum glucose (GLU) on d 35 and 42, and significantly increased serum total protein (TP) and globulin (GLO) content on d 42. L-carnitine supplementation significantly enhanced liver succinodehydrogenase (SDH), malic dehydrogenase (MDH) and Na(+)-K(+)-ATPase activity on d 28, and tended to reduce the lactic acid (LD) level of liver on d 35 (p = 0.06). L-carnitine supplementation significantly reduced serum uric acid (UA) content on d 28, 35 and 42. Based on the current results, it can be concluded that dietary L-carnitine supplementation reduced organ index, red blood cell counts and hematocrit, enhanced antioxidative capacity of the heart, enhanced liver enzymes activity involved in tricarboxylic acid cycle, and reduced serum glucose and triglyceride. Therefore, it is suggested that L-carnitine can potentially reduce susceptibility and mortality due to ascites. PMID:25049781

  2. Effects of Dietary L-carnitine Supplementation on Growth Performance, Organ Weight, Biochemical Parameters and Ascites Susceptibility in Broilers Reared Under Low-temperature Environment

    PubMed Central

    Wang, Y. W.; Ning, D.; Peng, Y. Z.; Guo, Y. M.

    2013-01-01

    The objective of this study was to investigate the effects of L-carnitine on growth performance, organ weight, biochemical parameters of blood, heart and liver, and ascites susceptibility of broilers at different ages reared under a low-temperature environment. A total of 420 1-d-old male Ross 308 broilers were randomly assigned to two dietary treatments with fifteen replicates of fourteen broilers each. Treatment diets consisted of L-carnitine supplementation at levels of 0 and 100 mg/kg. At 11-d of age, low temperature stress was used to increase ascites susceptibility. Blood, heart and liver samples were collected at different ages for analysis of boichemical parameters. The results showed that, there was no significant difference in growth performance with L-carnitine supplementation, but the mortality due to ascites was significantly decreased. Dietary L-carnitine supplementation significantly reduced heart index (HI) and ascites heart index (AHI) on d 21, lung index (LUI) on d 35 and liver index (LI) on d 42. The broilers fed diets containing L-carnitine had significantly lower red blood cell counts (RBC), hemoglobin (HGB) concentration and hematocrit (HCT) on d 42. Dietary L-carnitine supplementation significantly reduced malondialdehyde (MDA) content of heart tissue on d 21 and 35, and significantly increased total superoxide dismutase (T-SOD) and Glutathione peroxidase (GSH-Px) activity of the heart on d 21 and 42. L-carnitine supplementation significantly reduced serum triglyceride (TG) content on d 28 and 35 and serum glucose (GLU) on d 35 and 42, and significantly increased serum total protein (TP) and globulin (GLO) content on d 42. L-carnitine supplementation significantly enhanced liver succinodehydrogenase (SDH), malic dehydrogenase (MDH) and Na+-K+-ATPase activity on d 28, and tended to reduce the lactic acid (LD) level of liver on d 35 (p = 0.06). L-carnitine supplementation significantly reduced serum uric acid (UA) content on d 28, 35 and 42. Based on the current results, it can be concluded that dietary L-carnitine supplementation reduced organ index, red blood cell counts and hematocrit, enhanced antioxidative capacity of the heart, enhanced liver enzymes activity involved in tricarboxylic acid cycle, and reduced serum glucose and triglyceride. Therefore, it is suggested that L-carnitine can potentially reduce susceptibility and mortality due to ascites. PMID:25049781

  3. Simulating tumor growth in confined heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Gevertz, Jana L.; Gillies, George T.; Torquato, Salvatore

    2008-09-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics.

  4. Simulating tumor growth in confined heterogeneous environments.

    PubMed

    Gevertz, Jana L; Gillies, George T; Torquato, Salvatore

    2008-01-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics. PMID:18824788

  5. ROLE OF CHEMOKINES IN TUMOR GROWTH

    PubMed Central

    Raman, Dayanidhi; Baugher, Paige J.; Thu, Yee Mon; Richmond, Ann

    2007-01-01

    Chemokines play a paramount role in the tumor progression. Chronic inflammation promotes tumor formation. Both tumor cells and stromal cells elaborate chemokines and cytokines. These act either by autocrine or paracrine mechanisms to sustain tumor cell growth, induce angiogenesis and facilitate evasion of immune surveillance through immunoediting. The chemokine receptor CXCR2 and its ligands promote tumor angiogenesis and leukocyte infiltration into the tumor microenvironment. In harsh acidic and hypoxic microenvironmental conditions tumor cells up-regulate their expression of CXCR4, which equips them to migrate up a gradient of CXCL12 elaborated by carcinoma associated fibroblasts (CAFs) to a normoxic microenvironment. The CXCL12-CXCR4 axis facilitates metastasis to distant organs and the CCL21-CCR7 chemokine ligand-receptor pair favors metastasis to lymph nodes. These two chemokine ligand-receptor systems are common key mediators of tumor cell metastasis for several malignancies and as such provide key targets for chemotherapy. In this paper, the role of specific chemokines/chemokine receptor interactions in tumor progression, growth and metastasis and the role of chemokine/chemokine receptor interactions in the stromal compartment as related to angiogenesis, metastasis, and immune response to the tumor are reviewed. PMID:17629396

  6. C57BL/6N Mice Are More Resistant to Ehrlich Ascites Tumors Than C57BL/6J Mice: The Role of Macrophage Nitric Oxide.

    PubMed

    Kalish, Sergey; Lyamina, Svetlana; Chausova, Svetlana; Kochetova, Lada; Malyshev, Yuri; Manukhina, Eugenia; Malyshev, Igor

    2015-01-01

    BACKGROUND Effectiveness of the immune defense formed by the genotype often determines the predisposition to cancer. Nitric oxide (NO) produced by macrophages is an important element in this defense. MATERIAL AND METHODS We hypothesized that genetic characteristics of NO generation systems can predetermine the vulnerability to tumor development. The study was conducted on mice of 2 genetic substrains - C57BL/6J and C57BL/6N - with Ehrlich ascites carcinoma (EAC). NO production in the tumor was changed using ITU, an iNOS inhibitor; c-PTIO, a NO scavenger; and SNP, a NO donor. Macrophage NO production was estimated by nitrite concentration in the culture medium. iNOS content was measured by Western blot analysis. Macrophage phenotype was determined by changes in NO production, iNOS level, and CD markers of the phenotype. RESULTS The lifespan of C57BL/6N mice (n=10) with EAC was 25% longer (p<0.01) than in C57BL/6J mice (n=10). Decreased NO production 23% reduced the survival duration of C57BL/6N mice (p<0.05), which were more resistant to tumors. Elevated NO production 26% increased the survival duration of C57BL/6J mice (p<0.05), which were more susceptible to EAC. Both the NO production and the iNOS level were 1.5 times higher in C57BL/6N than in C57BL/6J mice (p<0.01). CD markers confirmed that C57BL/6N macrophages had the M1 and C57BL/6J macrophages had the M2 phenotype. CONCLUSIONS The vulnerability to the tumor development can be predetermined by genetic characteristics of the NO generation system in macrophages. The important role of NO in anti-EAC immunity should be taken into account in elaboration of new antitumor therapies. PMID:26482575

  7. N-ω-chloroacetyl-L-ornithine has in-vitro activity against cancer cell lines and in-vivo activity against ascitic and solid tumors.

    PubMed

    Vargas-Ramírez, Alba L; Medina-Enríquez, Miriam M; Cordero-Rodríguez, Neira I; Ruiz-Cuello, Tatiana; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José G; Alcántara-Farfán, Verónica; Rodríguez-Páez, Lorena

    2016-07-01

    N-ω-chloroacetyl-L-ornithine (NCAO) is an ornithine decarboxylase (ODC) inhibitor that is known to exert cytotoxic and antiproliferative effects on three neoplastic human cancer cell lines (HeLa, MCF-7, and HepG2). Here, we show that NCAO has antiproliferative activity in 13 cancer cell lines, of diverse tissue origin from human and mice, and in a mouse cancer model in vivo. All cell lines were sensitive to NCAO after 72 h of treatment (the EC50 ranged from 1 to 50.6 µmol/l). The Ca Ski cell line was the most sensitive (EC50=1.18±0.07 µmol/l) and MDA-MB-231 was the least sensitive (EC50=50.6±0.3 µmol/l). This ODC inhibitor showed selectivity for cancer cells, exerting almost no cytotoxic effect on the normal Vero cell line (EC50>1000 µmol/l). NCAO induced apoptosis and inhibited tumor cell migration in vitro. Furthermore, in vivo, this compound (at 50 and 100 mg/kg, daily intraperitoneal injection for 7 days) exerted potent antitumor activity against both solid and ascitic tumors in a mouse model using the myeloma (Ag8) cell line. At these same two doses, the toxicological evaluation showed that NCAO has no obvious systemic toxicity. The current results suggest that the antitumor activity is exerted by apoptosis related not only to a local but also a systemic cytotoxic effect exerted by NCAO on tumor cells. The applications for NCAO as an antitumor agent may be extensive; however, further studies are needed to ascertain the antitumor activity on other types of tumor in vivo and to determine the precise molecular mechanism of its activity. PMID:26918391

  8. Pseudo-Meigs' syndrome caused by uterine smooth muscle tumor of uncertain malignant potential with low vascular endothelial growth factor expression.

    PubMed

    Huang, S E; Huang, S C; Lee, W Y; Hsu, K-F

    2008-01-01

    Smooth muscle tumor of uncertain malignant potential (STUMP) presenting as pseudo-Meigs' syndrome with low vascular endothelial growth factor (VEGF) expression has not been reported in previous literature. Here, we report a case of uterine STUMP associated with ascites and pleural effusion, which was resolved completely after hysterectomy. A 47-year-old woman presented to the clinic with a complaint of progressive abdominal distension for several months. A large movable, painless pelvic mass located upward above the umbilical level was palpated. Sonography and computed tomography showed a hypervascular solid pelvic mass measuring 20 x 17 x 15 cm in size associated with ascites and right pleural effusion. Laparotomy revealed a large uterine mass with ascites in the abdomen. Total hysterectomy and left-side salpingo-oophorectomy were performed. The final pathologic report revealed a STUMP tumor with low expression of VEGF by immunohistochemistry. A follow-up chest X-ray revealed that the pleural effusion was resolved completely 1 week postoperatively. The patient is doing well without recurrence in the following 2 years. Uterine STUMP tumor may cause pseudo-Meigs' syndrome. However, the ascites or the pleural effusion may not be induced by VEGF, known as vascular permeability factor, in our case. PMID:17944915

  9. Investigation of Combined Action of Food Supplement's and Ionizing Radiation on the Cytogenetic Damage Induction and Ehrlich Ascite Carcinoma Growth on Mice in Vivo

    NASA Astrophysics Data System (ADS)

    Sorokina, Svetlana; Zaichkina, Svetlana; Dyukina, Alsu; Rozanova, Olga; Balakin, Vladimir; Peleshko, Vladimir; Romanchenko, Sergey; Smirnova, Helena; Aptikaeva, Gella; Shemyakov, Alexander

    In recent ten years one of the major problems of modern radiobiology is the study of radiation protective mechanisms with the help of different substances as well as activation of internal resources of the organism. Internal resources mean such phenomena as hormesis and adaptive response which represent cell or body reaction on low doses of inducing factors and predetermine their further high dose effect resistance. At present special interest is attracted by studies of biological effects of low-dose-rate high-LET radiation because of searching for new types of radiation for more effective cancer therapy and searching for new methods of radiation protection. Since natural biologically active substances have low toxicity and are capable of affecting physiological processes taking place in human’s organism and increasing organism’s natural defense system, the interest to protective means of vegetal origin and search of special food supplements intensifies every year. The purpose of this study is to investigate the combined influence of food supplement, low dose rate high-LET radiation simulating high-altitude flight conditions and X-ray radiations on radiosensitivity, induction of radiation adaptive response (RAR) and growth of Ehrlich ascite carcinoma as well. Experiments were performed with males of SHK mice at the age of two months. The animals were being irradiated with low-dose-rate high-LET radiation with the dose of 11,6 cGy (0,5 cGy/day) behind the concrete shield of the 70 GeV protons accelerator (Protvino). The X-ray irradiation was carried out on the RTH device with a voltage of 200 kV (1 Gy/min; Pushchino). The diet composition included products containing big amount of biologically active substances, such as: soybeam meat, buckwheat, lettuce leaves and drug of cod-liver oil. Four groups of mice were fed with selected products mentioned above during the whole irradiation period of 22 days. The control groups received the same food without irradiation. The relation of the amount of the food supplement to the quantity of standard food was selected experimentally. In order to determine the level of radiosensitivity all groups of mice were subjected to X-radiation with the dose of 1,5 Gy and for induction of RAR the animals were irradiated according to the standard scheme (10 cGy+1,5 Gy). The influence of food supplement on the growth of solid tumor was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. The percent of polychromatic erythrocytes (PCE) with micronucleus (MN) in marrow served as definition criteria of cytogenetic level of damage. The results of the study indicate that: 1) Due to influence of high-LET radiation with the dose of 11,6 Gy, mice who had dietary supplement demonstrated reduction of PCE with MN to the level of natural background radiation comparing with mice who had only standard food; 2) Diet containing soybeam, buckwheat or greens unlike cod-liver oil reduces the sensitivity of mice to X-radiation with the dose of 1,5 Gy and causes significant slowdown in growth of Ehrlich carcinoma; 3) The combined effect of high-LET radiation and the food supplements (except for cod-liver oil) reduces the sensitivity of mice to irradiation with the dose of 1,5 Gy, which demonstrate ability of RAR induction unlike the mice only irradiated with high-LET radiation and causes the slowdown in growth speed of Ehrlich carcinoma in contrast to the mice only irradiated with high-LET with the dose of 11,6 Gy; 4) The combined effect of high-LET radiation and the food supplements (except for cod-liver oil) does not influence the quantity of RAR according to the standard scheme (10 cGy+1,5 Gy).

  10. Management of cirrhotic ascites

    PubMed Central

    Pedersen, Julie Steen; Bendtsen, Flemming

    2015-01-01

    The most common complication to chronic liver failure is ascites. The formation of ascites in the cirrhotic patient is caused by a complex chain of pathophysiological events involving portal hypertension and progressive vascular dysfunction. Since ascites formation represents a hallmark in the natural history of chronic liver failure it predicts a poor outcome with a 50% mortality rate within 3 years. Patients with ascites are at high risk of developing complications such as spontaneous bacterial peritonitis, hyponatremia and progressive renal impairment. Adequate management of cirrhotic ascites and its complications betters quality of life and increases survival. This paper summarizes the pathophysiology behind cirrhotic ascites and the diagnostic approaches, as well as outlining the current treatment options. Despite improved medical treatment of ascites, liver transplantation remains the ultimate treatment and early referral of the patient to a highly specialized hepatology unit should always be considered. PMID:25954497

  11. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  12. Microfilament association of ASGP-2, the concanavalin A-binding glycoprotein of the cell-surface sialomucin complex of 13762 rat mammary ascites tumor cells

    SciTech Connect

    Vanderpuye, L.A.; Carraway, C.A.C.; Carraway, K.L. )

    1988-10-01

    Microfilament-associated proteins and membrane-microfilament interactions are being investigated in microvilli isolated from 13762 rat mammary ascites tumor cells. Phalloidin shift analyses on velocity sedimentation gradients of Triton X-100 extracts of ({sup 3}H)-glucosamine-labeled microvilli identified a 120-kDa cell-surface glycoprotein associated with the microvillar microfilament core. The identification was verified by concanavalin A (Con A) blots of one- and two-dimensional (2D) electrophoresis gels of sedimented microfilament cores. By 2D-electrophoresis and lectin analyses the 120-kDa protein appeared to be a fraction of ASGP-2, the major Con A-binding glycoprotein of the sialomucin complex of the 13762 cells. This identity was confirmed by immunoblot analyses using immunoblot-purified anti-ASGP-2 from anti-membrane serum prepared against microvillar membranes. Proteolysis of the microvilli with subtilisin or trypsin resulted in an increase in the amount of ASGP-2 associated with the microfilament cores. Proteolysis of isolated microvillar membranes, which contain actin but not microfilaments, also increased the association of ASGP-2 with a Triton-insoluble, actin-containing membrane fraction. Since the Triton-insoluble membrane residue is enriched in actin-containing transmembrane complex, which contains a different glycoprotein, the authors suggest that the ASGP-2 is binding indirectly via this complex to the microfilament core in the intact microvilli.

  13. Blood porphyrin luminescence and tumor growth correlation

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Bellini, Maria Helena; Mansano, Ronaldo Domingues; Schor, Nestor; Vieira, Nilson Dias, Jr.

    2007-02-01

    Fluorescence technique appears very important for the diagnosis of cancer. Fluorescence detection has advantages over other light-based investigation methods: high sensitivity, high speed, and safety. Renal cell carcinoma (RCC) accounts for approximately 3% of new cancer incidence and mortality in the United States. Unfortunately many RCC masses remain asymptomatic and nonpalpable until they are advanced. Diagnosis and localization of early carcinoma play an important role in the prevention and curative treatment of RCC. Certain drugs or chemicals such as porphyrin derivatives accumulate substantially more in tumors than normal tissues. The autofluorescence of blood porphyrin of healthy and tumor induced male SCID mice was analyzed using fluorescence and excitation spectroscopy. A significant contrast between normal and tumor blood could be established. Blood porphyrin fluorophore showed enhanced fluorescence band (around 630 nm) in function of the tumor growth. This indicates that either the autofluorescence intensity of the blood fluorescence may provide a good parameter for the "first approximation" characterization of the tumor stage.

  14. Connective tissue growth factor in tumor pathogenesis

    PubMed Central

    2012-01-01

    Key roles for connective tissue growth factor (CTGF/CCN2) are demonstrated in the wound repair process where it promotes myofibroblast differentiation and angiogenesis. Similar mechanisms are active in tumor-reactive stroma where CTGF is expressed. Other potential roles include prevention of hypoxia-induced apoptosis and promoting epithelial-mesenchymal transistion (EMT). CTGF expression in tumors has been associated to both tumor suppression and progression. For example, CTGF expression in acute lymphoblastic leukemia, breast, pancreas and gastric cancer correlates to worse prognosis whereas the opposite is true for colorectal, lung and ovarian cancer. This discrepancy is not yet understood. High expression of CTGF is a hallmark of ileal carcinoids, which are well-differentiated endocrine carcinomas with serotonin production originating from the small intestine and proximal colon. These tumors maintain a high grade of differentiation and low proliferation. Despite this, they are malignant and most patients have metastatic disease at diagnosis. These tumors demonstrate several phenotypes potentially related to CTGF function namely: cell migration, absent tumor cell apoptosis, as well as, reactive and well vascularised myofibroblast rich stroma and fibrosis development locally and in distal organs. The presence of CTGF in other endocrine tumors indicates a role in the progression of well-differentiated tumors. PMID:23259759

  15. Resolution of Malignant Ascites and Stabilization of Metastases in a Patient With Small Bowel Neuroendocrine Tumor With 177Lu-DOTATATE Following Progression After 17 131I-MIBG Treatments and Chemotherapy.

    PubMed

    Makis, William; McCann, Karey; Buteau, Francois A; McEwan, Alexander J B

    2015-07-01

    A 39-year-old man diagnosed with a small bowel neuroendocrine tumor metastatic to the liver, lymph nodes, and bones achieved stable disease with ¹³¹I-MIBG therapy totalling 17 treatments over 9 years (cumulative dose of 1.9 Ci). His disease progressed after the 17th ¹³¹I-MIBG treatment, and he went on to fail chemotherapy, developing severe ascites requiring up to 8 L of weekly paracentesis. He was referred for ¹⁷⁷Lu-[DOTA⁰,Tyr³]octreotate (DOTATATE) therapy, and after 4 induction cycles, his ascites resolved completely, and his metastatic disease stabilized. ¹⁷⁷Lu-DOTATATE may be useful in patients with an extensive history of radioisotope therapy with ¹³¹I-MIBG. PMID:25546192

  16. Pancreatic ascites hemoglobin contributes to the systemic response in acute pancreatitis.

    PubMed

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-04-01

    Upon hemolysis extracellular hemoglobin causes oxidative stress and cytotoxicity due to its peroxidase activity. Extracellular hemoglobin may release free hemin, which increases vascular permeability, leukocyte recruitment, and adhesion molecule expression. Pancreatitis-associated ascitic fluid is reddish and may contain extracellular hemoglobin. Our aim has been to determine the role of extracellular hemoglobin in the local and systemic inflammatory response during severe acute pancreatitis in rats. To this end we studied taurocholate-induced necrotizing pancreatitis in rats. First, extracellular hemoglobin in ascites and plasma was quantified and the hemolytic action of ascitic fluid was tested. Second, we assessed whether peritoneal lavage prevented the increase in extracellular hemoglobin in plasma during pancreatitis. Third, hemoglobin was purified from rat erythrocytes and administered intraperitoneally to assess the local and systemic effects of ascitic-associated extracellular hemoglobin during acute pancreatitis. Extracellular hemoglobin and hemin levels markedly increased in ascitic fluid and plasma during necrotizing pancreatitis. Peroxidase activity was very high in ascites. The peritoneal lavage abrogated the increase in extracellular hemoglobin in plasma. The administration of extracellular hemoglobin enhanced ascites; dramatically increased abdominal fat necrosis; upregulated tumor necrosis factor-α, interleukin-1β, and interleukin-6 gene expression; and decreased expression of interleukin-10 in abdominal adipose tissue during pancreatitis. Extracellular hemoglobin enhanced the gene expression and protein levels of vascular endothelial growth factor (VEGF) and other hypoxia-inducible factor-related genes in the lung. Extracellular hemoglobin also increased myeloperoxidase activity in the lung. In conclusion, extracellular hemoglobin contributes to the inflammatory response in severe acute pancreatitis through abdominal fat necrosis and inflammation and by increasing VEGF and leukocyte infiltration into the lung. PMID:25157787

  17. A tumor growth model with deformable ECM

    PubMed Central

    Sciumè, G; Santagiuliana, R; Ferrari, M; Decuzzi, P; Schrefler, B A

    2015-01-01

    Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution. PMID:25427284

  18. A tumor growth model with deformable ECM

    NASA Astrophysics Data System (ADS)

    Sciumè, G.; Santagiuliana, R.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A.

    2014-12-01

    Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution.

  19. [Non-cirrhotic ascites: pathophysiology, diagnosis and etiology].

    PubMed

    Carrier, P; Jacques, J; Debette-Gratien, M; Legros, R; Sarabi, M; Vidal, E; Sautereau, D; Bezanahary, H; Ly, K H; Loustaud-Ratti, V

    2014-06-01

    Ascites, in 20% of cases, is not linked to liver cirrhosis. The pathophysiology is most often different. The understanding of these pathophysiological mechanisms can lead to etiologic diagnosis. The diagnostic approach is mainly based on the biological study of ascites, especially protein concentration and albumin gradient between serum and ascites. In Western countries, tumors and heart diseases are the predominant causes, while developing countries are mainly concerned by infectious diseases, among which tuberculosis is the leading cause. Other uncommon causes must be recognized, as ascites may be the presenting feature of the disease. Their knowledge will facilitate the therapeutic approach. PMID:24406314

  20. Dual effects of indoleamine 2,3-dioxygenase inhibitors on the therapeutic effects of cyclophosphamide and cycloplatam on Ehrlich ascites tumor in mice.

    PubMed

    Bogdanova, L A; Morozkova, T S; Amitina, S A; Mazhukin, D G; Nikolin, V P; Popova, N A; Kaledin, V I

    2014-08-01

    Ethyl pyruvate, an inhibitor of indoleamine 2,3-dioxygenase, slightly suppressed the growth of transplantable Ehrlich tumor in mice and significantly potentiated the therapeutic effect of cyclophosphamide. Another inhibitor amidoxime produced a similar effect. However, both ethyl pyruvate and amidoxime significantly reduced the effect of cycloplatam therapy. The observed changes can be stipulated by different effects of cyclophosphamide and cycloplatam on the subpopulations of lymphoid cells taking part in the formation of antitumor immunity and resistance to tumors. PMID:25110094

  1. Ascites syndrome in broilers: physiological and nutritional perspectives.

    PubMed

    Baghbanzadeh, A; Decuypere, E

    2008-04-01

    Broiler chickens are intensively selected for productive traits. The management of these highly productive animals must be optimal to allow their full genetic potential to be expressed. If this is not done, inefficient production and several metabolic diseases such as ascites become apparent. The causes of the ascites are multifactorial but diet and, particularly, interactions between diet, other environmental and genetic factors play an important role. The relatively high heritability estimates for ascites-related traits and the significance of maternal genetic effects for most of the traits indicate that direct and maternal genetic effects play an important role in development of the ascites syndrome. An imbalance between oxygen supply and the oxygen required to sustain rapid growth rates and high food efficiencies causes ascites in broiler chickens. Because of the relationship to oxygen demand, ascites is affected and/or precipitated by factors such as growth rate, altitude (hypoxia) and environmental temperature. As the high metabolic rate (fast growth) is a major factor contributing to the susceptibility of broilers to ascites, early-age feed or nutrient restriction (qualitative or quantitative) or light restriction in order to slow down the growth rate seem practically viable methods, since final body weight is not compromised. Manipulation of the diet composition and/or feed allocation system can have a major effect on the incidence of ascites. Optimization of the house temperature and ventilation in cold weather seem helpful practices to decrease ascites incidence. PMID:18393088

  2. Stochastic model for tumor growth with immunization

    NASA Astrophysics Data System (ADS)

    Bose, Thomas; Trimper, Steffen

    2009-05-01

    We analyze a stochastic model for tumor cell growth with both multiplicative and additive colored noises as well as nonzero cross correlations in between. Whereas the death rate within the logistic model is altered by a deterministic term characterizing immunization, the birth rate is assumed to be stochastically changed due to biological motivated growth processes leading to a multiplicative internal noise. Moreover, the system is subjected to an external additive noise which mimics the influence of the environment of the tumor. The stationary probability distribution Ps is derived depending on the finite correlation time, the immunization rate, and the strength of the cross correlation. Ps offers a maximum which becomes more pronounced for increasing immunization rate. The mean-first-passage time is also calculated in order to find out under which conditions the tumor can suffer extinction. Its characteristics are again controlled by the degree of immunization and the strength of the cross correlation. The behavior observed can be interpreted in terms of a biological model of tumor evolution.

  3. A comparison and catalog of intrinsic tumor growth models.

    PubMed

    Sarapata, E A; de Pillis, L G

    2014-08-01

    Determining the mathematical dynamics and associated parameter values that should be used to accurately reflect tumor growth continues to be of interest to mathematical modelers, experimentalists and practitioners. However, while there are several competing canonical tumor growth models that are often implemented, how to determine which of the models should be used for which tumor types remains an open question. In this work, we determine the best fit growth dynamics and associated parameter ranges for ten different tumor types by fitting growth functions to at least five sets of published experimental growth data per type of tumor. These time-series tumor growth data are used to determine which of the five most common tumor growth models (exponential, power law, logistic, Gompertz, or von Bertalanffy) provides the best fit for each type of tumor. PMID:25081547

  4. Prophylactic action of lipoic acid on oxidative stress and growth performance in broilers at risk of developing ascites syndrome.

    PubMed

    Díaz-Cruz, Antonio; Serret, Maurilio; Ramírez, Guadalupe; Avila, Ernesto; Guinzberg, Raquel; Piña, Enrique

    2003-12-01

    The objective of this study was to assess the effects of dietary supplementation with lipoic acid (LA) on broilers maintained at 2235 m above sea level with high risk to develop ascites syndrome (AS). A total of 2040 chicks were fed under commercial conditions with water and specific diets ad libitum during 7 weeks in two consecutive experiments. Mortality and indicators of performance and oxidative stress were compared weekly in broilers fed a basal diet plus 0, 10, 20, or 40 parts/10(6) LA. The effects of LA at 40 parts/10(6) were also studied during the initial 3 weeks or the last 4 weeks of the production cycle. Diets supplemented with 40 parts/10(6) of LA during 7 weeks significantly improved feed conversion, decreased general mortality and mortality attributable to AS, and lowered thiobarbituric acid reactive substances and hydroxyl radicals in liver, and increased total glutathione pool. Smaller doses or shorter periods of exposure to LA were partially effective. In conclusion, LA under our experimental conditions has a prophylactic action in broilers with high risk to develop AS due to oxygen availability limitation. PMID:14676017

  5. TUSC1, a putative tumor suppressor gene, reduces tumor cell growth in vitro and tumor growth in vivo.

    PubMed

    Shan, Zhihong; Shakoori, Abbas; Bodaghi, Sohrab; Goldsmith, Paul; Jin, Jen; Wiest, Jonathan S

    2013-01-01

    We previously reported the identification of TUSC1 (Tumor Suppressor Candidate 1), as a novel intronless gene isolated from a region of homozygous deletion at D9S126 on chromosome 9p in human lung cancer. In this study, we examine the differential expression of TUSC1 in human lung cancer cell lines by western blot and in a primary human lung cancer tissue microarray by immunohistochemical analysis. We also tested the functional activities and mechanisms of TUSC1 as a tumor suppressor gene through growth suppression in vitro and in vivo. The results showed no expression of TUSC1 in TUSC1 homozygously deleted cells and diminished expression in some tumor cell lines without TUSC1 deletion. Interestingly, the results from a primary human lung cancer tissue microarray suggested that higher expression of TUSC1 was correlated with increased survival times for lung cancer patients. Our data demonstrated that growth curves of tumor cell lines transfected with TUSC1 grew slower in vitro than those transfected with the empty vector. More importantly, xenograph tumors in nude mice grew significantly slower in vivo in cells stably transfected with TUSC1 than those transfected with empty vector. In addition, results from confocal microscopy and immunohistochemical analyses show distribution of TUSC1 in the cytoplasm and nucleus in tumor cell lines and in normal and tumor cells in the lung cancer tissue microarray. Taken together, our results support TUSC1 has tumor suppressor activity as a candidate tumor suppressor gene located on chromosome 9p. PMID:23776618

  6. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  7. Pancreatic cancers require autophagy for tumor growth

    PubMed Central

    Yang, Shenghong; Wang, Xiaoxu; Contino, Gianmarco; Liesa, Marc; Sahin, Ergun; Ying, Haoqiang; Bause, Alexandra; Li, Yinghua; Stommel, Jayne M.; Dell'Antonio, Giacomo; Mautner, Josef; Tonon, Giovanni; Haigis, Marcia; Shirihai, Orian S.; Doglioni, Claudio; Bardeesy, Nabeel; Kimmelman, Alec C.

    2011-01-01

    Macroautophagy (autophagy) is a regulated catabolic pathway to degrade cellular organelles and macromolecules. The role of autophagy in cancer is complex and may differ depending on tumor type or context. Here we show that pancreatic cancers have a distinct dependence on autophagy. Pancreatic cancer primary tumors and cell lines show elevated autophagy under basal conditions. Genetic or pharmacologic inhibition of autophagy leads to increased reactive oxygen species, elevated DNA damage, and a metabolic defect leading to decreased mitochondrial oxidative phosphorylation. Together, these ultimately result in significant growth suppression of pancreatic cancer cells in vitro. Most importantly, inhibition of autophagy by genetic means or chloroquine treatment leads to robust tumor regression and prolonged survival in pancreatic cancer xenografts and genetic mouse models. These results suggest that, unlike in other cancers where autophagy inhibition may synergize with chemotherapy or targeted agents by preventing the up-regulation of autophagy as a reactive survival mechanism, autophagy is actually required for tumorigenic growth of pancreatic cancers de novo, and drugs that inactivate this process may have a unique clinical utility in treating pancreatic cancers and other malignancies with a similar dependence on autophagy. As chloroquine and its derivatives are potent inhibitors of autophagy and have been used safely in human patients for decades for a variety of purposes, these results are immediately translatable to the treatment of pancreatic cancer patients, and provide a much needed, novel vantage point of attack. PMID:21406549

  8. [Treatment of refractory ascites].

    PubMed

    Martnez, Javier; Albillos, Agustn

    2014-07-01

    Ascites is a common complication of hepatic cirrhosis and portal hypertension. Patients present systemic and splanchnic circulation disorders, which cause central hypovolemia and arterial hypotension, with the subsequent activation of vasoconstrictor systems and increased renal reabsorption of sodium and water. Approximately 5%-10% of patients present refractory ascites. Refractory ascites is considered when it is not controllable with standard dietary (sodium restriction) and diuretic (furosemide up to 160 mg a day and spironolactone up to 400mg a day) treatment or when patients present adverse effects due to diuretics that impede their administration at optimum dosages. The current therapeutic options for these patients are repeated evacuative paracentesis and the percutaneous intrahepatic portosystemic shunt. Despite these treatments, refractory ascites has a poor prognosis; patients should therefore be assessed for liver transplantation. PMID:25087715

  9. [An unusual ascites...].

    PubMed

    Miéville, A; Maillard Dewarrat, G; Bauer, J

    2011-05-25

    The finding of an ascites in in- or out-patients in inner medicine is relatively frequent. However, the differential diagnosis sometimes extends in rarer pathologies which need rapid investigations to begin a treatment and improve the patient's prognosis. We present the case of a 50-year-old patient with a progressive ascites in the context of a peritoneal carcinosis due to a malignant peritoneal mesothelioma. PMID:21614766

  10. Effects of intratumoral injection of I-125 iododeoxyuridine on Ehrlich ascites carcinoma

    SciTech Connect

    Hong, S.S.; Ford, E.H.; Alfieri, A.A.; Bravo, S. )

    1989-11-01

    Intratumoral injection of I-125 iododeoxyuridine (IUdR), saline solution, and oil suspension was investigated using Ehrlich ascites tumors in the thighs of mice. The oil suspension was more effective in tumor growth delay than was the saline solution. Single injection of the oil suspension at the dose of 12.5 microCi resulted in 21.5 days growth delay, whereas 50 microCi of the saline solution resulted in 11.5 days growth delay relative to control growth delay. At 40 days after treatment, higher radioactivities were observed in the tumor and the skin of the mice treated with the oil suspension, which represented the prolongation of I-125 IUdR oil suspension within the tumor. No normal tissue toxicities were observed.

  11. The early antitumor immune response is necessary for tumor growth

    PubMed Central

    Parmiani, Giorgio; Maccalli, Cristina

    2012-01-01

    Early events responsible of tumor growth in patients with a normal immune system are poorly understood. Here, we discuss, in the context of human melanoma, the Prehn hypothesis according to which a weak antitumor immune response may be required for tumor growth before weakly or non-immunogenic tumor cell subpopulations are selected by the immune system. PMID:23162761

  12. Resorbing bone stimulates tumor cell growth. A role for the host microenvironment in bone metastasis.

    PubMed

    Manishen, W J; Sivananthan, K; Orr, F W

    1986-04-01

    Demineralized extracts of bone matrix and conditioned media from cultured fetal rat calvaria have been reported to contain growth stimulatory activity for bone cells. To investigate the potential role of these local bone growth factors in the development of bone metastases, we chose the Walker 256 carcinosarcoma, a rat mammary tumor which causes osteolytic bone metastases and hypercalcemia. 45Ca-labeled, 19-day fetal Sprague-Dawley rat calvaria were cultured for 96 hours in BGJb medium. Walker cells from ascites tumors or cultures were grown in unconditioned media or in conditioned media harvested from the bone cultures, in the presence of 10% fetal calf serum. Media were changed every 2 days, cells were counted daily for 5 days, and 3H-thymidine uptake into acid insoluble residues was measured. The growth of tumor cells was 5-6-fold greater in conditioned media than in unconditioned media and the effect was dose dependent. Cells cultured in conditioned media demonstrated a approximately 3-fold enhancement of 3H-thymidine incorporation. Generation of growth stimulatory activity correlated with the extent of bone resorption, measured by release of 45Ca from the fetal parietal bones (r = 0.85; P less than 0.001). Conditioned media from bones cultured with 10(-7) M prostaglandin E2 (PGE2) contained greater amounts of growth stimulatory activity than untreated conditioned media, but PGE2 itself did not stimulate tumor cell growth. Addition of 3.5 mM PO4 to bone cultures blocked bone resorption and the generation of growth factors. Growth stimulatory activity was stable to heat (56 C for 30 minutes) and trypsin digestion, with an apparent molecular weight of less than 17,000 daltons by high-performance liquid chromatography. Conditioned medium also stimulated the growth of 13762 rat mammary adenocarcinoma cells, MB-MDA-231 human breast carcinoma cells, TE-85 osteosarcoma cells, a murine fibrosarcoma and rat embryonic fibroblasts, with the most potent effects noted for Walker tumor cells, the TE-85 osteosarcoma, and human breast carcinoma lines. These results suggest a mechanism by which bone resorption could promote the development of skeletal metastasis. PMID:3457536

  13. Study on the therapeutic effects of low-energy laser therapy combined with cyclophosphamide on the mouse ascites sarcoma

    NASA Astrophysics Data System (ADS)

    Wang, Hongbin; Huang, Baoxu; Liu, Huanqi; Qu, Zhina; Liu, Xifeng; Cheng, Shaohui

    2004-07-01

    By using the experimental model of mouse S180 ascites sarcoma, the feasibility and mechanism of low-energy laser therapy combined with the traditional antitumor drug of cyclophosphamide in the treatment of malignant tumors were discussed. The S180 ascites sarcoma suffering BALB/c mice were irradiated upon the Harder's glands with the dosages of 11.00, 14.67 and 22.00 J/cm2 respectively, and/or injected with CYT intraperitoneally to evaluate the therapeutic effects of CYT/LELT combination on malignant tumors. The three dosages of LELT combined with CYT all showed remarkably therapeutic effects on the mouse S180 ascites sarcoma. Comparatively, the dosage of 14.67J/cm2 LELT combined with CYT showed the most ideal therapeutic effects and the survival time was up to 20.80 days, and the life prolongation ratio was 33.33% which was remarkably higher than those of the CYT and tumor control groups. CYT/LELT combined therapy had remarkably inhibiting effects on the mice ascites growth because of the existence of CYT.

  14. Cellular Potts Modeling of Tumor Growth, Tumor Invasion, and Tumor Evolution

    PubMed Central

    Szabó, András; Merks, Roeland M. H.

    2013-01-01

    Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy or diseased cells, for example by becoming more motile, adhesive, or multiplying faster. Thus, the cellular phenotype determines the success of a cancer cell in competition with its neighbors, irrespective of the genetic mutations or physiological alterations that gave rise to the altered phenotype. What phenotypes can make a cell “successful” in an environment of healthy and cancerous cells, and how? A widely used tool for getting more insight into that question is cell-based modeling. Cell-based models constitute a class of computational, agent-based models that mimic biophysical and molecular interactions between cells. One of the most widely used cell-based modeling formalisms is the cellular Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM has become a popular and accessible method for modeling mechanisms of multicellular processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for biophysical cellular properties, including cell proliferation, cell motility, and cell adhesion, which play a key role in cancer. Multiscale models are constructed by extending the agents with intracellular processes including metabolism, growth, and signaling. Here we review the use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained and computationally efficient representation of cell and tissue biophysics, make the CPM the method of choice for modeling cellular processes in tumor development. PMID:23596570

  15. Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution.

    PubMed

    Szabó, András; Merks, Roeland M H

    2013-01-01

    Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy or diseased cells, for example by becoming more motile, adhesive, or multiplying faster. Thus, the cellular phenotype determines the success of a cancer cell in competition with its neighbors, irrespective of the genetic mutations or physiological alterations that gave rise to the altered phenotype. What phenotypes can make a cell "successful" in an environment of healthy and cancerous cells, and how? A widely used tool for getting more insight into that question is cell-based modeling. Cell-based models constitute a class of computational, agent-based models that mimic biophysical and molecular interactions between cells. One of the most widely used cell-based modeling formalisms is the cellular Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM has become a popular and accessible method for modeling mechanisms of multicellular processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for biophysical cellular properties, including cell proliferation, cell motility, and cell adhesion, which play a key role in cancer. Multiscale models are constructed by extending the agents with intracellular processes including metabolism, growth, and signaling. Here we review the use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained and computationally efficient representation of cell and tissue biophysics, make the CPM the method of choice for modeling cellular processes in tumor development. PMID:23596570

  16. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization.

    PubMed

    Small, Donna M; Burden, Roberta E; Jaworski, Jakub; Hegarty, Shauna M; Spence, Shaun; Burrows, James F; McFarlane, Cheryl; Kissenpfennig, Adrien; McCarthy, Helen O; Johnston, James A; Walker, Brian; Scott, Christopher J

    2013-11-01

    Recent murine studies have demonstrated that tumor-associated macrophages in the tumor microenvironment are a key source of the pro-tumorigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumor and tumor-associated cells contribute cathepsin S to promote neovascularization and tumor growth. Cathepsin S depleted and control colorectal MC38 tumor cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumor, tumor-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumor growth and development, and revealed a clear contribution of both tumor and tumor-associated cell derived cathepsin S. The most significant impact on tumor development was obtained when the protease was depleted from both sources. Further characterization revealed that the loss of cathepsin S led to impaired tumor vascularization, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumor growth. Analysis of cell types showed that in addition to the tumor cells, tumor-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumor-associated cells can positively contribute to developing tumors and highlight cathepsin S as a therapeutic target in cancer. PMID:23629809

  17. Mathematical Modeling of Tumor Cell Growth and Immune System Interactions

    NASA Astrophysics Data System (ADS)

    Rihan, Fathalla A.; Safan, Muntaser; Abdeen, Mohamed A.; Abdel-Rahman, Duaa H.

    In this paper, we provide a family of ordinary and delay differential equations to describe the dynamics of tumor-growth and immunotherapy interactions. We explore the effects of adoptive cellular immunotherapy on the model and describe under what circumstances the tumor can be eliminated. The possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate of influx of the effector cells, and the rate of influx of IL2. The critical tumor-growth rate, below which endemic tumor does not exist, has been found. One can use the model to make predictions about tumor-dormancy.

  18. The Role of Complement in Tumor Growth

    PubMed Central

    Pio, Ruben; Corrales, Leticia; Lambris, John D.

    2015-01-01

    Complement is a central part of the immune system that has developed as a first defense against non-self cells. Neoplastic transformation is accompanied by an increased capacity of the malignant cells to activate complement. In fact, clinical data demonstrate complement activation in cancer patients. On the basis of the use of protective mechanisms by malignant cells, complement activation has traditionally been considered part of the body's immunosurveillance against cancer. Inhibitory mechanisms of complement activation allow cancer cells to escape from complement-mediated elimination and hamper the clinical efficacy of monoclonal antibody–based cancer immunotherapies. To overcome this limitation, many strategies have been developed with the goal of improving complement-mediated effector mechanisms. However, significant work in recent years has identified new and surprising roles for complement activation within the tumor microenvironment. Recent reports suggest that complement elements can promote tumor growth in the context of chronic inflammation. This chapter reviews the data describing the role of complement activation in cancer immunity, which offers insights that may aid the development of more effective therapeutic approaches to control cancer. PMID:24272362

  19. Evaluation and treatment of malignant ascites secondary to gastric cancer

    PubMed Central

    Maeda, Hiromichi; Kobayashi, Michiya; Sakamoto, Junichi

    2015-01-01

    Malignant ascites affects approximately 10% of patients with gastric cancer (GC), and poses significant difficulties for both patients and clinicians. In addition to the dismal general condition of affected patients and the diversity of associated complications such as jaundice and ileus, problems in assessing scattered tumors have hampered the expansion of clinical trials for this condition. However, the accumulation of reported studies is starting to indicate that the weak response to treatment in GC patients with malignant ascites is more relevant to their poor prognosis rather than to the ascites volume at diagnosis. Therefore, precise assessment of initial state of ascites, repetitive evaluation of treatment efficacy, selection of suitable treatment, and swift transition to other treatment options as needed are paramount to maximizing patient benefit. Accurately determining ascites volume is the crucial first step in clinically treating a patient with malignant ascites. Ultrasonography is commonly used to identify the existence of ascites, and several methods have been proposed to estimate ascites volume. Reportedly, the sum of the depth of ascites at five points (named “five-point method”) on three panels of computed tomography images is well correlated to the actual ascites volume and/or abdominal girth. This method is already suited to repetitive assessment due to its convenience compared to the conventional volume rendering method. Meanwhile, a new concept, “Clinical Benefit Response in GC (CBR-GC)”, was recently introduced to measure the efficacy of chemotherapy for malignant ascites of GC. CBR-GC is a simple and reliable patient-oriented evaluation system based on changes in performance status and ascites, and is expected to become an important clinical endpoint in future clinical trials. The principal of treatment for GC patients with ascites is palliation and prevention of ascites-related symptoms. The treatment options are various, including a standard treatment based on the available guidelines, cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC), laparoscopic HIPEC alone, intravenous chemotherapy, intraperitoneal chemotherapy, and molecular targeting therapy. Although each treatment option is valid, further research is imperative to establish the optimal choice for each patient. PMID:26494952

  20. A new ODE tumor growth modeling based on tumor population dynamics

    NASA Astrophysics Data System (ADS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  1. Caloric restriction reduces growth of mammary tumors and metastases

    PubMed Central

    De Lorenzo, Mariana S.; Baljinnyam, Erdene; Vatner, Dorothy E.; Abarza, Patricio; Vatner, Stephen F.; Rabson, Arnold B.

    2011-01-01

    We investigated the effects of caloric restriction (CR) on growth of tumors and metastases in the 4T1 mammary tumor model and found that CR, compared with normal diet, reduced the growth of mammary tumors and metastases and the total number of metastases that originated both spontaneously from the primary tumor and also experimentally from i.v. injection of the tumor cells. CR also decreased proliferation and angiogenesis and increased apoptosis in tumors. CR reduced levels of insulin, leptin, insulin-like growth factor 1, insulin-like growth factor binding protein 3 and increased adiponectin in tumors. We also demonstrated that tumors from CR mice possessed lower levels of transforming growth factor-?, lower intratumor deposition of collagen IV and reduced invasiveness due to a decrease in tumor secretion of active matrix metalloproteinase 9. Our results suggest that CR-induced metabolic and signaling changes affect the stroma and the tumor cells resulting in a microenvironment that prevents proliferation of breast tumors and their metastases. PMID:21665891

  2. A cellular automaton model for tumor growth in heterogeneous environment

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Torquato, Sal

    2011-03-01

    Cancer is not a single disease: it exhibits heterogeneity on different spatial and temporal scales and strongly interacts with its host environment. Most mathematical modeling of malignant tumor growth has assumed a homogeneous host environment. We have developed a cellular automaton model for tumor growth that explicitly incorporates the structural heterogeneity of the host environment such as tumor stroma. We show that these structural heterogeneities have non-trivial effects on the tumor growth dynamics and prognosis. Y. J. is supported by PSOC, NCI.

  3. Translocator Receptor Blockade Reduces Prostate Tumor Growth

    PubMed Central

    Fafalios, Arlee; Akhavan, Ardavan; Parwani, Anil V.; Bies, Robert R.; McHugh, Kevin J.; Pflug, Beth R.

    2009-01-01

    Statement of Translational Relevance Although benzodiazepines have been used clinically for over 50 years, their application as a form of cancer therapy is largely unexplored. Here we show that lorazepam, a benzodiazepine commonly prescribed to treat anxiety disorders and acts on both central and peripheral receptors, inhibits prostate cancer cell growth and survival. Our studies further elucidate the mechanism by which Translocator Protein (TSPO) antagonists alter cancer cell function. Antagonists for TSPO are already used in the clinic for other indications and demonstrate very minor side effects. Because lorazepam is a commonly prescribed FDA-approved drug, the translation of our preclinical results to the prostate cancer patient population could be readily achieved. Our studies could lead to a significant change in the management of prostate cancer by providing a treatment option with minimal toxicity for use after failure of androgen-deprivation therapy and could ultimately prevent prostate cancer deaths. Purpose The transmembrane molecule, Translocator Protein (TSPO) has been implicated in the progression of epithelial tumors. TSPO gene expression is high in tissues involved in steroid biosynthesis, neurodegenerative disease and in cancer and overexpression has been shown to contribute to pathologic conditions including cancer progression in several different models. The goal of our study was to examine the expression and biological relevance of TSPO in prostate cancer and demonstrate that the commonly prescribed benzodiazepine lorazepam, a ligand for TSPO, exhibits anti-cancer properties. Experimental Design Immunohistochemical analysis using tissue microarrays was used to determine the expression profile of TSPO in human prostate cancer tissues. To demonstrate the effect of benzodiazepines (lorazepam and PK11195) in prostate cancer, we utilized cell proliferation assays, apoptosis ELISA, prostate cancer xenograft study, and immunohistochemistry. Results TSPO expression is increased in prostatic intraepithelial neoplasia, primary prostate cancer, and metastases compared to normal prostate tissue and benign prostatic hyperplasia. Furthermore, TSPO expression correlates with disease progression, as TSPO levels increased with increasing Gleason sum and stage with prostate cancer metastases demonstrating the highest level of expression among all tissues examined. Functionally, we have demonstrated that lorazepam has anti-proliferative and pro-apoptotic properties in vitro and in vivo. Additionally, we have shown that TSPO overexpression in nontumorigenic cells conferred susceptibility to lorazepam-induced growth inhibition. Conclusion These data suggest that blocking TSPO function in tumor cells induces cell death and denotes a survival role for TSPO in prostate cancer and provide the first evidence for the use of benzodiazepines in prostate cancer therapeutics. PMID:19789311

  4. Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth

    PubMed Central

    Nuccitelli, Richard; Berridge, Jon Casey; Mallon, Zachary; Kreis, Mark; Athos, Brian; Nuccitelli, Pamela

    2015-01-01

    We have used both a rat orthotopic hepatocellular carcinoma model and a mouse allograft tumor model to study liver tumor ablation with nanosecond pulsed electric fields (nsPEF). We confirm that nsPEF treatment triggers apoptosis in rat liver tumor cells as indicated by the appearance of cleaved caspase 3 and 9 within two hours after treatment. Furthermore we provide evidence that nsPEF treatment leads to the translocation of calreticulin (CRT) to the cell surface which is considered a damage-associated molecular pattern indicative of immunogenic cell death. We provide direct evidence that nanoelectroablation triggers a CD8-dependent inhibition of secondary tumor growth by comparing the growth rate of secondary orthotopic liver tumors in nsPEF-treated rats with that in nsPEF-treated rats depleted of CD8+ cytotoxic T-cells. The growth of these secondary tumors was severely inhibited as compared to tumor growth in CD8-depleated rats, with their average size only 3% of the primary tumor size after the same one-week growth period. In contrast, when we depleted CD8+ T-cells the second tumor grew more robustly, reaching 54% of the size of the first tumor. In addition, we demonstrate with immunohistochemistry that CD8+ T-cells are highly enriched in the secondary tumors exhibiting slow growth. We also showed that vaccinating mice with nsPEF-treated isogenic tumor cells stimulates an immune response that inhibits the growth of secondary tumors in a CD8+-dependent manner. We conclude that nanoelectroablation triggers the production of CD8+ cytotoxic T-cells resulting in the inhibition of secondary tumor growth. PMID:26231031

  5. Tumor growth modeling based on cell and tumor lifespans.

    PubMed

    Keinj, R; Bastogne, T; Vallois, P

    2012-11-01

    This paper deals with the lifespan modeling of heterogenous tumors treated by radiotherapy. A bi-scale model describing the cell and tumor lifespans by random variables is proposed. First- and second-order moments as well as the cumulative distribution functions and confidence intervals are expressed for the two lifespans with respect to the model parameters. One interesting result is that the mean value of the tumor lifespan can be approached by a logarithmic function of the initial cancer cell number. Moreover, we show that TCP and NTCP, used in radiotherapy to evaluate, optimize and compare treatment plans, can be derived from the tumor lifespan and the surrounding healthy tissue, respectively. Finally, we propose a ROC curve, entitled ECT (Efficiency-Complication Trade-off), suited to the selection by clinicians of the appropriate treatment planning. PMID:22820494

  6. Evaluation of growth rate, body weight, heart rate, and blood parameters as potential indicators for selection against susceptibility to the ascites syndrome in young broilers.

    PubMed

    Druyan, S; Shlosberg, A; Cahaner, A

    2007-04-01

    The continuous selection for rapid growth has been accompanied by an increasing occurrence of ascites syndrome (AS), which develops in broilers failing to supply the increasing demand for O(2) in their bodies. Moderate heritability has been reported for AS in broiler populations, suggesting that selection against AS is feasible. However, direct selection based on AS mortality requires exposure of candidate birds to AS-inducing conditions (AIC), which hinder selection for performance traits. Noninvasive indicators of AS, expressed under standard husbandry, may facilitate the integration of selection against AS into breeding programs. This study was designed to look for differences in heart rate, hematocrit, O(2) saturation of hemoglobin in arterial blood (SaO(2)), BW, and weight gain, all measured at early ages under standard brooding conditions, between birds that later developed AS and those that remained healthy under AIC, and to estimate the heritability of these AS-related parameters and their genetic correlation with the tendency of broilers to develop AS. The experimental population was derived from a broiler dam line. Male progeny of 34 half-sib sire families were reared under standard brooding conditions to 19 d of age, then under an AIC protocol consisting of housing in individual cages, cool air high-speed ventilation, and growth enhancement using high-energy pelleted feed and 23 h/d of light. Birds were necropsied upon mortality or at the end of the trials and were recorded as being susceptible, with manifestations of AS (SUS), or resistant and healthy (RES). About 44% developed AS, confirming the efficacy of the novel AIC protocol. The SUS and RES chicks did not differ in BW and weight gain up to 19 d of age, suggesting that there was no association between AS susceptibility and rapid early growth. The SUS chicks exhibited lower SaO(2) and heart rate than the RES chicks. Moderate heritability was estimated for all traits, but only SaO(2) exhibited consistently significant genetic correlation (-0.5) with AS, suggesting that it may serve as an early indicator for selection against AS, albeit with a limited efficacy. PMID:17369531

  7. IRP2 regulates breast tumor growth

    PubMed Central

    Wang, Wei; Deng, Zhiyong; Hatcher, Heather; Miller, Lance D.; Di, Xiumin; Tesfay, Lia; Sui, Guangchao; D'Agostino, Ralph B.; Torti, Frank M.; Torti, Suzy V.

    2014-01-01

    Experimental and epidemiological evidence suggest that dysregulation of proteins involved in iron metabolism plays a critical role in cancer. The mechanisms by which cancer cells alter homeostatic iron regulation are just beginning to be understood. Here we demonstrate that iron regulatory protein 2 (IRP2) plays a key role in iron accumulation in breast cancer. Although both IRP1 and IRP2 are over-expressed in breast cancer, the overexpression of IRP2, but not IRP1, is associated with decreased ferritin H and increased transferrin receptor 1 (TfR1). Knock-down of IRP2 in triple negative MDA-MB-231 human breast cancer cells increases ferritin H expression and decreases TfR1 expression, resulting in a decrease in the labile iron pool. Further, IRP2 knockdown reduces growth of MDA-MB-231 cells in the mouse mammary fat pad. Gene expression microarray profiles of breast cancer patients demonstrate that increased IRP2 expression is associated with high grade cancer. Increased IRP2 expression is observed in luminal A, luminal B and basal breast cancer subtypes, but not in breast tumors of the ERBB2 molecular subtype. These results suggest that dysregulation of IRP2 is an early nodal point underlying altered iron metabolism in breast cancer and may contribute to poor outcome of some breast cancer patients. PMID:24285726

  8. Endothelial cell-derived interleukin-6 regulates tumor growth

    PubMed Central

    2014-01-01

    Background Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Methods Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. Results We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Conclusions Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells. PMID:24533454

  9. A multiphase model for three-dimensional tumor growth

    PubMed Central

    Sciumè, G; Shelton, S; Gray, WG; Miller, CT; Hussain, F; Ferrari, M; Decuzzi, P; Schrefler, BA

    2014-01-01

    Several mathematical formulations have analyzed the time-dependent behaviour of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the Thermodynamically Constrained Averaging Theory (TCAT). A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TC), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HC); and an interstitial fluid (IF) for the transport of nutrients. The equations are solved by a Finite Element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTS) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behaviour: initially, the rapidly growing tumor cells tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable tumor cells whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case – mostly due to the relative adhesion of the tumor and healthy cells to the ECM, and the less favourable transport of nutrients. In particular, for tumor cells adhering less avidly to the ECM, the healthy tissue is progressively displaced as the malignant mass grows, whereas tumor cell infiltration is predicted for the opposite condition. Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells grow around microvessels in a 3D geometry. It is shown that tumor cells tend to migrate among adjacent vessels seeking new oxygen and nutrient. This model can predict and optimize the efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion on tumor cell proliferation. PMID:24554920

  10. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    SciTech Connect

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-03-28

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These findings revealed that OGCs in the tumor environment promoted tumor growth and lymphangiogenesis, at least in part, by secreting VEGF-C.

  11. A two-phase mixture model of avascular tumor growth

    NASA Astrophysics Data System (ADS)

    Ozturk, Deniz; Burcin Unlu, M.; Yonucu, Sirin; Cetiner, Ugur

    2012-02-01

    Interactions with biological environment surrounding a growing tumor have major influence on tumor invasion. By recognizing that mechanical behavior of tumor cells could be described by biophysical laws, the research on physical oncology aims to investigate the inner workings of cancer invasion. In this study, we introduce a mathematical model of avascular tumor growth using the continuum theory of mixtures. Mechanical behavior of the tumor and physical interactions between the tumor and host tissue are represented by biophysically founded relationships. In this model, a solid tumor is embedded in inviscid interstitial fluid. The tumor has viscous mechanical properties. Interstitial fluid exhibits properties of flow through porous medium. Associated with the mixture saturation constraint, we introduce a Lagrange multiplier which represents hydrostatic pressure of the interstitial fluid. We solved the equations using Finite Element Method in two-dimensions. As a result, we have introduced a two-phase mixture model of avascular tumor growth that provided a flexible mathematical framework to include cells' response to mechanical aspects of the tumor microenvironment. The model could be extended to capture tumor-ECM interactions which would have profound influence on tumor invasion.

  12. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  13. Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma

    NASA Astrophysics Data System (ADS)

    Shaker, Maryam N.; Ramadan, Heba S.; Mohamed, Moustafa M.; El khatib, Ahmed M.; Roston, Gamal D.

    2014-10-01

    Nanoparticles (NPs) fabricated from the biodegradable copolymer poly(lactic- co-glycolic acid) (PLGA) were investigated as a drug delivery system to enhance the photodynamic efficacy of 5-aminolevulinic acid (5-ALA) in mice bearing Ehrlich ascites carcinoma. The PLGA-encapsulated 5-ALA NPs were prepared using binary organic solvent diffusion method and characterized in terms of shape and particle size. The in vivo photodynamic efficiency in Ehrlich ascites-bearing mice was studied. The obtained particles were uniform in size with spherical shape of mean size of 249.5 nm as obtained by particle size analyzer and the in vitro release studies demonstrated a controlled release profile of 5-ALA. Tumor-bearing mice injected with PLGA-encapsulated 5-ALA NPs exhibited significantly smaller mean tumor volume, increased tumor growth delay compared with the control group and the group injected with free 5-ALA during the time course of the experiment. Histopathological examination of tumor from mice treated with PLGA-encapsulated 5-ALA NPs showed regression of tumor cells, in contrast to those obtained from mice treated with free 5-ALA. The results indicate that PLGA-encapsulated 5-ALA NPs are a successful delivery system for improving photodynamic activity in the target tissue.

  14. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    PubMed Central

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the oxygenation and subsequent radiation response of tumors. We surmise that these cells are preferentially stimulated to divide in the tumor microenvironment, thereby inducing the significant increase in tumor growth observed and that the use of injected BOECs could be a viable approach to modulate the tumor microenvironment for therapeutic gain. Conversely, agents or approaches to block their recruitment and integration of BOECs into primary or metastatic lesions may be an effective way to restrain cancer progression before or after other treatments are applied. PMID:24216704

  15. Modeling of Tumor Growth Based on Adomian Decomposition Method

    NASA Astrophysics Data System (ADS)

    Mahiddin, Norhasimah; Ali, Siti Aishah Hashim

    2008-01-01

    Modeling of a growing tumor over time is extremely difficult. This is due to the complex biological phenomena underlying cancer growth. Existing models mostly based on numerical methods and could describe spherically-shaped avascular tumors but they cannot match the highly heterogeneous and complex shaped tumors seen in cancer patients. We propose a new technique based on decomposition method to solve analytically cancer model.

  16. Quinacrine promotes autophagic cell death and chemosensitivity in ovarian cancer and attenuates tumor growth

    PubMed Central

    Mondal, Susmita; Wen, Xuyang; He, Xiaoping; Dowdy, Sean; Shridhar, Viji

    2015-01-01

    A promising new strategy for cancer therapy is to target the autophagic pathway. In the current study, we demonstrate that the antimalarial drug Quinacrine (QC) reduces cell viability and promotes chemotherapy-induced cell death in an autophagy-dependent manner more extensively in chemoresistant cells compared to their isogenic chemosensitive control cells as quantified by the Chou-Talalay methodology. Our preliminary data, in vitro and in vivo, indicate that QC induces autophagy by downregulating p62/SQSTM1 to sensitize chemoresistant cells to autophagic- and caspase-mediated cell death in a p53-independent manner. QC promotes autophagosome accumulation and enhances autophagic flux by clearance of p62 in chemoresistant ovarain cancer (OvCa) cell lines to a greater extent compared to their chemosensitive controls. Notably, p62 levels were elevated in chemoresistant OvCa cell lines and knockdown of p62 in these cells resulted in a greater response to QC treatment. Bafilomycin A, an autophagy inhibitor, restored p62 levels and reversed QC-mediated cell death and thus chemosensitization. Importantly, our in vivo data shows that QC alone and in combination with carboplatin suppresses tumor growth and ascites in the highly chemoresistant HeyA8MDR OvCa model compared to carboplatin treatment alone. Collectively, our preclinical data suggest that QC in combination with carboplatin can be an effective treatment for patients with chemoresistant OvCa. PMID:26497553

  17. Phase transition in tumor growth: I avascular development

    NASA Astrophysics Data System (ADS)

    Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.

    2013-12-01

    We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.

  18. A Mathematical Model Coupling Tumor Growth and Angiogenesis

    PubMed Central

    Gomez, Hector

    2016-01-01

    We present a mathematical model for vascular tumor growth. We use phase fields to model cellular growth and reaction-diffusion equations for the dynamics of angiogenic factors and nutrients. The model naturally predicts the shift from avascular to vascular growth at realistic scales. Our computations indicate that the negative regulation of the Delta-like ligand 4 signaling pathway slows down tumor growth by producing a larger density of non-functional capillaries. Our results show good quantitative agreement with experiments. PMID:26891163

  19. Host Prostaglandin E2-EP3 Signaling Regulates Tumor-Associated Angiogenesis and Tumor Growth

    PubMed Central

    Amano, Hideki; Hayashi, Izumi; Endo, Hirahito; Kitasato, Hidero; Yamashina, Shohei; Maruyama, Takayuki; Kobayashi, Michiyoshi; Satoh, Kazutoyo; Narita, Masami; Sugimoto, Yukihiko; Murata, Takahiko; Yoshimura, Hirokuni; Narumiya, Shuh; Majima, Masataka

    2003-01-01

    Nonsteroidal antiinflammatories are known to suppress incidence and progression of malignancies including colorectal cancers. However, the precise mechanism of this action remains unknown. Using prostaglandin (PG) receptor knockout mice, we have evaluated a role of PGs in tumor-associated angiogenesis and tumor growth, and identified PG receptors involved. Sarcoma-180 cells implanted in wild-type (WT) mice formed a tumor with extensive angiogenesis, which was greatly suppressed by specific inhibitors for cyclooxygenase (COX)-2 but not for COX-1. Angiogenesis in sponge implantation model, which can mimic tumor-stromal angiogenesis, was markedly suppressed in mice lacking EP3 (EP3−/−) with reduced expression of vascular endothelial growth factor (VEGF) around the sponge implants. Further, implanted tumor growth (sarcoma-180, Lewis lung carcinoma) was markedly suppressed in EP3−/−, in which tumor-associated angiogenesis was also reduced. Immunohistochemical analysis revealed that major VEGF-expressing cells in the stroma were CD3/Mac-1 double-negative fibroblasts, and that VEGF-expression in the stroma was markedly reduced in EP3−/−, compared with WT. Application of an EP3 receptor antagonist inhibited tumor growth and angiogenesis in WT, but not in EP3−/−. These results demonstrate significance of host stromal PGE2-EP3 receptor signaling in tumor development and angiogenesis. An EP3 receptor antagonist may be a candidate of chemopreventive agents effective for malignant tumors. PMID:12538661

  20. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma.

    PubMed

    Zhu, Li Ming; Shi, Dong Mei; Dai, Qiang; Cheng, Xiao Jiao; Yao, Wei Yan; Sun, Ping Hu; Ding, Yanfei; Qiao, Min Min; Wu, Yun Lin; Jiang, Shi Hu; Tu, Shui Ping

    2014-07-30

    X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment. PMID:24980821

  1. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma

    PubMed Central

    Zhu, Li Ming; Shi, Dong Mei; Dai, Qiang; Cheng, Xiao Jiao; Yao, Wei Yan; Sun, Ping Hu; Ding, Yan Fei; Qiao, Min Min; Wu, Yun Lin; Jiang, Shi Hu; Tu, Shui Ping

    2014-01-01

    X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment. PMID:24980821

  2. Alcohol promotes mammary tumor growth through activation of VEGF-dependent tumor angiogenesis

    PubMed Central

    LU, YANMIN; NI, FANG; XU, MEI; YANG, JINLIAN; CHEN, JI; CHEN, ZHUO; WANG, XINYI; LUO, JIA; WANG, SIYING

    2014-01-01

    Alcohol consumption has been recognized as a risk factor for breast cancer. Experimental studies demonstrate that alcohol exposure promotes the progression of existing mammary tumors. However, the mechanisms underlying this effect remain unclear. In the present study, the role of vascular endothelial growth factor (VEGF) in alcohol promotion of breast cancer development was investigated using a mouse xenograft model of mammary tumors and a three-dimensional (3D) tumor/endothelial cell co-culture system. For the mouse xenograft model, mouse E0771 breast cancer cells were implanted into the mammary fat pad of C57BL6 mice. These mice were exposed to alcohol in their drinking water. For the 3D co-culture system, E0771 cells and MDA-MB231 breast cancer cells were co-cultured with SVEC4-10EE2 and human umbilical vein endothelial cells, respectively. The results demonstrated that alcohol increased tumor angiogenesis and accelerated tumor growth. Furthermore, it appeared that alcohol induced VEGF expression in breast cancer cells in vitro and in vivo. Blocking VEGF signaling by SU5416 inhibited tumor angiogenesis in the 3D tumor/endothelial cell co-culture system. Furthermore, injection of SU5416 into mice inhibited alcohol-promoted mammary tumor growth in vivo. These results indicate that alcohol may promote mammary tumor growth by stimulating VEGF-dependent angiogenesis. PMID:25009649

  3. Patient Specific Tumor Growth Prediction Using Multimodal Images

    PubMed Central

    Liu, Yixun; Sadowski, Samira M.; Weisbrod, Allison B.; Kebebew, Electron; Summers, Ronald M.; Yao, Jianhua

    2014-01-01

    Personalized tumor growth model is valuable in tumor staging and therapy planning. In this paper, we present a patient specific tumor growth model based on longitudinal multimodal imaging data including dual-phase CT and FDG-PET. The proposed Reaction-Advection-Diffusion model is capable of integrating cancerous cell proliferation, infiltration, metabolic rate and extracellular matrix biomechanical response. To bridge the model with multimodal imaging data, we introduce intracellular volume fraction (ICVF) measured from dual-phase CT and Standardized Uptake Value (SUV) measured from FDG-PET into the model. The patient specific model parameters are estimated by fitting the model to the observation, which leads to an inverse problem formalized as a coupled Partial Differential Equations (PDE)-constrained optimization problem. The optimality system is derived and solved by the Finite Difference Method. The model was evaluated by comparing the predicted tumors with the observed tumors in terms of average surface distance (ASD), root mean square difference (RMSD) of the ICVF map, average ICVF difference (AICVFD) of tumor surface and tumor relative volume difference (RVD) on six patients with pathologically confirmed pancreatic neuroendocrine tumors. The ASD between the predicted tumor and the reference tumor was 2.4±0.5 mm, the RMSD was 4.3±0.4%, the AICVFD was 2.6±0.6%, and the RVD was 7.7±1.3%. PMID:24607911

  4. Fetal ascites owing to congenital cytomegalovirus: response to ganciclovir.

    PubMed

    Basu, S; Chandra, P K; Basu, S

    2008-09-01

    A term newborn with severe congenital cytomegalovirus (CMV) infection is described. Fetal ascites was detected at 28 weeks gestation, and at birth there was tense ascites. There was intra-uterine growth retardation, microcephaly, chorioretinitis, jaundice, purpura and pneumonitis. Computed tomographic scan of the brain showed ventriculomegaly with periventricular calcifications. Serology was positive for cytomegalovirus-specific immunoglobulin M, and cytomegalovirus DNA was detected in the ascitic fluid and urine by nested polymerase chain reaction. He received 6 weeks of treatment with ganciclovir. Ascites resolved spontaneously and liver function tests became normal. Although there was a good clinical response to ganciclovir therapy without any side-effects, on follow-up the infant had global developmental delay and bilateral sensorineural deafness. PMID:18727854

  5. Acellular fraction of ovarian cancer ascites induce apoptosis by activating JNK and inducing BRCA1, Fas and FasL expression in ovarian cancer cells

    PubMed Central

    Cohen, Marie; Pierredon, Sandra; Wuillemin, Christine; Delie, Florence; Petignat, Patrick

    2014-01-01

    Acellular fraction of ascites might play an active role in tumor development. Nevertheless the mechanisms involved in the tumor-modulating properties are still controversial. Here, we demonstrate that malignant ascites from 8 patients with epithelial ovarian cancer did not influence proliferative or invasive properties of ovarian cancer cells, but promoted H2O2-induced apoptosis and increased sensitivity to paclitaxel. Malignant ascites induced BRCA1, Fas and FasL expression and phosphorylation of JNK, but not the activation of caspase pathway. Ascites-induced apoptosis of ovarian cancer cells was strongly inhibited by a JNK inhibitor suggesting a critical role of JNK pathway in ascite-induced apoptosis. The use of siRNA JNK confirmed the importance of JNK in ascites-induced Fas and FasL expression. These results demonstrate that malignant ascites induce apoptosis of ovarian cancer cells and encourage us to think about the clinical management of ovarian cancer patients with malignant ascites. PMID:25594018

  6. A Big Bang model of human colorectal tumor growth.

    PubMed

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications. PMID:25665006

  7. Dietary factors and growth and metabolism in experimental tumors.

    PubMed

    Sauer, Leonard A; Blask, David E; Dauchy, Robert T

    2007-10-01

    Development of a diet that provides adequate nutrition and effective cancer prevention is an important goal in nutrition and cancer research. A confounding aspect of dietary control of tumor growth is the fact that some nutrients may up-regulate tumor growth, whereas other nutrients and nonnutrients down-regulate growth. Both up- and down-regulators may be present in the same foodstuff. Identification of these substances, determination of their mechanisms of action and potencies, as well as the interactions among the different mechanisms are topics of ongoing research. In this review, we describe results obtained in vivo or during perfusion in situ using solid tissue-isolated rodent tumors and human cancer xenografts in nude rats. Linoleic acid (LA), an essential n-6 polyunsaturated fatty acid (PUFA), was identified as an agent in dietary fat that is responsible for an up-regulation of tumor growth in vivo. Tumor LA uptake, mediated by high intratumor cAMP, stimulated formation of the mitogen, 13-hydroxyoctadecadienoic acid (13-HODE) and also increased ERK1/2 phosphorylation, [(3)H]thymidine incorporation and growth. A mechanism for control of this growth-promoting pathway was revealed during studies of the effects of dietary nutrients and nonnutrients known to inhibit tumor growth. These included four groups of lipophilic agents: n-3 fatty acids, melatonin, conjugated LA isomers and trans fatty acids. Each of these agents activated an inhibitory G protein-coupled receptor-mediated pathway that specifically suppressed tumor uptake of saturated, monounsaturated and n-6 PUFAs, thereby inhibiting an early step in the LA-dependent growth-promoting pathway. PMID:17418560

  8. Near-criticality underlies the behavior of early tumor growth.

    PubMed

    Remy, Guillaume; Cluzel, Philippe

    2016-01-01

    The controlling factors that underlie the growth of tumors have often been hard to identify because of the presence in this system of a large number of intracellular biochemical parameters. Here, we propose a simplifying framework to identify the key physical parameters that govern the early growth of tumors. We model growth by means of branching processes where cells of different types can divide and differentiate. First, using this process that has only one controlling parameter, we study a one cell type model and compute the probability for tumor survival and the time of tumor extinction. Second, we show that when cell death and cell division are perfectly balanced, stochastic effects dominate the growth dynamics and the system exhibits a near-critical behavior that resembles a second-order phase transition. We show, in this near-critical regime, that the time interval before tumor extinction is power-law distributed. Finally, we apply this branching formalism to infer, from experimental growth data, the number of different cell types present in the observed tumor. PMID:27043180

  9. Near-criticality underlies the behavior of early tumor growth

    NASA Astrophysics Data System (ADS)

    Remy, Guillaume; Cluzel, Philippe

    2016-04-01

    The controlling factors that underlie the growth of tumors have often been hard to identify because of the presence in this system of a large number of intracellular biochemical parameters. Here, we propose a simplifying framework to identify the key physical parameters that govern the early growth of tumors. We model growth by means of branching processes where cells of different types can divide and differentiate. First, using this process that has only one controlling parameter, we study a one cell type model and compute the probability for tumor survival and the time of tumor extinction. Second, we show that when cell death and cell division are perfectly balanced, stochastic effects dominate the growth dynamics and the system exhibits a near-critical behavior that resembles a second-order phase transition. We show, in this near-critical regime, that the time interval before tumor extinction is power-law distributed. Finally, we apply this branching formalism to infer, from experimental growth data, the number of different cell types present in the observed tumor.

  10. Mathematical Modeling of Branching Morphogenesis and Vascular Tumor Growth

    NASA Astrophysics Data System (ADS)

    Yan, Huaming

    Feedback regulation of cell lineages is known to play an important role in tissue size control, but the effect in tissue morphogenesis has yet to be explored. We first use a non-spatial model to show that a combination of positive and negative feedback on stem and/or progenitor cell self-renewal leads to bistable or bi-modal growth behaviors and ultrasensitivity to external growth cues. Next, a spatiotemporal model is used to demonstrate spatial patterns such as local budding and branching arise in this setting, and are not consequences of Turing-type instabilities. We next extend the model to a three-dimensional hybrid discrete-continuum model of tumor growth to study the effects of angiogenesis, tumor progression and cancer therapies. We account for the crosstalk between the vasculature and cancer stem cells (CSCs), and CSC transdifferentiation into vascular endothelial cells (gECs), as observed experimentally. The vasculature stabilizes tumor invasiveness but considerably enhances growth. A gEC network structure forms spontaneously within the hypoxic core, consistent with experimental findings. The model is then used to study cancer therapeutics. We demonstrate that traditional anti-angiogenic therapies decelerate tumor growth, but make the tumor highly invasive. Chemotherapies help to reduce tumor sizes, but cannot control the invasion. Anti-CSC therapies that promote differentiation or disturb the stem cell niche effectively reduce tumor invasiveness. However, gECs inherit mutations present in CSCs and are resistant to traditional therapies. We show that anti-gEC treatments block the support on CSCs by gECs, and reduce both tumor size and invasiveness. Our study suggests that therapies targeting the vasculature, CSCs and gECs, when combined, are highly synergistic and are capable of controlling both tumor size and shape.

  11. A multiphase model for three-dimensional tumor growth

    NASA Astrophysics Data System (ADS)

    Sciumè, G.; Shelton, S.; Gray, W. G.; Miller, C. T.; Hussain, F.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A.

    2013-01-01

    Several mathematical formulations have analyzed the time-dependent behavior of a tumor mass. However, most of these propose simplifications that compromise the physical soundness of the model. Here, multiphase porous media mechanics is extended to model tumor evolution, using governing equations obtained via the thermodynamically constrained averaging theory. A tumor mass is treated as a multiphase medium composed of an extracellular matrix (ECM); tumor cells (TCs), which may become necrotic depending on the nutrient concentration and tumor phase pressure; healthy cells (HCs); and an interstitial fluid for the transport of nutrients. The equations are solved by a finite element method to predict the growth rate of the tumor mass as a function of the initial tumor-to-healthy cell density ratio, nutrient concentration, mechanical strain, cell adhesion and geometry. Results are shown for three cases of practical biological interest such as multicellular tumor spheroids (MTSs) and tumor cords. First, the model is validated by experimental data for time-dependent growth of an MTS in a culture medium. The tumor growth pattern follows a biphasic behavior: initially, the rapidly growing TCs tend to saturate the volume available without any significant increase in overall tumor size; then, a classical Gompertzian pattern is observed for the MTS radius variation with time. A core with necrotic cells appears for tumor sizes larger than 150 μm, surrounded by a shell of viable TCs whose thickness stays almost constant with time. A formula to estimate the size of the necrotic core is proposed. In the second case, the MTS is confined within a healthy tissue. The growth rate is reduced, as compared to the first case—mostly due to the relative adhesion of the TCs and HCs to the ECM, and the less favorable transport of nutrients. In particular, for HCs adhering less avidly to the ECM, the healthy tissue is progressively displaced as the malignant mass grows, whereas TC infiltration is predicted for the opposite condition. Interestingly, the infiltration potential of the tumor mass is mostly driven by the relative cell adhesion to the ECM. In the third case, a tumor cord model is analyzed where the malignant cells grow around microvessels in a three-dimensional geometry. It is shown that TCs tend to migrate among adjacent vessels seeking new oxygen and nutrients. This model can predict and optimize the efficacy of anticancer therapeutic strategies. It can be further developed to answer questions on tumor biophysics, related to the effects of ECM stiffness and cell adhesion on TC proliferation.

  12. Obesity promotes melanoma tumor growth: Role of leptin

    PubMed Central

    Brandon, Elizabeth L.; Gu, Jian-Wei; Cantwell, Lauren; He, Zhi; Wallace, Gray; Hall, John E.

    2009-01-01

    Epidemiological studies suggest that obesity increases the risk of developing several cancers, including melanoma. Obesity increases the expression of angiogenic factors, such as leptin, that may contribute to tumor growth. However, a direct cause and effect relationship between obesity and tumor growth has not been clearly established and the role of leptin in accelerating tumor growth is unclear. Our objective in the present study was to examine the rate of melanoma tumor growth in lean and obese mice with leptin deficiency or high levels of plasma leptin. We injected 1 106 B16F10 melanoma cells subcutaneously into lean wild type (WT), obese melanocortin receptor 4 knockout (MC4R?/?), which have high leptin levels, obese leptin-deficient(ob ?/?), pair fed lean ob?/?, and lean ob+/? mice. Mean body weights were 29.7 0.3 g (WT), 46.3 1.9 g (MC4R?/?), 63.7 0.9 g (ob?/?), 30.5 1.0 g (pair fed ob?/?) and 31.6 1.7 g (ob+/?). Tumors were much larger in the obese leptin deficientob?/? (5.1 0.9 g) and obese MC4R?/? (5.1 0.7 g) than in lean WT (1.9 0.3 g) and ob+/? (2.8 0.7 g) mice. prevention of obesity by pair feeding ob?/? mice dramatically reduced tumor weight (0.95 0.2 g) to a level that was significantly lower than in WT mice of the same weight. Tumor VEGF levels were the highest in the obese mouse tumors (p < 0.05), regardless of the host leptin levels. Except for the lean ob+/?, MC4R?/? and ob?/? melanomas had the highest VEGF receptor 1 and VEGF receptor 2 protein expression (p < 0.01 and p < 0.05), respectively. These results indicate that obesity markedly increases melanoma tumor growth rate by mechanisms that may involve upregulation of VEGF pathways. although tumor growth does not require host leptin, melanoma tumor growth may be accelerated by leptin. PMID:19713740

  13. TNF? antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth.

    PubMed

    Bourouba, Mehdi; Zergoun, Ahmed-Amine; Maffei, Joseph S; Chila, Dalia; Djennaoui, Djamel; Asselah, Fatima; Amir-Tidadini, Zine-Charef; Touil-Boukoffa, Chafia; Zaman, Muhammad H

    2015-07-01

    Tumor necrosis factor (TNF?) is a pro-inflammatory cytokine which mediates via nitric oxide (NO) several carcinogenic processes. Increasing evidences suggest that NO promotes inflammation induced growth of nasopharyngeal carcinoma (NPC). In patients, TNF? synthesis associates with poor survival. To explore the effect of the cytokine on NO production and NOS2 dependent NPC growth, NO2(-) (nitrite) producing cells in patients were analyzed in vitro. We observed that patients' monocytes/macrophages (Mo/Ma) and primary tumor biopsies synthesized significant amounts of NO2(-). Interestingly, tumor explants derived NO2(-) levels were more important in elderly patients in comparison with juveniles. Endogenous TNF? neutralization with an anti-TNF? monoclonal antibody (mAb) successfully inhibited NO2(-) synthesis by blood mononuclear cells and tumor explants. Recombinant TNF? (rTNF?) enhanced NO2(-) synthesis and C666-1 NPC cell proliferation. NOS2 selective inhibition (1400W) and TNF? antagonization with an anti-TNF? mAb potently inhibited rTNF? induced C666-1 proliferation and NO2(-) production. Importantly, primary tumors treated with the anti-TNF? mAb also displayed reduced proliferation index (Ki67). Altogether, our results define monocytes/macrophages and the primary tumor as major sources of circulating NO2(-) in NPC patients and support the idea that antibody dependent inhibition of the TNF?/NOS2 pathway may alter NPC tumor growth. PMID:25912222

  14. Induction of apoptosis in tumor cells as a mechanism of tumor growth reduction in allergic mice.

    PubMed

    Pinto, Flávia C H; Menezes, Gustavo B; Moura, Sandra A L; Cassali, Geovanni D; Teixeira, Mauro M; Cara, Denise C

    2009-01-01

    Cancer is the leading cause of mortality worldwide. Analysis of epidemiological data has revealed a negative relationship between allergic conditions and cancer incidence. This study addresses the effects of chronic antigen ingestion by sensitized mice (allergy) on Ehrlich tumor growth in mouse footpad. Mice were sensitized (allergic) or not (sham) with ovalbumin and challenged orally with egg white solution. After one week of oral challenge, all mice were inoculated with experimental Ehrlich tumor (EET) cells in the footpad, and tumor growth was evaluated for 21 days. A decrease in tumor growth occurred, as assessed by paw thickness in the allergic group, which was associated with smaller areas of necrosis, reduced infiltration of neutrophils, and reduced levels of IFN-gamma, IL-4, and IL-10. Although, the tumor proliferation rate was similar in both groups, an increase in apoptosis occurred in allergic mice. In conclusion, analysis of the data obtained allows us to suggest that a concomitant allergic condition would reduce tumor progression through increased tumor cell apoptosis, accompanied by reduced areas of necrosis at the tumor site. Indeed, such findings suggested a possible mechanism for the reduced cancer incidence observed in allergic individuals. PMID:19268488

  15. Inhibition of tumor growth by histoincompatible cells expressing interleukin-2.

    PubMed

    Roth, C; Mir, L M; Cressent, M; Quintin-Colonna, F; Ley, V; Fradelizi, D; Kourilsky, P

    1992-12-01

    Murine tumor cells engineered to express IL-2 have been shown to be rejected by the syngeneic host, which is then protected against a subsequent tumorigenic challenge. To assess whether IL-2 has to be produced by the tumor cells themselves, or whether its local delivery would be sufficient to promote such beneficial effects, the syngeneic tumor cells were co-inoculated with allogeneic or xenogeneic cells secreting IL-2, selected after gene transfection. In several murine systems, it was observed that this is an efficient approach for controlling the growth of the syngeneic tumor. However, animals which rejected the tumor were not protected against a subsequent challenge. Several lines of evidence indicate that NK cells play a major role in tumor rejection induced by the IL-2 expressing histoincompatible vector cells. Thus, while local delivery of IL-2 in the vicinity of a tumor might not be sufficient to promote a systemic long-term specific antitumor immune response, it can control the growth of the primary syngeneic tumor. These experiments demonstrate the feasibility of using genetically engineered histoincompatible cells (which are rejected by the host's immune system) as a transient delivery system in vivo. PMID:1286066

  16. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    TOXLINE Toxicology Bibliographic Information

    Kim SP; Kang MY; Nam SH; Friedman M

    2012-06-01

    SCOPE: We investigated the effects of rice bran and components on tumor growth in mice.METHODS AND RESULTS: Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors.CONCLUSION: Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol.

  17. The Role of Oxygen in Avascular Tumor Growth.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike

    2016-01-01

    The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720

  18. The Role of Oxygen in Avascular Tumor Growth

    PubMed Central

    Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike

    2016-01-01

    The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720

  19. Cirrhotic ascites: pathogenesis and management.

    PubMed

    Garcia-Tsao, G

    1995-03-01

    The pathogenesis of ascites can be divided into (1) factors that favor efflux of fluid from the vascular into the peritoneal space (sinusoidal hypertension, hypoalbuminemia), (2) factors that favor accumulation of fluid in the peritoneal cavity (thoracic duct insufficiency), and (3) factors responsible for repletion of the intravascular volume, and thereby continuous formation of ascites (sodium and water retention). Ascites is perhaps the one complication of cirrhosis with the lowest therapeutic priority. Current therapy of ascites is mainly directed at attaining a negative sodium balance (sodium restriction, diuretics) or at removing intraperitoneal fluid and returning it or its components back to the systemic circulation (large volume paracentesis accompanied by plasma volume expanders, peritoneovenous shunt, ascites "recycling" procedures). Future studies of ascites should investigate the usefulness of peripheral vasoconstrictors and nonsurgical side-to-side portosystemic shunting to relieve sinusoidal hypertension (transjugular intrahepatic portosystemic shunt). More than 90% of patients respond to diuretics and salt restriction. Other therapeutic measures should be directed at the 10% of patients with ascites refractory to diuretics. Prognosis in these patients is poor, and liver transplantation should be contemplated. PMID:7743121

  20. Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice.

    PubMed

    Hartung, Niklas; Mollard, Sverine; Barbolosi, Dominique; Benabdallah, Assia; Chapuisat, Guillemette; Henry, Gerard; Giacometti, Sarah; Iliadis, Athanassios; Ciccolini, Joseph; Faivre, Christian; Hubert, Florence

    2014-11-15

    Defining tumor stage at diagnosis is a pivotal point for clinical decisions about patient treatment strategies. In this respect, early detection of occult metastasis invisible to current imaging methods would have a major impact on best care and long-term survival. Mathematical models that describe metastatic spreading might estimate the risk of metastasis when no clinical evidence is available. In this study, we adapted a top-down model to make such estimates. The model was constituted by a transport equation describing metastatic growth and endowed with a boundary condition for metastatic emission. Model predictions were compared with experimental results from orthotopic breast tumor xenograft experiments conducted in Nod/Scid? mice. Primary tumor growth, metastatic spread and growth were monitored by 3D bioluminescence tomography. A tailored computational approach allowed the use of Monolix software for mixed-effects modeling with a partial differential equation model. Primary tumor growth was described best by Bertalanffy, West, and Gompertz models, which involve an initial exponential growth phase. All other tested models were rejected. The best metastatic model involved two parameters describing metastatic spreading and growth, respectively. Visual predictive check, analysis of residuals, and a bootstrap study validated the model. Coefficients of determination were [Formula: see text] for primary tumor growth and [Formula: see text] for metastatic growth. The data-based model development revealed several biologically significant findings. First, information on both growth and spreading can be obtained from measures of total metastatic burden. Second, the postulated link between primary tumor size and emission rate is validated. Finally, fast growing peritoneal metastases can only be described by such a complex partial differential equation model and not by ordinary differential equation models. This work advances efforts to predict metastatic spreading during the earliest stages of cancer. PMID:25217520

  1. Molecular Cochaperones: Tumor Growth and Cancer Treatment

    PubMed Central

    Calderwood, Stuart K.

    2013-01-01

    Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state. They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts of mutant proteins that are employed to overcome tumor suppressive regulation. To function at significant rates in cells, HSPs interact with cochaperones, proteins that assist in catalyzing individual steps in molecular chaperoning as well as in posttranslational modification and intracellular localization. We review current knowledge regarding the roles of chaperones such as heat shock protein 90 (Hsp90) and Hsp70 and their cochaperones in cancer. Cochaperones are potential targets for cancer therapy in themselves and can be used to assess the likely prognosis of individual malignancies. Hsp70 cochaperones Bag1, Bag3, and Hop play significant roles in the etiology of some cancers as do Hsp90 cochaperones Aha1, p23, Cdc37, and FKBP1. Others such as the J domain protein family, HspBP1, TTC4, and FKBPL appear to be associated with more benign tumor phenotypes. The key importance of cochaperones for many pathways of protein folding in cancer suggests high promise for the future development of novel pharmaceutical agents. PMID:24278769

  2. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors. PMID:19845874

  3. The use of blood gas parameters to predict ascites susceptibility in juvenile broilers.

    PubMed

    van As, P; Elferink, M G; Closter, A M; Vereijken, A; Bovenhuis, H; Crooijmans, R P M A; Decuypere, E; Groenen, M A M

    2010-08-01

    Ascites syndrome is a metabolic disorder found in modern broilers that have insufficient pulmonary vascular capacity. Commercial breeding programs have heavily focused on high growth rate, which led to fast-growing chickens, but as a negative consequence, the incidence of ascites syndrome increased. However, not all birds with a high growth rate will suffer from ascites syndrome, which might indicate a genetic susceptibility to ascites. Information on blood gas parameters measured early in life and their relation to ascites susceptibility is expected to contribute to identification on the cause of ascites syndrome. In this study, several physiological parameters, such as blood gas parameters [pH, partial pressure of CO(2) in venous blood (pvCO(2)), and partial pressure of O(2) in venous blood], hematocrit, electrolytes (Na(+), Ca(2+), and K(+)), metabolites (lactate and glucose), were measured at d 11 to 12 of age from 100 female and 100 male broilers. From d 14 onward, the birds were challenged to provoke the development of ascites syndrome. Our results showed that high pvCO(2) values together with low pH values (males) or high pH values (females) in the venous blood of juvenile broilers coincided with ascites. Therefore, blood pvCO(2) and pH in both juvenile male and female broilers seem to be critical factors in ascites pathophysiology and can be used as phenotypic traits to predict ascites susceptibility in juvenile broilers at d 11 to 12. A prediction model was built on a subpopulation of the broilers without any loss in sensitivity (0.52) and specificity (0.78) when applied to the validation population. The parameter sex was included in the prediction model because levels of pvCO(2) and pH that associated with ascites susceptibility are different between males and females. Commercial breeders can include these phenotypic traits in their genetic selection programs to reduce the incidence of ascites syndrome. PMID:20634524

  4. From the Cover: Glutamate antagonists limit tumor growth

    NASA Astrophysics Data System (ADS)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  5. Pinning of Tumoral Growth by Enhancement of the Immune Response

    NASA Astrophysics Data System (ADS)

    Brú, A.; Albertos, S.; García-Asenjo, J. A.; Brú, I.

    2004-06-01

    Tumor growth is a surface phenomenon of the molecular beam epitaxy universality class in which diffusion at the surface is the determining factor. This Letter reports experiments performed in mice showing that these dynamics can, however, be changed. By stimulating the immune response, we induced strong neutrophilia around the tumor. The neutrophils hindered cell surface diffusion so much that they induced new dynamics compatible with the slower quenched-disorder Edwards-Wilkinson universality class. Important clinical effects were also seen, including remarkably high tumor necrosis (around 80% 90% of the tumor), a general increase in survival time [the death ratio in the control group is 15.76 times higher than in the treated group (equivalent to a Cox's model hazard ratio of 0.85; 95% confidence interval 0.76 0.95, p=0.004)], and even the total elimination of some tumors.

  6. Pinning of tumoral growth by enhancement of the immune response.

    PubMed

    Br, A; Albertos, S; Lpez Garca-Asenjo, J A; Br, I

    2004-06-11

    Tumor growth is a surface phenomenon of the molecular beam epitaxy universality class in which diffusion at the surface is the determining factor. This Letter reports experiments performed in mice showing that these dynamics can, however, be changed. By stimulating the immune response, we induced strong neutrophilia around the tumor. The neutrophils hindered cell surface diffusion so much that they induced new dynamics compatible with the slower quenched-disorder Edwards-Wilkinson universality class. Important clinical effects were also seen, including remarkably high tumor necrosis (around 80%-90% of the tumor), a general increase in survival time [the death ratio in the control group is 15.76 times higher than in the treated group (equivalent to a Cox's model hazard ratio of 0.85; 95% confidence interval 0.76-0.95, p=0.004)], and even the total elimination of some tumors. PMID:15245196

  7. Multiscale models for the growth of avascular tumors

    NASA Astrophysics Data System (ADS)

    Martins, M. L.; Ferreira, S. C.; Vilela, M. J.

    2007-06-01

    In the past 30 years we have witnessed an extraordinary progress on the research in the molecular biology of cancer, but its medical treatment, widely based on empirically established protocols, still has many limitations. One of the reasons for that is the limited quantitative understanding of the dynamics of tumor growth and drug response in the organism. In this review we shall discuss in general terms the use of mathematical modeling and computer simulations related to cancer growth and its applications to improve tumor therapy. Particular emphasis is devoted to multiscale models which permit integration of the rapidly expanding knowledge concerning the molecular basis of cancer and the complex, nonlinear interactions among tumor cells and their microenvironment that will determine the neoplastic growth at the tissue level.

  8. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    PubMed Central

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease. PMID:24978438

  9. COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis

    PubMed Central

    Qin, Jun; Chen, Xinpu; Xie, Xin; Tsai, Ming-Jer; Tsai, Sophia Y.

    2010-01-01

    Tumor growth depends on nutrients and oxygen supplied by the vasculature through angiogenesis. Here, we show that the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), a member of the nuclear receptor family, is a major angiogenesis regulator within the tumor microenvironment. Conditional ablation of COUP-TFII in adults severely compromised neoangiogenesis and suppressed tumor growth in xenograft mouse models. In addition, tumor growth and tumor metastasis were also impaired in a spontaneous mammary-gland tumor model in the absence of COUP-TFII. We showed that COUP-TFII directly regulates the transcription of Angiopoietin-1 in pericytes to enhance neoangiogenesis. Importantly, provision of Angiopoietin-1 partially restores the angiogenic defects exhibited by the COUP-TFII–deficient mice, which supports the notion that COUP-TFII controls Angiopoietin-1/Tie2 signaling to regulate tumor angiogenesis. Because COUP-TFII has little impact on normal adult physiological function, our results raise an interesting possibility that inhibition of COUP-TFII may offer a therapeutic approach for anticancer intervention. PMID:20133706

  10. COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis.

    PubMed

    Qin, Jun; Chen, Xinpu; Xie, Xin; Tsai, Ming-Jer; Tsai, Sophia Y

    2010-02-23

    Tumor growth depends on nutrients and oxygen supplied by the vasculature through angiogenesis. Here, we show that the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), a member of the nuclear receptor family, is a major angiogenesis regulator within the tumor microenvironment. Conditional ablation of COUP-TFII in adults severely compromised neoangiogenesis and suppressed tumor growth in xenograft mouse models. In addition, tumor growth and tumor metastasis were also impaired in a spontaneous mammary-gland tumor model in the absence of COUP-TFII. We showed that COUP-TFII directly regulates the transcription of Angiopoietin-1 in pericytes to enhance neoangiogenesis. Importantly, provision of Angiopoietin-1 partially restores the angiogenic defects exhibited by the COUP-TFII-deficient mice, which supports the notion that COUP-TFII controls Angiopoietin-1/Tie2 signaling to regulate tumor angiogenesis. Because COUP-TFII has little impact on normal adult physiological function, our results raise an interesting possibility that inhibition of COUP-TFII may offer a therapeutic approach for anticancer intervention. PMID:20133706

  11. Influence of gold nanoparticle tagged snake venom protein toxin NKCT1 on Ehrlich ascites carcinoma (EAC) and EAC induced solid tumor bearing male albino mice.

    PubMed

    Bhowmik, Tanmoy; Saha, Partha Pratim; DasGupta, Anjan Kumar; Gomes, Antony

    2014-01-01

    Earlier the conjugation of gold nanoparticle (GNP) and snake venom protein toxin NKCT1 was reported and primary characterization was performed. In the present communication, further characterizations of GNP-NKCT1 were done with SEM, EDS, XRD and Raman spectra for its physio-chemical nature and bonding. SEM showed the formation of gold nanoparticles, whereas EDS and XRD confirmed 60-90% gold nanoparticles in the solution. Raman shift corresponding to (C=O), (N-H), (C-N) confirmed the proper conjugation of GNP with NKCT1. GNP-NKCT1 showed anticancer effect both in vivo and in vitro in EAC cell and antitumor effect in EAC induced mice. In in vivo studies, GNPNKCT1 increased MST 108.30% and decreased viable EAC cell count 51.39%. Fluorescent micrograph showed signs of apoptosis (membrane blebbing, membrane disruption). Decreased level of IL-10 and low incorporation of BrdU showed decreased proliferation of EAC induced by GNP-NKCT1. With upregulation of Bax, down regulation of Bcl2 and increased expression of caspase 3/9, it was confirmed that GNP-NKCT1 induced caspase dependent apoptosis pathway in EAC cell. In in vitro studies, GNP-NKCT1 increased the late apoptotic stage of cell and arrested cell cycle division at G0/G1 state. GNP-NKCT1 also decreased the tumor volume and tumor weight in EAC induced tumor in male albino mice. It inhibited angiogenesis, which was confirmed by lower percentage of expression of VEGF. This study indicated the capability of gold nanoparticles which enhanced the tumor uptake of NKCT1 and also suggested that GNP-NKCT1 might be a good source for anti-carcinoma and anti-tumor agents. PMID:24827982

  12. Antitumor properties of Boswellic acid against Ehrlich ascites cells bearing mouse.

    PubMed

    Agrawal, S S; Saraswati, Sarita; Mathur, Rajani; Pandey, Maneesha

    2011-09-01

    Boswellic acid (BA), a triterpene, isolated from Boswellia serrata (Burseraceae) has been found to possess potent anti-inflammatory and anti-cancer activity. The present study aimed at exploring the possible role of BA on ascites and solid Ehrlich tumor. Ascitic tumor development was evaluated 14 d after tumor implantation by quantification of the ascitic fluid volume whereas solid tumor was evaluated after 30 d tumor implantation by H&E and IHC. The i.p. administration of BA significantly inhibited ascitic and solid Ehrlich tumor model. This inhibition was observed with reduced ascitic volume, solid tumor volume and body weight when compared to control mice. The treatments also increased the survival of tumor-bearing mice. VEGF and TNF- ? levels were decreased, whereas the IL-12 levels were increased with BA treatment at 25mg/kg. Further, results on decrease in the peritoneal angiogenesis and microvessel density showed the anti-angiogenic potential. Microscopic examination of tumors revealed that in BA-treated groups the expression of Bax and caspase 3 increased, suggesting drug induced tumor cell apoptosis through activating the pro-apoptotic bcl-2 family and caspase-3. The present study sheds light on the potent antitumor property of the boswellic acid and can be extended further to develop therapeutic protocols for treatment of cancer. PMID:21513768

  13. Ascites Increases Expression/Function of Multidrug Resistance Proteins in Ovarian Cancer Cells

    PubMed Central

    Huang, Zhiqing; Murphy, Susan K.; Payne, Sturgis; Wang, Fang; Kennedy, Margaret; Cianciolo, George J.; Bryja, Vitezslav; Pizzo, Salvatore V.; Bachelder, Robin E.

    2015-01-01

    Chemotherapy resistance is the major reason for the failure of ovarian cancer treatment. One mechanism behind chemo-resistance involves the upregulation of multidrug resistance (MDR) genes (ABC transporters) that effectively transport (efflux) drugs out of the tumor cells. As a common symptom in stage III/IV ovarian cancer patients, ascites is associated with cancer progression. However, whether ascites drives multidrug resistance in ovarian cancer cells awaits elucidation. Here, we demonstrate that when cultured with ascites derived from ovarian cancer-bearing mice, a murine ovarian cancer cell line became less sensitive to paclitaxel, a first line chemotherapeutic agent for ovarian cancer patients. Moreover, incubation of murine ovarian cancer cells in vitro with ascites drives efflux function in these cells. Functional studies show ascites-driven efflux is suppressible by specific inhibitors of either of two ABC transporters [Multidrug Related Protein (MRP1); Breast Cancer Related Protein (BCRP)]. To demonstrate relevance of our findings to ovarian cancer patients, we studied relative efflux in human ovarian cancer cells obtained from either patient ascites or from primary tumor. Immortalized cell lines developed from human ascites show increased susceptibility to efflux inhibitors (MRP1, BCRP) compared to a cell line derived from a primary ovarian cancer, suggesting an association between ascites and efflux function in human ovarian cancer. Efflux in ascites-derived human ovarian cancer cells is associated with increased expression of ABC transporters compared to that in primary tumor-derived human ovarian cancer cells. Collectively, our findings identify a novel activity for ascites in promoting ovarian cancer multidrug resistance. PMID:26148191

  14. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth.

    PubMed

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-02-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  15. Autocrine and paracrine growth factors in tumor growth: a mathematical model.

    PubMed

    Michelson, S; Leith, J

    1991-01-01

    A mathematical model of tumor growth including autocrine and paracrine control has been developed. The model starts with the logistic equation of Verhulst: dV/dt = rV (1-V/K). Autocrine controls are described as modifiers of the Malthusian growth rate (r), while paracrine controls modify the carrying capacity (K) of the system. The control mechanisms are expressed in terms of "candidate" functions, which are based upon the dynamic distribution of TGF-alpha TGF-beta in the local tumor environment. Three paradigms of tissue growth have been modeled: normal tissue wound repair, unrestricted, unperturbed tumor growth, and tumor growth in a (radiation) damaged environment (the Tumor Bed Effect, TBE). These scenarios were used to test the dynamics of the system against known phenomena. Computer simulations are presented for each case. The mode is being extended to include the description of heterogeneous tumors, within which subpopulations can express differential degrees of growth activity. Heterogeneous tumor models, with and without emergent subpopulations, and models of terminal differentiation are also discussed. PMID:1933032

  16. Growth suppressing factor for endothelial cells exhibits tumor regressing activity.

    PubMed

    Usui, S; Matsunaga, T; Ukai, S; Kiho, T; Hirano, K

    1999-04-01

    Endothelium growth suppressing and tumor-regressing activities were copurified from the conditioned medium of P388D1 culture in the presence of 100 microg/ml carboxymethylated curdlan by a procedure including ammonium sulfate fractionation and six column chromatographies of Ceramic hydroxyapatite, Q-Sepharose, Sephacryl S-300 HR, Matrex PBA-30, PBE94, and anti-bovine serum albumin (anti-BSA) agarose. The intravenous administration of the purified growth suppressing factor for endothelial cells to sarcoma 180-bearing mouse caused a rapid decrease in the number of viable tumor cells in tumor lumps within 16 h. Immunohistochemical study showed that the intravenous injection of the purified factor to sarcoma 180-bearing mouse resulted in hemorrhagic disorder all over the tissue in the tumor lamp. Thus, the purified factor exhibited not only growth suppressing activity for endothelial cells but also tumor regressing activity at a concentration as low as about 15 ng/mouse. The purified factor significantly inhibited in vitro tubulogenesis of bovine artery, human umbilical vein, and adult human darmal microvascular endothelial cells on collagen gel at a concentration of about 5 ng/ml. After the tube formation of endothelial cells was completed on a collagen gel, the purified factor disrupted the tubes at a concentration of about 5 ng/ml within 48 h. These findings demonstrate that endothelium growth suppressing factor is a potent inhibitor of angiogenesis as well as the growth of endothelial cells, and may bring about the regression of a solid tumor by inhibiting angiogenesis. PMID:10328553

  17. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  18. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model.

    PubMed

    Zhang, Chenran; Gao, Liquan; Cai, Yuehong; Liu, Hao; Gao, Duo; Lai, Jianhao; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2016-04-01

    Tumor-associated macrophages (TAMs) play essential roles in tumor invasion and metastasis, and contribute to drug resistance. Clinical evidence suggests that TAM levels are correlated with local tumor relapse, distant metastasis, and poor prognosis in patients. In this study, we synthesized a TAM-targeted probe (IRD-αCD206) by conjugating a monoclonal anti-CD206 antibody with a near-infrared phthalocyanine dye. We then investigated the potential application of the IRD-αCD206 probe to near-infrared fluorescence (NIRF) imaging and photoimmunotherapy (PIT) of tumors resistant to treatment with the kinase inhibitor sorafenib. Sorafenib treatment had no effect on tumor growth in a 4T1 mouse model of breast cancer, but induced M2 macrophage polarization in tumors. M2 macrophage recruitment by sorafenib-treated 4T1 tumors was noninvasively visualized by in vivo NIRF imaging of IRD-αCD206. Small-animal single-photon emission computed tomography (SPECT)/CT and intratumoral microdistribution analysis indicated TAM-specific localization of the IRD-αCD206 probe in 4T1 tumors after several rounds of sorafenib treatment. Upon light irradiation, IRD-αCD206 suppressed the growth of sorafenib-resistant tumors. In vivo CT imaging and ex vivo histological analysis confirmed the inhibition of lung metastasis in mice by IRD-αCD206 PIT. These results demonstrate the utility of the IRD-αCD206 probe for TAM-targeted diagnostic imaging and treatment of tumors that are resistant to conventional therapeutics. PMID:26803407

  19. Fully human VEGFR2 monoclonal antibody BC001 attenuates tumor angiogenesis and inhibits tumor growth.

    PubMed

    Xuan, Zi-Xue; Li, Lin-Na; Zhang, Qi; Xu, Cheng-Wang; Yang, De-Xuan; Yuan, Ye; An, Ying-Hong; Wang, Shan-Shan; Li, Xiao-Wen; Yuan, Shou-Jun

    2014-12-01

    The critical role of VEGFR2 in tumor neovascularization and progression has allowed the design of clinically beneficial therapies based on it. Here we show that BC001, a new fully human anti-VEGFR2 monoclonal antibody, inhibits VEGF-stimulated endothelial cell migration, tube formation, and effectively suppressed the transdifferentiation of cancer stem cells into endothelial cells in vitro. Since BC001 exhibited no activity against the mouse VEGFR2 and mouse based study was required to confirm its efficacy in vivo, BC101, the mouse analogue of BC001, was developed. BC101 significantly attenuated angiogenesis according to Matrigel plug assay and resulted in ~80% growth inhibition of mouse B16F10 homograft tumors relative to vehicle control. Similarly, human analogue BC001 suppressed the growth of human xenograft tumors HCT116 and BGC823. Furthermore, immunohistochemical results showed reduced expression of CD31, VEGFR2 and Ki-67, as well as increased expression of Caspase 3 in BC001-treated tumor, which indicated BC001 was able to significantly decrease microvessel density, suppress proliferation and promote apoptosis. These results demonstrate the fully human VEGFR2 monoclonal antibody BC001 can work as an effective inhibitor of tumor angiogenesis and tumor growth both in vitro and in vivo. PMID:25269419

  20. Robo4 vaccines induce antibodies that retard tumor growth.

    PubMed

    Zhuang, Xiaodong; Ahmed, Forhad; Zhang, Yang; Ferguson, Henry J; Steele, Jane C; Steven, Neil M; Nagy, Zsuzsanna; Heath, Victoria L; Toellner, Kai-Michael; Bicknell, Roy

    2015-01-01

    Tumor endothelial specific expression of Robo4 in adults identifies this plasma membrane protein as an anti-cancer target for immunotherapeutic approaches, such as vaccination. In this report, we describe how vaccination against Robo4 inhibits angiogenesis and tumor growth. To break tolerance to the auto-antigen Robo4, mice were immunised with the extracellular domain of mouse Robo4, fused to the Fc domain of human immunoglobulin within an adjuvant. Vaccinated mice show a strong antibody response to Robo4, with no objectively detectable adverse effects on health. Robo4 vaccinated mice showed impaired fibrovascular invasion and angiogenesis in a rodent sponge implantation assay, as well as a reduced growth of implanted syngeneic Lewis lung carcinoma. The anti-tumor effect of Robo4 vaccination was present in CD8 deficient mice but absent in B cell or IgG1 knockout mice, suggesting antibody dependent cell mediated cytotoxicity as the anti-vascular/anti-tumor mechanism. Finally, we show that an adjuvant free soluble Robo4-carrier conjugate can retard tumor growth in carrier primed mice. These results point to appropriate Robo4 conjugates as potential anti-angiogenic vaccines for cancer patients. PMID:25348086

  1. Inhibiting Delta-6 Desaturase Activity Suppresses Tumor Growth in Mice

    PubMed Central

    He, Chengwei; Qu, Xiying; Wan, Jianbo; Rong, Rong; Huang, Lili; Cai, Chun; Zhou, Keyuan; Gu, Yan; Qian, Steven Y.; Kang, Jing X.

    2012-01-01

    Recent studies have shown that a tumor-supportive microenvironment is characterized by high levels of pro-inflammatory and pro-angiogenic eicosanoids derived from omega-6 (n−6) arachidonic acid (AA). Although the metabolic pathways (COX, LOX, and P450) that generate these n−6 AA eicosanoids have been targeted, the role of endogenous AA production in tumorigenesis remains unexplored. Delta-6 desaturase (D6D) is the rate-limiting enzyme responsible for the synthesis of n−6 AA and increased D6D activity can lead to enhanced n−6 AA production. Here, we show that D6D activity is upregulated during melanoma and lung tumor growth and that suppressing D6D activity, either by RNAi knockdown or a specific D6D inhibitor, dramatically reduces tumor growth. Accordingly, the content of AA and AA-derived tumor-promoting metabolites is significantly decreased. Angiogenesis and inflammatory status are also reduced. These results identify D6D as a key factor for tumor growth and as a potential target for cancer therapy and prevention. PMID:23112819

  2. A Big Bang model of human colorectal tumor growth

    PubMed Central

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A.; Salomon, Matthew P.; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F.; Shibata, Darryl; Curtis, Christina

    2015-01-01

    What happens in the early, still undetectable human malignancy is unknown because direct observations are impractical. Here we present and validate a “Big Bang” model, whereby tumors grow predominantly as a single expansion producing numerous intermixed sub-clones that are not subject to stringent selection, and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors revealed the absence of selective sweeps, uniformly high intra-tumor heterogeneity (ITH), and sub-clone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations, and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear born-to-be-bad, with sub-clone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH with significant clinical implications. PMID:25665006

  3. Hypoxia promotes tumor growth in linking angiogenesis to immune escape.

    PubMed

    Chouaib, Salem; Messai, Yosra; Couve, Sophie; Escudier, Bernard; Hasmim, Meriem; Noman, Muhammad Zaeem

    2012-01-01

    Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection. Tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival, and metastasis. Hypoxia-inducible factor (HIF-1) and vascular endothelial growth factor (VEGF) play a determinant role in promoting tumor cell growth and survival. Hypoxia contributes to immune suppression by activating HIF-1 and VEGF pathways. Accumulating evidence suggests a link between hypoxia and tumor tolerance to immune surveillance through the recruitment of regulatory cells (regulatory T cells and myeloid derived suppressor cells). In this regard, hypoxia (HIF-1α and VEGF) is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed. PMID:22566905

  4. Hypoxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape

    PubMed Central

    Chouaib, Salem; Messai, Yosra; Couve, Sophie; Escudier, Bernard; Hasmim, Meriem; Noman, Muhammad Zaeem

    2012-01-01

    Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection. Tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival, and metastasis. Hypoxia-inducible factor (HIF-1) and vascular endothelial growth factor (VEGF) play a determinant role in promoting tumor cell growth and survival. Hypoxia contributes to immune suppression by activating HIF-1 and VEGF pathways. Accumulating evidence suggests a link between hypoxia and tumor tolerance to immune surveillance through the recruitment of regulatory cells (regulatory T cells and myeloid derived suppressor cells). In this regard, hypoxia (HIF-1α and VEGF) is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed. PMID:22566905

  5. Adipose-derived stem cells promote tumor initiation and accelerate tumor growth by interleukin-6 production

    PubMed Central

    Wei, Hong-Jian; Zeng, Rong; Lu, Jui-Hua; Lai, Wen-Fu T.; Chen, Wei-Hong; Liu, Hen-Yu; Chang, Ya-Ting; Deng, Win-Ping

    2015-01-01

    Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention. Here, we show that ADSCs enhance sphere formation and in vivo tumor initiation of breast and colon cancer cells. In co-culture, ADSCs induced several stem cell markers in cancer cells. ADSCs also accelerated tumor growth. Interaction of ADSCs and cancer cells stimulated secretion of interlukin-6 in ADSCs, which in turn acted in a paracrine manner on cancer cells to enhance their malignant properties. Interleukin-6 regulated stem cell-related genes and activated JAK2/STAT3 in cancer cells. We suggest that ADSCs may enhance tumor initiation and promotion. PMID:25797257

  6. Genetics of Ascites Resistance and Tolerance in Chicken: A Random Regression Approach

    PubMed Central

    Kause, Antti; van Dalen, Sacha; Bovenhuis, Henk

    2012-01-01

    Resistance and tolerance are two complementary mechanisms to reduce the detrimental effects of parasites, pathogens, and production diseases on host performance. Using body weight and ascites data on domesticated chicken Gallus gallus domesticus, we demonstrate the use of random regression animal model and covariance functions to estimate genetic parameters for ascites resistance and tolerance and illustrate the way individual variation in resistance and tolerance induce both genotype re-ranking and changes in variation of host performance along increasing ascites severity. Tolerance to ascites displayed significant genetic variance, with the estimated breeding values of tolerance slope ranging from strongly negative (very sensitive genotype) to weakly negative (less sensitive). Resistance to ascites had heritability of 0.34. Both traits are hence expected to respond to selection. The two complementary defense strategies, tolerance and resistance, were genetically independent. Ascites induced changes to the correlations between ascites resistance and body weight, with the genetic correlations being weak when birds were ascites-free but moderately negative when both healthy and affected birds were present. This likely results because ascites reduces growth, and thus high ascites incidence is genetically related to low adult body weight. Although ascites induced elevated phenotypic and genetic variances in body weight of affected birds, heritability displayed negligible changes across healthy and affected birds. Ascites induced moderate genotype re-ranking in body weight, with the genetic correlation of healthy birds with mildly affected birds being unity but with severely affected birds 0.45. This study demonstrates a novel approach for exploring genetics of defense traits and their impact on genotype-by-environment interactions. PMID:22670223

  7. Joint fitting reveals hidden interactions in tumor growth.

    PubMed

    Barberis, L; Pasquale, M A; Condat, C A

    2015-01-21

    Tumor growth is often the result of the simultaneous development of two or more cancer cell populations. Crucial to the system evolution are the interactions between these populations. To obtain information about these interactions we apply the recently developed vector universality (VUN) formalism to various instances of competition between tumor populations. The formalism allows us (a) to quantify the growth mechanisms of a HeLa cell colony, describing the phenotype switching responsible for its fast expansion, (b) to reliably reconstruct the evolution of the necrotic and viable fractions in both in vitro and in vivo tumors using data for the time dependences of the total masses alone, and (c) to show how the shedding of cells leading to subspheroid formation is beneficial to both the spheroid and subspheroid populations, suggesting that shedding is a strong positive influence on cancer dissemination. PMID:25451531

  8. Development, Selection, and Validation of Tumor Growth Models

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Lima, Ernesto; Oden, J. Tinsley

    In recent years, a multitude of different mathematical approaches have been taken to develop multiscale models of solid tumor growth. Prime successful examples include the lattice-based, agent-based (off-lattice), and phase-field approaches, or a hybrid of these models applied to multiple scales of tumor, from subcellular to tissue level. Of overriding importance is the predictive power of these models, particularly in the presence of uncertainties. This presentation describes our attempt at developing lattice-based, agent-based and phase-field models of tumor growth and assessing their predictive power through new adaptive algorithms for model selection and model validation embodied in the Occam Plausibility Algorithm (OPAL), that brings together model calibration, determination of sensitivities of outputs to parameter variances, and calculation of model plausibilities for model selection. Institute for Computational Engineering and Sciences.

  9. Building Context with Tumor Growth Modeling Projects in Differential Equations

    ERIC Educational Resources Information Center

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  10. Building Context with Tumor Growth Modeling Projects in Differential Equations

    ERIC Educational Resources Information Center

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss

  11. Dietary branched-chain amino acid (BCAA) and tumor growth

    SciTech Connect

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-03-05

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10/sup 6/ viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with /sup 14/C-Tyrosine and /sup 3/H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of /sup 14/C and /sup 3/H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the /sup 3/H and /sup 14/C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The /sup 3/H incorporation dropped in both diet groups at days 6 and 9 but the /sup 14/C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA.

  12. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    PubMed Central

    2010-01-01

    Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF) is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this effect. Moreover, antalarmin suppressed neoangiogenesis in 4T1 tumors in vivo. Conclusion This is the first report demonstrating that peripheral CRF, at least in part, mediates the tumor-promoting effects of stress and implicates CRF in SMAD2 and β-catenin expression. PMID:20875132

  13. Genetic parameters of ascites-related traits in broilers: correlations with feed efficiency and carcase traits.

    PubMed

    Pakdel, A; van Arendonk, J A M; Vereijken, A L J; Bovenhuis, H

    2005-02-01

    (1) Pulmonary hypertension syndrome followed by ascites is a metabolic disorder in broilers that occurs more often in fast-growing birds and at cool temperatures. (2) Knowledge of the genetic relationships among ascites-related traits and performance traits like carcase traits or feed efficiency traits is required to design breeding programmes that aim to improve the degree of resistance to ascites syndrome as well as production traits. The objective of this study was to estimate these genetic correlations. (3) Three different experiments were set up to measure ascites-related traits (4202 birds), feed efficiency traits (2166 birds) and carcase traits (2036 birds). The birds in different experiments originated from the same group of parents, which enabled the estimation of genetic correlations among different traits. (4) The genetic correlation of body weight (BW) measured under normal conditions and in the carcase experiment with the ascites indicator trait of right ventricle to total ventricle ratio (RV:TV) measured under cold conditions was 0.30. The estimated genetic correlation indicated that single-trait selecting for BW leads to an increase in occurrence of the ascites syndrome but that there are realistic opportunities of multi-trait selection of birds for improved BW and resistance to ascites. (5) Weak but positive genetic relationships were found between feed efficiency and ascites-related traits suggesting that more efficient birds tend to be slightly more susceptible to ascites. (6) The relatively low genetic correlation between BW measured in the carcase or in the feed efficiency experiments and BW measured in the ascites experiment (0.49) showed considerable genotype by environment interaction. (7) These results indicate that birds with high genetic potential for growth rate under normal temperature conditions have lower growth rate under cold-stress conditions due to ascites. PMID:15835251

  14. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and ERK signaling pathways

    PubMed Central

    Yi, Tingfang; Cho, Sung-Gook; Yi, Zhengfang; Pang, Xiufeng; Rodriguez, Melissa; Wang, Ying; Sethi, Gautam; Aggarwal, Bharat B.; Liu, Mingyao

    2008-01-01

    Thymoquinone, a component derived from the medial plant Nigella sativa, has been used for medical purposes for more than two thousands of years. Recent studies reported that thymoquinone exhibited inhibitory effects on cell proliferation of many cancer cell lines and hormone-refractory prostate cancer by suppressing androgen receptor and E2F-1. Whether thymoquinone inhibits angiogenesis, the critical step of tumor growth and metastasis, is still unknown. In this study, we found that thymoquinone effectively inhibited human umbilical vein endothelial cell (HUVEC) migration, invasion, and tube formation. Thymoquinone inhibited cell proliferation and suppressed the activation of AKT and ERK. Thymoquinone blocked angiogenesis in vitro and in vivo, prevented tumor angiogenesis in a xenograft human prostate cancer (PC3) model in mouse and inhibited human prostate tumor growth at low dosage with almost no chemotoxicitical side effects. Furthermore, we observed that endothelial cells were more sensitive to thymoquinone-induced cell apoptosis, cell proliferation and migration inhibition compared to PC3 cancer cells. Thymoquinone inhibited VEGF-induced ERK activation, but showed no inhibitory effects on VEGF receptor 2 activation. Overall, our results indicate that thymoquinone inhibits tumor angiogenesis and tumor growth, and could be used as a potential drug candidate for cancer therapy. PMID:18644991

  15. Liposomal simvastatin inhibits tumor growth via targeting tumor-associated macrophages-mediated oxidative stress.

    PubMed

    Alupei, Marius Costel; Licarete, Emilia; Patras, Laura; Banciu, Manuela

    2015-01-28

    Statins possess antitumor actions at doses 100- to 500-fold higher than those needed to lower cholesterol levels. Thus, the antitumor efficacy of statins could be improved greatly by using tumor-targeted delivery systems. Therefore the present work aims to investigate the antitumor activity of long-circulating liposome-encapsulated simvastatin (LCL-SIM) versus free SIM in B16.F10 murine melanoma-bearing mice. Our results showed that LCL-SIM inhibits strongly the B16.F10 melanoma growth (by 85%) whereas free SIM was ineffective. Moreover, the antitumor activity of LCL-SIM depends on the presence of functional tumor-associated macrophages (TAM) in tumor tissue and is mainly based on the reduction of the TAM-mediated oxidative stress as well as of the production of the hypoxia-inducible factor 1 α (HIF-1 α) in tumors. In conclusion, our findings suggest that the antitumor activity of LCL-SIM on B16.F10 melanoma growth is a result of the tumor-targeting property of the liposome formulation and is tightly dependent on the presence of TAM in tumor tissue. PMID:25444912

  16. Dietary rice component, Oryzanol, inhibits tumor growth in tumor-bearing Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scope: We investigated the effects of rice bran and components on tumor growth in mice. Methods and results: Mice fed standard diets supplemented with rice bran, '-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet fo...

  17. Macrophages Reprogrammed In Vitro Towards the M1 Phenotype and Activated with LPS Extend Lifespan of Mice with Ehrlich Ascites Carcinoma

    PubMed Central

    Kalish, Sergey V.; Lyamina, Svetlana V.; Usanova, Elena A.; Manukhina, Eugenia B.; Larionov, Nikolai P.; Malyshev, Igor Y.

    2015-01-01

    Background The majority of tumors trigger macrophage reprogramming from an anti-tumor M1 phenotype towards a pro-tumor M2 phenotype. The M2 phenotype promotes tumor growth. We hypothesized that increasing the number of M1 macrophages in a tumor would limit carcinogenesis and extend the lifespan of the tumor host. The aim of this study was to verify this hypothesis in Ehrlich ascites carcinoma (EAC). The objectives were to evaluate effects of 1) EAC on a macrophage phenotype and NO-producing macrophage activity in vivo; 2) ascitic fluid from mice with EAC on a macrophage phenotype and NO-producing macrophage activity in vitro; and 3) in vitro reprogrammed M1 macrophages on lifespan of mice with EAC. Material/Methods The study was conducted using C57BL/6J mice. Results Concentration of nitrite, a stable NO metabolite and an index of NO production, was measured spectrophotometrically. Shifts of macrophage phenotype were assessed by changes in NO production as well as by amounts of CD80, a marker of M1 phenotype, and CD206, a marker of M2 phenotype. The CD markers were measured by flow cytometry. Macrophages were reprogrammed towards the M1 phenotype using two reprogramming factors: 0% FBS and 20 ng/ml IFN-?. The study results showed that 1) EAC inhibited the macrophage NO production in vivo and reprogrammed macrophages towards the M2 phenotype; 2) ascitic fluid of mice with EAC inhibited the macrophage NO production in vitro and reprogrammed macrophages towards the M2 phenotype; and 3) injection of in vitro reprogrammed M1 macrophages into mice with EAC significantly increased the lifespan of mice. Conclusions These findings suggest that promising biotechnologies for restriction of tumor growth could be developed based on the in vitro macrophage reprogramming. PMID:26471744

  18. Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models

    PubMed Central

    Gali-Muhtasib, Hala; Ocker, Matthias; Kuester, Doerthe; Krueger, Sabine; El-Hajj, Zeina; Diestel, Antje; Evert, Matthias; El-Najjar, Nahed; Peters, Brigitte; Jurjus, Abdo; Roessner, Albert; Schneider-Stock, Regine

    2008-01-01

    Abstract We have shown that thymoquinone (TQ) is a potent antitumor agent in human colorectal cancer cells. In this study, we evaluated TQ's therapeutic potential in two different mice colon cancer models [1,2-dimethyl hydrazine (DMH) and xenografts]. We also examined TQ effects on the growth of C26 mouse colorectal carcinoma spheroids and assessed tumor invasion in vitro. Mice were treated with saline, TQ, DMH, or combinations once per week for 30 weeks and the multiplicity, size and distribution of aberrant crypt foci (ACF) and tumors were determined at weeks 10, 20 and 30. TQ injected intraperitoneally (i.p.) significantly reduced the numbers and sizes of ACF at week 10; ACF numbers were reduced by 86%. Tumor multiplicity was reduced at week 20 from 17.8 in the DMH group to 4.2 in mice injected with TQ. This suppression was observed at week 30 and was long-term; tumors did not re-grow even when TQ injection was discontinued for 10 weeks. In a xenograft model of HCT116 colon cancer cells, TQ significantly (P < 0.05) delayed the growth of the tumor cells. Using a matrigel artificial basement membrane invasion assay, we demonstrated that sub-cyto-toxic doses of TQ (40?M) decreased C26 cell invasion by 50% and suppressed growth in three-dimensional spheroids. Apoptotic signs seen morphologically were increased significantly in TQ-treated spheroids. TUNEL staining of xenografts and immunostaining for caspase 3 cleavage in DMH tumors confirmed increased apoptosis in mouse tumors in response to TQ. These data should encourage further in vivo testing and support the potential use of TQ as a therapeutic agent in human colorectal cancer. PMID:18366456

  19. Mathematical Modeling of Interleukin-35 Promoting Tumor Growth and Angiogenesis

    PubMed Central

    Liao, Kang-Ling; Bai, Xue-Feng; Friedman, Avner

    2014-01-01

    Interleukin-35 (IL-35), a cytokine from the Interleukin-12 cytokine family, has been considered as an anti-inflammatory cytokine which promotes tumor progression and tumor immune evasion. It has also been demonstrated that IL-35 is secreted by regulatory T cells. Recent mouse experiments have shown that IL-35 produced by cancer cells promotes tumor growth via enhancing myeloid cell accumulation and angiogenesis, and reducing the infiltration of activated CD8 T cells into tumor microenvironment. In the present paper we develop a mathematical model based on these experimental results. We include in the model an anti-IL-35 drug as treatment. The extended model (with drug) is used to design protocols of anti-IL-35 injections for treatment of cancer. We find that with a fixed total amount of drug, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing. We also find that the percentage of tumor reduction under anti-IL-35 treatment improves when the production of IL-35 by cancer is increased. PMID:25356878

  20. Molecular Mechanism Linking BRCA1 Dysfunction to High Grade Serous Epithelial Ovarian Cancers with Peritoneal Permeability and Ascites

    PubMed Central

    Desai, A; Xu, J; Aysola, K; Akinbobuyi, O; White, M; Reddy, VE; Okoli, J; Clark, C; Partridge, EE; Childs, Ed; Beech, DJ; Rice, MV; Reddy, ESP; Rao, VN

    2015-01-01

    Ovarian cancer constitutes the second most common gynecological cancer with a five-year survival rate of 40%. Among the various histotypes associated with hereditary ovarian cancer, high-grade serous epithelial ovarian carcinoma (HGSEOC) is the most predominant and women with inherited mutations in BRCA1 have a lifetime risk of 40–60%. HGSEOC is a challenge for clinical oncologists, due to late presentation of patient, diagnosis and high rate of relapse. Ovarian tumors have a wide range of clinical presentations including development of ascites as a result of deregulated endothelial function thereby causing increased vascular permeability of peritoneal vessels. The molecular mechanisms remain elusive. Studies have shown that fallopian tube cancers develop in women with BRCA1 gene mutations more often than previously suspected. Recent studies suggest that many primary peritoneal cancers and some high-grade serous epithelial ovarian carcinomas actually start in the fallopian tubes. In this article we have addressed the molecular pathway of a recently identified potential biomarker Ubc9 whose deregulated expression due to BRCA1 dysfunction can result in HGSEOC with peritoneal permeability and formation of ascites. We also discuss the role of downstream targets Caveolin-1 and Vascular Endothelial Growth Factor (VEGF) in the pathogenesis of ascites in ovarian carcinomas. Finally we hypothesize a signaling axis between Ubc9 over expression, loss of Caveolin-1 and induction of VEGF in BRCA1 mutant HGSEOC cells. We suggest that Ubc9-mediated stimulation of VEGF as a novel mechanism underlying ovarian cancer aggressiveness and ascites formation. Agents that target Ubc9 and VEGF signaling may represent a novel therapeutic strategy to impede peritoneal growth and spread of HGSEOC. PMID:26665166

  1. Netrin-4 regulates angiogenic responses and tumor cell growth

    SciTech Connect

    Nacht, Mariana; St Martin, Thia B.; Byrne, Ann; Klinger, Katherine W.; Teicher, Beverly A.; Madden, Stephen L. Jiang, Yide

    2009-03-10

    Netrin-4 is a 628 amino acid basement membrane component that promotes neurite elongation at low concentrations but inhibits neurite extension at high concentrations. There is a growing body of literature suggesting that several molecules, including netrins, are regulators of both neuronal and vascular growth. It is believed that molecules that guide neural growth and development are also involved in regulating morphogenesis of the vascular tree. Further, netrins have recently been implicated in controlling epithelial cell branching morphogenesis in the breast, lung and pancreas. Characterization of purified netrin-4 in in vitro angiogenesis assays demonstrated that netrin-4 markedly inhibits HMVEC migration and tube formation. Moreover, netrin-4 inhibits proliferation of a variety of human tumor cells in vitro. Netrin-4 has only modest effects on proliferation of endothelial and other non-transformed cells. Netrin-4 treatment results in phosphorylation changes of proteins that are known to control cell growth. Specifically, Phospho-Akt-1, Phospho-Jnk-2, and Phospho-c-Jun are reduced in tumor cells that have been treated with netrin-4. Together, these data suggest a potential role for netrin-4 in regulating tumor growth.

  2. The role of mechanical forces in tumor growth and therapy.

    PubMed

    Jain, Rakesh K; Martin, John D; Stylianopoulos, Triantafyllos

    2014-07-11

    Tumors generate physical forces during growth and progression. These physical forces are able to compress blood and lymphatic vessels, reducing perfusion rates and creating hypoxia. When exerted directly on cancer cells, they can increase cells' invasive and metastatic potential. Tumor vessels-while nourishing the tumor-are usually leaky and tortuous, which further decreases perfusion. Hypoperfusion and hypoxia contribute to immune evasion, promote malignant progression and metastasis, and reduce the efficacy of a number of therapies, including radiation. In parallel, vessel leakiness together with vessel compression causes a uniformly elevated interstitial fluid pressure that hinders delivery of blood-borne therapeutic agents, lowering the efficacy of chemo- and nanotherapies. In addition, shear stresses exerted by flowing blood and interstitial fluid modulate the behavior of cancer and a variety of host cells. Taming these physical forces can improve therapeutic outcomes in many cancers. PMID:25014786

  3. The role of mechanical forces in tumor growth and therapy

    PubMed Central

    Jain, Rakesh K.; Martin, John D.; Stylianopoulos, Triantafyllos

    2014-01-01

    Tumors generate physical forces during growth and progression. These physical forces are able to compress blood and lymphatic vessels, reducing perfusion rates and creating hypoxia. When exerted directly on cancer cells, they can increase their invasive and metastatic potential. Tumor vessels - while nourishing the tumor - are usually leaky and tortuous, which further decreases perfusion. Hypo-perfusion and hypoxia contribute to immune-evasion, promote malignant progression and metastasis, and reduce the efficacy of a number of therapies, including radiation. In parallel, vessel leakiness together with vessel compression cause a uniformly elevated interstitial fluid pressure that hinders delivery of blood-borne therapeutic agents, lowering the efficacy of chemo- and nano-therapies. In addition, shear stresses exerted by flowing blood and interstitial fluid modulate the behavior of cancer and a variety of host cells. Taming these physical forces can improve therapeutic outcomes in many cancers. PMID:25014786

  4. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro

    PubMed Central

    Skardal, Aleksander; Devarasetty, Mahesh; Rodman, Christopher; Atala, Anthony; Soker, Shay

    2015-01-01

    Current in vitro models for tumor growth and metastasis are poor facsimiles of in vivo cancer physiology and thus, are not optimal for anti-cancer drug development. Three dimensional (3D) tissue organoid systems, which utilize human cells in a tailored microenvironment, have the potential to recapitulate in vivo conditions and address the drawbacks of current tissue culture dish 2D models. In this study, we created liver-based cell organoids in a rotating wall vessel bioreactor. The organoids were further inoculated with colon carcinoma cells in order to create liver-tumor organoids for in vitro modeling of liver metastasis. Immunofluorescent staining revealed notable phenotypic differences between tumor cells in 2D and inside the organoids. In 2D they displayed an epithelial phenotype, and only after transition to the organoids did the cells present with a mesenchymal phenotype. The cell surface marker expression results suggested that WNT pathway might be involved in the phenotypic changes observed between cells in 2D and organoid conditions, and may lead to changes in cell proliferation. Manipulating the WNT pathway with an agonist and antagonist showed significant changes in sensitivity to the anti-proliferative drug 5-fluoruracil. Collectively, the results show the potential of in vitro 3D liver-tumor organoids to serve as a model for metastasis growth and for testing the response of tumor cells to current and newly discovered drugs. PMID:25777294

  5. [Inhibitory effect of tumor growth by methionine-enkephalin].

    PubMed

    Mascarenhas, G; Quirico-Santos, T

    1992-03-01

    Methionine-enkephalin (Met-Enk) is an endogenous opioid pentapeptide derived from the prohormone proenkephalin A, present in neuroendocrine and hematopoietic cells. Enkephalins are known to play an important role on the processes of induction, activation and control of immunomodulatory events. Met-Enk has been considered a potent antitumoral agent. The present study shows that Met-Enk exerts an inhibitory effect on the growth of a macrophage derived fibrous histiocytoma (MC-II) inoculated intradermally into BALB/cJ mice. Such effect was mainly influenced by the protocol, route of administration and concentration of Met-Enk used for treatment. Neither higher doses of Met-Enk injected intracerebrally or subcutaneously, nor the use of various protocols of treatment, did modify the process of tumorigenesis. In contrast, low dose (0.25 mg/kg) of Met-Enk injected intracerebrally together with tumor inoculation, significantly reduced tumor growth and prolonged survival rate. PMID:1339154

  6. The role of the microenvironment in tumor growth and invasion

    PubMed Central

    Kim, Yangjin; Stolarska, Magdalena A.; Othmer, Hans G.

    2011-01-01

    Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’. It Takes a Village – Hilary Clinton PMID:21736894

  7. Tumor growth and its effect on Magnetic Resonance Imaging signal

    NASA Astrophysics Data System (ADS)

    Cersosimo, Homero; Colon, Jorge; Ramos, Elio; Zypman, Fredy

    2000-03-01

    The goal of this project is twofold. On one hand, we have developed computer code based on simple probabilistic rules to model the growth (or shrinking) of cancerigenous tissue. We assume that initially there exists a differentiated cell, which has a time- dependent probability of reproducing. If it did reproduce, then we assume that it has a finite probability of dying before reproducing again. This simple model falls into the Eden-type kind, and presents appropriate bulk growth characteristics, as it follows Gompert observational law. We propose new methods of geometrical characterization of the tumor. Besides its total mass, we also consider higher multipolar order of mass distribution and surface fractal dimension. In addition, we study how the geometrical properties of the tumor affect the Magnetic Resonance Imaging (MRI) signal. To this end, we consider a human brain in the presence of radiofrequency fields. We calculate the MRI image of this object. Then, we introduce a tumor in the white-gray matter region and reobtain the MRI image. We associate the signal changes with the geometrical properties of the tumor.

  8. Integrative models of vascular remodeling during tumor growth

    PubMed Central

    Rieger, Heiko; Welter, Michael

    2015-01-01

    Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply, continuous growth, and gain of metastatic potential. Angiogenesis (the formation of new blood vessels), vessel cooption (the integration of existing blood vessels into the tumor vasculature), and vessel regression remodel the healthy vascular network into a tumor-specific vasculature that is in many respects different from the hierarchically organized arterio-venous blood vessel network of the host tissues. Integrative models based on detailed experimental data and physical laws implement in silico the complex interplay of molecular pathways, cell proliferation, migration, and death, tissue microenvironment, mechanical and hydrodynamic forces, and the fine structure of the host tissue vasculature. With the help of computer simulations high-precision information about blood flow patterns, interstitial fluid flow, drug distribution, oxygen and nutrient distribution can be obtained and a plethora of therapeutic protocols can be tested before clinical trials. In this review, we give an overview over the current status of integrative models describing tumor growth, vascular remodeling, blood and interstitial fluid flow, drug delivery, and concomitant transformations of the microenvironment. © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. PMID:25808551

  9. Treatment of cancerous ascites and radical gastrectomy with intraperitoneal hyperthermic double-distilled water and cis-diaminodichloro-platinum perfusion

    PubMed Central

    Chen, Zhi-Xing; Chen, Jia-Ping; Chen, Zhong; Peng, De-Shu; Zhen, Ji-Xiang; Tan, Jian-San

    1997-01-01

    AIM: To study the therapeutic effect of intraperitoneal hyperthermic double-distilled water and cis-diaminodichloro-platinum (DDP) perfusion for cancerous ascites and radical gastrectomy. METHODS: LACA mice were injected peritoneally with H22 cancer cells (2 × 107 tumor cells). Five days later, the mice received treatments with either intraperitoneal perfusion of 37 °C isotonic fluid (group I), or 43 °C simple hyperthermic double-distilled water (group II), isotonic fluid (group III), DDP (group IV) or a combination of the hyperthermic double-distilled water with DDP (group V). A clinical experiment with intraperitoneal hyperthermic double-distilled water perfusion with DDP was carried out from September 1991 through September 1993 with 32 advanced gastric cancer patients who had undergone radical gastrectomy. RESULTS: In comparison with the untreated control group of cancer cell-bearing LACA mice, the mice in all treatment groups showed near complete obliteration of cancer cells in the peritoneal cavity, markedly reduced ascites, prolonged survival times, and reduced growth of peritoneal cancerous nodes. In the clinical experiment, all 32 patients with advanced carcinoma had achieved satisfactory results at the 1-year follow-up, but had unsatisfactory results at the 2-year follow-up. CONCLUSION: The intraperitoneal hyperthermic double-distilled water perfusion with DDP inhibited the occurrence of ascites in LACA mice bearing cancer cells, and prolonged the lifetime of patients with gastric cancer who had undergone radical gastrectomy.

  10. [Pancreatic ascites. Presentation of a case].

    PubMed

    Carrillo Penso, N; Mendez Contreras, E

    1980-01-01

    Pancreatic ascites in a 13 year old female is described. The diagnosis was suspected by the presence of ascites with an elevated fluid amilase level and protein content. Ascites was successfully treated by a Roux-in-Y-pancreatojejunostomy. PMID:6161064

  11. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity.

    PubMed

    Zelenay, Santiago; van der Veen, Annemarthe G; Böttcher, Jan P; Snelgrove, Kathryn J; Rogers, Neil; Acton, Sophie E; Chakravarty, Probir; Girotti, Maria Romina; Marais, Richard; Quezada, Sergio A; Sahai, Erik; Reis e Sousa, Caetano

    2015-09-10

    The mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant Braf(V600E) mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in Braf(V600E) mouse melanoma cells, as well as in Nras(G12D) melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients. PMID:26343581

  12. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth.

    PubMed

    Sano, Michael B; Arena, Christopher B; Bittleman, Katelyn R; DeWitt, Matthew R; Cho, Hyung J; Szot, Christopher S; Saur, Dieter; Cissell, James M; Robertson, John; Lee, Yong W; Davalos, Rafael V

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  13. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  14. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    PubMed Central

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; DeWitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  15. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity

    PubMed Central

    Zelenay, Santiago; van der Veen, Annemarthe G.; Böttcher, Jan P.; Snelgrove, Kathryn J.; Rogers, Neil; Acton, Sophie E.; Chakravarty, Probir; Girotti, Maria Romina; Marais, Richard; Quezada, Sergio A.; Sahai, Erik; Reis e Sousa, Caetano

    2015-01-01

    Summary The mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant BrafV600E mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in BrafV600E mouse melanoma cells, as well as in NrasG12D melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients. PMID:26343581

  16. Ascites in broilers. 1. Experimental factors evoking symptoms related to ascites.

    PubMed

    Scheele, C W; De Wit, W; Frankenhuis, M T; Vereijken, P F

    1991-05-01

    Male broilers of two genetically related stocks with divergent growth rates and feed conversion ratios were used to study metabolic backgrounds on the occurrence of pulmonary hypertension, heart failure, hypoxemia, and ascites in poultry. An experiment with a 2 x 2 x 2 x 2 factorial split-plot arrangement of treatments with 96 groups of 12 broilers was performed. Effects of stock and environmental factors such as ambient temperature, dietary fat, and dietary energy on performance, energy metabolism, oxygen consumption, hematocrit values, and mortality were investigated in broilers from 1 to 5 wk of age. Dissimilar responses of the two stocks to environmental factors reflected genotype by environment interactions and revealed metabolic disorders related to heart failure and ascites. The results indicated that in the stock with the lower feed conversion ratio, a fast protein accretion was achieved together with a reduced ability to convert chemical energy to metabolic heat and to deposit body fat directly from ingested fat. Birds with a low feed conversion ratio show less flexibility in metabolic adaptation to a changing environment, which can account for the development of ascites. PMID:1852684

  17. In-vivo visualization of melanoma tumor microvessels and blood flow velocity changes accompanying tumor growth

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke

    2012-11-01

    We demonstrate that using micro multipoint laser Doppler velocimetry (μ-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by μ-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.

  18. Environmental enrichment does not impact on tumor growth in mice

    PubMed Central

    Kershaw, Michael H

    2013-01-01

    The effect of environmental enrichment (EE) on a variety of physiologic and disease processes has been studied in laboratory mice. During EE, a large group of mice are housed in larger cages than the standard cage and are given toys and equipment, enabling more social contact, and providing a greater surface area per mouse, and a more stimulating environment. Studies have been performed into the effect of EE on neurogenesis, brain injury, cognitive capacity, memory, learning, neuronal pathways, diseases such as Alzheimer’s, anxiety, social defeat, emotionality, depression, drug addiction, alopecia, and stereotypies. In the cancer field, three papers have reported effects on mice injected with tumors and housed in enriched environments compared with those housed in standard conditions. One paper reported a significant decrease in tumor growth in mice in EE housing. We attempted to replicate this finding in our animal facility, because the implications of repeating this finding would have profound implications for how we house all our mice in our studies on cancer. We were unable to reproduce the results in the paper in which B16F10 subcutaneous tumors of mice housed in EE conditions were smaller than those of mice housed in standard conditions. The differences in results could have been due to the different growth rate of the B16F10 cultures from the different laboratories, the microbiota of the mice housed in the two animal facilities, variations in noise and handling between the two facilities, food composition, the chemical composition of the cages or the detergents used for cleaning, or a variety of other reasons. EE alone does not appear to consistently result in decreased tumor growth, but other factors would appear to be able to counteract or inhibit the effects of EE on cancer progression. PMID:24555065

  19. Environmental enrichment does not impact on tumor growth in mice.

    PubMed

    Westwood, Jennifer A; Darcy, Phillip K; Kershaw, Michael H

    2013-01-01

    The effect of environmental enrichment (EE) on a variety of physiologic and disease processes has been studied in laboratory mice. During EE, a large group of mice are housed in larger cages than the standard cage and are given toys and equipment, enabling more social contact, and providing a greater surface area per mouse, and a more stimulating environment. Studies have been performed into the effect of EE on neurogenesis, brain injury, cognitive capacity, memory, learning, neuronal pathways, diseases such as Alzheimer's, anxiety, social defeat, emotionality, depression, drug addiction, alopecia, and stereotypies. In the cancer field, three papers have reported effects on mice injected with tumors and housed in enriched environments compared with those housed in standard conditions. One paper reported a significant decrease in tumor growth in mice in EE housing. We attempted to replicate this finding in our animal facility, because the implications of repeating this finding would have profound implications for how we house all our mice in our studies on cancer. We were unable to reproduce the results in the paper in which B16F10 subcutaneous tumors of mice housed in EE conditions were smaller than those of mice housed in standard conditions. The differences in results could have been due to the different growth rate of the B16F10 cultures from the different laboratories, the microbiota of the mice housed in the two animal facilities, variations in noise and handling between the two facilities, food composition, the chemical composition of the cages or the detergents used for cleaning, or a variety of other reasons. EE alone does not appear to consistently result in decreased tumor growth, but other factors would appear to be able to counteract or inhibit the effects of EE on cancer progression. PMID:24555065

  20. Coccidioidomycosis Masquerading as Eosinophilic Ascites

    PubMed Central

    Alavi, Kourosh; Atla, Pradeep R.; Haq, Tahmina; Sheikh, Muhammad Y.

    2015-01-01

    Endemic to the southwestern parts of the United States, coccidioidomycosis, also known as “Valley Fever,” is a common fungal infection that primarily affects the lungs in both acute and chronic forms. Disseminated coccidioidomycosis is the most severe but very uncommon and usually occurs in immunocompromised individuals. It can affect the central nervous system, bones, joints, skin, and, very rarely, the abdomen. This is the first case report of a patient with coccidioidal dissemination to the peritoneum presenting as eosinophilic ascites (EA). A 27-year-old male presented with acute abdominal pain and distention from ascites. He had eosinophilia of 11.1% with negative testing for stool studies, HIV, and tuberculosis infection. Ascitic fluid exam was remarkable for low serum-ascites albumin gradient (SAAG), PMN count >250/mm3, and eosinophils of 62%. Abdominal imaging showed thickened small bowel and endoscopic testing negative for gastric and small bowel biopsies. He was treated empirically for spontaneous bacterial peritonitis, but no definitive diagnosis could be made until coccidioidal serology returned positive. We noted complete resolution of symptoms with oral fluconazole during outpatient follow-up. Disseminated coccidioidomycosis can present in an atypical fashion and may manifest as peritonitis with low SAAG EA. The finding of EA in an endemic area should raise the suspicion of coccidioidal dissemination. PMID:26266062

  1. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  2. Differential growth and responsiveness to cancer therapy of tumor cells in different environments.

    PubMed

    Alsaggar, Mohammad; Yao, Qian; Cai, Houjian; Liu, Dexi

    2016-02-01

    Tumor metastasis often confers poor prognosis for cancer patients due to lack of comprehensive strategy in dealing with cells growing in different environment. Current anticancer therapies have incomplete effectiveness because they were designed assuming metastatic tumors behave similarly in different organs. We hypothesize that tumors growing in different sites are biologically heterogeneous in growth potential, as well as in tumor response to anti-cancer therapies. To test this hypothesis, we have developed a multi-organ tumor growth model using the hydrodynamic cell delivery method to establish simultaneous and quantifiable tumor growth in the liver, lungs and kidneys of mice. We demonstrated that growth rate of melanoma tumor in the liver is higher than that of the lungs and kidneys. Tumors in the lungs and kidneys grew minimally at the early stage and aggressively thereafter. Tumors in different organs were also heterogeneous in response to chemotherapy and immune gene therapy using dacarbazine and interferon beta gene, respectively. Lung tumors responded to chemotherapy better than tumors in the liver, but showed minimal response to interferon beta gene therapy, compared to tumors in the liver and kidneys. We also confirmed differential tumor growth of the metastatic colon cancer in mice. Our results point out the importance of a better understanding of the differences in tumor growing in diverse environments. The biological heterogeneity of metastatic tumors demonstrated in this study necessitates establishing new drug screening strategies that take into account the environmental difference at the sites of tumor growth. PMID:26476830

  3. Hybrid Cellular Continuum Simulations of Heterogeneity in Tumor Growth

    NASA Astrophysics Data System (ADS)

    Hentschel, H. G. E.; Family, Fereydoon; van Meir, Erwin; Grossniklaus, Hans

    2010-03-01

    We will discuss simulations of pre-angiogenic tumor growth using a class of hybrid cellular-continuum models. A lattice site can be occupied either by a cell of a specific tumor cell population or consist of extracellular matrix. The local concentrations of oxygen is described by continuum reaction-diffusion equations. Dynamic linked lists of cells are evolved in time and contain information on cell type, position, age, concentration of oxygen at cell site. When cells proliferate via mitosis or differentiate, new cells are added to the list, if mutation occurs the cell types are altered, and if the cell dies via apoptosis the cells are removed from the linked list. The motion of individual cells consist of random walks subject to caging and chemotaxis away from regions of low oxygen concentration. We will describe the heterogenous spatial segregation of different cell types in the tumor, the development of necrotic cores as well as micronecrotic regions, and the effects of externally applied drugs on cell populations and overall tumor shape.

  4. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth.

    PubMed

    Carletto, Bruna; Berton, Juliana; Ferreira, Tamara Nascimento; Dalmolin, Luciana Facco; Paludo, Katia Sabrina; Mainardes, Rubiana Mara; Farago, Paulo Vitor; Favero, Giovani Marino

    2016-08-01

    In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization. Resveratrol-loaded nanoparticles reduced cell viability of murine melanoma cells. There was a decrease in tumor volume, an increase in the necrotic area and inflammatory infiltrate of melanoma when resveratrol-loaded nanocapsules were compared to free resveratrol in treated mice. Nanoencapsulation of resveratrol also prevented metastasis and pulmonary hemorrhage. This modified-release technology containing resveratrol can be used as a feasible approach in order to inhibit murine melanoma tumor growth. PMID:27070053

  5. Erythropoietin Stimulates Tumor Growth via EphB4.

    PubMed

    Pradeep, Sunila; Huang, Jie; Mora, Edna M; Nick, Alpa M; Cho, Min Soon; Wu, Sherry Y; Noh, Kyunghee; Pecot, Chad V; Rupaimoole, Rajesha; Stein, Martin A; Brock, Stephan; Wen, Yunfei; Xiong, Chiyi; Gharpure, Kshipra; Hansen, Jean M; Nagaraja, Archana S; Previs, Rebecca A; Vivas-Mejia, Pablo; Han, Hee Dong; Hu, Wei; Mangala, Lingegowda S; Zand, Behrouz; Stagg, Loren J; Ladbury, John E; Ozpolat, Bulent; Alpay, S Neslihan; Nishimura, Masato; Stone, Rebecca L; Matsuo, Koji; Armaiz-Peña, Guillermo N; Dalton, Heather J; Danes, Christopher; Goodman, Blake; Rodriguez-Aguayo, Cristian; Kruger, Carola; Schneider, Armin; Haghpeykar, Shyon; Jaladurgam, Padmavathi; Hung, Mien-Chie; Coleman, Robert L; Liu, Jinsong; Li, Chun; Urbauer, Diana; Lopez-Berestein, Gabriel; Jackson, David B; Sood, Anil K

    2015-11-01

    While recombinant human erythropoietin (rhEpo) has been widely used to treat anemia in cancer patients, concerns about its adverse effects on patient survival have emerged. A lack of correlation between expression of the canonical EpoR and rhEpo's effects on cancer cells prompted us to consider the existence of an alternative Epo receptor. Here, we identified EphB4 as an Epo receptor that triggers downstream signaling via STAT3 and promotes rhEpo-induced tumor growth and progression. In human ovarian and breast cancer samples, expression of EphB4 rather than the canonical EpoR correlated with decreased disease-specific survival in rhEpo-treated patients. These results identify EphB4 as a critical mediator of erythropoietin-induced tumor progression and further provide clinically significant dimension to the biology of erythropoietin. PMID:26481148

  6. Notch Pathway Activation Induces Neuroblastoma Tumor Cell Growth Arrest

    PubMed Central

    Zage, Peter E.; Nolo, Riitta; Fang, Wendy; Stewart, John; Garcia-Manero, Guillermo; Zweidler-McKay, Patrick A.

    2011-01-01

    Background Notch pathway signaling has critical roles in differentiation, proliferation and survival, and has oncogenic or tumor suppressor effects in a variety of malignancies. The goal of this study was to evaluate the effects of Notch activation on human neuroblastoma cells. Procedure Quantitative RT-PCR, immunoblots, and immunohistochemistry were used to determine the expression of Notch receptors (Notch1–4), cleaved Notch1 (ICN1), and downstream targets (HES1–5) in human neuroblastoma cell lines and patient tumor samples. Notch pathway signaling was induced using intracellular Notch (ICN1–3) and HES gene constructs or direct culture on Notch ligands. Quantitative methylation-specific PCR was used to quantify methylation of the HES gene promoters, and the effects of treatment with decitabine were measured. Results Neuroblastoma cells express varying levels of Notch receptors and low levels of HES genes at baseline. However, no endogenous activation of the Notch pathway was detected in neuroblastoma cell lines or patient tumor samples. Expression of activated Notch intracellular domains and HES gene products led to growth arrest. The HES2 and HES5 gene promoters were found to be heavily methylated in most neuroblastoma lines, and HES gene expression could be induced through treatment with decitabine. Conclusions We report that neuroblastoma cell lines express multiple Notch receptors, which are inactive at baseline. Activation of the Notch pathway via ligand binding or downstream HES gene expression consistently resulted in growth arrest. HES gene expression appears to be regulated epigenetically and could be induced with decitabine. These findings support a tumor suppressor role for Notch signaling in neuroblastoma. PMID:21744479

  7. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells

    PubMed Central

    Mironova, Nadezhda L.; Petrushanko, Irina Y.; Patutina, Olga A.; Sen’kova, Aexandra V.; Simonenko, Olga V.; Mitkevich, Vladimir A.; Markov, Oleg V.; Zenkova, Marina A.; Makarov, Alexander A.

    2013-01-01

    Exogenous ribonucleases are known to inhibit tumor growth via apoptosis induction in tumor cells, allowing to consider them as promising anticancer drugs for clinical application. In this work the antitumor potential of binase was evaluated in vivo and the mechanism of cytotoxic effect of binase on tumor cells was comprehensively studied in vitro. We investigated tumoricidal activity of binase using three murine tumor models of Lewis lung carcinoma (LLC), lymphosarcoma RLS40 and melanoma B-16. We show for the first time that intraperitoneal injection of binase at a dose range 0.1–5 mg/kg results in retardation of primary tumor growth up to 45% in LLC and RLS40 and inhibits metastasis up to 50% in LLC and RLS40 and up to 70% in B-16 melanoma. Binase does not exhibit overall toxic effect and displays a general systemic and immunomodulatory effects. Treatment of RLS40-bearing animals with binase together with polychemotherapy revealed that binase decreases the hepatotoxicity of polychemotherapy while maintaining its antitumor effect. It was demonstrated that the cytotoxic effect of binase is realized via the induction of the intrinsic and extrinsic apoptotic pathways. Activation of intrinsic apoptotic pathway is manifested by a drop of mitochondrial potential, increase in calcium concentration and inhibition of respiratory activity. Subsequent synthesis of TNF-α in the cells under the action of binase triggers extrinsic apoptotic pathway through the binding of TNF with cell-death receptors and activation of caspase 8. Thus binase is a potential anticancer therapeutics inducing apoptosis in cancer cells. PMID:23759588

  8. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells.

    PubMed

    Mironova, Nadezhda L; Petrushanko, Irina Y; Patutina, Olga A; Sen'kova, Aexandra V; Simonenko, Olga V; Mitkevich, Vladimir A; Markov, Oleg V; Zenkova, Marina A; Makarov, Alexander A

    2013-07-01

    Exogenous ribonucleases are known to inhibit tumor growth via apoptosis induction in tumor cells, allowing to consider them as promising anticancer drugs for clinical application. In this work the antitumor potential of binase was evaluated in vivo and the mechanism of cytotoxic effect of binase on tumor cells was comprehensively studied in vitro. We investigated tumoricidal activity of binase using three murine tumor models of Lewis lung carcinoma (LLC), lymphosarcoma RLS 40 and melanoma B-16. We show for the first time that intraperitoneal injection of binase at a dose range 0.1-5 mg/kg results in retardation of primary tumor growth up to 45% in LLC and RLS 40 and inhibits metastasis up to 50% in LLC and RLS 40 and up to 70% in B-16 melanoma. Binase does not exhibit overall toxic effect and displays a general systemic and immunomodulatory effects. Treatment of RLS 40-bearing animals with binase together with polychemotherapy revealed that binase decreases the hepatotoxicity of polychemotherapy while maintaining its antitumor effect. It was demonstrated that the cytotoxic effect of binase is realized via the induction of the intrinsic and extrinsic apoptotic pathways. Activation of intrinsic apoptotic pathway is manifested by a drop of mitochondrial potential, increase in calcium concentration and inhibition of respiratory activity. Subsequent synthesis of TNF-α in the cells under the action of binase triggers extrinsic apoptotic pathway through the binding of TNF with cell-death receptors and activation of caspase 8. Thus binase is a potential anticancer therapeutics inducing apoptosis in cancer cells. PMID:23759588

  9. Triparanol suppresses human tumor growth in vitro and in vivo

    SciTech Connect

    Bi, Xinyu; Han, Xingpeng; Zhang, Fang; He, Miao; Zhang, Yi; Zhi, Xiu-Yi; Zhao, Hong

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  10. Mitochondrial dysfunction in breast cancer cells prevents tumor growth

    PubMed Central

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Lamb, Rebecca; Hulit, James; Howell, Anthony; Gandara, Ricardo; Sartini, Marina; Rubin, Emanuel; Lisanti, Michael P.; Sotgia, Federica

    2013-01-01

    Metformin is a well-established diabetes drug that prevents the onset of most types of human cancers in diabetic patients, especially by targeting cancer stem cells. Metformin exerts its protective effects by functioning as a weak “mitochondrial poison,” as it acts as a complex I inhibitor and prevents oxidative mitochondrial metabolism (OXPHOS). Thus, mitochondrial metabolism must play an essential role in promoting tumor growth. To determine the functional role of “mitochondrial health” in breast cancer pathogenesis, here we used mitochondrial uncoupling proteins (UCPs) to genetically induce mitochondrial dysfunction in either human breast cancer cells (MDA-MB-231) or cancer-associated fibroblasts (hTERT-BJ1 cells). Our results directly show that all three UCP family members (UCP-1/2/3) induce autophagy and mitochondrial dysfunction in human breast cancer cells, which results in significant reductions in tumor growth. Conversely, induction of mitochondrial dysfunction in cancer-associated fibroblasts has just the opposite effect. More specifically, overexpression of UCP-1 in stromal fibroblasts increases β-oxidation, ketone body production and the release of ATP-rich vesicles, which “fuels” tumor growth by providing high-energy nutrients in a paracrine fashion to epithelial cancer cells. Hence, the effects of mitochondrial dysfunction are truly compartment-specific. Thus, we conclude that the beneficial anticancer effects of mitochondrial inhibitors (such as metformin) may be attributed to the induction of mitochondrial dysfunction in the epithelial cancer cell compartment. Our studies identify cancer cell mitochondria as a clear target for drug discovery and for novel therapeutic interventions. PMID:23257779

  11. Expression of fibroblast growth factors in ultraviolet radiation-induced corneal tumors and corneal tumor cell lines from Monodelphis domestica.

    PubMed

    Sabourin, C L; Kusewitt, D F; Applegate, L A; Budge, C L; Ley, R D

    1993-01-01

    Chronic exposure of the gray, short-tailed opossum, Monodelphis domestica, to ultraviolet radiation (UVR) induces highly vascularized mesenchymal tumors of the cornea. Cell lines derived from these UVR-induced corneal tumors and the corneal tumors themselves were examined for the presence of mRNA coding for basic and acidic fibroblast growth factors (FGF), transforming growth factors-beta and -alpha (TGF-beta and TGF-alpha), epidermal growth factor (EGF), and tumor necrosis factor-alpha (TNF-alpha). Basic FGF was expressed in the cell lines derived from corneal tumors and in the corneal tumors. Expression of basic FGF was high in one corneal tumor. Transcripts for acidic FGF were detected only in the corneal tumor cell lines, not in primary tumors. TGF-beta expression was detected in the corneal tumors and tumor-derived cell lines. TGF-alpha, EGF, and TNF-alpha transcripts were not detectable in any opossum material; however, homologous gene sequences for TGF-alpha and EGF were detected on Southern blots of opossum genomic DNA. Southern blot analysis revealed no evidence of amplification or rearrangement of the genes for basic FGF or acidic FGF in the UVR-induced corneal tumor that expressed high levels of basic FGF. Opossum basic FGF, which stimulated the proliferation of fetal bovine heart endothelial cells, was purified by heparin affinity chromatography from a UVR-induced corneal tumor and a corneal tumor cell line. Immunoblotting of opossum basic FGF from a corneal tumor cell line using antiserum to bovine basic FGF showed two prominent immunoreactive bands of 17.5 and 18.5 kDa. Expression of basic FGF and acidic FGF may play a role in the development and progression of UVR-induced corneal tumors in M. domestica. PMID:7683886

  12. Syngeneic murine ovarian cancer model reveals that ascites enriches for ovarian cancer stem-like cells expressing membrane GRP78

    PubMed Central

    Mo, Lihong; Bachelder, Robin E.; Kennedy, Margaret; Chen, Po-Han; Chi, Jen-Tsan; Berchuck, Andrew; Cianciolo, George; Pizzo, Salvatore V.

    2016-01-01

    Ovarian cancer patients are generally diagnosed at FIGO (International Federation of Gynecology and Obstetrics) stage III/IV, when ascites is common. The volume of ascites correlates positively with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone that is also expressed on the plasma membrane (memGRP78) of aggressive cancer cells, plays a crucial role in the embryonic stem cell maintenance. We studied ascites effects on ovarian cancer stem-like cells using a syngeneic mouse model. Our study demonstrates that ascites-derived tumor cells from mice injected intraperitoneally with murine ovarian cancer cells (ID8) express increased memGRP78 levels compared to ID8 cells from normal culture. We hypothesized that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC). Supporting this hypothesis, we show that memGRP78+ cells isolated from murine ascites exhibit increased sphere forming and tumor initiating abilities compared to memGRP78? cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show increased stem cell marker expression. Antibodies directed against the carboxy-terminal domain of GRP78: 1) reduce self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites and 2) suppress a GSK3?-AKT/SNAI1 signaling axis in these cells. Based on these data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer. PMID:25589495

  13. A High-Performance Cellular Automaton Model of Tumor Growth with Dynamically Growing Domains

    PubMed Central

    Poleszczuk, Jan; Enderling, Heiko

    2014-01-01

    Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner. PMID:25346862

  14. Dynamic density functional theory of solid tumor growth: Preliminary models.

    PubMed

    Chauviere, Arnaud; Hatzikirou, Haralambos; Kevrekidis, Ioannis G; Lowengrub, John S; Cristini, Vittorio

    2012-03-01

    Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT) extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth. PMID:22489279

  15. Dynamic density functional theory of solid tumor growth: Preliminary models

    PubMed Central

    Chauviere, Arnaud; Hatzikirou, Haralambos; Kevrekidis, Ioannis G.; Lowengrub, John S.; Cristini, Vittorio

    2012-01-01

    Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT) extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth. PMID:22489279

  16. Reduction of ascites mortality in broilers by coenzyme Q10.

    PubMed

    Geng, A L; Guo, Y M; Yang, Y

    2004-09-01

    Effects of coenzyme Q10 (CoQ10) supplementation on growth performance and ascites were studied in broilers. One hundred eighty 1-d-old Arbor Acre male broiler chicks were randomly allocated into 3 groups with 6 replicates each. From d 8, the diets were supplemented with CoQ10 at levels of 0, 20, and 40 mg/kg, respectively. From d 15 to 21, all the chicks were exposed to low ambient temperature (15 to 18 degrees C) to induce ascites. Average feed intake, BW gain, and feed conversion ratio of the broilers during 0 to 3 wk, 3 to 6 wk, and 0 to 6 wk were measured. The results showed that there were no influences observed on broilers' growth performance, but the mortality due to ascites was reduced by CoQ10 supplementation (P < or = 0.05). Erythrocyte osmotic fragility (EOF) was significantly decreased by 40 mg/kg CoQ10 compared with the control, but no significant changes were observed on blood packed cell volume (PCV) among the treatments. Pulmonary arterial diastolic pressure was significantly decreased on d 36, but no significant changes were observed on right ventricular pressure (RVP), pulmonary arterial systolic pressure, and the maximum change ratio of right intraventricular pressure (+/- dp/ dtmax). Ascites heart index (AHI) was significantly decreased by 40 mg/kg CoQ10 supplementation (P < or = 0.05). The results of this study suggested that CoQ10 has a beneficial effect in reducing ascites mortality in broilers, and 40 mg/kg CoQ10 seems to be more effective than 20 mg/ kg CoQ10. PMID:15384911

  17. Management of ascites with hydrothorax

    SciTech Connect

    LeVeen, H.H.; Piccone, V.A.; Hutto, R.B.

    1984-08-01

    Hydrothorax occurs in 5.3 percent of ascitic patients. Experience with 22 cases forms the basis of this report. Of the 22 cases, 21 were spontaneous and 1 was due to transdiaphragmatic incision. Usually fluid enters the chest through tiny defects in the diaphragm. These defects are often covered by pleuroperitoneum, but the high abdominal pressure raises a bleb on the superior surface of the diaphragm. Rupture produces hydrothorax. The ascites is often relieved with the onset of the hydrothorax. Blockage of the thoracic duct has produced chylous ascites. The thoracoabdominal communication is immediately confirmed by a scan of the chest and abdomen after intraperitoneal injection of technetium-99 colloid. The rate at which the technetium-99 enters the chest is related to the size of the defect in the diaphragm. A significant transfer should occur within 12 hours. Immediate transfer occurs with large defects. The ruptured blister on the diaphragm forms a one-way valve. Intrathoracic injection does not migrate into the peritoneal cavity. The valvular characteristics of the leak force ascitic fluid into the thorax because the differential pressure between the abdominal and pleural cavities is intensified by inspiration. If tension hydrothorax has occurred, urgent thoracocentesis and paracentesis may be required. A chest tube should not be introduced. The main principle of surgery is to supply a low resistance pathway for the return of fluid to the venous system and to eliminate the diaphragmatic defect by obliteration of the pleural space. A LeVeen peritoneovenous shunt is performed after emptying the abdomen of its fluid load. After completion of the shunt operation, the chest is emptied of fluid, and a sclerosing agent (tetracycline or nitrogen mustard) is injected into the pleural cavity. With this regime, the defect closed or was rendered insignificant in 18 of 22 patients.

  18. Human choriocarcinomas: placental growth factor-dependent preclinical tumor models.

    PubMed

    Bagley, Rebecca G; Ren, Yi; Kurtzberg, Leslie; Weber, William; Bangari, Dinesh; Brondyk, William; Teicher, Beverly A

    2012-02-01

    Choriocarcinomas are a rare form of cancer that develops in the uterus from tissue which would normally become the placenta. Choriocarcinomas are a trophoblastic gestational disease and have been studied largely to investigate conditions related to pregnancy such as preeclampsia. Choriocarcinomas are highly angiogenic and produce high levels of placental growth factor (PlGF) to promote the development of blood vessels. Upregulation of PlGF expression also occurs during the development of other human malignancies such as breast cancer and melanoma. Both tumor specimens and plasma samples have higher levels of PlGF than normal tissues. Hence, PlGF has emerged as a valid target for anti-angiogenic therapy. The cell lines BeWo, JAR and JEG-3, derived from human choriocarcinomas, were investigated in vitro and in vivo for suitability as PlGF-dependent models. BeWo, JAR and JEG-3 cells were characterized in culture and were implanted into immunodeficient mice to generate subcutaneous tumors. The PlGF and VEGF angiogenic profiles of the choriocarcinoma cells and tumors were investigated by ELISA and by immunohistochemical methods. Double immunofluorescence methods were applied to choriocarcinoma xenograft sections to characterize the cellular components of the blood vessels. sFLT01, a fusion protein that neutralizes PlGF, was assessed in cell culture experiments and xenograft studies. The novel results presented here validate the importance of human choriocarcinoma cell lines and xenografts in further exploring the role of PlGF in tumor angiogenesis, for evaluating PlGF as an anti-angiogenic target, and for developing therapies that may provide clinical benefit. PMID:22075622

  19. VCC-1, a novel chemokine, promotes tumor growth

    SciTech Connect

    Weinstein, Edward J.; Head, Richard; Griggs, David W.; Sun Duo; Evans, Robert J.; Swearingen, Michelle L.; Westlin, Marisa M.; Mazzarella, Richard . E-mail: richard.a.mazzarella@pfizer.com

    2006-11-10

    We have identified a novel human gene by transcriptional microarray analysis, which is co-regulated in tumors and angiogenesis model systems with VEGF expression. Isolation of cDNA clones containing the full-length VCC-1 transcript from both human and mouse shows a 119 amino acid protein with a 22 amino acid cleavable signal sequence in both species. Comparison of the protein product of this gene with hidden Markov models of all known proteins shows weak but significant homology with two known chemokines, SCYA17 and SCYA16. Northern analysis of human tissues detects a 1 kb band in lung and skeletal muscle. Murine VCC-1 expression can also be detected in lung as well as thyroid, submaxillary gland, epididymis, and uterus tissues by slot blot analysis. By quantitative real time RT-PCR 71% of breast tumors showed 3- to 24-fold up-regulation of VCC-1. In situ hybridization of breast carcinomas showed strong expression of the gene in both normal and transformed mammary gland ductal epithelial cells. In vitro, human microvascular endothelial cells grown on fibronectin increase VCC-1 expression by almost 100-fold. In addition, in the mouse angioma endothelial cell line PY4.1 the gene was over-expressed by 28-fold 6 h after induction of tube formation while quiescent and proliferating cells showed no change. VCC-1 expression is also increased by VEGF and FGF treatment, about 6- and 5-fold, respectively. Finally, 100% of mice injected with NIH3T3 cells over-expressing VCC-1 develop rapidly progressing tumors within 21 days while no growth is seen in any control mice injected with NIH3T3 cells containing the vector alone. These results strongly suggest that VCC-1 plays a role in angiogenesis and possibly in the development of tumors in some tissue types.

  20. Cirrhotic ascites review: Pathophysiology, diagnosis and management

    PubMed Central

    Moore, Christopher M; Van Thiel, David H

    2013-01-01

    Ascites is a pathologic accumulation of peritoneal fluidcommonly observed in decompensated cirrhotic states.Its causes are multi-factorial, but principally involve significant volume and hormonal dysregulation in the setting of portal hypertension. The diagnosis of ascites is considered in cirrhotic patients given a constellation of clinical and laboratory findings, and ultimately confirmed, with insight into etiology, by imaging and paracentesis procedures. Treatment for ascites is multi-modal including dietary sodium restriction, pharmacologic therapies, diagnostic and therapeutic paracentesis, and in certain cases transjugular intra-hepatic portosystemic shunt. Ascites is associated with numerous complications including spontaneous bacterial peritonitis, hepato-hydrothorax and hepatorenal syndrome. Given the complex nature of ascites and associatedcomplications, it is not surprising that it heralds increased morbidity and mortality in cirrhotic patients and increased cost-utilization upon the health-care system. This review will detail the pathophysiology of cirrhotic ascites, common complications derived from it, and pertinent treatment modalities. PMID:23717736

  1. Delivery of Therapeutics Targeting the mRNA-Binding Protein HuR Using 3DNA Nanocarriers Suppresses Ovarian Tumor Growth.

    PubMed

    Huang, Yu-Hung; Peng, Weidan; Furuuchi, Narumi; Gerhart, Jacquelyn; Rhodes, Kelly; Mukherjee, Neelanjan; Jimbo, Masaya; Gonye, Gregory E; Brody, Jonathan R; Getts, Robert C; Sawicki, Janet A

    2016-03-15

    Growing evidence shows that cancer cells use mRNA-binding proteins and miRNAs to posttranscriptionally regulate signaling pathways to adapt to harsh tumor microenvironments. In ovarian cancer, cytoplasmic accumulation of mRNA-binding protein HuR (ELAVL1) is associated with poor prognosis. In this study, we observed high HuR expression in ovarian cancer cells compared with ovarian primary cells, providing a rationale for targeting HuR. RNAi-mediated silencing of HuR in ovarian cancer cells significantly decreased cell proliferation and anchorage-independent growth, and impaired migration and invasion. In addition, HuR-depleted human ovarian xenografts were smaller than control tumors. A biodistribution study showed effective tumor-targeting by a novel Cy3-labeled folic acid (FA)-derivatized DNA dendrimer nanocarrier (3DNA). We combined siRNAs against HuR with FA-3DNA and found that systemic administration of the resultant FA-3DNA-siHuR conjugates to ovarian tumor-bearing mice suppressed tumor growth and ascites development, significantly prolonging lifespan. NanoString gene expression analysis identified multiple HuR-regulated genes that function in many essential cellular and molecular pathways, an attractive feature of candidate therapeutic targets. Taken together, these results are the first to demonstrate the versatility of the 3DNA nanocarrier for in vivo-targeted delivery of a cancer therapeutic and support further preclinical investigation of this system adapted to siHuR-targeted therapy for ovarian cancer. Cancer Res; 76(6); 1549-59. ©2016 AACR. PMID:26921342

  2. Expression of growth factors and growth factor receptors in normal and tumorous human thyroid tissues.

    PubMed

    van der Laan, B F; Freeman, J L; Asa, S L

    1995-02-01

    A number of growth factors have been implicated as stimuli of thyroid cell proliferation; overexpression of these growth factors and/or their receptors may play a role in the growth of thyroid tumors. To determine if immunohistochemical detection of growth factors and/or their receptors correlates with morphological alterations in proliferative lesions of thyroid, we examined the localization of epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and their common receptor, EGF-receptor (EGF-R), insulin-like growth factor-1 (IGF-1), IGF-1-receptor (IGF-R) and IGF binding proteins (IGFBP)-1, -2, -3, and -4, nerve growth factor (NGF), and its receptor NGF-receptor (NGF-R), transforming growth factor-beta (TGF-beta), and basic fibroblast growth factor (bFGF), in normal thyroid tissue and various thyroid tumors. We applied the streptavidin-biotin technique to formalin-fixed, paraffin-embedded tissues. We studied 8-16 different cases of each of the following: normal human thyroid, multinodular hyperplasia, follicular adenoma, papillary carcinoma, follicular carcinoma, medullary carcinoma, and anaplastic carcinoma. EGF, TGF-alpha, and their receptor EGF-R were widely expressed in normal thyroid and in all the thyroid lesions examined. IGF-1 and IGFBP-1 were diffusely present in all different thyroid tissues as well. There was no difference in staining intensity or distribution that correlated with the pathological process. IGFBP-4 seemed to have a variable expression. IGFBP-2 and -3 were detected only in medullary carcinomas.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7787437

  3. R-Ras promotes tumor growth of cervical epithelial cells.

    TOXLINE Toxicology Bibliographic Information

    Rincón-Arano H; Rosales R; Mora N; Rodriguez-Castañeda A; Rosales C

    2003-02-01

    BACKGROUND: R-Ras is 55% identical to H-Ras. However, these two oncogenes seem to have different tumor-transforming potential. R-Ras induced cell transformation in fibroblasts but not in other cell types. R-Ras also reportedly induces a more invasive phenotype in breast epithelial cells through integrin activation. The authors studied the mechanisms whereby R-Ras induces a malignant phenotype.METHODS: Dominant negative (R-Ras43N) and constitutively active (R-Ras87L) mutants of R-Ras were stably transfected into human cervical epithelium C33A cells. Transfected cells were analyzed for adhesion, cell spreading, migration, and growth in culture and in nude mice. The activity of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-K) also was determined by Western blot analysis and by in vitro kinase assays.RESULTS: R-Ras87L-transfected cells, but not R-Ras43 N-transfected cells, had a higher growth rate in nude mice and in culture compared with control cells. None of the transfected C33A cells showed an increase in cell adhesion to fibronectin or collagen I, nor did they show an increment of beta1 integrin affinity. However, cells that expressed R-Ras87L, but not cells that expressed R-Ras 43N, presented a marked increase in cell spreading and migration through collagen-coated membranes. Increases in cell proliferation, spreading, and migration induced by R-Ras87L were inhibited by the PI 3-K inhibitor LY294002. In addition, PI 3-K activity, but not ERK activity, was increased only in cells that expressed R-Ras87L.CONCLUSIONS: These data suggest that the oncogene R-Ras promotes tumor growth of cervical epithelial cells and increases their migration potential over collagen through a pathway that involves PI 3-K.

  4. Role of Constitutive Behavior and Tumor-Host Mechanical Interactions in the State of Stress and Growth of Solid Tumors

    PubMed Central

    Papageorgis, Panagiotis; Odysseos, Andreani D.; Stylianopoulos, Triantafyllos

    2014-01-01

    Mechanical forces play a crucial role in tumor patho-physiology. Compression of cancer cells inhibits their proliferation rate, induces apoptosis and enhances their invasive and metastatic potential. Additionally, compression of intratumor blood vessels reduces the supply of oxygen, nutrients and drugs, affecting tumor progression and treatment. Despite the great importance of the mechanical microenvironment to the pathology of cancer, there are limited studies for the constitutive modeling and the mechanical properties of tumors and on how these parameters affect tumor growth. Also, the contribution of the host tissue to the growth and state of stress of the tumor remains unclear. To this end, we performed unconfined compression experiments in two tumor types and found that the experimental stress-strain response is better fitted to an exponential constitutive equation compared to the widely used neo-Hookean and Blatz-Ko models. Subsequently, we incorporated the constitutive equations along with the corresponding values of the mechanical properties - calculated by the fit - to a biomechanical model of tumor growth. Interestingly, we found that the evolution of stress and the growth rate of the tumor are independent from the selection of the constitutive equation, but depend strongly on the mechanical interactions with the surrounding host tissue. Particularly, model predictions - in agreement with experimental studies - suggest that the stiffness of solid tumors should exceed a critical value compared with that of the surrounding tissue in order to be able to displace the tissue and grow in size. With the use of the model, we estimated this critical value to be on the order of 1.5. Our results suggest that the direct effect of solid stress on tumor growth involves not only the inhibitory effect of stress on cancer cell proliferation and the induction of apoptosis, but also the resistance of the surrounding tissue to tumor expansion. PMID:25111061

  5. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    SciTech Connect

    Sun, Qingwen; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 ; Jiang, Songmin; Han, Baohui; Sun, Tongwen; Li, Zhengnan; Zhao, Lina; Gao, Qiang; Sun, Jialin

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  6. Hypobaric hypoxia in ascites resistant and susceptible broiler genetic lines influences gut morphology.

    PubMed

    de los, Santos F Solis; Tellez, G; Farnell, M B; Balog, J M; Anthony, N B; Pavlidis, H O; Donoghue, A M

    2005-09-01

    Genetic selection based on rapid growth rates, improved feed conversion, and increased body weights has led to a predisposition to ascites in broiler populations. Sire-family selection was applied to a commercial elite line to produce divergent lines of ascites-resistant (RES) and ascites-susceptible (SUS) broilers by the 8th generation. One objective of this research was to determine the effects of hypobaric hypoxia on gut morphology in these genetic lines. In two separate trials, pedigree broiler chickens were randomly assigned to cages in a hypobaric chamber (simulated 2,900 m above sea level) or a matching local altitude chamber (390 m above sea level). Ascites incidence was characterized by heart enlargement and fluid accumulation in the abdominal cavity. At the end of the study on d 42, all surviving birds were killed and evaluated for the presence of ascites and 2-cm sections from the duodenum and lower ileum were collected from 5 chickens per line, per altitude for each trial for morphometric analysis. At a high altitude, ascites incidence was lower in the RES line (20.9 and 3.7%) than in the SUS line (86.4 and 66.9%, Trials 1 and 2, respectively). No ascites was observed at a local altitude. Under hypoxic conditions, duodenum villus surface area was higher (P < 0.05) in the RES line (181.3 +/- 16.8 and 219 +/- 10.9 microm) compared with the SUS line (130.1 +/- 10.5 and 134.3 +/- 9.3 microm; Trials 1 and 2, respectively). No differences in ileum villus morphology were observed for any of the parameters measured. The reduced surface area in the duodenum of birds selected for ascites susceptibility suggests reduced enteric function and may provide clues as to why these birds have increased incidence of ascites. PMID:16206574

  7. FEM-based simulation of tumor growth in medical image

    NASA Astrophysics Data System (ADS)

    Luo, Shuqian; Nie, Ying

    2004-05-01

    Brain model has found wide applications in areas including surgical-path planning, image-guided surgery systems, and virtual medical environments. In comparison with the modeling of normal brain anatomy, the modeling of anatomical abnormalities appears to be rather weak. Particularly, there are considerable differences between abnormal brain images and normal brain images, due to the growth of brain tumor. In order to find the correspondence between abnormal brain images and normal ones, it is necessary to make an estimation or simulation of the brain deformation. In this paper, a deformable model of brain tissue with both geometric and physical nonlinear properties based on finite element method is presented. It is assumed that the brain tissue are nonlinearly elastic solids obeying the equations of an incompressible nonlinearly elastics neo-Hookean model. we incorporate the physical inhomogeneous of brain tissue into our FEM model. The non-linearity of the model needs to solve the deformation of the model using an iteration method. The Updated Lagrange for iteration is used. To assure the convergence of iteration, we adopt the fixed arc length method. This model has advantages over those linear models in its more real tissue properties and its capability of simulating more serious brain deformation. The inclusion of second order displacement items into the balance and geometry functions allows for the estimation of more serious brain deformation. We referenced the model presented by Stelios K so as to ascertain the initial position of tumor as well as our tumor model definition. Furthermore, we expend it from 2-D to 3-D and simplify the calculation process.

  8. ARNT2 Regulates Tumoral Growth in Oral Squamous Cell Carcinoma

    PubMed Central

    Kimura, Yasushi; Kasamatsu, Atsushi; Nakashima, Dai; Yamatoji, Masanobu; Minakawa, Yasuyuki; Koike, Kazuyuki; Fushimi, Kazuaki; Higo, Morihiro; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2016-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) 2 is a transcriptional factor related to adaptive responses against cellular stress from a xenobiotic substance. Recent evidence indicates ARNT is involved in carcinogenesis and cancer progression; however, little is known about the relevance of ARNT2 in the behavior of oral squamous cell carcinoma (OSCC). In the current study, we evaluated the ARNT2 mRNA and protein expression levels in OSCC in vitro and in vivo and the clinical relationship between ARNT2 expression levels in primary OSCCs and their clinicopathologic status by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemistry. Using ARNT2 overexpression models, we performed functional analyses to investigate the critical roles of ARNT2 in OSCC. ARNT2 mRNA and protein were down-regulated significantly (P < 0.05 for both comparisons) in nine OSCC-derived cells and primary OSCC (n=100 patients) compared with normal counterparts. In addition to the data from exogenous experiments that ARNT2-overexpressed cells showed decreased cellular proliferation, ARNT2-positive OSCC cases were correlated significantly (P < 0.05) with tumoral size. Since von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase, a negative regulator of hypoxia-inducible factor (HIF1)-α, is a downstream molecule of ARNT2, we speculated that HIF1-α and its downstream molecules would have key functions in cellular growth. Consistent with our hypothesis, overexpressed ARNT2 cells showed down-regulation of HIF1-α, which causes hypofunctioning of glucose transporter 1, leading to decreased cellular growth. Our results proposed for the first time that the ARNT2 level is an indicator of cellular proliferation in OSCCs. Therefore, ARNT2 may be a potential therapeutic target against progression of OSCCs. PMID:27076852

  9. Echocardiographic characteristics of chickens with ascites syndrome.

    PubMed

    Deng, G; Zhang, Y; Peng, X; Guo, D; Li, C

    2006-12-01

    1. B- and M-mode echocardiography was used to compare cardiac function in broilers with spontaneous ascites syndrome with that of normal chickens. 2. Thirty ascitic chickens and 15 normal chickens aged three, 4, 5, and 6 weeks from the same flock (180 birds in total) were examined. They were restrained gently in a natural standing position, and echocardiographs were obtained from a 7.0-MHz linear transducer placed on the left pectoral apterium. Indices of cardiac structure and functioning were calculated from the echocardiographs, and some were normalised to body weight. Heart rate was also measured. 3. All cardiac structural indices in both ascitic and normal chickens increased with age. Compared with normal chickens, right ventricular diameter at the end of systole in ascitic chickens was greater at 4, 5 and 6 weeks of age. Ventricular septal thickness at the end of both systole and diastole was greater in ascitic chickens at 5 and 6 weeks. Left ventricular free wall thickness at the end of diastole was less in ascitic chickens at 3 weeks. However, all the structural indices decreased with age after normalisation with body weight. 4. The heart rate of ascitic chickens was lower at 4, 5 and 6 weeks. Normalised left ventricular fractional shortening was lower in ascitic chickens at 4, 5 and 6 weeks, as was normalised right ventricular fractional shortening. Incrassation of the ventricular septum (Delta T), which changed little in normal chickens, was less at 4, 5 and 6 weeks in ascitic chickens. Left ventricular fractional shortening, right ventricular fractional shortening and Delta T were all negatively correlated with ascites heart index at all ages. 5. Taken together the results suggest heart failure of both ventricle, but that right ventricular dysfunction is more extensive than left ventricular dysfunction. We suggest that secondary pulmonary hypertension would result in these ascitic chickens due to volume overload. PMID:17190684

  10. A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis.

    PubMed

    Dong, Dezheng; Stapleton, Christopher; Luo, Biquan; Xiong, Shigang; Ye, Wei; Zhang, Yi; Jhaveri, Niyati; Zhu, Genyuan; Ye, Risheng; Liu, Zhi; Bruhn, Kevin W; Craft, Noah; Groshen, Susan; Hofman, Florence M; Lee, Amy S

    2011-04-15

    Glucose-regulated protein 78 (GRP78)/BiP is a multifunctional protein which plays a major role in endoplasmic reticulum (ER) protein processing, protein quality control, maintaining ER homeostasis, and controlling cell signaling and viability. Previously, using a transgene-induced mammary tumor model, we showed that Grp78 heterozygosity impeded cancer growth through suppression of tumor cell proliferation and promotion of apoptosis and the Grp78(+/-) mice exhibited dramatic reduction (70%) in the microvessel density (MVD) of the endogenous mammary tumors, while having no effect on the MVD of normal organs. This observation suggests that GRP78 may critically regulate the function of the host vasculature within the tumor microenvironment. In this article, we interrogated the role of GRP78 in the tumor microenvironment. In mouse tumor models in which wild-type (WT), syngeneic mammary tumor cells were injected into the host, we showed that Grp78(+/-) mice suppressed tumor growth and angiogenesis during the early phase but not during the late phase of tumor growth. Growth of metastatic lesions of WT, syngeneic melanoma cells in the Grp78(+/-) mice was potently suppressed. We created conditional heterozygous knockout of GRP78 in the host endothelial cells and showed severe reduction of tumor angiogenesis and metastatic growth, with minimal effect on normal tissue MVD. Furthermore, knockdown of GRP78 expression in immortalized human endothelial cells showed that GRP78 is a critical mediator of angiogenesis by regulating cell proliferation, survival, and migration. Our findings suggest that concomitant use of current chemotherapeutic agents and novel therapies against GRP78 may offer a powerful dual approach to arrest cancer initiation, progression, and metastasis. PMID:21467168

  11. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.

    PubMed

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille

    2016-03-01

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth. PMID:26895752

  12. A strategy to eradicate well-developed Krebs-2 ascites in mice.

    PubMed

    Potter, Ekaterina A; Dolgova, Evgenia V; Proskurina, Anastasia S; Minkevich, Alexandra M; Efremov, Yaroslav R; Taranov, Oleg S; Omigov, Vladimir V; Nikolin, Valeriy P; Popova, Nelly A; Bayborodin, Sergey I; Ostanin, Alexander A; Chernykh, Elena R; Kolchanov, Nikolay A; Shurdov, Mikhail A; Bogachev, Sergey S

    2016-03-01

    We describe the strategy, which allows curing experimental mice engrafted with Krebs-2 ascites. The strategy is based on the facts that i) Krebs-2 tumor-initiating stem cells (TISCs) are naturally capable of internalizing fragments of extracellular double-stranded DNA (dsDNA); ii) upon delivery into TISCs, these dsDNA fragments interfere with the on-going DNA repair process so that TISCs either die or lose their tumorigenic potential. The following 3-step regimen of therapeutic procedures leading to eradication of Krebs-2 ascites is considered. Firstly, three timed injections of cyclophosphamide (CP) exactly matching the interstrand cross-link (ICL) repair phases that lead to synchronization of ascites cells in late S/G2/M. Secondly, additional treatment of ascites 18 hours post each CP injection (at NER/HR transition timepoint) with a composite dsDNA-based preparation interfering with the NER and HR repair pathways, so that tumorigenic properties of ascites cells are compromised. Thirdly, final treatment of mice with a combination of CP and dsDNA injections as ascites cells undergo apoptotic destruction, and the surviving TAMRA+ TISCs arrested in late S/G2/M phases massively enter into G1/S, when they regain sensitivity to CP+dsDNA treatment. Thus, this regimen assures that no viable cells, particularly Krebs-2 TISCs, remain. PMID:26872383

  13. Host Cxcr2-dependent regulation of mammary tumor growth and metastasis.

    PubMed

    Sharma, Bhawna; Nannuru, Kalyan C; Varney, Michelle L; Singh, Rakesh K

    2015-01-01

    Host-derived angiogenic and inflammatory tumor supportive microenvironment regulates progression and metastasis, but the molecular mechanism(s) underlying host-tumor interactions remains unclear. Tumor expression of CXCR2 and its ligands have been shown to regulate angiogenesis, invasion, tumor growth, and metastasis. In this report, we hypothesized that host-derived Cxcr2-dependent signaling plays an important role in breast cancer growth and metastasis. Two mammary tumor cell lines Cl66 and 4T1 cells were orthotopically implanted into the mammary fat pad of wild-type and Cxcr2(-/-) female BALB/c mice. Tumor growth and spontaneous lung metastasis were monitored. Immunohistochemical analyses of the tumor tissues were performed to analyze proliferation, angiogenesis, apoptosis and immune cell infiltration. Our results demonstrated that knock-down of host Cxcr2 decreases tumor growth and metastasis by reducing angiogenesis, proliferation and enhancing apoptosis. Host Cxcr2 plays an important role in governing the pro-inflammatory response in mammary tumors as evaluated by decreased Gr1(+) tumor-associated granulocytes, F4/80(+) tumor associated macrophages, and CD11b(+)Gr1(+) myeloid derived suppressor cells in Cxcr2(-/-) mice as compared to control wild-type mice. Together, these results demonstrate that host Cxcr2-dependent signaling regulates mammary tumor growth and metastasis by promoting angiogenesis and pro-inflammatory responses. PMID:25511644

  14. Host Cxcr2-dependent regulation of mammary tumor growth and metastasis

    PubMed Central

    Sharma, Bhawna; Nannuru, Kalyan C.; Varney, Michelle L.

    2016-01-01

    Host-derived angiogenic and inflammatory tumor supportive microenvironment regulates progression and metastasis, but the molecular mechanism(s) underlying host-tumor interactions remains unclear. Tumor expression of CXCR2 and its ligands have been shown to regulate angiogenesis, invasion, tumor growth, and metastasis. In this report, we hypothesized that host-derived Cxcr2-dependent signaling plays an important role in breast cancer growth and metastasis. Two mammary tumor cell lines Cl66 and 4T1 cells were orthotopically implanted into the mammary fat pad of wild-type and Cxcr2−/− female BALB/c mice. Tumor growth and spontaneous lung metastasis were monitored. Immunohistochemical analyses of the tumor tissues were performed to analyze proliferation, angiogenesis, apoptosis and immune cell infiltration. Our results demonstrated that knock-down of host Cxcr2 decreases tumor growth and metastasis by reducing angiogenesis, proliferation and enhancing apoptosis. Host Cxcr2 plays an important role in governing the pro-inflammatory response in mammary tumors as evaluated by decreased Gr1+ tumor-associated granulocytes, F4/80+ tumor associated macrophages, and CD11b+Gr1+ myeloid derived suppressor cells in Cxcr2−/− mice as compared to control wild-type mice. Together, these results demonstrate that host Cxcr2-dependent signaling regulates mammary tumor growth and metastasis by promoting angiogenesis and pro-inflammatory responses. PMID:25511644

  15. Simulation of the effect of plasma species on tumor growth and apoptosis

    NASA Astrophysics Data System (ADS)

    Murphy, William; Carroll, Caitlin; Keidar, Michael

    2014-11-01

    Tumor modeling is a technique that entails using mathematical and physical equations to describe the biological disease, most importantly uncontrolled cell growth and the tumor life cycle. The model utilized in this paper makes use of a three-dimensional hybrid discrete-continuum model to show the apoptotic effect a tumor volume undergoes when treated with reactive oxygen and nitrogen species from the cold atmospheric plasma. The results compare untreated and treated tumors of varying sizes by measuring spatiotemporal data to predict trends of tumor evolution. The simulation results show that the treated tumor death, irrespective of tumor volume, follows an exponential decay and that the untreated tumor follows an expected growth pattern. Future experiments and applications can lead to a predictive tumor model allowing for individualized treatment planning for the cold atmospheric plasma therapy.

  16. The Contributions of HIF-Target Genes to Tumor Growth in RCC

    PubMed Central

    Zhang, Ting; Niu, Xiaohua; Liao, Lili; Cho, Eun-Ah; Yang, Haifeng

    2013-01-01

    Somatic mutations or loss of expression of tumor suppressor VHL happen in the vast majority of clear cell Renal Cell Carcinoma, and it’s causal for kidney cancer development. Without VHL, constitutively active transcription factor HIF is strongly oncogenic and is essential for tumor growth. However, the contribution of individual HIF-responsive genes to tumor growth is not well understood. In this study we examined the contribution of important HIF-responsive genes such as VEGF, CCND1, ANGPTL4, EGLN3, ENO2, GLUT1 and IGFBP3 to tumor growth in a xenograft model using immune-compromised nude mice. We found that the suppression of VEGF or CCND1 impaired tumor growth, suggesting that they are tumor-promoting genes. We further discovered that the lack of ANGPTL4, EGLN3 or ENO2 expression did not change tumor growth. Surprisingly, depletion of GLUT1 or IGFBP3 significantly increased tumor growth, suggesting that they have tumor-inhibitory functions. Depletion of IGFBP3 did not lead to obvious activation of IGFIR. Unexpectedly, the depletion of IGFIR protein led to significant increase of IGFBP3 at both the protein and mRNA levels. Concomitantly, the tumor growth was greatly impaired, suggesting that IGFBP3 might suppress tumor growth in an IGFIR-independent manner. In summary, although the overall transcriptional activity of HIF is strongly tumor-promoting, the expression of each individual HIF-responsive gene could either enhance, reduce or do nothing to the kidney cancer tumor growth. PMID:24260413

  17. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth.

    PubMed

    Yin, Yuan; Cai, Xing; Chen, Xi; Liang, Hongwei; Zhang, Yujing; Li, Jing; Wang, Zuoyun; Chen, Xiulan; Zhang, Wen; Yokoyama, Seiji; Wang, Cheng; Li, Liang; Li, Limin; Hou, Dongxia; Dong, Lei; Xu, Tao; Hiroi, Takachika; Yang, Fuquan; Ji, Hongbin; Zhang, Junfeng; Zen, Ke; Zhang, Chen-Yu

    2014-10-01

    An increased population of CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4(+) T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion. PMID:25223704

  18. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer.

    PubMed

    Sharon, Yoray; Raz, Yael; Cohen, Noam; Ben-Shmuel, Amir; Schwartz, Hila; Geiger, Tamar; Erez, Neta

    2015-03-15

    Breast tumors are characterized by an extensive desmoplastic stroma, abundantly populated by fibroblasts. Cancer-associated fibroblasts (CAF) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation, and invasion. CAF also orchestrate tumor-promoting inflammation in multiple tumor types, including breast cancer. However, the mechanisms through which normal tissue fibroblasts are reprogrammed to tumor-promoting CAFs are mainly obscure. Here, we show that mammary fibroblasts can be educated by breast cancer cells to become activated to a proinflammatory state that supports malignant progression. Proteomic analysis of breast cancer cell-secreted factors identified the secreted proinflammatory mediator osteopontin, which has been implicated in inflammation, tumor progression, and metastasis. Osteopontin was highly secreted by mouse and human breast cancer cells, and tumor cell-secreted osteopontin activated a CAF phenotypes in normal mammary fibroblasts in vitro and in vivo. Osteopontin was sufficient to induce fibroblast reprogramming and neutralizing antibodies against osteopontin-blocked fibroblast activation induced by tumor cells. The ability of secreted osteopontin to activate mammary fibroblasts relied upon its known receptors CD44 and αVβ3 integrin. Strikingly, osteopontin silencing in tumor cells in vivo attenuated stromal activation and inhibited tumor growth. Our findings establish a critical functional role for paracrine signaling by tumor-derived osteopontin in reprograming normal fibroblasts into tumor-promoting CAFs. PMID:25600648

  19. The clinical effects of dendritic cell vaccines combined with cytokine-induced killer cells intraperitoneal injected on patients with malignant ascites

    PubMed Central

    Ai, Yue-Qin; Cai, Kai; Hu, Jian-Hua; Jiang, Long-Wei; Gao, Yan-Rong; Zhao, Hua; Jia, Shao-Chang

    2014-01-01

    Malignant ascites (MA) is a pathological condition due to a variety of primary abdominal and extra-abdominal neoplasms. It is a primary cause of morbidity and presents many difficulties in evaluation and treatment. In this study we used dendritic cell vaccines combined with cytokine-induced killer (CIK) cells intraperitoneal injected in patients with MA, and evaluated the safety and efficacy of this treatment. The results showed that the percentage of CD3+ CD56+ CIK cells after treatment increased significantly while the percentage of CD4+ CD25+ Treg cells decreased (P < 0.05). The clinical response rate (RR) was 40.9% and disease control rate (DCR) was 77.3%. We then studied and identified the mechanisms of the anti-tumor effects of the vaccines by analyzing a series of cytokines that are commonly involved in tumor progression and ascitic development including granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-10 (IL-10), interferon-γ (IFN-γ), tumor necrosis factor-α (TGF-α), tumor necrosis factor-β (TGF-β), Vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1). These data demonstrated that intraperitoneal injection with DC vaccines combined with CIK cells in patients with malignant peritoneal effusion is safe and feasible. This therapy modality can achieve a certain clinical benefit even in patients resistant to conventional treatments. PMID:25550942

  20. Management of ascites due to gastrointestinal malignancy

    PubMed Central

    Saif, Muhammad W.; Siddiqui, Imran A. P.; Sohail, Muhammad A.

    2009-01-01

    Ascites is the pathological accumulation of fluid within the abdominal cavity. The most common cancers associated with ascites are adenocarcinomas of the ovary, breast, colon, stomach and pancreas. Symptoms include abdominal distension, nausea, vomiting, early satiety, dyspnea, lower extremity edema, weight gain and reduced mobility. There are many potential causes of ascites in cancer patients, including peritoneal carcinomatosis, malignant obstruction of draining lymphatics, portal vein thrombosis, elevated portal venous pressure from cirrhosis, congestive heart failure, constrictive pericarditis, nephrotic syndrome and peritoneal infections. Depending on the clinical presentation and expected survival, a diagnostic evaluation is usually indicated as it will impact both prognosis and the treatment approach. Key tests include serum albumin and protein and a simultaneous diagnostic paracentesis, checking ascitic fluid, WBCs, albumin, protein and cytology. Median survival after diagnosis of malignant ascites is in the range of 1 to 4 months; survival is apt to be longer for ovarian and breast cancers if systemic anti-cancer treatments are available. PMID:19700895

  1. Knockout of Mitochondrial Thioredoxin Reductase Stabilizes Prolyl Hydroxylase 2 and Inhibits Tumor Growth and Tumor-Derived Angiogenesis

    PubMed Central

    Hellfritsch, Juliane; Kirsch, Julian; Schneider, Manuela; Fluege, Tamara; Wortmann, Markus; Frijhoff, Jeroen; Dagnell, Markus; Fey, Theres; Esposito, Irene; Kölle, Pirkko; Pogoda, Kristin; Angeli, José Pedro Friedmann; Ingold, Irina; Kuhlencordt, Peter; Östman, Arne; Pohl, Ulrich

    2015-01-01

    Abstract Aims: Mitochondrial thioredoxin reductase (Txnrd2) is a central player in the control of mitochondrial hydrogen peroxide (H2O2) abundance by serving as a direct electron donor to the thioredoxin-peroxiredoxin axis. In this study, we investigated the impact of targeted disruption of Txnrd2 on tumor growth. Results: Tumor cells with a Txnrd2 deficiency failed to activate hypoxia-inducible factor-1α (Hif-1α) signaling; it rather caused PHD2 accumulation, Hif-1α degradation and decreased vascular endothelial growth factor (VEGF) levels, ultimately leading to reduced tumor growth and tumor vascularization. Increased c-Jun NH2-terminal Kinase (JNK) activation proved to be the molecular link between the loss of Txnrd2, an altered mitochondrial redox balance with compensatory upregulation of glutaredoxin-2, and elevated PHD2 expression. Innovation: Our data provide compelling evidence for a yet-unrecognized mitochondrial Txnrd-driven, regulatory mechanism that ultimately prevents cellular Hif-1α accumulation. In addition, simultaneous targeting of both the mitochondrial thioredoxin and glutathione systems was used as an efficient therapeutic approach in hindering tumor growth. Conclusion: This work demonstrates an unexpected regulatory link between mitochondrial Txnrd and the JNK-PHD2-Hif-1α axis, which highlights how the loss of Txnrd2 and the resulting altered mitochondrial redox balance impairs tumor growth as well as tumor-related angiogenesis. Furthermore, it opens a new avenue for a therapeutic approach to hinder tumor growth by the simultaneous targeting of both the mitochondrial thioredoxin and glutathione systems. Antioxid. Redox Signal. 22, 938–950. PMID:25647640

  2. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.

    PubMed

    Gacche, Rajesh N; Meshram, Rohan J

    2013-11-01

    Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials. PMID:24139944

  3. Inhibition of vacuolar ATPase subunit in tumor cells delays tumor growth by decreasing the essential macrophage population in the tumor microenvironment.

    PubMed

    Katara, G K; Kulshrestha, A; Jaiswal, M K; Pamarthy, S; Gilman-Sachs, A; Beaman, K D

    2016-02-25

    In cancer cells, vacuolar ATPase (V-ATPase), a multi-subunit enzyme, is expressed on the plasma as well as vesicular membranes and critically influences metastatic behavior. The soluble, cleaved N-terminal domain of V-ATPase a2 isoform is associated with in vitro induction of tumorigenic characteristics in macrophages. This activity led us to further investigate its in vivo role in cancer progression by inhibition of a2 isoform (a2V) in tumor cells and the concomitant effect on tumor microenvironment in the mouse 4T-1 breast cancer model. Results showed that macrophages cocultivated with a2V knockdown (sh-a2) 4T-1 cells produce lower amounts of tumorigenic factors in vitro and have reduced ability to suppress T-cell activation and proliferation compared with control 4T-1 cells. Data analysis showed a delayed mammary tumor growth in Balb/c mice inoculated with sh-a2 4T-1 cells compared with control. The purified CD11b(+) macrophages from sh-a2 tumors showed a reduced expression of mannose receptor-1 (CD206), interleukin-10, transforming growth factor-β, arginase-1, matrix metalloproteinase and vascular endothelial growth factor. Flow cytometric analysis of tumor-infiltrated macrophages showed a significantly low number of F4/80(+)CD11c(+)CD206(+) macrophages in sh-a2 tumors compared with control. In sh-a2 tumors, most of the macrophages were F4/80(+)CD11c(+) (antitumor M1 macrophages) suggesting it to be the reason behind delayed tumor growth. Additionally, tumor-infiltrating macrophages from sh-a2 tumors showed a reduced expression of CD206 compared with control whereas CD11c expression was unaffected. These findings demonstrate that in the absence of a2V in tumor cells, the resident macrophage population in the tumor microenvironment is altered which affects in vivo tumor growth. We suggest that by involving the host immune system, tumor growth can be controlled through targeting of a2V on tumor cells. PMID:25961933

  4. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    SciTech Connect

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  5. Altered tumor growth in vivo after immunization of mice with antitumor antibodies

    SciTech Connect

    Gorczynski, R.M.; Kennedy, M.; Polidoulis, I.; Price, G.B.

    1984-08-01

    A comparison has been made between the growth patterns of two spontaneously appearing mammary adenocarcinomas in murine bone marrow radiation chimeras and in mice preimmunized with monoclonal antibodies (MAb) detecting embryo-associated antigenic determinants. A correlation was seen between the ability of the embryo-immunized chimeras to produce cytotoxic antibody to the tumors, as assessed by an antibody-dependent cellular cytotoxic assay, and the permissiveness of the mice for growth of a tumor transplant. In addition, mice deliberately preimmunized with cytotoxic MAb (antibody-dependent cellular cytotoxic assay) allowed more rapid growth specifically of that tumor earlier found to be most sensitive to the MAb used for immunization. By comparing the changing antigenic phenotype of tumor cells serially passaged through different immunized, nonimmunized mice, evidence was found suggesting that immunization could cause either antigen modulation of transferred tumor cells or a (transient) selective advantage to antigenically discrete subpopulations within the heterogeneous tumor population. Finally, a study has been made of the growth pattern of tumor cells transplanted into mice immunized with rabbit antibodies directed against the murine MAb. In this case, tumor growth was slowed preferentially for the tumor reactive with the specific MAb, and again, predictable changes in the antigenic spectrum of tumor cells harvested from these animals were observed. Our overall findings are interpreted in terms of the involvement of networks of antibodies reacting with embryo-associated antigens in the regulation of growth of the murine mammary adenocarcinomas studied.

  6. Vascular-promoting therapy reduced tumor growth and progression by improving chemotherapy efficacy.

    PubMed

    Bridges, Esther; Harris, Adrian L

    2015-01-12

    In this issue of Cancer Cell, Wong and colleagues describe a novel approach of increasing the number of functional blood vessels in tumors using a low-dose therapy regimen of Cilengtide and Verapamil. This method enhanced gemcitabine delivery, uptake, and metabolism within tumor cells to reduce tumor growth and progression. PMID:25584889

  7. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics

    PubMed Central

    Kang, R; Tang, D; Schapiro, NE; Loux, T; Livesey, KM; Billiar, TR; Wang, H; Van Houten, B; Lotze, MT; Zeh, HJ

    2013-01-01

    Tumor cells require increased adenosine triphosphate (ATP) to support anabolism and proliferation. The precise mechanisms regulating this process in tumor cells are unknown. Here, we show that the receptor for advanced glycation endproducts (RAGE) and one of its primary ligands, high-mobility group box 1 (HMGB1), are required for optimal mitochondrial function within tumors. We found that RAGE is present in the mitochondria of cultured tumor cells as well as primary tumors. RAGE and HMGB1 coordinately enhanced tumor cell mitochondrial complex I activity, ATP production, tumor cell proliferation and migration. Lack of RAGE or inhibition of HMGB1 release diminished ATP production and slowed tumor growth in vitro and in vivo. These findings link, for the first time, the HMGB1–RAGE pathway with changes in bioenergetics. Moreover, our observations provide a novel mechanism within the tumor microenvironment by which necrosis and inflammation promote tumor progression. PMID:23318458

  8. M-HIFU Inhibits Tumor Growth, Suppresses STAT3 Activity and Enhances Tumor Specific Immunity in a Transplant Tumor Model of Prostate Cancer

    PubMed Central

    Huang, Xiaoyi; Yuan, Fang; Liang, Meihua; Lo, Hui-Wen; Shinohara, Mari L.; Robertson, Cary; Zhong, Pei

    2012-01-01

    Objective In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. Methods RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. Results No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. Conclusion Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers. PMID:22911830

  9. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes

    PubMed Central

    Robertson-Tessi, Mark; Gillies, Robert J; Gatenby, Robert A; Anderson, Alexander RA

    2015-01-01

    Histopathological knowledge that extensive heterogeneity exists between and within tumors has been confirmed and deepened recently by molecular studies. However, the impact of tumor heterogeneity on prognosis and treatment remains as poorly understood as ever. Using a hybrid multi-scale mathematical model of tumor growth in vascularized tissue, we investigated the selection pressures exerted by spatial and temporal variations in tumor microenvironment and the resulting phenotypic adaptations. A key component of this model is normal and tumor metabolism and its interaction with microenvironmental factors. The metabolic phenotype of tumor cells is plastic, and microenvironmental selection leads to increased tumor glycolysis and decreased pH. Once this phenotype emerges, the tumor dramatically changes its behavior due to acid-mediated invasion, an effect that depends on both variations in the tumor cell phenotypes and their spatial distribution within the tumor. In early stages of growth, tumors are stratified, with the most aggressive cells developing within the interior of the tumor. These cells then grow to the edge of the tumor and invade into the normal tissue using acidosis. Simulations suggest that diffusible cytotoxic treatments such as chemotherapy may increase the metabolic aggressiveness of a tumor due to drug-mediated selection. Chemotherapy removes the metabolic stratification of the tumor and allows more aggressive cells to grow towards blood vessels and normal tissue. Anti-angiogenic therapy also selects for aggressive phenotypes due to degradation of the tumor microenvironment, ultimately resulting in a more invasive tumor. In contrast, pH buffer therapy slows down the development of aggressive tumors, but only if administered when the tumor is still stratified. Overall, findings from this model highlight the risks of cytotoxic and anti-angiogenic treatments in the context of tumor heterogeneity resulting from a selection for more aggressive behaviors. PMID:25878146

  10. Modification of tumor response to cyclophosphamide and irradiation by preirradiation of the tumor bed: prolonged growth delay but reduced curability.

    PubMed

    Ito, H; Barkley, T; Peters, L J; Milas, L

    1985-03-01

    The effect of tumor bed irradiation (TBX) on subsequent tumor response to treatment with cyclophosphamide (CY) or further irradiation was studied in mice. Using the growth delay assay, the therapeutic response was enhanced by prior TBX: for example, in mice receiving 3000 rad TBX 1 day before fibrosarcoma cell inoculation, the growth delay from 8 to 12 mm produced by CY (150 mg/kg) was 18.8 days compared with 9.4 days without prior TBX. This effect was independent of time between TBX and tumor cell inoculation over the range 1-56 days. When tumor cure experiments were performed, however, the effect of prior TBX was to decrease significantly the proportion of tumors controlled by either CY or irradiation and to make the dose-response curve for radiocurability less steep. These data are best interpreted by postulating that TBX increases the environmental heterogeneity of tumors growing in preirradiated sites, with an overall net decrease in the cell kill achieved by a given dose of CY or radiation. This results in increased resistance to cure and a lack of dose response. However, the TBX also causes slower regrowth of surviving cells, so that an increase in tumor growth delay is realized. Thus, although eradication of postirradiation recurrences by chemotherapy is compromised, their palliation may actually be enhanced. PMID:3156110

  11. Ascites

    MedlinePlus

    ... is the build-up of fluid in the space between the lining of the abdomen and abdominal ... Cirrhosis and its sequelae.In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: ...

  12. The non glycanated endocan polypeptide slows tumor growth by inducing stromal inflammatory reaction.

    PubMed

    Yassine, Hanane; De Freitas Caires, Nathalie; Depontieu, Florence; Scherpereel, Arnaud; Awad, Ali; Tsicopoulos, Anne; Leboeuf, Christophe; Janin, Anne; Duez, Catherine; Grigoriu, Bogdan; Lassalle, Philippe

    2015-02-20

    Endocan expression is increasingly studied in various human cancers. Experimental evidence showed that human endocan, through its glycan chain, is implicated in various processes of tumor growth. We functionally characterize mouse endocan which is also a chondroitin sulfate proteoglycan but much less glycanated than human endocan. Distant domains from the O-glycanation site, located within exons 1 and 2 determine the glycanation pattern of endocan. In opposite to the human homologue, overexpression of mouse endocan in HT-29 cells delayed the tumor appearance and reduced the tumor growth rate. This tumor growth inhibition is supported by non glycanated form of mouse endocan. Non glycanated human endocan overexpressed in HT-29, A549 or K1000 cells also exhibited an anti-tumor effect. Moreover, systemic delivery of non glycanated human endocan also results in HT-29 tumor growth delay. In vitro, endocan polypeptide did not affect HT-29 cell proliferation, nor cell viability. In tumor tissue sections, a stromal inflammatory reaction was observed only in tumors overexpressing endocan polypeptide, and depletion of CD122+ cells was able to delete partially the anti-tumor effect of endocan polypeptide. These results reveal a novel pathway for endocan in the control of tumor growth, which involves inflammatory cells of the innate immunity. PMID:25575808

  13. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4+ T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4+ helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4+ T cells (TR-CD4) potently induced IFN-?-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8+ T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8+ T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients. PMID:26447332

  14. Histologic variability in solitary fibrous tumors reflects angiogenic and growth factor signaling pathway alterations.

    PubMed

    Demicco, Elizabeth G; Wani, Khalida; Fox, Patricia S; Bassett, Roland L; Young, Eric D; Lev, Dina; Aldape, Kenneth D; Lazar, Alexander J; Wang, Wei-Lien

    2015-07-01

    This study aimed to evaluate expression of receptor tyrosine kinases, their ligands, and mutational status in solitary fibrous tumors, with correlation to histopathologic variants, tumor stage, and aggressive behavior. Immunohistochemical staining for PDGFα; PDGFβ; PDGFR-α; PDGFR-β; IGF1R; EGFR; VEGF; IGF2; c-Met; c-kit; c-erbB2; PTEN; and phosphorylated (p)AKT, pS6, and p4EBP1 was analyzed in 114 cases of solitary fibrous tumor using tissue microarray. Mutational analysis was performed using Sequenom MassARRAY-based platform. Multiple growth factors were overexpressed in most tumors, and increased numbers of overexpressed factors correlated with activation of the AKT pathway as measured by increased expression of p4EBP1(P = .0005). Compared to hypocellular tumors, localized hypercellular tumors were associated with high vascular endothelial growth factor (32% versus 8%; P = .008) and PDGFβ (41% versus 13%; P = .008). Metastatic tumors more frequently overexpressed PDGFR-α compared to localized tumors (75% versus 31%; P < .001). None of the factors examined had prognostic significance in primary tumors. Single-nucleotide polymorphisms involving MET were identified in 4 patients; these do not appear to drive tumor behavior and were not reflected in c-Met expression levels. Simultaneous overexpression of multiple growth factors is common in solitary fibrous tumors; variability in expression may contribute to tumor phenotype and aggressive behavior. PMID:25976141

  15. Anti-neoplastic activities of sepia officinalis ink and coelatura aegyptiaca extracts against Ehrlich ascites carcinoma in Swiss albino mice

    PubMed Central

    Soliman, Amel M; Fahmy, Sohair R; El-Abied, Salma A

    2015-01-01

    Objectives: With the development of sophisticated instruments for the isolation and elucidation of natural products structures from marine and freshwater organisms, major advances have been made in the discovery of aquatic derived therapeutics. Present investigations were carried out to evaluate cuttlefish (Sepia officinalis) ink extract (IE) and freshwater clam (Coelatura aegyptiaca) extract (CE) for their anticancer and antioxidant activities as compared to 5-flurouracil (5-Fu), in Ehrlich ascites carcinoma (EAC). Methods: Sixty female Swiss albino mice were divided into five groups (n = 12). All groups except group I received EAC cells (5 × 106 cells/mouse i.p.) and this was taken as the 0th day. Group I served as saline control (5 ml/kg 0.9% NaCl w/v p.o). Group II served as EAC control. Rats of groups III, IV and V received IE, CE (200 mg/kg body weight i.p.), and reference drug (5-Fu, 20 mg/kg body weight i.p.), respectively. Results: The reduction in tumor volume, packed cell volume, tumor cell counts and increase in median survival time and percentage increase in life span in treated animals were observed. There was a significant increase in RBC count; Hb content in treated animals and reduction in total WBC count. There was a significant decrease in AST, ALT, ALP and liver MDA levels and increase in GSH, SOD and NO levels were observed in all treated animals. Conclusion: Both IE and CE were effective in inhibiting the tumor growth in ascitic tumor models. The biochemical, antioxidants and histopathological studies were also supported their antitumor properties. PMID:26097537

  16. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    PubMed Central

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. Results Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage inflammatory protein-2, vascular endothelial growth factor, transforming growth factor-beta and IL-6) was increased. Conclusion These results indicate that BM-MSCs promote tumor growth and suggest that the crosstalk between tumor cells and BM-MSCs increased the expression of pro-angiogenic factors, which may have induced tumor cell proliferation and angiogenesis thereby increasing solid tumor growth. PMID:23763837

  17. Tumor-Host Cell Hybrids in Radiochimeras

    PubMed Central

    Wiener, Francis; Fenyö, Eva Maria; Klein, George

    1974-01-01

    F1 hybrid mice syngeneic or semiallogeneic with respect to the relevant tumor were lethally irradiated and then reconstituted with hemopoietic cells from strain CBAT6T6 mice. After chimerism had been established, the animals were inoculated with solid or ascites tumors. Tumor-host cell hybrids were selected from enzyme-deficient solid tumors by explanting the tumor cell suspension into hypoxanthine-amethopterin-thymidine containing medium. The selection of hybrid cells from ascites tumors was achieved by exploiting the difference between the ascites tumor cells and hybrid cells in their ability to adhere to the surface of culture vessels. T6T6 chromosomal and H-2 antigenic markers served to distinguish between the hemopoietic cells derived from the donor graft and the cells of the host. All solid tumors tested fused with cells of the irradiated host, whereas ascites tumors fused with repopulating cells of hemopoietic origin. Images PMID:4521047

  18. Antitumor Properties of Modified Detonation Nanodiamonds and Sorbed Doxorubicin on the Model of Ehrlich Ascites Carcinoma.

    PubMed

    Medvedeva, N N; Zhukov, E L; Inzhevatkin, E V; Bezzabotnov, V E

    2016-01-01

    We studied antitumor properties of modified detonation nanodiamonds loaded with doxorubicin on in vivo model of Ehrlich ascites carcinoma. The type of tumor development and morphological characteristics of the liver, kidneys, and spleen were evaluated in experimental animals. Modified nanodiamonds injected intraperitoneally produced no antitumor effect on Ehrlich carcinoma. However, doxorubicin did not lose antitumor activity after sorption on modified nanodiamonds. PMID:26742746

  19. /sup 99m/Tc-methylene diphosphonate accumulation in ascitic fluid due to neoplasm

    SciTech Connect

    Gordon, L.; Schabel, S.I.; Holland, R.D.; Cooper, J.F.

    1981-06-01

    /sup 99m/Tc-methylene diphosphonate (MDP) was found to accumulate in the abdomen in 7 patients with ascites due to a primary tumor of the ovary, testis, stomach, or urethra, leukemia, or lymphoma. This finding should strongly suggest malignancy.

  20. Clinically Relevant Doses of Candesartan Inhibit Growth of Prostate Tumor Xenografts In Vivo through Modulation of Tumor Angiogenesis

    PubMed Central

    Alhusban, Ahmed; Al-Azayzih, Ahmad; Goc, Anna; Gao, Fei; Fagan, Susan C.

    2014-01-01

    Angiotensin II receptor type 1 blockers (ARBs), widely used antihypertensive drugs, have also been investigated for their anticancer effects. The effect of ARBs on prostate cancer in experimental models compared with meta-analysis data from clinical trials is conflicting. Whereas this discrepancy might be due to the use of supratherapeutic doses of ARBs in cellular and animal models as compared with the clinical doses used in human trials, further investigation of the effects of clinical doses of ARBs on prostate cancer in experimental models is warranted. In the current study, we sought to determine the effects of candesartan on prostate cancer cellular function in vitro and tumor growth in vivo, and characterize the underlying mechanisms. Our analysis indicated that clinically relevant doses of candesartan significantly inhibited growth of PC3 cell tumor xenografts in mice. Interestingly, the same concentrations of candesartan actually promoted prostate cancer cellular function in vitro, through a modest but significant inhibition in apoptosis. Inhibition of tumor growth by candesartan was associated with a decrease in vascular endothelial growth factor (VEGF) expression in tumors and inhibition of tumor angiogenesis, but normalization of tumor vasculature. Although candesartan did not impair PC3 cell viability, it inhibited endothelial-barrier disruption by tumor-derived factors. Furthermore, candesartan significantly inhibited expression of VEGF in PC3 and DU145 cell lines independent of angiotensin II type 2 receptor, but potentially via angiotensin II type 1 receptor inhibition. Our findings clearly demonstrate the therapeutic potential of candesartan for prostate cancer and establish a link between ARBs, VEGF expression, and prostate tumor angiogenesis. PMID:24990940

  1. The ruthenium complex cis-(dichloro)tetraammineruthenium(III) chloride presents selective cytotoxicity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) tumor cell lines.

    PubMed

    Silveira-Lacerda, Elisângela de Paula; Vilanova-Costa, Cesar Augusto Sam Tiago; Hamaguchi, Amélia; Pavanin, Luiz Alfredo; Goulart, Luiz Ricardo; Homsi-Brandenburgo, Maria Inês; Dos Santos, Wagner Batista; Soares, Andreimar Martins; Nomizo, Auro

    2010-06-01

    The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency. PMID:19727575

  2. Effects of dietary DL-2-hydroxy-4(methylthio)butanoic acid supplementation on growth performance, indices of ascites syndrome, and antioxidant capacity of broilers reared at low ambient temperature

    NASA Astrophysics Data System (ADS)

    Yang, G. L.; Zhang, K. Y.; Ding, X. M.; Zheng, P.; Luo, Y. H.; Bai, S. P.; Wang, J. P.; Xuan, Y.; Su, Z. W.; Zeng, Q. F.

    2016-01-01

    This study examined the effects of dietary DL-2-hydroxy-4(methylthio)butanoic acid (DL-HMTBA) supplementation on growth performance, antioxidant capacity, and ascites syndrome (AS) in broilers reared at low ambient temperature (LAT) from 7 to 28 days of age. Eight hundred 7-day-old broilers were randomly assigned to two ambient temperatures (LAT and normal ambient temperature [NAT]), four supplemental DL-HMTBA levels (0.17, 0.34, 0.51, and 0.68 %) of the basal diet in a 2 × 4 factorial arrangement (ten replicate pens; ten birds/pen). LAT and NAT indicate temperatures of 12-14 and 24-26 °C in two chambers, respectively, and broilers were reared at these temperatures from 7 to 28 days of age. LAT significantly decreased body weight gain (P < 0.001), serum glutathione (GSH) content (day 14, P = 0.02; day 28, P = 0.045), glutathione peroxidase (GSH-Px) activity, and total antioxidant capacity (T-AOC) at 21 days (P = 0.001, 0.015) and 28 days (P = 0.017, 0.010) and increased feed conversion ratio (FCR) (P < 0.001), serum malondialdehyde (day 21, P = 0.000) and protein carbonyl Level (day 14, P = 0.003; day 21, P = 0.035). As for incidence of AS, there were significant effects of LAT on red blood cell (RBC) count (P < 0.05), hematocrit (HCT) (P < 0.05), and the right to total ventricular weight ratio (RV/TV) at 21 days (P = 0.012) and 28 days (P = 0.046). Supplementation of DL-HMTBA markedly decreased RV/TV at day 28 (P = 0.021), RBC (day 21, P = 0.008), HCT (day 21, P < 0.001), mean cell hemoglobin (day 14, P = 0.035; day 21, P = 0.003), and serum protein carbonyl level (day 21, P = 0.009), while significantly increased serum GSH content (day 14, P = 0.022; day 28, P = 0.001), SOD and GSH-Px activities at 21 days of age (P < 0.001 and P = 0.037). The optimal supplemental DL-HMTBA levels in basal diet of broilers aged from 7 to 28 days under low or normal temperatures were similar, so the authors recommended supplemental of DL-HMTBA level was 0.46 %.

  3. Cisplatin Nephrotoxicity and Longitudinal Growth in Children With Solid Tumors

    PubMed Central

    Jiménez-Triana, Clímaco Andres; Castelán-Martínez, Osvaldo D.; Rivas-Ruiz, Rodolfo; Jiménez-Méndez, Ricardo; Medina, Aurora; Clark, Patricia; Rassekh, Rod; Castañeda-Hernández, Gilberto; Carleton, Bruce; Medeiros, Mara

    2015-01-01

    Abstract Cisplatin, a major antineoplastic drug used in the treatment of solid tumors, is a known nephrotoxin. This retrospective cohort study evaluated the prevalence and severity of cisplatin nephrotoxicity in 54 children and its impact on height and weight. We recorded the weight, height, serum creatinine, and electrolytes in each cisplatin cycle and after 12 months of treatment. Nephrotoxicity was graded as follows: normal renal function (Grade 0); asymptomatic electrolyte disorders, including an increase in serum creatinine, up to 1.5 times baseline value (Grade 1); need for electrolyte supplementation <3 months and/or increase in serum creatinine 1.5 to 1.9 times from baseline (Grade 2); increase in serum creatinine 2 to 2.9 times from baseline or need for electrolyte supplementation for more than 3 months after treatment completion (Grade 3); and increase in serum creatinine ≥3 times from baseline or renal replacement therapy (Grade 4). Nephrotoxicity was observed in 41 subjects (75.9%). Grade 1 nephrotoxicity was observed in 18 patients (33.3%), Grade 2 in 5 patients (9.2%), and Grade 3 in 18 patients (33.3%). None had Grade 4 nephrotoxicity. Nephrotoxicity patients were younger and received higher cisplatin dose, they also had impairment in longitudinal growth manifested as statistically significant worsening on the height Z Score at 12 months after treatment. We used a multiple logistic regression model using the delta of height Z Score (baseline-12 months) as dependent variable in order to adjust for the main confounder variables such as: germ cell tumor, cisplatin total dose, serum magnesium levels at 12 months, gender, and nephrotoxicity grade. Patients with nephrotoxicity Grade 1 where at higher risk of not growing (OR 5.1, 95% CI 1.07–24.3, P = 0.04). The cisplatin total dose had a significant negative relationship with magnesium levels at 12 months (Spearman r = −0.527, P = <0.001). PMID:26313789

  4. Protein tyrosine phosphatase receptor type O expression in the tumor niche correlates with reduced tumor growth, angiogenesis, circulating tumor cells and metastasis of breast cancer.

    PubMed

    Liu, Zhao; Hou, Jiajie; Ren, Lidong; He, Jing; Sun, Beicheng; Sun, Lu-Zhe; Wang, Shui

    2015-04-01

    Protein tyrosine phosphatase receptor type O (PTPRO) has been recognized as a tumor suppressor in various types of cancer cells. However, little attention has been given to the role of PTPRO expression in the tumor microenvironment. We aimed to reveal the role of PTPRO in the breast cancer niche. Py8119 mouse breast cancer cells were implanted orthotopically into female wild-type or ptpro-/- C57Bl/6 mice. We observed that the loss of PTPRO in the tumor niche was correlated with larger tumor volume, more metastases, increased number of circulating tumor cells (CTCs), less apoptosis and reduced necrosis rates in the orthotopic mouse model of breast cancer. The tumor microenvironment in the ptpro-/- mice also showed increased microvessel density. Moreover, an intracardiac injection mouse model was used to determine the role of PTPRO in the pre-metastatic niche. Notably, more metastases were observed in the mice of the ptpro-/- group. Taken together, PTPRO expression in the tumor niche prevents tumor growth and the formation of metastases of breast cancer, in part by attenuating tumor-associated angiogenesis and inducing the apoptosis and necrosis of tumor cells. PMID:25646811

  5. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA.

    PubMed

    Celiker, M Y; Wang, M; Atsidaftos, E; Liu, X; Liu, Y E; Jiang, Y; Valderrama, E; Goldberg, I D; Shi, Y E

    2001-07-19

    Extracellular matrix (ECM) degrading matrix metalloproteinases (MMPs) lead to ECM turnover, a key event in cancer growth and progression. The tissue inhibitors of matrix metalloproteinases (TIMPs) limit the activity of MMPs, which suggests their use for cancer gene therapy. Here we report that systemic administration of naked TIMP-4 DNA significantly inhibited Wilms' tumor growth in nude mice. TIMP-4, whose expression was lost in Wilms' tumor, inhibited the growth of G401 Wilms' tumor cells at a concentration lower than those required for MMP inhibition. This inhibition was associated with internalization of exogenous recombinant TIMP-4. Electroporation-mediated intramuscular injection of TIMP-4 expression plasmid resulted in sustained plasma TIMP-4 levels and significant tumor suppression. Our data demonstrate a tumor suppressive effect of TIMP-4 against Wilms' tumor and the potential utility of intramuscular delivery of TIMP gene for treatment of kidney derived cancers. PMID:11466614

  6. p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner

    PubMed Central

    Addadi, Yoseph; Moskovits, Neta; Granot, Dorit; Lozano, Guillermina; Carmi, Yaron; Apte, Ron N.; Neeman, Michal; Oren, Moshe

    2010-01-01

    The p53 tumor suppressor exerts a variety of cell-autonomous effects that are aimed to thwart tumor development. In addition, however, there is growing evidence for cell non-autonomous tumor suppressor effects of p53. In the present study, we investigated the impact of stromal p53 on tumor growth. Specifically, we found that ablation of p53 in fibroblasts enabled them to promote more efficiently the growth of tumors initiated by PC3 prostate cancer-derived cells. This stimulatory effect was dependent on the increased expression of the chemokine SDF-1 in the p53-deficient fibroblasts. Notably, fibroblasts harboring mutant p53 protein were more effective than p53-null fibroblasts in promoting tumor growth. The presence of either p53-null or p53-mutant fibroblasts led also to a markedly elevated rate of metastatic spread of the PC3 tumors. These findings implicate p53 in a cell non-autonomous tumor suppressor role within stromal fibroblasts, through suppressing the production of tumor-stimulatory factors by these cells. Moreover, expression of mutant p53 by tumor stroma fibroblasts might exert a gain of function effect, further accelerating tumor development. PMID:20952507

  7. Mathematical models of tumor growth using Voronoi tessellations in pathology slides of kidney cancer.

    PubMed

    Saribudak, Aydin; Yiyu Dong; Gundry, Stephen; Hsieh, James; Uyar, M Umit

    2015-08-01

    The impact of patient-specific spatial distribution features of cell nuclei on tumor growth characteristics was analyzed. Tumor tissues from kidney cancer patients were allowed to grow in mice to apply H&E staining and to measure tumor volume during preclinical phase of our study. Imaging the H&E stained slides under a digital light microscope, the morphological characteristics of nuclei positions were determined. Using artificial intelligence based techniques, Voronoi features were derived from diagrams, where cell nuclei were considered as distinct nodes. By identifying the effect of each Voronoi feature, tumor growth was expressed mathematically. Consistency between the computed growth curves and preclinical measurements indicates that the information obtained from the H&E slides can be used as biomarkers to build personalized mathematical models for tumor growth. PMID:26737283

  8. Many Ribosomal Protein Mutations Are Associated With Growth Impairment and Tumor Predisposition in Zebrafish

    PubMed Central

    Lai, Kevin; Amsterdam, Adam; Farrington, Sarah; Bronson, Roderick T.; Hopkins, Nancy; Lees, Jacqueline A.

    2009-01-01

    We have characterized 28 zebrafish lines with heterozygous mutations in ribosomal protein (rp) genes, and found that 17 of these are prone to develop zebrafish malignant peripheral nerve sheath tumors (zMPNST). Heterozygotes from the vast majority of tumor-prone rp lines were found to be growth-impaired, though not all growth-impaired rp lines were tumor-prone. Significantly, however, the rp lines with the greatest incidence of zMPNSTs all displayed a growth impairment. Furthermore, heterozygous cells from one tumor-prone rp line were out-competed by wild-type cells in chimeric embryos. The growth impairment resulting from heterozygosity for many rp genes suggests that a global defect in protein translation exists in these lines, raising the possibility that a translation defect that precedes tumor development is predictive of tumorigenesis. PMID:19097187

  9. Struma ovarii with elevated ca-125 levels and ascites mimicking advanced ca ovary.

    PubMed

    Sinha, Navin Kumar

    2014-03-01

    Struma ovarii is uncommon tumor of ovary which can mimic as advanced carcinoma of ovary. Thyroid tissue is relatively frequent constituent of mature ovarian teratoma. Case of struma ovarii masquerading as cancer of ovary in a female aged 63 yrs showing complex large unilateral multilocular adnexal mass with elevated CA 125 (more than 1721 IU/L) and massive ascites mislead treating surgeons for long time. Clinicians were virtually clueless about preoperative diagnosis. Combination of ascites has been seen in one third cases but association with raised CA 125 is rare(only 8-10 cases so far). This case developed hypothyroidism one week after surgery. PMID:24783110

  10. Struma Ovarii with Elevated Ca-125 Levels and Ascites Mimicking Advanced Ca Ovary

    PubMed Central

    Sinha, Navin Kumar

    2014-01-01

    Struma ovarii is uncommon tumor of ovary which can mimic as advanced carcinoma of ovary. Thyroid tissue is relatively frequent constituent of mature ovarian teratoma. Case of struma ovarii masquerading as cancer of ovary in a female aged 63 yrs showing complex large unilateral multilocular adnexal mass with elevated CA 125 (more than 1721 IU/L) and massive ascites mislead treating surgeons for long time. Clinicians were virtually clueless about preoperative diagnosis. Combination of ascites has been seen in one third cases but association with raised CA 125 is rare(only 8-10 cases so far). This case developed hypothyroidism one week after surgery. PMID:24783110

  11. Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites.

    PubMed

    Zhou, Yi; Wen, Feng; Zhang, Pengfei; Tang, Ruilei; Li, Qiu

    2016-03-01

    Cancer cells in ascites are usually exposed to a hypoxia tumor microenvironment and utilize enhanced glycolysis which produces energy and metabolizes nutrients to support proliferation. Vesicular stomatitis virus (VSV) is an oncolytic virus that relies on the host cellular metabolism for replication. We tested the efficacy of VSV on peritoneal carcinomatosis and assessed VSV replication in cancer cells from ascites. BALB/c female mice bearing peritoneal H22 or MethA cells received an i.p. administration of 1x108 PFU VSV or 1x108 PFU equivalent of UV-inactivated VSV on day 10, 12 and 14 after incubation. Administration of VSV resulted in a significant inhibition of ascites formation and prolonged survival of the treated mice. The replication of VSV was obviously enhanced in the cancer cells from the ascites. Considering the central carbon metabolic pathways, cancer cells in the malignant ascites provided more exogenous glucose, glutamine and pyruvate after VSV infection due to its unregulated glycolytic activity and glutamine metabolism. Pharmacologically, inhibition of the glycolytic pathway and glutamine metabolism reduced VSV replication, and this inhibited replication was rescued by the addition of multiple tricarboxylic acid (TCA) cycle intermediates. Our results demonstrated that metabolic adaptive processes in peritoneal carcinoma, such as high glycolytic activity and glutamine metabolism, favor VSV replication. These results suggest the clinical potency of VSV in the treatment of malignant ascites and provide new insights into the further exploration of the potential application of VSV in the treatment of hypoxia ascites cancer cells. PMID:26707610

  12. Influence of Cancer-Associated Endometrial Stromal Cells on Hormone-Driven Endometrial Tumor Growth

    PubMed Central

    Pineda, M. J.; Lu, Z.; Cao, D.

    2016-01-01

    Cancer-associated fibroblasts have been shown to inhibit or stimulate tumor growth depending on stage, grade, and tumor type. It remains unclear, however, the effect of endometrial-cancer-associated fibroblasts on hormone-driven responses in endometrial cancer. In this study, we investigated the effect of normal and cancer-associated stromal cells from patients with and without endometrial cancer on endometrial tumor growth in response to estradiol (E2) and progesterone (P4). Compared to benign endometrial stromal cells, the low-grade and high-grade cancer-associated stromal cells exhibited a blunted hormone response for proliferation as well as IGFBP1 secretion. Additional analysis of the influence of stromal cells on hormone-driven tumor growth was done by mixing stromal cells from benign, low-grade, or high-grade tumors, with Ishikawa cells for subcutaneous tumor formation. The presence of both benign and high-grade cancer-associated stromal cells increased estradiol-driven xenografted tumor growth compared to Ishikawa cells alone. Low-grade cancer-associated stromal cells did not significantly influence hormone-regulated tumor growth. Addition of P4 attenuated tumor growth in Ishikawa + benign or high-grade stromal cells, but not in Ishikawa cells alone or with low-grade stromal cells. Using an angiogenesis focused real-time array TGFA, TGFB2 and TGFBR1 and VEGFC were identified as potential candidates for hormone-influenced growth regulation of tumors in the presence of benign and high-grade stromal cells. In summary, endometrial-cancer-associated cells responded differently to in vitro hormone treatment compared to benign endometrial stromal cells. Additionally, presence of stromal cells differentially influenced hormone-driven xenograft growth in vivo depending on the disease status of the stromal cells. PMID:25976290

  13. pHLIP-mediated targeting of truncated tissue factor to tumor vessels causes vascular occlusion and impairs tumor growth

    PubMed Central

    Zhao, Ying; Zhang, Yinlong; Su, Shishuai; Wang, Jing; Wu, Meiyu; Shi, Quanwei; Anderson, Gregory J.; Thomsen, Johannes; Zhao, Ruifang; Ji, Tianjiao; Wang, Jie

    2015-01-01

    Occluding tumor blood supply by delivering the extracellular domain of coagulation-inducing protein tissue factor (truncated tissue factor, tTF) to tumor vasculature has enormous potential to eliminate solid tumors. Yet few of the delivery technologies are moved into clinical practice due to their non-specific tissue biodistribution and rapid clearance by the reticuloendothelial system. Here we introduced a novel tTF delivery method by generating a fusion protein (tTF-pHLIP) consisting of tTF fused with a peptide with a low pH-induced transmembrane structure (pHLIP). This protein targets the acidic tumor vascular endothelium and effectively induces local blood coagulation. tTF-pHLIP, wherein pHLIP is cleverly designed to mimic the natural tissue factor transmembrane domain, triggered thrombogenic activity of the tTF by locating it to the endothelial cell surface, as demonstrated by coagulation assays and confocal microscopy. Systemic administration of tTF-pHLIP into tumor-bearing mice selectively induced thrombotic occlusion of tumor vessels, reducing tumor perfusion and impairing tumor growth without overt side effects. Our work introduces a promising strategy for using tTF as an anti-cancer drug, which has great potential value for clinical applications. PMID:26143637

  14. Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis

    PubMed Central

    Chen, Dongshi; Wei, Liang; Yu, Jian; Zhang, Lin

    2014-01-01

    Purpose Regorafenib, a multi-kinase inhibitor targeting the Ras/Raf/MEK/ERK pathway, has recently been approved for the treatment of metastatic colorectal cancer (CRC). However, the mechanisms of action of regorafenib in CRC cells have been unclear. We investigated how regorafenib suppresses CRC cell growth and potentiates effects of other chemotherapeutic drugs. Experimental Design We determined whether and how regorafenib induces the expression of PUMA, a p53 target and a critical mediator of apoptosis in CRC cells. We also investigated whether PUMA is necessary for the killing and chemosensitization effects of regorafenib in CRC cells. Furthermore, xenograft tumors were used to test if PUMA mediates the in vivo antitumor, antiangiogenic and chemosensitization effects of regorafenib. Results We found that regorafenib treatment induces PUMA in CRC cells irrespective of p53 status through the NF-κB pathway following ERK inhibition and glycogen synthase kinase 3β (GSK3β) activation. Upregulation of PUMA is correlated with apoptosis induction in different CRC cell lines. PUMA is necessary for regorafenib-induced apoptosis in CRC cells. Chemosensitization by regorafenib is mediated by enhanced PUMA induction through different pathways. Furthermore, deficiency in PUMA abrogates the in vivo antitumor, antiangiogenic and chemosensitization effects of regorafenib. Conclusions Our results demonstrate a key role of PUMA in mediating the anticancer effects of regorafenib in CRC cells. They suggest that PUMA induction can be used as an indicator of regorafenib sensitivity, and also provide a rationale for manipulating the apoptotic machinery to improve the therapeutic efficacy of regorafenib and other targeted drugs. PMID:24763611

  15. Macrophage depletion reduces postsurgical tumor recurrence and metastatic growth in a spontaneous murine model of melanoma

    PubMed Central

    Tham, Muly; Khoo, Karen; Yeo, Kim Pin; Kato, Masashi; Prevost-Blondel, Amelle; Angeli, Veronique; Abastado, Jean-Pierre

    2015-01-01

    Surgical resection of tumors is often followed by regrowth at the primary site and metastases may emerge rapidly following removal of the primary tumor. Macrophages are important drivers of tumor growth, and here we investigated their involvement in postoperative relapse as well as explore macrophage depletion as an adjuvant to surgical resection. RETAAD mice develop spontaneous metastatic melanoma that begins in the eye. Removal of the eyes as early as 1 week of age did not prevent the development of metastases; rather, surgery led to increased proliferation of tumor cells locally and in distant metastases. Surgery-induced increase in tumor cell proliferation correlated with increased macrophage density within the tumor. Moreover, macrophages stimulate tumor sphere formation from tumor cells of post-surgical but not control mice. Macrophage depletion with a diet containing the CSF-1R specific kinase inhibitor Ki20227 following surgery significantly reduced postoperative tumor recurrence and abrogated enhanced metastatic outgrowth. Our results confirm that tumor cells disseminate early, and show that macrophages contribute both to post-surgical tumor relapse and growth of metastases, likely through stimulating a population of tumor-initiating cells. Thus macrophage depletion warrants exploration as an adjuvant to surgical resection. PMID:25762633

  16. Halofuginone inhibits angiogenesis and growth in implanted metastatic rat brain tumor model--an MRI study.

    PubMed

    Abramovitch, Rinat; Itzik, Anna; Harel, Hila; Nagler, Arnon; Vlodavsky, Israel; Siegal, Tali

    2004-01-01

    Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF) is a potent inhibitor of collagen type alpha1(I). In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI), we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001). Treatment with HF significantly prolonged survival of treated animals (142%; P = .001). In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05). Additionally, HF treatment inhibited vessel maturation (P = .03). Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors. PMID:15548356

  17. Control of Tumor Growth in Animals by Infusion of an Angiogenesis Inhibitor

    NASA Astrophysics Data System (ADS)

    Langer, Robert; Conn, Howard; Vacanti, Joseph; Haudenschild, Christian; Folkman, Judah

    1980-07-01

    Angiogenesis and tumor growth were inhibited in two different animal models by regional infusion of a partially purified cartilage extract. In rabbits bearing corneal implants of V2 carcinoma and receiving the inhibitor, vascular growth rates were <3% of those in control animals receiving either Ringer's solution or bovine trypsin inhibitor (Trasylol). Subconjunctival B16 melanoma implants in mice receiving the inhibitor weighed <2.5% of implants in mice receiving Ringer's solution, Trasylol, or albumin. Histologic study of major organs and standard blood tests revealed no toxic effects in any of the animals. The inhibitor did not retard the growth of either tumor cell type in tissue culture at concentrations as high as 1 mg/ml. These results suggest that the cartilage factor does not interfere with the growth of the tumor cell population directly but that it prevents tumor growth by inhibiting angiogenesis.

  18. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity.

    PubMed

    Novosyadlyy, Ruslan; Leroith, Derek

    2012-06-01

    Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity. PMID:22421704

  19. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation

    PubMed Central

    Pedroza-Gonzalez, Alexander; Xu, Kangling; Wu, Te-Chia; Aspord, Caroline; Tindle, Sasha; Marches, Florentina; Gallegos, Michael; Burton, Elizabeth C.; Savino, Daniel; Hori, Toshiyuki; Tanaka, Yuetsu; Zurawski, Sandra; Zurawski, Gerard; Bover, Laura; Liu, Yong-Jun; Banchereau, Jacques

    2011-01-01

    The human breast tumor microenvironment can display features of T helper type 2 (Th2) inflammation, and Th2 inflammation can promote tumor development. However, the molecular and cellular mechanisms contributing to Th2 inflammation in breast tumors remain unclear. Here, we show that human breast cancer cells produce thymic stromal lymphopoietin (TSLP). Breast tumor supernatants, in a TSLP-dependent manner, induce expression of OX40L on dendritic cells (DCs). OX40L+ DCs are found in primary breast tumor infiltrates. OX40L+ DCs drive development of inflammatory Th2 cells producing interleukin-13 and tumor necrosis factor in vitro. Antibodies neutralizing TSLP or OX40L inhibit breast tumor growth and interleukin-13 production in a xenograft model. Thus, breast cancer cell–derived TSLP contributes to the inflammatory Th2 microenvironment conducive to breast tumor development by inducing OX40L expression on DCs. PMID:21339324

  20. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways

    PubMed Central

    Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J.; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O.M. Zack

    2014-01-01

    Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and antiinflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

  1. A Glycolysis-Based In Silico Model for the Solid Tumor Growth.

    PubMed

    Papadogiorgaki, Maria; Kounelakis, Michalis G; Koliou, Panagiotis; Zervakis, Michalis E

    2015-05-01

    Cancer-tumor growth is a complex process depending on several biological factors, such as the chemical microenvironment of the tumor, the cellular metabolic profile, and its proliferation rate. Several mathematical models have been developed for identifying the interactions between tumor cells and tissue microenvironment, since they play an important role in tumor formation and progression. Toward this direction we propose a new continuum model of avascular glioma-tumor growth, which incorporates a new factor, namely, the glycolytic potential of cancer cells, to express the interactions of three different tumor-cell populations (proliferative, hypoxic, and necrotic) with their tissue microenvironment. The glycolytic potential engages three vital nutrients, i.e., oxygen, glucose, and lactate, which provide cells with the necessary energy for their survival and proliferation. Extensive simulations are performed for different evolution times and various proliferation rates, in order to investigate how the tumor growth is affected. According to medical experts, the experimental observations indicate that the model predicts quite satisfactorily the overall tumor growth as well as the expansion of each region separately. Following extensive evaluation, the proposed model may provide an essential tool for patient-specific tumor simulation and reliable prediction of glioma spatiotemporal expansion. PMID:25216488

  2. [The inhibitory effect of intraperitoneal hyperthermic and hypotonic chemotherapy on ascites cancer cells in mice].

    PubMed

    Chen, Z; Peng, D; Tan, J

    1995-03-01

    To study the effect of inhibition of intraperitoneal hyperthermic hypotonic chemotherapy on the ascites cacer cells, LACA mice were given intraperitoneal injection of H22 cancer cells (2 x 10(7) tumor cell, each mouse). At 24 hours after the cancer injection, intraperitoneal simple hyperthermic (43 C) hypotonic fluid group (I), isotonic fluid group (II), cis-Diamminodichloroplatinum (DDP) group (IV) and hyperthermic hypotonic fluid perfusion combined with DDP group (V) were processed. The results showed that cancer cells in LACA mice peritoneal cavity were seriously damaged, the ascites growing was obviously inhibited, and the survival days of LACA mice were prolonged in all groups; however, the intraperitoneal hyperthermic hypotonic fluid perfusion with DDP group (V) presented greater effect compared with the other groups. This might be a new therapeutic procedure for the prevention and treatment of cancer ascites in the patients with digestive tract malignancies. PMID:7657323

  3. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids.

    PubMed

    Rafehi, Samah; Valdes, Yudith Ramos; Bertrand, Monique; McGee, Jacob; Préfontaine, Michel; Sugimoto, Akira; DiMattia, Gabriel E; Shepherd, Trevor G

    2016-03-01

    Epithelial-mesenchymal transition (EMT) serves as a key mechanism driving tumor cell migration, invasion, and metastasis in many carcinomas. Transforming growth factor-beta (TGFβ) signaling is implicated in several steps during cancer pathogenesis and acts as a classical inducer of EMT. Since epithelial ovarian cancer (EOC) cells have the potential to switch between epithelial and mesenchymal states during metastasis, we predicted that modulation of TGFβ signaling would significantly impact EMT and the malignant potential of EOC spheroid cells. Ovarian cancer patient ascites-derived cells naturally underwent an EMT response when aggregating into spheroids, and this was reversed upon spheroid re-attachment to a substratum. CDH1/E-cadherin expression was markedly reduced in spheroids compared with adherent cells, in concert with an up-regulation of several transcriptional repressors, i.e., SNAI1/Snail, TWIST1/2, and ZEB2. Treatment of EOC spheroids with the TGFβ type I receptor inhibitor, SB-431542, potently blocked the endogenous activation of EMT in spheroids. Furthermore, treatment of spheroids with SB-431542 upon re-attachment enhanced the epithelial phenotype of dispersing cells and significantly decreased cell motility and Transwell migration. Spheroid formation was significantly compromised by exposure to SB-431542 that correlated with a reduction in cell viability particularly in combination with carboplatin treatment. Thus, our findings are the first to demonstrate that intact TGFβ signaling is required to control EMT in EOC ascites-derived cell spheroids, and it promotes the malignant characteristics of these structures. As such, we show the therapeutic potential for targeted inhibition of this pathway in ovarian cancer patients with late-stage disease. PMID:26647384

  4. Integrin ?v?6 sustains and promotes tumor invasive growth in colon cancer progression

    PubMed Central

    Yang, Guang-Yun; Guo, Sen; Dong, Cong-Ying; Wang, Xian-Qiang; Hu, Bing-Yang; Liu, Yang-Feng; Chen, Yong-Wei; Niu, Jun; Dong, Jia-Hong

    2015-01-01

    AIM: To detect the mechanism by which colon tumor escapes the growth constraints imposed on normal cells by cell crowding and dense pericellular matrices. METHODS: An immunohistochemical study of integrin ?v?6 and matrix metalloproteinase-9 (MMP-9) was performed on tissue microarrays of 200 spots, including 100 cases of colon tumors. RESULTS: High immunoreactivity for ?v?6 (73.7%; 28/38) and MMP-9 (76.5%; 52/68) was observed in invasive tumor portions. Furthermore, the effects of integrin ?v?6 on tumor invasive growth in nude mice were detected. Tumor invasive growth and high expression of both ?v?6 and MMP-9 were only seen in tumors resulting from WiDr cells expressing ?v?6 in the tumorigenicity assay. Flow cytometry was applied to analyze ?v?6 expression in colon cancer WiDr and SW480 cells. The effects of cell density on ?v?6 expression and MMP-9 secretion were also detected by Biotrak MMP-9 activity assay and gelatin zymography assay. High cell density evidently enhanced ?v?6 expression and promoted MMP-9 secretion compared with low density. CONCLUSION: Integrin ?v?6 sustains and promotes tumor invasive growth in tumor progression via a self-perpetuating mechanism. Integrin ???6-mediated MMP-9 secretion facilitates pericellular matrix degradation at high cell density, which provides the basis of invasive growth. PMID:26139991

  5. Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors

    PubMed Central

    Klopp, Ann H.; Zhang, Yan; Solley, Travis; Amaya-Manzanares, Felipe; Marini, Frank; Andreeff, Michael; Debeb, Bisrat; Woodward, Wendy; Schmandt, Rosemarie; Broaddus, Russell; Lu, Karen; Kolonin, Mikhail G.

    2011-01-01

    Purpose Adipose tissue contains a population of tumor-tropic mesenchymal progenitors, termed adipose stromal cells (ASC), which engraft in neighboring tumors to form supportive tumor stroma. We hypothesized that intra-abdominal visceral adipose tissue may contain a uniquely tumor promoting population of ASC to account for the relationship between excess visceral adipose tissue and mortality of intra-abdominal cancers. Experimental Design To investigate this, we isolated and characterized ASC from intra-abdominal omental adipose tissue (O-ASC) and characterized their effects on endometrial cancer progression as compared to subcutaneous adipose derived mesenchymal stromal cells (SC-ASC), bone marrow derived mesenchymal stromal cells (BM-MSC) and lung fibroblasts. To model chronic recruitment of ASC by tumors, cells were injected metronomically into mice bearing Hec1a xenografts. Results O-ASC expressed cell surface markers characteristic of BM-MSC and differentiated into mesenchymal lineages. Co-culture with O-ASC increased endometrial cancer cell proliferation in-vitro. Tumor tropism of O-ASC and SC-ASC for human Hec1a endometrial tumor xenografts was comparable, but O-ASC more potently promoted tumor growth. Compared with tumors in SC-ASC-injected mice, tumors in O-ASC-injected mice contained higher numbers of large tortuous desmin-positive blood vessels, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. O-ASC-exhibited enhanced motility as compared to SC-ASC in response to Hec1a secreted factors. Conclusions Visceral adipose contains a population of multipotent MSC that promote endometrial tumor growth more potently than MSC from subcutaneous adipose tissue. We propose that O-ASC recruited to tumors express specific factors that enhance tumor vascularization, promoting survival and proliferation of tumor cells. PMID:22167410

  6. Pharmacological Inhibition of Microsomal Prostaglandin E Synthase-1 Suppresses Epidermal Growth Factor Receptor-Mediated Tumor Growth and Angiogenesis

    PubMed Central

    Bocci, Elena; Coletta, Isabella; Polenzani, Lorenzo; Mangano, Giorgina; Alisi, Maria Alessandra; Cazzolla, Nicola; Giachetti, Antonio; Ziche, Marina; Donnini, Sandra

    2012-01-01

    Background Blockade of Prostaglandin (PG) E2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1) gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR) signaling pathway. Methodology/Principal Findings Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β) increased mPGES-1 expression, PGE2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) expression. AF3485 reduced PGE2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. Conclusion Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth. PMID:22815767

  7. Sucrose Octasulfate Regulates Fibroblast Growth Factor-2 Binding, Transport, and Activity: Potential for Regulation of Tumor Growth

    PubMed Central

    FANNON, MICHAEL; FORSTEN-WILLIAMS, KIMBERLY; NUGENT, MATTHEW A.; GREGORY, KALVIN J.; CHU, CHIA LIN; GOERGES-WILDT, ADRIENNE L; PANIGRAHY, DIPAK; KAIPAINEN, ARJA; BARNES, CARMEN; LAPP, CATHY; SHING, YUEN

    2008-01-01

    The antithrombotic activity of heparin has largely been credited with the success found in some cancer treatment by heparin. There are, however, many potent growth factors involved in tumor and blood vessel growth that bind to heparin with high affinity and their regulation by heparin may play a role in heparin’s efficacy. We therefore chose to study the activity of a heparin analog, sucrose octasulfate (SOS), which has been similarly shown to interact with heparin-binding growth factors. Using mouse melanoma and lung carcinoma models, we demonstrate in vivo inhibition of tumor growth by SOS. SOS, however, showed little effect in coagulation assays indicating that this activity was not a primary mechanism of action for this molecule. Studies were then performed to assess the effect of SOS on basic fibroblast growth factor (FGF-2) activity, a growth factor which promotes tumor and blood vessel growth and is produced by B16 melanoma cells. SOS potently inhibited FGF-2 binding to endothelial cells and stripped pre-bound FGF-2 from cells. SOS also regulated FGF-2 stimulated proliferation. Further, SOS facilitated FGF-2 diffusion through Descemet’s membrane, a heparan sulfate-rich basement membrane from the cornea, suggesting a possible role in FGF-2 clearance. Our results suggest that molecules such as SOS have the potential to remove growth factors from tumor microenvironments and the approach offers an attractive area for further study. PMID:18163458

  8. Deletion of the endothelial Bmx tyrosine kinase decreases tumor angiogenesis and growth.

    PubMed

    Holopainen, Tanja; López-Alpuche, Vanessa; Zheng, Wei; Heljasvaara, Ritva; Jones, Dennis; He, Yun; Tvorogov, Denis; D'Amico, Gabriela; Wiener, Zoltan; Andersson, Leif C; Pihlajaniemi, Taina; Min, Wang; Alitalo, Kari

    2012-07-15

    Bmx, [corrected] also known as Etk, is a member of the Tec family of nonreceptor tyrosine kinases. Bmx is expressed mainly in arterial endothelia and in myeloid hematopoietic cells. Bmx regulates ischemia-mediated arteriogenesis and lymphangiogenesis, but its role in tumor angiogenesis is not known. In this study, we characterized the function of Bmx in tumor growth using both Bmx knockout and transgenic mice. Isogenic colon, lung, and melanoma tumor xenotransplants showed reductions in growth and tumor angiogenesis in Bmx gene-deleted ((-/-)) mice, whereas developmental angiogenesis was not affected. In addition, growth of transgenic pancreatic islet carcinomas and intestinal adenomas was also slower in Bmx(-/-) mice. Knockout mice showed high levels of Bmx expression in endothelial cells of tumor-associated and peritumoral arteries. Moreover, endothelial cells lacking Bmx showed impaired phosphorylation of extracellular signal-regulated kinase (Erk) upon VEGF stimulation, indicating that Bmx contributes to the transduction of vascular endothelial growth factor signals. In transgenic mice overexpressing Bmx in epidermal keratinocytes, tumors induced by a two-stage chemical skin carcinogenesis treatment showed increased growth and angiogenesis. Our findings therefore indicate that Bmx activity contributes to tumor angiogenesis and growth. PMID:22593188

  9. Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions

    PubMed Central

    Pedrosa, Ana-Rita; Trindade, Alexandre; Carvalho, Catarina; Graça, José; Carvalho, Sandra; Peleteiro, Maria C.; Adams, Ralf H.; Duarte, António

    2015-01-01

    Angiogenesis is an essential process required for tumor growth and progression. The Notch signaling pathway has been identified as a key regulator of the neo-angiogenic process. Jagged-1 (Jag1) is a Notch ligand required for embryonic and retinal vascular development, which direct contribution to the regulation of tumor angiogenesis remains to be fully characterized. The current study addresses the role of endothelial Jagged1-mediated Notch signaling in the context of tumoral angiogenesis in two different mouse tumor models: subcutaneous Lewis Lung Carcinoma (LLC) tumor transplants and the autochthonous Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP). The role of endothelial Jagged1 in tumor growth and neo-angiogenesis was investigated with endothelial-specific Jag1 gain- and loss-of-function mouse mutants (eJag1OE and eJag1cKO). By modulating levels of endothelial Jag1, we observed that this ligand regulates tumor vessel density, branching, and perivascular maturation, thus affecting tumor vascular perfusion. The pro-angiogenic function is exerted by its ability to positively regulate levels of Vegfr-2 while negatively regulating Vegfr-1. Additionally, endothelial Jagged1 appears to exert an angiocrine function possibly by activating Notch3/Hey1 in tumor cells, promoting proliferation, survival and epithelial-to-mesenchymal transition (EMT), potentiating tumor development. These findings provide valuable mechanistic insights into the role of endothelial Jagged1 in promoting solid tumor development and support the notion that it may constitute a promising target for cancer therapy. PMID:26213336

  10. Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions.

    PubMed

    Pedrosa, Ana-Rita; Trindade, Alexandre; Carvalho, Catarina; Graça, José; Carvalho, Sandra; Peleteiro, Maria C; Adams, Ralf H; Duarte, António

    2015-09-15

    Angiogenesis is an essential process required for tumor growth and progression. The Notch signaling pathway has been identified as a key regulator of the neo-angiogenic process. Jagged-1 (Jag1) is a Notch ligand required for embryonic and retinal vascular development, which direct contribution to the regulation of tumor angiogenesis remains to be fully characterized. The current study addresses the role of endothelial Jagged1-mediated Notch signaling in the context of tumoral angiogenesis in two different mouse tumor models: subcutaneous Lewis Lung Carcinoma (LLC) tumor transplants and the autochthonous Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP). The role of endothelial Jagged1 in tumor growth and neo-angiogenesis was investigated with endothelial-specific Jag1 gain- and loss-of-function mouse mutants (eJag1OE and eJag1cKO). By modulating levels of endothelial Jag1, we observed that this ligand regulates tumor vessel density, branching, and perivascular maturation, thus affecting tumor vascular perfusion. The pro-angiogenic function is exerted by its ability to positively regulate levels of Vegfr-2 while negatively regulating Vegfr-1. Additionally, endothelial Jagged1 appears to exert an angiocrine function possibly by activating Notch3/Hey1 in tumor cells, promoting proliferation, survival and epithelial-to-mesenchymal transition (EMT), potentiating tumor development. These findings provide valuable mechanistic insights into the role of endothelial Jagged1 in promoting solid tumor development and support the notion that it may constitute a promising target for cancer therapy. PMID:26213336

  11. On a Nonlinear Model for Tumor Growth: Global in Time Weak Solutions

    NASA Astrophysics Data System (ADS)

    Donatelli, Donatella; Trivisa, Konstantina

    2014-07-01

    We investigate the dynamics of a class of tumor growth models known as mixed models. The key characteristic of these type of tumor growth models is that the different populations of cells are continuously present everywhere in the tumor at all times. In this work we focus on the evolution of tumor growth in the presence of proliferating, quiescent and dead cells as well as a nutrient. The system is given by a multi-phase flow model and the tumor is described as a growing continuum Ω with boundary ∂Ω both of which evolve in time. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behavior, diffusion and viscosity in the weak formulation.

  12. TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth.

    PubMed

    Standiford, T J; Kuick, R; Bhan, U; Chen, J; Newstead, M; Keshamouni, V G

    2011-05-26

    Tumor-associated macrophages (TAMs) constitute a major component of the immune cell infiltrate observed in the tumor microenvironment (TME). Factors present in the TME, including tumor growth factor-β (TGF-β), allow tumors to circumvent host-mediated immune responses to promote tumor progression. However, the molecular mechanism(s) involved are not clear. Toll-like receptors (TLRs) are important mediators of innate immune responses by immune cells, whose activation triggers the production of molecules required for anti-tumoral responses. Interleukin (IL) receptor-associated kinase (IRAK)-M is an inactive serine/threonine kinase, predominantly expressed in macrophages and is a potent negative regulator of TLR signaling. In this study, we show that TAMs express significantly higher levels of IRAK-M compared with peritoneal macrophages in a syngeneic mouse model of lung cancer. Subcutaneous implantation of Lewis lung carcinoma cells in IRAK-M(-/-) mice resulted in a five-fold reduction in tumor growth as compared with tumors in wild-type (WT) animals. Furthermore, compared with WT TAMs, TAMs isolated from IRAK-M(-/-) mice displayed features of a classically activated (M1) rather than alternatively activated (M2) phenotype, as manifest by greater expression of IL-12, interferon-γ (IFN-γ) and inducible nitric oxide synthase. Human lung cancer cells induced IRAK-M expression in human peripheral blood mononuclear cells (PBMCs) when co-cultured together. Tumor cell-induced expression of IRAK-M was dependent on the activation of TGF-β pathway. Similarly, treatment of human PBMCs or mouse macrophage cell line, RAW 264.4, with TGF-β, induced IRAK-M expression. Interestingly, IRAK-M gene expression in 439 human lung adenocarcinoma tumors correlated with poor survival in patients with lung cancer. Together, our data demonstrates that TGF-β-dependent induction of IRAK-M expression is an important, clinically relevant mechanism by which tumors may circumvent anti-tumor responses of macrophages. PMID:21278795

  13. Olmesartan Potentiates the Anti-Angiogenic Effect of Sorafenib in Mice Bearing Ehrlich's Ascites Carcinoma: Role of Angiotensin (1–7)

    PubMed Central

    Abd-Alhaseeb, Mohammad M.; Zaitone, Sawsan A.; Abou-El-Ela, Soad H.; Moustafa, Yasser M.

    2014-01-01

    Local renin-angiotensin systems exist in various malignant tumor tissues; this suggests that the main effector peptide, angiotensin II, could act as a key factor in tumor growth. The underlying mechanisms for the anti-angiogenic effect of angiotensin II type 1 receptor blockers need to be further evaluated. The present study was carried out to investigate the anti-angiogenic effect of olmesartan alone or in combination with sorafenib, an angiotensin (1–7) agonist or an angiotensin (1–7) antagonist in Ehrlich's ascites carcinoma-bearing mice. The tumor was induced by intradermal injection of Ehrlich's ascites carcinoma cells into mice. Tumor discs were used to evaluate the microvessel density; the serum levels of vascular endothelial growth factor (VEGF) and serum insulin-like growth factor I (IGF-I); and their intratumoral receptors, VEGF receptor-2 and IGF-I receptor, respectively. All parameters were determined following the treatment course, which lasted for 21 days post-inoculation. Monotherapy with olmesartan and its combination with sorafenib resulted in a significant reduction in microvessel density and serum levels of VEGF and IGF-I, as well as their intratumoral receptors. In addition, the combination of olmesartan (30 mg/kg) with an angiotensin (1–7) agonist reduced the microvessel density, IGF-I serum levels and the levels of its intratumoral receptor. In conclusion, olmesartan reduced the levels of the angiogenesis markers IGF-I and VEGF and down-regulated the intratumoral expression of their receptors in a dose-dependent manner, and these effects were dependent on the angiotensin (1–7) receptor. These results suggest that olmesartan is a promising adjuvant to sorafenib in the treatment of cancer. PMID:24465768

  14. Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors

    PubMed Central

    Sewell, Duane A.; Pan, Zhen Kun; Paterson, Yvonne

    2008-01-01

    We have shown that Listeria-based cancer vaccines inhibit the growth of transplanted tumors in a transgenic mouse model of immune tolerance where HPV-16 E7 is expressed in the thyroid gland. In this study we determine whether these vaccines are able to inhibit autochthonous tumor growth in this animal model. Mice treated with Listeria vaccines expressing E7 had significantly smaller thyroid tumors than did mice treated with controls and possessed higher numbers of antigen-specific CD8+ T cells within the spleens, tumors, and peripheral blood. This study shows that Listeria-based vaccines are able to slow autochthonous tumor growth and break immunological tolerance. PMID:18680778

  15. Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts.

    PubMed

    Anderberg, Charlotte; Li, Hong; Fredriksson, Linda; Andrae, Johanna; Betsholtz, Christer; Li, Xuri; Eriksson, Ulf; Pietras, Kristian

    2009-01-01

    Cancer results from the concerted performance of malignant cells and stromal cells. Cell types populating the microenvironment are enlisted by the tumor to secrete a host of growth-promoting cues, thus upholding tumor initiation and progression. Platelet-derived growth factors (PDGF) support the formation of a prominent tumor stromal compartment by as of yet unidentified molecular effectors. Whereas PDGF-CC induces fibroblast reactivity and fibrosis in a range of tissues, little is known about the function of PDGF-CC in shaping the tumor-stroma interplay. Herein, we present evidence for a paracrine signaling network involving PDGF-CC and PDGF receptor-alpha in malignant melanoma. Expression of PDGFC in a mouse model accelerated tumor growth through recruitment and activation of different subsets of cancer-associated fibroblasts. In seeking the molecular identity of the supporting factors provided by cancer-associated fibroblasts, we made use of antibody arrays and an in vivo coinjection model to identify osteopontin as the effector of the augmented tumor growth induced by PDGF-CC. In conclusion, we establish paracrine signaling by PDGF-CC as a potential drug target to reduce stromal support in malignant melanoma. PMID:19118022

  16. Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth.

    PubMed

    Kai, Seiichiro; Goto, Shigeru; Tahara, Kouichirou; Sasaki, Atsushi; Kawano, Katsunori; Kitano, Seigo

    2003-01-01

    Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, is induced under various pathological conditions, including viral and bacterial infection, allograft rejection, cerebral ischemia, and tumor growth. We have previously reported that the expression of IDO mRNA was increased in some clinical cases of hepatocellular carcinoma in which the recurrence-free survival rate in these IDO-positive patients was significantly higher than that in patients without IDO mRNA induction in tumors. Additionally, IDO expressed in tumors was localized not to the tumor cells but instead to tumor-infiltrating cells by immunohistochemistry. In this study, in order to elucidate the mechanisms underlying anti-tumor effect of IDO, we investigated whether IDO inhibitor (1-methyl-dl-tryptophan, 1MT) affects the growth of subcutaneous B16 tumors in mice. Subsequently, the activity of natural killer (NK) cells was investigated under the conditions of inhibited IDO activity in vivo and in vitro. IDO mRNA expression of B16 cells, B16 subcutaneous tumor, sprenocytes of mice, and human NK cells were studied by reverse transcription-polymerase chain reaction. B16 subcutaneous tumor growth with or without IDO inhibition was observed and cytotoxic activity of NK cells were investigated under the conditions of inhibited IDO activity in vivo and in vitro. IDO mRNA was expressed in B16 subcutaneous tumor, splenocytes of tumor bearing mice, co-cultured splenocytes with B16, and human NK cells. On day 14, after injection of B16 melanoma cells, the sizes of tumors in IDO-inhibited mice were significantly larger than those in control mice. The cytotoxic activity of mice NK cells was reduced by IDO inhibition in vivo. In vitro inhibition of IDO, NK activity was reduced in dose-dependent manner of 1MT. In conclusion, these results indicated that IDO plays an important role in anti-tumor immunity by regulating cytotoxic activity of NK cells. PMID:14678522

  17. Human primary brain tumor cell growth inhibition in serum-free medium optimized for neuron survival.

    PubMed

    Brewer, Gregory J; LeRoux, Peter D

    2007-07-01

    Glioblastoma is the most common primary brain tumor in adults from which about 15,000 patients die each year in the United States. Despite aggressive surgery, radiotherapy and chemotherapy, median survival remains only 1 year. Here we evaluate growth of primary human brain tumor cells in a defined nutrient culture medium (Neuregen) that was optimized for neuron regeneration. We hypothesized that Neuregen would inhibit tumor cell growth because of its ability to inhibit gliosis in rat brain. Tumor tissue was collected from 18 patients including 10 males and 8 females (mean age 60+/-12 years) who underwent craniotomy for newly diagnosed, histologically confirmed brain tumors. The tissue was shipped overnight in Hibernate transport medium. Tumor cells were isolated and plated in Neurobasal/serum or Neuregen on culture plastic. After 1 week, growth in Neuregen was significantly less in 9/10 glioblastoma multiforme cases, 5/5 meningioma cases and 3/3 cases of brain metastasis. Analysis of deficient formulations of Neuregen and formulations to which selected components were added back implicate no single active component. However, individual cases were sensitive to corticosterone, selenium, ethanolamine, fatty acids and/or antioxidants. Therefore, a defined culture medium that promotes neuron regeneration inhibits the growth of human primary glioblastoma, meningioma and metastatic tumor cells in culture. The possible in vivo efficacy of Neuregen for treatment of brain tumor resections remains to be determined. PMID:17537410

  18. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  19. Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms.

    PubMed

    Decio, Alessandra; Taraboletti, Giulia; Patton, Veronica; Alzani, Rachele; Perego, Patrizia; Fruscio, Robert; Jürgensmeier, Juliane M; Giavazzi, Raffaella; Belotti, Dorina

    2014-04-01

    Vascular endothelial growth factor C (VEGFC) has been reported to promote tumor progression in several tumor types, mainly through the stimulation of lymphangiogenesis and lymphatic metastasis. However, the expression and biological significance of the VEGFC/VEGF receptor (VEGFR)-3 pathway in ovarian cancer growth and dissemination are unclear, and have been investigated in this study. Soluble VEGFC was detected in the plasma and ascites of patients with ovarian carcinoma, and VEGFR3 expression was found in their tumor tissues. In human ovarian carcinoma xenograft models, high levels of soluble VEGFC in ascites and serum were detected, in association with disease progression, tumor burden, and volume of ascites. Peak VEGFC expression preceded para-aortic lymph node infiltration by HOC8 neoplastic cells. Histological detection of tumor cells in blood and lymphatic vessels indicated both hematogenous and lymphatic dissemination. Overexpression of VEGFC in the VEGFR3-positive and luciferase-expressing IGROV1 cells promoted carcinoma dissemination after orthotopic transplantation in the ovary of immunodeficient mice. In vitro, VEGFC released by the tumor cells stimulated tumor cell migration in an autocrine manner. Cediranib, an inhibitor of VEGFR1-3 and c-kit, inhibited in vivo metastasis of VEGFC-overexpressing IGROV1 and in vitro autocrine effects. These findings suggest that the VEGFC/VEGFR3 pathway acts as an enhancer of ovarian cancer progression through autocrine and paracrine mechanisms, hence offering a potential target for therapy. PMID:24508126

  20. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors

    PubMed Central

    Casanova, M. Llanos; Blázquez, Cristina; Martínez-Palacio, Jesús; Villanueva, Concepción; Fernández-Aceñero, M. Jesús; Huffman, John W.; Jorcano, José L.; Guzmán, Manuel

    2003-01-01

    Nonmelanoma skin cancer is one of the most common malignancies in humans. Different therapeutic strategies for the treatment of these tumors are currently being investigated. Given the growth-inhibiting effects of cannabinoids on gliomas and the wide tissue distribution of the two subtypes of cannabinoid receptors (CB1 and CB2), we studied the potential utility of these compounds in anti–skin tumor therapy. Here we show that the CB1 and the CB2 receptor are expressed in normal skin and skin tumors of mice and humans. In cell culture experiments pharmacological activation of cannabinoid receptors induced the apoptotic death of tumorigenic epidermal cells, whereas the viability of nontransformed epidermal cells remained unaffected. Local administration of the mixed CB1/CB2 agonist WIN-55,212-2 or the selective CB2 agonist JWH-133 induced a considerable growth inhibition of malignant tumors generated by inoculation of epidermal tumor cells into nude mice. Cannabinoid-treated tumors showed an increased number of apoptotic cells. This was accompanied by impairment of tumor vascularization, as determined by altered blood vessel morphology and decreased expression of proangiogenic factors (VEGF, placental growth factor, and angiopoietin 2). Abrogation of EGF-R function was also observed in cannabinoid-treated tumors. These results support a new therapeutic approach for the treatment of skin tumors. PMID:12511587

  1. Selective expression of constitutively active pro-apoptotic protein BikDD gene in primary mammary tumors inhibits tumor growth and reduces tumor initiating cells.

    PubMed

    Rahal, Omar M; Nie, Lei; Chan, Li-Chuan; Li, Chia-Wei; Hsu, Yi-Hsin; Hsu, Jennifer; Yu, Dihua; Hung, Mien-Chie

    2015-01-01

    Our previous study showed that specifically delivering BikDD, a constitutive active mutant of pro-apoptotic protein Bik, to breast cancer cell xenografts in immunocompromised mice has a potent activity against tumor initiating cells (TICs), and that the combination between tyrosine kinase inhibitors (TKI) and BikDD gene therapy yielded synergistic effect on EGFR and HER2 positive breast cancer cells in immunodeficient nude mice. Those encouraging results have allowed us to propose a clinical trial using the liposome-complexing plasmid DNA expressing BikDD gene which has been approved by the NIH RAC Advisory committee. However, it is imperative to test whether systemic delivery of BikDD-expressing plasmid DNAs with liposomes into immunocompetent mice has therapeutic efficacy and tolerable side effects as what we observed in the nude mice model. In this study, we investigated the effects of BikDD gene-therapy on the primary mammary tumors, especially on tumor initiating cells (TICs), of a genetically engineered immunocompetent mouse harboring normal microenvironment and immune response. The effects on TIC population in tumors were determined by FACS analysis with different sets of murine specific TIC markers, CD49f(high)CD61(high) and CD24(+)Jagged1(-). First we showed in vitro that ectopic expression of BikDD in murine N202 cells derived from MMTV-HER2/Neu transgenic mouse tumors induced apoptosis and decreased the number of TICs. Consistently, systemic delivery of VISA-Claudin4-BikDD by liposome complexes significantly inhibited mammary tumor growth and slowed down residual tumor growth post cessation of therapy in MMTV-HER2/Neu transgenic mice compared to the controls. In addition, the anti-tumor effects of BikDD in vivo were consistent with decreased TIC population assessed by FACS analysis and in vitro tumorsphere formation assay of freshly isolated tumor cells. Importantly, systemic administration of BikDD did not cause significant cytotoxic response in standard toxicity assays or body weight changes. Taken together, our findings validated that selective expression of BikDD in the primary mammary tumors in immunocompetent hosts significantly reduced tumor burden and inhibited the residual tumor growth at off-therapy stage by eliminating TICs. Hence, the VISA-Claudin4-BikDD-mediated gene therapy is worthy of further investigation in breast cancer clinical trials. PMID:26885451

  2. Selective expression of constitutively active pro-apoptotic protein BikDD gene in primary mammary tumors inhibits tumor growth and reduces tumor initiating cells

    PubMed Central

    Rahal, Omar M; Nie, Lei; Chan, Li-Chuan; Li, Chia-Wei; Hsu, Yi-Hsin; Hsu, Jennifer; Yu, Dihua; Hung, Mien-Chie

    2015-01-01

    Our previous study showed that specifically delivering BikDD, a constitutive active mutant of pro-apoptotic protein Bik, to breast cancer cell xenografts in immunocompromised mice has a potent activity against tumor initiating cells (TICs), and that the combination between tyrosine kinase inhibitors (TKI) and BikDD gene therapy yielded synergistic effect on EGFR and HER2 positive breast cancer cells in immunodeficient nude mice. Those encouraging results have allowed us to propose a clinical trial using the liposome-complexing plasmid DNA expressing BikDD gene which has been approved by the NIH RAC Advisory committee. However, it is imperative to test whether systemic delivery of BikDD-expressing plasmid DNAs with liposomes into immunocompetent mice has therapeutic efficacy and tolerable side effects as what we observed in the nude mice model. In this study, we investigated the effects of BikDD gene-therapy on the primary mammary tumors, especially on tumor initiating cells (TICs), of a genetically engineered immunocompetent mouse harboring normal microenvironment and immune response. The effects on TIC population in tumors were determined by FACS analysis with different sets of murine specific TIC markers, CD49fhighCD61high and CD24+Jagged1-. First we showed in vitro that ectopic expression of BikDD in murine N202 cells derived from MMTV-HER2/Neu transgenic mouse tumors induced apoptosis and decreased the number of TICs. Consistently, systemic delivery of VISA-Claudin4-BikDD by liposome complexes significantly inhibited mammary tumor growth and slowed down residual tumor growth post cessation of therapy in MMTV-HER2/Neu transgenic mice compared to the controls. In addition, the anti-tumor effects of BikDD in vivo were consistent with decreased TIC population assessed by FACS analysis and in vitro tumorsphere formation assay of freshly isolated tumor cells. Importantly, systemic administration of BikDD did not cause significant cytotoxic response in standard toxicity assays or body weight changes. Taken together, our findings validated that selective expression of BikDD in the primary mammary tumors in immunocompetent hosts significantly reduced tumor burden and inhibited the residual tumor growth at off-therapy stage by eliminating TICs. Hence, the VISA-Claudin4-BikDD-mediated gene therapy is worthy of further investigation in breast cancer clinical trials. PMID:26885451

  3. Inhibition of Ovarian Tumor Growth by Targeting the HU177 Cryptic Collagen Epitope.

    PubMed

    Caron, Jennifer M; Ames, Jacquelyn J; Contois, Liangru; Liebes, Leonard; Friesel, Robert; Muggia, Franco; Vary, Calvin P H; Oxburgh, Leif; Brooks, Peter C

    2016-06-01

    Evidence suggests that stromal cells play critical roles in tumor growth. Uncovering new mechanisms that control stromal cell behavior and their accumulation within tumors may lead to development of more effective treatments. We provide evidence that the HU177 cryptic collagen epitope is selectively generated within human ovarian carcinomas and this collagen epitope plays a role in SKOV-3 ovarian tumor growth in vivo. The ability of the HU177 epitope to regulate SKOV-3 tumor growth depends in part on its ability to modulate stromal cell behavior because targeting this epitope inhibited angiogenesis and, surprisingly, the accumulation of α-smooth muscle actin-expressing stromal cells. Integrin α10β1 can serve as a receptor for the HU177 epitope in α-smooth muscle actin-expressing stromal cells and subsequently regulates Erk-dependent migration. These findings are consistent with a mechanism by which the generation of the HU177 collagen epitope provides a previously unrecognized α10β1 ligand that selectively governs angiogenesis and the accumulation of stromal cells, which in turn secrete protumorigenic factors that contribute to ovarian tumor growth. Our findings provide a new mechanistic understanding into the roles by which the HU177 epitope regulates ovarian tumor growth and provide new insight into the clinical results from a phase 1 human clinical study of the monoclonal antibody D93/TRC093 in patients with advanced malignant tumors. PMID:27216148

  4. Genetic parameters of ascites-related traits in broilers: effect of cold and normal temperature conditions.

    PubMed

    Pakdel, A; van Arendonk, J A M; Vereijken, A L J; Bovenhuis, H

    2005-02-01

    (1) Ascites syndrome is a growth-related disorder of broilers that occurs more often in fast-growing birds and at low temperatures. The objective of this study was to estimate genetic and phenotypic correlations among ascites-related traits measured either under cold or under normal temperature conditions, and to estimate genetic correlations between ascites-related traits measured under cold and normal conditions. (2) Several traits related to ascites were measured on more than 4000 chickens under cold conditions and on more than 700 chickens under normal conditions. (3) The heritability estimates for body weight (BW) measured under cold and normal conditions were 0.42 and 0.50, respectively, for haematocrit value 0.46 and 0.17, respectively, and for ratio of right to total ventricular weight 0.45 and 0.12, respectively. (4) The genetic correlation between BW and haematocrit value under cold conditions was -0.23 and between BW and ratio of right to total ventricular weight -0.27. Under normal conditions, however, these genetic correlations were 0.55 and 0.50, respectively. (5) These results demonstrate that the heritability estimates of ascites-related traits as well as genetic correlations between ascites-related traits and BW depend on the temperature conditions under which animals are kept. (6) Strong positive genetic correlations (around 0.8) were observed between total mortality, fluid in the abdomen and ratio of right to total ventricular weight under cold conditions. The genetic correlation between ratio of right to total ventricular weight under cold and normal conditions was 0.91. (7) These results suggest that the ratio of right to total ventricular weight measured under normal temperature conditions might serve as a good indicator trait for ascites. PMID:15835250

  5. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment.

    PubMed

    Solis de los Santos, F; Farnell, M B; Téllez, G; Balog, J M; Anthony, N B; Torres-Rodriguez, A; Higgins, S; Hargis, B M; Donoghue, A M

    2005-07-01

    Modern broilers have been genetically selected for an increased growth rate and improved feed conversion, but they are also more susceptible to ascites. Ascites occurs when there is an imbalance between available oxygen and the oxygen demand of the broiler. We hypothesized that promoting neonatal gut development with a prebiotic, such as Aspergillus meal (Prebiotic-AM), would enhance gut efficiency, decrease the oxygen demand of the gut, and reduce ascites incidence. In this study, we compared the effect of Prebiotic-AM on ascites incidence and gut development in commercial broilers reared at a local altitude (390 m above sea level) and a simulated high altitude (2,900 m above sea level). Half of the birds received a National Research Council recommended corn-soybean ration, and the other half received the same ration supplemented with 0.2% Prebiotic-AM. These 2 groups were further divided into a local altitude group and a simulated high altitude group for a total of 4 treatment combinations. Tissues were collected on d 1, 3, 7, 14, and 21 from the duodenum and lower ileum and placed in 10% buffered formalin for morphometric analysis. At a simulated high altitude, ascites incidence was 68% for birds fed the Prebiotic-AM supplement compared with 92% ascites incidence in birds given the control feed. The simulated high altitude decreased (P < 0.05) gut development, but prebiotic-treated birds reared in hypoxic conditions had similar gut development to control birds reared at local altitude. These data suggest that a feed ration supplemented with Prebiotic-AM may reduce the effect of hypoxia on broiler gut development and ascites incidence. PMID:16050126

  6. The ADAMTS1 Protease Gene Is Required for Mammary Tumor Growth and Metastasis

    PubMed Central

    Ricciardelli, Carmela; Frewin, Kate M.; Tan, Izza de Arao; Williams, Elizabeth D.; Opeskin, Kenneth; Pritchard, Melanie A.; Ingman, Wendy V.; Russell, Darryl L.

    2011-01-01

    A disintegrin and metalloprotease with thrombospondin motifs protein 1 (ADAMTS1) is a protease commonly up-regulated in metastatic carcinoma. Its overexpression in cancer cells promotes experimental metastasis, but whether ADAMTS1 is essential for metastatic progression is unknown. To address this question, we investigated mammary cancer progression and spontaneous metastasis in the MMTV-PyMT mouse mammary tumor model in Adamts1 knockout mice. Adamts1?/?/PyMT mice displayed significantly reduced mammary tumor and lung metastatic tumor burden and increased survival, compared with their wild-type and heterozygous littermates. Histological examination revealed an increased proportion of tumors with ductal carcinoma in situ and a lower proportion of high-grade invasive tumors in Adamts1?/?/PyMT mice, compared with Adamts1+/+/PyMT mice. Increased apoptosis with unaltered proliferation and vascular density in the Adamts1?/?/PyMT tumors suggested that reduced cell survival accounts for the lower tumor burden in ADAMTS1-deficient mice. Furthermore, Adamts1?/? tumor stroma had significantly lesser amounts of proteolytically cleaved versican and increased numbers of CD45+ leukocytes. Characterization of immune cell gene expression indicated that cytotoxic cell activation was increased in Adamts1?/? tumors, compared with Adamts1+/+ tumors. This finding is supported by significantly elevated IL-12+ cell numbers in Adamts1?/? tumors. Thus, in vivo ADAMTS1 may promote mammary tumor growth and progression to metastasis in the PyMT model and is a potential therapeutic target to prevent metastatic breast cancer. PMID:22001177

  7. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer

    PubMed Central

    2012-01-01

    Introduction Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although no differences in primary tumor end point size were observed. Using a refined model system, we investigated whether HIF-1α is directly implicated in the regulation of tumor-initiating cells (TICs) in breast cancer. Methods Mammary tumor epithelial cells were created from MMTV-PyMT mice harboring conditional alleles of Hif1a, followed by transduction ex vivo with either adenovirus β-galactosidase or adenovirus Cre to generate wild-type (WT) and HIF-1α-null (KO) cells, respectively. The impact of HIF-1α deletion on tumor-initiating potential was investigated using tumorsphere assays, limiting dilution transplantation and gene expression analysis. Results Efficient deletion of HIF-1α reduced primary tumor growth and suppressed lung metastases, prolonging survival. Loss of HIF-1α led to reduced expression of markers of the basal lineage (K5/K14) in cells and tumors and of multiple genes involved in the epithelial-to-mesenchymal transition. HIF-1α also enhanced tumorsphere formation at normoxia and hypoxia. Decreased expression of several genes in the Notch pathway as well as Vegf and Prominin-1 (CD133)was observed in response to Hif1a deletion. Immunohistochemistry confirmed that CD133 expression was reduced in KO cells and in tumorspheres. Tumorsphere formation was enhanced in CD133hi versus CD133neg cells sorted from PyMT tumors. Limiting dilution transplantation of WT and KO tumor cells into immunocompetent recipients revealed > 30-fold enrichment of TICs in WT cells. Conclusion These results demonstrate that HIF-1α plays a key role in promoting primary mammary tumor growth and metastasis, in part through regulation of TICs. HIF-1α regulates expression of several members of the Notch pathway, CD133 and markers of the basal lineage in mammary tumors. Our results suggest that CD133, which has not been profiled extensively in breast cancer, may be a useful marker of TICs in the PyMT mouse model. These data reveal for the first time that HIF-1α directly regulates breast TIC activity in vivo. PMID:22225988

  8. Ethanol Promotes Mammary Tumor Growth and Angiogenesis: the Involvement of Chemoattractant Factor MCP-1

    PubMed Central

    Wang, Siying; Xu, Mei; Li, Feifei; Wang, Xin; Bower, Kimberly A.; Frank, Jacqueline A.; Lu, Yanmin; Chen, Gang; Zhang, Zhuo; Ke, Zunji; Shi, Xianglin; Luo, Jia

    2011-01-01

    Alcohol consumption is a risk factor for breast cancer in humans. Experimental studies indicate that alcohol exposure promotes malignant progression of mammary tumors. However, the underlying cellular and molecular mechanisms remain unclear. Alcohol induces a pro-inflammatory response by modulating the expression of cytokines and chemokines. Monocyte chemoattractant protein-1 (MCP-1), also known as chemokine (C-C motif) ligand 2 (CCL2), is a pro-inflammatory chemokine implicated in breast cancer development/malignancy. We investigated the role of MCP-1 in alcohol-promoted mammary tumor progression. Using a xenograft model, we demonstrated that alcohol increased tumor angiogenesis and promoted growth/metastasis of breast cancer cells in C57BL/6 mice. Alcohol up-regulated the expression of MCP-1 and its receptor CCR2 in breast cancer cells in vitro and in vivo. Using a three-dimensional (3-D) tumor/endothelial cell co-culture system, we demonstrated MCP-1 regulated tumor/endothelial cell interaction and promoted tumor angiogenesis. More importantly, MCP-1 mediated alcohol-promoted angiogenesis; an antagonist of the MCP-1 receptor CCR2 significantly inhibited alcohol-stimulated tumor angiogenesis. The CCR2 antagonist abolished ethanol-stimulated growth of mammary tumors in mice. We further demonstrated that MCP-1 enhanced the migration, but not the proliferation of endothelial cells as well as breast cancer cells. These results suggest that MCP-1 plays an important role in ethanol-stimulated tumor angiogenesis and tumor progression. PMID:22160640

  9. Genetic tagging of tumor cells with retrovirus vectors: Clonal analysis of tumor growth and metastasis in vivo

    SciTech Connect

    Korczak; Robson, I.B.; Lamarche, C.; Bernstein, A.; Kerbel, R.S.

    1988-08-01

    Retrovirus vector infection was used to introduce large numbers of unique genetic markers into tumor cell populations for the purpose of analyzing comparative changes in the clonal composition of metastatic versus that of nonmetastatic tumors during their progressive growth in vivo. The cell lines were SP1, a nonmetastatic, aneuploid mouse mammary adenocarcinoma, and SP1HU9L, a metastatic variant of SP1. Cells were infected with ..delta..e..delta..rhoMoTn, a replication-defective retrovirus vector which possesses the dominant selectable neo gene and crippled long terminal repeats. G418/sup r/ colonies were obtained at a frequency of 4 x 10/sup -3/. Southern blot analysis of a number of clones provided evidence of random and heritable integration of one or two copies of the proviral DNA. Clonal equation of primary tumor growth and the nature of lineage relationships among spontaneous metastases and primary tumors were analyzed by subcutaneously injecting 10/sup 5/ cells from a pooled mixture of 3.6 x 10/sup 2/ G418/sup r/ SP1HU9L or 10/sup 4/ G418/sup r/ SP1 colonies into syngeneic CBA/J mice. The most striking finding was the relative clonal homogeneity of advanced primary tumors; they invariably consisted of a small number (less than 10) of distinct clones despite the fact that hundreds of thousands of uniquely marked clones had been injected.

  10. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    PubMed Central

    Lai, Wen-Lin; Harn, Horng-jyh; Hung, Pei-Hsiu; Hsieh, Ming-Chang; Chang, Kai-Fu; Huang, Xiao-Fan; Liao, Kuang-Wen; Lee, Ming-Shih; Tsai, Nu-Man

    2013-01-01

    Glioblastoma multiforme (GBM) is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer. PMID:24319475

  11. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    SciTech Connect

    Tong, Qingyi; Qing, Yong; Wu, Yang; Hu, Xiaojuan; Jiang, Lei; Wu, Xiaohua

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  12. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses

    PubMed Central

    2010-01-01

    Background Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. Methods The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. Results The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. Conclusion The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice. PMID:21029411

  13. Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kulkarni, Rahul; Sen, Shamik

    2016-06-01

    Tumors consist of multiple cell sub-populations including cancer stem cells (CSCs), transiently amplifying cells and terminally differentiated cells (TDCs), with the CSC fraction dictating the aggressiveness of the tumor and drug sensitivity. In epithelial cancers, tumor growth is influenced greatly by properties of the extracellular matrix (ECM), with cancer progression associated with an increase in ECM density. However, the extent to which increased ECM confinement induced by an increase in ECM density influences tumor growth and post treatment relapse dynamics remains incompletely understood. In this study, we use a cellular automata-based discrete modeling approach to study the collective influence of ECM density, cell motility and ECM proteolysis on tumor growth, tumor heterogeneity, and tumor relapse after drug treatment. We show that while increased confinement suppresses tumor growth and the spatial scattering of CSCs, this effect can be reversed when cells become more motile and proteolytically active. Our results further suggest that, in addition to the absolute number of CSCs, their spatial positioning also plays an important role in driving tumor growth. In a nutshell, our study suggests that, in confined environments, cell motility and ECM proteolysis are two key factors that regulate tumor growth and tumor relapse dynamics by altering the number and spatial distribution of CSCs.

  14. Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach

    PubMed Central

    Chen, Ying; Lowengrub, John S.

    2014-01-01

    We develop a mathematical model of tumor growth in complex, dynamic microenvironments with active, deformable membranes. Using a diffuse domain approach, the complex domain is captured implicitly using an auxiliary function and the governing equations are appropriately modified, extended and solved in a larger, regular domain. The diffuse domain method enables us to develop an efficient numerical implementation that does not depend on the space dimension or the microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented via a membrane energy that models cell-BM interactions. We incorporate simple models of elastic forces and the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it necessary to downregulate cell-BM adhesiveness, which is consistent with experimental observations. A stiff BM promotes invasiveness because at early stages the opening in the BM created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus promotes fragmentation that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was found to increase in size even when the BM is stiff because of pressure induced by growing tumor clusters. A larger opening in the BM can increase the potential for further invasiveness by increasing the possibility that additional tumor cells could invade the stroma. PMID:25014472

  15. B16/F10 tumors in aged 3D collagen in vitro simulate tumor growth and gene expression in aged mice in vivo

    PubMed Central

    Bentov, Itay; Damodarasamy, Mamatha; Plymate, Stephen

    2016-01-01

    Although the incidence of cancer rises with age, tumor growth is often slowed in older hosts. The B16/F10 melanoma cell line is commonly used in murine models of age-related tumor growth suppression. We wished to determine if the growth pattern and gene expression of B16/10 tumors grown in aged mice could be simulated in 3D collagen matrices derived from aged mice. Outcome measures were tumor size in vitro and gene expression of the key growth regulatory molecules: growth hormone receptor (GHR), IL-10Rβ, IL-4Rα, and IL-6. B16/F10 tumors were grown in 20–25-mo-old C57/BL6 male mice. Tumor sizes ranged from 30 to 4,910 mg in vivo. Tumors from a subset of mice were removed after euthanasia, and equivalent amounts of each tumor were placed in aged 3D collagen and grown for 5 d. Tumor sizes in aged 3D collagen correlated highly with their original tumor size in vivo. Gene expression changes noted in vivo were also maintained during tumor growth in aged 3D collagen in vitro. The relative expression of GHR was increased, IL-10Rβ was unchanged, and IL-4Rα and IL-6 were decreased in the larger tumors relative to the smaller tumors in vitro, in a pattern similar to that noted in vivo. We propose that 3D matrices from aged mice provide an in vitro model of tumor growth that correlates highly with tumor size and expression of key regulatory molecules in vivo. PMID:23661088

  16. Radiofrequency ablation for hepatocellular carcinoma abutting the diaphragm: the value of artificial ascites.

    PubMed

    Rhim, Hyunchul; Lim, Hyo K

    2009-01-01

    Ultrasound (US)-guided percutanoeus radiofrequency (RF) ablation is difficult to perform for treating a hepatic tumor abutting the diaphragm due to a poor sonic window and high risk of diaphragmatic thermal injury. RF ablation with assistance of the use of artificial ascites is a simple and safe technique for treating a hepatic dome tumor abutting the diaphragm. One can improve the sonic window and separate the RF ablation zone from the diaphragm by downward displacement of the liver with the use of a simple and inexpensive technique. Dextrose water solution is an ideal fluid due to its nonionic nature. Complications related to the use of artificial ascites including hemoperitoneum are rare. Peritoneal adhesion and tumor location in the bare area are the limitations for the application of this technique. PMID:18463915

  17. Mechanisms of vascularization in murine models of primary and metastatic tumor growth.

    PubMed

    Bugyik, Edina; Renyi-Vamos, Ferenc; Szabo, Vanessza; Dezso, Katalin; Ecker, Nora; Rokusz, Andras; Nagy, Peter; Dome, Balazs; Paku, Sandor

    2016-01-01

    Directed capillary ingrowth has long been considered synonymous with tumor vascularization. However, the vasculature of primary tumors and metastases is not necessarily formed by endothelial cell sprouting; instead, malignant tumors can acquire blood vessels via alternative vascularization mechanisms, such as intussusceptive microvascular growth, vessel co-option, and glomeruloid angiogenesis. Importantly, in response to anti-angiogenic therapies, malignant tumors can switch from one vascularization mechanism to another. In this article, we briefly review the biological features of these mechanisms and discuss on their significance in medical oncology. PMID:26873579

  18. Antitumor activity of galactoxyloglucan-gold nanoparticles against murine ascites and solid carcinoma.

    PubMed

    Joseph, Manu M; Aravind, S R; George, Suraj K; Pillai, K Raveendran; Mini, S; Sreelekha, T T

    2014-04-01

    Galactoxyloglucan polysaccharide (PST001), isolated from the seed kernels of Tamarindus indica (Ti), was used both as reducing and capping agent for the preparation of gold nanoparticles (PST-Gold) of 20 nm size. The present study evaluated the anticancer effects of the PST-Gold nanoparticles both in vitro and in vivo. The cytotoxicity was evaluated in the murine cancer cell lines, Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC). Galactoxyloglucan-gold nanoparticles (PST-Gold) not only retained the anticancer effects of PST001, but also showed enhanced cytotoxicity via induction of apoptosis even at lower doses and lesser incubation times. In vivo antitumor activity was tested in DLA and EAC murine ascites and EAC solid-tumor syngeneic mouse models. PST-Gold nanoparticles reduced tumor burden and increased median survival and life span significantly in both tumor models compared to the controls. The PST-Gold nanoparticles were very effective as a chemopreventive agent, showing the best overall response when administered prior to tumor induction. In the case of solid tumors, intratumoral administration of the PST-Gold nanoparticles yielded significant results with regard to survival and increment in lifespan as compared to intraperitoneal mode of drug administration. Further studies in higher animal models and in patients at high-risk for recurrence are warranted to fully explore and develop the potential of PST-Gold nanoconjugates as a chemopreventive and therapeutic anti-cancer agent. PMID:24486833

  19. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth

    PubMed Central

    Nieman, Kristin M; Kenny, Hilary A; Penicka, Carla V; Ladanyi, Andras; Buell-Gutbrod, Rebecca; Zillhardt, Marion R; Romero, Iris L; Carey, Mark S; Mills, Gordon B; Hotamisligil, Gökhan S; Yamada, S Diane; Peter, Marcus E; Gwin, Katja; Lengyel, Ernst

    2014-01-01

    Intra-abdominal tumors, such as ovarian cancer1,2, have a clear predilection for metastasis to the omentum, an organ primarily composed of adipocytes. Currently, it is unclear why tumor cells preferentially home to and proliferate in the omentum, yet omental metastases typically represent the largest tumor in the abdominal cavities of women with ovarian cancer. We show here that primary human omental adipocytes promote homing, migration and invasion of ovarian cancer cells, and that adipokines including interleukin-8 (IL-8) mediate these activities. Adipocyte–ovarian cancer cell coculture led to the direct transfer of lipids from adipocytes to ovarian cancer cells and promoted in vitro and in vivo tumor growth. Furthermore, coculture induced lipolysis in adipocytes and β-oxidation in cancer cells, suggesting adipocytes act as an energy source for the cancer cells. A protein array identified upregulation of fatty acid–binding protein 4 (FABP4, also known as aP2) in omental metastases as compared to primary ovarian tumors, and FABP4 expression was detected in ovarian cancer cells at the adipocyte-tumor cell interface. FABP4 deficiency substantially impaired metastatic tumor growth in mice, indicating that FABP4 has a key role in ovarian cancer metastasis. These data indicate adipocytes provide fatty acids for rapid tumor growth, identifying lipid metabolism and transport as new targets for the treatment of cancers where adipocytes are a major component of the microenvironment. PMID:22037646

  20. Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation

    PubMed Central

    Tang, Lei; van de Ven, Anne L.; Guo, Dongmin; Andasari, Vivi; Cristini, Vittorio; Li, King C.; Zhou, Xiaobo

    2014-01-01

    Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport, angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure. PMID:24404145

  1. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins

    PubMed Central

    Zhao, Guoping; Neely, Aaron M.; Schwarzer, Christian; Lu, Huayi; Whitt, Aaron G.; Stivers, Nicole S.; Burlison, Joseph A.; White, Carl; Machen, Terry E.; Li, Chi

    2016-01-01

    Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells. PMID:26758417

  2. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins.

    PubMed

    Zhao, Guoping; Neely, Aaron M; Schwarzer, Christian; Lu, Huayi; Whitt, Aaron G; Stivers, Nicole S; Burlison, Joseph A; White, Carl; Machen, Terry E; Li, Chi

    2016-02-01

    Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells. PMID:26758417

  3. PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition

    PubMed Central

    Panigrahy, Dipak; Kaipainen, Arja; Huang, Sui; Butterfield, Catherine E.; Barnés, Carmen M.; Fannon, Michael; Laforme, Andrea M.; Chaponis, Deviney M.; Folkman, Judah; Kieran, Mark W.

    2008-01-01

    Angiogenesis and inflammation are central processes through which the tumor microenvironment influences tumor growth. We have demonstrated recently that peroxisome proliferator-activated receptor (PPAR)α deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of thrombospondin (TSP)-1 and prevents tumor growth. Hence, we speculated that pharmacologic activation of PPARα would promote tumor growth. Surprisingly, the PPARα agonist fenofibrate potently suppressed primary tumor growth in mice. This effect was not mediated by cancer-cell-autonomous antiproliferative mechanisms but by the inhibition of angiogenesis and inflammation in the host tissue. Although PPARα-deficient tumors were still susceptible to fenofibrate, absence of PPARα in the host animal abrogated the potent antitumor effect of fenofibrate. In addition, fenofibrate suppressed endothelial cell proliferation and VEGF production, increased TSP-1 and endostatin, and inhibited corneal neovascularization. Thus, both genetic abrogation of PPARα as well as its activation by ligands cause tumor suppression via overlapping antiangiogenic pathways. These findings reveal the potential utility of the well tolerated PPARα agonists beyond their use as lipid-lowering drugs in anticancer therapy. Our results provide a mechanistic rationale for evaluating the clinical benefits of PPARα agonists in cancer treatment, alone and in combination with other therapies. PMID:18199835

  4. A hybrid cellular automaton model of solid tumor growth and bioreductive drug transport.

    PubMed

    Kazmi, Nabila; Hossain, M A; Phillips, Roger M

    2012-01-01

    Bioreductive drugs are a class of hypoxia selective drugs that are designed to eradicate the hypoxic fraction of solid tumors. Their activity depends upon a number of biological and pharmacological factors and we used a mathematical modeling approach to explore the dynamics of tumor growth, infusion, and penetration of the bioreductive drug Tirapazamine (TPZ). An in-silico model is implemented to calculate the tumor mass considering oxygen and glucose as key microenvironmental parameters. The next stage of the model integrated extra cellular matrix (ECM), cell-cell adhesion, and cell movement parameters as growth constraints. The tumor microenvironments strongly influenced tumor morphology and growth rates. Once the growth model was established, a hybrid model was developed to study drug dynamics inside the hypoxic regions of tumors. The model used 10, 50 and 100 \\mu {\\rm M} as TPZ initial concentrations and determined TPZ pharmacokinetic (PK) (transport) and pharmacodynamics (cytotoxicity) properties inside hypoxic regions of solid tumor. The model results showed that diminished drug transport is a reason for TPZ failure and recommend the optimization of the drug transport properties in the emerging TPZ generations. The modeling approach used in this study is novel and can be a step to explore the behavioral dynamics of TPZ. PMID:23221082

  5. Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions

    PubMed Central

    Chen, Yong; Wang, Hengtong; Zhang, Jiangang; Chen, Ke; Li, Yumin

    2015-01-01

    All tumors, both benign and metastatic, undergo an avascular growth stage with nutrients supplied by the surrounding tissue. This avascular growth process is much easier to carry out in more qualitative and quantitative experiments starting from tumor spheroids in vitro with reliable reproducibility. Essentially, this tumor progression would be described as a sequence of phenotypes. Using agent-based simulation in a two-dimensional spatial lattice, we constructed a composite growth model in which the phenotypic behavior of tumor cells depends on not only the local nutrient concentration and cell count but also the game among cells. Our simulation results demonstrated that in silico tumors are qualitatively similar to those observed in tumor spheroid experiments. We also found that the payoffs in the game between two living cell phenotypes can influence the growth velocity and surface roughness of tumors at the same time. Finally, this current model is flexible and can be easily extended to discuss other situations, such as environmental heterogeneity and mutation. PMID:26648395

  6. DNA vaccination with CD44 variant isoform reduces mammary tumor local growth and lung metastasis.

    PubMed

    Wallach-Dayan, Shulamit Batya; Rubinstein, Ariel M; Hand, Carla; Breuer, Raphael; Naor, David

    2008-06-01

    We have shown recently that cDNA vaccination, using a virtual lymph node, ameliorates experimental allergic encephalomyelitis. Successful cure from mammary tumor requires resolution of local tumor growth and metastases. We have examined whether targeting of CD44 cell surface adhesion molecule by cDNA vaccination plays a role in resolving mammary tumor development. We show here that CD44 cDNA vaccination decreases the tumor mass and metastatic potential in experimental mammary tumor of BALB/c mice. Vaccination of mice, inoculated with the mammary tumors, by cDNA of CD44 variant (CD44v) but not by cDNA of standard CD44, markedly reduced local tumor development and lung metastasis. Concomitantly, transfection of CD44 antisense into a highly metastatic mammary tumor cell line disrupted the CD44 expression of the cells and reduced their ability to establish local tumors as well as metastatic colonies in the lung. Moreover, when CD44v, but not standard CD44 sense cDNA, was transfected into the poorly metastatic cell line, tumor development was markedly enhanced. It is possible therefore that DNA vaccination with a specific CD44v construct could induce an immune resistance to mammary tumor progression. PMID:18566232

  7. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    PubMed Central

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs. PMID:24574320

  8. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis.

    PubMed

    Devy, Laetitia; Huang, Lili; Naa, Laurent; Yanamandra, Niranjan; Pieters, Henk; Frans, Nicolas; Chang, Edward; Tao, Qingfeng; Vanhove, Marc; Lejeune, Annabelle; van Gool, Reinoud; Sexton, Daniel J; Kuang, Guannan; Rank, Douglas; Hogan, Shannon; Pazmany, Csaba; Ma, Yu Lu; Schoonbroodt, Sonia; Nixon, Andrew E; Ladner, Robert C; Hoet, Rene; Henderikx, Paula; Tenhoor, Chris; Rabbani, Shafaat A; Valentino, Maria Luisa; Wood, Clive R; Dransfield, Daniel T

    2009-02-15

    Inhibition of specific matrix metalloproteinases (MMP) is an attractive noncytotoxic approach to cancer therapy. MMP-14, a membrane-bound zinc endopeptidase, has been proposed to play a central role in tumor growth, invasion, and neovascularization. Besides cleaving matrix proteins, MMP-14 activates proMMP-2 leading to an amplification of pericellular proteolytic activity. To examine the contribution of MMP-14 to tumor growth and angiogenesis, we used DX-2400, a highly selective fully human MMP-14 inhibitory antibody discovered using phage display technology. DX-2400 blocked proMMP-2 processing on tumor and endothelial cells, inhibited angiogenesis, and slowed tumor progression and formation of metastatic lesions. The combination of potency, selectivity, and robust in vivo activity shows the potential of a selective MMP-14 inhibitor for the treatment of solid tumors. PMID:19208838

  9. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors

    NASA Astrophysics Data System (ADS)

    Rubin, Joshua B.; Kung, Andrew L.; Klein, Robyn S.; Chan, Jennifer A.; Sun, Yanping; Schmidt, Karl; Kieran, Mark W.; Luster, Andrew D.; Segal, Rosalind A.

    2003-11-01

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  10. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance.

    PubMed

    Salem, Ahmed F; Whitaker-Menezes, Diana; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2012-11-15

    Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would "fuel" enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial "power" in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or "metabolic oncogenes." Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial "poison") prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells. PMID:23070475

  11. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance

    PubMed Central

    Salem, Ahmed F.; Whitaker-Menezes, Diana; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P.

    2012-01-01

    Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would fuel enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1? and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1? and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1? and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial power in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1?, PGC-1?, mitoNEET and POLRMT should all be considered as tumor promoters or metabolic oncogenes. Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial poison) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells. PMID:23070475

  12. Multicenter study on adult growth hormone level in postoperative pituitary tumor patients.

    PubMed

    Cheng, Jing-min; Gu, Jian-wen; Kuang, Yong-qin; Ma, Yuan; Xia, Xun; Yang, Tao; Lu, Min; He, Wei-qi; Sun, Zhi-yong; Zhang, Yan-chao

    2015-03-01

    The objective of this study is to observe the adult growth hormone level in postoperative pituitary tumor patients of multi-centers, and explore the change of hypophyseal hormones in postoperative pituitary tumor patients. Sixty patients with pituitary tumor admitted during March, 2011-March, 2012 were selected. Postoperative hypophyseal hormone deficiency and the change of preoperative, intraoperative, and postoperative growth hormone levels were recorded. Growth hormone hypofunction was the most common hormonal hypofunction, which took up to 85.0 %. Adrenocortical hormone hypofunction was next to it and accounted for 58.33 %. GH + ACTH + TSH + Gn deficiency was the most common in postoperative hormone deficiency, which took up to 40.00 %, and GH + ACTH + TSH + Gn + AVP and GH deficiencies were next to it and accounted for 23.33 and 16.67 %, respectively. The hormone levels in patients after total pituitary tumor resection were significantly lower than those after partial pituitary tumor resection, and the difference was statistically significant; growth hormone and serum prolactin levels after surgery in two groups were decreased, and the difference was statistically significant. The incidence rate of growth hormone deficiency in postoperative pituitary tumor patients is high, which is usually complicated with deficiency of various hypophyseal hormones. In clinical, we should pay attention to the levels of the hypopnyseal hormones, and take timely measures to avoid postoperative complications. PMID:25403160

  13. Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly

    PubMed Central

    Martín-Rodríguez, Juan F.; Muñoz-Bravo, Jose L.; Ibañez-Costa, Alejandro; Fernandez-Maza, Laura; Balcerzyk, Marcin; Leal-Campanario, Rocío; Luque, Raúl M.; Castaño, Justo P.; Venegas-Moreno, Eva; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso; Cano, David A.

    2015-01-01

    Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors. PMID:26549306

  14. Ephrin-A1 inhibits NSCLC tumor growth via induction of Cdx-2 a tumor suppressor gene

    PubMed Central

    2012-01-01

    Background Tumor formation is a complex process which involves constitutive activation of oncogenes and suppression of tumor suppressor genes. Receptor EphA2 and its ligand ephrin-A1 form an important cell communication system with its functional role in cell-cell interaction and tumor growth. Loss of cell-cell adhesion is central to the cellular transformation and acquisition of metastatic potential. Claudins, the integrated tight junction (TJ) cell-cell adhesion proteins located on the apico-lateral portion of epithelial cells, functions in maintaining cell polarity. There is extensive evidence implicating Eph receptors and ephrins in malignancy, but the mechanisms how these molecular players affect TJ proteins and regulate tumor growth are not clear. In the present study we hypothesized that EphA2 signaling modulates claudin-2 gene expression via induction of cdx-2, a tumor suppressor gene in NSCLC cells. Methods The expression of EphA2, claudin-2 was determined in various NSCLC cell lines by using real-time quantitative polymerase chain reaction and Western blot analysis. The claudin-2 expression was also analyzed by immunofluorescence analysis. EphA2 and erk1/erk2 phosphorylation in ephrin-A1 activated cells was evaluated by Western blot analysis. The cell proliferation and tumor colony formation were determined by WST-1 and 3-D matrigel assays respectively. Results NSCLC cells over expressed receptor EphA2 and claudin-2. Ephrin-A1 treatment significantly down regulated the claudin-2 and EphA2 expression in NSCLC cells. The transient transfection of cells with vector containing ephrin-A1 construct (pcDNA-EFNA1) decreased the expression of claudin-2, EphA2 when compared to empty vector. In addition ephrin-A1 activation increased cdx-2 expression in A549 cells. In contrast over-expression of EphA2 with plasmid pcDNA-EphA2 up regulated claudin-2 mRNA expression and decreased cdx-2 expression. The transient transfection of cells with vector containing cdx-2 construct (pcMV-cdx-2) decreased the expression of claudin-2 in A549 cells. Moreover, silencing the expression of receptor EphA2 by siRNA significantly reduced claudin-2 expression and decreased cell proliferation and tumor formation. Furthermore, silencing cdx-2 gene expression before ephrin-A1 treatment increased claudin-2 expression along with increased cell proliferation and tumor growth in A549 cells. Conclusions Our study suggests that EphA2 signaling up-regulates the expression of the TJ-protein claudin-2 that plays an important role in promoting cell proliferation and tumor growth in NSCLC cells. We conclude that receptor EphA2 activation by ephrin-A1 induces tumor suppressor gene cdx-2 expression which attenuates cell proliferation, tumor growth and thus may be a promising therapeutic target against NSCLC. PMID:22824143

  15. Lymphomas and chylous ascites: review of the literature.

    PubMed

    Almakdisi, Tony; Massoud, Samuel; Makdisi, George

    2005-09-01

    Chylous ascites is a rare and challenging clinical condition that occurs as a result of disruption of the abdominal lymphatics. We include a review of the literature describing the etiology, diagnosis, and therapy of chylous ascites. PMID:16177287

  16. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioma, and may therefore provide a tool to make target delineation more objective and automated. PMID:24440875

  17. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioma, and may therefore provide a tool to make target delineation more objective and automated.

  18. Diagnostic accuracy of ascitic cholesterol concentration for malignant ascites: a meta-analysis

    PubMed Central

    Zhu, Hong; Shen, Yongchun; Deng, Kai; Liu, Xia; Zhao, Yaqin; Liu, Taiguo; Huang, Ying

    2015-01-01

    Many studies have investigated whether ascitic cholesterol can aid in diagnosis of malignant related ascites (MRA), and the results have varied considerably. To gain a more reliable answer to this question, we meta-analyzed the literature on using ascitic cholesterol as diagnostic tests to help identify MRA. Literature databases were systematically searched for studies examining accuracy of ascitic cholesterol for diagnosing MRA. Data on sensitivity, specificity, positive/negative likelihood ratio (PLR/NLR), and diagnostic odds ratio (DOR) were pooled using random effects models. Summary receiver operating characteristic (SROC) curves and area under the curve (AUC) were used to summarize overall test performance. At last, our meta-analysis included 8 studies involving 743 subjects. Summary estimates for ascitic cholesterol in the diagnosis of MRA were as follows: sensitivity, 0.82 (95% CI 0.78 to 0.86); specificity, 0.90 (95% CI 0.87 to 0.93); PLR, 9.24 (95% CI 4.58 to 18.66); NLR, 0.16 (95% CI 0.08 to 0.32); and DOR, 66.96 (95% CI 18.83 to 238.11). The AUC was 0.96. The ascitic cholesterol level is helpful for the diagnosis of MRA. Nevertheless, the results of ascitic cholesterol assays should be interpreted in parallel with the results of traditional tests and clinical information. PMID:26770458

  19. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis. PMID:24416386

  20. Radiological Insertion of Denver Peritoneovenous Shunts for Malignant Refractory Ascites: A Retrospective Multicenter Study (JIVROSG-0809)

    SciTech Connect

    Sugawara, Shunsuke; Sone, Miyuki; Arai, Yasuaki; Sakamoto, Noriaki; Aramaki, Takeshi; Sato, Yozo; Inaba, Yoshitaka; Takeuchi, Yoshito; Ueno, Teruko; Matsueda, Kiyoshi; Moriguchi, Michihisa; Tsushima, Takahiro

    2011-10-15

    Purpose: Peritoneal venous shunts (PVSs) are widely used for palliating symptoms of refractory malignant ascites and are recognized as one of the practical methods. However, reliable clinical data are insufficient because most previous reports have been small studies from single centers. We conducted a retrospective, multicenter study to evaluate the safety and efficacy of radiologically placed PVSs in patients with malignant refractory ascites. Methods: A total of 133 patients with malignant ascites refractory to medical therapies were evaluated for patient characteristics, technical success, efficacy, survival times, adverse events, and changes in laboratory data. Results: PVSs were successfully placed in all patients and were effective (i.e., improvement of ascites symptoms lasting 7 days or more) in 110 (82.7%). The median duration of symptom palliation was 26 days and median survival time was 41 days. The most frequent adverse event was PVS dysfunction, which occurred in 60 (45.1%) patients, among whom function was recovered with an additional minimally invasive procedure in 9. Abnormalities in coagulation (subclinical disseminated intravascular coagulation) occurred in 37 (27.8%) patients, although only 7 (5.3%) developed clinical disseminated intravascular coagulation. Other major adverse events were gastrointestinal bleeding (9.8%), sepsis (3.8%), and acute heart failure (3.0%). PVS was least effective in patients with elevated serum creatinine, bloody ascites, or gynecologic tumor. Conclusions: Radiological PVS is a technically feasible and effective method for palliating the symptoms from refractory malignant ascites, but preoperative evaluation and monitoring the postprocedural complications are mandatory to preclude severe adverse events after PVS.

  1. The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression.

    PubMed

    Gao, Dingcheng; Mittal, Vivek

    2009-08-01

    Emerging evidence from murine models suggests that tumor-specific endocrine factors systemically stimulate the quiescent bone marrow (BM) compartment, resulting in the expansion, mobilization and recruitment of BM progenitor cells. Discrete subsets of tumor-instigated BM-derived progenitor cells support tumor progression and metastasis by regulating angiogenesis, inflammation and immune suppression. Notably, clinical studies have begun to reveal that increased BM recruitment in tumors is associated with poor prognosis. Thus, the BM-derived tumor microenvironment is an attractive therapeutic target, and drugs targeting the components of the microenvironment are currently in clinical trials. Here, we focus on recent advances and emerging concepts regarding the intriguing role of BM-derived cells in tumor growth, metastasis initiation and progression, and we discuss future directions in the context of novel diagnostic and therapeutic opportunities. PMID:19665928

  2. Chylous ascites in a hedgehog (Atelerix albiventris).

    PubMed

    Roh, Yoon-Seok; Kim, Eun-Ju; Cho, Ara; Kim, Min-Su; Cho, Ho-Seong; Lim, Chae Woong; Kim, Bumseok

    2014-12-01

    An African pygmy hedgehog (Atelerix albiventris) was diagnosed as chylous ascites with biliary cirrhosis. Abdomenocentesis revealed a milky fluid with a 324 mg/dl triglyceride level. On serum biochemical examination, the hedgehog had hypoalbuminemia, hypoglycemia, and high blood urea nitrogen. There was no cytologic or genomic evidence of infection, and a blood culture was negative. Histopathologic examination revealed a liver with proliferative bile ducts that were often surrounded by prominent septa of fibrous connective tissue. In the area of ductular reaction, proliferative cells positive for CD66, an embryogenic antigen of epithelial cells, were revealed. The potential association between chylous ascites and liver cirrhosis is undetermined but could be an aspect of future study. This is the first description of chylous ascites in a hedgehog. PMID:25632690

  3. Extensive Loculated Ascites in Hepatic Amyloidosis

    PubMed Central

    Buppajarntham, Saranya; Kue-A-Pai, Pongsathorn

    2014-01-01

    Context: Amyloidosis is a disease of extracellular deposition of misfolded proteinaceous subunits, which could be systemic or localized disease. Though hepatic amyloidosis was not uncommon in autopsy series, most cases of hepatic amyloidosis were asymptomatic. Ascites, jaundice, portal hypertension, and gastrointestinal bleeding from esophageal varices were reported in literature. Case report: A 42-year-old man with end-stage renal disease on hemodialysis and recent small bowel obstruction presented with chronic abdominal pain. Computed tomography of abdomen and pelvis showed extensive loculated ascites and multiple small bowel loops tethered to adhesions and hepatomegaly. Finally, hepatic venography and liver biopsy confirmed hepatic amyloidosis with portal hypertension. The patient was waiting for liver transplant for definite treatment. Conclusion: We report a rare case of hepatic amyloidosis with prior small bowel obstruction presented with extensive loculated ascites and multiple small bowel loops tethered to adhesions. PMID:25077085

  4. Inhibition of autotaxin delays breast tumor growth and lung metastasis in mice.

    PubMed

    Benesch, Matthew G K; Tang, Xiaoyun; Maeda, Tatsuo; Ohhata, Akira; Zhao, Yuan Y; Kok, Bernard P C; Dewald, Jay; Hitt, Mary; Curtis, Jonathan M; McMullen, Todd P W; Brindley, David N

    2014-06-01

    Autotaxin is a secreted enzyme that produces most extracellular lysophosphatidate, which stimulates 6 G-protein-coupled receptors. Lysophosphatidate promotes cancer cell survival, growth, migration, invasion, metastasis, and resistance to chemotherapy and radiotherapy. The present work investigated whether inhibiting autotaxin could decrease breast tumor growth and metastasis. We used a new autotaxin inhibitor (ONO-8430506; IC90=100 nM), which decreased plasma autotaxin activity by >60% and concentrations of unsaturated lysophosphatidates by >75% for 24 h compared with vehicle-treated mice. The effects of ONO-8430506 on tumor growth were determined in a syngeneic orthotopic mouse model of breast cancer following injection of 20,000 BALB/c mouse 4T1 or 4T1-12B cancer cells. We show for the first time that inhibiting autotaxin decreases initial tumor growth and subsequent lung metastatic nodules both by 60% compared with vehicle-treated mice. Significantly, 4T1 cells express negligible autotaxin compared with the mammary fat pad. Autotaxin activity in the fat pad of nontreated mice was increased 2-fold by tumor growth. Our results emphasize the importance of tumor interaction with its environment and the role of autotaxin in promoting breast cancer growth and metastasis. We also established that autotaxin inhibition could provide a novel therapeutic approach to blocking the adverse effects of lysophosphatidate in cancer. PMID:24599971

  5. Effects of photodynamic hyperthermal therapy with indocyanine green on tumor growth in a colon 26 tumor-bearing mouse model

    PubMed Central

    ONOYAMA, MASAKI; AZUMA, KAZUO; TSUKA, TAKESHI; IMAGAWA, TOMOHIRO; OSAKI, TOMOHIRO; MINAMI, SABURO; OGAWA, NOBUHIKO; OKAMOTO, YOSHIHARU

    2014-01-01

    The present study used indocyanine green (ICG) and a broadband light source apparatus [photodynamic hyperthermal therapy (PHT) group] in order to treat a colon 26 tumor-bearing mouse model. The other groups were administered either ICG alone (ICG group), light alone (light group) or no treatment (control group). Following the treatment, tumor growth was measured. Nine days after the treatment, the tumors were resected and histological and immunohistological examinations were performed. In the PHT group, the growth rates of the tumor tissues were significantly decreased compared with those observed in the other groups (P<0.05). The proportion of necrotic areas in the PHT and light groups were increased significantly compared with those observed in the ICG and control groups. However, there were no significant differences between the PHT and light groups. The proportion of Ki-67 in the PHT and light groups was less than that observed in the ICG and control groups. The number of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling-positive cells in the PHT group was significantly increased compared with that observed in the other groups. These data indicate that PHT is effective in vivo and in vitro. PMID:24944683

  6. Effects of Marsdenia tenacissima polysaccharide on the immune regulation and tumor growth in H22 tumor-bearing mice.

    PubMed

    Jiang, Shuang; Qiu, Limin; Li, Yiquan; Li, Lu; Wang, Xingyun; Liu, Zhi; Guo, Yan; Wang, Haotian

    2016-02-10

    One water-soluble polysaccharide (Marsdenia tenacissima polysaccharide, MTP), with an average molecular weight of 4.9×10(4)Da, was isolated from the dried rattan of M. tenacissima. MTP contained 93.8% carbohydrates, 5.6% proteins and 21.3% uronic acid, and were composed of arabinose, mannose, galactose, xylose, glucuronic acid at a molar ratio of 9.1, 17.7, 30.2, 22.4 and 20.6. The experiments on the animals showed that MTP could increase the serum hemolysin, promote the formation of antibody-forming cells and improve the phagocytosis of mononuclear macrophage in normal mice. Meanwhile, MTP could also inhibit the growth of tumor in H22 tumor-bearing mice dose-dependently, and increase the spleen index, thymus index and serum albumin level in the mice. In addition, MTP could elevate the serum level of TNF-α and IL-2, increase the activity of GSH-Px, CAT and SOD in the liver tissue, and reduce the content of VEGF and MDA. These results suggest that MTP can regulate the immune function in mice and suppress the growth of tumor in H22 tumor-bearing mice, and its antitumor activity may be related to its antioxidant and immunomodulatory effects. PMID:26686104

  7. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model.

    PubMed

    Yin, Tao; He, Sisi; Shen, Guobo; Ye, Tinghong; Guo, Fuchun; Wang, Yongsheng

    2015-09-01

    Neuropsychological factors have been shown to influence tumor progression and therapeutic response. The present study investigated the effect of the dopamine receptor antagonist thioridazine on murine breast cancer. The anti‑tumor efficacy of thioridazine was assessed using a murine breast cancer model. Cell apoptosis and proliferation were analyzed in vitro using flow cytometry (FCM) and the MTT assay, respectively. Western blot analysis was performed to assess Akt, phosphorylated (p)‑Akt, signal transducer and activator of transcription (STAT) 3, p‑STAT3 and p‑p65 in tumor cells following treatment with thioridazine. The Ki67 index and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)‑positive apoptotic cells were assessed in the tumor sections. Thioridazine was found to reduce tumor growth, inhibit tumor cell proliferation and induce apoptosis in a dose‑ and time‑dependent manner in vitro. Thioridazine was also found to markedly inhibit tumor proliferation and induce tumor cell apoptosis in vivo as shown by the lower Ki67 index and increase in TUNEL‑positive cells. In addition, thioridazine was observed to inhibit the activation of the canonical nuclear factor κ‑light‑chain‑enhancer of activated B cells pathway and exert anti‑tumor effects by remodeling the tumor stroma, as well as inhibit angiogenesis in the tumor microenvironment. In conclusion, thioridazine was found to significantly inhibit breast tumor growth and the potential for thioridazine to be used in cancer therapy may be re‑evaluated and investigated in clinical settings. PMID:26095429

  8. High serum albumin ascites gradient ascites--an atypical presentation of metastatic pancreatic cancer.

    PubMed

    Fincher, R Keith; Green, Roland H

    2012-09-01

    Pancreatic adenocarcinoma has less than a 5% 5-year survival rate, and metastatic disease is associated with a median survival of 4.5 months. A typical presentation often includes evidence of biliary obstruction, abdominal pain, jaundice, and weight loss. Significant ascites is not commonly seen at initial presentation and, when present, is typically associated with a low serum albumin ascites gradient (SAAG). We discuss a patient who presented with high-SAAG ascites as her initial presentation, only to be later diagnosed with metastatic pancreatic adenocarcinoma. PMID:23025146

  9. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β

    PubMed Central

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E.; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy. PMID:26516371

  10. Definition of Prostaglandin E2-EP2 Signals in the Colon Tumor Microenvironment That Amplify Inflammation and Tumor Growth.

    PubMed

    Ma, Xiaojun; Aoki, Tomohiro; Tsuruyama, Tatsuaki; Narumiya, Shuh

    2015-07-15

    Inflammation in the colon contributes significantly to colorectal cancer development. While aspirin reduces the colorectal cancer risk, its action mechanism, especially in inflammation in tumor microenvironment, still remains obscure. Here, we examined this issue by subjecting mice deficient in each prostaglandin (PG) receptor to colitis-associated cancer model. Deficiency of PGE receptor subtype EP2 selectively reduced, and deficiency of EP1 and EP3 enhanced, the tumor formation. EP2 is expressed in infiltrating neutrophils and tumor-associated fibroblasts in stroma, where it regulates expression of inflammation- and growth-related genes in a self-amplification manner. Notably, expression of cytokines such as TNFα and IL6, a chemokine, CXCL1, a PG-producing enzyme, COX-2, and Wnt5A was significantly elevated in tumor lesions of wild-type mice but this elevation was significantly suppressed in EP2-deficient mice. Intriguingly, EP2 stimulation in cultured neutrophils amplified expression of TNFα, IL6, CXCL1, COX-2, and other proinflammatory genes synergistically with TNFα, and EP2 stimulation in cultured fibroblasts induced expression of EP2 itself, COX-2, IL6, and Wnt genes. EP2 expression in infiltrating neutrophils and tumor-associated fibroblasts was also found in clinical specimen of ulcerative colitis-associated colorectal cancer. Bone marrow transfer experiments suggest that EP2 in both cell populations is critical for tumorigenesis. Finally, administration of a selective EP2 antagonist potently suppressed tumorigenesis in this model. Our study has thus revealed that EP2 in neutrophils and tumor-associated fibroblasts promotes colon tumorigenesis by amplifying inflammation and shaping tumor microenvironment, and suggests that EP2 antagonists are promising candidates of aspirin-alternative for chemoprevention of colorectal cancer. PMID:26018088

  11. Neonatal Urinary Ascites: A Report of Three Cases

    PubMed Central

    Gajjar, Priya; Nourse, Peter

    2015-01-01

    Urinary ascites in neonates is not a common condition. Three cases of urinary ascites are presented and each of them has a different aetiology. Neonates with urinary ascites usually present as clinical emergency, requiring resuscitation, ventilator support, and subsequent drainage of urine. The ultimate management depends on the site of extravasation and the underlying cause. PMID:25954559

  12. Pediatric gastric cancer presenting with massive ascites.

    PubMed

    Lin, Chien-Heng; Lin, Wei-Ching; Lai, I-Hsiu; Wu, Shu-Fen; Wu, Kang-Hsi; Chen, An-Chyi

    2015-03-21

    Gastric adenocarcinoma is quite rare in children and as a result very little experience has been reported on with regards to clinical presentation, treatment and outcome. We describe the case of a 16-year-old boy presenting with abdominal fullness and poor appetite for 7 d. Sonography showed massive ascites and computed tomography imaging revealed the presence of gastric mucosa thickness with omentum caking. The diagnosis of gastric adenocarcinoma was biopsy-proven endoscopically. Despite gastric adenocarcinoma being quite rare in the pediatric patient population, we should not overlook the possibility of gastric adenocarcinoma when a child presents with distended abdomen and massive ascites. PMID:25805952

  13. Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy.

    PubMed

    D'Amico, Gabriela; Korhonen, Emilia A; Anisimov, Andrey; Zarkada, Georgia; Holopainen, Tanja; Hägerling, René; Kiefer, Friedemann; Eklund, Lauri; Sormunen, Raija; Elamaa, Harri; Brekken, Rolf A; Adams, Ralf H; Koh, Gou Young; Saharinen, Pipsa; Alitalo, Kari

    2014-02-01

    The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy. PMID:24430181

  14. Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy

    PubMed Central

    D’Amico, Gabriela; Korhonen, Emilia A.; Anisimov, Andrey; Zarkada, Georgia; Holopainen, Tanja; Hägerling, René; Kiefer, Friedemann; Eklund, Lauri; Sormunen, Raija; Elamaa, Harri; Brekken, Rolf A.; Adams, Ralf H.; Koh, Gou Young; Saharinen, Pipsa; Alitalo, Kari

    2014-01-01

    The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy. PMID:24430181

  15. Host endothelial S1PR1 regulation of vascular permeability modulates tumor growth

    PubMed Central

    Sarkisyan, Gor; Gay, Laurie J.; Nguyen, Nhan; Felding, Brunhilde H.

    2014-01-01

    Understanding vascular growth and maturation in developing tumors has important implications for tumor progression, spread, and ultimately host survival. Modulating the signaling of endothelial G protein-coupled receptors (GPCRs) in blood and lymphatic vessels can enhance or limit tumor progression. Sphingosine 1-phosphate receptor 1 (S1PR1) is a GPCR for circulating lysophospholipid S1P that is highly expressed in blood and lymphatic vessels. Using the S1PR1- enhanced green fluorescent protein (eGFP) mouse model in combination with intravital imaging and pharmacologic modulation of S1PR1 signaling, we show that boundary conditions of high and low S1PR1 signaling retard tumor progression by enhancing or destabilizing neovasculature integrity, respectively. In contrast, midrange S1PR1 signaling, achieved by receptor antagonist titration, promotes abundant growth of small, organized vessels and thereby enhances tumor progression. Furthermore, in vivo S1PR1 antagonism supports lung colonization by circulating tumor cells. Regulation of endothelial S1PR1 dynamically controls vascular integrity and maturation and thus modulates angiogenesis, tumor growth, and hematogenous metastasis. PMID:24740542

  16. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment.

    PubMed

    Vail, Mary E; Murone, Carmel; Tan, April; Hii, Linda; Abebe, Degu; Janes, Peter W; Lee, Fook-Thean; Baer, Mark; Palath, Varghese; Bebbington, Christopher; Yarranton, Geoffrey; Llerena, Carmen; Garic, Slavisa; Abramson, David; Cartwright, Glenn; Scott, Andrew M; Lackmann, Martin

    2014-08-15

    Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow-derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3(+)/CD90(+)/Sca1(+) mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell-cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy. PMID:25125683

  17. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models. PMID:24636868

  18. Modeling tumor growth in a complex evolving confinement using a diffuse domain approach

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; Lowengrub, John; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Cristini, Vittorio

    2011-11-01

    Understanding the spatiotemporal evolution of tumor growth represents an essential step towards engineering effective treatment for cancer patients. At the macroscopic scale, various biophysical models describing tumors as continuum fluids have been constructed, particularly on a Cartesian grid, where efficient numerical schemes are available to analyze the model for general tumor behaviors in a relatively unconfined space. For practical problems, however, tumors are often found in a confined sub-domain, which can even be dilated and distorted by the growing tumor within. To study such tumors, we adopt a novel diffuse domain approach that enables us to adapt a model to an evolving sub-domain and formulate the modified problem on a Cartesian grid to utilize existing numerical schemes. To demonstrate this approach, we adapt a diffuse-interface model presented in Wise et al. [2008, Three-dimensional multispecies nonlinear tumor growth - I Model and numerical method, J. Theor. Biol. 253, 524-543] to simulate lymphoma growth in a lymph node structure. Supported by NIH-PSOC grant 1U54CA143907-01.

  19. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer.

    PubMed

    Riabov, Vladimir; Kim, David; Chhina, Surmeet; Alexander, Richard B; Klyushnenkova, Elena N

    2015-07-01

    Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNFα, IL1β) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects. PMID:25893810

  20. Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system.

    PubMed

    Gil, Germán A; Silvestre, David C; Tomasini, Nicolás; Bussolino, Daniela F; Caputto, Beatriz L

    2012-06-01

    Some 20 years ago c-Fos was identified as a member of the AP-1 family of inducible transcription factors (Angel and Karin in Biochim Biophys Acta 1072:129-157, 1991). More recently, an additional activity was described for this protein: it associates to the endoplasmic reticulum and activates the biosynthesis of phospholipids (Bussolino et al. in FASEB J 15:556-558, 2001), (Gil et al. in Mol Biol Cell 15:1881-1894, 2004), the quantitatively most important components of cellular membranes. This latter activity of c-Fos determines the rate of membrane genesis and consequently of growth in differentiating PC12 cells (Gil et al. in Mol Biol Cell 15:1881-1894, 2004). In addition, it has been shown that c-Fos is over-expressed both in PNS and CNS tumors (Silvestre et al. in PLoS One 5(3):e9544, 2010). Herein, it is shown that c-Fos-activated phospholipid synthesis is required to support membrane genesis during the exacerbated growth characteristic of brain tumor cells. Specifically blocking c-Fos-activated phospholipid synthesis significantly reduces proliferation of tumor cells in culture. Blocking c-Fos expression also prevents tumor progression in mice intra-cranially xeno-grafted human brain tumor cells. In NPcis mice, an animal model of the human disease Neurofibromatosis Type I (Cichowski and Jacks in Cell 104:593-604, 2001), animals spontaneously develop tumors of the PNS and the CNS, provided they express c-Fos (Silvestre et al. in PLoS One 5(3):e9544, 2010). Treatment of PNS tumors with an antisense oligonucleotide that specifically blocks c-Fos expression also blocks tumor growth in vivo. These results disclose cytoplasmic c-Fos as a new target for effectively controlling brain tumor growth. PMID:22476983

  1. A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth

    PubMed Central

    Wen, Frank T.; Thisted, Ronald A.; Rowley, Donald A.; Schreiber, Hans

    2012-01-01

    We conducted a systematic analysis to determine the reason for the apparent disparity of success of immunotherapy between clinical and experimental cancers. To do this, we performed a search of PubMed using the keywords “immunotherapy” AND “cancer” for the years of 1980 and 2010. The midspread of experimental tumors used in all the relevant literature published in 2010 were between 0.5–121 mm3 in volume or had grown for four to eight days. Few studies reported large tumors that could be considered representative of clinical tumors, in terms of size and duration of growth. The predominant effect of cancer immunotherapies was slowed or delayed outgrowth. Regression of tumors larger than 200 mm3 was observed only after passive antibody or adoptive T cell therapy. The effectiveness of other types of immunotherapy was generally scattered. By comparison, very few publications retrieved by the 1980 search could meet our selection criteria; all of these used tumors smaller than 100 mm3, and none reported regression. In the entire year of 2010, only 13 used tumors larger than 400 mm3, and nine of these reported tumor regression. Together, these results indicate that most recent studies, using many diverse approaches, still treat small tumors only to report slowed or delayed growth. Nevertheless, a few recent studies indicate effective therapy against large tumors when using passive antibody or adoptive T cell therapy. For the future, we aspire to witness the increased use of experimental studies treating tumors that model clinical cancers in terms of size and duration of growth. PMID:22720238

  2. Glucocorticoid Receptor as a Potential Target to Decrease Aromatase Expression and Inhibit Leydig Tumor Growth.

    PubMed

    Panza, Salvatore; Malivindi, Rocco; Chemi, Francesca; Rago, Vittoria; Giordano, Cinzia; Barone, Ines; Bonofiglio, Daniela; Gelsomino, Luca; Giordano, Francesca; Andò, Sebastiano; Catalano, Stefania

    2016-05-01

    Leydig cell tumors are the most frequent interstitial neoplasms of the testis with increased incidence in recent years. They are hormonally active and are considered one of the steroid-secreting tumors. Although usually benign, the malignant phenotype responds poorly to conventional chemotherapy or radiation, highlighting the need to identify new therapeutic targets for treatment. Here, we identified a novel glucocorticoid-mediated mechanism that controls cell growth in Leydig cell tumors. We found that a synthetic glucocorticoid receptor agonist, dexamethasone, reduces cell proliferation in rat Leydig tumor cells by decreasing the expression and the enzymatic activity of the estrogen-producing enzyme aromatase. This inhibitory effect relies on the ability of activated glucocorticoid receptor to regulate the aromatase gene transcriptional activity through the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors to a newly identified putative glucocorticoid responsive element within the aromatase promoter II. Our in vivo studies reveal a reduction of tumor growth, after dexamethasone treatment, in animal xenografts. Tumors from dexamethasone-treated mice exhibit a decrease in the expression of the proliferation marker Ki-67 and the aromatase enzyme. Our data demonstrate that activated glucocorticoid receptor, decreasing aromatase expression, induces Leydig tumor regression both in vitro and in vivo, suggesting that glucocorticoid receptor might be a potential target for the therapy of Leydig cell tumors. PMID:26968343

  3. A Mathematical Model of Prostate Tumor Growth Under Hormone Therapy with Mutation Inhibitor

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki

    2010-04-01

    This paper extends Jackson’s model describing the growth of a prostate tumor with hormone therapy to a new one with hypothetical mutation inhibitors. The new model not only considers the mutation by which androgen-dependent (AD) tumor cells mutate into androgen-independent (AI) ones but also introduces inhibition which is assumed to change the mutation rate. The tumor consists of two types of cells (AD and AI) whose proliferation and apoptosis rates are functions of androgen concentration. The mathematical model represents a free-boundary problem for a nonlinear system of parabolic equations, which describe the evolution of the populations of the above two types of tumor cells. The tumor surface is a free boundary, whose velocity is equal to the cell’s velocity there. Global existence and uniqueness of solutions of this model is proved. Furthermore, explicit formulae of tumor volume at any time t are found in androgen-deprived environment under the assumption of radial symmetry, and therefore the dynamics of tumor growth under androgen-deprived therapy could be predicted by these formulae. Qualitative analysis and numerical simulation show that controlling the mutation may improve the effect of hormone therapy or delay a tumor relapse.

  4. Depletion of Tumor-Associated Macrophages Slows the Growth of Chemically Induced Mouse Lung Adenocarcinomas

    PubMed Central

    Fritz, Jason M.; Tennis, Meredith A.; Orlicky, David J.; Yin, Hao; Ju, Cynthia; Redente, Elizabeth F.; Choo, Kevin S.; Staab, Taylor A.; Bouchard, Ronald J.; Merrick, Daniel T.; Malkinson, Alvin M.; Dwyer-Nield, Lori D.

    2014-01-01

    Chronic inflammation is a risk factor for lung cancer, and low-dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programing changes within 2?weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ?50% of control levels after 46?weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of insulin-like growth factor-I, CXCL1, IL-6, and CCL2 diminished with clodronate liposome treatment. Tumor-associated macrophages expressed markers of both M1 and M2 programing in vehicle and clodronate liposome-treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2) had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression. PMID:25505466

  5. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies

    NASA Astrophysics Data System (ADS)

    Kohandel, M.; Kardar, M.; Milosevic, M.; Sivaloganathan, S.

    2007-07-01

    Tumors cannot grow beyond a certain size (about 1-2 mm in diameter) through simple diffusion of oxygen and other essential nutrients into the tumor. Angiogenesis, the formation of blood vessels from pre-existing vessels, is a crucial and observed step, through which a tumor obtains its own blood supply. Thus, strategies that interfere with the development of this tumor vasculature, known as anti-angiogenic therapy, represent a novel approach to controlling tumor growth. Several pre-clinical studies have suggested that currently available angiogenesis inhibitors are unlikely to yield significant sustained improvements in tumor control on their own, but rather will need to be used in combination with conventional treatments to achieve maximal benefit. Optimal sequencing of anti-angiogenic treatment and radiotherapy or chemotherapy is essential to the success of these combined treatment strategies. Hence, a major challenge to mathematical modeling and computer simulations is to find appropriate dosages, schedules and sequencing of combination therapies to control or eliminate tumor growth. Here, we present a mathematical model that incorporates tumor cells and the vascular network, as well as their interplay. We can then include the effects of two different treatments, conventional cytotoxic therapy and anti-angiogenic therapy. The results are compared with available experimental and clinical data.

  6. In vivo Cytokine Gene Transfer by Gene Gun Reduces Tumor Growth in Mice

    NASA Astrophysics Data System (ADS)

    Sun, Wenn H.; Burkholder, Joseph K.; Sun, Jian; Culp, Jerilyn; Turner, Joel; Lu, Xing G.; Pugh, Thomas D.; Ershler, William B.; Yang, Ning-Sun

    1995-03-01

    Implantation of tumor cells modified by in vitro cytokine gene transfer has been shown by many investigators to result in potent in vivo antitumor activities in mice. Here we describe an approach to tumor immunotherapy utilizing direct transfection of cytokine genes into tumorbearing animals by particle-mediated gene transfer. In vivo transfection of the human interleukin 6 gene into the tumor site reduced methylcholanthrene-induced fibrosarcoma growth, and a combination of murine tumor necrosis factor α and interferon γ genes inhibited growth of a renal carcinoma tumor model (Renca). In addition, treatment with murine interleukin 2 and interferon γ genes prolonged the survival of Renca tumor-bearing mice and resulted in tumor eradication in 25% of the test animals. Transgene expression was demonstrated in treated tissues by ELISA and immunohistochemical analysis. Significant serum levels of interleukin 6 and interferon γ were detected, demonstrating effective secretion of transgenic proteins from treated skin into the bloodstream. This in vivo cytokine gene therapy approach provides a system for evaluating the antitumor properties of various cytokines in different tumor models and has potential utility for human cancer gene therapy.

  7. Measuring Growth and Gene Expression Dynamics of Tumor-Targeted S. Typhimurium Bacteria

    PubMed Central

    Hasty, Jeff; Bhatia, Sangeeta

    2013-01-01

    The goal of these experiments is to generate quantitative time-course data on the growth and gene expression dynamics of attenuated S. typhimurium bacterial colonies growing inside tumors. We generated model xenograft tumors in mice by subcutaneous injection of a human ovarian cancer cell line, OVCAR-8 (NCI DCTD Tumor Repository, Frederick, MD). We transformed attenuated strains of S. typhimurium bacteria (ELH430:SL1344 phoPQ- 1) with a constitutively expressed luciferase (luxCDABE) plasmid for visualization2. These strains specifically colonize tumors while remaining essentially non-virulent to the mouse1. Once measurable tumors were established, bacteria were injected intravenously via the tail vein with varying dosage. Tumor-localized, bacterial gene expression was monitored in real time over the course of 60 hours using an in vivo imaging system (IVIS). At each time point, tumors were excised, homogenized, and plated to quantitate bacterial colonies for correlation with gene expression data. Together, this data yields a quantitative measure of the in vivo growth and gene expression dynamics of bacteria growing inside tumors. PMID:23851642

  8. Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins.

    PubMed

    Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S

    2014-08-01

    At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features. PMID:24946950

  9. Tumor Growth Suppression and Enhanced Radioresponse by an Exogenous Epidermal Growth Factor in Mouse Xenograft Models with A431 Cells

    PubMed Central

    Lim, Yu Jin; Jeon, Sang-Rok; Koh, Jae Moon; Wu, Hong-Gyun

    2015-01-01

    Purpose The purpose of this study was to evaluate whether an exogenous epidermal growth factor (EGF) could induce anti-tumor and radiosensitizing effects in vivo. Materials and Methods BALB/c-nu mice that were inoculated with A431 (human squamous cell carcinoma) cells in the right hind legs were divided into five groups: I (no treatment), II (EGF for 6 days), III (EGF for 20 days), IV (radiotherapy [RT]), and V (RT plus concomitant EGF). EGF was administered intraperitoneally (5 mg/kg) once a day and the RT dose was 30 Gy in six fractions. Hematoxylin and eosin (H&E) stained sections of tumor, liver, lung, and kidney tissues were investigated. Additionally, tumors were subjected to immunohistochemistry staining with caspase-3. Results EGF for 6 days decreased tumor volume, but it approached the level of the control group at the end of follow-up (p=0.550). The duration of tumor shrinkage was prolonged in group V while the slope of tumor re-growth phase was steeper in group IV (p=0.034). EGF for 20 days decreased tumor volume until the end of the observation period (p < 0.001). Immunohistochemistry revealed that mice in group V showed stronger intensity than those in group IV. There were no abnormal histological findings upon H&E staining of the normal organs. Conclusion EGF-induced anti-tumor effect was ascertained in the xenograft mouse models with A431 cells. Concomitant use of EGF has the potential role as a radiosensitizer in the design of fractionated irradiation. PMID:25600061

  10. Citrulline and arginine increase the growth of the Ward colon tumor in parenterally fed rats.

    PubMed

    Grossie, V B

    1996-01-01

    Arginine is considered a necessary component of parenteral regimens because of the high nitrogen intake. The effect of arginine on tumor growth, however, is controversial. Our results suggest that substituting ornithine for arginine in parenteral regimens will ameliorate an arginine-related increase in growth of a Ward colon tumor. Although a metabolite of arginine and ornithine in the urea cycle, citrulline has differential effects on growth in vivo and in vitro. To evaluate the effect of citrulline on tumor growth, Ward colon tumor-bearing rats were given parenteral nutrition regimens with ornithine (ENO) or citrulline (ENC) substituted for arginine (ENA). The plasma amino acid profiles and tumor growth were compared. Tumor growth was evaluated by changes in the calculated tumor weight over an eight-day feeding period. The initial tumor weight for all groups was equivalent. The final tumor weights of rats receiving ENA (14.1 +/- 3.3 g) and ENC (12.7 +/- 1.4 g) were significantly (p < 0.05) greater than those of rats receiving ENO (8.8 +/- 2.0 g) or the chow-fed controls (8.9 +/- 2.1 g). Plasma concentrations of arginine, ornithine, and citrulline were significantly increased when the respective amino acids were components of the regimen. The plasma arginine concentration of rats receiving ENO (60.4 +/- 3.8 microM) was significantly lower than the control (149.9 +/- 24.1 microM). The plasma arginine concentration was significantly increased for rats receiving ENA (280.3 +/- 68.1 microM) and was even further increased for rats receiving ENC (481.8 +/- 94.1 microM). The plasma glutamine concentration for ENO rats (536.4 +/- 37.5 microM) was significantly higher than that for controls (483.5 +/- 53.5 microM). The plasma glutamine concentration for rats receiving ENA (402.3 +/- 50.3 microM) and ENC (379.9 +/- 37.6 microM) was significantly lower than that of the control fed chow. These results further implicate arginine as a major factor for the total parenteral nutrition-enhanced growth of the Ward colon tumor. PMID:8844725

  11. Drugs Which Inhibit Osteoclast Function Suppress Tumor Growth through Calcium Reduction in Bone

    PubMed Central

    Li, Xin; Liao, Jinhui; Park, Serk In; Koh, Amy J; Sadler, William D; Pienta, Kenneth J; Rosol, Thomas J; McCauley, Laurie K

    2011-01-01

    Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1luc) prostate cancer cells were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1luc cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5μg/mouse, twice/week), (OPG-Fc at 10mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors, vossicles and endogenous bones and serum biochemistry were performed. Antiresorptive administration was associated with decreased serum TRAP5b and reduced osteoclast numbers, increased tibia and vossicle bone areas. ZA significantly decreased bone marrow calcium concentrations without affecting serum calcium. ZA and OPG-Fc significantly inhibited tumor growth in bone but not in collagen implants. In conclusion, the inhibitory effects of ZA or OPG-Fc on prostate tumor growth in bone are mediated via blocking bone resorption and calcium release from bone. PMID:21419883

  12. The Importance of Neighborhood Scheme Selection in Agent-based Tumor Growth Modeling

    PubMed Central

    Tzedakis, Georgios; Tzamali, Eleftheria; Marias, Kostas; Sakkalis, Vangelis

    2015-01-01

    Modeling tumor growth has proven a very challenging problem, mainly due to the fact that tumors are highly complex systems that involve dynamic interactions spanning multiple scales both in time and space. The desire to describe interactions in various scales has given rise to modeling approaches that use both continuous and discrete variables, known as hybrid approaches. This work refers to a hybrid model on a 2D square lattice focusing on cell movement dynamics as they play an important role in tumor morphology, invasion and metastasis and are considered as indicators for the stage of malignancy used for early prognosis and effective treatment. Considering various distributions of the microenvironment, we explore how Neumann vs. Moore neighborhood schemes affects tumor growth and morphology. The results indicate that the importance of neighborhood selection is critical under specific conditions that include i) increased hapto/chemo-tactic coefficient, ii) a rugged microenvironment and iii) ECM degradation. PMID:26396490

  13. A Comparison of Imaging Techniques to Monitor Tumor Growth and Cancer Progression in Living Animals

    PubMed Central

    Puaux, Anne-Laure; Ong, Lai Chun; Jin, Yi; Teh, Irvin; Hong, Michelle; Chow, Pierce K. H.; Golay, Xavier; Abastado, Jean-Pierre

    2011-01-01

    Introduction and Purpose. Monitoring solid tumor growth and metastasis in small animals is important for cancer research. Noninvasive techniques make longitudinal studies possible, require fewer animals, and have greater statistical power. Such techniques include FDG positron emission tomography (FDG-PET), magnetic resonance imaging (MRI), and optical imaging, comprising bioluminescence imaging (BLI) and fluorescence imaging (FLI). This study compared the performance and usability of these methods in the context of mouse tumor studies. Methods. B16 tumor-bearing mice (n = 4 for each study) were used to compare practicality, performance for small tumor detection and tumor burden measurement. Using RETAAD mice, which develop spontaneous melanomas, we examined the performance of MRI (n = 6 mice) and FDG-PET (n = 10 mice) for tumor identification. Results. Overall, BLI and FLI were the most practical techniques tested. Both BLI and FDG-PET identified small nonpalpable tumors, whereas MRI and FLI only detected macroscopic, clinically evident tumors. FDG-PET and MRI performed well in the identification of tumors in terms of specificity, sensitivity, and positive predictive value. Conclusion. Each of the four methods has different strengths that must be understood before selecting them for use. PMID:22121481

  14. Porous biodegradable EW62 medical implants resist tumor cell growth.

    PubMed

    Hakimi, O; Ventura, Y; Goldman, J; Vago, R; Aghion, E

    2016-04-01

    Magnesium alloys have been widely investigated for biodegradable medical applications. However, the shielding of harmful cells (eg. bacteria or tumorous cells) from immune surveillance may be compounded by the increased porosity of biodegradable materials. We previously demonstrated the improved corrosion resistance and mechanical properties of a novel EW62 (Mg-6%Nd-2%Y-0.5%Zr)) magnesium alloy by rapid solidification followed by extrusion (RS) compared to its conventional counterpart (CC). The present in vitro study evaluated the influence of rapid solidification on cytotoxicity to murine osteosarcoma cells. We found that CC and RS corrosion extracts significantly reduced cell viability over a 24-h exposure period. Cell density was reduced over 48h following direct contact on both CC and RS surfaces, but was further reduced on the CC surface. The direct presence of cells accelerated corrosion for both materials. The corroded RS material exhibited superior mechanical properties relative to the CC material. The data show that the improved corrosion resistance of the rapidly solidified EW62 alloy (RS) resulted in a relatively reduced cytotoxic effect on tumorous cells. Hence, the tested alloy in the form of a rapidly solidified substance may introduce a good balance between its biodegradation characteristics and cytotoxic effect towards cancerous and normal cells. PMID:26838879

  15. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors. PMID:24789042

  16. Vascular Endothelial Growth Factors VEGF-B and VEGF-C Are Expressed in Human Tumors

    PubMed Central

    Salven, Petri; Lymboussaki, Athina; Heikkilä, Päivi; Jääskela-Saari, Hilkka; Enholm, Bernd; Aase, Karin; von Euler, Gabriel; Eriksson, Ulf; Alitalo, Kari; Joensuu, Heikki

    1998-01-01

    The growth of solid tumors is dependent on angiogenesis, the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a secreted endothelial-cell-specific mitogen. We have recently characterized two novel endothelial growth factors with structural homology to VEGF and named them VEGF-B and VEGF-C. To further define the roles of VEGF-B and VEGF-C, we have studied their expression in a variety of human tumors, both malignant and benign. VEGF-B mRNA was detected in most of the tumor samples studied, and the mRNA and the protein product were localized to tumor cells. Endothelial cells of tumor vessels were also immunoreactive for VEGF-B, probably representing the binding sites of the VEGF-B polypeptide secreted by adjacent tumor cells. VEGF-C mRNA was detected in approximately one-half of the cancers analyzed. Via in situ hybridization, VEGF-C mRNA was also localized to tumor cells. All lymphomas studied contained low levels of VEGF-C mRNA, possibly reflecting the cell-specific pattern of expression of the VEGF-C gene in the corresponding normal cells. The expression of VEGF-C is associated with the development of lymphatic vessels, and VEGF-C could be an important factor regulating the mutual paracrine relationships between tumor cells and lymphatic endothelial cells. Furthermore, VEGF-C and VEGF-B can, similarly to VEGF, be involved in tumor angiogenesis. PMID:9665470

  17. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique.

    PubMed

    Ni, Jie; Cozzi, Paul; Hung, Tzong-Tyng; Hao, Jingli; Graham, Peter; Li, Yong

    2016-02-01

    Prostate cancer (CaP) is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D) ultrasound system equipped with photoacoustic (PA) imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8). Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r(2) = 0.948, 0.955, and 0.953, respectively) and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001). The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research. PMID:26947880

  18. Non-cell autonomous tumor-growth driving supports sub-clonal heterogeneity

    PubMed Central

    Marusyk, Andriy; Tabassum, Doris P.; Altrock, Philipp M.; Almendro, Vanessa; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumors. The mechanisms responsible for the coexistence of distinct sub-clones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal heterogeneity on tumor phenotypes and the competitive expansion of individual clones. We found that tumor growth can be driven by a minor cell subpopulation, which enhances the proliferation of all cells within a tumor by overcoming environmental constraints and yet can be outcompeted by faster proliferating competitors, resulting in tumor collapse. We then developed a mathematical modeling framework to identify the rules underlying the generation of intratumor clonal heterogeneity. We found that non-cell autonomous driving, together with clonal interference, stabilizes sub-clonal heterogeneity, thereby enabling inter-clonal interactions that can lead to new phenotypic traits. PMID:25079331

  19. Strategy of Laparoscopic Partial Resection for Gastric Gastrointestinal Stromal Tumors According to the Growth Pattern.

    PubMed

    Kawamura, Hideki; Shibasaki, Susumu; Yoshida, Tadashi; Homma, Shigenori; Takahashi, Masahiro; Taketomi, Akinobu

    2015-12-01

    Laparoscopic partial gastrectomy is the standard surgical treatment for gastric gastrointestinal stromal tumor (GIST). However, to reduce gastric deformation, the tumor margins should be secured so as to minimize the size of the resection as much as possible. This is the report on the 3 laparoscopic resection techniques for gastric GIST depending upon the growth pattern and location of the tumor, and their results. We performed laparoscopic partial gastrectomy for 41 gastric GISTs between 2004 and 2012. Simple resection was used on exophytic or small GISTs. Seromuscular resection was used on exoendophytic (intramural) and relatively small endophytic tumors. Transgastric resection was used in cases of large endophytic tumors. We performed simple resection on 24 lesions (58.5%), seromuscular resection on 14 lesions (34.1%), and transgastric resection on 3 lesions (7.3%). There were no intraoperative complications. Postoperative complications included 1 case (2.5%) of bleeding from the staple line. PMID:26632924

  20. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread.

    PubMed

    Wong, Ping-Pui; Demircioglu, Fevzi; Ghazaly, Essam; Alrawashdeh, Wasfi; Stratford, Michael R L; Scudamore, Cheryl L; Cereser, Biancastella; Crnogorac-Jurcevic, Tatjana; McDonald, Stuart; Elia, George; Hagemann, Thorsten; Kocher, Hemant M; Hodivala-Dilke, Kairbaan M

    2015-01-12

    Increasing chemotherapy delivery to tumors, while enhancing drug uptake and reducing side effects, is a primary goal of cancer research. In mouse and human cancer models in vivo, we show that coadministration of low-dose Cilengitide and Verapamil increases tumor angiogenesis, leakiness, blood flow, and Gemcitabine delivery. This approach reduces tumor growth, metastasis, and minimizes side effects while extending survival. At a molecular level, this strategy alters Gemcitabine transporter and metabolizing enzyme expression levels, enhancing the potency of Gemcitabine within tumor cells in vivo and in vitro. Thus, the dual action of low-dose Cilengitide, in vessels and tumor cells, improves chemotherapy efficacy. Overall, our data demonstrate that vascular promotion therapy is a means to improve cancer treatment. PMID:25584895

  1. Divergent Selection for Ascites Incidence in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken lines that were either resistant or susceptible to ascites syndrome were developed by using a hypobaric chamber to induce the disease. Birds were reared in a hypobaric chamber that simulated high altitude by operating under a partial vacuum, which thereby lowered the partial pressure of oxyg...

  2. Hepatic Radiofrequency Ablation-induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition.

    PubMed

    Ahmed, Muneeb; Kumar, Gaurav; Moussa, Marwan; Wang, Yuanguo; Rozenblum, Nir; Galun, Eithan; Goldberg, S Nahum

    2016-04-01

    Purpose To elucidate how hepatic radiofrequency (RF) ablation affects distant extrahepatic tumor growth by means of two key molecular pathways. Materials and Methods Rats were used in this institutional animal care and use committee-approved study. First, the effect of hepatic RF ablation on distant subcutaneous in situ R3230 and MATBIII breast tumors was evaluated. Animals were randomly assigned to standardized RF ablation, sham procedure, or no treatment. Tumor growth rate was measured for 3½ to 7 days. Then, tissue was harvested for Ki-67 proliferative indexes and CD34 microvascular density. Second, hepatic RF ablation was performed for hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and c-Met receptor expression measurement in periablational rim, serum, and distant tumor 24 hours to 7 days after ablation. Third, hepatic RF ablation was combined with either a c-Met inhibitor (PHA-665752) or VEGF receptor inhibitor (semaxanib) and compared with sham or drug alone arms to assess distant tumor growth and growth factor levels. Finally, hepatic RF ablation was performed in rats with c-Met-negative R3230 tumors for comparison with the native c-Met-positive line. Tumor size and immunohistochemical quantification at day 0 and at sacrifice were compared with analysis of variance and the two-tailed Student t test. Tumor growth curves before and after treatment were analyzed with linear regression analysis to determine mean slopes of pre- and posttreatment growth curves on a per-tumor basis and were compared with analysis of variance and paired two-tailed t tests. Results After RF ablation of normal liver, distant R3230 tumors were substantially larger at 7 days compared with tumors treated with the sham procedure and untreated tumors, with higher growth rates and tumor cell proliferation. Similar findings were observed in MATBIII tumors. Hepatic RF ablation predominantly increased periablational and serum HGF and downstream distant tumor VEGF levels. Compared with RF ablation alone, RF ablation combined with adjuvant PHA-665752 or semaxanib reduced distant tumor growth, proliferation, and microvascular density. For c-Met-negative tumors, hepatic RF ablation did not increase distant tumor growth, proliferation, or microvascular density compared with sham treatment. Conclusion RF ablation of normal liver can stimulate distant subcutaneous tumor growth mediated by HGF/c-Met pathway and VEGF activation. This effect was not observed in c-Met-negative tumors and can be blocked with adjuvant c-Met and VEGF inhibitors. (©) RSNA, 2015. PMID:26418615

  3. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways.

    PubMed

    Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O M Zack

    2014-12-28

    Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and anti-inflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

  4. A New Computational Tool for the Phenomenological Analysis of Multipassage Tumor Growth Curves

    PubMed Central

    Gliozzi, Antonio S.; Guiot, Caterina; Delsanto, Pier Paolo

    2009-01-01

    Multipassage experiments are performed by subcutaneous implantation in lab animals (usually mice) of a small number of cells from selected human lines. Tumor cells are then passaged from one mouse to another by harvesting them from a growing tumor and implanting them into other healthy animals. This procedure may be extremely useful to investigate the various mechanisms involved in the long term evolution of tumoral growth. It has been observed by several researchers that, contrary to what happens in in vitro experiments, there is a significant growth acceleration at each new passage. This result is explained by a new method of analysis, based on the Phenomenological Universalities approach. It is found that, by means of a simple rescaling of time, it is possible to collapse all the growth curves, corresponding to the successive passages, into a single curve, belonging to the Universality Class U2. Possible applications are proposed and the need of further experimental evidence is discussed. PMID:19396358

  5. Development of ascites-resistant and ascites-susceptible broiler lines.

    PubMed

    Druyan, S; Ben-David, A; Cahaner, A

    2007-05-01

    The rapid growth of modern broilers is associated with enhanced appetite and high metabolic rate and, consequently, high O(2) demand. Ascites syndrome (AS) develops in individuals that fail to fully supply the increasing demand for O(2) in their bodies under ascites-inducing conditions (AIC) such as high altitude or low temperatures. The tendency of broilers to develop AS is heritable, but efficacious selection against AS susceptibility (without affecting the normal expression of other important traits) requires identification of indirect selection criteria. In the present study, divergent AS-susceptible (AS-S) and AS-resistant (AS-R) lines were developed to confirm the heritability of AS and to facilitate future detection of criteria for indirect selection against AS susceptibility. The base population consisted of 85 sire families with a mean of 73 progeny per sire, reared in a commercial broiler house under low-challenge AIC (cold environment and pelleted feed). Chicks dying with AS manifestations were designated AS-susceptible, whereas the surviving birds were designated AS-resistant. By the end of the trial (d 48), AS mortality had accumulated to 17.2%, but AS incidence per family (%ASF) ranged from 0 to 49%, with a high heritability (0.57). Parents of 7 families with very high %ASF produced the first generation (S(1)) of the AS-S line, and parents of 7 families with very low %ASF produced the S(1) of the AS-R line. The S(1) males and females reproduced generation S(2) of the selected lines, whereas additional S(1) males were tested under high-challenge AIC (individual cages, cool wind, and pelleted feed). Progeny testing under this high-challenge AIC, followed by sib selection, was repeated in generations S(2) and S(3), resulting in a divergence of 86.6% in the incidence of AS between the AS-S (91.3%) and AS-R (4.7%) lines. The rapid genetic divergence, and family analysis of %ASF suggested that a single or few major genes are responsible for the difference between the 2 selected lines. These lines may facilitate more sensitive and effective genomic research aimed at detecting these genes or identifying the primary physiological cause of AS. PMID:17435013

  6. Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide

    PubMed Central

    Quann, Kevin; Gonzales, Donna M.; Mercier, Isabelle; Wang, Chenguang; Sotgia, Federica; Pestell, Richard G.; Lisanti, Michael P.; Jasmin, Jean-François

    2013-01-01

    Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTOR signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTOR pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma. PMID:23598719

  7. [Production of nitric oxide metabolites during transplanted tumors growth with different metastatic potential].

    PubMed

    Deriagina, V P; Ryzhova, N I; Krivosheeva, L V; Golubeva, I S

    2014-01-01

    The endogenous formation of metabolites of NO - nitrite (NI), nitrates (NA) and volatile nitrosamines in the body, tumor tissue and by abdominal cavity by macrophages for dynamics was investigated in mice F1(C57BlxCBA), Balb/c and BDF with subcutaneous transplanted tumors (Erlich carcinoma - EC and metastatic Lewis lung carcinoma - LLC). It was shown that growth of EC was accompanied by a statistically significant increase in the concentrations of NI and NA in tumor tissue to (7.34.67)'10-6 - (7.82.57)'10-5 (mol/kg) for the first three weeks and a sharp increase in urinary excretion of NI and NA. The maximum total concentration of NI and NA - (3.,60.46)'10-5 in tissue LLC was registered during the early stage of the tumor growth (7 days); it later declined, negatively correlating with the mass of the tumor. NI secretion by abdominal cavity macrophages demonstrated statistically significantly decrease at the stage of intensive growth LLC (14, 21 days). The tissue of EC contained varied concentration of cancerogenic N-nitrosodimethylamine and N-nitrosodiethylamine at all investigated time points. Thus, the ability of different gistogenesis tumor tissue to synthesize metabolites NO depended on time parameters and was more pronounced for EC, than LLC. PMID:25552506

  8. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  9. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo

    PubMed Central

    Nelson, Michaela; Yang, Ming; Millican-Slater, Rebecca; Brackenbury, William J.

    2015-01-01

    Voltage-gated Na+ channels (VGSCs) mediate action potential firing and regulate adhesion and migration in excitable cells. VGSCs are also expressed in cancer cells. In metastatic breast cancer (BCa) cells, the Nav1.5 α subunit potentiates migration and invasion. In addition, the VGSC-inhibiting antiepileptic drug phenytoin inhibits tumor growth and metastasis. However, the functional activity of Nav1.5 and its specific contribution to tumor progression in vivo has not been delineated. Here, we found that Nav1.5 is up-regulated at the protein level in BCa compared with matched normal breast tissue. Na+ current, reversibly blocked by tetrodotoxin, was retained in cancer cells in tumor tissue slices, thus directly confirming functional VGSC activity in vivo. Stable down-regulation of Nav1.5 expression significantly reduced tumor growth, local invasion into surrounding tissue, and metastasis to liver, lungs and spleen in an orthotopic BCa model. Nav1.5 down-regulation had no effect on cell proliferation or angiogenesis within the in tumors, but increased apoptosis. In vitro, Nav1.5 down-regulation altered cell morphology and reduced CD44 expression, suggesting that VGSC activity may regulate cellular invasion via the CD44-src-cortactin signaling axis. We conclude that Nav1.5 is functionally active in cancer cells in breast tumors, enhancing growth and metastatic dissemination. These findings support the notion that compounds targeting Nav1.5 may be useful for reducing metastasis. PMID:26452220

  10. A chemical energy approach of avascular tumor growth: multiscale modeling and qualitative results.

    PubMed

    Ampatzoglou, Pantelis; Dassios, George; Hadjinicolaou, Maria; Kourea, Helen P; Vrahatis, Michael N

    2015-01-01

    In the present manuscript we propose a lattice free multiscale model for avascular tumor growth that takes into account the biochemical environment, mitosis, necrosis, cellular signaling and cellular mechanics. This model extends analogous approaches by assuming a function that incorporates the biochemical energy level of the tumor cells and a mechanism that simulates the behavior of cancer stem cells. Numerical simulations of the model are used to investigate the morphology of the tumor at the avascular phase. The obtained results show similar characteristics with those observed in clinical data in the case of the Ductal Carcinoma In Situ (DCIS) of the breast. PMID:26558163

  11. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells.

    PubMed

    Gabrilovich, D I; Chen, H L; Girgis, K R; Cunningham, H T; Meny, G M; Nadaf, S; Kavanaugh, D; Carbone, D P

    1996-10-01

    Inadequate presentation of tumor antigens by host professional antigen-presenting cells (APCs), including dendritic cells (DCs), is one potential mechanism for the escape of tumors from the host immune system. Here, we show that human cancer cell lines release a soluble factor or factors that dramatically affect DC maturation from precursors without affecting the function of relatively mature DCs. One factor responsible for these effects was identified as vascular endothelial growth factor (VEGF). Thus, VEGF may play a broader role in the pathogenesis of cancer than was previously thought, and therapeutic blockade of VEGF action may improve prospects for immunotherapy as well as inhibit tumor neovasculature. PMID:8837607

  12. Modification of tumor response to cyclophosphamide and irradiation by preirradiation of the tumor bed: prolonged growth delay but reduced curability. [Mice

    SciTech Connect

    Ito, H.; Barkley, T. Jr.; Peters, L.J.; Milas, L.

    1985-03-01

    The effect of tumor bed irradiation (TBX) on subsequent tumor response to treatment with cyclophosphamide (CY) or further irradiation was studied in mice. Using the growth delay assay, the therapeutic response was enhanced by prior TBX. This effect was independent of time between TBX and tumor cell inoculation over the range 1-56 days. When tumor cure experiments were performed, however, the effect of prior TBX was to decrease significantly the proportion of tumors controlled by either CY or irradiation and to make the dose-response curve for radiocurability less steep. These data are best interpreted by postulating that TBX increases the environmental heterogeneity of tumors growing in preirradiated sites, with an overall net decrease in the cell kill achieved by a given dose of CY or radiation. This results in increased resistance to cure and a lack of dose response. However, the TBX also causes slower regrowth of surviving cells, so that an increase in tumor growth delay is realized.

  13. Transplantation of human renal cell carcinoma into NMRI nu/nu mice. III. Effect of irradiation on tumor acceptance and tumor growth

    SciTech Connect

    Otto, U.; Huland, H.; Baisch, H.; Kloeppel, G.

    1985-07-01

    Irradiation of human renal cell carcinoma before radical tumor nephrectomy resulted in a significantly lower acceptance rate (1 of 7) in nude mice than for nonirradiated tumors (all of 13). The tumor tissue was transplanted into NMRI nu/nu mice immediately after nephrectomy. In this experimental system the authors demonstrated the reduced vitality of human tumor cells after irradiation. In a second series of experiments, 3 morphologically different human renal cell carcinomas were irradiated at various doses after establishment in nude mice. The irradiated tumor tissue was transplanted to the next passage. The morphology, proliferation rate and growth of these tumors were compared with those of nonirradiated controls. Radiation effect was dose dependent in the responding tumor types. The characteristics correlated with radiosensitivity were high proliferation rate (measured by flow cytometry), low cytologic grading and fast growth rate in the nude mice.

  14. Population pharmacokinetic/pharmacodynamic modeling of tumor growth kinetics in medullary thyroid cancer patients receiving cabozantinib.

    PubMed

    Miles, Dale R; Wada, David R; Jumbe, Nelson L; Lacy, Steven A; Nguyen, Linh T

    2016-04-01

    Nonlinear mixed effects models were developed to describe the relationship between cabozantinib exposure and target lesion tumor size in a phase III study of patients with progressive metastatic medullary thyroid cancer. These models used cabozantinib exposure estimates from a previously published population pharmacokinetic model for cabozantinib in cancer patients that was updated with data from healthy-volunteer studies. Semi-mechanistic models predict well for tumors with static, increasing, or decreasing growth over time, but they were not considered adequate for predicting tumor sizes in medullary thyroid cancer patients, among whom an early reduction in tumor size was followed by a late stabilization phase in those receiving cabozantinib. A semi-empirical tumor model adequately predicted tumor profiles that were assumed to have a net growth rate constant that was piecewise continuous in the regions of 0-110 and 110-280 days. Emax models relating average concentration to average change in tumor size predicted that an average concentration of 79 and 58 ng/ml, respectively, would yield 50% of the maximum possible tumor reduction during the first 110 days of dosing and during the subsequent 110-280 days of dosing. Simulations of tumor responses showed that daily doses of 60 mg or greater are expected to provide a similar tumor reduction. Both model evaluation of observed data and simulation results suggested that the two protocol-defined cabozantinib dose reductions from 140 to 100 mg/day and from 100 to 60 mg/day are not projected to result in a marked reduction in target lesion regrowth. PMID:26825867

  15. NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay.

    PubMed

    Ridnour, Lisa A; Cheng, Robert Y S; Weiss, Jonathan M; Kaur, Sukhbir; Soto-Pantoja, David R; Basudhar, Debashree; Heinecke, Julie L; Stewart, C Andrew; DeGraff, William; Sowers, Anastasia L; Thetford, Angela; Kesarwala, Aparna H; Roberts, David D; Young, Howard A; Mitchell, James B; Trinchieri, Giorgio; Wiltrout, Robert H; Wink, David A

    2015-07-15

    Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment. PMID:25990221

  16. Food intake, tumor growth, and weight loss in EP2 receptor subtype knockout mice bearing PGE2-producing tumors

    PubMed Central

    Iresjö, Britt-Marie; Wang, Wenhua; Nilsberth, Camilla; Andersson, Marianne; Lönnroth, Christina; Smedh, Ulrika

    2015-01-01

    Previous studies in our laboratory have demonstrated that prostaglandin (PG) E2 is involved in anorexia/cachexia development in MCG 101 tumor-bearing mice. In the present study, we investigate the role of PGE receptor subtype EP2 in the development of anorexia after MCG 101 implantation in wild-type (EP2+/+) or EP2-receptor knockout (EP2−/−) mice. Our results showed that host absence of EP2 receptors attenuated tumor growth and development of anorexia in tumor-bearing EP2 knockout mice compared to tumor-bearing wild-type animals. Microarray profiling of the hypothalamus revealed a relative twofold change in expression of around 35 genes including mRNA transcripts coding for Phospholipase A2 and Prostaglandin D2 synthase (Ptgds) in EP2 receptor knockout mice compared to wild-type mice. Prostaglandin D2 synthase levels were increased significantly in EP2 receptor knockouts, suggesting that improved food intake may depend on altered balance of prostaglandin production in hypothalamus since PGE2 and PGD2 display opposing effects in feeding control. PMID:26197930

  17. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma

    PubMed Central

    Zhao, S; Kurenbekova, L; Gao, Y; Roos, A; Creighton, CJ; Rao, P; Hicks, J; Man, T-K; Lau, C; Brown, AMC; Jones, SN; Lazar, AJ; Ingram, D; Lev, D; Donehower, LA; Yustein, JT

    2016-01-01

    Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor that has a high propensity for metastases. Through osteoblast-specific alteration of p53 status, we developed a genetically engineered mouse model of localized and metastatic OS to gain an understanding into the molecular pathogenesis of OS. Microarray analysis of both localized tumors and metastatic tumors identified the downregulation of the naked cuticle homolog 2 (NKD2) gene, a negative regulator of Wnt signaling. Overexpression of NKD2 in metastatic human and mouse OS cells significantly decreases cell proliferation, migration and invasion ability in vitro and drastically diminishes OS tumor growth and metastasis in vivo, whereas downregulation enhances migratory and invasive potential. Evaluation of NKD2-overexpressing tumors revealed upregulation of tumor-suppressor genes and downregulation of molecules involved in blood vessel formation and cell migration. Furthermore, assessment of primary human OS revealed downregulation of NKD2 in metastatic and recurrent OS. Finally, we provide biological evidence that use of small-molecule inhibitors targeting the Wnt pathway can have therapeutic efficacy in decreasing metastatic properties in OS. Our studies provide compelling evidence that downregulation of NKD2 expression and alterations in associated regulated pathways have a significant role in driving OS tumor growth and metastasis. PMID:25579177

  18. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth.

    PubMed

    Zhou, Wenchao; Cheng, Lin; Shi, Yu; Ke, Susan Q; Huang, Zhi; Fang, Xiaoguang; Chu, Cheng-wei; Xie, Qi; Bian, Xiu-wu; Rich, Jeremy N; Bao, Shideng

    2015-11-10

    Glioblastoma multiforme (GBM) is the most lethal brain tumor. Tumor relapse in GBM is inevitable despite maximal therapeutic interventions. Glioma stem cells (GSCs) have been found to be critical players in therapeutic resistance and tumor recurrence. Therapeutic drugs targeting GSCs may significantly improve GBM treatment. In this study, we demonstrated that arsenic trioxide (As2O3) effectively disrupted GSCs and inhibited tumor growth in the GSC-derived orthotopic xenografts by targeting the promyelocytic leukaemia (PML). As2O3 treatment induced rapid degradation of PML protein along with severe apoptosis in GSCs. Disruption of the endogenous PML recapitulated the inhibitory effects of As2O3 treatment on GSCs both in vitro and in orthotopic tumors. Importantly, As2O3 treatment dramatically reduced GSC population in the intracranial GBM xenografts and increased the survival of mice bearing the tumors. In addition, As2O3 treatment preferentially inhibited cell growth of GSCs but not matched non-stem tumor cells (NSTCs). Furthermore, As2O3 treatment or PML disruption potently diminished c-Myc protein levels through increased poly-ubiquitination and proteasome degradation of c-Myc. Our study indicated a potential implication of As2O3 in GBM treatment and highlighted the important role of PML/c-Myc axis in the maintenance of GSCs. PMID:26510911

  19. Immunosurveillance by antiangiogenesis: tumor growth arrest by T cell-derived thrombospondin-1.

    PubMed

    Schadler, Keri L; Crosby, Erika J; Zhou, Alice Yao; Bhang, Dong Ha; Braunstein, Lior; Baek, Kwan Hyuck; Crawford, Danielle; Crawford, Alison; Angelosanto, Jill; Wherry, E John; Ryeom, Sandra

    2014-04-15

    Recent advances in cancer immunotherapy suggest that manipulation of the immune system to enhance the antitumor response may be a highly effective treatment modality. One understudied aspect of immunosurveillance is antiangiogenic surveillance, the regulation of tumor angiogenesis by the immune system, independent of tumor cell lysis. CD4(+) T cells can negatively regulate angiogenesis by secreting antiangiogenic factors such as thrombospondin-1 (TSP-1). In tumor-bearing mice, we show that a Th1-directed viral infection that triggers upregulation of TSP-1 in CD4(+) and CD8(+) T cells can inhibit tumor angiogenesis and suppress tumor growth. Using bone marrow chimeras and adoptive T-cell transfers, we demonstrated that TSP-1 expression in the T-cell compartment was necessary and sufficient to inhibit tumor growth by suppressing tumor angiogenesis after the viral infection. Our results establish that tumorigenesis can be stanched by antiangiogenic surveillance triggered by an acute viral infection, suggesting novel immunologic approaches to achieve antiangiogenic therapy. PMID:24590059

  20. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma.

    PubMed

    Zhao, S; Kurenbekova, L; Gao, Y; Roos, A; Creighton, C J; Rao, P; Hicks, J; Man, T-K; Lau, C; Brown, A M C; Jones, S N; Lazar, A J; Ingram, D; Lev, D; Donehower, L A; Yustein, J T

    2015-09-24

    Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor that has a high propensity for metastases. Through osteoblast-specific alteration of p53 status, we developed a genetically engineered mouse model of localized and metastatic OS to gain an understanding into the molecular pathogenesis of OS. Microarray analysis of both localized tumors and metastatic tumors identified the downregulation of the naked cuticle homolog 2 (NKD2) gene, a negative regulator of Wnt signaling. Overexpression of NKD2 in metastatic human and mouse OS cells significantly decreases cell proliferation, migration and invasion ability in vitro and drastically diminishes OS tumor growth and metastasis in vivo, whereas downregulation enhances migratory and invasive potential. Evaluation of NKD2-overexpressing tumors revealed upregulation of tumor-suppressor genes and downregulation of molecules involved in blood vessel formation and cell migration. Furthermore, assessment of primary human OS revealed downregulation of NKD2 in metastatic and recurrent OS. Finally, we provide biological evidence that use of small-molecule inhibitors targeting the Wnt pathway can have therapeutic efficacy in decreasing metastatic properties in OS. Our studies provide compelling evidence that downregulation of NKD2 expression and alterations in associated regulated pathways have a significant role in driving OS tumor growth and metastasis. PMID:25579177

  1. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth

    PubMed Central

    Zhou, Wenchao; Cheng, Lin; Shi, Yu; Ke, Susan Q.; Huang, Zhi; Fang, Xiaoguang; Chu, Cheng-wei; Xie, Qi; Bian, Xiu-wu; Rich, Jeremy N.; Bao, Shideng

    2015-01-01

    Glioblastoma multiforme (GBM) is the most lethal brain tumor. Tumor relapse in GBM is inevitable despite maximal therapeutic interventions. Glioma stem cells (GSCs) have been found to be critical players in therapeutic resistance and tumor recurrence. Therapeutic drugs targeting GSCs may significantly improve GBM treatment. In this study, we demonstrated that arsenic trioxide (As2O3) effectively disrupted GSCs and inhibited tumor growth in the GSC-derived orthotopic xenografts by targeting the promyelocytic leukaemia (PML). As2O3 treatment induced rapid degradation of PML protein along with severe apoptosis in GSCs. Disruption of the endogenous PML recapitulated the inhibitory effects of As2O3 treatment on GSCs both in vitro and in orthotopic tumors. Importantly, As2O3 treatment dramatically reduced GSC population in the intracranial GBM xenografts and increased the survival of mice bearing the tumors. In addition, As2O3 treatment preferentially inhibited cell growth of GSCs but not matched non-stem tumor cells (NSTCs). Furthermore, As2O3 treatment or PML disruption potently diminished c-Myc protein levels through increased poly-ubiquitination and proteasome degradation of c-Myc. Our study indicated a potential implication of As2O3 in GBM treatment and highlighted the important role of PML/c-Myc axis in the maintenance of GSCs. PMID:26510911

  2. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    PubMed Central

    Poleszczuk, Jan; Enderling, Heiko

    2016-01-01

    It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches. PMID:26858759

  3. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor ?-KLF5 Pathway.

    PubMed

    Nakajima, Yuka; Osakabe, Asami; Waku, Tsuyoshi; Suzuki, Takashi; Akaogi, Kensuke; Fujimura, Tetsuya; Homma, Yukio; Inoue, Satoshi; Yanagisawa, Junn

    2015-01-01

    Estrogens are effective in the treatment of prostate cancer; however, the effects of estrogens on prostate cancer are enigmatic. In this study, we demonstrated that estrogen (17?-estradiol [E2]) has biphasic effects on prostate tumor growth. A lower dose of E2 increased tumor growth in mouse xenograft models using DU145 and PC-3 human prostate cancer cells, whereas a higher dose significantly decreased tumor growth. We found that anchorage-independent apoptosis in these cells was inhibited by E2 treatment. Similarly, in vivo angiogenesis was suppressed by E2. Interestingly, these effects of E2 were abolished by knockdown of either estrogen receptor ? (ER?) or Krppel-like zinc finger transcription factor 5 (KLF5). ?n addition, E2 suppressed KLF5-mediated transcription through ER?, which inhibits proapoptotic FOXO1 and proangiogenic PDGFA expression. Furthermore, we revealed that a nonagonistic ER ligand GS-1405 inhibited FOXO1 and PDGFA expression through the ER?-KLF5 pathway and regulated prostate tumor growth without ER? transactivation. Therefore, these results suggest that E2 biphasically modulates prostate tumor formation by regulating KLF5-dependent transcription through ER? and provide a new strategy for designing ER modulators, which will be able to regulate prostate cancer progression with minimal adverse effects due to ER transactivation. PMID:26483416

  4. Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis

    PubMed Central

    Nasser, Nicola J.; Avivi, Aaron; Shafat, Itay; Edovitsky, Evgeny; Zcharia, Eyal; Ilan, Neta; Vlodavsky, Israel; Nevo, Eviatar

    2009-01-01

    Heparanase is an endoglycosidase that degrades heparan sulfate (HS) at the cell surface and in the extracellular matrix. Heparanase is expressed mainly by cancer cells, and its expression is correlated with increased tumor aggressiveness, metastasis, and angiogenesis. Here, we report the cloning of a unique splice variant (splice 36) of heparanase from the subterranean blind mole rat (Spalax). This splice variant results from skipping part of exon 3, exons 4 and 5, and part of exon 6 and functions as a dominant negative to the wild-type enzyme. It inhibits HS degradation, suppresses glioma tumor growth, and decreases experimental B16–BL6 lung colonization in a mouse model. Intriguingly, Spalax splice variant 7 of heparanase (which results from skipping of exon 7) is devoid of enzymatic activity, but unlike splice 36 it enhances tumor growth. Our results demonstrate that alternative splicing of heparanase regulates its enzymatic activity and might adapt the heparanase function to the fluctuating normoxic–hypoxic subterranean environment that Spalax experiences. Development of anticancer drugs designed to suppress tumor growth, angiogenesis, and metastasis is a major challenge, of which heparanase inhibition is a promising approach. We anticipate that the heparanase splicing model, evolved during 40 million years of Spalacid adaptation to underground life, would pave the way for the development of heparanase-based therapeutic modalities directed against angiogenesis, tumor growth, and metastasis. PMID:19164514

  5. Modulation of the Leptin Receptor Mediates Tumor Growth and Migration of Pancreatic Cancer Cells

    PubMed Central

    Chalfant, Madeleine C.; Gorden, Lee D.

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration. PMID:25919692

  6. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion.

    PubMed

    Sebban, Shulamit; Farago, Marganit; Rabinovich, Shiran; Lazer, Galit; Idelchuck, Yulia; Ilan, Lena; Pikarsky, Eli; Katzav, Shulamit

    2014-10-15

    Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways. PMID:25313137

  7. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion

    PubMed Central

    Rabinovich, Shiran; Lazer, Galit; Idelchuck, Yulia; Ilan, Lena; Pikarsky, Eli; Katzav, Shulamit

    2014-01-01

    Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways. PMID:25313137

  8. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization

    PubMed Central

    Wang, Zhijun; Wang, Qing

    2016-01-01

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  9. Tumor induced osteomalacia: associated with elevated circulating levels of fibroblast growth factor-7 in addition to fibroblast growth factor-23.

    PubMed

    Bansal, Shweta; Khazim, Khaled; Suri, Rajeev; Martin, DeAndra; Werner, Sherry; Fanti, Paolo

    2016-01-01

    Tumor induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by renal phosphate wasting, hypophosphatemia, and osteomalacia. Fibroblast growth factor (FGF)-23, a phosphatonin i.e., phosphaturia-promoting hormone, is commonly implicated in the pathogenesis of TIO. However, very limited information is available about the circulating levels and clinical significance of other phosphatonins that are expressed by TIO-associated tumors. In addition, identification of the primary tumor constitutes a frequent major challenge in the management of TIO. Here, we report a patient with the clinical diagnosis of TIO with elevated blood levels of the phosphatonins FGF-23 and FGF-7; and extensive but unrewarding radiological search for the primary tumor. In selective venous sampling, both FGF-23 and FGF-7 displayed highest concentrations in the left femoral and iliac veins; although lateralization was much more pronounced for FGF-7 than FGF-23. This laboratory finding allowed us to focus on the left lower extremity as the likely location of the primary tumor. Our case is the first to show that FGF-7 can be analyzed in the circulation and used to assist in the diagnosis and localization of TIO-associated tumors. PMID:26521888

  10. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models

    PubMed Central

    Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis. PMID:26575424

  11. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model1

    PubMed Central

    Dickerson, Erin B; Steinberg, Howard; Breen, Matthew; Auerbach, Robert; Helfand, Stuart C

    2004-01-01

    Abstract We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF) receptors 1 and 2, CD31, CD146, and ?v?3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL)-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy. PMID:15140399

  12. Ecto-5’-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model

    PubMed Central

    Cappellari, Angélica R.; Pillat, Micheli M.; Souza, Hellio D. N.; Dietrich, Fabrícia; Oliveira, Francine H.; Figueiró, Fabrício; Abujamra, Ana L.; Roesler, Rafael; Lecka, Joanna; Sévigny, Jean; Battastini, Ana Maria O.; Ulrich, Henning

    2015-01-01

    Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy. PMID:26491983

  13. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5 years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  14. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    SciTech Connect

    Hara, H.; Seon, B.K.

    1987-05-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.

  15. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Gliomas differ from many other tumors as they grow infiltratively into the brain parenchyma rather than forming a solid tumor mass with a well-defined boundary. Tumor cells can be found several centimeters away from the central tumor mass that is visible using current imaging techniques. The infiltrative growth characteristics of gliomas question the concept of a radiotherapy target volume that is irradiated to a homogeneous dose—the standard in current clinical practice. We discuss the use of the Fisher-Kolmogorov glioma growth model in radiotherapy treatment planning. The phenomenological tumor growth model assumes that tumor cells proliferate locally and migrate into neighboring brain tissue, which is mathematically described via a partial differential equation for the spatio-temporal evolution of the tumor cell density. In this model, the tumor cell density drops approximately exponentially with distance from the visible gross tumor volume, which is quantified by the infiltration length, a parameter describing the distance at which the tumor cell density drops by a factor of e. This paper discusses the implications for the prescribed dose distribution in the periphery of the tumor. In the context of the exponential cell kill model, an exponential fall-off of the cell density suggests a linear fall-off of the prescription dose with distance. We introduce the dose fall-off rate, which quantifies the steepness of the prescription dose fall-off in units of Gy mm-1. It is shown that the dose fall-off rate is given by the inverse of the product of radiosensitivity and infiltration length. For an infiltration length of 3 mm and a surviving fraction of 50% at 2 Gy, this suggests a dose fall-off of approximately 1 Gy mm-1. The concept is illustrated for two glioblastoma patients by optimizing intensity-modulated radiotherapy plans. The dose fall-off rate concept reflects the idea that infiltrating gliomas lack a defined boundary and are characterized by a continuous fall-off of the density of infiltrating tumor cells. The approach can potentially be used to individualize the prescribed dose distribution if better methods to estimate radiosensitivity and infiltration length on a patient by patient basis become available.

  16. Massive T-lymphocyte infiltration into the host stroma is essential for fibroblast growth factor-2-promoted growth and metastasis of mammary tumors via neovascular stability.

    PubMed

    Tsunoda, Satoshi; Sakurai, Hiroaki; Saito, Yurika; Ueno, Yoko; Koizumi, Keiichi; Saiki, Ikuo

    2009-02-01

    Inflammation in the tumor stroma greatly influences tumor development. In the present study, we investigated the roles of fibroblast growth factor (FGF)-2-induced chronic inflammation in the development of 4T1 murine mammary tumors. Administration of FGF-2 into the tumor inoculation site during the initial phase of tumor growth enhanced tumor growth and pulmonary metastasis as well as microvessel density in tumor tissues in normal but not in nude mice. Infiltration of T lymphocytes and macrophages, recruitment of pericytes/vascular mural cells in neovascular walls, and the expression levels of cyclooxygenase (COX)-2 and vascular endothelial growth factor A (VEGFA) were also enhanced in the FGF-2-activated host stroma of normal mice. In addition, FGF-2-induced tumor growth and metastasis was abrogated by administration of either an immunosuppressant, FK506, or a COX-2 inhibitor. FGF-2 enhanced prostaglandin E(2) secretion in cultured T lymphocytes. In addition, VEGFA secretion was increased in a co-culture of T lymphocytes and fibroblasts in vitro. These results indicate that the massive infiltration of T lymphocytes into FGF-2-activated host stroma during the initial phase of tumor growth enhances neovascular stability by regulating endogenous COX-2 and VEGFA levels because both compounds are known to play important roles in marked 4T1 mammary tumor development via FGF-2-induced inflammatory reactions. PMID:19116363

  17. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition.

    PubMed

    Nowak-Sliwinska, P; Weiss, A; van Beijnum, J R; Wong, T J; Kilarski, W W; Szewczyk, G; Verheul, H M W; Sarna, T; van den Bergh, H; Griffioen, A W

    2015-01-01

    The angiogenesis inhibitor sunitinib is a tyrosine kinase inhibitor that acts mainly on the VEGF and PDGF pathways. We have previously shown that sunitinib is sequestered in the lysosomes of exposed tumor and endothelial cells. This phenomenon is part of the drug-induced resistance observed in the clinic. Here, we demonstrate that when exposed to light, sequestered sunitinib causes immediate destruction of the lysosomes, resulting in the release of sunitinib and cell death. We hypothesized that this photoactivation of sunitinib could be used as a vaso-occlusive vascular-targeting approach to treating cancer. Spectral properties of sunitinib and its lysosomal accumulation were measured in vitro. The human A2780 ovarian carcinoma transplanted onto the chicken chorioallantoic membrane (CAM) and the Colo-26 colorectal carcinoma model in Balb/c mice were used to test the effects of administrating sunitinib and subsequently exposing tumor tissue to light. Tumors were subsequently resected and subject to immunohistochemical analysis. In A2780 ovarian carcinoma tumors, treatment with sunitinib+light resulted in immediate specific angio-occlusion, leading to a necrotic tumor mass 24 h after treatment. Tumor growth was inhibited by 70% as compared with the control group (**P<0.0001). Similar observations were made in the Colo-26 colorectal carcinoma, where light exposure of the sunitinib-treated mice inhibited tumor growth by 50% as compared with the control and by 25% as compared with sunitinib-only-treated tumors (N≥4; P=0.0002). Histology revealed that photoactivation of sunitinib resulted in a change in tumor vessel architecture. The current results suggest that the spectral properties of sunitinib can be exploited for application against certain cancer indications. PMID:25675301

  18. Critical Role of Shp2 in Tumor Growth Involving Regulation of c-Myc

    PubMed Central

    Ren, Yuan; Chen, Zhengming; Chen, Liwei; Fang, Bin; Win-Piazza, Hla; Haura, Eric; Koomen, John M.; Wu, Jie

    2010-01-01

    Activating mutants of Shp2 protein tyrosine phosphatase, encoded by the PTPN11 gene, are linked to leukemia. In solid tumors, however, PTPN11 mutations occur at low frequencies, while the wild-type Shp2 is activated by protein tyrosine kinases (PTKs) in cancer cells and mediates PTK signaling. Therefore, it is important to address whether the wild-type Shp2 plays a functional role critical for tumor growth. Using shRNAs and a PTP-inactive mutant to inhibit Shp2, we find here that tumor growth of DU145 prostate cancer and H292 lung cancer cells depends on Shp2. Suppression of Shp2 inhibited cell proliferation, decreased c-Myc, and increased p27 expression in cell cultures. In H292 tumor tissues, c-Myc–positive cells coincided with Ki67-positive cells, and smaller tumors from Shp2 knockdown cells had less c-Myc–positive cells and more nuclear p27. Shp2-regulated c-Myc expression was mediated by Src and Erk1/2. Down-regulation of c-Myc reduced cell proliferation, while up-regulation of c-Myc in Shp2 knockdown H292 cells partially rescued the inhibitory effect of Shp2 suppression on cell proliferation. Tyrosine phosphoproteomic analysis of H292 tumor tissues showed that Shp2 could both up-regulate and down-regulate tyrosine phosphorylation on cellular proteins. Among other changes, Shp2 inhibition increased phosphorylation of Src Tyr-530 and Cdk1 Thr-14/Tyr-15 and decreased phosphorylation of Erk1- and Erk2-activating sites in the tumors. Significantly, we found that Shp2 positively regulated Gab1 Tyr-627/Tyr-659 phosphorylation. This finding reveals that Shp2 can autoregulate its own activating signal. Shp2 Tyr-62/Tyr-63 phosphorylation was observed in tumor tissues, indicating that Shp2 is activated in the tumors. PMID:21442024

  19. APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer.

    PubMed

    García-Castro, Araceli; Zonca, Manuela; Florindo-Pinheiro, Douglas; Carvalho-Pinto, Carla E; Cordero, Alex; Gutiérrez del Fernando, Burgo; García-Grande, Aránzazu; Mañes, Santos; Hahne, Michael; González-Suárez, Eva; Planelles, Lourdes

    2015-05-01

    APRIL (a proliferation-inducing ligand) is a cytokine of the tumor necrosis factor family associated mainly with hematologic malignancies. APRIL is also overexpressed in breast carcinoma tissue lesions, although neither its role in breast tumorigenesis nor the underlying molecular mechanism is known. Here, we show that several breast cancer cell lines express APRIL and both its receptors, B cell maturation antigen (BCMA) and transmembrane activator and CAML-interactor (TACI), independently of luminal or basal tumor cell phenotype, and that the mitogen-activated protein kinases p38, ERK1/2, and JNK1/2 are activated in response to APRIL. The inflammatory stimulus poly I:C, a toll-like receptor (TLR) 3 ligand, enhanced APRIL secretion. Silencing experiments decreased cell proliferation, demonstrating that APRIL is a critical autocrine factor for breast tumor growth. Studies of 4T1 orthotopic breast tumors in APRIL transgenic mice showed that an APRIL-enriched environment increased tumor growth and promoted lung metastasis associated with enhanced tumor cell proliferation; BCMA and TACI expression suggests that both participate in these processes. We detected APRIL, BCMA and TACI in human luminal, triple-negative breast carcinomas and HER2 breast carcinomas, with increased levels in more aggressive basal tumors. APRIL was observed near Ki67(+) nuclei and was distributed heterogeneously in the cancer cells, in the leukocyte infiltrate, and in the myoepithelial layer adjacent to the tumor area; these results imply that APRIL provides proliferation signals to tumor cells through paracrine and autocrine signaling. Our study identifies participation of APRIL signaling in breast cancer promotion; we propose impairment of this pathway as a potential therapeutic strategy. PMID:25750171

  20. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition

    PubMed Central

    Nowak-Sliwinska, P; Weiss, A; van Beijnum, J R; Wong, T J; Kilarski, W W; Szewczyk, G; Verheul, H M W; Sarna, T; van den Bergh, H; Griffioen, A W

    2015-01-01

    The angiogenesis inhibitor sunitinib is a tyrosine kinase inhibitor that acts mainly on the VEGF and PDGF pathways. We have previously shown that sunitinib is sequestered in the lysosomes of exposed tumor and endothelial cells. This phenomenon is part of the drug-induced resistance observed in the clinic. Here, we demonstrate that when exposed to light, sequestered sunitinib causes immediate destruction of the lysosomes, resulting in the release of sunitinib and cell death. We hypothesized that this photoactivation of sunitinib could be used as a vaso-occlusive vascular-targeting approach to treating cancer. Spectral properties of sunitinib and its lysosomal accumulation were measured in vitro. The human A2780 ovarian carcinoma transplanted onto the chicken chorioallantoic membrane (CAM) and the Colo-26 colorectal carcinoma model in Balb/c mice were used to test the effects of administrating sunitinib and subsequently exposing tumor tissue to light. Tumors were subsequently resected and subject to immunohistochemical analysis. In A2780 ovarian carcinoma tumors, treatment with sunitinib+light resulted in immediate specific angio-occlusion, leading to a necrotic tumor mass 24 h after treatment. Tumor growth was inhibited by 70% as compared with the control group (**P<0.0001). Similar observations were made in the Colo-26 colorectal carcinoma, where light exposure of the sunitinib-treated mice inhibited tumor growth by 50% as compared with the control and by 25% as compared with sunitinib-only-treated tumors (N≥4; P=0.0002). Histology revealed that photoactivation of sunitinib resulted in a change in tumor vessel architecture. The current results suggest that the spectral properties of sunitinib can be exploited for application against certain cancer indications. PMID:25675301

  1. Antioxidant supplementation accelerates cachexia development by promoting tumor growth in C26 tumor-bearing mice.

    PubMed

    Assi, Mohamad; Derbr, Frdric; Lefeuvre-Orfila, Luz; Rbillard, Amlie

    2016-02-01

    More than 50% of patients with advanced stages of colon cancer suffer from progressive loss of skeletal muscle, called cachexia, resulting in reduced quality of life and shortened survival. It is becoming evident that reactive oxygen species (ROS) regulate pathways controlling skeletal muscle atrophy. Herein we tested the hypothesis that antioxidant supplementation could prevent skeletal muscle atrophy in a model of cachectic Colon 26 (C26) tumor-bearing mice. Seven-week-old BALB/c mice were subcutaneously inoculated with colon 26 (C26) cancer cells or PBS. Then C26-mice were daily gavaged during 22 days either with PBS (vehicle) or an antioxidant cocktail whose composition is close to that of commercial dietary antioxidant supplements (rich in catechins, quercetin and vitamin C). We found that antioxidants enhanced weight loss and caused premature death of mice. Antioxidants supplementation failed to prevent (i) the increase in plasma TNF-? levels and systemic oxidative damage, (ii) skeletal muscle atrophy and (iii) activation of the ubiquitin-proteasome system (MuRF-1, MAFbx and polyubiquitinated proteins). Accordingly, immunohistological staining for Ki-67 and the expression of cell cycle inhibitors demonstrated that tumor of supplemented mice developed faster with a concomitant decrease in oxidative damage. Previous studies have shown that the use of catechins and quercetin separately can improve the musculoskeletal function in cachectic animals. However, our results indicate that the combination of these antioxidants reduced survival and enhanced cachexia in C26-mice. PMID:26708754

  2. Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model.

    PubMed

    Hung, Ming-Szu; Xu, Zhidong; Chen, Yu; Smith, Emmanuel; Mao, Jian-Hua; Hsieh, David; Lin, Yu-Ching; Yang, Cheng-Ta; Jablons, David M; You, Liang

    2013-11-01

    Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed that hematein binds to CK2α in durable binding sites. Collectively, our results suggest that hematein is an allosteric inhibitor of protein kinase CK2 and has antitumor activity to lung cancer. PMID:24008396

  3. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  4. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  5. Transjugular intrahepatic portosystemic shunt creation as treatment for refractory chylous ascites and chylothorax in a patient with cirrhosis.

    PubMed

    Kinney, Thomas B; Ferrara, Stephen L; Miller, Franklin J; Roberts, Anne C; Hassanein, Tarek

    2004-01-01

    The etiology of chylothorax is usually considered to consist of four major categories: tumors, trauma, idiopathic conditions, and miscellaneous conditions. It appears that chylothorax is a rare and underreported manifestation of cirrhosis resulting from transdiaphragmatic passage of chylous ascites. This condition can be debilitating as a result of respiratory compromise from a large volume of pleural fluid, as well as metabolic derangements, malnutrition, and immunologic impairment from loss of vital lymphatic constituents. Herein the authors present a case of a 46-year-old male patient with cirrhosis and complications of high-volume chylous ascites and chylothorax who was successfully treated with creation of a transjugular intrahepatic portosystemic shunt. PMID:14709693

  6. Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth.

    PubMed

    Kleffel, Sonja; Posch, Christian; Barthel, Steven R; Mueller, Hansgeorg; Schlapbach, Christoph; Guenova, Emmanuella; Elco, Christopher P; Lee, Nayoung; Juneja, Vikram R; Zhan, Qian; Lian, Christine G; Thomi, Rahel; Hoetzenecker, Wolfram; Cozzio, Antonio; Dummer, Reinhard; Mihm, Martin C; Flaherty, Keith T; Frank, Markus H; Murphy, George F; Sharpe, Arlene H; Kupper, Thomas S; Schatton, Tobias

    2015-09-10

    Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. PMID:26359984

  7. A cellular automata model for avascular solid tumor growth under the effect of therapy

    NASA Astrophysics Data System (ADS)

    Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.

    2009-04-01

    Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.

  8. Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated.

    PubMed

    Castellví, Quim; Ginestà, Mireia M; Capellà, Gabriel; Ivorra, Antoni

    2015-10-01

    Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer therapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz which are applied continuously in a non-invasive manner. Electric field delivery may produce an increase in temperature which cannot be neglected. We hypothesized that the reported results obtained by applying TTFields in vivo could be due to heat rather than to electrical forces as previously suggested. Here, an in vivo study is presented in which pancreatic tumors subcutaneously implanted in nude mice were treated for a week either with mild hyperthermia (41 °C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields applied singly did not produce any significant effect, the combination with chemotherapy did show a delay in tumor growth in comparison to animals treated only with chemotherapy (median relative reduction=47%). We conclude that concomitant chemotherapy and TTFields delivery show a beneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is non-related with the induced temperature increase. PMID:25955102

  9. Comparative Effects of CT Imaging Measurement on RECIST End Points and Tumor Growth Kinetics Modeling.

    PubMed

    Li, C H; Bies, R R; Wang, Y; Sharma, M R; Karovic, S; Werk, L; Edelman, M J; Miller, A A; Vokes, E E; Oto, A; Ratain, M J; Schwartz, L H; Maitland, M L

    2016-02-01

    Quantitative assessments of tumor burden and modeling of longitudinal growth could improve phase II oncology trials. To identify obstacles to wider use of quantitative measures we obtained recorded linear tumor measurements from three published lung cancer trials. Model-based parameters of tumor burden change were estimated and compared with similarly sized samples from separate trials. Time-to-tumor growth (TTG) was computed from measurements recorded on case report forms and a second radiologist blinded to the form data. Response Evaluation Criteria in Solid Tumors (RECIST)-based progression-free survival (PFS) measures were perfectly concordant between the original forms data and the blinded radiologist re-evaluation (intraclass correlation coefficient = 1), but these routine interrater differences in the identification and measurement of target lesions were associated with an average 18-week delay (range, -20 to 55 weeks) in TTG (intraclass correlation coefficient = 0.32). To exploit computational metrics for improving statistical power in small clinical trials will require increased precision of tumor burden assessments. PMID:26790562

  10. TNF Neutralization Results in the Delay of Transplantable Tumor Growth and Reduced MDSC Accumulation.

    PubMed

    Atretkhany, Kamar-Sulu N; Nosenko, Maxim A; Gogoleva, Violetta S; Zvartsev, Ruslan V; Qin, Zhihai; Nedospasov, Sergei A; Drutskaya, Marina S

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells (IMCs) that, under normal conditions, may differentiate into mature macrophages, granulocytes, and dendritic cells. However, under pathological conditions associated with inflammation, cancer, or infection, such differentiation is inhibited leading to IMC expansion. Under the influence of inflammatory cytokines, these cells become MDSCs, acquire immunosuppressive phenotype, and accumulate in the affected tissue, as well as in the periphery. Immune suppressive activity of MDSCs is partly due to upregulation of arginase 1, inducible nitric oxide synthase, and anti-inflammatory cytokines, such as IL-10 and TGF-β. These suppressive factors can enhance tumor growth by repressing T-cell-mediated anti-tumor responses. TNF is a critical factor for the induction, expansion, and suppressive activity of MDSCs. In this study, we evaluated the effects of systemic TNF ablation on tumor-induced expansion of MDSCs in vivo using TNF humanized (hTNF KI) mice. Both etanercept and infliximab treatments resulted in a delayed growth of MCA 205 fibrosarcoma in hTNF KI mice, significantly reduced tumor volume, and also resulted in less accumulated MDSCs in the blood 3 weeks after tumor cell inoculation. Thus, our study uncovers anti-tumor effects of systemic TNF ablation in vivo. PMID:27148266

  11. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism

    PubMed Central

    Zhao, Chengjian; Zhang, Wei; Zhao, Yuwei; Yang, Yun; Luo, Hui; Ji, Gaili; Dong, E; Deng, Hongxing; Lin, Shuo; Wei, Yuquan; Yang, Hanshuo

    2016-01-01

    The angiogenic switch is an important oncogenic step that determines whether microtumors remain dormant or progresses further. It has been generally perceived that the primary function of this tumorgenic event is to supply oxygen and nutrients through blood circulation. Using in vivo imaging of zebrafish and mouse tumor models, we showed that endothelial cords aggressively penetrated into microtumors and remained non-circulatory for several days before undergoing vascular blood perfusion. Unexpectedly, we found that initial tumor growth in both models was significantly reduced if endothelial cords were removed by blocking VEGF-VEGFR2 signaling or using a vascular deficient zebrafish mutant. It was further shown that soluble factors including IL-8, secreted by endothelial cells (ECs) were responsible for stimulating tumor cells proliferation. These findings establish that tumor angiogenesis play a much earlier and broader role in promoting tumor growth, which is independent of vascular circulation. Understanding this novel mechanism of angiogenic tumor progression offers new entry points for cancer therapeutics. PMID:26762853

  12. Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth.

    PubMed

    Vincent, Emma E; Sergushichev, Alexey; Griss, Takla; Gingras, Marie-Claude; Samborska, Bozena; Ntimbane, Thierry; Coelho, Paula P; Blagih, Julianna; Raissi, Thomas C; Choinière, Luc; Bridon, Gaëlle; Loginicheva, Ekaterina; Flynn, Breanna R; Thomas, Elaine C; Tavaré, Jeremy M; Avizonis, Daina; Pause, Arnim; Elder, Douglas J E; Artyomov, Maxim N; Jones, Russell G

    2015-10-15

    Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors. PMID:26474064

  13. TNF Neutralization Results in the Delay of Transplantable Tumor Growth and Reduced MDSC Accumulation

    PubMed Central

    Atretkhany, Kamar-Sulu N.; Nosenko, Maxim A.; Gogoleva, Violetta S.; Zvartsev, Ruslan V.; Qin, Zhihai; Nedospasov, Sergei A.; Drutskaya, Marina S.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells (IMCs) that, under normal conditions, may differentiate into mature macrophages, granulocytes, and dendritic cells. However, under pathological conditions associated with inflammation, cancer, or infection, such differentiation is inhibited leading to IMC expansion. Under the influence of inflammatory cytokines, these cells become MDSCs, acquire immunosuppressive phenotype, and accumulate in the affected tissue, as well as in the periphery. Immune suppressive activity of MDSCs is partly due to upregulation of arginase 1, inducible nitric oxide synthase, and anti-inflammatory cytokines, such as IL-10 and TGF-β. These suppressive factors can enhance tumor growth by repressing T-cell-mediated anti-tumor responses. TNF is a critical factor for the induction, expansion, and suppressive activity of MDSCs. In this study, we evaluated the effects of systemic TNF ablation on tumor-induced expansion of MDSCs in vivo using TNF humanized (hTNF KI) mice. Both etanercept and infliximab treatments resulted in a delayed growth of MCA 205 fibrosarcoma in hTNF KI mice, significantly reduced tumor volume, and also resulted in less accumulated MDSCs in the blood 3 weeks after tumor cell inoculation. Thus, our study uncovers anti-tumor effects of systemic TNF ablation in vivo. PMID:27148266

  14. Impact of fibroblast growth factor-2 on tumor microvascular architecture. A tridimensional morphometric study.

    PubMed Central

    Konerding, M. A.; Fait, E.; Dimitropoulou, C.; Malkusch, W.; Ferri, C.; Giavazzi, R.; Coltrini, D.; Presta, M.

    1998-01-01

    Three cell clones originated by transfection of human endometrial adenocarcinoma HEC-1-B cells with fibroblast growth factor-2 (FGF-2) cDNA and characterized by a different capacity to produce and secrete the growth factor were transplanted subcutaneously in nude mice. Corrosion casting of the tumor microvasculature of xenografts produced by injection of 2 x 10(6) or 10 x 10(6) FGF-2-B9 cells (which produce and secrete significant amounts of FGF-2), 10 x 10(6) FGF-2-A8 cells (which produce comparable amounts of FGF-2 but do not secrete it), or 10 x 10(6) control FGF-2-B8 cells (which produce only trace amounts of FGF-2) was performed after 14 days of growth. Interbranching distances, intervascular distances, branching angles, and vessel diameters were then determined using tridimensional stereo pairs of the casted tumor vascularity. When transplanted at the same concentration, FGF-2-B9 cells grew faster in nude mice compared with FGF-2-A8 and FGF-2-B8 clones. The total amount of new vessel formation was far higher in FGF-2-B9 tumors than in FGF-2-B8 or FGF-2-A8 tumors. Also, vessel courses were more irregular and blind-ending vessels and evasates were more frequent in FGF-2-B9 tumors. Moreover, FGF-2-B9 tumor microvasculature was characterized by a wider average vascular diameter and by an extreme variability of the diameter of each individual vessel along its course between two ramifications. No statistical differences were observed when the distribution curves of the values of intervascular distances, interbranching distances, and branching angles of the microvessel network were compared among the different experimental groups. The distinctive features of the microvasculature of FGF-2-B9 tumors